An Ontology-based Architecture for Integration of Clinical Trials Management Applications
Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.
2007-01-01
Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919
Kortüm, K; Reznicek, L; Leicht, S; Ulbig, M; Wolf, A
2013-07-01
The importance and complexity of clinical trials is continuously increasing, especially in innovative specialties like ophthalmology. Therefore an efficient clinical trial site organisational structure is essential. In modern internet times, this can be accomplished by web-based applications. In total, 3 software applications (Vibe on Prem, Sharepoint and open source software) were evaluated in a clinical trial site in ophthalmology. Assessment criteria were set; they were: reliability, easiness of administration, usability, scheduling, task list, knowledge management, operating costs and worldwide availability. Vibe on Prem customised by the local university met the assessment criteria best. Other applications were not as strong. By introducing a web-based application for administrating and organising an ophthalmological trial site, studies can be conducted in a more efficient and reliable manner. Georg Thieme Verlag KG Stuttgart · New York.
Recent developments of optical fiber chemical sensors at IROE
NASA Astrophysics Data System (ADS)
Baldini, Francesco
2002-02-01
An overview is given on the activity in progress at IROE, relative to the field of optical fibre sensors for chemical parameters. Optode-based sensors are under development for both biomedical and environmental applications. As for the biomedical field, particular attention will be devoted to clinical applications of the developed sensor in gastroenterology. The first clinical applications of an absorption-based sensor for the detection of gastric carbon dioxide will be described. Clinical results have shown the superiority of the developed sensor over the sensor currently available on the market and based on air tonometry. New clinical findings involving a sensor for the detection of bile will be also discussed. As far as environmental applications are concerned, an optode for the detection of nitrogen dioxide will be described.
Alexander, John C; Minhajuddin, Abu; Joshi, Girish P
2017-08-01
Use of healthcare-related smartphone applications is common. However, there is concern that inaccurate information from these applications may lead patients to make erroneous healthcare decisions. The objective of this study is to study smartphone applications purporting to measure vital sign data using only onboard technology compared with monitors used routinely in clinical practice. This is a prospective trial comparing correlation between a clinically utilized vital sign monitor (Propaq CS, WelchAllyn, Skaneateles Falls, NY, USA) and four smartphone application-based monitors Instant Blood Pressure, Instant Blood Pressure Pro, Pulse Oximeter, and Pulse Oximeter Pro. We performed measurements of heart rate (HR), systolic blood pressures (SBP), diastolic blood pressure (DBP), and oxygen saturation (SpO 2 ) using standard monitor and four smartphone applications. Analysis of variance was used to compare measurements from the applications to the routine monitor. The study was completed on 100 healthy volunteers. Comparison of routine monitor with the smartphone applications shows significant differences in terms of HR, SpO 2 and DBP. The SBP values from the applications were not significantly different from those from the routine monitor, but had wide limits of agreement signifying a large degree of variation in the compared values. The degree of correlation between monitors routinely used in clinical practice and the smartphone-based applications studied is insufficient to recommend clinical utilization. This lack of correlation suggests that the applications evaluated do not provide clinically meaningful data. The inaccurate data provided by these applications can potentially contribute to patient harm.
Mandzuka, Mensur; Begic, Edin; Boskovic, Dusanka; Begic, Zijo; Masic, Izet
2017-06-01
This paper presents mobile application implementing a decision support system for acid-base disorder diagnosis and treatment recommendation. The application was developed using the official integrated development environment for the Android platform (to maximize availability and minimize investments in specialized hardware) called Android Studio. The application identifies disorder, based on the blood gas analysis, evaluates whether the disorder has been compensated, and based on additional input related to electrolyte imbalance, provides recommendations for treatment. The application is a tool in the hands of the user, which provides assistance during acid-base disorders treatment. The application will assist the physician in clinical practice and is focused on the treatment in intensive care.
2007-11-01
accuracy. FPGA ADC data acquisition is controlled by distributed Java -based software. Java -based server application sits on each of the acquisition...JNI ( Java Native Interface) is used to allow Java indirect control of the USB driver. Fig. 5. Photograph of mobile electronics rack...supplies with the monitor and keyboard. The server application on each of these machines is controlled by a remote client Java -based application
de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo
2010-02-19
Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.
Samal, Lipika; D'Amore, John D; Bates, David W; Wright, Adam
2017-11-01
Clinical decision support tools for risk prediction are readily available, but typically require workflow interruptions and manual data entry so are rarely used. Due to new data interoperability standards for electronic health records (EHRs), other options are available. As a clinical case study, we sought to build a scalable, web-based system that would automate calculation of kidney failure risk and display clinical decision support to users in primary care practices. We developed a single-page application, web server, database, and application programming interface to calculate and display kidney failure risk. Data were extracted from the EHR using the Consolidated Clinical Document Architecture interoperability standard for Continuity of Care Documents (CCDs). EHR users were presented with a noninterruptive alert on the patient's summary screen and a hyperlink to details and recommendations provided through a web application. Clinic schedules and CCDs were retrieved using existing application programming interfaces to the EHR, and we provided a clinical decision support hyperlink to the EHR as a service. We debugged a series of terminology and technical issues. The application was validated with data from 255 patients and subsequently deployed to 10 primary care clinics where, over the course of 1 year, 569 533 CCD documents were processed. We validated the use of interoperable documents and open-source components to develop a low-cost tool for automated clinical decision support. Since Consolidated Clinical Document Architecture-based data extraction extends to any certified EHR, this demonstrates a successful modular approach to clinical decision support. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Mobile Clinical Decision Support System for Acid-base Balance Diagnosis and Treatment Recommendation
Mandzuka, Mensur; Begic, Edin; Boskovic, Dusanka; Begic, Zijo; Masic, Izet
2017-01-01
Introduction: This paper presents mobile application implementing a decision support system for acid-base disorder diagnosis and treatment recommendation. Material and methods: The application was developed using the official integrated development environment for the Android platform (to maximize availability and minimize investments in specialized hardware) called Android Studio. Results: The application identifies disorder, based on the blood gas analysis, evaluates whether the disorder has been compensated, and based on additional input related to electrolyte imbalance, provides recommendations for treatment. Conclusion: The application is a tool in the hands of the user, which provides assistance during acid-base disorders treatment. The application will assist the physician in clinical practice and is focused on the treatment in intensive care. PMID:28883678
Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo
2010-01-01
Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.
Medical laser application: translation into the clinics
NASA Astrophysics Data System (ADS)
Sroka, Ronald; Stepp, Herbert; Hennig, Georg; Brittenham, Gary M.; Rühm, Adrian; Lilge, Lothar
2015-06-01
Medical laser applications based on widespread research and development is a very dynamic and increasingly popular field from an ecological as well as an economic point of view. Conferences and personal communication are necessary to identify specific requests and potential unmet needs in this multi- and interdisciplinary discipline. Precise gathering of all information on innovative, new, or renewed techniques is necessary to design medical devices for introduction into clinical applications and finally to become established for routine treatment or diagnosis. Five examples of successfully addressed clinical requests are described to show the long-term endurance in developing light-based innovative clinical concepts and devices. Starting from laboratory medicine, a noninvasive approach to detect signals related to iron deficiency is shown. Based upon photosensitization, fluorescence-guided resection had been discovered, opening the door for photodynamic approaches for the treatment of brain cancer. Thermal laser application in the nasal cavity obtained clinical acceptance by the introduction of new laser wavelengths in clinical consciousness. Varicose veins can be treated by innovative endoluminal treatment methods, thus reducing side effects and saving time. Techniques and developments are presented with potential for diagnosis and treatment to improve the clinical situation for the benefit of the patient.
A Study on Fitts' Law Based Gait Symmetric Evaluation and It's Clinic Application.
Rencheng, Wang; Meiqin, Zhang; Xiaonan, Deng; Dewen, Jin; Maobin, Wang; Guangqing, Li
2005-01-01
Symmetry, one of the prominent characters of normal human gait, could be destroyed by some special or abnormal factors such as barrier spanning, walking impediment, etc. Therefore, it becomes an important factor used to evaluate qualities and functions of walking. In this paper, the fitts' law based symmetry index calculation is introduced and its application in clinic test is also reported. The results show that the fitts' law based index is effective in clinic evaluation.
