Sample records for clinch river sediments

  1. The Clinch River study--An investigation of the fate of radionuclides released to a surface stream

    USGS Publications Warehouse

    Pickering, R.J.; Carrigan, P.H.; Parker, F.L.

    1965-01-01

    The Clinch River Study is a multiagency effort to evaluate the physical, chemical, and biological effects of the release to de Clinch River of low-level radioactive wastes from the Oak Ridge National Laboratory. The major radionuclides released are ruthenium-106, cesium-137, cobalt-60, and strontium-90. Hydrologic and biologic studies have indicated that the radiation doses in the river are well below maximum acceptable levels. Radionuclide concentrations in river water have been measured at seven sampling stations on the Clinch and Tennessee Rivers. Mass-balance calculations for 44 weeks of sampling indicate that losses of radionuclides from the water phase to the river-bottom sediments represent only a very small part of the total radioactivity released to the river. A study of the Clinch River bottom-sediment cores collected in 1962 has disclosed a recurring pattern of variation in radioactivity with depth which may reflect past events in waste-disposal operations at the laboratory. Current investigations are expected to provide information about the chemical forms in which the major radionuclides exist and the mechanisms by which they were incorporated in the sediments.

  2. Freshwater mussel population status and habitat quality in the Clinch River, Virginia and Tennessee, USA: a featured collection

    USGS Publications Warehouse

    Zipper, Carl E.; Beaty, Braven; Johnson, Gregory C.; Jones, Jess W.; Krstolic, Jennifer Lynn; Ostby, Brett J.K.; Wolfe, William J.; Donovan, Patricia

    2014-01-01

    The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water- and sediment-quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery-raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed-sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water- and sediment-quality concerns for mussel conservation in the Clinch River.

  3. Water quality, sediment characteristics, aquatic habitat, geomorphology, and mussel population status of the Clinch River, Virginia and Tennessee, 2009-2011

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Johnson, Gregory C.; Ostby, Brett J.K.

    2013-01-01

    Chemical, physical, and biological data were collected during 2009-2011 as part of a study of the Clinch River in Virginia and Tennessee. The data from this study, data-collection methods, and laboratory analytical methods used in the study are documented in this report. The study was conducted to describe the conditions of the Clinch River and to determine if there are measurable differences in chemical, physical, or biological characteristics in a segment of the river where freshwater mussel populations are in decline, have low density, richness, little to no recruitment, and lack endangered species (low-quality reach) compared to a segment of the river where mussel assemblages have relatively high density, richness, evidence of recruitment, and support endangered species (high-quality reach). Five continuous water-quality monitors were installed and operated on the mainstem of the Clinch River and two tributaries. Discrete water-quality sample sets were collected during base-flow and stormflow conditions two sites on the Clinch River and on the Guest River, a tributary to the Clinch River predominantly in the Appalachian Plateaus Physiographic Province. Base-flow water-quality samples were collected in July and August 2011 at 15 sites along the mainstem of the Clinch River. Other analyses included longitudinal sampling along the mainstem of the Clinch River at 10 sites to evaluate bed-sediment chemistry, habitat condition, and mollusk community status. In situ freshwater mussel growth and mortality experiments were conducted with hatchery propogated Villosa iris (rainbow mussels). Tissue from the V. iris as well as tissue from 16 Actinonaias pectorosa mussels were analyzed for trace metals, and V. iris mussel tissue was analyzed for organic compounds. Data collected during this investigation were analyzed by various U.S. Geological Survey or U.S. Fish and Wildlife Service laboratories.

  4. Anodonta imbecillis QA Test 2, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Atiodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected August 14 from Poplar Creek Miles 6.0 and 4.3 was conducted from August 24-September 2, 1993. Results from this test showed no toxicity (survival effects) to fresh--water mussels during a 9-day exposure to the sediments.

  5. Anodonta imbecillis QA Test 3, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected May 5 from Poplar Creek Miles 6.0 and 2.9 was conducted from May 10-19, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments.

  6. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contaminationmore » and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.« less

  7. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation hasmore » been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.« less

  8. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensivemore » Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.« less

  9. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 4, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organisms quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13--22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicity testmore » bench sheets; Ammonia analysis request and results; and Meter calibration log sheets.« less

  10. Anodonta imbecillis QA Test 1, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21-30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment.« less

  11. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 3, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected May 5 from Poplar Creek Miles 6.0 and 2.9 was conducted from May 10--19, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicitymore » test bench sheets; Ammonia analysis request and results; Meter calibration log sheets; and Training documentation forms.« less

  12. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 2, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected August 14 from Poplar Creek Miles 6.0 and 4.3 was conducted from August 24--September 2, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original;more » Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  13. Clinch River remedial investigation task 9 -- benthic macroinvertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, E.M. Jr.

    1994-08-01

    This report summarizes the results of Task 9 of the TVA/Department of Energy (DOE) Interagency Agreement supporting DOE`s Clinch River Remedial Investigation. Species lists and densities (numbers/m{sup 2}) of benthic macroinvertebrates sampled at 16 sites in the Clinch River and Poplar Creek embayments of upper Watts Bar Reservoir near Oak Ridge, Tennessee, in March, 1994, are presented and briefly discussed. Data are also analyzed to assess and compare quality of benthic communities at each site, according to methods developed for TVA`s Reservoir Vital Signs Monitoring Program. Results of this study will be incorporated with other program tasks in a comprehensivemore » report prepared by Oak Ridge National Laboratory in 1995, which will, in part, assess the effect of sediment contaminants on benthic macroinvertebrate communities in Watts Bar Reservoir.« less

  14. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 1, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21--30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  15. Influences of water and sediment quality and hydrologic processes on mussels in the Clinch River

    USGS Publications Warehouse

    Johnson, Gregory C.; Krstolic, Jennifer L.; Ostby, Brett J.K.

    2014-01-01

    Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water-quality data showed higher turbidity and specific conductance in the reaches with low-quality mussel assemblages compared to reaches with high-quality mussel assemblages. Discrete water-quality samples showed higher major ions and metals concentrations in the low-quality reach. Base-flow samples contained high major ion and metal concentrations coincident to low-quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high-quality mussel populations occur.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13-22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments.

  17. Anodonta imbecillis copper sulfate reference toxicant test, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Toxicity testing of copper sulfate reference toxicant was conducted from May 12-21, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed an LC{sub 50} value of 1.12 mg Cu/L which is lower than the value of 2.02 mg Cu/L obtained inmore » a previous test. Too few tests have been conducted with copper as the toxicant to determine a normal range of values.« less

  18. "Wandering in the Desert": The Clinch River Breeder Reactor Debate in the U.S. Congress, 1972-1983.

    PubMed

    Camp, Michael

    2018-01-01

    The experimental Clinch River breeder reactor, approved by the U.S. Congress in 1970 for construction in East Tennessee, would have used plutonium instead of uranium. The project drew the ire of environmentalists who insisted that plutonium was too dangerous for commercial use, along with opponents of nuclear proliferation. Tennessee's representatives in Congress, however, desired the jobs that the project would create, and formed legislative coalitions to ensure continued appropriations for the project. Funding lasted until 1983, when fiscal conservatives, concerned about ballooning cost projections, joined with environmentalists to defund the breeder. Interpretations of U.S. nuclear policy in the 1980s have often revolved around the Three Mile Island meltdown's aftermath, but Clinch River was not affected by the incident. Instead, the Clinch River controversy revolved around other unrelated issues. The Clinch River story therefore offers a corrective to accounts that privilege national public opinion at the expense of other variables.

  19. Life history and propagation of the endangered dromedary pearlymussel (Dromus dromas) (Bivalvia:Unionidae)

    USGS Publications Warehouse

    Jones, J.W.; Neves, R.J.; Ahlstedt, S.A.; Mair, R.A.

    2004-01-01

    The reproduction, demography, and propagation of the endangered dromedary pearlymussel (Dromus dromas) (Lea, 1834) were studied in the Clinch and Powell rivers, Tennessee. Viable populations of the dromedary pearlymussel now occur only in the Clinch and Powell rivers; the species has been extirpated from the remaining portions of its range in the Cumberland and Tennessee river drainages. Females are long-term winter brooders, and they are gravid from October to June. Glochidia are contained in conglutinates that are red to white and resemble freshwater leeches or flatworms. Conglutinates are 20 to 40 mm long and are released through the excurrent aperture. Estimates of fecundity based on 7 gravid females collected from the Clinch River were 55,110 to 253,050 glochidia/mussel. The ages of 66 valves of D. dromas were determined by thin-sectioning and ranged from 3 to 25 y. Annual growth averaged 5 mm/y until age 10 and decreased to ???1.2 mm/ y thereafter. Nineteen fish species were tested for suitability as hosts for glochidia. Ten were confirmed as hosts through induced infestations of glochidia: black sculpin (Cottus baileyi), greenside darter (Etheostoma blennioides), fantail darter (Etheostoma flabellare), snubnose darter (Etheostoma simoterum), tangerine darter (Percina aurantiaca), blotchside logperch (Percina burtoni), logperch (Percina caprodes), channel darter (Percina copelandi), gilt darter (Percina evides), and Roanoke darter (Percina roanoka). Juveniles produced from these hosts were cultured in dishes held in nonrecirculating aquaculture systems containing fine sediment (<105 ??m) and were fed the green alga Nannochloropsis oculata every 2 d. Survival of 2810 newly metamorphosed juveniles was 836 (29.7%) after 1 to 2 wk.

  20. Static renewal tests using Anodonta imbecillus (freshwater mussels). Anodonta imbecillis copper sulfate reference toxicant test, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Toxicity testing of copper sulfate reference toxicant was conducted from May 12--21, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed an LC{sub 50} value of 1.12 mg Cu/L which is lower than the value of 2.02 mg Cu/L obtained inmore » a previous test. Too few tests have been conducted with copper as the toxicant to determine a normal range of values. Attachments to this report include: Toxicity test bench sheets and statistical analyses; Copper analysis request and results; and Personnel training documentation.« less

  1. Homogeneity at nuclear microsatellite loci masks mitochondrial haplotype diversity in the endangered fanshell pearlymussel (Cyprogenia stegaria).

    PubMed

    Grobler, J Paul; Jones, Jess W; Johnson, Nathan A; Neves, Richard J; Hallerman, Eric M

    2011-01-01

    We report on multiple patterns of differentiation and connectivity in the fanshell pearlymussel (Cyprogenia stegaria), based on different markers. Knowledge of genetic variation and genetic connectivity among remaining populations of this federally endangered species is needed to initiate implementation of the species recovery plan. We collected tissue samples from 96 specimens from the Green, Rolling Fork, and Licking Rivers, tributaries to the Ohio River, and the Clinch River, a tributary to the Tennessee River, providing broad coverage of the current distributional range of the species. Results from 7 nuclear DNA microsatellite markers suggested minimal population-level differentiation, whereas a mitochondrial DNA (mtDNA) marker (ND1) exhibited significant differentiation between C. stegaria in the Clinch River and the Ohio River populations. The ND1 data also confirm the existence of 2 distinct mtDNA lineages in the genus that transcends species boundaries. Further analyses suggest that the disproportionally strong signal from 2 very divergent ND1 lineages possibly masks finer-grained structure in the Ohio River population, based on one of the mtDNA lineages only. We recommend further sampling to confirm the absence of one lineage from the upper Clinch River drainage and suggest that provisional management guidelines should limit reciprocal exchanges among C. stegaria populations from the Clinch River and those in the Ohio River system.

  2. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis copper sulfate reference toxicant/food test, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6--15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Although significant reduction in growth, compared tomore » the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups. Attachments to this report include: Toxicity test bench sheets and statistical analyses; and Copper analysis request and results.« less

  3. Clinch River - Environmental Restoration Program (CR-ERP) study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, C.L.

    1997-06-01

    Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of July 22-29, 1993, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 19.0 and Mile 22.0 on July 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth,more » or reproduction) to either species in testing conducted by TVA.« less

  4. Clinch River - Environmental Restoration Program (CR-ERP) pilot study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22-29, 1993, prior to initiation of CR-ERP Phase II Sampling and Analysis activities as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories formore » testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA.« less

  5. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, C.L.

    1993-12-31

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of July 22--29, 1993. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field engineering personnel from Clinch River Mile 19.0 and Mile 22.0 on July 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachmentsmore » to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Reference toxicant test information.« less

  6. Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Adams, Marshall; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a varietymore » of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with the ability of individuals within a population to reproduce. Reproduction is thus generally considered to be the most critical life function affected by environmental contamination. From a regulatory perspective, the issue of potential contaminant-related effects on fish reproduction from the Kingston fly ash spill has particular significance because the growth and propagation of fish and other aquatic life is a specific classified use of the affected river systems. To address the potential effects of fly ash from the Kingston spill on the reproductive health of exposed fish populations, ORNL has undertaken a series of studies in collaboration with TVA that include: (1) a combined field study of metal bioaccumulation in ovaries and other fish tissues (Adams and others 2012) and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill (the current report); (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (Greeley and others 2012); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence (unpublished); and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers (unpublished). The current report focuses on the reproductive condition of adult female fish in reaches of the Emory and Clinch Rivers influenced by the fly ash spill at the beginning of the spring 2009 breeding season - the first breeding season immediately following the fly ash release - and during the subsequent spring 2010 breeding season. Data generated from this and related reproductive/early life stage studies provide direct input to ecological risk assessment efforts and complement and support other phases of the overall biomonitoring program associated with the fly ash spill.« less

  7. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which,more » at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current technical manuscript); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence; and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers. These fish reproduction and early life-stage studies are being conducted in conjunction with a broader biological monitoring program administered by TVA that includes a field study of the condition of larval fish in the Emory and Clinch Rivers along with assessments of water quality, sediment composition, ecotoxicological studies, terrestrial wildlife studies, and human and ecological risk assessment. Information and data generated from these studies will provide direct input into risk assessment efforts and will also complement and help support other phases of the overall biomonitoring program. Fish eggs, in general, are known to be capable of concentrating heavy metals and other environmental contaminants from water-borne exposures during embryonic development (Jezierska and others 2009), and fathead minnow embryos in particular have been shown to concentrate methylmercury (Devlin 2006) as well as other chemical toxicants. This technical report focuses on the responses of fathead minnow embryos to simple contact exposures to fly ash in laboratory toxicity tests adapted from a standard fathead minnow (Pimephales promelas) 7-d embryo-larval survival and teratogenicity test (method 1001.0 in EPA 2002) with mortality, hatching success, and the incidences of developmental abnormalities as measured endpoints.« less

  8. Anodonta imbecillis copper sulfate reference toxicant/food test, Clinch River - Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6-15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed LC{sub 50}more » values of 0.97 and 0.84 mg Cu/L for phytoplankton and YCT-S, respectively. Previously obtained values for phytoplankton tests are 2.02 and 1.12 mg Cu/L. Too few tests have been conducted with copper as the toxicant to determine a normal range of values. Although significant reduction in growth, compared to the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups.« less

  9. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) pilot study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a pilot study during the week of April 22--29, 1993, prior to initiation of CR-ERP Phase 2 Sampling and Analysis activities. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0 and Poplar Creek Kilometer 1.6 on April 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in nomore » toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Reference toxicant test information; and Personnel training documentation.« less

  10. Clinch River - Environmental Restoration Program (CR-ERP) study, Ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of January 25-February 1, 1994, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Clinch River Mile 9.0, Poplar Creek Mile 1.0, and Poplar Creek Mile 2.9 on January 24, 26, and 28. Samples were partitioned (split) and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms tomore » these samples resulted in no toxicity (survival or growth) to fathead minnows; however, toxicity to daphnids (significantly reduced reproduction) was demonstrated in undiluted samples from Poplar Creek Mile 1.0 in testing conducted by TVA based on hypothesis testing of data. Point estimation (IC{sub 25}) analysis of the data, however, showed no toxicity in PCM 1.0 samples.« less

  11. Ecological risk assessment of aerial insectivores of the Clinch River/Poplar Creek system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, L.A.; Sample, B.E.

    Risks to aerial insectivores (species that consume flying insects; rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the CERCLA remedial investigation of the Clinch River/Poplar Creek system. Adult mayflies and sediment were collected from four locations and analyzed for contaminants. Sediment-to-mayfly contaminant transfer factors were generated from these data and used to estimate contaminant concentrations in mayflies from thirteen additional locations. Contaminants of potential concern (COPCs) were identified by comparing exposure estimates, generated using point estimates of parameter values, to NOAELS. COPCs included mercury, arsenic, and PCBs. Exposure to COPCs was re-estimated using Monte Carlo simulations.more » Adverse population effects were assumed likely if > 20% of the estimated exposure distribution was greater than the LOAEL. Exposure of swallows to mercury was a significant risk at two locations. Exposure of bats to mercury was a significant risk at only one location. While consideration of movement and foraging territory did not reduce estimated risks to swallows, when exposures for gray and little brown bats were re-estimated, population-level risks from mercury were no longer considered likely. As an endangered species however, protection is extended to individual gray bats. While less than 20% of the mercury exposure distribution for gray bats was > LOAEL, > 99% of the distribution was >NOAEL. Therefore, adverse effects may occur among maximally exposed individual gray bats. Available data indicate that contaminants in Poplar Creek are likely to present a risk to the swallow population, do not present a risk to the little brown bat population, and may present a risk to individual gray bats.« less

  12. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.

    1992-02-01

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig.more » 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.« less

  13. A survey of the indigenous microbiota (bacteria) in three species of mussels from the Clinch and Holston Rivers, Virginia

    USGS Publications Warehouse

    Starliper, Clifford E.; Neves, Richard J.; Hanlon, Shane D.; Whittington, Pamela

    2008-01-01

    Freshwater mussel conservation efforts by many federal and state agencies have increased in recent years. This has led to a greater number of stream surveys, in which mussel die-offs involving high numbers of dead and moribund animals are being observed and reported with greater frequency. Typically, die-offs have been incidentally observed while research was being done for other purposes, therefore, accurate mortality data have been difficult to obtain. Specifically, seasonal die-offs were noted in localized areas of the Clinch and Holston Rivers, Virginia, and to lesser degrees, in neighboring rivers in this geographic region, including southeast Virginia. The observed mussel species affected were primarily the slabside pearlymussel (Lexingtonia dolabelloides) and to lesser extents, the pheasantshell (Actinonaias pectorosa), rainbow mussel (Villosa iris), and the endangered shiny pigtoe (Fusconaia cor). To determine if a bacterial pathogen might be involved in these recurring mussel die-offs, this study examined characteristics of the indigenous microbiota (bacteria) from healthy mussels from sites on the Clinch and Holston Rivers where die-offs were previously observed. These baseline data will allow for recognition of bacterial pathogens in future mussel die-offs. Means for total bacteria from soft tissues ranged from 1.77 × 105 to 3.55 × 106 cfu/g; whereas, the range in means from fluids was 2.92 × 104 to 8.60 × 105 cfu/mL. A diverse microbiota were recovered, including species that are common in freshwater aquatic environments. The most common bacterial groups recovered were motile Aeromonas spp. and nonfermenting bacteria. Flavobacterium columnare, a pathogen to cool- and warm-water fishes was recovered from one specimen, a Villosa iris from the Clinch River.

  14. DIAGNOSING CAUSES OF NATIVE FISH AND MUSSEL SPECIES DECLINE IN THE CLINCH AND POWELL RIVER WATERSHED, VIRGINIA, USA.

    EPA Science Inventory

    The free-flowing Clinch and Powell watershed in Virginia, USA harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. In order to prioritize resource management strategies with respect to these fauna, a Graphical Info...

  15. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extentmore » of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring,more » (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.« less

  17. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of January 25--February 1, 1994. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected from Clinch River Mile 9.0, Poplar Creek Mile 1.0, and Poplar Creek Mile 2.9 on January 24, 26, and 28. Samples were partitioned and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival or growth) to fathead minnows; however, toxicity to daphnids wasmore » demonstrated in undiluted samples from Poplar Creek Mile 1.0 in testing conducted by TVA based on hypothesis testing of data. Point estimation (IC{sub 25}) analysis of the data, however, showed no toxicity in PCM 1.0 samples. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Meter calibrations; and Reference toxicant test information.« less

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extentmore » of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.« less

  19. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extentmore » of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.« less

  20. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Biota and representative concentrations of contaminants. Appendixes A, B, C, D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extentmore » of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OU`s). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.« less

  1. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extentmore » of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.« less

  2. Ecological risk assessment in a large river-reservoir. 5: Aerial insectivorous wildlife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, L.A.; Sample, B.E.; Suter, G.W. II

    Risks to aerial insectivores (e.g., rough-winged swallows, little brown bats, and endangered gray bats) were assessed for the remedial investigation of the Clinch River/Poplar Creek (CR/PC) system. Adult mayflies and sediment were collected from three locations and analyzed for contaminants. Sediment-to-mayfly contaminant uptake factors were generated from these data and used to estimate contaminant concentrations in mayflies from 13 additional locations. Contaminants of potential ecological concern (COPECs) were identified by comparing exposure estimates generated using point estimates of parameter values to NOAELs. To incorporate the variation in exposure parameters and to provide a better estimate of the potential exposure, themore » exposure model was recalculated using Monte Carlo methods. The potential for adverse effects was estimated based on the comparison of exposure distribution and the LOAEL. The results of this assessment suggested that population-level effects to rough-winged swallows and little brown bats are considered unlikely. However, because gray bats are endangered, effects on individuals may be significant from foraging in limited subreaches of the CR/PC system. This assessment illustrates the advantage of an iterative approach to ecological risk assessments, using fewer conservative assumptions and more realistic modeling of exposure.« less

  3. Fishing along the Clinch River arm of Watts Bar reservoir adjacent to the Oak Ridge Reservation, Tennessee: behavior, knowledge and risk perception.

    PubMed

    Rouse Campbell, Kym; Dickey, Richard J; Sexton, Richard; Burger, Joanna

    2002-11-01

    Catching and eating fish is usually viewed as a fun, healthy and safe activity. However, with continuing increases in fish consumption advisories due to the contamination of our environment, anglers have to decide whether or not to eat the fish they catch. The Clinch River arm of Watts Bar Reservoir is under a fish consumption advisory because of elevated PCB concentrations in striped bass (Morone saxatilis), catfish (Ictalurus spp.) and sauger (Stizostedion canadense) due in part from contaminants released from the US Department of Energy's (USDOE's) Oak Ridge Reservation (ORR) in East Tennessee. To obtain information about the demographics, fishing behavior, knowledge, fish consumption and risk perception of anglers, a survey was conducted of 202 people actively fishing either on land or by boat along the Clinch River arm of Watts Bar Reservoir adjacent to the ORR from Melton Hill Dam to the Poplar Creek confluence or on Poplar Creek within ORR boundaries from mid-March to early November 2001. Even though 81% of people interviewed knew about the fish consumption advisories for the study area, 48% of them thought the fish were safe to eat, while 38% ate the fish that they caught from the study area. Approximately 36% of anglers who had knowledge of the fish consumption warnings ate fish from the study area. Providing confirmation that people fish for many reasons, 35% of anglers interviewed did not eat fish at all. The majority of anglers interviewed knew about the fish consumption advisories because of the signs posted throughout the study area. However, few people knew the correct fish advisories. Significantly fewer blacks had knowledge of the fish consumption warnings than whites. Information resulting from this study could be used to design a program with the objective of reaching the people who may be most at risk from eating fish caught from the Clinch River arm of Watts Bar Reservoir.

  4. Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, T.; Brandt, C.; Calfee, J.

    1994-03-01

    The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementationmore » of a common information management strategy that benefits each program.« less

  5. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, mustmore » be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been tomore » determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.« less

  7. Ecological risk assessment in a large river-reservoir. 8: Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbrook, R.S.; Aulerich, R.J.; Bursian, S.J.

    1999-04-01

    As a component of an ecological risk assessment of Poplar Creek (located on the Oak Ridge Reservation [ORR]) and the Clinch River (a large river-reservoir system), fish from Poplar Creek, the Clinch River, and Atlantic Ocean were fed to ranch mink to evaluate reproductive success. Five diets, each composed of 75% fish and 25% normal ranch mink chow, were prepared. Two diets served as reference diets and contained 75% Atlantic Ocean fish or 75% Clinch River fish collected above the ORR. The fish portion of the remaining three diets contained 25, 50, and 75% fish collected from Poplar Creek andmore » 50, 25, and 0% ocean fish, respectively. Five mink groups (eight females and two males each) were each fed one of the prepared diets for 196 days. Polychlorinated biphenyl concentrations were determined in diets and various mink tissues, ethoxyresorufin-O-deethylase (EROD) activity was determined in liver tissue, and reproductive success was evaluated. Concentrations of PCB were greatest in the diet composed of 75% Poplar Creek fish and in tissues from mink fed this diet and their offspring. There was a trend toward decreased adult female and kit weights and reduced mean litter size in mink fed diets containing 75% Poplar Creek fish; however, at 6 weeks of age, kit survival was similar among diet groups. Liver EROD activity significantly increased in adult female mink fed 50 and 75% Poplar Creek fish diets. Estimated dietary concentrations of PCBs were similar to or slightly lower than concentrations associated with adverse effects in experimentally dosed mink. Mercury (Hg) concentrations previously reported in these same mink were below that associated with adverse effects, and there was no indication of additive or synergistic effects from exposure to PCBs plus Hg. It is unlikely that population-level reproductive effects would be observed in mink consuming fish from Poplar Creek on the ORR.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been tomore » determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.C.; Benson, S.B.; Beeler, D.A.

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The remedial investigation is entering Phase 2, which has the following items as its objectives: define the nature and extent of the contamination in areas downstream from the DOE ORR, evaluate the human health and ecological risks posed by these contaminants, and perform preliminary identification and evaluation of potential remediationmore » alternatives. This plan describes the requirements, responsibilities, and roles of personnel during sampling, analysis, and data review for the Clinch River Environmental Restoration Program (CR-ERP). The purpose of the plan is to formalize the process for obtaining analytical services, tracking sampling and analysis documentation, and assessing the overall quality of the CR-ERP data collection program to ensure that it will provide the necessary building blocks for the program decision-making process.« less

  10. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 5. Appendixes G, H, I, J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The Quality Assurance/Quality Control (QA/QC) Program for Phase 2 of the Clinch River Remedial Investigation (CRRI) was designed to comply with both Department of Energy (DOE) Order 5700.6C and Environmental Protection Agency (EPA) QAMS-005/80 (EPA 1980a) guidelines. QA requirements and the general QA objectives for Phase 2 data were defined in the Phase 2 Sampling and Analysis Plan (SAP)-Quality Assurance Project Plan, and scope changes noted in the Phase 2 Sampling and Analysis Plan Addendum. The QA objectives for Phase 2 data were the following: (1) Scientific data generated will withstand scientific and legal scrutiny. (2) Data will be gatheredmore » using appropriate procedures for sample collection, sample handling and security, chain of custody (COC), laboratory analyses, and data reporting. (3) Data will be of known precision and accuracy. (4) Data will meet data quality objectives (DQOs) defined in the Phase 2 SAP.« less

  11. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  12. Installation and performance evaluation of the wabocrete FMV joint system for bridge decks.

    DOT National Transportation Integrated Search

    1990-01-01

    A Wabocrete FMV bridge deck expansion joint system was installed on the Alternate Rte. 58 bridge over the Clinch River in November 1986. The bridge was placed in service in mid-1987. The report concerns an installation and performance evaluation of t...

  13. Ecological risk assessment for residual coal fly ash at Watts Bar Reservoir, Tennessee: Limited alteration of riverine-reservoir benthic invertebrate community following dredging of ash-contaminated sediment.

    PubMed

    Buys, David J; Stojak, Amber R; Stiteler, William; Baker, Tyler F

    2015-01-01

    Benthic invertebrate communities were assessed after the December 2008 release of approximately 4.1 million m(3) coal fly ash from a disposal dredge cell at the Tennessee Valley Authority (TVA) Kingston Fossil Plant on Watts Bar Reservoir in Roane County, Tennessee, USA. Released ash filled the adjacent embayments and the main channel of the Emory River, migrating into reaches of the Emory, Clinch, and Tennessee Rivers. Dredging was completed in summer 2010, and the benthic community sampling was conducted in December 2010. This study is part of a series that supported an Ecological Risk Assessment for the Kingston site. Benthic invertebrate communities were sampled at transects spread across approximately 20 miles of river that includes both riverine and reservoirlike conditions. Community composition was assessed on a grab sample and transect basis across multiple cross-channel transects to gain an understanding of the response of the benthic community to a fly ash release of this magnitude. This assessment used invertebrate community metrics, similarity analysis, geospatial statistics, and correlations with sediment chemistry and habitat. The community composition was reflective of a reservoir system, with dominant taxa being insect larva, bivalves, and aquatic worms. Most community metric results were similar for ash-impacted areas and upstream reference areas. Variation in the benthic community was correlated more with habitat than with sediment chemistry or residual ash. Other studies have reported that a benthic community can take several years to a decade to recover from ash or ash-related constituents. Although released ash undoubtedly had some initial impacts on the benthic community in this study, the severity of these effects appears to be limited to the initial smothering of the organisms followed by a rapid response and the initial start of recovery postdredging. © 2014 SETAC.

  14. Maps showing mines, quarries, prospects, and exposures in the Devils Fork Roadless Area, Scott County, Virginia

    USGS Publications Warehouse

    Behum, Paul T.

    1984-01-01

    The Devils Fork Roadless Area is located at the eastern edge of the Appalachian coal region and is within the Cumberland Mountain section of the Appalachian Plateau physiographic province. Most of the area is drained by Devil Fork and its tributaries. Clinch Rock Branch of Straight Creek, Roddy Branch of Valley Creek, and Stinking Creek, all tributary to the Clinch River, drain small fringe tracts. Altitudes range from about 1,550 ft on the lower part of Straight Fork to about 3,490 ft at Cox Place on Little Mountain. Vegetation varies from mixed hardwoods in the uplands to thickets of conifer, rhododendron, and laurel in moist protected areas, as in coves along drainage courses.

  15. IDENTIFYING SOURCES OF STRESS TO NATIVE AQUATIC SPECIES USING A WATERSHED ECOLOGICAL RISK ASSESSMENT FRAMEWORK

    EPA Science Inventory

    The free-flowing Clinch and Powell River Basin, located in southwestern Virginia, United States, historically had one of the richest assemblages of native fish and freshwater mussels in the world. Nearly half of the species once residing here are now extinct, threatened, or endan...

  16. IDENTIFYING SOURCES OF STRESS TO NATIVE AQUATIC SPECIES USING A WATERSHED ECOLOGICAL RISK ASSESSMENT FRAMEWORK.

    EPA Science Inventory

    The free-flowing Clinch and Powell River basin, located in southwestern Virginia, U.S.A., historically had one of the richest assemblages of native fish and freshwater mussels in the world. Nearly half of the species once residing here are now extinct, threatened or endangered....

  17. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4)more » instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.« less

  18. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  19. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  20. An eight-acre black walnut plantation: history and observations 1982 - 1994

    Treesearch

    Charles J. Saboites

    1995-01-01

    In 1982 a black walnut (Juglans nigra) plantation was partly established by planting 200 1-0 seedlings on the first bench adjacent to Copper Creek near its mouth draining into the Clinch River, Scott County, Virginia. In the following years, 50-500 1-0 black walnut seedlings, supplemented by transplanting germinated nuts in failed spots, were planted...

  1. CRBR pump water test experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, M.E.; Huber, K.A.

    1983-01-01

    The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.

  2. Clinch River - Environmental Restoration Program (CR-ERP) study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1997-06-01

    Clinch River - Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of April 14-21, 1994, as described in the Statement of Work (SOW) document. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field Engineering personnel from Poplar Creek Mile 4.3, Poplar Creek Mile 5.1, and Poplar Creek Mile 6.0 on April 13, 15, and 18. Samples were partitioned (split) and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to thesemore » samples resulted in no toxicity (survival or growth) to daphnids in undiluted samples; however, toxicity to fathead minnows (significantly reduced survival) was demonstrated in undiluted samples from Poplar Creek Miles 4.3 and 6.0 in testing conducted by TVA based on hypothesis testing of data. Daphnid reproduction was significantly less than controls in 50 percent dilutions of samples from Poplar Creek Miles 4.3 and 6.0, while no toxicity to fathead minnows was shown in diluted (50 percent) samples.« less

  3. Clinching for sheet materials

    PubMed Central

    He, Xiaocong

    2017-01-01

    Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified. PMID:28656065

  4. Exploding the myths about the fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  5. Life history of the fluted kidneyshell Ptychobranchus subtentum

    USGS Publications Warehouse

    Davis, V.M.; Layzer, J.B.

    2012-01-01

    The fluted kidneyshell Ptychobranchus subtentum (Say, 1825) is a candidate for listing under the Endangered Species Act by the US Fish and Wildlife Service. Fecundity, fish hosts, and selected population demographics were determined during 2005–2006 for the fluted kidneyshell in the upper Clinch River, Hancock County, Tennessee. Females were fertilized in Aug. within a 5 d period and contained viable glochidia about 4 wk later. As the embryos began to develop, the marsupium gradually changed color from white to dark brown. Glochidia were contained within conglutinates that resemble Simuliidae pupae likely to attract benthic insectivorous fish and were held over winter and released in May. Fecundity was positively related to mussel length (r2  =  0.81) and ranged from 43,000 to 500,000 glochidia. Eight species of darters (Etheostoma spp. and Percina spp.) were infested with glochidia in the laboratory to examine potential hosts and host suitability. Juveniles transformed on bluebreast darters E. camurum and dusky darters P. scieraand previously reported hosts: rainbow darters E. caeruleum and fantail darters E. flabellare. In addition, fantail darters and rainbow darters were infested with glochidia from two river systems. The median time of glochidial metamorphosis did not differ significantly between the two mussel populations. The observed ratio of adult females to males (1.9∶1) in the Clinch River differed significantly from 1∶1. Based upon thin-sections, individuals live to at least 26 y and females become sexually mature at age five.

  6. Life history and propagation of the endangered fanshell pearlymussel, Cyprogenia stegaria Rafinesque (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Jones, J.W.; Neves, R.J.

    2002-01-01

    Aspects of the reproduction, age, growth, fish hosts, and culture of juveniles were determined for the endangered fanshell pearlymussel, Cyprogenia stegaria Rafinesque, 1820, in the Clinch River, Tennessee. Glochidia of C. stegaria are contained in red, worm-like conglutinates that resemble oligochaetes. Conglutinates are 20 to 80 mm long and are released through the excurrent aperture. Estimated fecundity was 22,357 to 63,459 glochidia/mussel. Eighty-four valves of C. stegaria were thin-sectioned for aging; ages ranged from 6 to 26 y. Of 16 fish species tested, 9 hosts were identified through induced infestations of glochidia: mottled sculpin (Cottus bairdi), banded sculpin (Cottus carolinae), greenside darter (Etheostoma blennioides), snubnose darter (Etheostoma simoterurn), banded darter (Etheostoma zonale), tangerine darter (Percina aurantiaca), blotchside logperch (Percina burtoni), logperch (Percina caprodes), and Roanoke darter (Percina roanoka). Newly metamorphosed juveniles were cultured in recirculating and nonrecirculating aquaculture systems within dishes containing sediments of 300 to 500 ??m diameter (sand) or <105 ??m diameter (silt), and fed either the green algae Neochloris oleoabundans or Scenedesrnus quadricauda daily. Growth and survival of juvenile mussels were highest in the nonrecirculating aquaculture system, with a mean survival of 72% after 2 wk and 38% after 4 wk.

  7. River mouth morphodynamics - Examples from small, mountainous rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.

    2013-12-01

    Small, high-sediment yield rivers are known to discharge massive amounts of sediment to the world's oceans. Because of these high rates of sediment discharge, many of these small rivers provide important sources of sediment to littoral cells, such as those along the west coasts of North and South America. Sediment discharge from these small watersheds is commonly ephemeral and dominated by infrequent high flow. Thus, the morphodynamic states of these river mouths will vary with time, often being 'wave dominated' for the majority of the year and then changing to 'river dominated' during river sediment discharge events. Here I will provide a summary of recent observations of the morphodynamics of river mouths along California that reveal that sediment dispersal and deposition patterns vary owing to the sediment transport processes at the river mouths, which are influenced by the buoyancy of the river discharge. During low rates of sediment discharge and low river sediment concentrations, sediment dispersal will occur in hypopycnal (positively buoyant) plumes and sand deposition will be close to the river mouth. These conditions commonly result in transfer of sand from the river delta to the littoral cell during the first 1-2 years following the river discharge event. During high rates of sediment discharge and high river sediment concentrations, river discharge may form hyperpycnal (negatively buoyant) plumes and disperse sand to deeper portions of the continental shelf, where transfer back to the littoral cell may take decades or may not occur. High-resolution bathymetry from southern California provides several examples of sand dispersal by hyperpycnal plumes to regions of the inner and middle continental shelf. Thus, sediment dispersal from river mouths influences coastal morphodynamics, morphology, and the rates and timing of sediment supply to littoral cells.

  8. Floods of January-February 1957 in southeastern Kentucky and adjacent areas

    USGS Publications Warehouse

    ,

    1964-01-01

    Heavy rains over an extensive area on January 27-February 2, caused extreme flooding in southeastern Kentucky and adjacent areas in West Virginia, Virginia, and Tennessee. Total rainfall for the storm period ranged from 6-9 inches over most of the report area and was 12? inches at the eastern end of the Virginia-Kentucky State line. The principal basins affected by the storm were those of the Big Sandy, Kentucky, Cumberland, and Tennessee Rivers. Maximum discharge of record occurred in many streams. On Levisa Fork near Grundy, Va., the peak discharge of 33,200 cfs was 50 percent greater than the previous maximum in 17 years of record and was 3.3 times the mean annual flood. The peak discharges on-tributaries of the Kentucky River and on ,the Holston and Clinch Rivers were also the greatest of record and .those on the upper Cumberland River were nearly as great as .those during the historic floods of 1918 and 1946. Total flood damage was estimated at $61 million of which $39 million was in the Big Sandy River basin (mostly in Kentucky) and $15 million was in the Kentucky River basin--$52 million of the total damage was in Kentucky.

  9. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell River watershed, USA.

    PubMed

    Diamond, Jerome M; Bressler, David W; Serveiss, Victor B

    2002-06-01

    The free-flowing Clinch and Powell watershed in Virginia, USA, harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. To prioritize resource management strategies with respect to these fauna, a geographical information system was developed and various statistical approaches were used to relate human land uses with available fish, macroinvertebrate, and native mussel assemblage data. Both the Ephemeroptera, Plecoptera, Trichoptera (EPT) family-level index, and the fish index of biotic integrity (IBI) were lowest in a subwatershed with the greatest coal mining activity (analysis of variance [ANOVA], p < 0.05). Limited analyses in two other subwatersheds suggested that urban and agricultural land uses within a specified riparian corridor were more related to mussel species richness and fish IBI than land uses in entire catchments. Based on land uses within a riparian corridor of 200 m x 2 km for each biological site in the watershed, fish IBI was inversely related to percent cropland and urban area and positively related to pasture area (stepwise multiple regression, R2 = 0.55, p < 0.05). Sites less than 2 km downstream of urban areas, major highways, or coal mine activities had a significantly lower mean IBI value than those more than 2 km away (ANOVA, p < .05). Land use effects included poorer instream cover and higher substrate embeddedness (t test, p < 0.05). Weaker land use relationships were observed for EPT and mussel species richness. Episodic spills of toxic materials, originating from transportation corridors, mines, and industrial facilities, also have resulted in local extirpations of native species. particularly mussels. The number of co-occurring human activities was directly related to stream elevation in the Clinch River, with more human land uses in headwater areas. Approximately 60% of known U.S. Fish and Wildlife mussel concentration sites in the watershed are located within 2 km of at least two land use sources identified as potentially stressful in our analyses. Our results indicate that a number of land uses and stressors are probably responsible for the decline in native species. However, protection of naturally vegetated riparian corridors may help mitigate some of these effects.

  10. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    PubMed

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.

  11. Carter's breeder policy has failed, claims Westinghouse manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Nuclear nations developing liquid metal fast breeder reactor (LMFBR) technology have not been dissuaded by President Carter's efforts to stop the breeder program as a way to control the proliferation of nuclear weapons. There is no evidence that Carter's policy of moral persuasion has had any impact on their efforts. A review of the eight leading countries cites their extensive progress in the areas of breeder technology and fuel reprocessing, while the US has made only slight gains. The Fast Flux Test Facility at Hanford is near completion, but the Clinch River project has been slowed to a minimum.

  12. January 6, 2003 Petition for the Administrator to Object to American Electric Power Clinch River Power Plant's Title V Operating Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  13. Investigation of Flat Clinching Process Combined with Material Forming Technology for Aluminum Alloy.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Wang, Yongfei; Zhao, Xuzhe

    2017-12-15

    In recent years, the use of aluminum alloy has tended to increase for building lightweight automobiles to reduce their automotive weight, which is helpful to save energy and protect the environment. In order to join aluminum alloy, a flat-clinching process combined with material forming technology was investigated to join aluminum alloy sheets using an experimental and a numerical method. Al1060 was chosen as the material of the sheet, and DEFORM-2D software was used to build the numerical model. After the numerical model was validated by the experimental results, the influences of punch diameter and holder force on the materials deforming behavior of the clinched joint were analyzed using the numerical model. Then, the material flow, joining ability, and joining quality were investigated to assess the clinched joint. The results showed that an increase in punch diameter could give rise to an increase in neck thickness and interlocking length, while an increase in blank holder force induced a decrease in interlocking length and an increase in neck thickness. The joining quality could be increased by increasing the forming force. It can be concluded that a clinched joint has better joining quality for joining light-weight sheets onto automotive structures.

  14. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  15. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010

    USGS Publications Warehouse

    Warrick, J.A.; Madej, Mary Ann; Goñi, M. A.; Wheatcroft, R.A.

    2013-01-01

    Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.

  16. CASE STUDY CRITIQUE; UPPER CLINCH CASE STUDY

    EPA Science Inventory

    Case study critique: Upper Clinch case study (from Research on Methods for Integrating Ecological Economics and Ecological Risk Assessment: A Trade-off Weighted Index Approach to Integrating Economics and Ecological Risk Assessment). This critique answers the questions: 1) does ...

  17. Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016

    USGS Publications Warehouse

    Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.

    2016-12-20

    Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched the range for stream gradients from greatest to smallest. Bedload ranged from 3 to 20 percent of the total load at the Le Sueur River, Minnesota River at Mankato, and High Island Creek and was less than 1 percent of the total load at the Minnesota River near Jordan and at Fort Snelling State Park. The reach of the Minnesota River between Mankato and Jordan is a major source of sediment, with the sediment yield at Jordan being two and a half times greater than at Mankato. Between Jordan and Fort Snelling, the sediment yield decreases substantially, which indicates that the Minnesota River in this reach is a sink for sediment. Surrogate measurements (acoustic backscatter) collected with suspended-sediment concentration data from water years 2012 through 2016 from the Minnesota River at Fort Snelling State Park indicated strong relations between the acoustic backscatter and suspended-sediment concentrations. These results point to the dynamic nature of sediment aggradation, degradation, and transport in the Minnesota River Basin. The analyses described in this report will improve the understanding of sediment-transport relations and sediment budgets in the Minnesota River Basin.

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documentsmore » the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.« less

  19. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction were utilized. According to the simulation results obtained from the PESD and ARMB-2D models, the river sections with severe sediment depositions and high efficiency of sediment deposition reduction will be referred to as the dredging-to-be areas.

  20. The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wu, C.; Shih, P.

    2012-12-01

    Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm in 3 days in 2009 Typhoon Morakot is also discussed in the study. A extreme river discharge with the return period of 100 year transported the macro sediment with the total volume of around 3.2×107 m3 in 8 days during 2009 Typhoon Morakot, and it also resulted in 18.1% increase of the mean river width and 4 m increase of the mean scouring depth in Chenyulan River, especially the mean increase of 50 m in river width resulted from the total sediment volume of 1.9×107 m3 deposited within 8 km from the sediment-yielded area, i.e. Shenmu watershed. Furthermore, the distribution of sediment deposition in a narrow pass is also discussed in the research. Sediment deposited apparently in the upstream of a narrow pass and also results in the disordered river patterns. The high velocity flow due to the contraction of the river width in the narrow pass section also leads to the headwater erosion in the upstream of the narrow pass section. Contrarily, the unapparent sediment deposition in the downstream of the narrow pass section brings about the stable main channel and swinging flow patterns from our decade observation.

  1. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly (??10 cm/s) and only with adequate wave-generated shear stress and sediment loading. Calleguas Creek is unique in that it discharges directly into a steepsloped canyon (greater than 0.1) that should allow for violent auto-suspending gravity currents. In light of this, only one shelf setting-the Santa Clara and Ventura-has considerable Holocene sediment accumulation (exceeding 60 m), and here we show that the morphology of this shelf is very similar to an equilibrium shape predicted by gravity-current sediment transport. Thus, we conclude that a wide distribution of river-shelf settings occur in the Southern California Bight, which will directly influence sediment dispersal processes-both dilute suspended and gravity-current transport-and sediment-accumulation patterns. ?? 2009 The Geological Society of America.

  2. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    USGS Publications Warehouse

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  3. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  4. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart at the same site locations resulted in similar values.

  5. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China.

    PubMed

    Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong

    2017-08-15

    Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.

  6. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    NASA Astrophysics Data System (ADS)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment mobilised within the river during a given event travels slower than the water. The highly dynamic behaviour of the river is further demonstrated by the rapid changes in river cross-section at Garissa and meander migration rates of several m y-1. In order to estimate a time frame for which changes in sediment inputs will be reflected in the sediment concentration at Garissa a single box model was developed. Results indicate that the effects of sediment blockage by the dams will only be visible after several hundreds to perhaps thousands of years. This clearly shows that autogenic processes are dominant in the lower Tana River and that, therefore, changes in sediment delivery cannot be detected in the sediment discharge record. More generally, understanding and interpreting the dynamics of such river systems requires that autogenic processes are correctly accounted for.

  7. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    NASA Astrophysics Data System (ADS)

    Xu, K.; Yang, S. L.

    2015-03-01

    Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1) temporal variation under varying climatic and anthropogenic impacts, (2) delta response of the declining sediment discharge, and (3) deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers' sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  8. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    USGS Publications Warehouse

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  9. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.

  10. Sediment load from major rivers into Puget Sound and its adjacent waters

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Grossman, Eric E.; Curran, Christopher A.; Gendaszek, Andrew S.; Dinicola, Richard S.

    2011-01-01

    Each year, an estimated load of 6.5 million tons of sediment is transported by rivers to Puget Sound and its adjacent waters—enough to cover a football field to the height of six Space Needles. This estimated load is highly uncertain because sediment studies and available sediment-load data are sparse and historically limited to specific rivers, short time frames, and a narrow range of hydrologic conditions. The largest sediment loads are carried by rivers with glaciated volcanoes in their headwaters. Research suggests 70 percent of the sediment load delivered to Puget Sound is from rivers and 30 percent is from shoreline erosion, but the magnitude of specific contributions is highly uncertain. Most of a river's sediment load occurs during floods.

  11. Multi-timescale sediment responses across a human impacted river-estuary system

    NASA Astrophysics Data System (ADS)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  12. Sources, dispersal, and fate of fine sediment supplied to coastal California

    USGS Publications Warehouse

    Farnsworth, Katherine L.; Warrick, Jonathan A.

    2007-01-01

    We have investigated the sources, dispersal, and fate of fine sediment supplied to California coastal waters in a partnership between the U.S. Geological Survey (USGS) and the California Sediment Management Workgroup (CSMW). The purpose of this study was to document the rates and characteristics of these processes so that the State can better manage its coastal resources, including sediment. In this study, we made the following observations: - Rivers dominate the supply of fine sediment to the California coastal waters, with an average annual flux of 34 megatonnes (Mt). - Cliff and bluff erosion in central and southern California is a source of fine sediment, with a delivery rate of approximately 10 percent of river loads. In the southern most part of the State, however, where river-sediment loads are low, cliff and bluff erosion represent approximately 40 percent of the total fine-sediment flux. - Temporal variation in the sources of fine sediment is high. River floods and bluff erosion are episodic and dominated by winter storms, which supply most sediment flux to the coast. The magnitude of winter storms is generally related to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate cycles. - The three rivers that dominate fine-sediment flux to the California coast are the Eel, Salinas, and Santa Clara Rivers. Because the sediment delivery from these and all other California coastal watersheds is episodic, individual rivers discharge most of their annual loads over the course of only a few days per year. - Spatial variation in river-sediment discharge is high and generally related to such watershed characteristics as geology, precipitation, and drainage area. For example, the Transverse Range of southern California represents only 9 percent of the watershed-drainage area but 18 percent of the fine-sediment flux, a function of the young sedimentary bedrock and active tectonics of this region. The urban rivers of southern California were observed to discharge sediment at rates consistent with those of the surrounding Transverse Range rivers, which share the same geologic setting. - Direct observations of fine-sediment dispersal have been limited to the river-mouth settings of the Eel and Santa Clara Rivers, where sediment has been observed to settle quickly from buoyant plumes and be transported along the seabed during periods of storm waves. - After heavy loading of fine sediment onto the continental shelf during river floods, there is increasing evidence that fluid-mud gravity flows occur within a layer 10 to 50 cm above the seabed and efficiently transport fine sediment offshore. - All along the California coast, the timing of river discharge and coastal winds and waves from storm events are strongly coherent; however, of large wave events with the potential for resuspending and transporting fine sediment occur during periods without significant rainfall and therefore no significant river discharge. - Although fine sediment dominates the midshelf mud belts offshore of California river mouths, these mud belts are not the dominant sink of fine sediment, much of which is deposited across the entire continental shelf, including the inner shelf, and offshelf into deeper water depths. - Accumulation rates of fine sediment, which can exceed several millimeters per year, are generally highest near river sources of sediment and along the inner shelf and midshelf. - Sediment-accumulation rates, as summarized from both long-term and recent investigations of continental-shelf geochronology, are generally consistent across California except in southern California, where recently the sediment-accumulation rate has been tenfold greater than the long-term rate, possibly as a result of increased river discharge, wastewater outfall inputs, or other anthropogenic sources. Thus, fine sediment is a natural and dynamic element of the California coastal system because of large, natural sediment sources and dynamic transport processes.

  13. Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan.

    PubMed

    Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M

    2018-03-01

    The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    PubMed

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  15. A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme

    NASA Astrophysics Data System (ADS)

    Vauchel, Philippe; Santini, William; Guyot, Jean Loup; Moquet, Jean Sébastien; Martinez, Jean Michel; Espinoza, Jhan Carlo; Baby, Patrice; Fuertes, Oscar; Noriega, Luis; Puita, Oscar; Sondag, Francis; Fraizy, Pascal; Armijos, Elisa; Cochonneau, Gérard; Timouk, Franck; de Oliveira, Eurides; Filizola, Naziano; Molina, Jorge; Ronchail, Josyane

    2017-10-01

    The Madeira River is the second largest tributary of the Amazon River. It contributes approximately 13% of the Amazon River flow and it may contribute up to 50% of its sediment discharge to the Atlantic Ocean. Until now, the suspended sediment load of the Madeira River was not well known and was estimated in a broad range from 240 to 715 Mt yr-1. Since 2002, the HYBAM international network developed a new monitoring programme specially designed to provide more reliable data than in previous intents. It is based on the continuous monitoring of a set of 11 gauging stations in the Madeira River watershed from the Andes piedmont to the confluence with the Amazon River, and discrete sampling of the suspended sediment concentration every 7 or 10 days. This paper presents the results of the suspended sediment data obtained in the Madeira drainage basin during 2002-2011. The Madeira River suspended sediment load is estimated at 430 Mt yr-1 near its confluence with the Amazon River. The average production of the Madeira River Andean catchment is estimated at 640 Mt yr-1 (±30%), the corresponding sediment yield for the Andes is estimated at 3000 t km-2 yr-1 (±30%), and the average denudation rate is estimated at 1.20 mm yr-1 (±30%). Contrary to previous results that had mentioned high sedimentation rates in the Beni River floodplain, we detected no measurable sedimentation process in this part of the basin. On the Mamoré River basin, we observed heavy sediment deposition of approximately 210 Mt yr-1 that seem to confirm previous studies. But while these studies mentioned heavy sedimentation in the floodplain, we showed that sediment deposition occurred mainly in the Andean piedmont and immediate foreland in rivers (Parapeti, Grande, Pirai, Yapacani, Chimoré, Chaparé, Secure, Maniqui) with discharges that are not sufficiently large to transport their sediment load downstream in the lowlands.

  16. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  17. Sources of suspended sediment in the Lower Roanoke River, NC

    NASA Astrophysics Data System (ADS)

    Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.

    2015-12-01

    The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and nutrient budgets.

  18. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  19. Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia)

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2013-04-01

    The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in-channel sediment supplies due to sorting method applied in the model. More generally, the modelling may increase our knowledge about the sediment transport patterns of the reach downstream the mining area. This part of the river may be considered as a temporal sink of heavy metals which may accumulate and store sediments. The deposition in such sinks can considerably support attenuation of contaminated sediment loads. On the other hand, sediments that are accumulated in sinks can increase the concentration of contaminated sediment loads during peak flow events. Information about the rates of eroded and accumulated contaminated material in such sinks is important for future water protection planning, especially under changing climate conditions. This work may also provide scientific input to discussions on both adverse environmental consequences of placer mining, and suitable designs of sediment control measures in the Zaamar Goldfield and other continental river systems.

  20. Predicting improved optical water quality in rivers resulting from soil conservation actions on land.

    PubMed

    Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D

    2017-12-15

    Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  2. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    USGS Publications Warehouse

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated manipulation of streamflows on the channel morphology and habitat.

  3. FEA of the clinching process of short fiber reinforced thermoplastic with an aluminum sheet using LS-DYNA

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Grbic, N.

    2016-10-01

    A structural concept in multi-material design is used in the automotive industry with the aim of achieving significant weight reductions of conventional car bodies. In this respect, the use of aluminum and short fiber reinforced plastics represents an interesting material combination. A wide acceptance of such a material combination requires a suitable joining technique. Among different joining techniques, clinching represents one of the most appealing alternative for automotive applications. This contribution deals with the FE simulation of the clinching process of two representative materials PA6GF30 and EN AW 5754 using the FE software LS-DYNA. With regard to the material modelling of the aluminum sheet, an isotropic material model based on the von Mises plasticity implemented in LS-DYNA was chosen. Analogous to aluminum, the same material model is used for modelling the short fiber reinforced thermoplastic. Additionally, a semi-analytical model for polymers (SAMP-1) also available in LS-DYNA was taken. Finally, the FEA of clinching process is carried out and the comparison of the simulation results is presented above.

  4. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  5. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    USGS Publications Warehouse

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  6. Reservoir-flooded river mouth areas as sediment traps revealing erosion from peat mining areas - Jukajoki case study in eastern Finland

    NASA Astrophysics Data System (ADS)

    Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki

    2016-04-01

    Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River-mouth areas with reservoir history can be particularly useful as the terrestrial soil strata provides a dated horizon under recent sediments.

  7. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  8. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  9. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.

  10. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i

  11. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers

    NASA Astrophysics Data System (ADS)

    Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray

    2017-06-01

    The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.

  12. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    USGS Publications Warehouse

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  13. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  14. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river have the greatest impacts on the distribution and transport of clay minerals assemblages in the sediments.

  15. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5 μm; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.

  16. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  17. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.

  18. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. < 5% of the total sediment load within the Mekong River. Such estimates are integral to future channel management within this highly threatened river basin.

  19. Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam

    NASA Astrophysics Data System (ADS)

    Lu, Xi Xi; Oeurng, Chantha; Le, Thi Phuong Quynh; Thuy, Duong Thi

    2015-11-01

    Dam construction is one of the main factors resulting in riverine sediment changes, which in turn cause river degradation or aggradation downstream. The main objective of this work is to examine the sediment budget affected by a sequence of dams constructed upstream in the lower reach of the Red River. The study is based on the longer-term annual data (1960-2010) with a complementary daily water and sediment data set (2008-2010). The results showed that the stretch of the river changed from sediment surplus (suggesting possible deposition processes) into sediment deficit (possible erosion processes) after the first dam (Thac Ba Dam) was constructed in 1972 and changed back to deposition after the second dam (Hoa Binh Dam) was constructed in 1985. The annual sediment deposition varied between 1.9 Mt/y and 46.7 Mt/y with an annual mean value of 22.9 Mt/y (1985-2010). The sediment deposition at the lower reach of the Red River would accelerate river aggradation which would change river channel capacity in the downstream of the Red River. The depositional processes could be sustained or changed back to erosional processes after more dams (the amount of sediment deposit was much less after the latest two dams Tuyen Quang Dam in 2009 and Sonla Dam in 2010) are constructed, depending on the water and sediment dynamics. This study revealed that the erosional and depositional processes could be shifted for the same stretch of river as affected by a sequence of dams and provides useful insights in river management in order to reduce flood frequency along the lower reach of the Red River.

  20. Comparability of suspended-sediment concentration and total suspended-solids data for two sites on the L'Anguille River, Arkansas, 2001 to 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Evans, Dennis A.; Green, W. Reed

    2005-01-01

    Suspended-sediment concentration and total suspended solids data collected with automatic pumping samplers at the L'Anguille River near Colt and the L'Anguille River at Palestine, Arkansas, August 2001 to October 2003 were compared using ordinary least squares regression analyses to determine the relation between the two datasets for each of the two sites. The purpose of this report is to describe the suspended-sediment concentration and total suspended-solids data and examine the comparability of the two datasets for each site. Suspended-sediment concentration and total suspended solids data for the L'Anguille River varied spatially and temporally from August 2001 to October 2003. The site at the L'Anguille River at Palestine represents a larger portion of the L'Anguille River Basin than the site near Colt, and generally had higher median suspended-sediment concentration and total suspended solids and greater ranges in values. The differences between suspended-sediment concentration and total suspended solids data for the L'Anguille River near Colt appeared inversely related to streamflow and not related to time. The relation between suspended-sediment concentration and total suspended solids at the L'Anguille River at Palestine was more variable than at Colt and did not appear to have a relation with flow or time. The relation between suspended-sediment concentration and total suspended solids for the L'Anguille River near Colt shows that total suspended solids increased proportionally as suspended-sediment concentration increased. However, the relation between suspended-sediment concentration and total suspended solids for the L'Anguille River at Palestine showed total suspended solids increased less proportionally as suspended-sediment concentration increased compared to the L'Anguille River near Colt. Differences between the two analytical methods may partially explain differences between the suspended-sediment concentration and total suspended solids data at the two sites. Total suspended solids are analyzed by removing an aliquot of the original sample for further analysis, and suspended-sediment concentrations are analyzed using all sediment and the total mass of the sample. At the L'Anguille River at Palestine another source of variability in the two data sets could have been the location of the automatic pumping sampler intake. The intake was located at a point in the stream cross-section that was subject to sedimentation, which may have resulted in positive sample bias.

  1. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy`s (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events.

  2. Safety approach to the selection of design criteria for the CRBRP reactor refueling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisl, C J; Berg, G E; Sharkey, N F

    1979-01-01

    The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents.more » The process steps are illustrated by examples.« less

  3. New stewards of the environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, W.

    1983-06-01

    Environmentalists are getting interested in the free market and are moving toward supporting complete deregulation of energy prices. Christopher Palmer, the National Audubon Society's director of energy and environment, says, There is no way you can use energy efficiently when you have price controls. Environmental groups are particularly unhappy with the Synthetic Fuels Corporation and the Clinch River Breeder Reactor; they will waste more energy than they make, complains Palmer. When resources are cheap or free, they tend to be abused. Environmentalists have discovered the market helps allay this overuse. Ironically, this turnaround in philosophy turns environmentalists into political landlords,more » a new role of privileged minority, trying to play steward to the nation's resources.« less

  4. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics

    NASA Astrophysics Data System (ADS)

    West, A. Joshua; Hetzel, Ralf; Li, Gen; Jin, Zhangdong; Zhang, Fei; Hilton, Robert G.; Densmore, Alexander L.

    2014-06-01

    The concentration of 10Be in detrital quartz (10Beqtz) from river sediments is now widely used to quantify catchment-wide denudation rates but may also be sensitive to inputs from bedrock landslides that deliver sediment with low 10Beqtz. Major landslide-triggering events can provide large amounts of low-concentration material to rivers in mountain catchments, but changes in river sediment 10Beqtz due to such events have not yet been measured directly. Here we examine the impact of widespread landslides triggered by the 2008 Wenchuan earthquake on 10Beqtz in sediment samples from the Min Jiang river basin, in Sichuan, China. Landslide deposit material associated with the Wenchuan earthquake has consistently lower 10Beqtz than in river sediment prior to the earthquake. River sediment 10Beqtz decreased significantly following the earthquake downstream of areas of high coseismic landslide occurrence (i.e., with greater than ∼0.3% of the upstream catchment area affected by landslides), because of input of the 10Be-depleted landslide material, but showed no systematic changes where landslide occurrence was low. Changes in river sediment 10Beqtz concentration were largest in small first-order catchments but were still significant in large river basins with areas of 104-105 km. Spatial and temporal variability in river sediment 10Beqtz has important implications for inferring representative denudation rates in tectonically active, landslide-dominated environments, even in large basins. Although the dilution of 10Beqtz in river sediment by landslide inputs may complicate interpretation of denudation rates, it also may provide a possible opportunity to track the transport of landslide sediment. The associated uncertainties are large, but in the Wenchuan case, calculations based on 10Be mixing proportions suggest that river sediment fluxes in the 2-3 years following the earthquake increased by a similar order of magnitude in the 0.25-1 mm and the <0.25 mm size fractions, as determined from 10Beqtz mixing calculations and hydrological gauging, respectively. Such information could provide new insight into sediment transfer, with implications for secondary sediment-related hazards and for understanding the removal of mass from mountains.

  5. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  6. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  7. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  8. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  9. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  10. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    USGS Publications Warehouse

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).

  11. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance

    USGS Publications Warehouse

    Eberl, D.D.

    2004-01-01

    The mineralogy of Yukon River basin sediment has been studied by quantitative X-ray diffraction. Bed, beach, bar, and suspended sediments were analyzed using the RockJock computer program. The bed sediments were collected from the main stem and from selected tributaries during a single trip down river, from Whitehorse to the Yukon River delta, during the summer of 2001. Beach and bar sediments were collected from the confluence region of the Tanana and Yukon Rivers during the summer of 2003. Suspended sediments were collected at three stations on the Yukon River and from a single station on the Tanana River at various times during the summers of 2001 through 2003, with the most complete set of samples collected during the summer of 2002. Changes in mineralogy of Yukon River bed sediments are related to sediment dilution or concentration effects from tributary sediment and to chemical weathering during transport. Carbonate minerals compose about 2 wt% of the bed sediments near Whitehorse, but increase to 14 wt% with the entry of the White River tributary above Dawson. Thereafter, the proportion of carbonate minerals decreases downstream to values of about 1 to 7 wt% near the mouth of the Yukon River. Quartz and feldspar contents of bed sediments vary greatly with the introduction of Pelly River and White River sediments, but thereafter either increase irregularly (quartz from 20 to about 50 wt%) or remain relatively constant (feldspar at about 35 wt%) with distance downstream. Clay mineral content increases irregularly downstream from about 15 to about 30 wt%. The chief clay mineral is chlorite, followed by illite + smectite; there is little to no kaolinite. The total organic carbon content of the bed sediments remains relatively constant with distance for the main stem (generally 1 to 2 wt%, with one exception), but fluctuates for the tributaries (1 to 6 wt%). The mineralogies of the suspended sediments and sediment flow data were used to calculate the amount of mineral dissolution during transport between Eagle and Pilot Station, a distance of over 2000 km. We estimate that approximately 3 wt% of the quartz, 15 wt% of the feldspar (1 wt% of the alkali and 25 wt% of the plagioclase), and 26 wt% of the carbonates (31 wt% of the calcite and 15 wt% of the dolomite) carried by the river dissolve in this reach. The mineralogies of the suspended sediments change with the season. For example, during the summer of 2002 the quartz content varied by 20 wt%, with a minimum in mid-summer. The calcite content varied by a similar amount, and had a maximum corresponding to the quartz minimum. These modes are related to the relative amount of sediment flowing from the White River system, which is relatively poor in quartz, but rich in carbonate minerals. Suspended total clay minerals varied by as much as 25 wt%, with maxima in mid July, and suspended feldspar varied up to 10 wt%. Suspended sediment data from the summers of 2001 and 2003 support the 2002 trends. A calculation technique was developed to determine theproportion of various sediment sources in a mixed sediment by unmixing its quantitative mineralogy. Results from this method indicate that at least three sediment sources can be identified quantitatively with good accuracy. With this technique, sediment mineralogies can be used to calculate the relative flux of sediment from different tributaries, thereby identifying sediment provenance.

  12. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries

    PubMed Central

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-01-01

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality. PMID:28295001

  13. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries.

    PubMed

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-03-15

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.

  14. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  15. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers

    NASA Astrophysics Data System (ADS)

    Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher

    2012-05-01

    The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.

  16. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    NASA Astrophysics Data System (ADS)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  17. Suspended sediment load below open-cast mines for ungauged river basin

    NASA Astrophysics Data System (ADS)

    Kuksina, L.

    2011-12-01

    Placer mines are located in river valleys along river benches or river ancient channels. Frequently the existing mining sites are characterized by low contribution of the environmental technologies. Therefore open-pit mining alters stream hydrology and sediment processes and enhances sediment transport. The most serious environmental consequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, placer mining located in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens rivers ecosystems significantly. Impact assessment is limited by the hydrological observations scarcity. Gauging network is rare and in many cases whole basins up to 200 km length miss any hydrological data. The main purpose of the work is elaboration of methods for sediment yield estimation in rivers under mining impact and implementation of corresponding calculations. Subjects of the study are rivers of the Vivenka river basin where open-cast platinum mine is situated. It's one of the largest platinum mines in Russian Federation and in the world. This mine is the most well-studied in Kamchatka (research covers a period from 2003 to 2011). Empirical - analytical model of suspended sediment yield estimation was elaborated for rivers draining mine's territories. Sediment delivery at the open-cast mine happens due to the following sediment processes: - erosion in the channel diversions; - soil erosion on the exposed hillsides; - effluent from settling ponds; - mine waste water inflow; - accident mine waste water escape into rivers. Sediment washout caused by erosion was estimated by repeated measurements of the channel profiles in 2003, 2006 and 2008. Estimation of horizontal deformation rates was carried out on the basis of erosion dependence on water discharge rates, slopes and composition of sediments. Soil erosion on the exposed hillsides was estimated taking into account precipitation of various intensity and solid material washout during this period. Effluent from settling ponds was calculated on the basis of minimum anthropogenic turbidity. Its value is difference in background turbidity and minimal turbidity caused by effluent and waste water overflow. Mine waste water inflow was estimated due to actual data on water balance of purification system. Accident mine waste water escape into rivers was estimated by duration and material washout during accidents data measured during observation period. Total suspended sediment yield of rivers draining mine's territory is the sum of its components. Total sediment supply from mining site is 24.7 % from the Vivenka sediment yield. Polluted placer-mined rivers contribute about 35.4 % of the whole sediment yield of the Vivenka river. At the same time the catchment area of these rivers is less than 0.2 % from the whole Vivenka catchment area.

  18. Effects of contaminants in dredge material from the Lower Savannah River

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; White, D.H.; Seginak, J.T.

    2000-01-01

    Contaminants entering aquatic systems from agricultural, industrial, and municipal activities are generally sequestered in bottom sediments. The environmental significance of contaminants associated with sediments dredged from Savannah Harbor, Georgia, USA, are unknown. To evaluate potential effects of contaminants in river sediments and sediments dredged and stored in upland disposal areas on fish and wildlife species, solid-phase sediment and sediment pore water from Front River, Back River, an unnamed Tidal Creek on Back River, and Middle River of the distributary system of the lower Savannah River were tested for toxicity using the freshwater amphipod Hyalella azteca. In addition, bioaccumulation of metals from sediments collected from two dredge-disposal areas was determined using the freshwater oligochaete Lumbriculus variegatus. Livers from green-winged teals (Anas crecca) and lesser yellowlegs (Tringa flavipes) foraging in the dredge-spoil areas and raccoons (Procyon lotor) from the dredge-disposal/river area and an upland site were collected for metal analyses. Survival of H. azteca was not reduced in solid-phase sediment exposures, but was reduced in pore water from several locations receiving drainage from dredge-disposal areas. Basic water chemistry (ammonia, alkalinity, salinity) was responsible for the reduced survival at several sites, but PAHs, metals, and other unidentified factors were responsible at other sites. Metal residues in sediments from the Tidal Creek and Middle River reflected drainage or seepage from adjacent dredge-disposal areas, which could potentially reduce habitat quality in these areas. Trace metals increased in L. variegatus exposed in the laboratory to dredge-disposal sediments; As, Cu, Hg, Se, and Zn bioaccumulated to concentrations higher than those in the sediments. Certain metals (Cd, Hg, Mo, Se) were higher in livers of birds and raccoons than those in dredge-spoil sediments suggesting bioavailability. Cadmium, Ct, Hg, Pb, and Se in livers from raccoons collected near the river and dredge-disposal areas were significantly higher than those of raccoons from the upland control site. Evidence of bioaccumulation from laboratory and field evaluations and concentrations in sediments from dredge-disposal areas and river channels demonstrated that some metals in the dredge-disposal areas are mobile and biologically available. Drainage from dredge-disposal areas may be impacting habitat quality in the river, and fish and wildlife that feed and nest in the disposal area pm the lower Savannah River may be at risk from metal contamination.

  19. Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using geochemical signatures

    USGS Publications Warehouse

    Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.

    2017-09-29

    Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (<0.063 millimeter, mm) of Puyallup River sediment—which originates from Mount Rainier, a Cascade volcano—from glacial fine sediment in lowland bluffs that supply sediment to beaches. In combination with activities of beryllium-7 (7Be), a short-lived radionuclide, geochemical signatures showed that winter 2013–14 sediment runoff from the Puyallup River was transported to and deposited along the north shore of Commencement Bay, then mixed downward into the sediment column. The three Commencement Bay sites at which organic contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the <0.063-mm fraction compared to the <2-mm fraction, in winter compared to summer, in river suspended sediment compared to river bar and bank sediment, and in marine sediment compared to river sediment. The geochemical property barium/aluminum (Ba/Al) showed that the median percentage of Puyallup River derived fine surface sediment along the shoreline of Commencement Bay was 77 percent. This finding, in combination with higher concentrations of organic contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow marine habitats of Commencement Bay. The retention of earlier inputs complicates efforts to identify recent inputs and sources. Understanding modern sources and fates of riverborne sediment and contaminants and their potential ecological impacts will therefore require a suite of targeted geochemical studies in such marine depositional environments.

  20. PAHs and PCBs deposited in surficial sediments along a rural to urban transect in a mid-Atlantic coastal river basin (USA).

    PubMed

    Foster, Gregory D; Cui, Vickie

    2008-10-01

    PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.

  1. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  2. Sediment regime constraints on river restoration - An example from the lower Missouri river

    USGS Publications Warehouse

    Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.

    2009-01-01

    Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river, provides a quantitative basis for defining management constraints and identifying opportunities.

  3. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the relationship between anthropogenic activity, biogenic substance cycling and bacterial community, especially along the alpine rivers.

  4. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  5. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  6. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.

  7. Fundamental studies on a novel die concept for round-point shear-clinching

    NASA Astrophysics Data System (ADS)

    Hörhold, Réjane; Müller, Martin; Merklein, Marion; Meschut, Gerson

    2016-10-01

    A newly-developed round-point shear-clinching technology could increase the use of different materials like well formable aluminium and hardly formable ultra-high-strength steels (UHSS). This innovative technology joins in a single-stage process without any pilot-hole, surface pre-treatment or auxiliary joining part. The combination of an inner and outer punch realises an indirect cutting operation of the die-sided material, whereas the punch-sided material remains unharmed. The current die-sided tool set acts as a cutting die and enables a radial extrusion of the punch-sided material after being drawn though the created hole in the UHSS. The die has a fixed die depth. After ejecting the joined components, the slug has to be removed from the top of the spring-loaded anvil. The novel die concept investigated in this paper offers the possibility to push the slug continuously through the die in the joining direction. The removed slugs remain inside the die, so manual removal is unnecessary. The one-parted tool is supposed to be more robust than the multi-parted one that is currently used. This paper represents the task to evaluate the geometry of a useful shear-clinching die concept. To reduce the experimental effort, FEM should assist the development of the most promising approach. To quantify the success, conventional shear-clinching with opening die acts as a reference. The results show the high potential and the raison d'être of shear-clinching technologies as a mechanical joining technology for future multimaterial applications especially for UHSS.

  8. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no erosion or deposition is allowed for silt and clay. The model was first applied on the Madeira River basin, one of the major tributaries of the Amazon River (~1.4*106 km2) accounting for 35% of the suspended sediment amount annually transported for the Amazon river to the ocean. Model results agree with observed data, mainly for monthly and annual time scales. The spatial distribution of soil erosion within the basin showed a large amount of sediment being delivered from the Andean regions of Bolivia and Peru. Spatial distribution of mean annual sediment along the river showed that Madre de Dios, Mamoré and Beni rivers transport the major amount of sediment. Simulated daily suspended solid discharge agree with observed data. The model is able to provide temporaly and spatialy distributed estimates of soil loss source over the basin, locations with tendency for erosion or deposition along the rivers, and to reproduce long term sediment yield at several locations. Despite model results are encouraging, further effort is needed to validate the model considering the scarcity of data at large scale.

  9. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  10. Human Influences on Geomorphic Dynamics in Western Montana Gravel-Bed Rivers

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2016-12-01

    Management of river ecosystems, river restoration, climate-change vulnerability assessments, and other applications require understanding of how current channel conditions and processes compare to historical ranges of variability. This is particularly true with respect to evaluation of sediment balances, including of whether and how current sediment supply compares to background conditions. In western Montana, management and restoration efforts are in some cases driven by the perception that anthropogenic activities have elevated sediment yields above background levels; human-induced erosional increases have been documented in certain environments, but empirical supporting evidence is lacking for western Montana rivers. Here, human-induced changes in channel form and in sediment balances, including flow, sediment supply, and erosion rates, are evaluated for rivers in western Montana, with a particular focus on the Clark Fork and Bitterroot Rivers. These rivers are characteristic of systems in the northern Rocky Mountains with gravel beds, historically wandering channel patterns, modest bed-material loads, and land uses including logging, mining, and agriculture. The Clark Fork is influenced by legacy mining-related sediments and associated contaminants, remediation efforts, and the 2008 removal of Milltown Dam. These influences have caused temporary shifts in sediment balances, but overall, sediment fluxes are modest (e.g., suspended sediment fluxes of 6 tonnes km-2 yr-1 at the USGS Turah gage). The Bitterroot River is influenced by a mix of glaciated and unglaciated landscapes with fire-dominated erosional regimes and larger sand supply than the Clark Fork, reflecting lithologic differences; erosion rates, and the imprint of anthropogenic activities on sediment dynamics, are being investigated. This work has implications for river restoration, including whether measures are needed to impose channel stability, and for evaluating how climate-change-induced changes in fire, runoff, and erosion will alter fluvial sediment balances.

  11. Environmental change in Yatsushiro tidal flat and the Kuma River (SW Kyushu, Japan) between 2002 and the present

    NASA Astrophysics Data System (ADS)

    Young, S. M.; Ishiga, H.

    2012-12-01

    The chemical compositions of sediments from Yatsushiro tidal flat, Kuma River, and Arase dam (south west Kyushu, Japan) have been determined to examine changes between 2002 and 2012. In 2002 sediment supply to the bay from the Kuma River was restricted by the Arase dam; however in 2010 the dam was opened, allowing resumption of natural sediment transport. Abundances of 24 elements in Yatsushiro tidal flat sediments (n=22), suspended solids in the bay (n=6), Kuma River stream sediments (n=5) and suspended solids (n=2) were determined by XRF. Ripple marks in the Yatsushiro tidal flat indicate inflow of coarser material from the reinvigorated river. Bulk chemical composition of the tidal flat sediments has changed since 2002, with marked decreases in As, Zn and total sulfur, and lesser and more variable decrease in Pb. Mn values are higher in the northern tidal flats, suggesting anoxic conditions in the sediments at those sites. Suspended solids in both the Kuma River and Yatsushiro Bay have very low values of heavy metals, indicating low absorption and dilution by high organic matter contents. Sediments behind the Arase dam in 2002 had high abundances of most of the elements analyzed. However, abundances in Kuma River stream sediments at similar locations have fallen since the dam was opened in 2010. Kuma River sediments are characteristically coarser than those in Yatsushiro Bay, except at three locations. The river sediments are relatively uniform in composition, with ranges of 72.27-75.35 wt% SiO2 and 12.09-14.01 wt% Al2O3, compared to 55.40-77.89 and 11.61-21.44 respectively for Yatsushiro Bay tidal flat sediments. Average values in both suites are similar to UCC. Decreased heavy metal contents in the bay sediments after opening of the dam is attributed to dilution by previously impounded quartz and feldspar. Restoration of natural sediment transport has thus bought about a favorable environmental change. Key words: Yatsushiro bay, Kuma River, Geochemistry, Tidal flat, Environmental change.

  12. Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.

    2015-12-01

    The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.

  13. Lower Charles River Bathymetry: 108 Years of Fresh Water

    NASA Astrophysics Data System (ADS)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  14. The fate of large sediment inputs in rivers: Implications for watershed and waterway management

    Treesearch

    Thomas E. Lisle

    2000-01-01

    Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.

  15. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.

    PubMed

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-07-13

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  16. An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland

    NASA Astrophysics Data System (ADS)

    Harrington, Seán T.; Harrington, Joseph R.

    2013-03-01

    This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.

  17. [Effects of Long-term Implementation of the Flow-Sediment Regulation Scheme on Grain and Clay Compositions of Inshore Sediments in the Yellow River Estuary].

    PubMed

    Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan

    2015-04-01

    Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.

  18. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining

  19. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, B.J.

    1994-06-01

    Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less

  20. Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin--Ohio, Michigan, and Indiana

    USGS Publications Warehouse

    Myers, Donna N.; Metzker, Kevin D.; Davis, Steven

    2000-01-01

    The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.

  1. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    USGS Publications Warehouse

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  2. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Shun; Shi, Xue-Fa; Kao, Shuh-Ji; Liu, Yan-Guang; Lyu, Hua-Hua; Zou, Jian-Jun; Liu, Sheng-Fa; Qiao, Shu-Qing

    2013-06-01

    Thirty-eight sediment samples from 15 primary rivers on Taiwan were retrieved to characterize the rare earth element (REE) signature of fluvial fine sediment sources. Compared to the three large rivers on the Chinese mainland, distinct differences were observed in the REE contents, upper continental crust normalized patterns and fractionation factors of the sediment samples. The average REE concentrations of the Taiwanese river sediments are higher than those of the Changjiang and Huanghe, but lower than the Zhujiang. Light rare earth elements (LREEs) are enriched relative to heavy rare earth elements (HREEs) with ratios from 7.48 to 13.03. We found that the variations in (La/Lu)UCC-(Gd/Lu)UCC and (La/Yb)UCC-(Gd/Yb)UCC are good proxies for tracing the source sediments of Taiwanese and Chinese rivers due to their distinguishable values. Our analyses indicate that the REE compositions of Taiwanese river sediments were primarily determined by the properties of the bedrock, and the intensity of chemical weathering in the drainage areas. The relatively high relief and heavy rainfall also have caused the REEs in the fluvial sediments from Taiwan to be transported to the estuaries down rivers from the mountains, and in turn delivered nearly coincidently to the adjacent seas by currents and waves. Our studies suggest that the REE patterns of the river sediments from Taiwan are distinguishable from those from the other sources of sediments transported into the adjacent seas, and therefore are useful proxies for tracing the provenances and dispersal patterns of sediments, as well as paleoenvironmental changes in the marginal seas.

  3. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.

    2018-06-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  4. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki

    2002-09-01

    Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.

  5. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.

  6. The role of extreme floods in estuary-coastal behaviour: contrasts between river- and tide-dominated microtidal estuaries

    NASA Astrophysics Data System (ADS)

    Cooper, J. A. G.

    2002-06-01

    Contrasting modes of sedimentation and facies arrangement in tide- and river-dominated microtidal estuaries arise from the degree to which river or tidal discharge and sediment supply influences an estuary. A distinct facies gradation exists in tide-dominated systems from sandy, barrier/tidal delta-associated environments at the coast through deep mud-dominated middle reaches to fluvial sediment in the upper reaches. In river-dominated systems, fluvial sediment extends to the barrier and flood-tidal deltas are poorly developed or absent from the estuary. A number of independent observations during extreme floods on the South African coast indicate that these types of estuary respond differently to extreme river floods and that the mode of response corresponds to estuary type. Tide-dominated systems exhibit preferential erosion of noncohesive barrier and tidal delta sediments during river floods while the middle reaches remain little modified. River-dominated systems experience consistent erosion throughout their channel length during extreme floods. The increased cohesion of riverine sediments and stabilisation of bars by vegetation in river-dominated channels means that higher magnitude floods are necessary to effect significant morphological change. Barrier erosion, including the tidal delta, results in deposition of an ephemeral delta composed almost entirely of sands from these deposits in tide-dominated estuaries. In river-dominated systems, eroded channel sediments and material from the river catchment may augment barrier sediments in the ephemeral delta deposit. Post-flood, wave-reworking of ephemeral delta sediments acts to restore barriers to pre-flood morphology within a few years; however, in river-dominated systems, the additional sediment volume may produce significant coastal progradation that requires several years or decades to redistribute. These different modes of flood response mediated by the nature of the estuary have implications for coastal behaviour at the time scale of months to several decades. Estuary-coastal behaviour at river-dominated estuaries may be influenced for several decades by post-flood morphological adjustment. Tide-dominated estuaries, however, respond more rapidly in reworking flood-eroded sediment and are typically fully adjusted to modal wave and tidal conditions within a few months to a few years. In addition, the facies arrangement within the two estuary types renders tide-dominated estuaries more responsive to minor floods, while river-dominated estuaries, by virtue of more cohesive channel sediments, require greater discharges to effect significant morphological change.

  7. Suspended sediment delivery to Puget Sound from the lower Nisqually River, western Washington, July 2010–November 2011

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.

    2016-05-26

    On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.

  8. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  9. Measuring Bedload Sediment Flux in Large Rivers: New Data from the Mekong River and Its Applications in Assessing Geomorphic Change

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Parsons, D. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.