The Application of Web-based Computer-assisted Instruction Courseware within Health Assessment
NASA Astrophysics Data System (ADS)
Xiuyan, Guo
Health assessment is a clinical nursing course and places emphasis on clinical skills. The application of computer-assisted instruction in the field of nursing teaching solved the problems in the traditional lecture class. This article stated teaching experience of web-based computer-assisted instruction, based upon a two-year study of computer-assisted instruction courseware use within the course health assessment. The computer-assisted instruction courseware could develop teaching structure, simulate clinical situations, create teaching situations and facilitate students study.
Documenting clinical pharmacist intervention before and after the introduction of a web-based tool.
Nurgat, Zubeir A; Al-Jazairi, Abdulrazaq S; Abu-Shraie, Nada; Al-Jedai, Ahmed
2011-04-01
To develop a database for documenting pharmacist intervention through a web-based application. The secondary endpoint was to determine if the new, web-based application provides any benefits with regards to documentation compliance by clinical pharmacists and ease of calculating cost savings compared with our previous method of documenting pharmacist interventions. A tertiary care hospital in Saudi Arabia. The documentation of interventions using a web-based documentation application was retrospectively compared with previous methods of documentation of clinical pharmacists' interventions (multi-user PC software). The number and types of interventions recorded by pharmacists, data mining of archived data, efficiency, cost savings, and the accuracy of the data generated. The number of documented clinical interventions increased from 4,926, using the multi-user PC software, to 6,840 for the web-based application. On average, we observed 653 interventions per clinical pharmacist using the web-based application, which showed an increase compared to an average of 493 interventions using the old multi-user PC software. However, using a paired Student's t-test there was no statistical significance difference between the two means (P = 0.201). Using a χ² test, which captured management level and the type of system used, we found a strong effect of management level (P < 2.2 × 10⁻¹⁶) on the number of documented interventions. We also found a moderately significant relationship between educational level and the number of interventions documented (P = 0.045). The mean ± SD time required to document an intervention using the web-based application was 66.55 ± 8.98 s. Using the web-based application, 29.06% of documented interventions resulted in cost-savings, while using the multi-user PC software only 4.75% of interventions did so. The majority of cost savings across both platforms resulted from the discontinuation of unnecessary drugs and a change in dosage regimen. Data collection using the web-based application was consistently more complete when compared to the multi-user PC software. The web-based application is an efficient system for documenting pharmacist interventions. Its flexibility and accessibility, as well as its detailed report functionality is a useful tool that will hopefully encourage other primary and secondary care facilities to adopt similar applications.
Clinical applications of the functional connectome
Castellanos, F. Xavier; Di Martino, Adriana; Craddock, R. Cameron; Mehta, Ashesh D.; Milham, Michael P.
2013-01-01
Central to the development of clinical applications of functional connectomics for neurology and psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is emerging as a mainstream approach for imaging-based biomarker identification, detecting variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability, sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts, and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-based biomarker identification, highlighting the potential of emerging conceptual, analytical and cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives, and Big Data) to address them. Additionally, we note the need to expand future efforts beyond identification of biomarkers for disease status alone to include clinical variables related to risk, expected treatment response and prognosis. PMID:23631991
Samei, Ehsan; Grist, Thomas M
2018-05-18
Despite its crucial role in the development of new medical imaging technologies, in clinical practice, physics has primarily been involved in the technical evaluation of technologies. However, this narrow role is no longer adequate. New trajectories in medicine call for a stronger role for physics in the clinic. The movement toward evidence-based, quantitative, and value-based medicine requires physicists to play a more integral role in delivering innovative precision care through the intentional clinical application of physical sciences. There are three aspects of this clinical role: technology assessment based on metrics as they relate to expected clinical performance, optimized use of technologies for patient-centered clinical outcomes, and retrospective analysis of imaging operations to ensure attainment of expectations in terms of quality and variability. These tasks fuel the drive toward high-quality, consistent practice of medical imaging that is patient centered, evidence based, and safe. While this particular article focuses on imaging, this trajectory and paradigm is equally applicable to the multitudes of the applications of physics in medicine. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman; Xu, Feng; Wan Abas, Wan Abu Bakar; Choi, Jane Ru; Pingguan-Murphy, Belinda
2015-08-01
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Kushniruk, A W; Patel, C; Patel, V L; Cimino, J J
2001-04-01
The World Wide Web provides an unprecedented opportunity for widespread access to health-care applications by both patients and providers. The development of new methods for assessing the effectiveness and usability of these systems is becoming a critical issue. This paper describes the distance evaluation (i.e. 'televaluation') of emerging Web-based information technologies. In health informatics evaluation, there is a need for application of new ideas and methods from the fields of cognitive science and usability engineering. A framework is presented for conducting evaluations of health-care information technologies that integrates a number of methods, ranging from deployment of on-line questionnaires (and Web-based forms) to remote video-based usability testing of user interactions with clinical information systems. Examples illustrating application of these techniques are presented for the assessment of a patient clinical information system (PatCIS), as well as an evaluation of use of Web-based clinical guidelines. Issues in designing, prototyping and iteratively refining evaluation components are discussed, along with description of a 'virtual' usability laboratory.
Clinical trials for stem cell transplantation: when are they needed?
Van Pham, Phuc
2016-04-27
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Transforming medical imaging applications into collaborative PACS-based telemedical systems
NASA Astrophysics Data System (ADS)
Maani, Rouzbeh; Camorlinga, Sergio; Arnason, Neil
2011-03-01
Telemedical systems are not practical for use in a clinical workflow unless they are able to communicate with the Picture Archiving and Communications System (PACS). On the other hand, there are many medical imaging applications that are not developed as telemedical systems. Some medical imaging applications do not support collaboration and some do not communicate with the PACS and therefore limit their usability in clinical workflows. This paper presents a general architecture based on a three-tier architecture model. The architecture and the components developed within it, transform medical imaging applications into collaborative PACS-based telemedical systems. As a result, current medical imaging applications that are not telemedical, not supporting collaboration, and not communicating with PACS, can be enhanced to support collaboration among a group of physicians, be accessed remotely, and be clinically useful. The main advantage of the proposed architecture is that it does not impose any modification to the current medical imaging applications and does not make any assumptions about the underlying architecture or operating system.
Fino, Edita; Mazzetti, Michela
2018-04-23
Smartphone applications are considered as the prime candidate for the purposes of large-scale, low-cost and long-term sleep monitoring. How reliable and scientifically grounded is smartphone-based assessment of healthy and disturbed sleep remains a key issue in this direction. Here we offer a review of validation studies of sleep applications to the aim of providing some guidance in terms of their reliability to assess sleep in healthy and clinical populations, and stimulating further examination of their potential for clinical use and improved sleep hygiene. Electronic literature review was conducted on Pubmed. Eleven validation studies published since 2012 were identified, evaluating smartphone applications' performance compared to standard methods of sleep assessment in healthy and clinical samples. Studies with healthy populations show that most sleep applications meet or exceed accuracy levels of wrist-based actigraphy in sleep-wake cycle discrimination, whereas performance levels drop in individuals with low sleep efficiency (SE) and in clinical populations, mirroring actigraphy results. Poor correlation with polysomnography (PSG) sleep sub-stages is reported by most accelerometer-based apps. However, multiple parameter-based applications (i.e., EarlySense, SleepAp) showed good capability in detection of sleep-wake stages and sleep-related breathing disorders (SRBD) like obstructive sleep apnea (OSA) respectively with values similar to PSG. While the reviewed evidence suggests a potential role of smartphone sleep applications in pre-screening of SRBD, more experimental studies are warranted to assess their reliability in sleep-wake detection particularly. Apps' utility in post treatment follow-up at home or as an adjunct to the sleep diary in clinical setting is also stressed.
Evaluation Criteria for Nursing Student Application of Evidence-Based Practice: A Delphi Study.
Bostwick, Lina; Linden, Lois
2016-06-01
Core clinical evaluation criteria do not exist for measuring prelicensure baccalaureate nursing students' application of evidence-based practice (EBP) during direct care assignments. The study objective was to achieve consensus among EBP nursing experts to create clinical criteria for faculty to use in evaluating students' application of EBP principles. A three-round Delphi method was used. Experts were invited to participate in Web-based surveys. Data were analyzed using qualitative coding and categorizing. Quantitative analyses were descriptive calculations for rating and ranking. Expert consensus occurred in the Delphi rounds. The study provides a set of 10 core clinical evaluation criteria for faculty evaluating students' progression toward competency in their application of EBP. A baccalaureate program curriculum requiring the use of Bostwick's EBP Core Clinical Evaluation Criteria will provide a clear definition for understanding basic core EBP competence as expected for the assessment of student learning. [J Nurs Educ. 2016;55(5):336-341.]. Copyright 2016, SLACK Incorporated.