    2014-12-01

    Many large rivers are undergoing renewed and increasing anthropogenic-induced change as water diversions, new dams and greater water demands place enhanced stresses on these river basins. Examples of rivers undergoing significant change include the Amazon, Madeira, Nile, Yangtze and Mekong, with considerable ongoing debate raging as to the long-term geomorphic and ecological effects of major anthropogenic interventions. Assessing the effects of such change in large rivers is demanding, one reason being that sediment transport is often exceedingly difficult to measure, and thus data needed to inform the debate on the impact of anthropogenic change is frequently lacking. Here, we report on one aspect of research being undertaken as part of STELAR-S2S - Sediment Transfer and Erosion on Large Alluvial Rivers - that is seeking to better understand the relationship between climate, anthropogenic impacts and sediment transport in some of the world's largest rivers. We are using the Lower Mekong River as our study site, with the Mekong delta being one of only three in the world classified by the IPCC as 'extremely vulnerable' to future changes in climate. Herein, we describe details of bedload sediment flux estimation using repeated high-resolution multibeam echo sounder (MBES) bathymetric mapping along the Lower Mekong and Tonle Sap rivers in Cambodia. We are using MBES to quantify the spatial variation in sediment transport both along and also across the river at 11 sites in the study area. Predicted increases in the extraction of sediment from the river through sand dredging are thought likely to cause a significant decrease in downstream sediment flux, and future dam construction along the Mekong main channel potentially offers another source of significant change. These field results will be set in the light of these anthropogenic drivers on sediment flux in the Mekong River and their possible future effects on bar formation and channel migration.

  10. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling. Earth Surface Processes and Landforms, 36(1), 20-38.

  11. Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo

    USGS Publications Warehouse

    Hayes, S.K.; Montgomery, D.R.; Newhall, C.G.

    2002-01-01

    The 1991 eruption of Mount Pinatubo generated extreme sediment yields from watersheds heavily impacted by pyroclastic flows. Bedload sampling in the Pasig-Potrero River, one of the most heavily impacted rivers, revealed negligible critical shear stress and very high transport rates that reflected an essentially unlimited sediment supply and the enhanced mobility of particles moving over a smooth, fine-grained bed. Dimensionless bedload transport rates in the Pasig-Potrero River differed substantially from those previously reported for rivers in temperate regions for the same dimensionless shear stress, but were similar to rates identified in rivers on other volcanoes and ephemeral streams in arid environments. The similarity between volcanically disturbed and arid rivers appears to arise from the lack of an armored bed surface due to very high relative sediment supply; in arid rivers, this is attributed to a flashy hydrograph, whereas volcanically disturbed rivers lack armoring due to sustained high rates of sediment delivery. This work suggests that the increases in sediment supply accompanying massive disturbance induce morphologic and hydrologic changes that temporarily enhance transport efficiency until the watershed recovers and sediment supply is reduced. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Industrial safety and applied health physics. Annual report for 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    Information is reported in sections entitled: radiation monitoring; Environmental Management Program; radiation and safety surveys; industrial safety and special projects; Office of Operational Safety; and training, lectures, publications, and professional activities. There were no external or internal exposures to personnel which exceeded the standards for radiation protection as defined in DOE Manual Chapter 0524. Only 35 employees received whole body dose equivalents of 10 mSv (1 rem) or greater. There were no releases of gaseous waste from the Laboratory which were of a level that required an incident report to DOE. There were no releases of liquid radioactive waste frommore » the Laboratory which were of a level that required an incident report to DOE. The quantity of those radionuclides of primary concern in the Clinch River, based on the concentration measured at White Oak Dam and the dilution afforded by the Clinch River, averaged 0.16 percent of the concentration guide. The average background level at the Perimeter Air Monitoring (PAM) stations during 1980 was 9.0 ..mu..rad/h (0.090 ..mu..Gy/h). Soil samples were collected at all perimeter and remote monitoring stations and analyzed for eleven radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 1.5 Bq/kg (0.04 pCi/g), and the uranium-235 content ranged from 0.7 Bq/kg (0.02 pCi/g) to 16 Bq/kg (0.43 pCi/g). Grass samples were collected at all perimeter and remote monitoring stations and analyzed for twelve radionuclides including plutonium and uranium. Plutonium-239 content ranged from 0.04 Bq/kg (0.001 pCi/g) to 0.07 Bq/kg (0.002 pCi/g), and the uranium-235 content ranged from 0.37 Bq/kg (0.01 pCi/g) to 12 Bq/kg (0.33 pCi/g).« less

  13. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging stations beginning in 2000 on the larger of the previously ungaged tributaries of the Colorado River downstream from Glen Canyon Dam. The sediment-monitoring gaging stations consist of a downward-looking stage sensor and passive suspended-sediment samplers. Two stations are equipped with automatic pump samplers to collect suspended-sediment samples during flood events. Directly measuring discharge and collecting suspended-sediment samples in these remote ephemeral streams during significant sediment-transporting events is nearly impossible; most significant run-off events are short-duration events (lasting minutes to hours) associated with summer thunderstorms. As the remote locations and short duration of these floods make it prohibitively expensive, if not impossible, to directly measure the discharge of water or collect traditional depth-integrated suspended-sediment samples, a method of calculating sediment loads was developed that includes documentation of stream stages by field instrumentation, modeling of discharges associated with these stages, and automatic suspended-sediment measurements. The approach developed is as follows (1) survey and model flood high-water marks using a two-dimensional hydrodynamic model, (2) create a stage-discharge relation for each site by combining the modeled flood flows with the measured stage record, (3) calculate the discharge record for each site using the stage-discharge relation and the measured stage record, and (4) calculate the instantaneous and cumulative sediment loads using the discharge record and suspended-sediment concentrations measured from samples collected with passive US U-59 samplers and ISCOTM pump samplers. This paper presents the design of the gaging network and briefly describes the methods used to calculate discharge and sediment loads. The design and methods herein can easily be used at other remote locations where discharge and sediment loads are required.

  14. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly, these flows play a significant role in the morpholigcal development of the continental margin. These sites, synthesized with examples from multiple other environments, provide a basis for understanding the interactions between physical processes responsible for the transport of sediment from river mouths to the sites of ultimate deposition.

  15. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    USGS Publications Warehouse

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal waters, where slightly less than half of the sediment was deposited in the river-mouth delta. Although most of the measured fluvial and coastal deposition was sand-sized and coarser (> 0.063 mm), significant mud deposition was observed in and around the mainstem river channel and on the seafloor. Woody debris, ranging from millimeter-size particles to old-growth trees and stumps, was also introduced to fluvial and coastal landforms during the dam removals. At the end of our two-year study, Elwha Dam was completely removed, Glines Canyon Dam had been 75% removed (full removal was completed 2014), and ~ 65% of the combined reservoir sediment masses—including ~ 8 Mt of fine-grained and ~ 12 Mt of coarse-grained sediment—remained within the former reservoirs. Reservoir sediment will continue to be released to the Elwha River following our two-year study owing to a ~ 16 m base level drop during the final removal of Glines Canyon Dam and to erosion from floods with larger magnitudes than occurred during our study. Comparisons with a geomorphic synthesis of small dam removals suggest that the rate of sediment erosion as a percent of storage was greater in the Elwha River during the first two years of the project than in the other systems. Comparisons with other Pacific Northwest dam removals suggest that these steep, high-energy rivers have enough stream power to export volumes of sediment deposited over several decades in only months to a few years. These results should assist with predicting and characterizing landscape responses to future dam removals and other perturbations to fluvial and coastal sediment budgets.

  16. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p,p'-DDE), and the additive piperonyl butoxide were detected in water samples. Trifluralin was found in the highest concentration of all detected compounds (68.5?599 ng/L) at all sites in both rivers, except for the international boundary sites. Atrazine was also detected in high concentration (51.0?285 ng/L) at several sites. The outlet sites had among the highest numbers of pesticides detected and the international boundary sites had the lowest numbers of pesticides detected for both rivers. The numbers of pesticides detected were greater for the Alamo River than for the New River. Six current-use pesticides and two legacy organochlorines (p,p'-DDE and p,p'-DDD) were found associated with suspended and bed sediments. The DDT metabolite p,p'-DDE was detected in all suspended and bed sediments from the Alamo River, but only at two sites in the New River. Dacthal, chlorpyrifos, pendimethalin, and trifluralin were the most commonly detected current-use pesticides. Trifluralin was the compound found in the highest concentrations in suspended (14.5?120 ng/g) and bed (1.9?9.0 ng/g) sediments. The sites along the Alamo River had more frequent detections of pesticides in suspended and bed sediments when compared with the New River sites. The greatest number of pesticides that were detected in suspended sediments (seven) were in the samples from the Sinclair Road and Harris Road sites. For bottom sediments, the Alamo River outlet site had the greatest number of pesticide detections (eight).

  17. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  18. Fine sediment trapping in river lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.

    2016-12-01

    River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.

  19. Analysis of mutagenic activity of biohazardous organics in Kanawha River sediments. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A.R.; Waldron, M.C.

    1988-01-01

    Residual chemical contamination of Kanawha River sediments may constitute a health hazard. Sediment cores have been analyzed using a coupled bioassay/chemical fractionation procedure. Both bacterial mutagenicity and sister chromatid exchange (SCE) analyses were conducted on sediment samples. Pocatalico River sediments extracts showed no response in either bacterial mutagenicity assay or SCE assay. Extracts from Armour Creek and the Kanawha River induced mutagenicities in the presence of S9 enzymes. The same extracts produced a significant increase in human chromosomal cross-over events.

  20. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    USGS Publications Warehouse

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.

  1. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    PubMed

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.

  2. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)

    NASA Astrophysics Data System (ADS)

    Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe

    2018-01-01

    The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.

  3. Sediment Transport in the Lower Yampa River, Northwestern Colorado

    USGS Publications Warehouse

    Elliott, John G.; Kircher, James E.; Von Guerard, Paul

    1984-01-01

    Discharge measurements and sediment samples were taken at streamflow-gaging station 09260050 Yampa River at Deerlodge Park in 1982 and 1983 to determine the annual sediment supply to the Yampa Canyon in Dinosaur National Monument. Forty-three years of discharge records at two tributary sites were combined to determine the historic discharge of the Yampa River at Deerlodge Park. A mean annual hydrograph and flow-duration curve were derived from these data. Sediment-transport equations were derived for total sediment discharge, suspended-sediment discharge, bedload dischagre, and the discharge of sediment in several particle-sizes. Annual sediment discharge were determined by the flow-duration, sediment-rating-curve method and indicated annual total sediment discharge was approximately 2.0 million tons per year of which 0.8 million tons per year was sand-sized material. Bedload was almost entirely sand, and annual bedload discharge was 0.1 million tons per year. Development of water resources in the Yampa River basin could effect the geomorphic character of the Yampa River at Deerlodge Park and the Yampa Canyon. Several scenarios of altered streamflow frequency distribution, reduced streamflow volume, and reduced sediment supply are examined to estimate the effect on the sediment budget at Deerlodge Park. (USGS)

  4. Mercury contamination of riverine sediments in the vicinity of a mercury cell chlor-alkali plant in Sagua River, Cuba.

    PubMed

    Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel

    2016-06-01

    Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Clay mineralogy indicates the muddy sediment provenance in the estuarine-inner shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Wang, Chenglong; Ge, Chendong; Xu, Min

    2018-02-01

    The estuarine-inner shelf mud regions of the East China Sea (ECS) are valuable for studying the source-to-sink processes of fluvial sediments deposited since the Holocene. In this study, we present evidence of the provenance and environmental evolution of two cores (S5-2 and JC07) from the estuarine-inner shelf regions of the ECS over the past 100 years based on 210Pb dating, high-resolution grain size measurements and clay mineral analyses. The results indicate that the clay mineral assemblages of cores S5-2 and JC07 are dominated by illite, followed by kaolinite and chlorite, and present scarce amounts of smectite. A comparison of these clay mineral assemblages with several major sources reveals that the fine sediments on the estuarine-inner shelf of the ECS represent a mixture of provenances associated with the Yangtze and Yellow Rivers, as well as smaller rivers. However, the contribution of each provenance has varied greatly over the past hundred years, as indicated by the down-core variability due to strong sediment reworking and transport on the inner shelf and the reduction of the sediment load from the Yangtze River basin. In the mud region of the Yangtze River estuary, the sediment from 1930 to 1956 was primarily derived from the Yangtze River, although the Yellow River was also an important influence. From 1956 to 2013, the Yellow River contribution decreased, whereas the Yangtze River contribution correspondingly increased. In the Zhe-Min mud region, the Yangtze River contributed more sediment than did other rivers from 1910 to 1950; however, the Yangtze River contribution gradually decreased from 1950 to 2013. Moreover, the other small rivers accounted for minor contributions, and the East Asian winter monsoon (EAWM) played an important role in the sediment transport process in the ECS. Our results indicate that the weakening/strengthening of the EAWM and a decrease in the sediment load of the Yangtze River influenced the transport and fate of sediment on the estuarine-inner shelf of the ECS.

  6. Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington

    USGS Publications Warehouse

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed

    2005-01-01

    Environmental problems associated with the dispersion of metal-enriched sediment into the Coeur d'Alene-Spokane River system downstream from the Coeur d'Alene Mining District in northern Idaho have been a cause of litigation since 1903, 18 years after the initiation of mining for lead, zinc, and silver. Although direct dumping of waste materials into the river by active mining operations stopped in 1968, metal-enriched sediment continues to be mobilized during times of high runoff and deposited on valley flood plains and in Coeur d'Alene Lake (Horowitz and others, 1993). To gauge the geographic and temporal variations in the metal contents of flood sediment and to provide constraints on the sources and processes responsible for those variations, we collected samples of suspended sediment and overbank deposits during and after four high-flow events in 1995, 1996, and 1997 in the Coeur d'Alene-Spokane River system with estimated recurrence intervals ranging from 2 to 100 years. Suspended sediment enriched in lead, zinc, silver, antimony, arsenic, cadmium, and copper was detected over a distance of more than 130 mi (the downstream extent of sampling) downstream of the mining district. Strong correlations of all these elements in suspended sediment with each other and with iron and manganese are apparent when samples are grouped by reach (tributaries to the South Fork of the Coeur d'Alene River, the South Fork of the Coeur d'Alene River, the main stem of the Coeur d'Alene River, and the Spokane River). Elemental correlations with iron and manganese, along with observations by scanning electron microscopy, indicate that most of the trace metals are associated with Fe and Mn oxyhydroxide compounds. Changes in elemental correlations by reach suggest that the sources of metal-enriched sediment change along the length of the drainage. Metal contents of suspended sediment generally increase through the mining district along the South Fork of the Coeur d'Alene River, decrease below the confluence of the North and South Forks, and then increase again downstream of the gradient flattening below Cataldo. Metal contents of suspended sediment in the Spokane River below Coeur d'Alene Lake were comparable to those of suspended sediment in the main stem of the Coeur d'Alene River above the lake during the 1997 spring runoff, but with somewhat higher Zn contents. Daily suspended-sediment loads were about 100 times larger in the 1996 flood (50-100-year recurrence interval) than in the smaller 1997 floods (2-5-year recurrence intervals). Significant differences in metal ratios and contents are also apparent between the two flood types. The predominant source of suspended sediment in the larger 1996 flood was previously deposited, metal-enriched flood-plain sediment, identified by its Zn/Pb ratio less than 1. Suspended sediment in the smaller 1997 floods had metal ratios distinct from those of the flood-plain deposits and was primarily derived from metal-enriched sediment stored within the stream channel, identified by a Zn/Pb ratio greater than 1. Sediment deposited during overbank flooding on the immediate streambank or natural levee of the river typically consists of sandy material with metal ratios and contents similar to those of the sandy streambed sediment in the adjacent river reach. Samples of overbank deposits in backlevee marshes collected after the 1996 flood have metal ratios similar to those of peak-flow suspended sediment in the same river reach, but generally lower metal contents.

  7. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    USGS Publications Warehouse

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  8. Effects of Coarse Legacy Sediment on Rivers of the Ozark Plateaus and Implications for Native Mussel Fauna

    NASA Astrophysics Data System (ADS)

    Erwin, S. O.; Jacobson, R. B.; Eric, A. B.; Jones, J. C.; Anderson, B. W.

    2015-12-01

    Perturbations to sediment regimes due to anthropogenic activities may have long lasting effects, especially in systems dominated by coarse sediment where travel times are relatively long. Effectively evaluating management alternatives requires understanding the future trajectory of river response at both the river network and reach scales. The Ozark Plateaus physiographic province is a montane region in the interior US composed primarily of Paleozoic sedimentary rock. Historic land-use practices around the turn of the last century accelerated delivery of coarse sediment to river channels. Effects of this legacy sediment persist in two national parks, Ozark National Scenic Riverways, MO and Buffalo National River, AR, and are of special concern for management of native mussel fauna. These species require stable habitat, yet they occupy inherently dynamic environments: alluvial rivers. At the river-network scale, analysis of historical data reveals the signature of sediment waves moving through river networks in the Ozarks. Channel planform alternates between relatively stable, straight reaches, and wider, multithread reaches which have been more dynamic over the past several decades. These alternate planform configurations route and store sediment differently, and translate into different patterns of bed stability at the reach scale, which in turn affects the distribution and availability of habitat for native biota. Geomorphic mapping and hydrodynamic modeling reveal the complex relations between planform (in)stability, flow dynamics, bed mobility, and aquatic habitat in systems responding to increased sediment supply. Reaches that have a more dynamic planform may provide more hydraulic refugia and habitat heterogeneity compared to stable, homogeneous reaches. This research provides new insights that may inform management of sediment and mussel habitat in rivers subject to coarse legacy sediment.

  9. Cyclic Sediment Trading Between Channel and River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (<10 μm), silts (10-63 μm), and fine sands (63-212 μm). The contribution of the initial soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  10. What role do hurricanes play in sediment delivery to subsiding river deltas?

    USGS Publications Warehouse

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  11. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-12-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  12. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  13. A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk.

    PubMed

    Song, Zhixin; Tang, Wenzhong; Shan, Baoqing

    2017-10-01

    Evaluating heavy metal pollution status and ecological risk in river sediments is a complex task, requiring consideration of contaminant pollution levels, as well as effects of biological processes within the river system. There are currently no simple or low-cost approaches to heavy metal assessment in river sediments. Here, we introduce a system of assessment for pollution status of heavy metals in river sediments, using measurements of Cd in the Shaocun River sediments as a case study. This system can be used to identify high-risk zones of the river that should be given more attention. First, we evaluated the pollution status of Cd in the river sediments based on their total Cd content, and calculated a risk assessment, using local geochemical background values at various sites along the river. Using both acetic acid and ethylenediaminetetraacetic acid to extracted the fractions of Cd in sediments, and used DGT to evaluate the bioavailability of Cd. Thus, DGT provided a measure of potentially bioavailable concentrations of Cd concentrations in the sediments. Last, we measured Cd contents in plant tissue collected at the same site to compare with our other measures. A Pearson's correlation analysis showed that Cd-Plant correlated significantly with Cd-HAc, (r = 0.788, P < 0.01), Cd-EDTA (r = 0.925, P < 0.01), Cd-DGT (r = 0.976, P < 0.01), and Cd-Total (r = 0.635, P < 0.05). We demonstrate that this system of assessment is a useful means of assessing heavy metal pollution status and ecological risk in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  15. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    USGS Publications Warehouse

    Singer, Michael B.; Dunne, Thomas

    2006-01-01

    A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.

  16. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  17. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    USGS Publications Warehouse

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  18. Assessing sedimentation rates at Usumacinta and Grijalva river basin (Southern Mexico) using OSL and suspended sediment load analysis: A study from the Maya Classic Period

    NASA Astrophysics Data System (ADS)

    Munoz-Salinas, E.; Castillo, M.; Sanderson, D.; Kinnaird, T.; Cruz-Zaragoza, E.

    2013-12-01

    Studying sedimentation rates on floodplains is key to understanding environmental changes occurred through time in river basins. The Usumacinta and Grijalva rivers flow most of their travel through the southern part of Mexico, forming a large river basin, crossing the states of Chiapas and Tabasco. The Usumacinta-Grijalva River Basin is within the 10 major rivers of North America, having a basin area of ~112 550 km2. We use the OSL technique for dating two sediment profiles and for obtaining luminescence signals in several sediment profiles located in the streambanks of the main trunk of the Usumacinta and Grijalva rivers. We also use mean annual values of suspended sediment load spanning ~50 years to calculate the sedimentation rates. Our OSL dating results start from the 4th Century, when the Maya Civilization was at its peak during the Classic Period. Sedimentation rates show a notable increase at the end of the 19th Century. The increase of the sedimentation rates seems to be related to changes in land uses in the Sierra Madre de Chiapas and Altos de Chiapas, based on deforestation and land clearing for developing new agrarian and pastoral activities. We conclude that the major environmental change in the basin of the Usumacinta and Grijalva Rivers since the Maya Classic Period was generated since the last Century as a result of an intense anthropogenic disturbance of mountain rain forest in Chiapas.

  19. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg/L), and the Middle Fork Clearwater River at Kooskia, Idaho (15 mg/L). The largest measured concentrations of suspended sediment (3,300 and 1,400 mg/L) during a rain-on-snow event in January 2011 were from samples collected at the Potlatch River near Spalding, Idaho, and the Palouse River at Hooper, Washington, respectively. Generally, samples collected from agricultural watersheds had a high percentage of silt and clay-sized suspended sediment, whereas samples collected from forested watersheds had a high percentage of sand. During water years 2009–11, Lower Granite Reservoir received about 10 million tons of suspended sediment from the combined loads of the Snake and Clearwater Rivers. The Snake River accounted for about 2.97 million tons per year (about 89 percent) of the total suspended sediment, 1.48 million tons per year (about 90 percent) of the suspended sand, and about 1.52 million tons per year (87 percent) of the suspended silt and clay. Of the suspended sediment transported to Lower Granite Reservoir, the Salmon River accounted for about 51 percent of the total suspended sediment, about 56 percent of the suspended sand, and about 44 percent of the suspended silt and clay. About 6.2 million tons (62 percent) of the sediment contributed to Lower Granite Reservoir during 2009–11 entered during water year 2011, which was characterized by an above average winter snowpack and sustained spring runoff. A comparison of historical data collected from the Snake River near Anatone with data collected during this study indicates that concentrations of total suspended sediment and suspended sand in the Snake River were significantly smaller during water years 1972–79 than during 2008–11. Most of the increased sediment content in the Snake River is attributable to an increase of sand-size material. During 1972–79, sand accounted for an average of 28 percent of the suspended-sediment load; during 2008–11, sand accounted for an average of 48 percent. Historical data from the Clearwater River at Spalding indicates that the concentrations of total suspended sediment collected during 1972–79 were not significantly different from the concentrations measured during this study. However, the suspended-sand concentrations in the Clearwater River were significantly smaller during 1972–79 than during 2008–11. The increase in suspended-sand concentrations in the Snake and Clearwater Rivers are probably attributable to numerous severe forest fires that burned large areas of central Idaho from 1980–2010. Acoustic backscatter from an acoustic Doppler velocity meter proved to be an effective method of estimating suspended-sediment concentration and load for most streamflow conditions in the Snake and Clearwater Rivers. Models based on acoustic backscatter were able to simulate most of the variability in suspended-sediment concentrations in the Clearwater River at Spalding (coefficient of determination [R2]=0.93) and the Snake River near Anatone (R2=0.92). Acoustic backscatter seems to be especially effective for estimating suspended-sediment concentration and load over short (monthly and single storm event) and long (annual) time scales when sediment load is highly variable. However, during high streamflow events acoustic surrogate tools may be unable to capture the contribution of suspended sand moving near the bottom of the water column and thus, underestimate the total load of suspended sediment. At the stations where bedload was collected, the particle-size distribution at low streamflows typically was unimodal with sand comprising the dominant particle size. At higher streamflows and during peak bedload discharge, the particle size typically was bimodal and was comprised primarily of sand and coarse gravel. About 55,000 tons of bedload was discharged from the Snake River to Lower Granite Reservoir during water years 2009–11, about 0.62 percent of the total sediment load delivered by the Snake River. About 9,500 tons of bedload was discharged from the Clearwater River to Lower Granite Reservoir during 2009–11, about 0.83 percent of the total sediment load discharged by the Clearwater River during 2009–11.

  20. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system.

    PubMed

    Nel, Holly A; Dalu, Tatenda; Wasserman, Ryan J

    2018-01-15

    Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  3. An Integrated Assessment of Sediment Remediation in a Midwestern U.S. Stream Using Sediment Chemistry, Water Quality, Bioassessment and Fish Biomarkers

    EPA Science Inventory

    A comprehensive biological, sediment and water quality study of the lower Little Scioto River near Marion, Ohio, USA was undertaken in July 2007 to evaluate the effectiveness of removal of creosote-contaminated sediment. The study area covered 7.5 river miles (RMs) of the river, ...

  4. The influence of the scale of mining activity and mine site remediation on the contamination legacy of historical metal mining activity.

    PubMed

    Bird, Graham

    2016-12-01

    Globally, thousands of kilometres of rivers are degraded due to the presence of elevated concentrations of potentially harmful elements (PHEs) sourced from historical metal mining activity. In many countries, the presence of contaminated water and river sediment creates a legal requirement to address such problems. Remediation of mining-associated point sources has often been focused upon improving river water quality; however, this study evaluates the contaminant legacy present within river sediments and attempts to assess the influence of the scale of mining activity and post-mining remediation upon the magnitude of PHE contamination found within contemporary river sediments. Data collected from four exemplar catchments indicates a strong relationship between the scale of historical mining, as measured by ore output, and maximum PHE enrichment factors, calculated versus environmental quality guidelines. The use of channel slope as a proxy measure for the degree of channel-floodplain coupling indicates that enrichment factors for PHEs in contemporary river sediments may also be the highest where channel-floodplain coupling is the greatest. Calculation of a metric score for mine remediation activity indicates no clear influence of the scale of remediation activity and PHE enrichment factors for river sediments. It is suggested that whilst exemplars of significant successes at improving post-remediation river water quality can be identified; river sediment quality is a much more long-lasting environmental problem. In addition, it is suggested that improvements to river sediment quality do not occur quickly or easily as a result of remediation actions focused a specific mining point sources. Data indicate that PHEs continue to be episodically dispersed through river catchments hundreds of years after the cessation of mining activity, especially during flood flows. The high PHE loads of flood sediments in mining-affected river catchments and the predicted changes to flood frequency, especially, in many river catchments, provides further evidence of the need to enact effective mine remediation strategies and to fully consider the role of river sediments in prolonging the environmental legacy of historical mine sites.

  5. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.

    2017-11-01

    Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.

  6. Immobilization of U(VI) from Oxic Groundwater by Hanford 300 Area Sediments and Effects of Columbia River Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, B.; Cao, Bin; Mishra, Bhoopesh

    2012-09-23

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of:more » 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site.« less

  7. Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Belmont, Patrick; Finnegan, Noah

    2013-04-01

    Management and restoration of sediment-impaired streams requires quantification of sediment sources and pathways of transport. Addressing the role of humans in altering the magnitude and sources of sediment supplied to a catchment is notoriously challenging. Here, we explore how humans have amplified erosion in geomorphically-sensitive portions of the predominantly-agricultural Minnesota River basin in north-central USA. In the Minnesota River basin, the primary sources of sediment are classified generally as upland agricultural field vs. near-channel sources, with near-channel sources including stream banks, bluffs, and ravines. Using aerial lidar data, repeat terrestrial lidar scans of bluffs, ravine monitoring, historic air photo analyses, and sediment fingerprinting, we have developed a sediment budget to determine the relative importance of each source in a tributary to the Minnesota River, the Le Sueur River. We then investigate how these sources have changed through time, from changes evident over the past few decades to changes associated with valley evolution over the past 13,400 years. The Minnesota River valley was carved ~13,400 years ago through catastrophic drainage of glacial Lake Agassiz. As the Minnesota River valley incised, knickpoints have migrated upstream into tributaries, carving out deep valleys where the most actively eroding near-channel sediment sources occur. The modern sediment budget, closed for the time period 2000 to 2010, shows that the majority of the fine sediment load in the Le Sueur River comes from bluffs and other near-channel sources in the deeply-incised knick zone. Numerical modeling of valley evolution constrained by mapped and dated strath terraces cut into the glacial till presents an opportunity to compare the modern sediment budget to that of the river prior to anthropogenic modification. This comparison reveals a natural background or "pre-agriculture" rate of erosion from near-channel sources to be 3-5 times lower than modern near-channel erosion rates. Notably, depositional records from a naturally-dammed lake downstream on the upper Mississippi River show a more dramatic 10-fold increase in deposition rates from pre-agricultural times to the present. Sediment fingerprinting shows that pre-agriculture sediment loads were dominated by near-channel sediment sources. As deposition rates rose in the late 1800s and early 1900s, the sources shifted increasingly to agricultural soil erosion. In the past few decades, deposition rates have remained high, but sediment fingerprinting indicates yet another significant shift back to near-channel sources. On-going changes in basin hydrology, from both installation of agricultural drainage systems and on-going climate change have put more water in the rivers, increasing rates of near-channel bank and bluff erosion. This most recent shift in sediment sources has significant implications for turbidity management in the Minnesota River basin.

  8. Deposition and flux of sediment from the Po River, Italy: An idealized and wintertime numerical modeling study

    USGS Publications Warehouse

    Bever, A.J.; Harris, C.K.; Sherwood, C.R.; Signell, R.P.

    2009-01-01

    Recent studies of sediment dynamics and clinoform development in the northern Adriatic Sea focused on winter 2002-2003 and provided the data and motivation for development of a detailed sediment-transport model for the area near the Po River delta. We used both idealized test cases and more realistic simulations to improve our understanding of seasonal sediment dynamics there. We also investigated the relationship between physical processes and the observed depositional products; e.g. the accumulation of sediment very near the Po River distributary mouths. Sediment transport near the Po River was evaluated using a three-dimensional ocean model coupled to sediment-transport calculations that included wave- and current-induced resuspension, suspended-sediment transport, multiple grain classes, and fluvial input from the Po River. High-resolution estimates from available meteorological and wave models were used to specify wind, wave, and meteorological forcing. Model results indicated that more than half of the discharged sediment remained within 15??km of the Po River distributary mouths, even after two months of intensive reworking by winter storms. During floods of the Po River, transport in the middle to upper water column dominated sediment fluxes. Otherwise, sediment fluxes from the subaqueous portion of the delta were confined to the bottom few meters of the water column, and correlated with increases in current speed and wave energy. Spatial and temporal variation in wind velocities determined depositional patterns and the directions of sediment transport. Northeasterly Bora winds produced relatively more eastward transport, while southwesterly Sirocco winds generated fluxes towards both the north and the south. Eastward transport accounted for the majority of the sediment exported from the subaqueous delta, most likely due to the frequent occurrence of Bora conditions. Progradation of the Po River delta into the Adriatic Sea may restrict the formation of the Western Adriatic Coastal Current, increasing sediment retention at the Po delta and reducing the supply of sediment to the Apennine margin. A positive morphodynamic feedback may therefore be present whereby the extension of the delta into the Adriatic increases sediment accumulation at the delta and facilitates further progradation. ?? 2009 Elsevier B.V.

  9. Sources of sediment to the coastal waters of the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The sources of sediment to the Southern California Bight were investigated with new calculations and published records of sediment fluxes, both natural and anthropogenic. We find that rivers are by far the largest source of sediment, producing over 10 ?? 106 t/yr on average, or over 80% of the sediment input to the Bight. This river flux is variable, however, over both space and time. The rivers draining the Transverse Ranges produce sediment at rates approximately an order of magnitude greater than the Peninsular Ranges (600-1500 t/km2/yr versus <90 t/km2/yr, respectively). Although the Transverse Range rivers represent only 23% of the total Southern California watershed drainage area, they are responsible for over 75% of the total sediment flux. River sediment flux is ephemeral and highly pulsed due to the semiarid climate and the influence of infrequent large storms. For more than 90% of the time, negligible amounts of sediment are discharged from the region's rivers, and over half of the post-1900 sediment load has been discharged during events with recurrence intervals greater than 10 yr. These rare, yet important, events are related to the El Ni??o-Southern Oscillation (ENSO), and the majority of sediment flux occurs during ENSO periods. Temporal trends in sediment discharge due to land-use changes and river damming are also observed. We estimate that there has been a 45% reduction in suspended-sediment flux due to the construction of dams. However, pre-dam sediment loads were likely artificially high due to the massive land-use changes of coastal California to rangeland during the nineteenth century. This increase in sediment production is observed in estuarine deposits throughout coastal California, which reveal that sedimentation rates were two to ten times higher during the nineteenth and twentieth centuries than during pre-European colonization. ?? 2009 The Geological Society of America.

  10. Characteristics of sediment discharge in the subarctic Yukon River, Alaska

    USGS Publications Warehouse

    Chikita, K.A.; Kemnitz, R.; Kumai, R.

    2002-01-01

    The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size ??? 62.5 ??m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity and temperature near the estuary and in the middle of Yukon River by using self-recording turbidimeters and temperature data loggers. The water turbidity (ppm) was converted to suspended sediment concentration (SSC; mg/l) of river water, using a relation between simultaneous turbidity and SSC at each of the two sites, and then, the suspended sediment discharge, approximately equal to water discharge times SSC, was numerically obtained every 1 or 2 h. It should be noted that the sediment discharge in the Yukon River is controlled by SSC rather than water discharge. As a result, a peak sediment discharge occurred in mid or late August by local sediment runoffs due to glacier-melt (or glacier-melt plus rainfall), while a peak water discharge was produced by snowmelt in late June or early July. Application of the "extended Shields diagram" indicates that almost all the river-transported sediments are under complete suspension. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: evidence from rare earth elements

    NASA Astrophysics Data System (ADS)

    Um, In Kwon; Choi, Man Sik; Lee, Gwang Soo; Chang, Tae Soo

    2015-12-01

    Despite the well-reconstructed seismic stratigraphy of the Holocene mud deposit in the southeastern Yellow Sea, known as the Heuksan mud belt (HMB), the provenances of these sediments and their depositional environments are unclear, especially for the fine-grained sediments. According to seismic data (extracted from another article in this special issue), the HMB comprises several sedimentary units deposited since the last glacial maximum. Based on analytical results on rare earth elements, fine-grained sediments in all sedimentary units can be interpreted as mixtures of sediments discharged from Chinese and Korean rivers. The proportions of fine-grained sediments from Chinese rivers (74.5 to 80.0%) were constant and higher than those from Korean rivers in all units. This fact demonstrates that all units have the same fine-grained sediment provenance: units III-b and III-a, located in the middle and northern parts of the HMB and directly deposited from Chinese rivers during the sea-level lowstand, could be the sediment source for units II-b and II-a. Unit I, while ambiguous, is of mixed origin combining reworked sediments from nearby mud deposits and Changjiang River-borne material with those of the Keum River. The results of this study indicate that at least 18.6% of bulk sediments in the HMB clearly originate from Chinese rivers, despite its location close to the southwestern coast of Korea.

  12. Assessment of total bed material equations on selected Malaysia rivers

    NASA Astrophysics Data System (ADS)

    Saleh, A.; Abustan, I.; Mohd Remy Rozainy, M. A. Z.; Sabtu, N.

    2017-10-01

    Assessment of total sediment load equations on selected Malaysia rivers was done based on 35 sediment loads and hydraulic data. Four rivers were selected to make this assessment which are Sungai Perak, Sungai Kemaman, Sungai Pergau and Sungai Kurau. These rivers can be divided into three categories based on the river width, with Sungai Perak (300-350m) and Sungai Kemaman (150-200m) can categorised as big rivers, meanwhile, Sungai Pergau (30-45m) and Sungai Kurau (10-11m) can categorised as medium and small river respectively. The total sediment load equations used in this assessment are Ackers-White, Brownlie, Engelund-Hansen, Graf, Molinas-Wu, Karim-Kennedy and Yang. This paper also tested the local total sediment load equations by Ariffin and Sinnakaudan et al. to evaluate capabilities of the equations on different rivers in Malaysia. The graphs of the calculated equations versus measured sediment transport rates were plotted to shows the accuracy of the tested equations.

  13. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    NASA Astrophysics Data System (ADS)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  14. Catchment-scale environmental controls of sediment-associated contaminant dispersal

    NASA Astrophysics Data System (ADS)

    Macklin, Mark

    2010-05-01

    Globally river sediment associated contaminants, most notably heavy metals, radionuclides, Polychlorinated Biphenyls (PCBs), Organochlorine pesticides (OCs) and phosphorous, constitute one the most significant long-term risks to ecosystems and human health. These can impact both urban and rural areas and, because of their prolonged environmental residence times, are major sources of secondary pollution if contaminated soil and sediment are disturbed by human activity or by natural processes such as water or wind erosion. River catchments are also the primary source of sediment-associated contaminants to the coastal zone, and to the ocean, and an understanding of the factors that control contaminated sediment fluxes and delivery in river systems is essential for effective environmental management and protection. In this paper the catchment-scale controls of sediment-associated contaminant dispersal are reviewed, including climate-related variations in flooding regime, land-use change, channel engineering, restoration and flood defence. Drawing on case studies from metal mining impacted catchments in Bolivia (Río Pilcomayo), Spain (Río Guadiamar), Romania (River Tisa) and the UK (River Swale) some improved methodologies for identifying, tracing, modelling and managing contaminated river sediments are proposed that could have more general application in similarly affected river systems worldwide.

  15. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  16. The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya

    PubMed Central

    2018-01-01

    The Mara River Basin in East Africa is a trans-boundary basin of international significance experiencing excessive levels of sediment loads. Sediment levels in this river are extremely high (turbidities as high as 6,000 NTU) and appear to be increasing over time. Large wildlife populations, unregulated livestock grazing, and agricultural land conversion are all potential factors increasing sediment loads in the semi-arid portion of the basin. The basin is well-known for its annual wildebeest (Connochaetes taurinus) migration of approximately 1.3 million individuals, but it also has a growing population of hippopotami (Hippopotamus amphibius), which reside within the river and may contribute to the flux of suspended sediments. We used in situ pressure transducers and turbidity sensors to quantify the sediment flux at two sites for the Mara River and investigate the origin of riverine suspended sediment. We found that the combined Middle Mara—Talek catchment, a relatively flat but semi-arid region with large populations of wildlife and domestic cattle, is responsible for 2/3 of the sediment flux. The sediment yield from the combined Middle Mara–Talek catchment is approximately the same as the headwaters, despite receiving less rainfall. There was high monthly variability in suspended sediment fluxes. Although hippopotamus pools are not a major source of suspended sediments under baseflow, they do contribute to short-term variability in suspended sediments. This research identified sources of suspended sediments in the Mara River and important regions of the catchment to target for conservation, and suggests hippopotami may influence riverine sediment dynamics. PMID:29420624

  17. Heavy metal contamination of sediments in the upper connecting channels of the Great Lakes

    USGS Publications Warehouse

    Nichols, S. Jerrine; Manny, Bruce A.; Schloesser, Donald W.; Edsall, Thomas A.

    1991-01-01

    In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.

  18. Estimation of annual suspended-sediment fluxes, 1931-95, and evaluation of geomorphic changes, 1950-2010, in the Arkansas River near Tulsa, Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.; Smith, S. Jerrod; Buck, Stephanie D.; Strong, Scott A.

    2011-01-01

    An understanding of fluvial sediment transport and changing channel morphology can assist planners in making responsible decisions with future riverine development or restoration projects. Sediment rating curves can serve as simple models and can provide predictive tools to estimate annual sediment fluxes. Sediment flux models can aid in the design of river projects by providing insight to past and potential future sediment fluxes. Historical U.S. Geological Survey suspended-sediment and discharge data were evaluated to estimate annual suspended-sediment fluxes for two stations on the Arkansas River located downstream from Keystone Dam in Tulsa County. Annual suspended-sediment fluxes were estimated from 1931-95 for the Arkansas River at Tulsa streamflow-gaging station (07164500) and from 1973-82 for the Arkansas River near Haskell streamflow-gaging station (07165570). The annual flow-weighted suspended-sediment concentration decreased from 1,970 milligrams per liter to 350 milligrams per liter after the completion of Keystone Dam at the Tulsa station. The streambed elevation at the Arkansas River at Tulsa station has changed less than 1 foot from 1970 to 2005, but the thalweg has shifted from a location near the right bank to a position near the left bank. There was little change in the position of most of the banks of the Arkansas River channel from 1950 to 2009. The most substantial change evident from visual inspection of aerial photographs was an apparent decrease in sediment storage in the form of mid-channel and meander bars. The Arkansas River channel between Keystone Dam and the Tulsa-Wagoner County line showed a narrowing and lengthening (increase in sinuosity) over the transition period 1950-77 followed by a steady widening and shortening of the river channel (decrease in sinuosity) during the post-dam (Keystone) periods 1977-85, 1985-2003, and 2003-10.

  19. What are the contemporary sources of sediment in the Mississippi River?

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  20. BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetrick, D.L.; Sowers, G.W.

    1978-06-01

    This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. Amore » list of variable names and a listing for BRENDA are included as appendices.« less

  1. Simulation of sodium pumps for nuclear power plants. Technical report 1 Oct 80-1 May 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boadu, H.O.

    1981-05-01

    A single-phase pump model for analysis of transients in sodium cooled fast breeder nuclear power plants has been presented, where homologous characteristic curves are used to predict the behavior of the pump during operating transients. The pump model has been incorporated into BRENDA and FFTF; two system cases to simulate Clinch River Breeder Reactor Plant (CRBRP) and the Fast Flux Test Facility (FFTF) respectively. Two simulation test results for BRENDA which is one loop representation of a three loop plant have been presented. They are: (1) Primary pump coastdown to natural circulation coupled with scram failure, and (2) 10 percentmore » deviation of primary speed with plant controllers incorporated.« less

  2. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basinmore » and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.« less

  3. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  4. Suspended-sediment data in the Salt River basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1983-01-01

    Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)

  5. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    NASA Astrophysics Data System (ADS)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of the Huanghe delta by minimizing expected flood-damage cost. Taken together, these studies can inform management policies and promote consideration of the natural evolution of deltas to achieve sustainability.

  6. Suspended Sediment Loads and Tributary Inputs in the Mississippi River below St. Louis, MO, 1990-2013 Compared With Earlier Results

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.

    2017-12-01

    Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.

  7. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  8. Sediment connectivity at source-bordering aeolian dunefields along the Colorado River in the Grand Canyon, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen

    2017-04-01

    Aeolian dunefields that are primarily built and maintained with river-derived sediment are found in many river valleys throughout the world and are impacted by changes in climate, land use, and river regulation. Quantifying the dynamic response of these aeolian dunefields to alterations in river flow is especially difficult given the highly correlated nature of the interacting geomorphic and sediment transport processes that drive their formation and maintenance. We characterize the effects of controlled river floods on changes in sediment connectivity at source-bordering aeolian dunefields in the Grand Canyon, USA. Controlled floods from the Glen Canyon Dam are used to build sandbars along the Colorado River in Grand Canyon which provide the main sediment source for aeolian dunefields. Aeolian dunefields are a primary resource of concern for land managers in the Grand Canyon because they often contain buried archaeological features. To characterize dunefield response to controlled floods, we use a novel, automated approach for the mechanistic segregation of geomorphic change to discern the geomorphic processes responsible for driving topographic change in very high resolution digital elevation models-of-difference (DODs) that span multiple, consecutive controlled river floods at source-bordering dunefields. We subsequently compare the results of mechanistic segregation with modelled estimates of aeolian dunefield evolution in order to understand how dunefields respond to contemporary, anthropogenically-driven variability in sediment supply and connectivity. These methods provide a rapid technique for sediment budgeting and enable the inference of spatial and temporal patterns in sediment flux between the fluvial and aeolian domains. We anticipate that this approach will be adaptable to other river valleys where the interactions of aeolian, fluvial, and hillslope processes drive sediment connectivity for the maintenance of source-bordering aeolian dunefields.

  9. Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea.

    PubMed

    Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh

    2016-11-01

    Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.

  10. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China.

    PubMed

    Zhang, Guangliang; Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2017-10-01

    Rapid urbanization and reclamation processes in coastal areas have resulted in serious pollution to the aquatic environment. Less is known on the geochemical fractions and ecological risks in river sediment under various human activities pressures, which is essential for addressing the connections between heavy metal pollution and anthropogenic influences. River sediments were collected from different landscapes (i.e., urban, rural and reclamation areas) to investigate the impacts of urbanization and reclamation on the metallic pollution levels and ecological risks in the Pear River Estuary of China. Results showed that Cd, Zn and Cu with high total contents and geoaccumulation index (I geo ) were the primary metals in the Peal River sediments. Generally, urban river sediments, especially the surface sediment layer (0-10 cm), exhibited higher metallic pollution levels. As for geochemical fractions, reducible and residual fractions were the dominant forms for six determined metals. And the percentage of heavy metals bound to Fe-Mn oxides decreased with increasing soil depth but the reverse tendency was observed for residual fractions. Compared with rural river sediments, heavy metals were highly associated with the exchangeable and carbonate fractions in both urban and reclamation-affected river sediments, suggesting that anthropogenic activities mainly increased the active forms of metals. Approximately 80% of Cd existed in the non-residual fraction and posed medium to high ecological risk according to the risk assessment code (RAC) values. The redundancy analysis (RDA) revealed that both urbanization and reclamation processes would cause similar metallic characteristics, and sediment organic matter (SOC) might be the prominent influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming

    PubMed Central

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-01-01

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination. PMID:28773692

  12. Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets

    USGS Publications Warehouse

    Warrick, J.A.; Milliman, John D.

    2003-01-01

    Southern California rivers discharge hyperpycnal (river density greater than ocean density) concentrations of suspended sediment (>40 g/L, according to buoyancy theory) during flood events, mostly during El Nin??o-Southern Oscillation (ENSO) conditions. Because hyperpycnal river discharge commonly occurs during brief periods (hours to occasionally days), mean daily flow statistics often do not reveal the magnitude of these events. Hyperpycnal events are particularly important in rivers draining the Transverse Range and account for 75% of the cumulative sediment load discharged by the Santa Clara River over the past 50 yr. These events are highly pulsed, totaling only ??? 30 days (??? 0.15% of the total 50 yr period). Observations of the fate of sediment discharge, although rare, are consistent with hyperpycnal river dynamics and the high likelihood of turbidity currents during these events. We suggest that much of the sediment load initially bypasses the littoral circulation cells and is directly deposited on the adjacent continental shelf, thus potentially representing a loss of immediate beach sand supply. During particularly exceptional events (>100 yr recurrence intervals), flood underflows may extend past the shelf and escape to offshore basins.

  13. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    PubMed

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  14. Occurrence of Selected Nutrients, Trace Elements, and Organic Compounds in Streambed Sediment in the Lower Chena River Watershed near Fairbanks, Alaska, 2002-03

    USGS Publications Warehouse

    Kennedy, Ben W.; Hall, Cassidee C.

    2009-01-01

    In 2002-03, the U.S. Geological Survey collected samples of streambed sediment at 18 sites in the lower Chena River watershed for analysis of selected nutrients, traces elements, and organic compounds. The purpose of the project was to provide Federal, State, and local agencies as well as neighborhood committees, with information for consideration in plans to improve environmental conditions in the watershed. The exploratory sampling program included analysis of streambed sediment from the Chena River and Chena Slough, a tributary to the Chena River. Results were compared to streambed-sediment guidelines for the protection of aquatic life and to 2001-02 sediment data from Noyes Slough, a side channel of the lower Chena River. The median total phosphorus concentration in Chena Slough sediment samples, 680 milligrams per kilogram (mg/kg), was two orders of magnitude greater than median total phosphorus concentration in Chena River sediment samples of 5.2 mg/kg. Median concentrations of chloride and sulfate also were greater in Chena Slough samples. Low concentrations of nitrate were detected in most of the Chena Slough samples; nitrate concentrations were below method reporting limits or not detected in Chena River sediment samples. Streambed-sediment samples were analyzed for 24 trace elements. Arsenic, nickel, and zinc were the only trace elements detected in concentrations that exceeded probable-effect levels for the protection of aquatic life. Concentrations of arsenic in Chena Slough samples ranged from 11 to 70 mg/kg and concentrations in most of the samples exceeded the probable-effect guideline for arsenic of 17 mg/kg. Arsenic concentrations in samples from the Chena River ranged from 9 to 12 mg/kg. The background level for arsenic in the lower Chena River watershed is naturally elevated because of significant concentrations of arsenic in local bedrock and ground water. Sources of elevated concentrations of zinc in one sample, and of nickel in two samples, are unknown. With the exception of elevated arsenic levels in samples from Chena Slough, the occurrence and concentration of trace elements in the streambed sediments of Chena Slough and Chena River were similar to those in Noyes Slough sediment. Sediment samples were analyzed for 78 semivolatile organic compounds and 32 organochlorine pesticides and polychlorinated biphenyls (PCBs). Low concentrations of dimethylnaphthalene and p-Cresol were detected in most Chena Slough and Chena River sediment samples. The number of semivolatile organic compounds detected ranged from 5 to 21 in most Chena Slough sediment samples. In contrast, three or fewer semivolatile organic compounds were detected in Chena River sediment samples, most likely because chemical-matrix interference resulted in elevated reporting limits for organochlorine compounds in the Chena River samples. Low concentrations of fluoranthene, pyrene, and phenanthrene were detected in Chena Slough sediment. Relatively low concentrations of DDT or its degradation products, DDD and DDE, were detected in all Chena Slough samples. Concentrations of total DDT (DDT+DDD+DDE) in two Chena Slough sediment samples exceeded the effectsrange median aquatic-life criteria of 46.1 micrograms per kilogram (ug/kg). DDT concentrations in Chena River streambed-sediment samples were less than 20 ug/kg. Low concentrations of PCB were detected in two Chena Slough streambed-sediment samples. None of the concentrations of the polychlorinated biphenyls or semivolatile organic compounds for which the samples were analyzed exceeded available guidelines for the protection of aquatic life. With the exception of elevated total DDT in two Chena Slough samples, the occurrence and concentration of organochlorine compounds in Chena Slough and Chena River sediment were similar to those in samples collected from Noyes Slough in 2001-02.

  15. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    USGS Publications Warehouse

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines River at Jackson. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong relations with SSC at 10 of 14 sites and was superior to streamflow for estimating SSC at all sites. These results indicate that turbidity may be beneficial as a surrogate for SSC in many of Minnesota’s rivers. Suspended-sediment loads and annual basin yields indicated that the Minnesota River had the largest average annual sediment load of 1.8 million tons per year and the largest mean annual sediment basin yield of 120 tons of sediment per year per square mile. Annual TSS loads were considerably lower than suspended-sediment loads. Overall, the largest suspended-sediment and TSS loads were transported during spring snowmelt runoff, although loads during the fall and summer seasons occasionally exceeded spring runoff at some sites. This study provided data from which to characterize suspended sediment across Minnesota’s diverse geographical settings. The data analysis improves understanding of sediment transport relations, provides information for improving sediment budgets, and documents baseline data to aid in understanding the effects of future land use/land cover on water quality. Additionally, the data provides insight from which to evaluate the effectiveness and efficiency of best management practices at the watershed scale.

  16. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river avulsed through the valley, rather than continuing toward Lake Manix, during the late Pleistocene. Two dextral strike-slip fault zones, the Lockhart and the Mt. General, fold and displace the distinctive stratigraphic units, as well as surficial late Pleistocene and Holocene deposits. The sedimentary architecture and the two fault zones provide a framework for evaluating groundwater flow in Hinkley Valley.

  17. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.

  18. Trend analyses with river sediment rating curves

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2015-01-01

    Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended-sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies it is assumed that rating curves have a power-law form (i.e., C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) How well to the parameters, a and b, characterize trends in the data? (ii) Are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers, but rather strongly dependent on b and Q. Here it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge-normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply, or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time-dependent rates and trends of river water, sediment concentrations, and sediment discharge.

  19. Morphology analysis in middle-downstream area of Progo River due to the debris flow

    NASA Astrophysics Data System (ADS)

    Fitriadin, Ahmad Azmi; Ikhsan, Jaza'ul; Harsanto, Puji

    2017-06-01

    One of the problems that occur in Progo River is the formation of sediment in the downstream section. The sediment material in the upstream becomes the source of sediment at the downstream area. Excess sediment supply from the upstream causes morphological changes in a relatively short time. The morphological changes in riverbed will affect hydraulics conditions. Hydraulic has an important role in the process of aggradation and degradation in the riverbed. Furthermore, the process of erosion and sedimentation will affect the stability of the construction in the water. In Progo River, there are some buildings of infrastructure such as revetment, bridge, irrigation intake, groundsill, and weir. Based on the results of a numerical model of the hydraulic analysis system, there was approximately 87,000,000 m3 of sediment on Progo River in 2015. In fact, aggradation and degradation occurred very intensively in the middle-downstream area of Progo River. Sediment movement simulation also showed that the sediment supply of lava could prevent excessive bed degradation. Nevertheless, the absence of sediment supply will lead to bed degradation process. It indicates that the management of the sediment supply in the upstream area must be managed properly.

  20. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm.

    PubMed

    Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang

    2015-02-01

    Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.

  1. Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin).

    PubMed

    Laperche, Valérie; Hellal, Jennifer; Maury-Brachet, Régine; Joseph, Bernard; Laporte, Pierre; Breeze, Dominique; Blanchard, François

    2014-01-01

    Use of mercury (Hg) for gold-mining in French Guiana (up until 2006) as well as the presence of naturally high background levels in soils, has led to locally high concentrations in soils and sediments. The present study maps the levels of Hg concentrations in river sediments from five main rivers of French Guiana (Approuague River, Comté River, Mana River, Maroni River and Oyapock River) and their tributaries, covering more than 5 450 km of river with 1 211 sampling points. The maximum geological background Hg concentration, estimated from 241 non-gold-mined streams across French Guiana was 150 ng g(-1). Significant differences were measured between the five main rivers as well as between all gold-mining and pristine areas, giving representative data of the Hg increase due to past gold-mining activities. These results give a unique large scale vision of Hg contamination in river sediments of French Guiana and provide fundamental data on Hg distribution in pristine and gold-mined areas.

  2. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-02-19

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH₃-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r² = 0.763, p < 0.001), as was the DI of sediment cores (r² = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon.

  3. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China

    PubMed Central

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-01-01

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH3-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r2 = 0.763, p < 0.001), as was the DI of sediment cores (r2 = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon. PMID:26907310

  4. Feeding the hungry river: Fluvial morphodynamics and the entrainment of artificially inserted sediment at the dammed river Isar, Eastern Alps, Germany

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Haas, Florian; Abel, Judith; Rimböck, Andreas; Becht, Michael

    2017-08-01

    Dams interrupt the sediment continuum in rivers by retaining the bedload; combined with flow diversion, bedload retention in tributaries and river engineering measures, this causes a bedload deficit leading to changes in river planform and morphodynamics, with potentially detrimental downstream effects. As part of the SedAlp joint project (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower), this study investigates changes within a section of the dammed river Isar between the Sylvenstein reservoir and the city of Bad Tölz. We use a multi-method approach on a range of spatial and temporal scales. First, we analysed historical maps and aerial photos to analyse river planform and landcover changes within the river corridor of the whole study area on a temporal scale of over 100 years. Results show that major changes occurred before the construction of the Sylvenstein reservoir, suggesting that present morphodynamics represent the reaction to different disturbances on different time scales. Second, changes in mean bed elevation of cross profiles regularly surveyed by the water authorities are analysed in light of artificial sediment insertion and floods; they are also used to estimate the sediment budget of river reaches between consecutive cross profiles. Results suggest stability and a slight tendency towards incision, especially near the Sylvenstein reservoir; further downstream, the sediment balance was positive. Third, we acquired multitemporal aerial photos using an unmanned aerial vehicle and generated high-resolution digital elevation models to show how sediment artificially inserted in the river corridor is entrained. Depending on the position of the artificial deposits in relation to the channel, the deposits are entrained during floods of different return periods.

  5. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.

  6. Linking hysteresis patterns and variations in suspended sediment sources in a highly urbanized river: a case of the River Aire, UK

    NASA Astrophysics Data System (ADS)

    Vercruysse, Kim; Grabowski, Robert

    2017-04-01

    The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by relatively high contributions of urban street dust, while high stream flows correspond with higher sediment contributions from riverbanks and pasture. Seasonal variations in the dominant sources are also present. The results emphasize the importance of capturing sediment source variations to gain better insights into the drivers of fine sediment transport over various timescales.

  7. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    NASA Astrophysics Data System (ADS)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.

  8. Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan: Implications for the use of GDGT-based proxies in marine sediments

    NASA Astrophysics Data System (ADS)

    Zell, Claudia; Kim, Jung-Hyun; Hollander, David; Lorenzoni, Laura; Baker, Paul; Silva, Cleverson Guizan; Nittrouer, Charles; Sinninghe Damsté, Jaap S.

    2014-08-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) in river fan sediments have been used successfully to reconstruct mean annual air temperature (MAAT) and soil pH of the Congo River drainage basin. However, in a previous study of Amazon deep-sea fan sediments the reconstructed MAATs were ca. 10 °C colder than the actual MAAT of the Amazon basin. In this study we investigated this apparent offset, by comparing the concentrations and distributions of brGDGTs in Amazon River suspended particulate matter (SPM) and sediments to those in marine SPM and surface sediments. The riverine brGDGT input was evident from the elevated brGDGT concentrations in marine SPM and surface sediments close to the river mouth. The distributions of brGDGTs in marine SPM and sediments varied widely, but generally showed a higher relative abundance of methylated and cyclic brGDGTs than those in the river. Since this difference in brGDGT distribution was also found in intact polar lipid (IPL)-derived brGDGTs, which were more recently produced, the change in the marine brGDGT distribution was most likely due to marine in situ production. Consequently, the MAATs calculated based on the methylation of branched tetraethers (MBT) and the cyclisation of branched tetraethers (CBT) were lower and the CBT-derived pH values were higher than those of the Amazon basin. However, SPM and sediments from stations close to the river mouth still showed MBT/CBT values that were similar to those of the river. Therefore, we recommend caution when applying the MBT/CBT proxy, it should only be used in sediment cores that were under high river influence. The influence of riverine derived isoprenoid GDGT (isoGDGT) on the isoGDGT-based TEX86 temperature proxy was also examined in marine SPM and sediments. An input of riverine isoGDGTs from the Amazon River was apparent, but its influence on the marine TEX86 was minor since the TEX86 of SPM in the Amazon River was similar to that in the marine SPM and sediments.

  9. Sediment analyses for selected sites on the South Platte River in Colorado and Nebraska, and the North Platte and Platte rivers in Nebraska; suspended sediment, bedload, and bed material

    USGS Publications Warehouse

    Kircher, J.E.

    1981-01-01

    Sediment samples were collected on the South Platte, North Platte, and Platte Rivers in Colorado and Nebraska during the 1979 and 1980 runoff seasons. Suspended-sediment concentrations ranged from 62 to 3,705 milligrams per liter and the maximum load was 45,547 metric tons per day. The percentage of suspended sediment samller than sand (less than 0.062 millimeter) was as follows: 23 to 78 percent for the South Platte River, 9 to 30 percent for the North Platte River, and 2 to 89 percent for the Platte River. Bedload-transport rates ranged from 0.0085 to 0.67 kilogram per second per meter of channel width for the entire study area. The median grain size of bedload ranged from 0.6 to 2.6 millimeters for the South Platte River, 0.5 to 0.8 millimeter for the North Platte River, and 0.6 to 1.2 millimeters for th Platte River. The median grain size of bed material for the South Platte River ranged from 0.3 to 2.4 millimeters, compared to 0.5 to 0.9 millimeter for the North Platte River, and 0.4 to 3.1 millimeters for the Platte River. (USGS)

  10. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  11. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  12. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  13. Transport and sources of sediment in the Missouri River between Garrison Dam and the headwaters of Lake Oahe, North Dakota, May 1988 through April 1991

    USGS Publications Warehouse

    Berkas, Wayne R.

    1995-01-01

    Sediment data were collected on and along the Missouri River downstream from Garrison Dam during May 1988, May 1989, and April 1991 to characterize sediment transport in the river. Specific study objectives were to (1) identify erosional and depositional reaches during two steady-state low-flow periods and one steady-state high-flow period; (2) determine if the reaches are consistently eroding or depositing, regardless of streamflow; and (3) determine the sources of suspended sediment in the river. Erosional and depositional reaches differed between the two low-flow periods, indicating that slight changes in the channel configuration between the two periods caused changes in erosional and depositional patterns. Erosional and depositional reaches also differed between the low-flow periods and the high-flow period, indicating that channel changes and increased streamflow velocities affect erosional and depositional reaches. The significant sources of suspended sediment in the Missouri River are the riverbed and riverbanks. The riverbed contributes to the silt and sand load in the river, and the riverbanks contribute to the clay, silt, and sand load. The contribution from tributaries to the suspendedsediment load in the Missouri River usually is small. Occasionally, during low-flow periods on the Missouri River, the Knife River can contribute significantly to the suspended-sediment load in the Missouri River.

  14. Using Elemental Abundances and Petrophysical Properties to Trace Sediment Transport in the Hudson River

    NASA Astrophysics Data System (ADS)

    Chang, C.; Kenna, T. C.; Nitsche, F. O.

    2016-12-01

    The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different areas of the river, and indicates that XRF can be used to track sediment sources and deposition.

  15. Stability of River Bifurcations from Bedload to Suspended Load Dominated Conditions

    NASA Astrophysics Data System (ADS)

    de Haas, T.; Kleinhans, M. G.

    2010-12-01

    Bifurcations (also called diffluences) are as common as confluences in braided and anabranched rivers, and more common than confluences on alluvial fans and deltas where the network is essentially distributary. River bifurcations control the partitioning of both water and sediment through these systems with consequences for immediate river and coastal management and long-term evolution. Their stability is poorly understood and seems to differ between braided rivers, meandering river plains and deltas. In particular, it is the question to what extent the division of flow is asymmetrical in stable condition, where highly asymmetrical refers to channel closure and avulsion. Recent work showed that bifurcations in gravel bed braided rivers become more symmetrical with increasing sediment mobility, whereas bifurcations in a lowland sand delta become more asymmetrical with increasing sediment mobility. This difference is not understood and our objective is to resolve this issue. We use a one-dimensional network model with Y-shaped bifurcations to explore the parameter space from low to high sediment mobility. The model solves gradually varied flow, bedload transport and morphological change in a straightforward manner. Sediment is divided at the bifurcation including the transverse slope effect and the spiral flow effect caused by bends at the bifurcation. Width is evolved whilst conserving mass of eroded or built banks with the bed balance. The bifurcations are perturbed from perfect symmetry either by a subtle gradient advantage for one branch or a gentle bend at the bifurcation. Sediment transport was calculated with and without a critical threshold for sediment motion. Sediment mobility, determined in the upstream channel, was varied in three different ways to isolate the causal factor: by increasing discharge, increasing channel gradient and decreasing particle size. In reality the sediment mobility is mostly determined by particle size: gravel bed rivers are near the threshold for sediment motion whereas sand bed rivers have highly mobile sediment at channel-forming conditions. For sediment transport without a critical threshold for motion, bifurcations become more asymmetrical with increasing sediment mobility. In contrast, sediment transport prediction including the threshold for motion leads to highly asymmetrical bifurcations for low sediment mobility, more symmetrical bifurcations for higher mobility and again decreasing symmetry for higher mobility where results of transport with and without the threshold converge. Thus, the general trend is more asymmetrical bifurcations for higher sediment mobility, but the presence of the threshold for motion leads to an optimum in symmetry. Results were similar for the different options used to vary mobility, excluding first-order effects of backwater adaptation length and hydraulic roughness. We conclude that the seemingly conflicting results between gravel-bed and sand-bed rivers in literature are well explained by the difference in sediment mobility.

  16. Analysis of suspended-sediment concentrations and radioisotope levels in the Wild Rice River basin, northwestern Minnesota, 1973-98

    USGS Publications Warehouse

    Brigham, Mark E.; McCullough, Carolyn J.; Wilkinson, Philip M.

    2001-01-01

    We examined historical suspended-sediment data and activities of fallout radioisotopes (lead-210 [210Pb], cesium-137 [137Cs], and beryllium-7 [7Be]) associated with suspended sediments and source-area sediments (cultivated soils, bank material, and reference soils) in the Wild Rice River Basin, a tributary to the Red River of the North, to better understand sources of suspended sediment to streams in the region. Multiple linear regression analysis of suspended-sediment concentrations from the Wild Rice River at Twin Valley, Minnesota indicated significant relations between suspended-sediment concentrations and streamflow. Flow-adjusted sediment concentrations tended to be slightly higher in spring than summer-autumn. No temporal trends in concentration were observed during 1973-98. The fallout radioisotopes were nearly always detectable in suspended sediments during spring-summer 1998. Mean 210Pb and 7Be activities in suspended sediment and surficial, cultivated soils were similar, perhaps indicating little dilution of suspended sediment from low-isotopic-activity bank sediments. In contrast, mean 137Cs activities in suspended sediment indicated a mixture of sediment originating from eroded soils and from eroded bank material, with bank material being a somewhat more important source upstream of Twin Valley, Minnesota; and approximately equal fractions of bank material and surficial soils contributing to the suspended load downstream at Hendrum, Minnesota. This study indicates that, to be effective, efforts to reduce sediment loading to the Wild Rice River should include measures to control soil erosion from cultivated fields.

  17. Time-lapse imagery of the breaching of Marmot Dam, Oregon, and subsequent erosion of sediment by the Sandy River, October 2007 to May 2008

    USGS Publications Warehouse

    Major, Jon J.; Spicer, Kurt R.; Collins, Rebecca A.

    2010-01-01

    In 2007, Marmot Dam on the Sandy River, Oregon, was removed and a temporary cofferdam standing in its place was breached, allowing the river to flow freely along its entire length. Time-lapse imagery obtained from a network of digital single-lens reflex cameras placed around the lower reach of the sediment-filled reservoir behind the dam details rapid erosion of sediment by the Sandy River after breaching of the cofferdam. Within hours of the breaching, the Sandy River eroded much of the nearly 15-m-thick frontal part of the sediment wedge impounded behind the former concrete dam; within 24-60 hours it eroded approximately 125,000 m3 of sediment impounded in the lower 300-meter-reach of the reservoir. The imagery shows that the sediment eroded initially through vertical incision, but that lateral erosion rapidly became an important process.

  18. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    USGS Publications Warehouse

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  19. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    USGS Publications Warehouse

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  20. The distribution of sediments grain size along the depth in source of the Yangtze River, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.

    2017-12-01

    Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.

  1. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.

    PubMed

    Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M

    2018-04-11

    The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

  2. Reconnaissance of pharmaceuticals and wastewater indicators in streambed sediments of the lower Columbia River basin, Oregon and Washington

    USGS Publications Warehouse

    Nilsen, Elena; Furlong, Edward T.; Rosenbauer, Robert

    2014-01-01

    One by-product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small-scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty-nine compounds were detected at concentrations ranging from 1,000 ng [g sediment]-1 dry weight basis. Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.

  3. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India

    NASA Astrophysics Data System (ADS)

    Bastia, Fakira; Equeenuddin, Sk. Md.

    2016-09-01

    The transport of sediments by rivers to the oceans represents an important link between the terrestrial and marine ecosystem. Therefore, this work aims to study spatio-temporal variation of the sediment discharge and erosion rate in the Mahanadi river, one of the biggest rivers in India, over past three decades vis-à-vis their controlling factors. To understand the sediment load variation, the trend analysis in the time series data of rainfall, water and sediment discharge of the Mahanadi river were also attempted. The non-parametric Mann-Kendall and Sen's methods were used to determine whether there was a positive or negative trend in the time series data with their statistical significance. The occurrence of abrupt changes was detected using Pettitt test. The trend test result represents that sediment load delivered from the Mahanadi river to the global ocean has decreased sharply at the rate of 0.515 × 106 tons/year between 1980 and 2010. Water discharge and rainfall in the basin showed no significant decreasing trend except at only one tributary. The decline in sediment discharge from the basin to the Bay of Bengal is mainly due to the increase in the number of dams, which has recorded the increase from 70 to 253 during the period of 1980 to 2010. Over the past 30 years the Mahanadi river has discharged about 49.0 ± 20.5 km3 of water and 17.4 ± 12.7 × 106 tons of sediment annually to the Bay of Bengal whereas the mean erosional rate is 265 ± 125 tons/km2/year over the period of 30 years in the basin. Based on the current data (2000-2001 to 2009-2010), sediment flux and water discharge to the ocean are 12 ± 5 × 106 tons/year and 49 ± 16 km3/year respectively; and ranking Mahanadi river second in terms of water discharge and sediment flux to the ocean among the peninsular rivers in India.

  4. The effect of mining on the sediment - trace element geochemistry of cores from the Cheyenne River arm of Lake Oahe, South Dakota, U.S.A.

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Callender, E.

    1988-01-01

    Six cores, ranging in length from 1 to 2 m, were collected in the Cheyenne River arm of Lake Oahe, South Dakota, to investigate potential impacts from gold-mining operations around Lead, South Dakota. Sedimentation rates in the river arm appear to be event-dominated and rapid, on the order of 6-7 cm yr.-1. All the chemical concentrations in the core samples fall within the wide ranges previously reported for the Pierre Shale of Cretaceous age and with the exception of As, generally are similar to bed sediment levels in the Cheyenne River, Lake Oahe and Foster Bay. Based on the downcore distribution of Mn, it appears that reducing conditions exist in the sediment column of the river arm below 2-3 cm. The reducing conditions do not appear to be severe enough to produce differentiation of Fe and Mn throughout the sediment column in the river arm. Cross-correlations for high-level metal-bearing strata within the sediment column can be made for several strata and for several cores; however, cross-correlations for all the high-level metal-bearing strata are not feasible. As is the only element which appears enriched in the core samples compared to surface sediment levels. Well-crystallized arsenopyrite was found in high-As bearing strata from two cores and probably was transported in that form from reducing sediment-storage sites in the banks or floodplains of Whitewood Creek and the Belle Fourche River. It has not oxidized due to the reducing conditions in the sediment column of the Cheyenne River arm. Some As may also be transported in association with Fe- and Mn-oxides and -hydroxides, remobilized under the reducing conditions in the river arm, and then reprecipitated in authigenic sulfide phases. In either case, the As appears to be relatively immobile in the sediment column. ?? 1988.

  5. Changes in the areal extents of the Athabasca River, Birch River, and Cree Creek Deltas, 1950-2014, Peace-Athabasca Delta, Canada

    NASA Astrophysics Data System (ADS)

    Timoney, Kevin; Lee, Peter

    2016-04-01

    Deltas form where riverborne sediment accumulates at the interface of river mouths and their receiving water bodies. Their areal extent is determined by the net effect of processes that increase their extent, such as sediment accumulation, and processes that decrease their extent, such as erosion and subsidence. Through sequential mapping and construction of river discharge and sediment histories, this study examined changes in the subaerial extents of the Cree Creek and Athabasca River Deltas (both on the Athabasca River system) and the Birch River Delta in northern Canada over the period 1950-2014. The purpose of the study was to determine how, when, and why the deltas changed in areal extent. Temporal growth patterns were similar across the Athabasca and Birch River systems indicative of a climatic signal. Little or no areal growth occurred from 1950 to 1968; moderate growth occurred between 1968 and the early to mid-1980s; and rapid growth occurred between 1992 and 2012. Factors that affected delta progradation included dredging, sediment supply, isostatic drowning, delta front bathymetry, sediment capture efficiency, and storms. In relation to sediment delivered, areal growth rates were lowest in the Athabasca Delta, intermediate in the Birch Delta, and highest in the Cree Creek Delta. Annual sediment delivery is increasing in the Cree Creek Delta; there were no significant trends in annual sediment delivery in the Birch and Athabasca Deltas. There was a lag of up to several years between sediment delivery events and progradation. Periods of delta progradation were associated with low water levels of the receiving basins. Predicted climate-change driven declines in river discharge and lake levels may accelerate delta progradation in the region. In the changing ecosystems of northeastern Alberta, inadequate monitoring of vegetation, landforms, and sediment regimes hampers the elucidation of the nature, rate, and causality of ecosystem changes.

  6. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that the maximum concentration observed during breakup was more than an order of magnitude larger than the typical values observed under stable ice cover (>300 mg/L, versus 5 - 15 mg/L). This result is consistent with the few historic studies of river ice breakup in which water samples were collected. This study shows that acoustic profilers can be used to monitor suspended sediment fluxes under ice, ultimately reducing the uncertainty in sediment budget computations for ice-affected rivers.

  7. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  8. Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects.

    PubMed

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Birane, Niane; de Alencastro, Luiz Felippe; Grandjean, Dominique; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-09-01

    This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples. The highest metal concentrations were observed in sediments subjected to anthropogenic influences, urban runoff and domestic and industrial wastewaters, discharge into the Congo River basin. Ostracods exposed to the sediments resulted in 100% mortality rates after 6d of incubation, indicating the ultimate toxicity of these sediments as well as potential environmental risks. The POPs and PAHs levels in all sediment samples were low, with maximum concentration found in the sediments (area of pool Malebo): OCP value ranged from 0.02 to 2.50 with ∑OCPs: 3.3μgkg(-1); PCB ranged from 0.07 to 0.99 with Total PCBs (∑7×4.3): 15.31μgkg(-1); PAH value ranged from 0.12 to 9.39 with ∑PAHs: 63.89μgkg(-1). Our results indicate that the deterioration of urban river-reservoir water quality result mainly from urban stormwater runoff, untreated industrial effluents which discharge into the river-reservoirs, human activities and uncontrolled urbanization. This study represents useful tools incorporated to evaluate sediment quality in river-reservoir systems which can be applied to similar aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sustainability of massively anthropic deltas via dispersal of sediment to manage land building: results from two unique case studies, the Mississippi River (U.S.A.) and the Yellow River (China) deltas

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey

    2016-04-01

    Owing to their extraordinary natural resources and ecosystem services, deltaic coastlines host hundreds of millions of people worldwide. Societal sustainability on these coastal landscapes is far from certain, however, due to anthropogenic influences including sediment-supply reduction, accelerated subsidence from sub-surface fluid extraction, and leveeing of rivers. The crucial resource in building stable deltaic coastlines is sediment, and the key control on sediment delivery, whether natural or engineered, is by way river channel diversions. Two case studies, based on previous and ongoing research efforts, are presented here to describe the effects of engineered diversions for the removal of river water and associated sediment: the Mississippi River (U.S.A) and the Yellow River (China). Comparatively speaking, these two systems are end-members: Mississippi River water discharge is five times greater than the Yellow River, and yet historically, the Yellow River sediment discharges five times more sediment than the Mississippi system. As such, diversions for the two systems have contrasting goals. During flood events, the Mississippi water stage threatens major metropolitan regions with levee overtopping; spillways are therefore utilized to reduce water flux through the main channel. For the Yellow River, extremely high sediment loads result in significant sedimentation within the main channel, and so there is a concerted effort to divert and shorten the main channel, in order to enhance the water surface slope and increase sediment transport capacity. Interestingly, the net effect of these two projects has been to deposit a significant amount of sediment into the respective receiving basins, which in turn has led to the development of subaerial land. In essence, this represents two compelling case studies documenting how managed (engineered) land building practices can be implemented for other large fluvial-deltaic systems. Observational data collected from field studies of both the Mississippi and Yellow rivers have been used to inform and validate numerical modeling efforts that seek to replicate the morphodynamics of the two diversions. The aim is to evaluate best practices for building deltaic landscape. Based on these research efforts, there are key similarities found for the delta systems: 1) coarse (sandy) sediment is the primary contributor to subaerial delta development, despite the abundance of mud for both rivers; 2) the influx of freshwater into estuarine regions of deltas has tremendous impact on vegetation development, and therefore the cohesion of the deltaic sediment deposit; and 3) it is feasible to produce efficient diversions that maximize sediment delivery and still provide for continued use of the riverine resource (for example, navigation of the channel by vessels). These findings are critical when considering future plans that seek sustainable management practices of other large, anthropic fluvial deltaic systems.

  10. Tidal oscillation of sediment between a river and a bay: A conceptual model

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.

    2004-01-01

    A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.

  11. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  12. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    USGS Publications Warehouse

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near Lily, Colorado. Bedload transport equations at the five sites had coefficients of determination that ranged from 0.40 (Yampa River at Deerlodge Park, Colorado) to 0.80 (Yampa River above Little Snake River near Maybell, Colorado). Transport equations for silt and clay-size material had coefficients of determination that ranged from 0.46 to 0.82. Where particle-size data were available (Yampa River at Deerlodge Park, Colorado, and Green River near Jensen, Utah), transport equations for the smaller particle sizes (fine sand) tended to have higher coefficients of determination than the equations for coarser sizes (medium and coarse sand, and very coarse sand and gravel). Because the data had to be subdivided into at least two subsets (rising-limb, falling-limb and, occasionally, base-flow periods), the seasonal transport equations generally were based on relatively few samples. All transport equations probably could be improved by additional data collected at strategically timed periods.

  13. Unraveling the effects of climate change and flow abstraction on an aggrading Alpine river

    NASA Astrophysics Data System (ADS)

    Bakker, Maarten; Costa, Anna; Adriao Silva, Tiago A.; Stutenbecker, Laura; Girardclos, Stéphanie; Loizeau, Jean-Luc; Molnar, Peter; Schlunegger, Fritz; Lane, Stuart N.

    2017-04-01

    Widespread temperature increase has been observed in the Swiss Alps and is most pronounced at high elevations. Alpine rivers are very susceptible to such change where large amounts of sediments are released from melting (peri)glacial environments and potentially become available for transport. These rivers are also impacted on a large scale by hydropower exploitation, where flow is commonly abstracted and transferred to a hydropower scheme. Whilst water is diverted, sediment is trapped at the intake and intermittently flushed down the river during short duration purges. Thus, these rivers are impacted upon by both climate and human forcing. In this study we quantify their relative and combined impacts upon the morphological evolution of an aggrading Alpine river. Our study focusses on the development of a sequence of braided reaches of the Borgne River (tributary of the Rhône) in south-west Switzerland. A unique dataset forms the basis for determining sediment deposition and transfer: (1) a set of high resolution Digital Elevation Models (DEMs) of the reaches was derived through applying Structure from Motion (SfM) photogrammetry to archival aerial photographs available for the period 1959-2014; (2) flow intake management data, provided by Grande Dixence SA, allowed the reconstruction of (up- and downstream) discharge and sediment supply since 1977. Subsequently we used climate data and transport capacity calculations to assess their relative impact on the system evolution over the last 25 years. Not surprisingly, considerable aggradation of the river bed (up to 5 meters) has taken place since the onset of flow abstraction in 1963: the abstraction of flow has substantially reduced sediment transport capacity whilst the sediment supply to the river was maintained. Although there was an initial response of the system to the start of abstraction in the 1960s, it was not before the onset of glacial retreat and the dry and warm years in the late 1980s and early 1990's that sediment supply increased and extensive sedimentation took place. The river reaches showed a common, synchronous development, steepening in response to altered flow sediment supply conditions. In the years thereafter sedimentation rates decreased (locally incision occurred) and the reaches showed a more phased and sequential development that propagated in the downstream direction. Besides being conditioned by variations in upstream sediment supply, sediment transfer was also affected by changes in the timing and duration of purges, associated with the management and capacity hydropower system, and the evolving river bed morphology (and local river engineering). In the Borgne River we find that despite the considerable impact of flow abstraction, it is still possible to identify a climate change signal that propagates through the system and drives river morphological response. This signal is associated with a critical climate control upon upstream sediment supply coupled with the effects of combined climate and human impact on the operation of the hydroelectric power scheme.

  14. Implications of Tidally Varying Bed Stress and Intermittent Estuarine Stratification on Fine-Sediment Dynamics through the Mekong's Tidal River to Estuarine Reach

    NASA Astrophysics Data System (ADS)

    McLachlan, R. L.; Ogston, A. S.; Allison, M. A.; Hilmo, R. S.

    2016-12-01

    Widely varying ratios of marine to freshwater influence within near-mouth distributaries have impacts on sedimentary processes within the lower river that have yet to be thoroughly characterized. These impacts are of particular interest because river gauging stations are often above the river-estuary interface and, therefore, may not accurately characterize sediment flux through the lower river. Flow velocity, salinity, and suspended sediment properties (concentration, particle size, and settling velocity) were measured within the tidal Sông Hu distributary of the lower Mekong River, Vietnam during both high and low river discharge seasons. Seasonal variations in river discharge and estuarine regime resulted in export of fine sediment when discharge was high ( 1.7 t s-1) and import when discharge was low ( 0.25 t s-1). Generally, the estuary moved in and out of 40 km of the lower distributary with discharge and tidal phase, and the estuary exhibited salt wedge to partially-mixed conditions. High river discharge and neap tides increased stratification of salinity and suspended sediment. Suspended sediment was influenced by seasonal and tidal fluctuations in near-bed shear stress and the intermittent presence of a protective salt wedge and associated estuary turbidity maximum. This fluctuating flow and salinity regime induced variations in flocculation, settling, and trapping of sediment within the river channel. Above the estuary, particles were pre-flocculated, and within and near the estuary, increased flocculation promoted particle settling. The degree of aggregation and settling velocity of suspended particles were largest during ebb tides of high river discharge and during flood tides of low river discharge. Sediment deposited on the river bed was protected from resuspension by lowered bed stress within and near the salt wedge. These patterns promote retention of mud in the lower river when estuarine processes exist and mud export when fluvial processes dominate. The spectrum of present conditions analyzed collaboratively with field studies, remotely sensed observations, and modeling has shed light on how this environment, and other large tropical deltas, will react to changing magnitudes of fluvial and marine influences due to sea-level rise and anthropogenic alterations to the delta.

  15. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  16. Development of river sediment monitoring in Croatia

    NASA Astrophysics Data System (ADS)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir

    2017-04-01

    Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who have significant anthropogenic concentrations on several locations. With other studied elements situation is much better and anthropogenic influence is not so significant. Based on own research and experience and comparing them with existing sediment quality criteria worldwide, within the current phase of monitoring program it is aimed to propose threshold values for mentioned elements, what would be base for Croatian National legislative on sediment quality. [1] Prohić, E. and Juračić, M. (1989): Heavy metals in sediments - Problems concerning determination of the anthropogenic influence. Study in the Krka River Estuary, Eastern Adriatic Coast, Yugoslavia. Environmental Geology Water Science, 13(2), 145-151. [2] Franči\\vsković-Bilinski, S. (2005): Geochemistry of stream sediments in Kupa River drainage basin [In Croatian] / Doctoral thesis. University of Zagreb, Croatia. [3] Franči\\vsković-Bilinski, S., Bilinski, H., Maldini, K. (2015): Establishing of monitoring of river sediments in Croatia. Contaminated sediments: Environmental Chemistry, Ecotoxicology and Engineering - Program and Abstract Book, Congressi Stefano Franscini, Ascona, Switzerland, 73-73.

  17. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    PubMed

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  18. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    PubMed Central

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  19. Laser Scanner For Automatic Inspection Of Printed Wiring Boards

    NASA Astrophysics Data System (ADS)

    Geise, Philip; George, Eugene; Freese, Fritz; Brown, Robert; Ruwe, Victor

    1980-11-01

    An, Instrument is described which inspects unpopulated, populated (components onserted and leads clinched), and soldered printed wiring boards for correct hole location, component presence, correct lead clinch direction and solder bridges. The instrument consists of a low power heliumneon laser, an x-y moving iron galvanometer scanner and several folding mirros. A unique shadow signature is detected by silicon photodiodes located at the optium geometry to allow rapid and reliable detection of components with correctly clinched leads. A reflective glint screen is utilized to inspect for a solder bridges. The detected signal are processed and evaluated by a minocomputer which also controls the scan inspection rate of at least 25 components or 50 components holes per second. The return of investment on this instrument for high volume production of printed wirind boards is less than one yea and only slightly longer for medium run military application.