Tsai, Jung-Mei
2014-12-01
Evidence-based healthcare (EBHC) emphasizes the integration of the best research evidence with patient values, specialist suggestions, and clinical circumstances during the process of clinical decision-making. EBHC is a recognized core competency in modern healthcare. Nursing is a professional discipline of empirical science that thrives in an environment marked by advances in knowledge and technology in medicine as well as in nursing. Clinical nurses must elevate their skills and professional qualifications, provide efficient and quality health services, and promote their proficiency in EBHC. The Institute of Medicine in the United States indicates that evidence-based research results often fail to disseminate efficiently to clinical decision makers. This problem highlights the importance of better promoting the evidence-based healthcare fundamentals and competencies to frontline clinical nurses. This article describes the historical background and present development of evidence-based healthcare from the perspective of modern clinical nursing in light of the importance of evidence-based healthcare in clinical nursing; describes the factors associated with evidence-based healthcare promotion; and suggests strategies and policies that may improve the promotion and application of EBHC in clinical settings. The authors hope that this paper provides a reference for efforts to improve clinical nursing in the realms of EBHC training, promotion, and application.
Application development environment for advanced digital workstations
NASA Astrophysics Data System (ADS)
Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.
1998-06-01
One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.
Timms, John F; Hale, Oliver J; Cramer, Rainer
2016-06-01
The last 20 years have seen significant improvements in the analytical capabilities of biological mass spectrometry (MS). Studies using advanced MS have resulted in new insights into cell biology and the etiology of diseases as well as its use in clinical applications. This review discusses recent developments in MS-based technologies and their cancer-related applications with a focus on proteomics. It also discusses the issues around translating the research findings to the clinic and provides an outline of where the field is moving. Expert commentary: Proteomics has been problematic to adapt for the clinical setting. However, MS-based techniques continue to demonstrate potential in novel clinical uses beyond classical cancer proteomics.
Using athletic training clinical education standards in radiography.
Giordano, Shelley; Harris, Katherine
2012-01-01
The selection of clinical education sites for radiography students is based on availability, access to radiographic examinations, and appropriate student-to-technologist ratio. Radiography program directors are not required to evaluate sites based on their educational validity (eg, the clinical instructor's knowledge of basic teaching and learning principles, how well the site communicates with the program, or the clinical instructor's involvement in professional organizations). The purpose of this study was to determine if a set of 12 clinical education standards used in athletic training would be applicable and beneficial to radiography program directors when selecting clinical sites for students. A survey concerning the applicability of the athletic training standards to radiography site selection was completed by 270 directors of radiography programs accredited by the Joint Review Committee on Education in Radiologic Technology. The survey results indicated the athletic training clinical education standards were considered applicable to the selection of clinical sites for radiography students and would be beneficial to radiography program directors when selecting sites.
Liu, Meng-Yu; Yang, Wei; Wang, Li-Ying; Zhao, Xue-Yao; Wang, Yue-Xi; Liu, Yu-Qi; Han, Xue-Jie; Lv, Ai-Ping
2017-09-01
Clinical application evaluation research of Guidelines for the Diagnosis and Treatment of Common Diseases of Pediatrics in Traditional Chinese Medicine intends to evaluate the quality level and clinical application of the guideline. A questionnaire and prospective case survey methods were used to evaluate the applicability evaluation based on the clinician questionnaire and the application evaluation based on clinical case observation. The applicability evaluation, familiarity and utilization rate of doctors' guidelines were 85.06%, 62.76%; Sort by technical grade, intermediate grade doctors have a higher familiarity rate and utilization rate, while the junior grade doctor's is lower; Guide quality level of applicability evaluation, other items' rational percentage are better than 96% except the items of health preserving and prevention and other treatment is relatively low; Items' applicable percentage of applicability evaluation are more than 91% except the item of guide simplicity. Comprehensive applicability evaluation, The percentage of the guideline applicable to clinical practice accounted for 94.94%. The consistency rate of syndrome differentiation and clinical application is more than 96% in addition to prescription medication, other treatments and health preserving and prevention of the guidelines apply consistency of application evaluation. The percentage of good treatment effect accounted for 92.96% of application effect evaluation. The safety percentage is 99.89% and economy is 97.45%. The research shows that of Guidelines for the Diagnosis and Treatment of Common Diseases of Pediatrics in Traditional Chinese Medicine quality level is good and is basically applicable to pediatric clinical practice which can be used as a standardized recommendation of pediatric common diseases' treatment specification. A small part of the guidelines are not applicable and need to be further consummated. Health preserving and prevention and other treatment of the guideline need to be revised. Copyright© by the Chinese Pharmaceutical Association.
Hong, Na; Prodduturi, Naresh; Wang, Chen; Jiang, Guoqian
2017-01-01
In this study, we describe our efforts in building a clinical statistics and analysis application platform using an emerging clinical data standard, HL7 FHIR, and an open source web application framework, Shiny. We designed two primary workflows that integrate a series of R packages to enable both patient-centered and cohort-based interactive analyses. We leveraged Shiny with R to develop interactive interfaces on FHIR-based data and used ovarian cancer study datasets as a use case to implement a prototype. Specifically, we implemented patient index, patient-centered data report and analysis, and cohort analysis. The evaluation of our study was performed by testing the adaptability of the framework on two public FHIR servers. We identify common research requirements and current outstanding issues, and discuss future enhancement work of the current studies. Overall, our study demonstrated that it is feasible to use Shiny for implementing interactive analysis on FHIR-based standardized clinical data.
A component-based, distributed object services architecture for a clinical workstation.
Chueh, H C; Raila, W F; Pappas, J J; Ford, M; Zatsman, P; Tu, J; Barnett, G O
1996-01-01
Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces.
A component-based, distributed object services architecture for a clinical workstation.
Chueh, H. C.; Raila, W. F.; Pappas, J. J.; Ford, M.; Zatsman, P.; Tu, J.; Barnett, G. O.
1996-01-01
Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces. PMID:8947744
KAT: A Flexible XML-based Knowledge Authoring Environment
Hulse, Nathan C.; Rocha, Roberto A.; Del Fiol, Guilherme; Bradshaw, Richard L.; Hanna, Timothy P.; Roemer, Lorrie K.
2005-01-01
As part of an enterprise effort to develop new clinical information systems at Intermountain Health Care, the authors have built a knowledge authoring tool that facilitates the development and refinement of medical knowledge content. At present, users of the application can compose order sets and an assortment of other structured clinical knowledge documents based on XML schemas. The flexible nature of the application allows the immediate authoring of new types of documents once an appropriate XML schema and accompanying Web form have been developed and stored in a shared repository. The need for a knowledge acquisition tool stems largely from the desire for medical practitioners to be able to write their own content for use within clinical applications. We hypothesize that medical knowledge content for clinical use can be successfully created and maintained through XML-based document frameworks containing structured and coded knowledge. PMID:15802477
Temporal reasoning over clinical text: the state of the art
Sun, Weiyi; Rumshisky, Anna; Uzuner, Ozlem
2013-01-01
Objectives To provide an overview of the problem of temporal reasoning over clinical text and to summarize the state of the art in clinical natural language processing for this task. Target audience This overview targets medical informatics researchers who are unfamiliar with the problems and applications of temporal reasoning over clinical text. Scope We review the major applications of text-based temporal reasoning, describe the challenges for software systems handling temporal information in clinical text, and give an overview of the state of the art. Finally, we present some perspectives on future research directions that emerged during the recent community-wide challenge on text-based temporal reasoning in the clinical domain. PMID:23676245
Current advances in research and clinical applications of PLGA-based nanotechnology
Lü, Jian-Ming; Wang, Xinwen; Marin-Muller, Christian; Wang, Hao; Lin, Peter H; Yao, Qizhi; Chen, Changyi
2009-01-01
Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases. PMID:19435455
Johnson, Brent A
2009-10-01
We consider estimation and variable selection in the partial linear model for censored data. The partial linear model for censored data is a direct extension of the accelerated failure time model, the latter of which is a very important alternative model to the proportional hazards model. We extend rank-based lasso-type estimators to a model that may contain nonlinear effects. Variable selection in such partial linear model has direct application to high-dimensional survival analyses that attempt to adjust for clinical predictors. In the microarray setting, previous methods can adjust for other clinical predictors by assuming that clinical and gene expression data enter the model linearly in the same fashion. Here, we select important variables after adjusting for prognostic clinical variables but the clinical effects are assumed nonlinear. Our estimator is based on stratification and can be extended naturally to account for multiple nonlinear effects. We illustrate the utility of our method through simulation studies and application to the Wisconsin prognostic breast cancer data set.