  20. Tumor frequencies in walleye (Stizostedion vitreum) and brown bullhead (Ictalurus nebulosus) and sediment contaminants in tributaries of the Laurentian Great Lakes

    USGS Publications Warehouse

    Baumann, Paul C.; Mac, Michael J.; Smith, Stephen B.; Harshbarger, John C.

    1991-01-01

    To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.

  1. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.

    PubMed

    Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-09-01

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.

  3. Characteristics of sediment transport at selected sites along the Missouri River during the high-flow conditions of 2011

    USGS Publications Warehouse

    Galloway, Joel M.; Rus, Dave L.; Alexander, Jason S.

    2013-01-01

    During 2011, many tributaries in the Missouri River Basin experienced near record peak streamflow and caused flood damage to many communities along much of the Missouri River from Montana to the confluence with the Mississippi River. The large runoff event in 2011 provided an opportunity to examine characteristics of sediment transport in the Missouri River at high-magnitude streamflow and for a long duration. The purpose of this report is to describe sediment characteristics during the 2011 high-flow conditions at six selected sites on the Missouri River, two in the middle region of the basin between Lake Sakakawea and Lake Oahe in North Dakota, and four downstream from Gavins Point Dam along the Nebraska-South Dakota and Nebraska-Iowa borders. A wider range in suspended-sediment concentration was observed in the middle segment of the Missouri River compared to sites in the lower segment. In the middle segment of the Missouri River, suspended-sediment concentrations increased and peaked as flows increased and started to plateau; however, while flows were still high and steady, suspended-sediment concentrations decreased and suspended-sediment grain sizes coarsened, indicating the decrease possibly was related to fine-sediment supply limitations. Measured bedload transport rates in the lower segment of the Missouri River (sites 3 to 6) were consistently higher than those in the middle segment (sites 1 and 2) during the high-flow conditions in 2011. The median bedload transport rate measured at site 1 was 517 tons per day and at site 2 was 1,500 tons per day. Measured bedload transport rates were highest at site 3 then decreased downstream to site 5, then increased at site 6. The median bedload transport rates were 22,100 tons per day at site 3; 5,640 tons per day at site 4; 3,930 tons per day at site 5; and 8,450 tons per day at site 6. At the two sites in the middle segment of the Missouri River, the greatest bedload was measured during the recession of the streamflow hydrograph. A similar pattern was observed at sites 3–5 in the lower segment of the Missouri River, where the greatest bedload was measured later in the event on the recession of the streamflow hydrograph, although the change in bedload was not as dramatic as observed at the sites in the middle segment of the Missouri River. With the exception of site 3, the total-sediment load on the Missouri River was highest at the beginning of the high-flow event and decreased as streamflow decreased. In the middle segment of the Missouri River, measured total-sediment load ranged from 2,320 to 182,000 tons per day at site 1 and from 3,190 to 279,000 tons per day at site 2. In the lower segment of the Missouri River, measured total-sediment load ranged from 50,600 to 223,000 tons per day at site 4; from 23,500 to 403,000 tons per day at site 5; and from 52,700 to 273,000 tons per day at site 6. The total-sediment load was dominated by suspended sediment at all of the sites measured on the Missouri River in 2011. In general, the percentage of total-sediment load that was bedload increased as the streamflow decreased, although this pattern was more prevalent at sites in the middle segment than those in the lower segment. The suspended-sediment load comprised an average of 93 percent of the total load, with the exception of site 3, where the suspended-sediment load comprised only 72 percent of the total-sediment load.

  4. Distribution and transport of sediment-bound metal contaminants in the rio grande de tarcoles, costa rica (Central America)

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.; Cain, D.J.; Lamothe, P.J.; Fries Fernandez, T.L.G.; Vargas, J.A.; Murillo, M.M.

    1990-01-01

    A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediment from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.A reconnaissance survey of the extent of metal contamination in the Rio Grande de Tarcoles river system of Costa Rica indicated high levels of chromium (Cr) in the fine-grain bed sediments (83 times Cr background or 3000->5000 ??g/g). In the main channel of the river downstream of the San Jose urban area, Cr contamination in sediments was 4-6 times background and remained relatively constant over 50 km to the mouth of the river. Sediments from a mangrove swamp at the river mouth had Cr levels 2-3 times above background. Similar patterns of dilution were observed for lead (Pb) and zinc (Zn) sediment contamination, although the contamination levels were lower. The high affinity of Cr towards particulate phases, probably as Cr(III), allows the use of Cr contamination levels for delineating regions of deposition of fine-grained sediments and dilution of particle associated contaminants during transport and deposition.

  5. Sedimentation within the batture lands of the middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, J. W.; Ryherd, J. K.

    2017-12-01

    The suspended sediment load of the Mississippi River has continued to decline after the construction of several hundred large dams within the basin during the mid-20th century. Previous investigators have attributed the post-dam decline in suspended sediment loads to improvements in soil conservation practices and dredging. However, the role batture lands (areas between the river channel and levee) play as potential sinks for suspend sediments has largely been overlooked. In this study, we explored the rates and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio Rivers). We assessed sedimentation rates using three approaches: 1) comparison of historical to modern elevation data in order to estimate long-term (>100-years) sedimentation rates; 2) estimation of medium- to short-term (<50-years) sedimentation rates using dendrogeomorphological methods; and 3) geomorphic change detection software (GCDS) to estimate short-term sedimentation rates (12 years). We also used GCDS to estimate the volume of sedimentation within the batture lands between 1998 and 2011. Comparison of long- to short-term sedimentation rates suggests up to a 400% increase in batture land sedimentation rates (from 6.2 to 25.4 mm y-1) despite a substantial decrease in the suspended sediment load (>70%). The increase in MMR batture land sedimentation rates are attributed to three mechanisms: 1) the above average frequency and duration of low-magnitude floods (≤5-year flood) during the short-term assessment periods, which allowed for more suspended sediment to be transported into and deposited within, the batture lands; 2) the construction of levees which substantially reduced ( 75%) floodplain areas available for storage of overbank deposits; and 3) river engineering which has reduced bank erosion allowing sediment to be stored for longer periods of time in the batture lands. The estimated batture land sediment volumes were 5.0% of the suspended load at St. Louis. This substantial storage of sediment ( 9.0 Mt y-1) along the MMR suggests batture lands are an important sink for suspended sediments. Deposition within these areas is contributing to the decrease in the suspended sediment load along this and likely other segments of the Mississippi River.

  6. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in fluvial zones of the Apalachicola River and its distributaries through field investigation and laboratory analysis of a series of total suspended solid (TSS) samples. Time-series TSS samples are collected at the alluvial zone. TSS and particle-size distribution analyses are performed to determine the TSS hydrograph and particle-size distribution of suspended solids. Relationships between the TSS hydrograph, discharge hydrograph, and tidal data provide a better understanding of the deposition and re-suspension of the fluvial system in the region. Total suspended particle-size distribution data are used to determine the deposition rate or diminishing rate of alluvial landform in the estuarine system. This dataset and analysis provide excellent information for future modeling work and wetland morphologic studies in the Apalachicola River and similar systems.

  7. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wang, Houjie; Saito, Yoshiki; Zhang, Yong; Bi, Naishuang; Sun, Xiaoxiao; Yang, Zuosheng

    2011-09-01

    The five largest rivers in East and Southeast Asia (Yellow, Yangtze, Pearl, Red and Mekong) are important contributors of terrigenous sediment to the western Pacific Ocean. Although they have annually delivered ~ 2000 × 10 9 kg of sediment to the ocean since 1000 yr BP, they presently contribute only ~ 600 × 10 9 kg/yr, which is reverting to a level typical of the relatively undisturbed watersheds before the rise in human activities in East and Southeast Asia at 2000 yr BP. During the most recent decades flow regulation by dams and sediment entrapment by reservoirs, as well as human-influenced soil erosion in the river basins, have sharply reduced the sediment delivered from the large river basins to the ocean. We constructed a time series of data on annual water discharges and sediment fluxes from these large rivers to the western Pacific Ocean covering the period 1950-2008. These data indicate that the short-term (interannual scale) variation of sediment flux is dominated by natural climatic oscillations such as the El Niño/La Niña cycle and that anthropogenic causes involving dams and land use control the long-term (decadal scale) decrease in sediment flux to the ocean. In contrast to the relatively slow historical increase in sediment flux during the period 2000-1000 yr BP, the recent sediment flux has been decreased at an accelerating rate over centennial scales. The alterations of these large river systems by both natural and anthropogenic forcing present severe environmental challenges in the coastal ocean, including the sinking of deltas and declines in coastal wetland areas due to the decreasing sediment supply. Our work thus provides a regional perspective on the large river-derived sediment flux to the ocean over millennial and decadal scales, which will be important for understanding and managing the present and future trends of delivery of terrigenous sediment to the ocean in the context of global change.

  8. Sediment characteristics of the Yellowstone River in the vicinity of a proposed bypass chute near Glendive, Montana, 2011

    USGS Publications Warehouse

    Hanson, Brent R.

    2012-01-01

    In 2011, sediment data were collected by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers on the Yellowstone River at the location of a proposed bypass chute. The sediment data were collected to provide an understanding of the sediment dynamics of the given reach of the Yellowstone River. Suspended-sediment concentrations collected at the three sites generally decreased with decreasing streamflow. In general, the highest suspendedsediment concentrations were found near the channel bed and towards the center of the channel with lower suspendedsediment concentrations near the channel banks and water surface. Suspended sediment was the primary component of the total sediment load for all three sampling locations on the Yellowstone River and contributed at least 98 percent of the total sediment load at each of the three sites. The amount of bedload measured at the three sites was a smaller load in comparison with the suspended-sediment load.

  9. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  10. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    USGS Publications Warehouse

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  11. Human impacts on sediment in the Yangtze River: A review and new perspectives

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  12. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    USGS Publications Warehouse

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-01-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  13. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    NASA Astrophysics Data System (ADS)

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-06-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  14. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

  15. Monsoonal vs. glacial control on erosion and sediment storage in the Himalayan rain shadow, Zanskar River, northwest India

    NASA Astrophysics Data System (ADS)

    Jonell, Tara; Clift, Peter; Carter, Andrew; Böning, Philipp; Wittmann, Hella

    2016-04-01

    Summer monsoon precipitation strongly controls erosion and sediment storage in the frontal Himalaya but the relationship between monsoonal variability and erosion is less well-constrained beyond the High Himalayan topographic divide in the rain shadow. Here we establish a Quaternary erosional history for a rain shadow tributary of the upper Indus River system, the Zanskar River, by applying several sediment provenance techniques to modern and dated terrace river sediments. We evaluate if there are temporal links between sediment storage and moisture supply to the rain shadow and if regions like the Zanskar River basin play a significant role in controlling total sediment flux to the Indus River. We compile bulk sediment petrography and Sr and Nd isotope geochemistry, detrital U-Pb zircon and apatite fission track dating with in-situ 10Be cosmogenic radionuclide techniques to identify patterns of erosion and sediment production across Zanskar. Bulk petrography, Sr and Nd isotope geochemistry, and U-Pb detrital zircon spectra of modern and older terrace sediments indicate high rates of erosion along the Greater Himalaya in the Zanskar River basin. We find that the wettest and most glaciated subcatchment dominates the bulk sediment provenance signal, with only moderate input from other tributaries, and that other basin parameters cannot explain our observations. Catchment-averaged in-situ 10Be cosmogenic nuclide concentrations of modern sediments indicate erosion rates up to ˜1.2 mm y-1 but show strong dilution attributed to glacial sediment recycling into the modern river, suggesting rates nearer 0.4-0.6 mm•y-1. These rates are consistent with longer-term rates of incision (0.3-0.7 mm•y-1) calculated from detrital apatite fission track ages, and incision rates inferred from Late Glacial and Holocene terraces near the Zanskar-Indus confluence. Our findings suggest that sediment production in glaciated Himalayan rain shadow environments like Zanskar is largely controlled by internal glacial fluctuations coupled with periodic dissection and reworking of terrace material during strong monsoonal precipitation phases.

  16. Long-term Sediment Accumulation in Mid-channel Bars of the Upper Reach of the Lower Mississippi River.

    NASA Astrophysics Data System (ADS)

    Wang, B.; Xu, Y. J.

    2016-02-01

    A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.

  17. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China.

    PubMed

    Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y

    2002-01-01

    Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.

  18. Organic contaminants associated with suspended sediment collected during five cruises of the Mississippi River and its principal tributaries, May 1988 to June 1990

    USGS Publications Warehouse

    Rostad, Colleen E.; Bishop, LaDonna M.; Ellis, Geoffrey S.; Leiker, Thomas J.; Monsterleet, Stephanie G.; Pereira, Wilfred E.

    2004-01-01

    Suspended-sediment samples were obtained from sites along the Mississippi River and its principal tributaries to determine the presence of halogenated hydrophobic organic compounds on the suspended sediment smaller than 63 micrometers. Sample collection involved pumping discharge-weighted volumes of river water along a cross section of the river into a continuous-flow centrifuge to isolate the suspended sediment. The suspended sediment was analyzed by gas chromatography/mass spectrometry for pentachlorobenzene, hexachlorobenzene, pentachloroanisole, chlorothalonil, pentachlorophenol, dachthal, chlordane, nonachlor, and penta-, hexa-, hepta-, and octachlorobiphenyls. Samples collected during June 1989 and February-March 1990 also were analyzed for U.S. Environmental Protection Agency priority pollutants, including polycyclic aromatic hydrocarbons, phthalate esters, and triazines. Samples were collected at sites on the Mississippi River from above St. Louis, Missouri to below New Orleans, Louisiana, and on the Illinois, Missouri, Ohio, Wabash, Cumberland, Tennessee, White, Arkansas, and Yazoo Rivers. Masses of selected halogenated hydrophobic organic compounds associated with the suspended sediment at each site are presented in this report in tabular format, along with suspended-sediment concentration, water discharge, and organic-carbon content.

  19. Chemical quality of the Saw Mill River, Westchester County, New York, 1981-83

    USGS Publications Warehouse

    Rogers, R.J.

    1984-01-01

    Surface waters, bottom sediments and coatings formed on artificial substrates (ceramic tiles) were analyzed to evaluate the chemical quality of the Saw Mill River, New York. Heavy metals, nutrients, and organic contaminants were studied. Dissolved orthophosphate concentrations were highest in the lower third of the river. Dissolved manganese was the only metal to exceed U.S. Environmental Protection Agency water-quality criteria. Arsenic, cadmium, copper, lead, and zinc concentrations were highest in waters from the lowest 4 river miles. Concentrations of copper, lead, and zinc in bottom sediments from the lowest 3 river miles were greater than in upstream sediments. Concentrations of nine heavy metals were higher on tiles emplaced below river mile 3 than on tiles upstream. Few organic compounds were detected in the water column; none persisted at all sites. Chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were found in bottom sediments throughout the basin. PCB concentrations were highest in the lowest 6 river miles; the other organic compounds exhibited no spatial patterns. Polynuclear aromatic hydrocarbons were most abundant in bottom sediments from the lowest 2 river miles. Collectively the distribution of contaminants indicates that river quality deteriorates in the lower, more heavily urbanized reach. (USGS)

  20. Sediment processes modelling below hydraulic mining: towards environmental impact mitigation

    NASA Astrophysics Data System (ADS)

    Chalov, Sergey R.

    2010-05-01

    Placer mining sites are located in the river valleys so the rivers are influenced by mining operations. Frequently the existing mining sites are characterized by low contribution to the environmental technologies. Therefore hydraulic mining alters stream hydrology and sediment processes and increases water turbidity. The most serious environmental sequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, the placer mining in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens the rivers ecosystems. System of man-made impact mitigation could be done through the exact recognition of the human role in hydrological processes and sediment transport especially. Sediment budget of rivers below mining sites is transformed according to the appearance of the man-made non-point and point sediment sources. Non-point source pollution occurs due to soil erosion on the exposed hillsides and erosion in the channel diversions. Slope wash on the hillsides is absent during summer days without rainfalls and is many times increased during rainfalls and snow melting. The nearness of the sources of material and the rivers leads to the small time of suspended load increase after rainfalls. The average time of material intake from exposed hillsides to the rivers is less than 1 hour. The main reason of the incision in the channel diversion is river-channel straightening. The increase of channel slopes and transport capacity leads to the intensive incision of flow. Point source pollution is performed by effluents both from mining site (mainly brief effluents) and from settling ponds (permanent effluents), groundwater seepage from tailing pits or from quarries. High rate of groundwater runoff is the main reason of the technological ponds overfilling. Intensive filtration from channel to ponds because of their nearness determines the water mass increase inside mining site. The predictive models were suggested to assess each of the mane-made processes contribution into the total sediment budget of the rivers below mining sites. The empirical data and theoretical and laboratory-derived correlations were used to obtain the predictive models for each processes of sediment supply. It was challenging to estimate specific erosion rate of washed exposed hillsides, channel incision, water supply conditions. Climatic and anthropogenic changes of water runoff also were simulated to decrease uncertainty of the proposed model. Application of the given approach to the hydraulic platinum-mining located in the Kamchatka peninsula (Koryak plateau, tributaries of the Vivenka River) gave the sediment budget of the placer-mined rivers and the total sediment yield supplied into the ocean from river basin. Polluted placer-mined rivers contribute about 30 % of the whole sediment yield of the Vivenka River. At the same time the catchment area of these rivers is less than 0,03 % from the whole Vivenka catchment area. Based on the sediment transport modeling the decision making system for controlling water pollution and stream community preservation was developed. Due to exposed hillside erosion prevention and settling pond system optimization the total decrease of sediment yield was up to 75 %.

  1. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence

    2014-05-01

    In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.

  2. Numerical Modeling of River Fluxes Under Changing Environmental Conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Simpson, G.

    2013-12-01

    High frequency climate cycles have a major impact on landscapes, but it remains uncertain if alluvial rivers can transfer the resulting sediment pulses downstream to sedimentary basins. Stratigraphic records located near the mouth of rivers exhibit cyclicity consistent with orbital forcing. However, in some cases, the sediment supply from rivers appears to have remained remarkably constant despite changes in climate, which has been interpreted to indicate that rivers dampen rapid variability. Here, we employ a physically-based numerical model to resolve this outstanding problem. Our simulations show that rivers forced with water flux cycles exhibit highly pulsed sediment outflux records, even when the period of forcing is several orders of magnitude shorter than river response times. This non-linear amplified system response characterised by positive feedback is related to the strong negative correlation between water flux and the equilibrium slope of a river. We also show that the apparent stability of sediment fluxes based on time-averaged data is an artifact of integrating highly episodic records over multiple cycles rather than a signature of diffusive floodplain processes. We conclude that marine sedimentary basins may record sediment-flux cycles resulting from discharge (and ultimately climate) variability, whereas they may be relatively insensitive to pure sediment-flux perturbations (such as for example those induced by tectonics).

  3. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    NASA Astrophysics Data System (ADS)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.

  4. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.

  5. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less

  6. Large shift in source of fine sediment in the upper Mississippi River

    USGS Publications Warehouse

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  7. The Forgotten Legacy: Sediment From Historical Gold Mining Greatly Exceeds all Other Anthropogenic Sources in SE Australian Rivers

    NASA Astrophysics Data System (ADS)

    Rutherfurd, I.; Davies, P.; Macklin, M. G.; Grove, J. R.

    2016-12-01

    Coarse and fine sediment has been a major pollutant of Australian rivers and receiving waters since European settlement in 1788. Anthropogenic sediment budget models demonstrate that catchment and channel erosion has increased background sediment delivery by 10 to 20 times across SE Australia, but these estimates ignore the contribution of historical gold mining. Detailed historical records allow us to reconstruct the delivery of coarse and fine sediment (including contaminated sediment) to the fluvial system. Between 1851 and 1900 alluvial gold mining in the state of Victoria liberated between 1.2 billion and 1.4 billion m3 of coarse and fine sediment into streams. Catchment scale modelling demonstrates that this volume is at least twice the volume of all anthropogenic (post-European) erosion from hillslopes, river banks, and gullies. We map the deposition and remobilization of these contaminated legacy mining sediments down selected valleys, and find that many contemporary floodplains are blanketed with mining sediments (although mercury contamination is present but low), and discrete sediment-slugs can be recognized migrating down river beds. Overall, the impact of gold mining is one of the strongest indicators of the Anthropocene in the Australian landscape, and the level of impact on rivers is substantially greater than recognized in the past. Perhaps of most interest is the rapid recovery of many river systems from the substantial impacts of gold mining. The result is that these major changes to the landscape are largely forgotten.

  8. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    PubMed

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  9. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  10. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA

    USGS Publications Warehouse

    Khan, Nicole S.; Horton, Benjamin P.; McKee, Karen L.; Jerolmack, Douglas; Falcini, Federico; Enache, Mihaela D.; Vane, Christopher H.

    2013-01-01

    Management and restoration of the Mississippi River deltaic plain (southern United States) and associated wetlands require a quantitative understanding of sediment delivery during large flood events, past and present. Here, we investigate the sedimentary fingerprint of the 2011 Mississippi River flood across the Louisiana coast (Atchafalaya Delta, Terrebonne, Barataria, and Mississippi River Delta basins) to assess spatial patterns of sedimentation and to identify key indicators of sediment provenance. The sediment deposited in wetlands during the 2011 flood was distinguished from earlier deposits based on biological characteristics, primarily absence of plant roots and increased presence of centric (planktonic) diatoms indicative of riverine origin. By comparison, the lithological (bulk density, organic matter content, and grain size) and chemical (stable carbon isotopes of bulk organic matter) properties of flood sediments were nearly identical to the underlying deposit. Flood sediment deposition was greatest in wetlands near the Atchafalaya and Mississippi Rivers and accounted for a substantial portion (37% to 85%) of the annual accretion measured at nearby monitoring stations. The amount of sediment delivered to those basins (1.1–1.6 g cm−2) was comparable to that reported previously for hurricane sedimentation along the Louisiana coast (0.8–2.1 g cm−2). Our findings not only provide insight into how large-scale river floods influence wetland sedimentation, they lay the groundwork for identifying previous flood events in the stratigraphic record.

  11. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  12. Global scale modeling of riverine sediment loads: tropical rivers in a global context

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Syvitski, James; Kettner, Albert

    2015-04-01

    A global scale riverine sediment flux model (termed WBMsed) is introduced. The model predicts spatially and temporally explicit water, suspended sediment and nutrients flux in relatively high resolutions (6 arc-min and daily). Modeled riverine suspended sediment flux through global catchments is used in conjunction with observational data for 35 tropical basins to highlight key basin scaling relationships. A 50 year, daily model simulation illuminates how precipitation, relief, lithology and drainage basin area affect sediment load, yield and concentration. Tropical river systems, wherein much of a drainage basin experiences tropical climate are strongly influenced by the annual and inter-annual variations of the Inter-tropical Convergence Zone (ITCZ) and its derivative monsoonal winds, have comparatively low inter-annual variation in sediment yield. Rivers draining rainforests and those subjected to tropical monsoons typically demonstrate high runoff, but with notable exceptions. High rainfall intensities from burst weather events are common in the tropics. The release of rain-forming aerosols also appears to uniquely increase regional rainfall, but its geomorphic manifestation is hard to detect. Compared to other more temperate river systems, climate-driven tropical rivers do not appear to transport a disproportionate amount of particulate load to the world's oceans, and their warmer, less viscous waters are less competent. Multiple-year hydrographs reveal that seasonality is a dominant feature of most tropical rivers, but the rivers of Papua New Guinea are somewhat unique being less seasonally modulated. Local sediment yield within the Amazon is highest near the Andes, but decreases towards the ocean as the river's discharge is diluted by water influxes from sediment-deprived rainforest tributaries

  13. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment inputs. These results also provide important quantitative data on the amount of sediment delivered to the nearshore from the Skagit River for use in calculating sediment budgets for application to watershed planning and wetland and coastal-ecosystem restoration.

  14. Sediment Transport over a Dredge Pit, Sandy Point Southeast, west flank of the Mississippi River during Summer Upcoast Currents: a Coupled Wave, Current and Sediment Numerical Model

    NASA Astrophysics Data System (ADS)

    Chaichitehrani, N.; Li, C.; Xu, K.; Bentley, S. J.; Miner, M. D.

    2017-12-01

    Sandy Point southeast, an elongated sand resource, was dredged in November 2012 to restore Pelican Island, Louisiana. Hydrodynamics and wave propagation patterns along with fluvial sediments from the Mississippi River influence the sediment and bottom boundary layer dynamics over Sandy Point. A state-of-the-art numerical model, Delft3D, was implemented to investigate current variations and wave transformation on Sandy Point as well as sediment transport pattern. Delft3d FLOW and WAVE modules were coupled and validated using WAVCIS and NDBC data. Sediment transport model was run by introducing both bed and river sediments, consisted of mainly mud and a small fraction of sand. A sediment transport model was evaluated for surface sediment concentration using data derived from satellite images. The model results were used to study sediment dynamics and bottom boundary layer characteristics focused on the Sandy Point area during summer. Two contrasting bathymetric configurations, with and without the Sandy Point dredge pit, were used to conduct an experiment on the sediment and bottom boundary layer dynamics. Preliminary model results showed that the presence of the Sandy Point pit has very limited effect on the hydrodynamics and wave pattern at the pit location. Sediments from the Mississippi River outlets, especially in the vicinity of the pit, get trapped in the pit under the easterly to the northeasterly upcoast current which prevails in August. We also examined the wave-induced sediment reworking and river-borne fluvial sediment over Sandy Point. The effect of wind induced orbital velocity increases the bottom shear stress compared to the time with no waves, relatively small wave heights (lower than 1.5 meters) along the deepest part of the pit (about 20 meters) causes little bottom sediment rework during this period. The results showed that in the summertime, river water is more likely the source of sedimentation in the pit.

  15. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka preserved in the lake sediments to reflect the growth of a terrestrial sediment reservoir and concomitant POC storage in response to deglaciation. Our results illustrate how sediment storage by fluvial systems strongly influences the terrestrial OC cycle and its response to changes in environmental conditions.

  16. Transport and deposition of asbestos-rich sediment in the Sumas River, Whatcom County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Anderson, Scott W.; Barbash, Jack E.; Magirl, Christopher S.; Cox, Stephen E.; Norton, Katherine K.; Gendaszek, Andrew S.; Spanjer, Andrew R.; Foreman, James R.

    2016-02-08

    Heavy sediment loads in the Sumas River of Whatcom County, Washington, increase seasonal turbidity and cause locally acute sedimentation. Most sediment in the Sumas River is derived from a deep-seated landslide of serpentinite that is located on Sumas Mountain and drained by Swift Creek, a tributary to the Sumas River. This mafic sediment contains high amounts of naturally occurring asbestiform chrysotile. A known human-health hazard, asbestiform chrysotile comprises 0.25–37 percent, by mass, of the total suspended sediment sampled from the Sumas River as part of this study, which included part of water year 2011 and all of water years 2012 and 2013. The suspended-sediment load in the Sumas River at South Pass Road, 0.6 kilometers (km) downstream of the confluence with Swift Creek, was 22,000 tonnes (t) in water year 2012 and 49,000 t in water year 2013. The suspended‑sediment load at Telegraph Road, 18.8 km downstream of the Swift Creek confluence, was 22,000 t in water year 2012 and 27,000 t in water year 2013. Although hydrologic conditions during the study were wetter than normal overall, the 2-year flood peak was only modestly exceeded in water years 2011 and 2013; runoff‑driven geomorphic disturbance to the watershed, which might have involved mass wasting from the landslide, seemed unexceptional. In water year 2012, flood peaks were modest, and the annual streamflow was normal. The fact that suspended-sediment loads in water year 2012 were equivalent at sites 0.6 and 18.8 km downstream of the sediment source indicates that the conservation of suspended‑sediment load can occur under normal hydrologic conditions. The substantial decrease in suspended-sediment load in the downstream direction in water year 2013 was attributed to either sedimentation in the intervening river reach, transfer to bedload as an alternate mode of sediment transport, or both.The sediment in the Sumas River is distinct from sediment in most other river systems because of the large percentage of asbestiform chrysotile in suspension. The suspended sediment carried by the Sumas River consists of three major components: (1) a relatively dense, largely non-flocculated material that settles rapidly out of suspension; (2) a lighter component containing relatively high proportions of flocculated material, much of it composed of asbestiform chrysotile; and (3) individual chrysotile fibers that are too small to flocculate or settle out, and remain in suspension as wash load (these fibers are on the order of microns in length and tenths of microns in diameter). Whereas the bulk density of the first (heaviest) component of suspended sediment was between 1.5 and 1.6 grams per cubic centimeter (g/cm3), the bulk density of the flocculated material was an order of magnitude lower (0.16 g/cm3), even after 24 hours of settling. Soon after immersion in water, the fresh chrysotile fibers derived from the Swift Creek landslide seem to flocculate readily into large bundles, or floccules, that exhibit settling velocities characteristic of coarse silts and fine sands (30 and 250 micrometers). In quiescent water within this river system, the floccules settle out quickly, but still leave between 2.4 and 19.5 million chrysotile fibers per liter in the clear overlying water. Consistent with the results from previous laboratory research, the amounts of asbestiform chrysotile in the water column in Swift Creek, as well as in the Sumas River close to and downstream of its confluence with Swift Creek, were determined to be directly correlated with pH. This observation offers a possible alternative to either turbidity or suspended‑sediment concentration as a surrogate for the concentration of fresh asbestiform chrysotile in suspension.Continued movement and associated erosion of the landslide through mass wasting and runoff will maintain large sediment loads in Swift Creek and in the Sumas River for the foreseeable future. Given the present channel morphology of the river system, aggradation (that is, sediment accumulation) in Swift Creek and the Sumas River are also likely to continue.

  17. CHANGES IN LOWLAND FLOODPLAIN SEDIMENTATION PROCESSES: PRE-DISTURBANCE TO POST-REHABILITATION, COSUMNES RIVER, CA. (R825433)

    EPA Science Inventory

    During the late Holocene, sediment deposition on the lowland Cosumnes River floodplain, CA has depended on factors that varied temporally and spatially, such as basin subsidence, sea level rise, flow, and sediment supply from both the Sacramento River system and from the Cosum...

  18. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in the Great Rivers of the Upper Mississippi Basin

    EPA Science Inventory

    We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites re...

  19. EVALUATION OF MICROSOMAL AND CYTOSOLIC BIOMARKERS IN A SEVEN-DAY LARVAL TROUT SEIMENT TOXICITY TEST

    EPA Science Inventory

    Rainbow trout (Oncorhynclus mykiss) sac fry (larvae) were exposed to River Po sediments for 7 days. The sediments were collected in the River Po at two sites located upstream and downstream of the confluence of a polluted tributary, the River Lambro. An additional sediment treatm...

  20. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications.

    PubMed

    Patel, Priyanka; Raju, N Janardhana; Reddy, B C Sundara Raja; Suresh, U; Sankar, D B; Reddy, T V K

    2018-04-01

    The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.

  1. Modeling of the Contaminated Sediment in the Erft River

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Westrich, Bernhard; Rode, Michael

    2010-05-01

    Sediment transport processes play an important role in the surface water systems coupled with rainfall-runoff and contaminant transport. Pollutants like heavy metals adsorbed mainly by fine sediment particles can be deposited, eroded or transported further downstream. When the toxic pollutants deposited before and covered by cleaner sediment are remobilized by large flow events such as floods, they pose a hidden threat to the human health and environment. In the Erft River, due to mining activities in the past, the heavy metals release from the tributary Veybach on the downstream water and sediment quality is significant. Recent measurements prove the decreasing concentration trend of heavy metals in the river bed sediment from the Veybach. One-dimensional hydrodynamic model COSMOS is used to model the complicated water flow, sediment erosion, deposition and contaminant mixing and transport in the mainstream of the Erft River. It is based on a finite-difference formulation and consists of one-dimensional, unsteady sub-model of flow and transport, coupled with a sub-model of the layered sediment bed. The model accounts for the following governing physical-chemical processes: convective and dispersive transport, turbulent mixing deposited sediment surface, deposition, consolidation, aging and erosion of sediment, adsorption-desorption of pollutants to suspended particles and losses of pollutants due to decay or volatilization. The results reproduce the decreasing profile of the pollutant concentration in the river bed sediment nicely. Further modeling is to analysis the influence of the mixing process at the water-riverbed interface on the contaminant transport, hydrological scenarios impact on the remobilization of the sink of pollutant and its negative consequences on the river basin.

  2. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  3. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  4. Improvement of suspended sediment concentration estimation for the Yarlung Zangbo river

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zhang, F.

    2017-12-01

    Suspended sediment load of a river represents integrated results of soil erosion, ecosystem variation and landform change occurring within basin over a specified period. Accurate estimation of suspended sediment concentration is important for calculating suspended sediment load, therefore is helpful for evaluating the impact of natural and anthropogenic factors on earth system processes under the background of global climate change. However, long-term observation of suspended sediment concentration usually very difficult in harsh condition areas e.g. rivers on the Tibet Plateau. This study proposed two sediment rating curve subdivision methods, the flood rank method and suspended sediment concentration stages method, to improve the estimations of daily suspended sediment concentration of the Yarlung Zangbo river during 2007 to 2009. The flood rank method, hypothesized that the higher water flow with larger erosive power can mobilize sediment sources not available during lower flows, suitable for application where sediments were mainly transported by first few flood events. The suspended sediment concentration stages method, assumed that precipitation is the dominating driving force of sediment erosion and transport processes during the flooding periods, suitable for application where soil erosion was closely related to precipitation events. Compared to traditional sediment rating curve and subdivision methods, results showed that the proposed methods can improve suspended sediment concentration and subsequent suspended sediment load estimations in the middle reach of the Yarlung Zangbo river with higher coefficients of determination (R2) and Nash-Sutcliffe efficiency coefficients (NSE), and yielded smaller bias (BIAS) and root-mean-square errors (RMSE). This study can provide guidelines for regional ecological and environmental management.

  5. Colorado River sediment transport: 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Vierra, L.E.

    2000-01-01

    Analyses of flow, sediment‐transport, bed‐topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply‐limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply‐limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4∥ development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply‐limited with respect to fine sediment, but it was not supply‐limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200–300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200–300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  6. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts

    NASA Astrophysics Data System (ADS)

    Liquete, Camino; Canals, Miquel; Ludwig, Wolfgang; Arnau, Pedro

    2009-03-01

    SummaryThe environmental and anthropogenic factors controlling sediment delivery to the sea are numerous, intricate and usually difficult to quantify. Mediterranean watersheds are historically amongst the most heavily impacted by human activities in the world. This study analyzes some of these factors for nine river systems from Catalonia, NE Spain, that open into the Northwestern Mediterranean Sea, and discusses the results obtained from sediment yield models and sediment concentration data series. General models indicate that the natural suspended sediment yield by individual Catalan rivers ranged within a fork from 94 to 621 t km -2 yr -1. Such a sediment yield would be noticeably reduced (moving the fork to 7-148 t km -2 yr -1) because of lithological factors and direct anthropogenic and, possibly, climatic impacts. Damming, water extraction and urbanization appear as the most important direct anthropogenic impacts in Catalonia. Water discharge and sediment concentration measurements by basin authorities provide much lower sediment yield estimations, from 0.4 to 19.8 t km -2 yr -1, which is probably due to the lack of measured sediment loads during flood events, as it is the case in many other Mediterranean rivers. The Catalan watersheds have some of the smallest runoff values amongst Mediterranean rivers. Of the nine river systems studied, water discharge tends to decrease in two and to increase in one. The other six river systems do not show any clear tendency. Related to climatic parameters, temperature raised in all the watersheds between 1961 and 1990, while precipitation did not show significant trends.

  7. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analytemore » levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.« less

  8. Historical sediment budget and present-day catchment-shoreline coupling at Twofold Bay, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.

    2017-12-01

    Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that other shorelines within Twofold Bay are seemingly unaffected by the Towamba River, and most shorelines in southeast Australia receive minimal fluvial sediment input, further emphasises the need to consider nearshore sediment reserves in order to accurately determine sea-level rise impacts on sandy shorelines.

  9. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned aerial vehicle (UAV) photographic surveys, historical aerial photographs, ground-based topographic surveys, surface and subsurface particle size determination, bed stability and sediment entrainment assessment, together with discharge and sediment (both suspended and bedload) monitoring to establish the effect of the weir on patterns of sediment flux and the physical transport of metal contaminants. 2D and 1D models (IBER, HEC-RAS) of the weir-affected reach will investigate sediment and metal flux following weir removal. (2) The physicochemical speciation and geochemical stability of contaminated floodplain sediments will be characterised using bulk chemistry, mineralogical (XRD, SEM) and speciation methods (sequential extractions, electron microprobe analysis).

  10. Challenges of ecosystem restoration in Louisiana - availability of sediment and its management

    NASA Astrophysics Data System (ADS)

    Khalil, S. M.; Freeman, A. M.

    2015-03-01

    Human intervention has impaired the Mississippi River's ability to deliver sediment to its delta wetlands, and as a consequence acute land loss in coastal Louisiana has resulted in an unprecedented ecocatastrophe. To mitigate this degradation, an unparalleled restoration effort is underway. For this effort to be successful and sustainable, various sediment input mechanisms must be integrated, including: building appropriate sediment-diversions; beneficially using the millions of cubic metres of sediment dredged annually from navigational channels; harvesting deposits of sand and suitable sediment from the river and offshore; and related sediment management activities that are compatible with other uses of the river. A comprehensive sediment management plan has been developed to identify and delineate potential sediment sources for restoration, and to provide a framework for managing sediment resources wisely, cost effectively, and in a systematic manner. The Louisiana Sediment Management Plan provides regional strategies for improved comprehensive management of Louisiana's limited sediment resources.

  11. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    NASA Astrophysics Data System (ADS)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  12. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.

    PubMed

    Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic

    2018-03-29

    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.

  13. Generation of a Sediment Rating and Load Curve Demonstrated at the Mackinaw River Confluence

    DTIC Science & Technology

    2016-12-01

    Illinois. The Mackinaw River produces a shoal in the Illinois River that impinges on the navigation channel . The sediment deposition forms a natural...delta that would encroach on the channel if not removed via dredging. However, the sediment has the potential for beneficial use. The Streamside...function for sediment transportation in open channel flows. Technical Bulletin No. 1026. Washington, DC: U.S. Department of Agriculture. ERDC/CHL

  14. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  15. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: Consequences for the interpretation of the MBT'/CBT paleothermometer

    NASA Astrophysics Data System (ADS)

    Zell, Claudia; Kim, Jung-Hyun; Balinsha, Maria; Dorhout, Denise; Santos Fernandez, Cten; Baas, Marianne; Sinninghe Damsté, Jaap S.

    2014-05-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature(MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers(MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study we are tracing the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed,indicating that marine in-situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in-situ production.

  16. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer

    NASA Astrophysics Data System (ADS)

    Zell, C.; Kim, J.-H.; Balsinha, M.; Dorhout, D.; Fernandes, C.; Baas, M.; Sinninghe Damsté, J. S.

    2014-03-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature (MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers (MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study we are tracing the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed, indicating that marine in-situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in-situ production.

  17. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer

    NASA Astrophysics Data System (ADS)

    Zell, C.; Kim, J.-H.; Balsinha, M.; Dorhout, D.; Fernandes, C.; Baas, M.; Sinninghe Damsté, J. S.

    2014-10-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are thought to be transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature (MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers (MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study, we trace the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed, indicating that marine in situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in situ production.

  18. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni-Madeira River. This river has a larger difference in the Sr isotopic composition between the diluted and solid phases, which has been assigned to the high level of weathering of its sediment source area. In the Beni-Madeira River sub-basin dominates weathering of silicate rocks, while in the Marañón-Solimões River sub-basin there also weathering of carbonate and evaporitic rocks.

  19. Sediment dispersal in modern and mid-Holocene basins: implications for shoreline progradation and sediment bypassing, Poverty Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; Harris, C. K.; McNinch, J.

    2006-12-01

    Poverty Bay is a small embayment located on the eastern shore of New Zealand's North Island. The modern Waipaoa River, a small mountainous river that drains highly erodible mudstone and siltstone, discharges ~15 million tons of sediment per year to Poverty Bay. Rates of bay infilling from fluvial sediment have varied since the maximum shoreline transgression, ~7000 kya. The evolving geometry of Poverty Bay has likely impacted sediment dispersal over these timescales, and thereby influenced the stratigraphic architecture, rates of shoreline progradation, and sediment supply to the continental shelf. This modeling study investigates sediment transport within both modern and paleo, ~7000 kya, Poverty Bays. The Regional Ocean Modeling System was used to examine sediment transport within modern and ~7000 kya Poverty Bay basin geometries. The numerical model includes hydrodynamics driven by winds and buoyancy, and sediment resuspension from energetic waves and currents. Strong winds and waves from the southeast were used, along with high Waipaoa freshwater and sediment discharge, consistent with storm conditions. Besides shedding light on short term transport mechanisms, these results are being incorporated into a stratigraphic model by Wolinsky and Swenson. The paleo basin geometry narrowed at the head of the bay, causing currents to converge and promoting near- field sediment deposition. Buoyancy and wind driven across-shelf currents in the modern bay transport sediment away from the river mouth. Sediment was deposited closer to the river mouth in the paleo than the modern bay, and the modern bay exported much more sediment to the continental shelf than predicted for the middle Holocene bay. Net across-shelf fluxes decreased from a maximum at the head of the bay to nearly zero at the mouth during the paleo run. The modern run, however, had net across-shelf fluxes still half the maximum at the bay mouth. Results from short term model runs indicated that, with similar river discharges, the 7000 kya Poverty Bay shoreline should have prograded rapidly as sediment was deposited near the river mouth at the head of the bay, an area of little accommodation space. The trapping of sediment within the bay would have lead to a relatively sediment starved continental shelf. As the river mouth progressed towards the wider section of the bay, progradation should have been reduced as both proximal accommodation space and sediment export to the continental shelf increased.