A generative tool for building health applications driven by ISO 13606 archetypes.
Menárguez-Tortosa, Marcos; Martínez-Costa, Catalina; Fernández-Breis, Jesualdo Tomás
2012-10-01
The use of Electronic Healthcare Records (EHR) standards in the development of healthcare applications is crucial for achieving the semantic interoperability of clinical information. Advanced EHR standards make use of the dual model architecture, which provides a solution for clinical interoperability based on the separation of the information and knowledge. However, the impact of such standards is biased by the limited availability of tools that facilitate their usage and practical implementation. In this paper, we present an approach for the automatic generation of clinical applications for the ISO 13606 EHR standard, which is based on the dual model architecture. This generator has been generically designed, so it can be easily adapted to other dual model standards and can generate applications for multiple technological platforms. Such good properties are based on the combination of standards for the representation of generic user interfaces and model-driven engineering techniques.
[Related issues in clinical translational application of adipose-derived stem cells].
Liu, Hongwei; Cheng, Biao; Fu, Xiaobing
2012-10-01
To introduce the related issues in the clinical translational application of adipose-derived stem cells (ASCs). The latest papers were extensively reviewed, concerning the issues of ASCs production, management, transportation, use, and safety during clinical application. ASCs, as a new member of adult stem cells family, bring to wide application prospect in the field of regenerative medicine. Over 40 clinical trials using ASCs conducted in 15 countries have been registered on the website (http://www.clinicaltrials.gov) of the National Institutes of Health (NIH), suggesting that ASCs represents a promising approach to future cell-based therapies. In the clinical translational application, the related issues included the quality control standard that management and production should follow, the prevention measures of pathogenic microorganism pollution, the requirements of enzymes and related reagent in separation process, possible effect of donor site, age, and sex in sampling, low temperature storage, product transportation, and safety. ASCs have the advantage of clinical translational application, much attention should be paid to these issues in clinical application to accelerate the clinical translation process.
Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song
2016-01-01
The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy.
Wolters, Martijn; Mohades, Seyede G; Hackeng, Tilman M; Post, Mark J; Kooi, Marianne E; Backes, Walter H
2013-05-01
The number of applications of fluorine 19 (19F) magnetic resonance (MR) imaging and spectroscopy in biomedical and clinical research is steadily growing. The 100% natural abundance of fluorine and its relatively high sensitivity for MR (83% to that of protons) make it an interesting nucleus for a wide range of MR applications. Fluorinated contrast media have a number of advantages over the conventionally used gadolinium-based or iron-based contrast agents. The absence of an endogenous fluorine background intensity in the human body facilitates reliable quantification of fluorinated contrast medium or drugs. Anatomy can be visualized separately with proton MR imaging, creating the application of hybrid hydrogen 1 (1H)/19F MR imaging. The availability of 2 channels (ie, the 1H and 19F channels) enables dual-targeted molecular imaging. Recently, novel developments have emerged on fluorine-based contrast media in preclinical studies and imaging techniques. The developments in fluorine MR seem promising for clinical applications, with contributions in therapy monitoring, assessment of lung function, angiography, and molecular imaging. This review outlines the translation from recent advances in preclinical MR imaging and spectroscopy to future perspectives of clinical hybrid 1H/19/F MR imaging applications.
Phan, Philippe; Mezghani, Neila; Aubin, Carl-Éric; de Guise, Jacques A; Labelle, Hubert
2011-07-01
Adolescent idiopathic scoliosis (AIS) is a complex spinal deformity whose assessment and treatment present many challenges. Computer applications have been developed to assist clinicians. A literature review on computer applications used in AIS evaluation and treatment has been undertaken. The algorithms used, their accuracy and clinical usability were analyzed. Computer applications have been used to create new classifications for AIS based on 2D and 3D features, assess scoliosis severity or risk of progression and assist bracing and surgical treatment. It was found that classification accuracy could be improved using computer algorithms that AIS patient follow-up and screening could be done using surface topography thereby limiting radiation and that bracing and surgical treatment could be optimized using simulations. Yet few computer applications are routinely used in clinics. With the development of 3D imaging and databases, huge amounts of clinical and geometrical data need to be taken into consideration when researching and managing AIS. Computer applications based on advanced algorithms will be able to handle tasks that could otherwise not be done which can possibly improve AIS patients' management. Clinically oriented applications and evidence that they can improve current care will be required for their integration in the clinical setting.
The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification.
Wang, Hui; Shi, Tujin; Qian, Wei-Jun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D; Rodland, Karin D; Camp, David G
2016-01-01
Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives.
Kalwitzki, M; Beyer, C; Meller, C
2010-11-01
Whilst preparing undergraduate students for a clinical course in paediatric dentistry, four consecutive classes (n = 107) were divided into two groups. Seven behaviour-modifying techniques were introduced: systematic desensitization, operant conditioning, modelling, Tell, Show, Do-principle, substitution, change of roles and the active involvement of the patient. The behaviour-modifying techniques that had been taught to group one (n = 57) through lecturing were taught to group two (n = 50) through video sequences and vice versa in the following semester. Immediately after the presentations, students were asked by means of a questionnaire about their perceptions of ease of using the different techniques and their intention for clinical application of each technique. After completion of the clinical course, they were asked about which behaviour-modifying techniques they had actually used when dealing with patients. Concerning the perception of ease of using the different techniques, there were considerable differences for six of the seven techniques (P < 0.05). Whilst some techniques seemed more difficult to apply clinically after lecturing, others seemed more difficult after video-based teaching. Concerning the intention for clinical application and the actual clinical application, there were higher percentages for all techniques taught after video-based teaching. However, the differences were significant only for two techniques in each case (P < 0.05). It is concluded that the use of video based teaching enhances the intention for application and the actual clinical application only for a limited number of behaviour-modifying techniques. © 2010 John Wiley & Sons A/S.
Criteria for evidence-based practice in Iranian traditional medicine.
Soltani Arabshahi, SeyyedKamran; Mohammadi Kenari, Hoorieh; Kordafshari, Gholamreza; Shams-Ardakani, MohammadReza; Bigdeli, Shoaleh
2015-07-01
The major difference between Iranian traditional medicine and allopathic medicine is in the application of evidence and documents. In this study, criteria for evidence-based practice in Iranian traditional medicine and its rules of practice were studied. The experts' views were investigated through in- depth, semi-structured interviews and the results were categorized into four main categories including Designing clinical questions/clinical question-based search, critical appraisal, resource search criteria and clinical prescription appraisal. Although the application of evidence in Iranian traditional medicine follows Evidence Based Medicine (EBM) principles but it benefits from its own rules, regulations, and criteria that are compatible with EBM.
Clinical Epidemiology Unit - overview of research areas
Clinical Epidemiology Unit (CEU) conducts etiologic research with potential clinical and public health applications, and leads studies evaluating population-based early detection and cancer prevention strategies
Cost-effective (gaming) motion and balance devices for functional assessment: Need or hype?
Bonnechère, B; Jansen, B; Van Sint Jan, S
2016-09-06
In the last decade, technological advances in the gaming industry have allowed the marketing of hardware for motion and balance control that is based on technological concepts similar to scientific and clinical equipment. Such hardware is attractive to researchers and clinicians for specific applications. However, some questions concerning their scientific value and the range of future potential applications have yet to be answered. This article attempts to present an objective analysis about the pros and cons of using such hardware for scientific and clinical purposes and calls for a constructive discussion based on scientific facts and practical clinical requests that are emerging from application fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stem cells in clinical practice: applications and warnings.
Lodi, Daniele; Iannitti, Tommaso; Palmieri, Beniamino
2011-01-17
Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy. We have searched Pubmed/Medline for clinical trials, involving the use of human stem cells, using the key words "stem cells" combined with the key words "transplantation", "pathology", "guidelines", "properties" and "risks". All the relevant clinical trials have been included. The results have been divided into different categories, basing on the way stem cells have been employed in different pathological conditions.