  20. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  1. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.

  2. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    PubMed

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Recent (1995-1998) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    Ashmore, P.; Conly, F. M.; Deboer, D.; Martin, Y.; Petticrew, E.; Roy, A.

    2000-06-01

    Canadian research on contemporary erosion and sedimentation processes covers a wide range of scales, processes, approaches and environmental problems. This review of recent research focuses on the themes of sediment yield, land-use impact, fine-sediment transport, bed material transport and river morphology and numerical modelling of fluvial landscape development.Research on sediment yield and denudation has confirmed that Canadian rivers are often dominated by riparian sediment sources. Studies of the effects of forestry on erosion, in-stream sedimentation and habitat are prominent, including major field experimental studies in coastal and central British Columbia. Studies of fine-sediment transport mechanisms have focused on the composition of particles and the dynamics of flocculation. In fluvial dynamics there have been important contributions to problems of turbulence-scale flow structure and entrainment processes, and the characteristics of bedload transport in gravel-bed rivers. Although much of the work has been empirical and field-based, results of numerical modelling of denudational processes and landscape development also have begun to appear.The nature of research in Canada is driven by the progress of the science internationally, but also by the nature of the Canadian landscape, its history and resource exploitation. Yet knowledge of Canadian rivers is still limited, and problems of, for example, large pristine rivers or rivers in cold climates, remain unexplored. Research on larger scale issues of sediment transfer or the effects of hydrological change is now hampered by reductions in national monitoring programmes. This also will make it difficult to test theory and assess modelling results. Monitoring has been replaced by project- and issues-based research, which has yielded some valuable information on river system processes and opened opportunities for fluvial scientists. However, future contributions will depend on our ability to continue with fundamental fluvial science while fulfilling the management agenda.

  4. Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

    2001-01-01

    In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley segments. We favor median-based estimates of the thickness and thickness-interval weighted-average Pb concentration, because uncommonly thick and Pb-rich sections may excessively influence mean estimates. Nevertheless, data from partial sections of Pb-rich sediments are included in most estimates, and these tend to reduce both median- and mean-based estimates. Median-based estimates indicate a volume of 32 M m3 of Pb-rich sediments in the CdA River valley, with a dry tonnage of 47 + 4 M t, containing 250 + 75 kt of Pb (considering analytical uncertainties only). An equivalent tonnage of dry CdA River valley sediments of the pre-mining era, with the mean background concentration of 30 ppm of Pb, would contain about 1.4 kt of Pb. Thus, the amount of Pb added to CdA River valley sediments deposited since the onset of mining is estimated as 249 + 75 kt of Pb, or about 99.5 percent of the estimated Pb contained. Of an estimated 850 + 10 kt of Pb lost to streams as a result of mining-related activities, an estimated total of 739 + 319 kt of Pb has been deposited in sediments of the South Fork drainage basin, the CdA River valley, and the bottom of CdA Lake (combined). Based on mid-range values from a set of preferred estimates with uncertainty ranges up to + 50 percent, roughly 24 percent of the 850 + 10 kt of mining-derived Pb lost to streams has been added to sediments of the South Fork drainage basin, 29 percent to sediments of the CdA River valley floor, and 34 percent to sediments on the bottom of CdA Lake. This amounts to roughly 87 percent of the Pb lost to streams, not including Pb contained in sediments of the North Fork drainage basin and the Spokane River valley, the tonnages of which have not yet estimated.

  5. Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River.

    PubMed

    Kashyap, Shalini; Dibike, Yonas; Shakibaeinia, Ahmad; Prowse, Terry; Droppo, Ian

    2017-01-01

    Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.

  6. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    NASA Astrophysics Data System (ADS)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River watershed.

  7. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    USGS Publications Warehouse

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  8. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    NASA Astrophysics Data System (ADS)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (<600 m) on both sides of the KP canyon. The area with high sedimentation rates on Pb-210 time scale coincides with the area covered by a flood layer resulting from Typhoon Haitang during July 18-20, 2005. This suggests that the open margin on the upper slope is a depocenter for sediment dispersed via a surface component of the river's plume on various timescales (from events to centennial). With a total of 76 sampling points laid out, a framework consisting of 105 triangular grids is configured to calculate the budget of sediment in the study area. The calculated budget, at 7.2 MT/yr, accounts for only ~15% of KP river's sediment discharge. We speculate that most of the remainder is exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  9. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.

  10. Trends in polychlorinated biphenyl concentrations in Hudson River water five years after elimination of point sources

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Industrial discharge of polychlorinated biphenyls (PCBs) to the Hudson River from 1950 to the mid-1970 's has resulted in serious degradation of the water. Contaminated river-bottom sediments continue to contribute PCBs to the river water. Concentrations in the sediment range from several hundred micrograms per gram near the outfall to less than 10 micrograms per gram in the lower estuary. PCBs are supplied by bottom sediments to the overlying water by two mechanisms--desorption and resuspension. Because desorption is a relatively constant process, concentrations of PCBs decrease as water discharge increases. At high flow, however, scouring by turbulence causes resuspension of PCB-laden sediment. Transport rates indicate that most PCBs enter the water from the most contaminated sediments, which are within 20 kilometers of the outfall. Mean daily transport from the upper river (except during high discharges) has decreased from 10 kilograms in 1976 to 5 kilograms in the late 1970 's and to 1 kilogram in 1981. This decrease probably results from the burial of highly contaminated sediments by cleaner sediments originating upstream. (USGS)

  11. EFFECTS OF RESOURCE DEVELOPMENT ON WATER QUALITY IN THE BIG SOUTH FORK NATIONAL RIVER AND RECREATION AREA, TENNESSEE AND KENTUCKY.

    USGS Publications Warehouse

    Carey, William P.; ,

    1984-01-01

    The South Fork Cumberland River begins in Tennessee at the confluence of the New River and Clear Fork. Strip mining for coal in the New River basin has been ongoing for decades with little reclamation prior to 1977. Water-quality data show that suspended-sediment and dissolved-constituent loads from the New River dominate the water quality in the National River and Recreation Area. The suspended sediment can impart a highly turbid and aesthetically displeasing appearance to the water during low-flow periods which are times of maximum recreational use. High suspended-sediment concentrations are also potentially harmful to the aquatic habitat in the Recreation Area. In addition to the suspended-sediment load, a large supply of coarse material is slowly moving through the channels of the New River basin toward the Recreation Area.

  12. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    NASA Astrophysics Data System (ADS)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  13. Sediment-quality assessment of the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Shelton, J.L.; Bogenrieder, K.J.

    2004-01-01

    Sediment quality was assessed at multiple sites in the lower Oconee River, GA to identify contaminants potentially affecting the survival of an endemic ?At-Risk? species of fish, the robust redhorse (Moxostoma robustum). Five major tributaries that drain urban and agricultural watersheds enter this stretch of river and several carry permitted municipal and industrial effluents containing Cd, Cu, and Zn. Sediments for chemical analyses and toxicity tests with Hyalella azteca (Amphipoda) were collected at 12 locations that included sites above and below the major tributaries. Compared to national data bases and to the nearby Apalachicola-Chattahoochee-Flint watershed, sediments from the Oconee River had elevated concentrations of Cr, Cu, Hg and Zn. Zinc concentrations showed a marked increase in sediment downstream of the confluence of Buffalo Creek demonstrating contributions from permitted municipal and industrial effluents discharged to that tributary. When exposed to these sediments, growth of H. azteca was significantly reduced. Amphipod growth was also reduced when exposed to sediments collected from another site due to toxicity from Cr. Sediments in the lower Oconee River appear to be impaired due to metal contamination and could pose a threat to organisms, such as the robust redhorse, that are closely associated with this matrix during their life cycle.

  14. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion

    NASA Astrophysics Data System (ADS)

    Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian

    2014-09-01

    The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.

  15. Sediment Transport at River Lima Estuary: Developing a Sound Methodology to Assess Sediment River Basin Input to an Erosion Prone Coast (NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Pinho, J.; Costa, N.; Venâncio, S.; Martins, M.; Vieira, J.; Granja, H.

    2016-12-01

    The NW coast of Iberian Peninsula is mainly formed by rocky cliffs northern of the river Minho mouth and by narrow sandy beaches south of this river. These beaches are mainly in a sedimentary deficit status resulting from the north-south longitudinal drift driven by the dominant wave climate that acts from the NW direction. In this scenario understand and quantify river sediment inputs to the coast is crucial in order to follow a sustainable management policy to mitigate erosion impacts both in the natural and social environments. This work will present results from research conducted at rive Lima Estuary, one of the rivers flowing to the NW Iberian coast, based on both numerical modeling and field data acquisition. A hydrological model of the river basin and a detailed morphodynamic model of the estuary were implemented. Instrumentation of the estuary that is being conducted comprises traditional sensor pressures and new ones that are being designed and assembled to be installed at different measurement stations within the estuary. Modelling results for flood events showed that the river is capable of remove all the sediments that are deposited in the narrow estuarine canal located near the river mouth. Some of these sediments are immediately deposited downstream, within the interior of the harbor. Here, there is a strong possibility of silting of the river mouth and the central area of the harbor. Since the river flows during extreme events are controlled by an upstream reservoir, the capacity of the river to transport sediments to the coast was lowered during the last decades, which, moreover, requires dredging works over the years to maintain navigation depth requirements. Dredging sediments should be correctly deposited at the coast in order to properly feed the longitudinal drift, otherwise they will be out of the system, which aggravate the installed erosion tendency.

  16. Extreme Events on a Low-Gradient River and Delta: Evidence for Sediment Mass Movements on the Subaqueous Delta and a Mechanism for Creating Hyperpycnal Flow onto the Shelf

    NASA Astrophysics Data System (ADS)

    Dellapenna, T. M.; Carlin, J. A.; Williams, J. R.

    2016-02-01

    The Brazos River empties into the Gulf of Mexico (GOM) forming a wave-influenced, muddy, subaqueous delta (SAD). Recent research in the estuarine reach of the river and on the SAD, however, found evidence for significant mass wasting of the delta-front and potential evidence of hyperpycnal flow, a processes typically associated with higher gradient and higher sediment yield rivers. The study used high-resolution geophysics on the SAD and water-column profiling in the lower river to investigate the transfer to and fate of fluvial sediment on the shelf. The SAD side scan mosaic combined with core data reveal that the eastern portion was dominated by exposed relict, consolidated sediment; an erosional scarp along the upper shoreface; and a thinning of the Holocene strata immediately downslope of the scarp. Holocene strata thickness increases into deeper water. These features suggest sediment mass wasting on the delta front. After rapidly prograding during the early and mid 20th century, reductions in sediment load due anthropogenic influences, and a shift in the primary depocenter lead to erosion on these abandoned portions of the delta. During an elevated fluvial discharge event, a >1 m thick fluid mud layer was found along a 6 km span of the river 2 km upstream from the mouth. The river's salt wedge was shown to inhibit sediment export from the river to the GOM, and facilitate deposition of mud in the lower river. We believe that the mud layer in the lower river builds during moderate and low discharge periods and remobilized during increased discharge, potentially resulting in hyperpyncnal flow to the shelf. We observed suspended sediment concentrations up to 100 g/l in the fluid mud layer during this event. While our observations did not capture the transition from fluid mud to hyperpycnal flow, we believe that with persistent increased discharge the fluid mud layer could transition to hyperpycnal flow.

  17. Spatial and temporal assessment of environmental contaminants in water, sediments and fish of the Salton Sea and its two primary tributaries, California, USA, from 2002 to 2012.

    PubMed

    Xu, Elvis Genbo; Bui, Cindy; Lamerdin, Cassandra; Schlenk, Daniel

    2016-07-15

    The Salton Sea, the largest inland surface water body in California, has been designated as a sensitive ecological area by federal and state governments. Its two main tributaries, the New River and Alamo River are impacted by urban and agriculture land use wastes. The purpose of this study was to temporally and spatially evaluate the ecological risks of contaminants of concern in water, sediments and fish tissues. A total of 229 semivolatile organic compounds and 12 trace metals were examined. Among them Selenium, DDTs, PAHs, PCBs, chlorpyrifos and some current-use pesticides such as pyrethroids exceeded risk thresholds. From 2002 to 2012, measurements of chlorpyrifos in sediments generally declined and were not observed after 2009 at the river outlets. In contrast, pyrethroid concentrations in sediments rose consistently after 2009. In water samples, the outlets of the two rivers showed relatively higher levels of contamination than the main water body of the Salton Sea. However, sediments of the main water body of the Salton Sea showed relatively higher sediment concentrations of contaminants than the two rivers. This was particularly true for selenium which showed reductions in concentrations from 2002 to 2007, but then gradual increases to 2012. Consistent with water evaluations, contaminant concentrations in fish tissues tended to be higher at the New River boundary and at the drainage sites for the Alamo River compared to sites along each river. The persistent contaminants DDTs, PAHs, chlorpyrifos and several pyrethroid insecticides were associated with the toxicity of sediments and water collected from the rivers. Overall, assessment results suggested potential ecological risk in sediments of the Salton Sea as well as in water and fish from the two rivers. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  19. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.

    PubMed

    Gao, Jian Hua; Jia, Jianjun; Kettner, Albert J; Xing, Fei; Wang, Ya Ping; Xu, Xia Nan; Yang, Yang; Zou, Xin Qing; Gao, Shu; Qi, Shuhua; Liao, Fuqiang

    2014-05-15

    To study the fluvial interaction between Changjiang River and Poyang Lake, we analyze the observed changes of riverine flux of the mid-upstream of Changjiang River catchment, the five river systems of Poyang Lake and Poyang Lake basin. Inter-annual and seasonal variations of the water discharge and sediment exchange processes between Changjiang River and Poyang Lake are systematically explored to determine the influence of climate change as well as human impact (especially the Three Gorges Dam (TGD)). Results indicate that climate variation for the Changjiang catchment and Poyang Lake watershed is the main factor determining the changes of water exchanges between Changjiang River and Poyang Lake. However, human activities (including the emplacement of the TGD) accelerated this rate of change. Relative to previous years (1956-1989), the water discharge outflow from Poyang Lake during the dry season towards the Changjiang catchment increased by 8.98 km(3)y(-1) during 2003-2010. Evidently, the water discharge flowing into Poyang Lake during late April-late May decreased. As a consequence, water storage of Poyang Lake significantly reduced during late April-late May, resulting in frequent spring droughts after 2003. The freshwater flux of Changjiang River towards Poyang Lake is less during the flood season as well, significantly lowering the magnitude and frequency of the backflow of the Changjiang River during 2003-2010. Human activities, especially the emplacement and operation of the TGD and sand mining at Poyang Lake impose a major impact on the variation of sediment exchange between Changjiang main river and Poyang Lake. On average, sediments from Changjiang River deposited in Poyang Lake before 2000. After 2000, Changjiang River no longer supplied sediment to Poyang Lake. As a consequence, the sediment load of Changjiang River entering the sea increasingly exists of sediments from Lake Poyang during 2003-2010. As a result, Poyang Lake converted from a depositional to an erosional system, with a gross sediment loss of 120.19 Mty(-1) during 2001-2010, including sand mining. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    USGS Publications Warehouse

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological responses.

  1. Sediment and channel-geometry investigations for the Kansas River bank stabilization study, Kansas, Nebraska, and Colorado

    USGS Publications Warehouse

    Osterkamp, W.R.; Curtis, R.E.; Crowther, H.G.

    1982-01-01

    Analysis of hydrologic data from the Kansas River basin suggests that the channels of the lower Solomon, Saline, and Smoky Hill Rivers have narrowed and stabilized as a result of construction of upstream reservoirs. The Kansas River channel, however, remains relatively unstable and locally active. Streamflow regulation and sediment trapping by reservoirs are possible causes of changes occurring at various Kansas River sites. An inferred deficiency of the suspended-sediment load, however, is likely to cause continuing instability. Suspended sediment in the Kansas River apparently is too sparse to form and maintain stable alluvial banks. The deficiency probably results in an increase of bed material movement, general channel widening, and local braiding. Significant channel degradation is lacking at most sites, but may occur in response to long-term (decades-to-centuries) regulation. Recent degradation near Bonner Springs, Kans., may be the result of sand and gravel removal. Any imposed changes that shorten the channel or reduce the suspended-sediment discharge of the Kansas River are expected to cause additional channel instability. (USGS)

  2. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport were made through high-resolution repeat photogrammetric surveys (Structure From Motion). As some of the first research of this type on a steep tropical montane system, this study expands our knowledge of tropical rivers and sediment transport by providing a broad view of bedload sediment flux in a hydrologically dynamic humid tropical montane system.

  3. Dujiangyan: Could the ancient hydraulic engineering be a sustainable solution for Mississippi River diversions?

    NASA Astrophysics Data System (ADS)

    Xu, Y. J.

    2016-02-01

    Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering marvel may offer insights into sustainable practices in river engineering of the lower Mississippi under climate change and sea level rise. This paper will introduce the Dujiangyan Project and will discuss possibilities of applying Dujiangyan's fundamental concept for sediment diversions in the Lower Mississippi River.

  4. Modelling sediment-microbial dynamics in the South Nation River, Ontario, Canada: Towards the prediction of aquatic and human health risk.

    PubMed

    Droppo, I G; Krishnappan, B G; Liss, S N; Marvin, C; Biberhofer, J

    2011-06-01

    Runoff from agricultural watersheds can carry a number of agricultural pollutants and pathogens; often associated with the sediment fraction. Deposition of this sediment can impact water quality and the ecology of the river, and the re-suspension of such sediment can become sources of contamination for reaches downstream. In this paper a modelling framework to predict sediment and associated microbial erosion, transport and deposition is proposed for the South Nation River, Ontario, Canada. The modelling framework is based on empirical relationships (deposition and re-suspension fluxes), derived from laboratory experiments in a rotating circular flume using sediment collected from the river bed. The bed shear stress governing the deposition and re-suspension processes in the stream was predicted using a one dimensional mobile boundary flow model called MOBED. Counts of live bacteria associated with the suspended and bed sediments were used in conjunction with measured suspended sediment concentration at an upstream section to allow for the estimation of sediment associated microbial erosion, transport and deposition within the modelled river reach. Results suggest that the South Nation River is dominated by deposition periods with erosion only occurring at flows above approximately 250 m(3) s(-1) (above this threshold, all sediment (suspended and eroded) with associated bacteria are transported through the modelled reach). As microbes are often associated with sediments, and can survive for extended periods of time, the river bed is shown to be a possible source of pathogenic organisms for erosion and transport downstream during large storm events. It is clear that, shear levels, bacteria concentrations and suspended sediment are interrelated requiring that these parameters be studied together in order to understand aquatic microbial dynamics. It is important that any management strategies and operational assessments for the protection of human and aquatic health incorporate the sediment compartments (suspended and bed sediment) and the energy dynamics within the system in order to better predict the concentration of indicator organism. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  6. Limnological aspects of the St. Clair River

    USGS Publications Warehouse

    Griffiths, Ronald W.; Thornley, Stewart; Edsall, Thomas A.

    1991-01-01

    To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.

  7. Coastal circulation and sediment dynamics in Hanalei Bay, Kaua'i, Hawaii: Part II: tracking recent fluvial sedimentation; isotope stratigraphy obtained in Summer 2005

    USGS Publications Warehouse

    Draut, Amy E.; Field, Michael E.; Bothner, Michael H.; Logan, Joshua B.; Casso, Michael A.; Baldwin, Sandra M.; Storlazzi, Curt D.

    2006-01-01

    Delivery and dispersal of fluvial sediment in Hanalei Bay, Kaua’i, Hawaii, have important implications for the health of local coral reefs. The reef community in Hanalei Bay represents a relatively healthy ecosystem. However, the reefs are periodically stressed by storm waves, and increases in sediment and dissolved substances from the Hanalei River have the potential to cause additional stress. Increased turbidity and sedimentation on corals during Hanalei River floods that occur in seasons of low wave energy, when sediment would not be readily remobilized and advected out of the bay, could affect the health and sustainability of coral reefs and the many associated species. Measurements of short-lived isotopes 7Be and 137Cs in sediment cores have been used to trace the thickness and distribution of terrestrial sediment in Hanalei Bay, in order to assess spatial and temporal patterns of sediment deposition and remobilization relative to coral-reef locations. A third isotope, 210Pb, derived primarily from seawater, provides additional information about recent sedimentary history. Isotope profiles and observations of sedimentary facies from cores collected at multiple locations in June 2005, and again in August 2005, indicate the presence of recent fluvial sediment and organic debris in the east part of the bay near the mouth of the Hanalei River. Away from the immediate vicinity of the river mouth, sediment in the uppermost 1 m below the sea floor had not retained a significant quantity of fluvial sediment within the eight months prior to either sampling effort. During the study interval in summer 2005 the Hanalei River had no major floods and there was relatively little sediment input to the bay. Sediment away from the river mouth was dominated by carbonate sand, although some terrestrial sediment was present in sub-sea-floor horizons. Sedimentary facies and isotope inventories throughout the bay showed substantial spatial heterogeneity. Sediment cores will be collected again at the same sites discussed here during early and late summer 2006. If possible, additional sites will be sampled in the Black Hole depocenter near the river mouth. Major floods in winter and spring 2006 are expected to leave a significant new sediment signal in the bay that should be detected in summer 2006.

  8. Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.

    2009-01-01

    Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.

  9. Experiments on sediment pulses in mountain rivers

    Treesearch

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  10. Assessing remediation of contaminated sediments using multiple biological endpoints: sediment toxicity, food web tissue contamination, biotic condition and DNA damage.

    EPA Science Inventory

    The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission’s Great Lakes Water Quality Agreement. A sediment remediation project took place in the lower 14.2 km of the river where urban and industrial activitie...

  11. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Treesearch

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  12. Metagenomic Insights into Effects of Chemical Pollutants on Microbial Community Composition and Function in Estuarine Sediments Receiving Polluted River Water.

    PubMed

    Lu, Xiao-Ming; Chen, Chang; Zheng, Tian-Ling

    2017-05-01

    Pyrosequencing and metagenomic profiling were used to assess the phylogenetic and functional characteristics of microbial communities residing in sediments collected from the estuaries of Rivers Oujiang (OS) and Jiaojiang (JS) in the western region of the East China Sea. Another sediment sample was obtained from near the shore far from estuaries, used for contrast (CS). Characterization of estuary sediment bacterial communities showed that toxic chemicals potentially reduced the natural variability in microbial communities, while they increased the microbial metabolic enzymes and pathways. Polycyclic aromatic hydrocarbons (PAHs) and nitrobenzene were negatively correlated with the bacterial community variation. The dominant class in the sediments was Gammaproteobacteria. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme profiles, dominant enzymes were found in estuarine sediments, which increased greatly, such as 2-oxoglutarate synthase, acetolactate synthase, inorganic diphosphatase, and aconitate hydratase. In KEGG pathway profiles, most of the pathways were also dominated by specific metabolism in these sediments and showed a marked increase, for instance alanine, aspartate, and glutamate metabolism, carbon fixation pathways in prokaryotes, and aminoacyl-tRNA biosynthesis. The estuarine sediment bacterial diversity varied with the polluted river water inputs. In the estuary receiving river water from the more seriously polluted River Oujiang, the sediment bacterial community function was more severely affected.

  13. Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake

    PubMed Central

    Fan, Niannian; Nie, Ruihua; Wang, Qiang; Liu, Xingnian

    2016-01-01

    Changes in river channel erosion or deposition affect the geomorphic evolution, aquatic ecosystems, and river regulation strategies. Fluvial processes are determined by the flow, sediment and boundary conditions, and it has long been expected that increasing sediment supply will induce aggradation. Here, based on thorough field surveys, we show the unexpected undercutting of the piedmont rivers influenced by the 2008 Wenchuan (Ms 8.0) Earthquake. The rivers flow from the Longmen Mountain with significant topographic relief to the flat Chengdu plain. In the upstreams, sediment supply increased because of the landslides triggered by the earthquake, causing deposition in the upstream mountain reaches. However, the downstream plain reaches suffered undercutting instead of deposition, and among those rivers, Shiting River was the most seriously affected, with the largest undercutting depth exceeding 20 m. The reasons for this unexpected undercutting are proposed herein and relate to both natural and anthropogenic causes. In addition, we also demonstrate, at least for certain conditions, such as rivers flowing from large-gradient mountain regions to low-gradient plain regions, that upstream sediment pulses may induce aggradation in upstream and degradation in downstream, causing the longitudinal profile to steepen to accommodate the increasing sediment flux. PMID:27857220

  14. The Role of Conjoining (Tie) Channels in Lowland Floodplain Development and Lake Infilling

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Lepper, K.; Wilson, C. J.

    2003-12-01

    In simple models of lowland river systems, water and sediment enter the main stem via tributary and secondary channels and are only redistributed to the floodplain during overbank and crevasse splay events. Along numerous river systems across the globe, however, water and sediment are regularly exchanged between the river and off river water bodies via stable, narrow channels. These channels, known as tie channels on the Fly River in Papua New Guinea and batture channels along the lower Mississippi, are largely overlooked but important components of floodplain sediment dispersal where they exist. These channels become pathways of sediment dispersal to the floodplain system when elevated river stages force sediment-laden flows into the off-river water bodies. On the Fly River, it is estimated that about 50% of the sediment delivery to the floodplain is via these channels, and along low gradient tributary channels during flood driven flow reversals. During low flow, tie channels serve to drain the floodplain. With the outgoing flows, large amounts sediment can be carried and lost to the floodplain; floodplain lakes progressively infill with sediment as the mouth of these channels steadily prograde lakeward. These lake deposits not only become significant stratigraphic components of floodplains (traditionally referred to as clay plugs), but are important local sinks recording hundreds to thousands of years of river history. As with all sinks, the proper interpretation of these stratigraphic records requires understanding the processes by which sediment is delivered to the sink and how these processes alter the paleohydraulic and climatic signals of interest. We have conducted field investigations of conjoining channels in Papua New Guinea (the Fly and Strickland Rivers), Louisiana (Raccourci Old River ~ 65 km upriver of Baton Rouge) and Alaska (Birch Creek). These field investigations include extensive surveys of both cross and along channel morphological trends, grain size characteristics, water levels and geochronological sampling using optically stimulated luminescence (OSL). Across all systems channel morphology is similar and exhibit scale independence, however, channel size and rates of progradation are directly related to the size of the main stem river. Through these studies and ongoing scaled modeling we are examining the morphodynamics that lead to the formation, advancement and stability of these unique self formed channels.

  15. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  16. Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA

    USGS Publications Warehouse

    Yellen, Brian; Woodruff, Jon D.; Kratz, Laura N.; Mabee, Steven B.; Morrison, Jonathan; Martini, Anna M.

    2014-01-01

    Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10–40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.

  17. Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana

    USGS Publications Warehouse

    Canfield, Timothy J.; Kemble, Nile E.; Brumbaugh, William G.; Dwyer, F. James; Ingersoll, Christopher G.; Fairchild, James F.

    1994-01-01

    The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as U.S. Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. We evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m2 did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach-the Sediment Quality Triad - provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

  18. Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA

    NASA Astrophysics Data System (ADS)

    Yellen, B.; Woodruff, J. D.; Kratz, L. N.; Mabee, S. B.; Morrison, J.; Martini, A. M.

    2014-12-01

    Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10-40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.

  19. Land use and flow regime effects on phosphorus chemical dynamics in the fluvial sediment of the Winooski River, Vermont

    USGS Publications Warehouse

    McDowell, R.W.; Sharpley, A.N.; Chalmers, A.T.

    2002-01-01

    In the last century, fourfold increase in phosphorus (P) loadings to Lake Champlain, Vermont (VT), USA, have led to nuisance levels of algal growth occurring more often. To better understand the transport, storage, and cycling of P within the lake's catchment, we examined the chemistry, bioavailability and processes controlling sediment P release to waters of the Winooski River, VT, the largest tributary to Lake Champlain. Iron-oxide strip P (algal-bioavailable P) of the river sediments adjacent to agricultural land (3.6 mg kg-1) was greater (P < 0.05) than adjacent to forested land (2.4 mg kg-1). When compared among flow regimes, impoundment (731 mg kg-1) and reservoir sediments (803 mg kg-1) had greater total P concentrations than river sediment (462 mg kg-1). This was attributed to more fines (< 63 ??m) in impoundments and reservoirs (64%) than in river sediments (33%), which also decreased the ability of impoundment sediments to release P to solution and thereby be a sink for P. Although land use and flow regime influenced whether Winooski River sediments acted as a sink or source of P to Lake Champlain, long-term remedial strategies for the catchment should continue to focus on decreasing P losses in agricultural and urban runoff. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Suspended sediment and organic contaminants in the San Lorenzo River, California, water years 2009-2010

    USGS Publications Warehouse

    Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew

    2011-01-01

    This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.

  1. Export Time of Earthquake-Derived Landslides in Active Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Croissant, T.; Lague, D.; Steer, P.; Davy, P.

    2016-12-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment deposits which are eroded and transported along the river network, causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and for landscape dynamics at the timescale of the seismic cycle. Although the export time of suspended sediments from landslides triggered by large-magnitude earthquakes has been extensively studied, the processes and time scales associated to bedload transport remains poorly studied. Here, we study the sediment export of large landslides with the 2D morphodynamic model, Eros. This model combines: (i) an hydrodynamic model, (ii) a sediment transport and deposition model and (iii) a lateral erosion model. Eros is particularly well suited for this issue as it accounts for the complex retro-actions between sediment transport and fluvial geometry for rivers submitted to external forcings such as abrupt sediment supply increase. Using a simplified synthetic topography we systematically study the influence of pulse volume (Vs) and channel transport capacity (QT) on the export time of landslides. The range of simulated river behavior includes landslide vertical incision, its subsequent removal by lateral erosion and the river morphology modifications induced by downstream sediment propagation. The morphodynamic adaptation of the river increases its transport capacity along the channel and tends to accelerate the landslide evacuation. Our results highlight two regimes: (i) the export time is linearly related to Vs/QT when the sediment pulse introduced in the river does not affect significantly the river hydrodynamic (low Vs/QT) and (ii) the export time is a non-linear function of Vs/QT when the pulse undergoes significant morphodynamic modifications during its evacuation (high Vs/QT). By combining our newly derived export time functions with the frequency-magnitude of earthquake intensity and the induced sediment production, we investigate the sediment export of several plausible earthquake scenarii in different mountain ranges (New Zealand, Taiwan, Nepal).

  2. Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankley, G.T.; Lodge, K.; Call, D.J.

    Samples of sediment and biota were collected from sites in the lower Fox River and southern Green Bay to determine existing or potential impacts of sediment-associated contaminants on different ecosystem components of this Great Lakes area of concern. Evaluation of benthos revealed a relatively depauperate community, particularly at the lower Fox River sites. Sediment pore water and bulk sediments from several lower Fox River sites were toxic to a number of test species including Pimephales promelas, Ceriodaphnia dubia, Hexagenia limbata, Selenastrum capricornutum, and Photobacterium phosphorum. An important component of the observed toxicity appeared to be due to ammonia. Evaluation ofmore » three bullhead (Ictalurus) species from the lower Fox River revealed an absence of preneoplastic or neoplastic liver lesions, and the Salmonella typhimurium bioassay indicated relatively little mutagenicity in sediment extracts. Apparent adverse reproductive effects were noted in two species of birds nesting along the lower Fox River and on a confined disposal facility for sediments near the mouth of the river, and there were measurable concentrations of potentially toxic 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and planar polychlorinated biphenyls (PCBs) both in the birds and in sediments from several of the study sites. Based on toxic equivalency factors and the results of an in vitro bioassay with H4IIE rat hepatoma cells, it appeared that the majority of potential toxicity of the PCB/PCDF/PCDD mixture in biota from the lower Fox River/Green Bay system was due to the planar PCBs. The results of these studies are discussed in terms of an integrated assessment focused on providing data for remedial action planning.« less

  3. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  4. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    USGS Publications Warehouse

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  5. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutfin, Nicholas Alan

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek;more » Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.« less

  6. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    NASA Astrophysics Data System (ADS)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream distances.

  7. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in thickness and presence of legacy sediment at the New England sites to the existence or absence of upstream sediment supply in the form of thick (>5 m) glacial deposits. Of the three study watersheds, the South River has the most extensive glacial sediments, having been occupied by one or more ice-dammed lakes during the late Pleistocene, and the most legacy sediment storage.

  8. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using ICP-MS and ICP-OES for trace and major elements respectively. Well crystallized minerals were detected by X-Ray Diffraction (XRD), while amorphous and poorly crystallized phases were identified with scanning and transmission electron microscope (SEM and TEM respectively), combined with Energy Dispersive X-Ray Spectroscopy (EDXS). Such microscopic techniques also provided information about metal carriers. To have an insight about the metal speciation at molecular level, X-Ray Absorption spectroscopy (XAS) was performed at Zn K-edge. The first analyses of Orne sediment cores evidenced different particle size distribution and sediment consolidation levels. Yet the cores showed that below a layer of apparently recent sediments (about 10-20 cm), lie highly contaminated ones. Zn and Pb content in deep sediment layers reach several thousands ppm, where they appeared mainly as Zn and Pb sulphides. Also, the high content of iron in deep sediments resulted in the presence of different iron phases: hematite, wuestite, magnetite, goethite, sulphides (pyrite), as well as undefined iron-silicate. In addition, interstitial waters contained high values of available metals (Zn: 500-35000 ppm, Pb: 150-5700 ppm, Cd: 1-10ppm), which might cause a greater concern than solid-bound metals, especially when river bed sediments are disturbed.

  9. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey

    2014-05-01

    To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of snowmelt in volcanic tributaries of the lahar valley, suggesting a significant hydrological contribution of volcanic catchments to instream suspended sediment transport. Daily fluctuations in discharge caused by snowmelt with debris flow were observed in this measurement period, in which suspended sediment concentration is ~ 10 mg/l during nonflooding periods and ~ 1400 mg/l when flooding occurs. The oxygen and hydrogen isotope measurements, when compared with Japan, indicated that the Kamchatka region water is relatively lightweight, incorporating the effects of topography; and the water from the beginning of the snowmelt is relatively lightweight when compared with water from the end of the snowmelt. The trend line of isotopes from the beginning of the snowmelt was defined by a slope of 6.88 (n = 12; r2 = 0.97), significantly less than that of isotopes from the snowmelt (8.72). The sediment particles collected during the snowmelt were round in shape caused by the extreme flows and high discharge. The shape of the sediment particles collected at the beginning of the snowmelt, assumed to be fresh samples from the hillslope, was sharper caused by the relatively small discharge by moderate snowmelt. Finally, the relationship between river discharge and suspended sediment concentration was indicated. The results are compared with mountainous rivers of Japan and Malaysia. A new diagram is proposed to describe the relationship between suspended sediment concentration and river discharge.

  10. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less

  11. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge exchange and knowledge transfer within the basin to reach the goal of integrated basin management. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Occurrence, distribution and sources of organochlorine pesticides (OCPs) in surface sediments from the Lijiang River, a typical karst river of southwestern China.

    PubMed

    Zhang, Dan; Wang, Yinghui; Yu, Kefu; Li, Pingyang; Zhang, Ruijie; Xu, Yiyin

    2014-11-01

    The Lijiang River is a typical karst river of southwestern China. Karst-aquifer systems are more vulnerable to contamination compared to other types of aquifers. The occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments from the Lijiang River were investigated to evaluate their potential ecological risks. The total concentrations of them in sediments ranged from 0.80 to 18.73 ng/g dry weight (dw) (mean 6.83 ng/g dw). The residue levels of OCPs varied in the order of HCB > HCHs > DDTs. Compositional analyses of OCPs showed that HCHs and DDTs were mainly from historical usage. The ecological risk assessment suggested that HCHs and DDTs in Lijiang River sediments may cause adverse ecological risks, particularly at sites near agricultural areas.

  13. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested in morphodynamics of the river in the alluvial reaches.

  14. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impacts of sewer deposits on the urban river sediment after rainy season and bioremediation of polluted sediment.

    PubMed

    Chang, Suyun; Tang, Yinqi; Dong, Lixin; Zhan, Qiang; Xu, Wei

    2018-05-01

    Impacts of deposits discharged from a municipal pipe on urban river sediment were investigated in the Hucang River in Tianjin, China. At the outlet of the pump station, the average concentrations of total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the sediment increased sharply from 2390, 799, and 14,600 mg/kg to 6500, 3700, and 153,000 mg/kg, respectively, and remained stable at high level after the rainy season. A portion of pollutants would migrate along the river, and the concentration was usually in a negative relationship with the distance. The average Shannon-Wiener value on the upstream section was higher than those on the downstream sections. This revealed that the deposits discharged decreased the bacterial diversity in the sediment, and high concentrations of pollutants may markedly change the bacterial community structure in the sediment. To reduce the pollution of the urban river after rainy season, four kinds of microbial consortiums A (Zhangda), B (Aiersi), C (Qinghe), and D (Inpipe) were applied to bioremediate the polluted sediment in lab scale. Bioaugmentation with microbial consortium A showed good performance on the bioremediation of the polluted sediment. The average removal efficiency of TN, TP, and organic matter reached 35.5, 43.7, and 39.1%, respectively, after 22 days of treatment. Moreover, the bacterial evenness and diversity in the sediment markedly increased, indicating that the microbial environment was more favourable after bioaugmentation and sustainable development would be guaranteed. This study improves our understanding of the impacts of deposits discharged from a stormwater drain system on urban river sediment, and explores the effectiveness of bioaugmentation for the bioremediation of polluted sediment, which will provide the basis of sewer deposit pollution control.

  16. Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa.

    PubMed

    Ekwanzala, Mutshiene Deogratias; Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Keshri, Jitendra; Momba, Ndombo Benteke Maggy

    2017-12-01

    To date, the microbiological quality of river sediments and its impact on water resources are not included in the water quality monitoring assessment. Therefore, the aim of this study was to establish genetic relatedness between faecal coliforms and enterococci isolated from the river water and riverbed sediments of Apies River to better understand the genetic similarity of microorganisms between the sediment and water phases. Indicator bacteria were subjected to a molecular study, which consisted of PCR amplification and sequence analysis of the 16S rRNA and 23S rRNA gene using specific primers for faecal coliforms and enterococci, respectively. Results revealed that the Apies River had high faecal pollution levels with enterococci showing low to moderate correlation coefficient (r 2 values ranged from 0.2605 to 0.7499) compared to the faecal coliforms which showed zero to low correlation (r 2 values ranged from 0.0027 to 0.1407) indicating that enterococci may be better indicator than faecal coliforms for detecting faecal contamination in riverbed sediments. The phylogenetic tree of faecal coliforms revealed a 98% homology among their nucleotide sequences confirming the close genetic relatedness between river water and riverbed sediment isolates. The phylogenetic tree of the enterococci showed that Enterococcus faecalis and Enterococcus faecium are the predominant species found in both river water and riverbed sediments with bootstrap values of ≥99%. A high degree of genetic relatedness between sediment and water isolates indicated a possible common ancestry and transmission pathway. We recommend the microbial monitoring of riverbed sediments as it harbours more diverse microbial community and once resuspended may cause health and environmental problems.

  17. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  18. Controls of tectonics and sediment source locations on along-strike variations in transgressive deposits on the northern California margin

    USGS Publications Warehouse

    Spinelli, G.A.; Field, M.E.

    2003-01-01

    We identify two surfaces in the shallow subsurface on the Eel River margin offshore northern California, a lowstand erosion surface, likely formed during the last glacial maximum, and an overlying surface likely formed during the most recent transgression of the shoreline. The lowstand erosion surface, which extends from the inner shelf to near the shelfbreak and from the Eel River to Trinidad Head (???80 km), truncates underlying strata on the shelf. Above the surface, inferred transgressive coastal and estuarine sedimentary units separate it from the transgressive surface on the shelf. Early in the transgression, Eel River sediment was likely both transported down the Eel Canyon and dispersed on the slope, allowing transgressive coastal sediment from the smaller Mad River to accumulate in a recognizable deposit on the shelf. The location of coastal Mad River sediment accumulation was controlled by the location of the paleo-Mad River. Throughout the remainder of the transgression, dispersed sediment from the Eel River accumulated an average of 20 m of onlapping shelf deposits. The distribution and thickness of these transgressive marine units was strongly modified by northwest-southeast trending folds. Thick sediment packages accumulated over structural lows in the lowstand surface. The thinnest sediment accumulations (0-10 m) were deposited over structural highs along faults and uplifting anticlines. The Eel margin, an active margin with steep, high sediment-load streams, has developed a thick transgressive systems tract. On this margin sediment accumulates as rapidly as the processes of uplift and downwarp locally create and destroy accommodation space. Sequence stratigraphic models of tectonically active margins should account for variations in accommodation space along margins as well as across them. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  20. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to target various sediment grain sizes. Laser diffraction and turbidity also were tested as surrogate technologies. Models between SSC and surrogate variables were developed using ordinary least-squares regression. Acoustic backscatter using the high frequency ADVM at each site was the best predictor of sediment, explaining 93 and 92 percent of the variability in SSC and matching sediment sample data within +8.6 and +10 percent, on average, at the Clearwater River and Snake River study sites, respectively. Additional surrogate models were developed to estimate sand and fines fractions of suspended sediment based on acoustic backscatter. Acoustic backscatter generally appears to be a better estimator of suspended sediment concentration and load over short (storm event and monthly) and long (annual) time scales than transport curves derived solely from the regression of conventional sediment measurements and streamflow. Changing grain sizes, the presence of organic matter, and aggregation of sediments in the river likely introduce some variability in the model between acoustic backscatter and SSC.