Dend, Xun; Li, Hong-Yan; Yin, Hong; Liang, Jian-Hong; Chen, Yi; Li, Xiao-Xin; Zhao, Ming-Wei
2016-08-01
Objective To evaluate the application of a mobile platform-based system in the management of fundus disease in outpatient settings. Methods In the outpatient departments of fundus disease,premature babies requiring eye examination under general anesthesia and adults requiring intraocular surgery were enrolled as the subjects. According to the existing clinical practices,we developed a system that met the requirements of clinical practices and optimized the clinical management. Based on the FileMaker database,the tablet computers were used as the mobile platform and the system could also be run in iPad and PC terminals.Results Since 2013,the system recorded 7500 cases of special examinations. Since July 2015,4100 cases of intravitreal drug injection were also recored in the system. Multiple-point and real-time reservation pattern increased the efficiency and opimize the clinical management. All the clinical data were digitalized. Conclusion The mobile platform-based system can increase the efficacy of examination and other clinical processes and standardize data collection;thus,it is feasible for the clinical practices in outpatient departments of ophthalmology.
[Application of virtual reality in the motor aspects of neurorehabilitation].
Peñasco-Martín, Benito; de los Reyes-Guzmán, Ana; Gil-Agudo, Ángel; Bernal-Sahún, Alberto; Pérez-Aguilar, Beatriz; de la Peña-González, Ana Isabel
2010-10-16
Virtual reality allows the user to interact with elements within a simulated scene. In recent times we have been witness to the introduction of virtual reality-based devices as one of the most significant novelties in neurorehabilitation. To review the clinical applications of the developments based on virtual reality for the neurorehabilitation treatment of the motor aspects of the most frequent disabling processes with a neurological origin. A review was carried out of the Medline, Physiotherapy Evidence Database, Ovid and Cochrane Library databases up until April 2009. This was completed with a web search using Google. No clinical trial conducted on its effectiveness has been found to date. The information that was collected is based on the description of the various prototypes produced by the different groups involved in their development. In most cases they are clinical trials conducted with a small number of patients, which have focused more on testing the validity of the device and checking whether it works correctly than on attempting to prove its clinical effectiveness. Although most of the clinical applications refer to patients with stroke, there were also several applications for patients with spinal cord injuries, multiple sclerosis, Parkinson's disease or balance disorders. Virtual reality is a novel tool with a promising future in neurorehabilitation. Further studies are needed to demonstrate its clinical effectiveness as compared to the traditional techniques.
I-Maculaweb: A Tool to Support Data Reuse in Ophthalmology
Bonetto, Monica; Nicolò, Massimo; Gazzarata, Roberta; Fraccaro, Paolo; Rosa, Raffaella; Musetti, Donatella; Musolino, Maria; Traverso, Carlo E.
2016-01-01
This paper intends to present a Web-based application to collect and manage clinical data and clinical trials together in a unique tool. I-maculaweb is a user-friendly Web-application designed to manage, share, and analyze clinical data from patients affected by degenerative and vascular diseases of the macula. The unique and innovative scientific and technological elements of this project are the integration with individual and population data, relevant for degenerative and vascular diseases of the macula. Clinical records can also be extracted for statistical purposes and used for clinical decision support systems. I-maculaweb is based on an existing multilevel and multiscale data management model, which includes general principles that are suitable for several different clinical domains. The database structure has been specifically built to respect laterality, a key aspect in ophthalmology. Users can add and manage patient records, follow-up visits, treatment, diagnoses, and clinical history. There are two different modalities to extract records: one for the patient’s own center, in which personal details are shown and the other for statistical purposes, where all center’s anonymized data are visible. The Web-platform allows effective management, sharing, and reuse of information within primary care and clinical research. Clear and precise clinical data will improve understanding of real-life management of degenerative and vascular diseases of the macula as well as increasing precise epidemiologic and statistical data. Furthermore, this Web-based application can be easily employed as an electronic clinical research file in clinical studies. PMID:27170913
[Prospects for applications in human health of nanopore-based sequencing].
Audebert, Christophe; Hot, David; Caboche, Ségolène
2018-04-01
High throughput sequencing has opened up new clinical opportunities moving towards a medicine of precision. Oncology, infectious diseases or human genomics, many applications have been developed in recent years. The introduction of a third generation of nanopore-based sequencing technology, addressing some of the weaknesses of the previous generation, heralds a new revolution. Portability, real time, long reads and marginal investment costs, these promising new technologies point to a new shift of paradigm. What are the perspectives opened up by nanopores for clinical applications? © 2018 médecine/sciences – Inserm.
Family Environments and Adaptation: A Clinically Applicable Typology.
ERIC Educational Resources Information Center
Billings, Andrew G.; Moos, Rudolf H.
1982-01-01
Presents a typology of family environments based on multidimensional assessments of a representative sample of community families. Identified seven family types. Found family differences in environmental stressors and coping resources affected family members' levels of functioning. Discusses clinical and research applications of the typology.…
Yuksel, Mustafa; Dogac, Asuman
2011-07-01
Medical devices are essential to the practice of modern healthcare services. Their benefits will increase if clinical software applications can seamlessly acquire the medical device data. The need to represent medical device observations in a format that can be consumable by clinical applications has already been recognized by the industry. Yet, the solutions proposed involve bilateral mappings from the ISO/IEEE 11073 Domain Information Model (DIM) to specific message or document standards. Considering that there are many different types of clinical applications such as the electronic health record and the personal health record systems, the clinical workflows, and the clinical decision support systems each conforming to different standard interfaces, detailing a mapping mechanism for every one of them introduces significant work and, thus, limits the potential health benefits of medical devices. In this paper, to facilitate the interoperability of clinical applications and the medical device data, we use the ISO/IEEE 11073 DIM to derive an HL7 v3 Refined Message Information Model (RMIM) of the medical device domain from the HL7 v3 Reference Information Mode (RIM). This makes it possible to trace the medical device data back to a standard common denominator, that is, HL7 v3 RIM from which all the other medical domains under HL7 v3 are derived. Hence, once the medical device data are obtained in the RMIM format, it can easily be transformed into HL7-based standard interfaces through XML transformations because these interfaces all have their building blocks from the same RIM. To demonstrate this, we provide the mappings from the developed RMIM to some of the widely used HL7 v3-based standard interfaces.
Geyer, John; Myers, Kathleen; Vander Stoep, Ann; McCarty, Carolyn; Palmer, Nancy; DeSalvo, Amy
2011-10-01
Clinical trials with multiple intervention locations and a single research coordinating center can be logistically difficult to implement. Increasingly, web-based systems are used to provide clinical trial support with many commercial, open source, and proprietary systems in use. New web-based tools are available which can be customized without programming expertise to deliver web-based clinical trial management and data collection functions. To demonstrate the feasibility of utilizing low-cost configurable applications to create a customized web-based data collection and study management system for a five intervention site randomized clinical trial establishing the efficacy of providing evidence-based treatment via teleconferencing to children with attention-deficit hyperactivity disorder. The sites are small communities that would not usually be included in traditional randomized trials. A major goal was to develop database that participants could access from computers in their home communities for direct data entry. Discussed is the selection process leading to the identification and utilization of a cost-effective and user-friendly set of tools capable of customization for data collection and study management tasks. An online assessment collection application, template-based web portal creation application, and web-accessible Access 2007 database were selected and customized to provide the following features: schedule appointments, administer and monitor online secure assessments, issue subject incentives, and securely transmit electronic documents between sites. Each tool was configured by users with limited programming expertise. As of June 2011, the system has successfully been used with 125 participants in 5 communities, who have completed 536 sets of assessment questionnaires, 8 community therapists, and 11 research staff at the research coordinating center. Total automation of processes is not possible with the current set of tools as each is loosely affiliated, creating some inefficiency. This system is best suited to investigations with a single data source e.g., psychosocial questionnaires. New web-based applications can be used by investigators with limited programming experience to implement user-friendly, efficient, and cost-effective tools for multi-site clinical trials with small distant communities. Such systems allow the inclusion in research of populations that are not usually involved in clinical trials.
Miao, Tianxin; Wang, Junqing; Zeng, Yun; Chen, Xiaoyuan
2018-01-01
Abstract Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide‐based drug delivery systems. PMID:29721408
Executable medical guidelines with Arden Syntax-Applications in dermatology and obstetrics.
Seitinger, Alexander; Rappelsberger, Andrea; Leitich, Harald; Binder, Michael; Adlassnig, Klaus-Peter
2016-08-12
Clinical decision support systems (CDSSs) are being developed to assist physicians in processing extensive data and new knowledge based on recent scientific advances. Structured medical knowledge in the form of clinical alerts or reminder rules, decision trees or tables, clinical protocols or practice guidelines, score algorithms, and others, constitute the core of CDSSs. Several medical knowledge representation and guideline languages have been developed for the formal computerized definition of such knowledge. One of these languages is Arden Syntax for Medical Logic Systems, an International Health Level Seven (HL7) standard whose development started in 1989. Its latest version is 2.10, which was presented in 2014. In the present report we discuss Arden Syntax as a modern medical knowledge representation and processing language, and show that this language is not only well suited to define clinical alerts, reminders, and recommendations, but can also be used to implement and process computerized medical practice guidelines. This section describes how contemporary software such as Java, server software, web-services, XML, is used to implement CDSSs based on Arden Syntax. Special emphasis is given to clinical decision support (CDS) that employs practice guidelines as its clinical knowledge base. Two guideline-based applications using Arden Syntax for medical knowledge representation and processing were developed. The first is a software platform for implementing practice guidelines from dermatology. This application employs fuzzy set theory and logic to represent linguistic and propositional uncertainty in medical data, knowledge, and conclusions. The second application implements a reminder system based on clinically published standard operating procedures in obstetrics to prevent deviations from state-of-the-art care. A to-do list with necessary actions specifically tailored to the gestational week/labor/delivery is generated. Today, with the latest versions of Arden Syntax and the application of contemporary software development methods, Arden Syntax has become a powerful and versatile medical knowledge representation and processing language, well suited to implement a large range of CDSSs, including clinical-practice-guideline-based CDSSs. Moreover, such CDS is provided and can be shared as a service by different medical institutions, redefining the sharing of medical knowledge. Arden Syntax is also highly flexible and provides developers the freedom to use up-to-date software design and programming patterns for external patient data access. Copyright © 2016. Published by Elsevier B.V.
Han, Xue-Jie; Liu, Meng-Yu; Lian, Zhi-Hua; Wang, Li-Ying; Shi, Nan-Nan; Zhao, Jun
2017-09-01
To evaluate the applicability and clinical applications of Guidelines for Diagnosis and Treatment of Internal Diseases in Traditional Chinese Medicine, so as to provide the basis for the revision of the guidelines. This study was completed by the research and promotion base for traditional Chinese medicine(TCM) standard. The methods of applicability evaluation and application evaluation were used in the study. The questionnaires were filled out to evaluate applicability of the guideline, including doctor's familiarity with the guideline,the quality of the guideline, applicable conditions and clinical applications. The prospective case study analysis method was used to evaluate application of the guideline, including evaluation of clinical application compliance and application results(such as clinical effects, safety and economy). There were two parts in the guideline, which were TCM guideline and Western medicine guideline. The results of applicability evaluation showed that there were no obvious differences between TCM guideline and Western medicine guideline in doctor's familiarity with guideline(85.43%, 84.57%) and the use of the guideline(52.10%, 54.47%); the guidelines with good quality, and higher scores in the scope of application and the use of the term rationality(91.94%, 93.35%); the rationality scores of relevant contents in syndrome differentiation and treatment were more than 75%; the applicable conditions were better, and the safety score was the the highest. The comprehensive applicability evaluation showed that the proportion of the application of TCM guideline and Western medicine guideline were 77.73%, 75.46%, respectively. The results of application evaluation showed that there was high degree coincidence between the guideline with its clinical application; except for "other treatment" and "recuperation and prevention" in TCM, other items got high scores which were more than 90%; in the evaluation of application effects, safety of the guideline was best, economy of the guideline was better, and clincal effect was good. The comprehensive application evaluation showed that 75%~80% doctors were satisfied with the guideline. The Guidelines for Diagnosis and Treatment of Internal Diseases in Traditional Chinese Medicine has been widely used in clinical practice, which is of high quality, high degree of clinical application,good safety and economy. But there were some disadvantages of the guideline such as lack of evidence-based medicine and innovation, which is need to be improved constantly in the guideline revision. Copyright© by the Chinese Pharmaceutical Association.
Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification
Kamps, Rick; Brandão, Rita D.; van den Bosch, Bianca J.; Paulussen, Aimee D. C.; Xanthoulea, Sofia; Blok, Marinus J.; Romano, Andrea
2017-01-01
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided. PMID:28146134
ERP (enterprise resource planning) systems can streamline healthcare business functions.
Jenkins, E K; Christenson, E
2001-05-01
Enterprise resource planning (ERP) software applications are designed to facilitate the systemwide integration of complex processes and functions across a large enterprise consisting of many internal and external constituents. Although most currently available ERP applications generally are tailored to the needs of the manufacturing industry, many large healthcare systems are investigating these applications. Due to the significant differences between manufacturing and patient care, ERP-based systems do not easily translate to the healthcare setting. In particular, the lack of clinical standardization impedes the use of ERP systems for clinical integration. Nonetheless, an ERP-based system can help a healthcare organization integrate many functions, including patient scheduling, human resources management, workload forecasting, and management of workflow, that are not directly dependent on clinical decision making.
NASA Astrophysics Data System (ADS)
Veltri, Pierangelo
The use of computer based solutions for data management in biology and clinical science has contributed to improve life-quality and also to gather research results in shorter time. Indeed, new algorithms and high performance computation have been using in proteomics and genomics studies for curing chronic diseases (e.g., drug designing) as well as supporting clinicians both in diagnosis (e.g., images-based diagnosis) and patient curing (e.g., computer based information analysis on information gathered from patient). In this paper we survey on examples of computer based techniques applied in both biology and clinical contexts. The reported applications are also results of experiences in real case applications at University Medical School of Catanzaro and also part of experiences of the National project Staywell SH 2.0 involving many research centers and companies aiming to study and improve citizen wellness.
Steinert, Andre F.; Rackwitz, Lars; Gilbert, Fabian; Nöth, Ulrich
2012-01-01
Regenerative therapies in the musculoskeletal system are based on the suitable application of cells, biomaterials, and/or factors. For an effective approach, numerous aspects have to be taken into consideration, including age, disease, target tissue, and several environmental factors. Significant research efforts have been undertaken in the last decade to develop specific cell-based therapies, and in particular adult multipotent mesenchymal stem cells hold great promise for such regenerative strategies. Clinical translation of such therapies, however, remains a work in progress. In the clinical arena, autologous cells have been harvested, processed, and readministered according to protocols distinct for the target application. As outlined in this review, such applications range from simple single-step approaches, such as direct injection of unprocessed or concentrated blood or bone marrow aspirates, to fabrication of engineered constructs by seeding of natural or synthetic scaffolds with cells, which were released from autologous tissues and propagated under good manufacturing practice conditions (for example, autologous chondrocyte implantation). However, only relatively few of these cell-based approaches have entered the clinic, and none of these treatments has become a “standard of care” treatment for an orthopaedic disease to date. The multifaceted reasons for the current status from the medical, research, and regulatory perspectives are discussed here. In summary, this review presents the scientific background, current state, and implications of clinical mesenchymal stem cell application in the musculoskeletal system and provides perspectives for future developments. PMID:23197783
Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian
To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-11
... a surrogate endpoint that is reasonably likely to predict clinical benefit or based on a clinical endpoint other than survival or irreversible morbidity. Approval of PROAMATINE was based on trials... surrogate endpoints are ``subject to the requirement that the applicant study the drug further to verify and...
Jiang, Junjie; Xie, Yanming
2011-10-01
The usage and dosage of Chinese patent medicine are determined by rigorous evaluation which include four clinical trail stages: I, II, III. But the usage and dosage of Chinese patent medicine are lacked re-evaluation after marketing. And this lead to unchanging or fixed of the usage and dosage of Chinese patent medicine instead of different quantity based on different situations in individual patients. The situation of Chinese patent medicine used in clinical application is far away from the idea of the "Treatment based on syndrome differentiation" in traditional Chinese medicine and personalized therapy. Human population pharmacokinetics provides data support to the personalized therapy in clinical application, and achieved the postmarking reevaluating of the usage and dosage of Chinese patent medicine. This paper briefly introduced the present situation, significance and the application of human population pharmacokinetics about re-evaluation of the usage and dosage of Chinese patent medicine after marketing.
OntoCR: A CEN/ISO-13606 clinical repository based on ontologies.