  1. Occurrence, distribution, and transport of pesticides, trace elements, and selected inorganic constituents into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.

    2004-01-01

    A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the rivers. Seasonal trends in pesticide concentration were similar to those for dissolved concentrations in fall 2001 and spring 2002, but not in fall 2002. Generally, the pesticides detected in the suspended sediments were the same pesticides detected in the bed sediments, and concentrations were similar, especially at the Alamo River outlet site in spring 2002 and fall 2002. Pesticides generally were not detected in sediments from the off-shore sites; however, the samples from these sites also had greater incidences of matrix interference during analysis. Sediment-associated pesticide concentrations were above equilibrium in water, suggesting a bound fraction of sediment-associated pesticides that are resistant to desorption. Concentrations of trace elements and other inorganic constituents in suspended sediments collected during the fall 2001 followed expected trends with dilution of river-derived minerals owing to highly organic autochthonous production within the Salton Sea Basin. However, calculation of enrichment ratios provided evidence for the bioconcentration of several trace elements, notably selenium in the off-shore biota.

  2. Macrophytes: ecosystem engineers in UK urban rivers

    NASA Astrophysics Data System (ADS)

    Gibbs, H.; Gurnell, A.; Heppell, K.; Spencer, K.

    2012-04-01

    Macrophytes act as ecosystem engineers within river channels in that they have the ability to cause geomorphological and ecological change. They induce reductions in flow velocity and associated sediment accumulation, and their system of underground roots and rhizomes also reinforces the accumulated sediment reducing sediment erosion and resuspension and creating habitats. As sediments, particularly finer-grained, store contaminants including metals, this engineering means that in the specific context of urban rivers where sediments are more likely to be contaminated, macrophytes trap and hold contaminated sediments creating a potentially important sink of metals. However, depending on the ability for the macrophyte to reinforce the sediment and reduce erosion and resuspension, there is the potential for the sink to turn in to a source and metals to be released in to the overlying water. This research therefore looks at the ecosystem engineering ability of common macrophytes in UK urban rivers by looking at: (i) the effect upon flow velocity and sediment accumulation of Sparganium erectum (branched bur-reed); (ii) the sediment reinforcement ability of both S. erectum, Typha latifolia (bulrush) and Phalaris arundinacea (reed canary grass); and, (iii) the storage of metals within the sediment, overlying water and the macrophytes. Research was undertaken on the River Blackwater, an urban river in Surrey, UK which has extensive macrophyte growth. Flow velocity measurements and fine sediment depths were recorded both within and outside of dense stands of S. erectum. The uprooting resistance (as an indicator of sediment reinforcement) was measured for three species: S. erectum, T. latifolia and P. arundinacea. Additionally, some preliminary sampling was undertaken of the sediment, overlying water and the macrophytes to determine metal storage. Lower flow velocities and greater volumes of fine sediment were recorded within the stands of S. erectum as opposed to the adjacent areas of open channel with minimal macrophyte growth. Uprooting resistances were considerable and differences were found both between species and over the annual growth cycle. T. latifolia showed the greatest uprooting resistance and P. arundinacea the lowest uprooting resistance. Maximum uprooting resistance for all species was in June. The sampled sediments were found to be a store of metals. For all macrophyte species, the below-ground tissues (roots and rhizomes) generally had greater metal concentrations than above-ground tissues (stem and leafs). The results from this research will help inform the use of macrophytes in the management of sediment-contaminated urban rivers.

  3. Source apportionment of trace metals in river sediments: A comparison of three methods.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-04-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4-42.2%), followed by mining wastewater (29.0-33.5%), and agricultural activities (18.2-18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediments from the Yellow and Yangtze Rivers, China.

    PubMed

    Gao, Lirong; Huang, Huiting; Liu, Lidan; Li, Cheng; Zhou, Xin; Xia, Dan

    2015-12-01

    Polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are toxic environmental pollutants that are often found in sediments. The Yangtze and Yellow rivers in China are two of the largest rivers in Asia and are therefore important aquatic ecosystems; however, few studies have investigated the PCDD/F and PCB content in the sediments of these rivers. Accordingly, this study was conducted to generate baseline data for future environmental risk assessments. In the present study, 26 surface sediments from the middle reaches of the Yellow and Yangtze rivers were analyzed for PCDD/Fs and dioxin-like (dl) PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yellow River were 2.1-19.8, 1.11-9.9, and 0.08-0.57 pg/g (dry weight), respectively. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yangtze River were 6.1-84.9, 1.8-24.1, and 0.13-0.29 pg/g (dry weight), respectively. Total organic carbon and dl-PCB contents in the Yellow River were significantly correlated (Spearman's correlation coefficient, r = 0.64, P < 0.05). It is well known that total organic carbon plays a role in the transport and redistribution of dl-PCB. Principal component analysis indicated that PCDD/Fs may arise from pentachlorophenol, sodium pentachlorophenate, and atmospheric deposition, while dl-PCBs likely originate from burning of coal and wood for domestic heating. The dioxin levels in the river sediments examined in this study were relatively low. These findings advance our knowledge regarding eco-toxicity and provide useful information regarding contamination sources.

  5. Suspended sediment in the St. Francis River at St. Francis, Arkansas, 1986-95

    USGS Publications Warehouse

    Green, W. Reed; Barks, C. Shane; Hall, Alan P.

    2000-01-01

    Daily suspended-sediment concentrations were analyzed from the St. Francis River at St. Francis, Arkansas during 1986 through 1995. Suspended-sediment particle size distribution was measured in selected samples from 1978 through 1998. These data are used to assess changes in suspended-sediment concentrations and loads through time. Suspended-sediment concentrations were positively related to discharge. At higher flows, percent silt-clay was negatively related to discharge. Nonparametric trend analysis (Mann-Kendall test) of suspended-sediment concentration over the period of record indicated a slight decrease in concentration. Flow-adjusted residuals of suspended-sediment concentration also decreased slightly through the same period. No change was identified in annual suspended-sediment load or annual flow-weighted concentration. Continued monitorig of daily-suspended-sediment concentrations at this site and others, and similar data analysis at other sites where data are available will provide a better understanding of sediment transport withint the St. Francis River.

  6. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment. The model is then applied to a high resolution (5-10 m) digital elevation model of the Poerua catchment in New Zealand which has been impacted by the effect of a large landslide during the last 15 years. We investigate several plausible Alpine Faults earthquake scenarios to study the propagation of the sediment along a complex river network. We characterize and quantify the sediment pulse export time and mechanism for this river configuration and show its impact on the alluvial plain evolution. Our findings have strong implications for the understanding of aggradation rates and the temporal persistence of induced hazards in the alluvial plain as well as of sediment transfers in active mountain belts.

  7. Channel evolution on the dammed Elwha River, Washington, USA

    USGS Publications Warehouse

    Draut, A.E.; Logan, J.B.; Mastin, M.C.

    2011-01-01

    Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.

  8. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Ruby; Singh, Sudhir Kumar; Shukla, D. N.

    2017-11-01

    The present study includes a systematic analysis of sediment contamination by heavy metals of the River Ghaghara flowing through the Uttar Pradesh and Bihar in Indian Territory. To estimate the geochemical environment of the river, seven heavy metals, namely Co, Cu, Cr, Ni, Cd, Zn, and Pb were examined from the freshly deposited river bed sediment. All the sediment samples were collected on a seasonal basis for the assessment of fluctuation in 2014-2015 and after preparation samples were analyzed using standard procedure. Result showed that heavy metal concentration ranged between 11.37 and 18.42 mg/kg for Co, 2.76 and 11.74 mg/kg for Cu, 61.25 and 87.68 mg/kg for Cr, 15.29 and 25.59 mg/kg for Ni, 0.21 and 0.28 mg/kg for Cd, 13.26 and 17.59 mg/kg for Zn, 10.71 and 14.26 mg/kg for Pb in different season. Metal contamination factor indicates the anthropogenic input in the river sediment was in the range of (0.62-0.97) for Co, (0.04-0.26) for Cu, (0.68-0.97) for Cr, (0.22-0.38) for Ni, (0.70-0.93) for Cd, (0.14-0.19) for Zn, and (0.54-0.71) for Pb. The highest contamination degree of the sediment was noticed as 4.01 at Ayodhya and lowest as 3.16 at Katerniaghat. Geo-accumulation index was noted between (0 and 1) which showed that sediment was uncontaminated to moderately contaminated and may have adverse affects on freshwater ecology of the river. Pollution load index (PLI) was found highest at Chhapra which was 0.45 and lowest at Katerniaghat which was 0.35 and it indicates that the river sediment has a low level of contamination. Significant high correlation was observed between Co, Cu, and Zn, it suggests same source of contamination input is mainly due to human settlement and agriculture activity. Positive correlation between Zn, Co, Cu, Cr, and Ni indicated a natural origin of these elements in the river sediment. Cluster analysis suggests grouping of similar polluted sites. The strong similarity between Co, Zn, Pb, Ni, Cu, and Cd showed relationship of these metals come from the same origin, which is possibly from natural and anthropogenic input which was also confirmed by correlation analysis. Using the various pollution indicators it was found that the river bed sediment is less contaminated by toxic metals during the study but the sediment quality may degrade in the near future due to increasing anthropogenic inputs in the river basin, hence proper management strategies are required to control the direct dumping of wastewater in the river.

  9. Arsenic geochemistry of alluvial sediments and pore waters affected by mine tailings along the Belle Fourche and Cheyenne River floodplains

    USGS Publications Warehouse

    Pfeifle, Bryce D.; Stamm, John F.; Stone, James J.

    2018-01-01

    Gold mining operations in the northern Black Hills of South Dakota resulted in the discharge of arsenopyrite-bearing mine tailings into Whitewood Creek from 1876 to 1977. Those tailings were transported further downstream along the Belle Fourche River, the Cheyenne River, and the Missouri River. An estimated 110 million metric tons of tailings remain stored in alluvial deposits of the Belle Fourche and Cheyenne Rivers. Pore-water dialysis samplers were deployed in the channel and backwaters of the Belle Fourche and Cheyenne Rivers to determine temporal and seasonal changes in the geochemistry of groundwater in alluvial sediments. Alluvial sediment adjacent to the dialysis samplers were cored for geochemical analysis. In comparison to US Environmental Protection Agency drinking water standards and reference concentrations of alluvial sediment not containing mine tailings, the Belle Fourche River sites had elevated concentrations of arsenic in pore water (2570 μg/L compared to 10 μg/L) and sediment (1010 ppm compared to < 34 ppm), respectively. Pore water arsenic concentration was affected by dissolution of iron oxyhydroxides under reducing conditions. Sequential extraction of iron and arsenic from sediment cores indicates that substantial quantities of soluble metals were present. Dissolution of arsenic sorbed to alluvial sediment particles appears to be affected by changing groundwater levels that cause shifts in redox conditions. Bioreductive processes did not appear to be a substantial transport pathway but could affect speciation of arsenic, especially at the Cheyenne River sampling sites where microbial activity was determined to be greater than at Belle Fourche sampling sites.

  10. The offshore export of sand during exceptional discharge from California rivers

    USGS Publications Warehouse

    Warrick, Jonathan A.; Barnard, Patrick L.

    2012-01-01

    Littoral cells along active tectonic margins receive large inputs of sand and gravel from coastal watersheds and commonly lose this sediment to submarine canyons. One hypothesis is that the majority of coarse (sand and gravel) river sediment discharge will be emplaced within and immediately “resupply” local littoral cells. A competing hypothesis is that the infrequent, large floods that supply the majority of littoral sediment may discharge water-sediment mixtures within negatively buoyant hyperpycnal plumes that transport sediment offshore of the littoral cell. Here we summarize pre- and post-flood surveys of two wave-dominated California (United States) river deltas during record to near-record floods to help evaluate these hypotheses: the 1982–1983 delta at the San Lorenzo River mouth and the 2005 delta at the Santa Clara River mouth. Flood sedimentation at both deltas resulted in several meters of aggradation and hundreds of meters of offshore displacement of isobaths. One substantial difference between these deltas was the thick (>2 m) aggradation of sand on the inner shelf of the Santa Clara River delta that contained substantial amounts (∼50%) of littoral-grade sediment. Once deposited on the inner shelf, only a fraction (∼20%) of this river sand was observed to migrate toward the beach over the following 5 yr. Furthermore, simple hypopycnal plume behavior could not explain deposition of this sand on the inner shelf. Thus, during an exceptional flood a substantial amount of littoral-grade sand was exported offshore of the littoral system at the Santa Clara River mouth—likely from hyperpycnal plume processes—and was deposited on the inner shelf.

  11. Maximum Flow Efficiency in an Anabranching River, Magela Creek, Northern Australia

    NASA Astrophysics Data System (ADS)

    Jansen, J. D.; Nanson, G. C.

    2002-12-01

    In this field- and laboratory-based study, we demonstrate that the development of anabranching channels in some rivers increases the conveyance of sediment and water, compared with a single channel at the same flow discharge. That is, under certain conditions, anabranching channels exhibit greater sediment transporting capacity per unit available stream power. Anabranching is a globally widespread river pattern noted in diverse physiographic, hydrologic and sedimentologic environments, and recent efforts have sought to unravel controls on their origin and maintenance. It is widely held that most rivers form a single-channel in order to minimise boundary roughness while conveying water and sediment, but do all rivers show a tendency to develop a single channel? And if so, what factors lead to long-term anabranching? The observation that anabranching commonly develops in environments where water and sediment conveyance is maintained with little or no recourse to increasing energy slope prompted the hypothesis that rivers may adopt a multiple channel pattern in order to optimise their efficiency where they cannot otherwise increase slope. It is reasoned that development of a system of multiple channels reduces total flow width and raises mean flow depth, thereby maximising sediment transport per unit area of the channel bed and maintaining or enhancing water and sediment throughput. In testing the hypothesis we present: (1) results of a field experiment in which hydraulic variables and bedload discharge are measured and compared for single-channel versus multichannel reaches of the same river (Magela Creek, northern Australia); (2) comparison of these field results with bedload transport modelling via well known bedload equations; and (3) results of an experimental flume study comparing hydraulic variables and sediment flux in single-channel versus divided flow. Magela Creek is representative of several anabranching systems draining the Alligators Rivers Region of monsoonal northern Australia. We investigate the dynamics of flows up to four-times bankfull discharge and find that at high flowstage hydraulic variables interact in a complicated manner that precludes conventional hydraulic geometry analytical methods. The complex trends among hydraulic variables reflect the differential and stage-dependent interactions between bank vegetation and channel roughness. Abrupt decline in overbank velocity promotes proximal sedimentation in the form of vertically-accreting islands, levees and sand splays - mechanisms of sediment sequestration that may eventually lead to channel avulsion and creation of new channels. Given that river pattern reveals much about river dynamics, the prevalence of anabranching - particularly among the world's largest rivers - invites the speculation that a fundamental physical principle may underpin the widespread adoption of anabranching; it may be the most efficient means of transmitting large water and sediment discharges in alluvial rivers. However, just as different equilibrium states are expected to exist in braiding, meandering and straight rivers, we anticipate that other anabranching rivers may differ in their efficiency. Moreover, the development of sediment and water flux imbalances between anabranches is a highly likely outcome of their independent functioning. Channel atrophy coupled with in-channel sedimentation lies at the heart of channel avulsion and abandonment processes and therefore is central to the anabranching pattern.

  12. The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China.

    PubMed

    Yang, Silin; Zhao, Ning; Zhou, Dequn; Wei, Rong; Yang, Bin; Pan, Bo

    2016-04-01

    The concentration and chemical speciation of arsenic (As) in different environmental matrixes (water, sediment, agricultural soils, and non-agricultural soils) were investigated in the Nanpan River area, the upstream of Pearl River, China. The results did not show any obvious transport of As along the flow direction of the river (from upstream to downstream). Total As concentrations in sediment were significantly different from those in agricultural soil. According to the comparison to quality standards, the As in sediments of the studied area have potential ecological risks and a minority of the sampling sites of agricultural soils in the studied area were polluted with As. As speciations were analyzed using sequential extraction and the percentage of non-residual fraction in sediment predominated over residual fraction. We thus believe that As in the studied area was with low mobility and bioavailability in sediment, agricultural soils, and non-agricultural soils. However, the bioavailability and mobility of As in sediment were higher than in both agricultural and non-agricultural soils, and thus, special attention should be paid for the risk assessment of As in the river in future studies.

  13. Temporal variability in the suspended sediment load and streamflow of the Doce River

    NASA Astrophysics Data System (ADS)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  14. Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan

    2013-04-01

    Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest Monsoon. Thus, Pahang River estuary found to be directly affected by the monsoon factors especially due to high amount of river discharge and surface erosion from catchment areas. This study provides several useful understanding on the hydrodynamic and sediment transport of Pahang River estuary and catchment area. Keywords: Pahang River Estuary, hydrodynamic, sediment transport, MIKE21 MT

  15. Magnitude and timing of downstream channel aggradation and degradation in response to a dome-building eruption at Mount Hood, Oregon

    USGS Publications Warehouse

    Pierson, Thomas C.; Pringle, Patrick T.; Cameron, Kenneth A.

    2011-01-01

    A dome-building eruption at Mount Hood, Oregon, starting in A.D. 1781 and lasting until ca. 1793, produced dome-collapse lithic pyroclastic flows that triggered lahars and intermittently fed 108 m3 of coarse volcaniclastic sediment to sediment reservoirs in headwater canyons of the Sandy River. Mobilization of dominantly sandy sediment from these reservoirs by lahars and seasonal floods initiated downstream migration of a sediment wave that resulted in a profound cycle of aggradation and degradation in the lowermost reach of the river (depositional reach), 61-87 km from the source. Stratigraphic and sedimentologic relations in the alluvial fill, together with dendrochronologic dating of degradation terraces, demonstrate that (1) channel aggradation in response to sediment loading in the headwater canyons raised the river bed in this reach at least 23 m in a decade or less; (2) the transition from aggradation to degradation in the upper part of this reach roughly coincided with the end of the dome-building eruption; (3) fluvial sediment transport and deposition, augmented by one lahar, achieved a minimum average aggradation rate of ~2 m/yr; (4) the degradation phase of the cycle was more prolonged than the aggradation phase, requiring more than half a century for the river to reach its present bed elevation; and (5) the present longitudinal profile of the Sandy River in this reach is at least 3 m above the pre-eruption profile. The pattern and rate of channel response and recovery in the Sandy River following heavy sediment loading resemble those of other rivers similarly subjected to very large sediment inputs. The magnitude of channel aggradation in the lower Sandy River, greater than that achieved at other volcanoes following much larger eruptions, was likely enhanced by lateral confinement of the channel within a narrow incised valley. A combination of at least one lahar and winter floods from frequent moderate-magnitude rainstorms and infrequent very large storms was responsible for flushing large volumes of sediment to the depositional reach. These conditions permitted a sedimentation response in the Sandy River that approached the magnitude of channel aggradation resulting elsewhere from large explosive eruptions and high-intensity rainfall regimes, despite the fact that the Sandy River aggradation was in response to an unremarkable dome-building eruption in a climate dominated by low to moderate rainfall intensities.

  16. Sediment-quality assessment of Franklin D. Roosevelt Lake and the upstream reach of the Columbia River, Washington, 1992

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Cox, S.E.; Munn, M.D.; Schumaker, R.J.; Block, E.K.

    2001-01-01

    Elevated concentrations of trace elements were found in bed sediment of Lake Roosevelt and the Columbia River, its principal source of inflow. Trace-element concentrations in whole water samples did not exceed criteria for freshwater organisms. Bed sediments of Lake Roosevelt were analyzed for organic compounds associated with wood-pulp waste. Dioxins and furans were found in suspended sediment and water of the Columbia River. Abundance and diversity of benthic invertebrate communities were analyzed.

  17. Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay

    USGS Publications Warehouse

    Simon, N.S.

    2005-01-01

    The fate of antibiotics that bind to riverine sediment is not well understood. A solution used in geochemical extraction schemes to determine loosely bound species in sediments, 1 M MgCl2 (pH 8), was chosen to determine loosely bound, and potentially bioavailable, tetracycline antibiotics (TCs), including oxytetracycline (5-OH tetracycline) (OTC) in sediment samples from two rivers on the eastern shore of the Chesapeake Bay. Bottom sediments were collected at sites upstream from, at, and downstream from municipal sewage-treatment plants (STPs) situated on two natural waterways, Yellow Bank Stream, MD, and the Pocomoke River, MD. Concentrations of easily desorbed OTC ranged from 0.6 to approximately 1.2 ??g g-1 dry wt sediment in Yellow Bank Stream and from 0.7 to approximately 3.3 ??g g-1 dry wt sediment in the Pocomoke River. Concentrations of easily desorbable OTC were generally smaller in sediment upstream than in sediment downstream from the STP in the Pocomoke River. STPs and poultry manure are both potential sources of OTC to these streams. OTC that is loosely bound to sediment is subject to desorption. Other researchers have found desorbed TCs to be biologically active compounds.

  18. Sediment quality in the north coastal basin of Massachusetts, 2003

    USGS Publications Warehouse

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.

  19. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    NASA Astrophysics Data System (ADS)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  20. Sediment pollution of the Elbe River side structures - current research

    NASA Astrophysics Data System (ADS)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the above mentioned research was possible thanks to the support of numerous Czech and German projects (GAUK, GAČR, SVV, VaV, PRVOUK, ELSA etc.).

  1. Human Impact on the Geomorphological Evolution of the Opak River Following the 2010 Large Volcanic Event of the Merapi (Indonesia)

    NASA Astrophysics Data System (ADS)

    Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K. W.; Wibowo, S. B.

    2016-12-01

    During large eruptions, active volcanos may introduce very large quantities of sediment to the drainage system through tephra falls and pyroclastic flows, thus modifying the river system. Once remobilized, the sediment inputs propagate downstream as a sediment wave modifying the channel geometry of the river and reloading the sediment cascade of the catchments. Considering the extreme nature of the volcanic events, the parameters that control the post-eruption evolution of the river system are generally only described as natural and the role played by human activities seems negligible. Communities that live on the volcano slopes and foothills are rather considered to suffer from natural disasters associated with the eruption and its consequences (lahars, etc.) or take advantage of the benefits of the volcanic environment (rich soil, mining and geothermal resources, etc.). This study examines the impact of human influence on the fluvial readjustment of a Javanese river impacted by a major eruption of the Merapi volcano (Indonesia) in October/November 2010. The basin of the Opak River was subject to substantial sediment input related to massive pyroclastic deposits that were remobilized by numerous lahars during the year after the eruption. Two study sites were equipped in order to evaluate the morphodynamic evolution of the riverbed of the Opak River. Topographic surveys, bedload particle marking and suspended sediment sampling revealed an important sediment mobilization during efficient flash-floods. Surprisingly, no bed aggradation related to the progradation of a sediment wave was observed. Two years after the eruptive event, marked bed incision was observed. The Opak River readjustment differs from that of other fluvial systems affected by massive eruptions in two ways. Firstly, the local population massively extracted the sand and blocks injected by the eruption as they represent a valuable economic resource. Secondly, several dams trapped the major part of the sediment load remobilized by lahars.

  2. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does indicate some mixing from sources in adjacent provinces.

  3. Mouths of the Amazon River, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Amazon River Mouth (0.0, 51.0W), a large sediment plume can be seen expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the delta as a result of the northwest flowing coastal Guyana Current. In recent years, the flow of the Amazon has become heavily laden with sediment as soil runoff from the denuded landscape of the interior enters the Amazon River (and other rivers) drainage system.

  4. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions and pollution history. The other reason maybe the article is lack of research on pH, salinity and others factors which may affect adsorption and desorption.

  5. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  6. Lateral and vertical heterogeneity of flow and suspended sediment characteristics during a dam flushing event, in high velocity conditions

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu

    2015-04-01

    The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed to measure the grain size distribution with a LISST Portable XR, as well as the settling velocities of the suspended sediments with the SCAF device (Wendling et al., 2013). Even if the measurements were difficult due to the flow conditions, some observations are relevant. For example, we observed a spatial heterogeneity of the settling velocity and the grain size of the suspended sediments into the cross section, whereas the SSC was almost homogeneous at the same time. In particular, these measurements show that the sediment flux can be calculated from the single turbidimeter located on the left bank. Moreover, the hydrodynamic measurements highlight the heterogeneity of the settling velocity due to the flow conditions. The first conclusions of these field measurements could be of great importance to assess numerical models, when they are used to estimate sediment deposits in river. V. WENDLING, N. GRATIOT, C. LEGOUT, I.G. DROPPO, A.J. MANNING, G. ANTOINE, H. MICHALLET, M. JODEAU : A rapid method for settling velocity and flocculation measurement within high suspended sediment concentration rivers. INTERCOH 2013, Gainesville, Florida.

  7. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.

  8. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to predict the sediment scour load for daily mean streamflows greater than 300,000 cubic feet per second for the Lower Susquehanna River reservoirs. A compilation of data from various sources produced a range in total sediment transported through the reservoir system and allowed for apportioning to source (watershed or scour) for various streamflows. In 2011, Conowingo Reservoir was estimated to be about 92 percent of sediment storage capacity. Since construction of Conowingo Dam in 1929 through 2012, approximately 470 million tons of sediment was transported down the Susquehanna River into the reservoir system, approximately 290 million tons were trapped, and approximately 180 million tons were transported to Chesapeake Bay. Spatial and estimated total sand deposition in Conowingo Reservoir based on historical sediment cores indicated continued migration of sand downgradient toward the dam and the winnowing of silts and clays near the dam due to scour.

  9. Hydrologic data for computation of sediment discharge : Toutle and North Fork Toutle Rivers near Mount St. Helens, Washington, water years 1980-84

    USGS Publications Warehouse

    Childers, Dallas; Hammond, Stephen E.; Johnson, William P.

    1988-01-01

    Immediately after the devastating May 18, 1980, eruption of Mount St. Helens, a program was initiated by the U.S. Geological Survey to study the streamflow and sediment characteristics of streams impacted by the eruption. Some of the data gathered in that program are presented in this report. Data are presented for two key sites in the Toutle River basin: North Fork Toutle River near Kid Valley, and Toutle River at Tower Road, near Silver Lake. The types of data presented are appropriate for use with sediment transport formulas; however, the data are also intended for use in a wide variety of additional applications. The data presented in this report are unique because they delineate flow conditions possessing great potential fo sediment transport. The data define unusually high suspended-sediment concentration. Data defining hydraulic, peak discharge, suspended-sediment, and bed-material characteristics are presented. (USGS)

  10. Estimation of Ravine Sediment production using MIKE 11 model, in the lower Le Sueur Watershed, Minnesota

    NASA Astrophysics Data System (ADS)

    Azmera, L. A.; Miralles-Wilhelm, F. R.; Melesse, A. M.; Belmont, P.; Jennings, C. E.; Thomas, A.; Khalif, F.

    2008-12-01

    A study of sediment dynamics in the Le Sueur River basin, southern Minnesota has been initiated with the goal of developing an integrated sediment budget. Preliminary analysis of the sediment load to the Minnesota River has shown that the Le Sueur River contributes substantial amount of the sediment transport and deposition. Many deeply incised ravines exist, especially towards the lower Le Sueur River. The ravines are believed to be one of the major sediment producing sources in the river basin. Hence the ravine sediment production should be accounted for in the sediment budget. This study concentrates on the hydrology of the ravines and evaluates the sediment budget at the ravine scale. Field observations from summer 2008 show that most of the bluffs along the main stem of both ravines are actively eroding. Also, landsliding of the steep ravine valley walls and rapid incision of the fluvial channels within the ravine are producing sediment. Several large fill terraces are present along the main stem, towards the mouth of the ravines. Recent incision through these extensive fill terraces may be another sediment producing source. Sediment storage in the ravines also occurs, behind woody debris jams as well as in locations where local baselevel has been raised by the insertion of a culvert. The sediment budget of the ravines would be quantified as the difference between the storage of sediment and the sum of sediments loads derived from the uplands, as well as the bluffs and terraces inside the ravines. Primary locations of major bluffs, terraces, gullies and drainage tiles in the gauged ravines were mapped using GPS. A database of major bluff, terraces, and drainage tiles was built in ArcGIS. Sediment samples from ravine heads, bluffs, terraces and ravine mouth were collected to study the grain size distribution and stratigraphy of major bluffs along the ravines. Sediment transport in the ravines will be modeled using MIKE 11 (DHI group), a dynamic, one-dimensional modeling tool. The model will use data on sediment grain diameter and standard deviation of grain size, soil cover, precipitation and the high resolution LiDAR digital elevation model of the ravines, to quantify the total sediment transport. Key words: Le Sueur River, sediment budget, ravine, Mike11, GIS, Minnesota

  11. Acetoclastic methane formation from Eucalyptus detritus in pristine hydrocarbon-rich river sediments by Methanosarcinales.

    PubMed

    Beckmann, Sabrina; Manefield, Mike

    2014-12-01

    Pristine hydrocarbon-rich river sediments in the Greater Blue Mountains World Heritage Area (Australia) release substantial amounts of methane. The present study aimed to unravel for the first time the active methanogens mediating methane formation and exploiting the bacterial diversity potentially involved in the trophic network. Quantitative PCR of 16S rRNA gene and functional genes as well as 454 pyrosequencing were used to address the unknown microbial diversity and abundance. Methane-releasing sediment cores derived from three different river sites of the Tootie River. Highest methane production rates of 10.8 ± 0.5 μg g(-1)(wet weight) day(-1) were detected in 40 cm sediment depth being in congruence with the detection of the highest abundances of the archaeal 16S rRNA gene and the methyl-coenzyme M reductase (mcrA) genes. Stable carbon and hydrogen isotopic signatures of the produced methane indicated an acetoclastic origin. Long-term enrichment cultures amended with either acetate or H2/CO2 revealed acetoclastic methanogenesis as key methane-formation process mediated by members of the order Methanosarcinales. Conditions prevailing in the river sediments might be suitable for hydrocarbon-degrading bacteria observed in the river sediments that were previously unclassified or closely related to the Bacteroidetes/Chlorobi group, the Firmicutes and the Chloroflexi group fuelling acetoclastic methanogensis in pristine river sediments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  13. Sediment Transport Over Run-of-River Dams

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  14. Use of stable isotopes of carbon and nitrogen to identify sources of organic matter to bed sediments of the Tualatin River, Oregon

    USGS Publications Warehouse

    Bonn, Bernadine A.; Rounds, Stewart A.

    2010-01-01

    The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the presence of more labile organic matter in these areas. Results from this study indicate that strategies to improve oxygen conditions in the Tualatin River are likely to be more successful if they target sources of soil, leaf litter, and other terrestrially derived organic materials to the river rather than the instream growth of algae.

  15. Long term numerical investigations of measures to increase the structural variability and the fish passability of the river Iller

    NASA Astrophysics Data System (ADS)

    Seitz, Lydia; Haun, Stefan; Wieprecht, Silke

    2017-04-01

    The river Iller origins at Oberstdorf in the Allgäu Alps and drains after 147 km into the river Danube. During the past decades the river Iller was considerable modified due to hydropower development and due to the construction of weirs and ramps to avoid ongoing river bed deepening. As consequence between km 52.9 - 39.3 almost equilibrium conditions of the river bed were reached. The aim of this study is to investigate with a 1D - 2D coupled numerical sediment transport model the long term effects (50 years) of different measures, which will be implemented to improve structural variability of the river Iller and to improve the passability for fishes. In a first step long term morphological trends will be investigated for replacing weirs by ramps. This will enable and improve the passability for fishes and sediments. In a second step the remobilization of already deposited sediments is investigated. Therefore the weir downstream of a gravel bar will be lowered stepwise (between 1.0 and 2.5 m) to see under which conditions the sediments can be remobilized. In a third step artificial sediment feeding will be simulated to find adequate spots for the sediment supply and to investigate the amount of sediments which have to be added to the river to improve structural variability of the river Iller. The numerical model framework BASEMENT, developed at the ETH Zürich, is used for the investigations. In the model fractional sediment transport is implemented with 9 grain sizes between 0.5 mm and 128 mm. Two layers are implemented to simulate the armouring of the river bed. Due to absence of very fine sediments and the fact that bed load transport is the governing sediment transport mode the Meyer-Peter and Müller bed load transport formula, with an extension by Hunziker for multiple grain classes, is used for the simulations. The critical Shields parameter, used to obtain the critical shear stress in BASEMENT, is evaluated as a function of the dimensionless grain diameter accordingly to van Rijn. The results show that the passability can be increased by replacing weirs by ramps (three in total) without negative morphological effects on this section. Furthermore, the simulated results show that the deposited sediments can be remobilized by lowering the weir, resulting in ongoing dynamic morphological bed changes and so a structural variability of the river. However, it can be seen that this dynamic processes fade away over time due to the large number of hydraulic structures along the river. The results of the artificial sediment supply (one time supply with an amount between 5,000 to 12,500 m3) shows a similar trend as the lowering of the weir over time, where right at the beginning morphological bed changes can be seen, these processes decrease and even stop within a couple of years.

  16. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  17. A geologic approach to field methods in fluvial geomorphology

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  18. Sediment loads in the Red River of the North and selected tributaries near Fargo, North Dakota, 2010--2011

    USGS Publications Warehouse

    Galloway, Joel M.; Nustad, Rochelle A.

    2012-01-01

    Natural-resource agencies are concerned about possible geomorphic effects of a proposed diversion project to reduce the flood risk in the Fargo-Moorhead metropolitan area. The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected data in the spring of 2010 and 2011, and from June to November 2011, during rainfall-runoff events and base-flow conditions to provide information on sediment transport. The data were used to examine sediment concentrations, loads, and particle-size distributions at nine selected sites in the Red River and its tributaries near the Fargo-Moorhead metropolitan area. Suspended-sediment concentration varied among sites in 2010 and 2011. The least suspended-sediment concentrations were measured at the Red River (site 1) and the Buffalo River (site 9), and the greatest concentrations were measured at the two Sheyenne River sites (sites 3 and 4). Estimated daily suspended-sediment loads were highly variable in 2010 and 2011 in the Red River and its tributaries, with the greatest loads occurring in the spring and the smallest loads occurring in the winter. For the Red River, daily suspended-sediment loads ranged from 26 to 3,500 tons per day at site 1 and from 30 to 9,010 tons per day at site 2. For the Sheyenne River, daily loads ranged from less than 10 to 10,200 tons per day at site 3 and from less than 10 to 4,530 tons per day at site 4. The mean daily load was 191 tons per day in 2010 and 377 tons per day in 2011 for the Maple River, and 610 tons per day in 2011 for the Wild Rice River (annual loads were not computed for 2010). For the three sites that were only sampled in 2011 (sites 7, 8 and 9), the mean daily suspended-sediment loads ranged from 40 tons per day at the Lower Branch Rush River (site 8) to 118 tons per day at the Buffalo River (site 9). For sites that had estimated loads in 2010 and 2011 (sites 1–5), estimated annual (March–November) suspended-sediment loads were greater in 2011 compared to 2010. In 2010, annual loads ranged from 68,650 tons per year at the Maple River (site 5) to 249,040 tons per year at the Sheyenne River (site 3). In 2011, when all nine sites were sampled, annual loads ranged from 8,716 tons per year at the Lower Branch Rush River (site 8) to 552,832 tons per year at the Sheyenne River (site 3). With the exception of the Sheyenne River (site 4), the greatest monthly loads occurred in March for 2010, with as little as 27 percent (site 1) and as much as 42 percent (site 3) of the annual load occurring in March. For 2011, the greatest monthly loads occurred in April, ranging from 33 percent (site 1) to 63 percent (site 7) of the 2011 annual load. A relatively small amount of sediment was transported past the nine sites as bedload in 2010 and 2011. For most of the samples collected at the nine sites, the bedload composed less than 1 percent of the calculated daily total sediment load.

  19. Laminar laboratory rivers

    NASA Astrophysics Data System (ADS)

    Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Éric; Métivier, François

    2014-05-01

    A viscous fluid flowing over fine plastic grains spontaneously channelizes into a few centimeters-wide river. After reaching its equilibrium shape, this stable laboratory flume is able to carry a steady load of sediments, like many alluvial rivers. When the sediment discharge vanishes, the river size, shape and slope fit the threshold theory proposed by Glover and Florey (1951), which assumes that the Shields parameter is critical on the channel bed. As the sediment discharge is increased, the river widens and flattens. Surprisingly, the aspect ratio of its cross section depends on the sediment discharge only, regardless of the water discharge. We propose a theoretical interpretation of these findings based on the balance between gravity, which pulls particles towards the center of the channel, and the diffusion of bedload particles, which pushes them away from areas of intense bedload.

  20. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    USGS Publications Warehouse

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  1. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    NASA Astrophysics Data System (ADS)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  2. (210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.

    PubMed

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-05-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350km sector of the river. The (21)(0)Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess (21)(0)Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess (21)(0)Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the (21)(0)Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  4. Recent sediments of the St. Marks River coast, northwest Florida, a low-energy, sediment-starved estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highly, A.B.; Donoghue, J.F.; Garrett, C.

    1994-03-01

    The St. Marks river of northwest Florida drains parts of the central panhandle of northwestern Florida, and a small area in southwestern Georgia. It traverses nearly 56.3 kilometers through a watershed of 1,711 square kilometers. The slow-moving river carries little sediment and terminates in Apalachee Bay, a low-energy embayment in the northeasternmost Gulf of Mexico. The coastal region is characterized by mudflats, seagrass beds, and an absence of sandy beaches and barrier islands. Clastic sediments of the coast and shelf rest on a shallow-dipping carbonate platform. The upper surface of the platform is locally karstic. As a result, like othermore » rivers in this region of northwest Florida, the St. Marks watershed is marked by sinkholes and disappearing streams. The fact that the river travels underground through part of its lower watershed serves to trap or sieve some of its clastic load. In the estuary, the undulating karst topography causes the estuarine sediments to vary in thickness from 0 to 4+ meters. The concave shape of the coastline and its orientation with respect to prevailing winds result in low average wave energy. Sedimentation is therefore controlled by riverine and tidal forces. The relatively low energy conditions result in good preservation of the sedimentary record in the St. Marks estuary. A suite of sediment cores has been collected in the lower river, estuary and adjacent Gulf of Mexico. Lead-210 dating results indicate a slow average sedimentation rate ([approximately] 1mm/yr). Investigation of sedimentation rates and sediment characteristics over time in the St. Marks estuary indicate that sedimentologic conditions in this low-energy environment have been relatively stable during the recent geologic history of the estuary.« less

  5. Denitrification in the Mississippi River network controlled by flow through river bedforms

    USGS Publications Warehouse

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering.

  6. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    USGS Publications Warehouse

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos to the main stem of the Orinoco. After mixing into the main stem, there seems to be little subsequent alteration of sediment. ?? 1991.

  7. Basin scale controls on CO2 and CH4 emissions from the Upper Mississippi River

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; Stanley, Emily H.; Stets, Edward G.; Dornblaser, Mark M.; Striegl, Robert G.

    2016-01-01

    The Upper Mississippi River, engineered for river navigation in the 1930s, includes a series of low-head dams and navigation pools receiving elevated sediment and nutrient loads from the mostly agricultural basin. Using high-resolution, spatially resolved water quality sensor measurements along 1385 river kilometers, we show that primary productivity and organic matter accumulation affect river carbon dioxide and methane emissions to the atmosphere. Phytoplankton drive CO2to near or below atmospheric equilibrium during the growing season, while anaerobic carbon oxidation supports a large proportion of the CO2 and CH4 production. Reductions of suspended sediment load, absent of dramatic reductions in nutrients, will likely further reduce net CO2emissions from the river. Large river pools, like Lake Pepin, which removes the majority of upstream sediments, and large agricultural tributaries downstream that deliver significant quantities of sediments and nutrients, are likely to persist as major geographical drivers of greenhouse gas emissions.

  8. Observational and numerical particle tracking to examine sediment dynamics in a Mississippi River delta diversion

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Yuill, Brendan T.; Meselhe, Ehab A.; Marsh, Jonathan K.; Kolker, Alexander S.; Ameen, Alexander D.

    2017-07-01

    River diversions may serve as useful restoration tools along coastal deltas experiencing land loss due to high rates of relative sea-level rise and the disruption of natural sediment supply. Diversions mitigate land loss by serving as new sediment sources for land building areas in basins proximal to river channels. However, because of the paucity of active diversions, little is known about how diversion receiving-basins evacuate or retain the sediment required to build new land. This study uses observational and numerical particle tracking to investigate the behavior of riverine sand and silt as it enters and passes through the West Bay diversion receiving-basin located on the lowermost Mississippi River delta, USA. Fluorescent sediment tracer was deployed and tracked within the bed sediment over a five-month period to identify locations of sediment deposition in the receiving-basin and nearby river channel. A computational fluid dynamics model with a Lagrangian sediment transport module was employed to predict selective pathways for riverine flow and sand and silt particles through the receiving-basin. Observations of the fluorescent tracer provides snapshots of the integrated sediment response to the full range of drivers in the natural system; the numerical model results offer a continuous map of sediment advection vectors through the receiving basin in response to river-generated currents. Together, these methods provide insight into local and basin-wide values of sediment retention as influenced by grain size, transport time, and basin morphology. Results show that after two weeks of low Mississippi River discharge, basin silt retention was approximately 60% but was reduced to 4% at the conclusion of the study. Riverine sand retention was approximately near 100% at two weeks and 40% over the study period. Modeled sediment storage was predicted to be greatest at the margins of the primary basin transport pathway; this matched the observed dynamics of the silt tracer but did not match the behavior of the sand tracer. The degree to which the observational measurements deviate from the model predictions may indicate the relative influence of physical processes other than the mean riverine generated currents, such as tides, wind generated currents, and waves.