Lozano-Rubí, Raimundo; Muñoz Carrero, Adolfo; Serrano Balazote, Pablo; Pastor, Xavier
2016-04-01
To design a new semantically interoperable clinical repository, based on ontologies, conforming to CEN/ISO 13606 standard. The approach followed is to extend OntoCRF, a framework for the development of clinical repositories based on ontologies. The meta-model of OntoCRF has been extended by incorporating an OWL model integrating CEN/ISO 13606, ISO 21090 and SNOMED CT structure. This approach has demonstrated a complete evaluation cycle involving the creation of the meta-model in OWL format, the creation of a simple test application, and the communication of standardized extracts to another organization. Using a CEN/ISO 13606 based system, an indefinite number of archetypes can be merged (and reused) to build new applications. Our approach, based on the use of ontologies, maintains data storage independent of content specification. With this approach, relational technology can be used for storage, maintaining extensibility capabilities. The present work demonstrates that it is possible to build a native CEN/ISO 13606 repository for the storage of clinical data. We have demonstrated semantic interoperability of clinical information using CEN/ISO 13606 extracts. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Keding; Chui, Huixia; Domish, Larissa; Hernandez, Drexler; Wang, Gehua
2016-04-01
Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS-based diagnosis methods for bacteria identification and typing have been created, not only on well-accepted MALDI-TOF-MS-based fingerprint matches, but also on solving the insufficiencies of MALDI-TOF-MS-based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS-based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria. © 2016 The Authors. PROTEOMICS - Clinical Applications Published by WILEY-VCH Verlag GmbH & Co. KGaA.
Application and Exploration of Big Data Mining in Clinical Medicine.
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-03-20
To review theories and technologies of big data mining and their application in clinical medicine. Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Big data mining has the potential to play an important role in clinical medicine.
Characteriation of clinical data packages using foreign data in new drug applications in Japan.
Tanaka, M; Nagata, T
2008-09-01
The objective of this research was to characterize clinical data packages (CDPs) of new drug applications (NDAs) using foreign data based on the International Conference on Harmonization (ICH) E5 guideline. Official review reports of NDAs approved in Japan between January 1999 and April 2005 were examined. Those NDAs considered by the official reviewers to be approved based on the ICH E5 guideline (E5-NDAs) were identified and classified into six categories of approval requirements in Japan. The details of pivotal clinical efficacy studies in the CDPs were examined. Forty-one NDAs were identified as E5-NDAs. Pivotal clinical studies conducted in Japan were required by the E5-NDAs, except for nine of those in which the foreign clinical studies reduced Japanese clinical studies in the CDPs. Given the differences in approval requirements among regions, the acceptability of foreign clinical data to Japanese approval is limited.
Clinical application of adipose stem cells in plastic surgery.
Kim, Yong-Jin; Jeong, Jae-Ho
2014-04-01
Adipose stem cells (ASCs) are a type of adult stem cells that share common characteristics with typical mesenchymal stem cells. In the last decade, ASCs have been shown to be a useful cell resource for tissue regeneration. The major role of regenerative medicine in this century is based on cell therapy in which ASCs hold a key position. Active research on this new type of adult stem cell has been ongoing and these cells now have several clinical applications, including fat grafting, overcoming wound healing difficulties, recovery from local tissue ischemia, and scar remodeling. The application of cultured cells will increase the efficiency of cell therapy. However, the use of cultured stem cells is strictly controlled by government regulation to ensure patient safety. Government regulation is a factor that can limit more versatile clinical application of ASCs. In this review, current clinical applications of ASCs in plastic surgery are introduced. Future stem cell applications in clinical field including culturing and banking of ASCs are also discussed in this review.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
PhotoExam: adoption of an iOS-based clinical image capture application at Mayo Clinic.
Wyatt, Kirk D; Willaert, Brian N; Pallagi, Peter J; Uribe, Richard A; Yiannias, James A; Hellmich, Thomas R
2017-12-01
Mayo Clinic developed an internal iOS-based, point-of-care clinical image capture application for clinicians. We aimed to assess the adoption and utilization of the application at Mayo Clinic. Metadata of 22,784 photos of 6417 patients taken by 606 users over 8040 clinical encounters between 3/1/2015 and 10/31/2015 were analyzed. A random sample of photos from 100 clinical encounters was assessed for quality using a five-item rubric. Use of traditional medical photography services before and after application launch were compared. The largest group of users was residents/fellows, accounting for 31% of users but only 18% of all photos. Attending physicians accounted for 29% of users and 30% of photos. Nurses accounted for 14% of users and 28% of photos. Surgical specialties had the most users (36% of users), followed by dermatology (14% of users); however, dermatology accounted for 54% of all photos, and surgery accounted for 26% of photos. Images received an average of 91% of possible points on the quality scoring rubric. Most frequent reasons for missing points were the location on the body not clearly being demonstrated (19% of encounters) and the perspective/scale not being clearly demonstrated (12% of encounters). There was no discernible pre-post effect of the application's launch on use of traditional medical photography services. Point-of-care clinical photography is a growing phenomenon with potential to become the new standard of care. Patient and provider attitudes and the impact on patient outcomes remain unclear. © 2017 The International Society of Dermatology.
Kalwitzki, Matthias; Meller, Christina; Beyer, Christine
2011-08-01
The purpose of this study was to determine whether dental students' perceptions regarding six communication patterns for use in pediatric dentistry differed depending on whether they were taught by lecturing or by video-based teaching. Prior to the introduction of interpersonal skills in a clinical course in pediatric dentistry, four consecutive cohorts of students (n=107) in a German dental school were divided equally into two groups. Group one (n=57) was taught by video sequences and group two (n=50) by conventional lecture. Six communication patterns were presented: involvement of the child's toy(s), speaking in positive phrases, mentioning a personal aspect, recalling positive behavior of the patient, addressing fear verbally, and complimenting the patient. Immediately after the presentation, students were asked by means of a questionnaire about their assessment of and intentions regarding the clinical application of the communication patterns presented. After completion of the course, they were asked about the communication patterns that had been used. There were significant differences for three communication patterns in favor of video-based teaching (p<0.05); there were no significant differences regarding the intention for clinical application and the actual clinical application. In this study, students perceived differences between video-based teaching and lecturing regarding ease of use, but they did not seem to benefit from one method over the other regarding clinical application.
NASA Astrophysics Data System (ADS)
De Backer, Jan W.; Vos, Wim G.; Germonpré, Paul; Salgado, Rodrigo; Parizel, Paul M.; De Backer, Wilfried
2009-02-01
Computational fluid dynamics (CFD) is a technique that is used increasingly in the biomedical field. Solving the flow equations numerically provides a convenient way to assess the efficiency of therapies and devices, ranging from cardiovascular stents and heart valves to hemodialysis workflows. Also in the respiratory field CFD has gained increasing interest, especially through the combination of three dimensional image reconstruction which results in highend patient-specific models. This paper provides an overview of clinical applications of CFD through image based modeling, resulting from recent studies performed in our center. We focused on two applications: assessment of the efficiency of inhalation medication and analysis of endobronchial valve placement. In the first application we assessed the mode of action of a novel bronchodilator in 10 treated patients and 4 controls. We assessed the local volume increase and resistance change based on the combination of imaging and CFD. We found a good correlation between the changes in volume and resistance coming from the CFD results and the clinical tests. In the second application we assessed the placement and effect of one way endobronchial valves on respiratory function in 6 patients. We found a strong patientspecific result of the therapy where in some patients the therapy resulted in complete atelectasis of the target lobe while in others the lobe remained inflated. We concluded from these applications that CFD can provide a better insight into clinically relevant therapies.
NASA Astrophysics Data System (ADS)
Wang, Ruikang K.; Baran, Utku; Choi, Woo J.
2016-02-01
Optical coherence tomography (OCT) based microangiography (OMAG) is a new imaging technique enabling the visualization of blood flow within microcirculatory tissue beds in vivo with high resolution. In this talk, the concept and advantages of OMAG will be discussed and its potential clinical applications in the dermatology will be shown, demonstrating its usefulness in the clinical monitoring and therapeutic treatment of various skin pathologies, e.g. acne, port wine stain and wound healing.
Transdiagnostic Theory and Application of Family-Based Treatment for Youth with Eating Disorders
ERIC Educational Resources Information Center
Loeb, Katharine L.; Lock, James; Greif, Rebecca; le Grange, Daniel
2012-01-01
This paper describes the transdiagnostic theory and application of family-based treatment (FBT) for children and adolescents with eating disorders. We review the fundamentals of FBT, a transdiagnostic theoretical model of FBT and the literature supporting its clinical application, adaptations across developmental stages and the diagnostic spectrum…
ERIC Educational Resources Information Center
Hamson-Utley, J. Jordan; Stiller-Ostrowski, Jennifer L.