  9. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    NASA Astrophysics Data System (ADS)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three major river outlets, despite overall decline of sediment load in recent decades, and pronounced declines for South Pass and Pass a Loutre. Future research will focus on relationships among changing sediment loads, dispersal patterns, and sediment transport by mudflows, which are an important process for dispersal after initial deposition.

  10. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    PubMed

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    PubMed

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  12. Tropical Cyclones as a Driver of Global Sediment Flux

    NASA Astrophysics Data System (ADS)

    Leyland, J.; Darby, S. E.; Cohen, S.

    2017-12-01

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.

  13. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China.

    PubMed

    Wang, Chao; Zhai, Wanying; Shan, Baoqing

    2016-05-01

    Dissolved oxygen (DO) microprofiles of prepared sediments from 24 sampling sites in the Fuyang River were measured using a gold amalgam microelectrode in this study. The measured microprofiles can be divided into four types. In type I profiles, DO kept constant in the overlying water and decreased smoothly in the pore water; in type II profile, DO showed fluctuation in the pore water; in type III profiles, DO showed peak in the SWI; in type IV profiles, DO decreased obviously in the overlying water. Type I profiles indicated the absence of benthic organisms and thus the degradation of the sediment habitat. Type II and III profiles indicated the activity of benthic animal and epipelic algae, which is common in the healthy aquatic sediment. Type IV profiles indicated that the excessive accumulation of pollutants in the sediment and thus the serious sediment pollution. There are nine sites showing type I profile, three sites showing type II profile, nine sites showing type III profile, and three sites showing type IV profile in the Fuyang River. The dominance of type I and appearance of type IV indicated that sediment oxygen consumption processes in the Fuyang River were strongly influenced by the sediment pollutants release and the vanish of benthic organisms. The pharmacy, metallurgy, and curriery industries may contribute to the sediment deterioration and thus to the occurrence of type I and type IV oxygen profiles in the Fuyang River.

  14. Numerical modelling of fine-grained sediments remobilization in heavily polluted streams. Case study: Elbe and Bílina River, Czech Republic.

    NASA Astrophysics Data System (ADS)

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2014-05-01

    The study aimed to estimate remobilization of channel and riparian cohesive sediment of streams, heavily polluted by industrial emmissions. There were analyzed four stream stretches in Czech Republic: (1) Elbe River from Usti nad Labem to the boundary with Germany; (2) Bílina river, draining industrial and mining areas of Northwest Bohemia; (3) Midstream reach of Czech Elbe by the confluence with Vltava river, affected by chemical industry and (4) fluvial lakes in the riparian zone of Czech Elbe river downstream of Pardubice burdened by old loads from heavy chemical industry. Sediments of clay and silt character bedded in the riparian water-courses are regarded heavily polluted by wide range of toxic matters. In the sediment samples, there were found elevated concentrations of persistent organic matters (DDT, PCB, HCH, Fluoranthen), Heavy metals (Hg, As, Cd), and others. The pollution in sediment is resulting from the unregulated heavy industrial production in the area in the second half of 20th century during the socialistic regime in Czech republic that still play an important role in Elbe river water quality. The main goal of the study was to evaluate the risk of remobilization of polluted sediments by the assessment of discharge (values and return periods), initiating remobilization of sediment from the river bed. The modeling stems on basic assumption, that once the sediment is elevated from the bed, it could be transported far downstream in the form of suspended load. The evaluation was made on the basis of numerical hydrodynamic calculation coupled with sediment transport model. The MIKE by DHI modelling software with different levels of schematization was used according the flow conditions and available data sources. For 50 km stretch of Bílina river the 1D schematization (MIKE 11) was selected as the discharges driving remobilization were expected within the extent of channel capacity due to the stream regulation. For the lower and middle course of Elbe river and the riparian sediment evaluation the 2D schematization (MIKE 21 C) was selected. It enabled to distinguish flow characteristics in the zone with complicated hydrodynamic conditions. The risk of remobilization of fine-grained sediments was evaluated in order to define a threshold discharge value after that the spreading of pollution can be expected. The major contribution of the study, realized in the framework of international iniciative ELSA was the identification of threshold values for potential remobilization of sediment burdened by old loads in different environments. These threshold values are important information for identification and mitigation of risks related with old loads and hydrological extremes. From methodological point of view the study verified validity of applied distinct approaches for fine-grained sediment remobilization assessment and identified limits for their application. Key words: sediment, remobilization, old loads, modelling, hydrodynamics, Elbe river

  15. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review

    NASA Astrophysics Data System (ADS)

    Wang, Houjie; Wu, Xiao; Bi, Naishuang; Li, Song; Yuan, Ping; Wang, Aimei; Syvitski, James P. M.; Saito, Yoshiki; Yang, Zuosheng; Liu, Sumei; Nittrouer, Jeffrey

    2017-10-01

    The water-sediment regulation scheme (WSRS), beginning in 2002, is an unprecedented engineering effort to manage the Yellow River with the aims to mitigate the siltation both in the lower river channel and within the Xiaolangdi Reservoir utilizing the dam-regulated flood water. Ten years after its initial implementation, multi-disciplinary indicators allow us to offer a comprehensive review of this human intervention on a river-coastal system. The WSRS generally achieved its objective, including bed erosion in the lower reaches with increasing capacity for flood discharge and the mitigation of reservoir siltation. However, the WSRS presented unexpected disturbances on the delta and coastal system. Increasing grain size of suspended sediment and decreasing suspended sediment concentration at the river mouth resulted in a regime shift of sediment transport patterns that enhanced the disequilibrium of the delta. The WSRS induced an impulse delivery of nutrients and pollutants within a short period ( 20 days), which together with the altered hydrological cycle, impacted the estuarine and coastal ecosystem. We expect that the sediment yield from the loess region in the future will decrease due to soil-conservation practices, and the lower channel erosion will also decrease as the riverbed armors with coarser sediment. These, in combination with uncertain water discharge concomitant with climate change, increasing water demands and delta subsidence, will put the delta and coastal ocean at high environmental risks. In the context of global change, this work depicts a scenario of human impacts in the river basin that were transferred along the hydrological pathway to the coastal system and remotely transformed the different components of coastal environment. The synthesis review of the WSRS indicates that an integrated management of the river-coast continuum is crucially important for the sustainability of the entire river-delta system. The lessons learned from the WSRS in the Yellow River provide insights to the integrated management of large rivers worldwide.

  16. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range of turbidity encountered in the Colorado River in Grand Canyon. Relating turbidity to acoustic attenuation and suspended-silt and clay concentration provides an additional benefit in that data outliers are revealed that likely identify inflow events from anomalous sources with unusual sediment characteristics.

  17. Identifying fine sediment sources to alleviate flood risk caused by fine sediments through catchment connectivity analysis

    NASA Astrophysics Data System (ADS)

    Twohig, Sarah; Pattison, Ian; Sander, Graham

    2017-04-01

    Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been subjected to field validation as part of a wider research project which provides an indication of the robustness of widespread models as effective management tools.

  18. Sediment geochemistry of Corte Madera Marsh, San Francisco Bay, California: have local inputs changed, 1830-2010?

    USGS Publications Warehouse

    Takesue, Renee K.; Jaffe, Bruce E.

    2013-01-01

    Large perturbations since the mid-1800s to the supply and source of sediment entering San Francisco Bay have disturbed natural processes for more than 150 years. Only recently have sediment inputs through the Sacramento-San Joaquin Delta (the Delta) decreased to what might be considered pre-disturbance levels. Declining sediment inputs to San Francisco Bay raise concern about continued tidal marsh accretion, particularly if sea level rise accelerates in the future. The aim of this study is to explore whether the relative amount of local-watershed sediment accumulating in a tidal marsh has changed as sediment supply from the Sacramento-San Joaquin Rivers has decreased. To address this question, sediment geochemical indicators, or signatures, in the fine fraction (silt and clay) of Sacramento River, San Joaquin River, San Francisco Bay, and Corte Madera Creek sediment were identified and applied in sediment recovered from Corte Madera Marsh, one of the few remaining natural marshes in San Francisco Bay. Total major, minor, trace, and rare earth element (REE) contents of fine sediment were determined by inductively coupled plasma mass and atomic emission spectroscopy. Fine sediment from potential source areas had the following geochemical signatures: Sacramento River sediment downstream of the confluence of the American River was characterized by enrichments in chromium, zirconium, and heavy REE; San Joaquin River sediment at Vernalis and Lathrop was characterized by enrichments in thorium and total REE content; Corte Madera Creek sediment had elevated nickel contents; and the composition of San Francisco Bay mud proximal to Corte Madera Marsh was intermediate between these sources. Most sediment geochemical signatures were relatively invariant for more than 150 years, suggesting that the composition of fine sediment in Corte Madera Marsh is not very sensitive to changes in the magnitude, timing, or source of sediment entering San Francisco Bay through the Delta. Nor does there appear to be a ubiquitous increase in the proportion of fine sediment from Corte Madera watershed accumulating in the marsh during the last 20 years when sediment inflows through the Delta have decreased to pre-disturbance levels. We conclude that a large, well-mixed reservoir, such as the transportable fine sediment pool in San Francisco Bay, is the primary source of sediment to Corte Madera Marsh, and this source buffers the marsh against changes in sediment supply from the Delta and local watersheds. This study also found that Corte Madera Marsh sediment between about 10-30 centimeters depth is highly contaminated with lead, likely a legacy of lead smelter operations near Carquinez Strait and leaded gasoline use.

  19. Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2007-01-01

    Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.

  20. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce sufficiently accurate estimates of sediment loads. Finally, conventional suspended-sediment measurements are both labor and cost intensive and may not be possible at the resolution required to resolve discharge-independent changes in suspended-sediment concentration, especially in more remote locations. For these reasons, the U.S. Geological Survey has pursued the use of surrogate technologies (such as acoustic and laser diffraction) for providing higher-resolution measurements of suspended-sediment concentration and grain size than are possible by using conventional suspended-sediment measurements alone. These factors prompted the U.S. Geological Survey's Grand Canyon Monitoring and Research Center to design and construct a network to automatically measure suspended-sediment transport at 15-minute intervals by using acoustic and laser-diffraction surrogate technologies at remote locations along the Colorado River within Marble and Grand Canyons in Grand Canyon National Park. Because of the remoteness of the Colorado River in this reach, this network also included the design of a broadband satellite-telemetry system to communicate with the instruments deployed at each station in this network. Although the sediment-transport monitoring network described in this report was developed for the Colorado River in Grand Canyon National Park, the design of this network can easily be adapted for use on other rivers, no matter how remote. In the Colorado River case-study example described in this report, suspended-sediment concentration and grain size are measured at five remote stations. At each of these stations, surrogate measurements of suspended-sediment concentration and grain size are made at 15-minute intervals using an array of different single-frequency acoustic-Doppler side-looking profilers. Laser-diffraction instruments are also used at two of these stations to measure both suspended-sediment concentrations and grain-size distributions. Cross-section calibrations of these instruments have been constructed and verified by using either equal-discharge-increment (EDI) or equal-width-increment (EWI) measurements of the velocity-weighted suspended-sediment concentration and grain-size distribution. The suspended-silt-and-clay concentration parts of these calibration relations have also included information from EDI- or EWI-calibrated samples collected by automatic pump samplers. Three of the monitoring stations are equipped with two-way satellite broadband telemetry systems that operate once a day to remotely monitor and program the instruments and download data. Data from these stations are typically downloaded twice per month; data from stations without satellite-telemetry systems are downloaded during site visits, which occur every 2 months or semiannually, depending on the remoteness of the site. Upon downloading and processing, suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size are posted on the World Wide Web. Satellite telemetry in combination with the high-resolution sediment surrogate measurements can generate near-real-time suspended-sediment-concentration and grain-size data (limited only by the time required to download the instruments and process the data). The approach for measuring suspended-sediment concentration and grain size using this monitoring network is more practical, and can be done at a much lower cost and with higher temporal resolution, than any other method.

  1. Elwha River dam removal-Rebirth of a river

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  2. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  3. Geochemistry of bed and suspended sediment in the Mississippi river system: provenance versus weathering and winnowing.

    PubMed

    Piper, D Z; Ludington, Steve; Duval, J S; Taylor, H E

    2006-06-01

    Stream-bed sediment for the size fraction less than 150 microm, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.

  4. Geochemistry of bed and suspended sediment in the Mississippi river system: Provenance versus weathering and winnowing

    USGS Publications Warehouse

    Piper, D.Z.; Ludington, S.; Duval, J.S.; Taylor, Howard E.

    2006-01-01

    Stream-bed sediment for the size fraction less than 150 ??m, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.

  5. Simulating Spatial Variability of Fluvial Sediment Fluxes Within the Magdalena Drainage Basin, Colombia.

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Syvitski, J. P.; Restrepo, J. D.

    2008-12-01

    This study explores the application of an empirical sediment flux model BQART, to simulate long-term sediment fluxes of major tributaries of a river system based on a limited number of input parameters. We validate model results against data of the 1612 km long Magdalena River, Colombia, South America, which is well monitored. The Magdalena River, draining a hinterland area of 257,438 km2, of which the majority lies in the Andes before reaching the Atlantic coast, is known for its high sediment yield, 560 t kg- 2 yr-1; higher than nearby South American rivers like the Amazon or the Orinoco River. Sediment fluxes of 32 tributary basins of the Magdalena River were simulated based on the following controlling factors: geomorphic influences (tributary-basin area and relief) derived from high-resolution Shuttle Radar Topography Mission data, tributary basin-integrated lithology based on GIS analysis of lithology data, 30year temperature data, and observed monthly mean discharge data records (varying in record length of 15 to 60 years). Preliminary results indicate that the simulated sediment flux of all 32 tributaries matches the observational record, given the observational error and the annual variability. These simulations did not take human influences into account yet, which often increases sediment fluxes by accelerating erosion, especially in steep mountainous area similar to the Magdalena. Simulations indicate that, with relatively few input parameters, mostly derived from remotely-sensed data or existing compiled GIS datasets, it is possible to predict: which tributaries in an arbitrary river drainage produce relatively high contributions to sediment yields, and where in the drainage basin you might expect conveyance loss.

  6. On extracting sediment transport information from measurements of luminescence in river sediment

    USGS Publications Warehouse

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.

    2017-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  7. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    USGS Publications Warehouse

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  8. Polycyclic aromatic hydrocarbons in bottom sediment and bioavailability in streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002

    USGS Publications Warehouse

    Messinger, Terrence

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.

  9. Hydro- and sediment dynamics in the estuary zone of the Mekong Delta: case study Dinh An estuary.

    NASA Astrophysics Data System (ADS)

    Tran, Anh Tuan; Thoss, Heiko; Gratiot, Nicolas; Dussouillez, Philippe; Brunier, Guillaume; Apel, Heiko

    2017-04-01

    The Mekong River is the tenth largest river in the world, covers an area of 795,000 km2, 4400km in length, the main river flows over the six countries including: China, Myanmar, Thailand, Laos, Cambodia and Vietnam. Its water discharge is 470 km3year-1 and the sediment discharge is estimated about 160 million ton year-1. The sediment transported by the Mekong River is the key factor in the formation and development of the delta. It is a vital factor for the stability of the coastline and river banks. Furthermore it compensates land subsidence by floodplain deposition, and is the major natural nutrient source for agriculture and aquaculture. However, only a few studies were conducted to characterize and quantify sediment properties and process in the Delta. Also the morphodynamic processes were hardly studied systematically. Hence, this study targets to fill some important and open knowledge gaps with extensive field works that provide important information about the sediment properties and hydrodynamic processes in different seasons Firstly three field survey campaigns are carried out along a 30 km section of the Bassac River from the beginning of Cu Lao Dung Island to Dinh An estuary in 2015 and 2016. During the field campaign, the movement of the salt wedge and the turbidity were monitored by vertical profiles along the river, as well as discharge measurements by ADCP were carried out at three cross sections continuously for 72 hours. The extension of the salt wedge in the river was determined, along with mixing processes. The movement and dynamics observed under different flow conditions indicate that sediment was pumped during low flow upwards the river, while during high flow net transport towards the sea dominated. Also a distinct difference in the sediment properties in the different seasons was observed, with a general tendency towards a higher proportion of coarser particles in the high flow season. These quantitative results give insights into the important sediment dynamics in the estuary and the vital sediment transport towards the coast of the Mekong delta, which is the basis for morphological stability of the coast. The results of the field campaigns will be used for the development of a detailed 3D sediment transport model (Delft 3D) for the quantification of the morphodynamic processes at Dinh An estuary.

  10. Use of repeat surveys and flow and sediment transport modeling to support fish spawning reef placement in the Detroit River, MI

    USGS Publications Warehouse

    Kinzel, Paul J.; Nelson, Jonathan M.; Kennedy, Gregory W.; Bennion, David

    2016-01-01

    The introduction of rock-rubble substrate in rivers, to enhance fish spawning habitat, represents a significant investment in planning, permitting and construction. Where river processes deposit sediment and cover the substrate, its value as fish spawning habitat can be diminished. Therefore, it is crucial in the site se-lection process, that substrate be placed in locations that benefit the fish species of concern and, to the extent possible, ensure its longevity and ecological function. Changes in river bed elevation in these locations due to infilling by bedload sediment can be determined through serial hydrographic surveys. However, in cases where this information is sparse or unavailable, flow and sediment transport modeling can be used to calcu-late sediment mobility in the rock placement locations. In this paper we will demonstrate how these tech-niques are applied in the process of planning for the placement of rock-rubble substrate (reefs) in the Detroit River, Michigan.

  11. Carbon Transport, Transformation and Retention in Tropical Systems: The Lower Tana River Corridor as a Natural Laboratory

    NASA Astrophysics Data System (ADS)

    Govers, G.; Omengo, F.; Geeraert, N.; Bouillon, S.; Neyens, G.

    2016-12-01

    The lower Tana river in Kenya is an active river carrying high sediment and carbon loads, while lateral influxes from tributaries are very limited. We used this river as a natural laboratory to study the dynamics of carbon in the river-floodplain system. We measured carbon fluxes in the river as well as rates of carbon processing. Furthermore, we assessed carbon deposition in the floodplain and carbon mobilisation by river migration. We show that both within-river carbon dynamics as well as river-floodplain interaction can only be understood by accounting for autogenic river processes: the amounts of sediment (5-6 Mt yr-1) and particulate organic carbon (120-180 Mg yr-1) that are re-mobilised within the river reach (300 km) are similar to the amounts the reach receives from upstream. Carbon and sediment mobilisation are compensated for by deposition, both in the floodplain and within the river (point bars). This intensive exchange explains why the suspended sediment in the Tana river becomes finer (and more enriched in carbon) in the downstream direction, despite the deposition of fine, carbon-rich sediments in the floodplain. Contrary to what is found in temperate floodplains, overall carbon burial appears not to be very effective: most buried carbon is mineralised within decades after burial. However, burial efficiency is much higher for allochthonous organic carbon (deposited by the river) than for autochthonous organic carbon (sourced from local primary production). The Tana river does not only exchange carbon with its floodplain through deposition and remobilisation of POC. When floods occur, the floodplain acts as an important source of dissolved organic and inorganic carbon which is not only produced by organic carbon decomposition but also by weathering. Finally, there is significant CO2 outgassing from the Tana river, releasing 3-5 Mg C yr-1 to the atmosphere. Our study highlights the role of tropical river corridors as highly dynamic environments, which may be strongly affected by human management and/or climatic change. The planned construction of a major dam in the upper Tana is likely to steady the river's discharge and will limit lateral river migration and flooding, which may transform the lower Tana from a net sediment (and to a lesser extent, carbon) sink to a source.

  12. Sediment Transport in the Bill Williams River and Turbidity in Lake Havasu During and Following Two High Releases from Alamo Dam, Arizona, in 2005 and 2006

    USGS Publications Warehouse

    Wiele, Stephen M.; Hart, Robert J.; Darling, Hugh L.; Hautzinger, Andrew B.

    2009-01-01

    Discharges higher than are typically released from Alamo Dam in west-central Arizona were planned and released in 2005, 2006, 2007, and 2008 to study the effects of these releases on the Bill Williams River and Lake Havasu, into which the river debouches. Sediment concentrations and water discharges were measured in the Bill Williams River, and turbidity, temperature, and dissolved oxygen were measured in Lake Havasu during and after experimental releases in 2005 and 2006 from Alamo Dam. Data from such releases will support ongoing ecological studies, improve environmentally sensitive management of the river corridor, and support the development of a predictive relationship between the operation of Alamo Dam and downstream flows and their impact on Lake Havasu and the Colorado River. Elevated discharges in the Bill Williams River mobilize more sediment than during more typical dam operation and can generate a turbidity plume in Lake Havasu. The intakes for the Central Arizona Project, which transfers Colorado River water to central and southern Arizona, are near the mouth of the Bill Williams River. Measurement of the turbidity and the development of the plume over time consequently were important components of the study. In this report, the measurements of suspended sediment concentration and discharges in the Bill Williams River and of turbidity in Lake Havasu are presented along with calculations of silt and sand loads in the Bill Williams River. Sediment concentrations were varied and likely dependent on a variable supply. Sediment loads were calculated at the mouth of the river and near Planet, about 10 km upstream from the mouth for the 2005 release, and they indicate that a net increase in transport of silt and a net decrease in the transport of sand occurred in the reach between the two sites.

  13. TRENTON CHANNEL/DETROIT RIVER SEDIMENT ASSESSMENT AND REMEDIATION

    EPA Science Inventory

    The Detroit River has experienced over a century of discharges from industry and municipalaties. Demonstrable improvements have been made in water quality, loadings, and biota. Common with other International Joint Commission Areas of Concern, sediment of the Detroit River still...

  14. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all rivers in the US lower 48 states, except the Mississippi and Colorado Rivers, and would rank in the top 50 of all rivers in the modern world.

  15. Linking Monsoon Activity with River-Derived Sediment Deposition in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ge, Q.; Xue, Z. G.; Liu, P.; Chu, F.

    2016-02-01

    Sediments retrieved from a gravity core were analyzed to examine the connection between East Asian Monsoon (EAM) and river-derived sediment deposition on the continental slope in the South China Sea since the Last Glacial Maximum. Combined clay mineralogy and grain size index analysis provided evidence of the sources of fine-grained sediment as well as for rebuilding the history of paleo-EAM. A shift of sediment source from the Pearl River to southwestern Taiwanese rivers was identified during the Holocene. The 4-8μm grain size fraction, as an environmental sensitive component and thus the EAM proxy, indicated the local deposition environment is mainly controlled by sea-level variations. And during the Holocene, the East Asian summer monsoon exhibited an in-phase relationship with East Asian winter monsoon, both following variations of the insolation intensity.

  16. Sediment sampling and processing methods in Hungary, and possible improvements

    NASA Astrophysics Data System (ADS)

    Tamas, Eniko Anna; Koch, Daniel; Varga, Gyorgy

    2016-04-01

    The importance of the monitoring of sediment processes is unquestionable: sediment balance of regulated rivers suffered substantial alterations in the past century, affecting navigation, energy production, fish habitats and floodplain ecosystems alike; infiltration times to our drinking water wells have shortened, exposing them to an eventual pollution event and making them vulnerable; and sediment-attached contaminants accumulate in floodplains and reservoirs, threatening our healthy environment. The changes in flood characteristics and rating curves of our rivers are regularly being researched and described, involving state-of-the-art measurement methods, modeling tools and traditional statistics. Sediment processes however, are much less known. Unlike the investigation of flow processes, sediment-related research is scarce, which is partly due to the outdated methodology and poor database background in the specific field. Sediment-related data, information and analyses form an important and integral part of Civil engineering in relation to rivers all over the world. In relation to the second largest river of Europe, the Danube, it is widely known in expert community and for long discussed at different expert forums that the sediment balance of the river Danube has changed drastically over the past century. Sediment monitoring on the river Danube started as early as the end of the 19th century, with scattered measurements carried out. Regular sediment sampling was developed in the first half of the 20th century all along the river, with different station density and monitoring frequencies in different countries. After the first few decades of regular sampling, the concept of (mainly industrial) development changed along the river and data needs changed as well, furthermore the complicated and inexact methods of sampling bed load on the alluvial reach of the river were not developed further. Frequency of suspended sediment sampling is very low along the river, best organized in the upstream countries, where also on tributaries like the Drau/Drava monitoring stations are in operation. Sampling frequency of suspended load is 3 to 7 per year in Hungary, and even lower downstream. Sediment management is a major challenge, as most methods developed until now are unsustainable, require continuous intervention and are expensive as well. However, there is a new focus on the subject in the 21st century, which still lacks uniform methodological recommendations for measurements and analyses, and the number of engineers with sediment expertise and experience is alarmingly low. Data related to sediment quantity are unreliable and often contradictory. It is difficult to produce high quality long-term databases that could support and enable the mathematical calibration of sediment transport models. Sediment measurements are different in different countries in Europe. Even in Hungary, sampling and laboratory techniques have changed several times in the past. Also, sediment sampling was never really systhematic, and the sampling campaigns did not follow the hydrological processes. That is how sediment data can hardly be compared; and the data series are inhomogeneous and they cannot be statistically analysed. The majority of the existing sediment data in Hungary are not suitable for the data supply needs of state-of-the-art numerical modeling. It is even problematic to describe the connections between water flow (discharge) and sediment transport, because data are scarce and irregular. Even the most modern measurement methods (Acoustic Doppler Current Profiler [ADCP], or Laser In Situ Scattering and Transmissometry [LISST]) need calibration, which means field sampling and laboratory processing. For these reasons we need (both quantitatively and qualitively) appropriate sampling of sediment. In frame of projects and programs of the Institute for Hydraulic engineering and Water management of Eötvös József College, we developed the methodology of field-data collection campaigns in relation to sediment data in order to meet the calibration and verification needs of state-of-the art numerical modeling, and to be able to collect comparable data series for statistical analyses.

  17. Mercury concentrations in Pacific lamprey ( Entosphenus tridentatus ) and sediments in the Columbia River basin: Mercury in Columbia River Pacific lamprey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy; Krogstad, Eirik; Mueller, Robert

    2016-06-21

    We investigated mercury accumulation in Pacific lamprey and sediments in the Columbia River basin. Mercury concentrations in larval lamprey differed significantly among sample locations (P < 0.001) and were correlated with concentrations in sediments (r 2 = 0.83), whereas adult concentrations were highly variable (range 0.1–9.5 µg/g) and unrelated to holding time after collection. The results suggest that Pacific lamprey in the Columbia River basin may be exposed to mercury levels that have adverse ecological effects.

  18. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    Treesearch

    Sonja N. Oswalt; Sammy L. King

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...

  19. Numerical Demonstration of Massive Sediment Transport and Cs Recontamination by River Flooding in Fukushima Costal Area

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Yamada, Susumu; Itakura, Mitsuhiro; Okumura, Masahiko; Kitamura, Akihiro

    2014-05-01

    Radioactive Cs recontamination brought about by deposition of silt and clay on river beds has been a central issue of environmental recovery problems in Fukushima prefecture after the Fukushima Dai-ichi nuclear power plant (FDNPP) accident. In fact, the river-side sediment monitored by using remote controlled helicopters and direct sampling measurements has been confirmed to be highly contaminated compared to the other areas, which just naturally decay. Such contamination transportation is especially remarkable in a few rivers in coastal areas of Fukushima prefecture, because their water and sediment are supplied from the highly contaminated area along the northwest direction from FDNPPs. Thus, we numerically study the sediment transportation in rivers by using 2D river simulation framework named iRIC developed by Shimizu et al. Consequently, we find that flood brought about by typhoon is mainly required for the massive transport and the sediment deposition in the flood plain is efficiently promoted by plants naturally grown on the plain. In this presentation, we reveal when and where the sediment deposition occurs in the event of floods through direct numerical simulations. We believe that the results are suggestive for the next planning issue related with decontamination in highly-contaminated evacuated districts.

  20. Distribution of six anticancer drugs and a variety of other pharmaceuticals, and their sorption onto sediments, in an urban Japanese river.

    PubMed

    Azuma, Takashi; Arima, Natsumi; Tsukada, Ai; Hirami, Satoru; Matsuoka, Rie; Moriwake, Ryogo; Ishiuchi, Hirotaka; Inoyama, Tomomi; Teranishi, Yusuke; Yamaoka, Misato; Ishida, Mao; Hisamatsu, Kanae; Yunoki, Ayami; Mino, Yoshiki

    2017-08-01

    The distributions of 31 pharmaceuticals grouped into nine therapeutic classes, including six anticancer drugs, were investigated in the waters and sediments of an urban river in Japan. The coefficients of sorption (logK d ) to the river sediments were also determined from the results of a field survey and laboratory-scale experiment. Three anticancer drugs-bicalutamide, doxifluridine, and tamoxifen-were detected in the river sediments at maximum concentrations of 391, 392, and 250 ng/kg, respectively. In addition, the transformation products of psychotropic carbamazepine (2-hydroxy carbamazepine, acridine, and acridone) were detected in the range of 108 ng/kg (2-hydroxy carbamazepine) to 2365 ng/kg (acridine), and the phytoestrogen glycitein was detected in the range of N.D. to 821 ng/kg. The logK d values of the targeted pharmaceuticals in river sediments in the field survey ranged from 0.5 (theophylline) to 3.3 (azithromycin). These results were in accord with those of the laboratory-scale sorption experiment. To the best of our knowledge, this is the first report of the detection of the anticancer drugs bicalutamide and tamoxifen, the transformation products of carbamazepine (2-hydroxy carbamazepine, acridine, and acridone), and the phytoestrogen genistein in river sediments.

  1. Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota

    USGS Publications Warehouse

    Tangen, Brian A.; Laubhan, Murray K.; Gleason, Robert A.

    2014-01-01

    Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of core characteristics along the depth profile suggests that there has been regular sediment mixing and removal, as well as non-uniform sediment deposition with time. Estimated mean accretion rates based on the three methods of determination (two time markers for 137Cs, 210Pb) ranged from 0.22–0.35 centimeters per year, and approximately 70 percent of cores had less 137Cs than expected. Concentrations of sediment-associated elements generally were within reported reference ranges, and all agrichemicals analyzed were below detection limits. Results suggest that there does not appear to be widespread sediment accumulation in impoundments of the Souris River Basin refuges. In addition, there were no identifiable patterns among sedimentation rates from the upstream (Des Lacs, Upper Souris) to the downstream (J. Clark Salyer) refuges. There were, however, apparent upstream to downstream patterns of increased concentrations of some elements (for example, aluminum, boron, and vanadium) that may warrant further exploration. Future related monitoring and research efforts should focus on areas with high potential for sediment accumulation, such as upstream areas adjacent to dams, to identify potential sediment problems before they become too severe. Further, assessments of suspended sediments transported in the Des Lacs and Souris Rivers would augment interpretation of sedimentation data by identifying potential sediment sources and areas with the greatest potential for accumulation.

  2. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary

    NASA Astrophysics Data System (ADS)

    Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri

    2015-09-01

    A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.

  3. A spatially explicit suspended-sediment load model for western Oregon

    USGS Publications Warehouse

    Wise, Daniel R.; O'Connor, Jim

    2016-06-27

    Knowledge of the regionally important patterns and factors in suspended-sediment sources and transport could support broad-scale, water-quality management objectives and priorities. Because of biases and limitations of this model, however, these results are most applicable for general comparisons and for broad areas such as large watersheds. For example, despite having similar area, precipitation, and land-use, the Umpqua River Basin generates 68 percent more suspended sediment than the Rogue River Basin, chiefly because of the large area of Coast Range sedimentary province in the Umpqua River Basin. By contrast, the Rogue River Basin contains a much larger area of Klamath terrane rocks, which produce significantly less suspended load, although recent fire disturbance (in 2002) has apparently elevated suspended sediment yields in the tributary Illinois River watershed. Fine-scaled analysis, however, will require more intensive, locally focused measurements.

  4. Wavelike movement of bedload sediment, East Fork River, Wyoming

    USGS Publications Warehouse

    Meade, R.H.

    1985-01-01

    Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500-600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area ?? 1985 Springer-Verlag New York Inc.

  5. Elements patterns of soil and river sediments as a tracer of sediment migration

    NASA Astrophysics Data System (ADS)

    Dordevic, Dragana; Pétursdóttir, Þórunn; Halldórsson, Guðmundur; Sakan, Sanja; Škrivalj, Sandra; Finger, David Christian

    2017-04-01

    Iceland is the small island on the mid Atlantic ridge, with strong natural catastrophes, such as floods, droughts, landslides, storms and volcanic eruptions that can have devastating impacts on natural and build environment. Rangárvellir area next to Mt Hekla and the glacier Tindfjallajökul has impacted by severe erosion processes but also rich of surface water that play a crucial role in sediment transport processes in the watersheds of the two rivers Eystri-Rangá and Ytri-Rangá. Their sediments consist of various materials originating from volcanoes ash and lava. Difference of contents of various chemical components in sediments and surrounding soil could be bases for identification of erosion processes and watersheds connectivity. River sediment is accumulator of chemical constituents from water in water-sediment interaction, making it as an important material for investigation their migration routes. In order to develop of methods for investigating of sediment migration using their chemical patterns the STSM of Connecteur COST Action ES1306-34336 have been approved. Samples of river sediments and surrounding soils of the Eystri-Rangá and Ytri-Rangá rivers in watersheds of Rangárvellir area as well as primarily volcanic ash from Eyafjallajökull were taken. Sequential extraction of heavy metals and trace elements from collected samples has been applied using the optimized procedure proposed by European Community Bureau of reference (BCR) in the next fractions: 1) soluble in acid - metals that are exchangeable or associated with carbonates; 2) reducible fraction - metals associated with oxides of Fe and Mn; 3) oxidizable fraction - metals associated with organic matter and sulfides and 4) residual fraction - metals strongly associated with the crystalline structure of minerals. Extracted solutions have analyzed by ICP/OES on next elements: Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, V, Zn. Distributions of Si is the same in all investigated samples of soils, river sediments and volcanic ash pointing to the same their geochemical basis. Some elements like Li and partly B exist in the first phase of volcanic ash and river sediments but no in the first phases of soils as if they were already washed from them and adsorbed on the river sediments surfaces. In the first phase of volcanic ash P was found but no exists in the first phase of soil and river sediments. Total content of Bi is found only in silicate matrix while total contents of As is found only in organic/sulphide form in all investigated samples.

  6. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level 5.1-4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for 200-300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting 4.8-4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network. Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology".

  7. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.

  8. Morphodynamic Assessment of West Bay Sediment Diversion: A Land Building Analogue for the Lower Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Khadka, A. K.; Meselhe, E. A.; Allison, M. A.; Yuill, B.

    2016-12-01

    Wetlands of the Mississippi River Deltaic Plain have undergone enormous land loss in the last century due to natural and anthropogenic factors such as subsidence and canal building. After years of feasibility research, Lower Mississippi River (LMR) diversions have been authorized as a tool to build and sustain regional wetlands. To this end, the West Bay sediment diversion (WBD), located on the west bank of the Mississippi River at river kilometer 7.6 above Head of Passes, was constructed in 2003 with a project goal of building 4,000 hectares of wetlands in the estuarine receiving . This sediment diversion serves as splay analogue to calibrate predictive morphologic models that are being used to test the effects of proposed land building sediment diversions in the LMR. We developed a two-dimensional Delft3D model for the WBD area which includes the main channel of the Mississippi River, the diversion cut, and the receiving basin. The model is extensively calibrated and validated for hydrodynamics and morphodynamics in the main river stem, diversion cut and receiving basin using an array of field observations. The model provides quantitative information on the capture efficiency and grain size of LMR sediment diverted through the diversion. Further, the model provides insights into the morphological evolution and sediment capture efficiency of the receiving basin with diversion operation. Sensitivity tests were performed to examine the impacts of dominant drivers (wind, wave and sediment retention islands) on land building processes. The calibrated WBD model is helpful to establish appropriate parameterizations (e.g., substrate design) for the development of future numerical models designed to investigate the morphological response of receiving basins to the proposed diversions located along the LMR and in similar deltaic environments. Keywords: Numerical Modeling, Morphodynamics, Sediment Diversions, Lower Mississippi River, Delft3D,

  9. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    NASA Astrophysics Data System (ADS)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and <3 m length respectively) were collected seaward of the Mississippi River Southwest Pass in 25-75 m water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  10. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Human impacts on fluvial systems - A small-catchment case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.

  12. Field and flume investigations of the effects of logjams and woody debris on streambed morphology

    NASA Astrophysics Data System (ADS)

    Leung, V.; Montgomery, D. R.; McHenry, M. L.

    2014-12-01

    Interactions among wood debris, fluid flow and sediment transport in rivers are first-order controls on channel morphodynamics, affecting streambed morphology, sediment transport, sediment storage and aquatic habitat. Woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments on flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of fieldwork and sediment transport experiments of streambed morphology around stationary woody debris. Field surveys on the Hoh River and the Elwha River, WA, measure the local streambed morphology around logjams and individual pieces of woody debris. We quantified the amount of local scour and dam-removal related fine sediment deposition around natural and engineered logjams of varying sizes and construction styles, located in different geomorphic settings. We also quantified the amount of local scour around individual pieces of woody debris of varying sizes, geometries and orientations relative to flow. The flume experiments tested the effects of root geometry and log orientation of individual stationary trees on streambed morphology. The flume contained a deformable sediment bed of medium sand. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the wood debris cross-sectional area, oriented orthogonal to flow. A better understanding of the underlying sediment physics and hydraulics around naturally occurring woody debris in rivers can provide guidance and criteria for use in river restoration and engineering as well as scientific insights into a complex interdisciplinary problem.

  13. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.

  14. Origin and production process of eolian dust emitted from the Tarim Basin and their evolution through the Plio-Pleostocene based on ESR signal intensity and crystallinity of quartz

    NASA Astrophysics Data System (ADS)

    Tada, R.; Isozaki, Y.; Zheng, H.; Sun, Y.; Toyoda, S.; Hasegawa, H.; Yoshida, T.

    2010-12-01

    Tarim Basin (or Taklimakan Desert) is regarded as one of the major source area of eolian dust in the northern hemisphere. Although a previous study hypothesized that the detrital materials in the Tarim Basin were produced by glacial activity in the surrounding mountains, delivered by rivers, and homogenized by wind within the basin, not enough evidence has been presented to support this hypothesis. Here, we conducted provenance study of eolian dust in the Tarim Basin by examining fine silt fraction (< 20 μm) of the sediments collected from all over the Tarim Basin. We focused on quartz and measured its electron spin resonance [ESR] signal intensity and Crystallinity Index [CI] in the fine (<16μm) and coarse (> 64μm) fractions of various types of sediments including river sediments derived from the Kunlun and Tian Shan Mountains, dry lake sediments in the eastern part of the basin, and mountain loess on the northern slope of the Kunlun Mountains, to examine the process to produce eolian dust within the Tarim Basin. The result revealed that the coarse fractions of river sediments were derived from bedrocks exposed in the drainage area of each river, and that quartz in coarse fraction of the river sediment has ESR signal intensity and CI values unique to each river. ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Tian Shan Mountains, which are located windward of the basin, and those discharged from mountainous rivers show values similar to the values for coarse fractions, suggesting that their sources are the same as those for the coarse fractions. On the other hand, ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Kunlun Mountains show values different from those for the coarse fractions, and converged to the values close to the average values for the fine fractions of river sediments in the basin and also for the mountain loess, the latter represents the eolian dust emitted from the Tarim Basin. The converged values are considered as resulted from homogenization by the repeated recycling process within the basin. Analysis of the Quaternary mountain loess and Plio-Pleistocene loess-like siltstone intercalated in the alluvial sediments delivered from the Kunlun Mountains revealed that eolian dust source and production process essentially the same as the present has been established at ca. 3.5 Ma.

  15. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  16. Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic bed sediment

    USGS Publications Warehouse

    Wong, C.S.; Garrison, A.W.; Foreman, W.T.

    2001-01-01

    Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.

  17. Today's sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif

    NASA Astrophysics Data System (ADS)

    Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan

    2014-01-01

    The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.

  18. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.

  19. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    PubMed

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  20. A Sensitivity Analysis of Triggers and Mechanisms of Mass Movements in Fjords

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Lintern, G.; Hill, P.

    2016-12-01

    Fjords are characterized by rapid sedimentation as they typically drain glaciated river catchments with high seasonal discharges and large sediment evacuation rates. For this reason, fjords commonly experience submarine mass movements; failures of the steep delta front that trigger tsunamis, and turbidity currents or debris flows. Repeat high-resolution bathymetric surveys, and in-situ process measurements collected in fjords in British Columbia, Canada, indicate that mass movements occur many times per year in some fjords and are more rare and of larger magnitude in other fjords. We ask whether these differences can be attributed to river discharge characteristics or to grainsize characteristics of the delivered sediment. To test our ideas, we couple a climate-driven river sediment transport model, HydroTrend, and a marine sedimentation model, Sedflux2D, to explore the triggers of submarine failures and mechanisms of subsequent turbidity and debris flows. HydroTrend calculates water and suspended sediment transport on a daily basis based on catchment characteristics, glaciated area, lakes and temperature and precipitation regime. Sedflux uses the generated river time-series to simulate delta plumes, failures and mass movements with separate process models. Model uncertainty and parameter sensitivity are assessed using Dakota Tools, which allows for a systematic exploration of the effects of river basin characteristics and climate scenarios on occurrence of hyperpycnal events, delta front sedimentation rate, submarine pore pressure, failure frequency and size, and run-out distances. Preliminary simulation results point to the importance of proglacial lakes and lakes abundance in the river basin, which has profound implications for event-based sediment delivery to the delta apex. Discharge-sediment rating curves can be highly variable based on these parameters. Distinction of turbidity currents and debris flows was found to be most sensitive to both earthquake frequency and delta front grainsize. As a first step we compare these model experiments against field data from the Squamish River and Delta in Howe Sound, BC.

Top