2013-01-01
Evidence-based practice (EBP) and educational technology have become fundamental skills within athletic training programs. The objective of this article is to share experiences implementing clinical orthopaedic evaluation applications ("apps") that can be integrated into classroom and clinical education to enhance students' proficiency…
Integration of Web-based and PC-based clinical research databases.
Brandt, C A; Sun, K; Charpentier, P; Nadkarni, P M
2004-01-01
We have created a Web-based repository or data library of information about measurement instruments used in studies of multi-factorial geriatric health conditions (the Geriatrics Research Instrument Library - GRIL) based upon existing features of two separate clinical study data management systems. GRIL allows browsing, searching, and selecting measurement instruments based upon criteria such as keywords and areas of applicability. Measurement instruments selected can be printed and/or included in an automatically generated standalone microcomputer database application, which can be downloaded by investigators for use in data collection and data management. Integration of database applications requires the creation of a common semantic model, and mapping from each system to this model. Various database schema conflicts at the table and attribute level must be identified and resolved prior to integration. Using a conflict taxonomy and a mapping schema facilitates this process. Critical conflicts at the table level that required resolution included name and relationship differences. A major benefit of integration efforts is the sharing of features and cross-fertilization of applications created for similar purposes in different operating environments. Integration of applications mandates some degree of metadata model unification.
Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.
2011-01-01
Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608
Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses
Khan, Parvez; Idrees, Danish; Moxley, Michael A.; Corbett, John A.; Ahmad, Faizan; von Figura, Guido; Sly, William S.; Waheed, Abdul
2015-01-01
Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields. PMID:24752935
A machine learning based approach to identify protected health information in Chinese clinical text.
Du, Liting; Xia, Chenxi; Deng, Zhaohua; Lu, Gary; Xia, Shuxu; Ma, Jingdong
2018-08-01
With the increasing application of electronic health records (EHRs) in the world, protecting private information in clinical text has drawn extensive attention from healthcare providers to researchers. De-identification, the process of identifying and removing protected health information (PHI) from clinical text, has been central to the discourse on medical privacy since 2006. While de-identification is becoming the global norm for handling medical records, there is a paucity of studies on its application on Chinese clinical text. Without efficient and effective privacy protection algorithms in place, the use of indispensable clinical information would be confined. We aimed to (i) describe the current process for PHI in China, (ii) propose a machine learning based approach to identify PHI in Chinese clinical text, and (iii) validate the effectiveness of the machine learning algorithm for de-identification in Chinese clinical text. Based on 14,719 discharge summaries from regional health centers in Ya'an City, Sichuan province, China, we built a conditional random fields (CRF) model to identify PHI in clinical text, and then used the regular expressions to optimize the recognition results of the PHI categories with fewer samples. We constructed a Chinese clinical text corpus with PHI tags through substantial manual annotation, wherein the descriptive statistics of PHI manifested its wide range and diverse categories. The evaluation showed with a high F-measure of 0.9878 that our CRF-based model had a good performance for identifying PHI in Chinese clinical text. The rapid adoption of EHR in the health sector has created an urgent need for tools that can parse patient specific information from Chinese clinical text. Our application of CRF algorithms for de-identification has shown the potential to meet this need by offering a highly accurate and flexible solution to analyzing Chinese clinical text. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of evidence-based dentistry: from research to clinical periodontal practice.
Kwok, Vivien; Caton, Jack G; Polson, Alan M; Hunter, Paul G
2012-06-01
Dentists need to make daily decisions regarding patient care, and these decisions should essentially be scientifically sound. Evidence-based dentistry is meant to empower clinicians to provide the most contemporary treatment. The benefits of applying the evidence-based method in clinical practice include application of the most updated treatment and stronger reasoning to justify the treatment. A vast amount of information is readily accessible with today's digital technology, and a standardized search protocol can be developed to ensure that a literature search is valid, specific and repeatable. It involves developing a preset question (population, intervention, comparison and outcome; PICO) and search protocol. It is usually used academically to perform commissioned reviews, but it can also be applied to answer simple clinical queries. The scientific evidence thus obtained can then be considered along with patient preferences and values, clinical patient circumstances and the practitioner's experience and judgment in order to make the treatment decision. This paper describes how clinicians can incorporate evidence-based methods into patient care and presents a clinical example to illustrate the process. © 2012 John Wiley & Sons A/S.
Update on Research and Application of Problem-Based Learning in Medical Science Education
ERIC Educational Resources Information Center
Fan, Chuifeng; Jiang, Biying; Shi, Xiuying; Wang, Enhua; Li, Qingchang
2018-01-01
Problem-based learning (PBL) is a unique form of pedagogy dedicated to developing students' self-learning and clinical practice skills. After several decades of development, although applications vary, PBL has been recognized all over the world and implemented by many medical schools. This review summarizes and updates the application and study of…
ERIC Educational Resources Information Center
Rosenbek, John C.; McCullough, Gary H.; Wertz, Robert T.
2004-01-01
A hotly debated topic in oropharyngeal dysphagia is the Clinical Swallowing Examination's (CSE) importance in clinical practice. That debate can profit from the application of evidence-based medicine's (EBM) principles and procedures. These can guide both appropriate data collection and interpretation as will be demonstrated in the present report.…
Electroporation-based technologies for medicine: principles, applications, and challenges.
Yarmush, Martin L; Golberg, Alexander; Serša, Gregor; Kotnik, Tadej; Miklavčič, Damijan
2014-07-11
When high-amplitude, short-duration pulsed electric fields are applied to cells and tissues, the permeability of the cell membranes and tissue is increased. This increase in permeability is currently explained by the temporary appearance of aqueous pores within the cell membrane, a phenomenon termed electroporation. During the past four decades, advances in fundamental and experimental electroporation research have allowed for the translation of electroporation-based technologies to the clinic. In this review, we describe the theory and current applications of electroporation in medicine and then discuss current challenges in electroporation research and barriers to a more extensive spread of these clinical applications.
Mobile Phone Messaging During Unobserved "Home" Induction to Buprenorphine.
Tofighi, Babak; Grossman, Ellie; Sherman, Scott; Nunes, Edward V; Lee, Joshua D
2016-01-01
The deployment of health information technologies promises to optimize clinical outcomes for populations with substance use disorders. Electronic health records, web-based counseling interventions, and mobile phone applications enhance the delivery of evidence-based behavioral and pharmacological treatments, with minimal burden to clinical personnel, infrastructure, and work flows. This clinical case shares a recent experience utilizing mobile phone text messaging between an office-based buprenorphine provider in a safety net ambulatory clinic and a patient seeking buprenorphine treatment for opioid use disorder. The case highlights the use of text message-based physician-patient communication to facilitate unobserved "home" induction onto buprenorphine.
Clinical application of three-dimensional printing technology in craniofacial plastic surgery.
Choi, Jong Woo; Kim, Namkug
2015-05-01
Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.
Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery
Kim, Namkug
2015-01-01
Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880
Rodríguez-Escudero, Juan Pablo; López-Jiménez, Francisco; Trejo-Gutiérrez, Jorge F
2011-01-01
This article reviews different characteristics of validity in a clinical diagnostic test. In particular, we emphasize the likelihood ratio as an instrument that facilitates the use of epidemiologic concepts in clinical diagnosis.
Application and Exploration of Big Data Mining in Clinical Medicine
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-01-01
Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378
Malinowski, Douglas P
2007-05-01
In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.
Kim, Gyuri; Bae, Ji Cheol; Yi, Byoung Kee; Hur, Kyu Yeon; Chang, Dong Kyung; Lee, Moon-Kyu; Kim, Jae Hyeon; Jin, Sang-Man
2017-07-18
A Personal Health Record (PHR) is an online application that allows patients to access, manage, and share their health data. PHRs not only enhance shared decision making with healthcare providers, but also enable remote monitoring and at-home-collection of detailed data. The benefits of PHRs can be maximized in insulin dose adjustment for patients starting or intensifying insulin regimens, as frequent self-monitoring of glucose, self-adjustment of insulin dose, and precise at-home data collection during the visit-to-visit period are important for glycemic control. The aim of this study is to examine the efficacy and safety of insulin dose adjustment based on a smartphone PHR application in patients with diabetes mellitus (DM) and to confirm the validity and stability of an information and communication technology (ICT)-based centralized clinical trial monitoring system. This is a 24-week, open-label, randomized, multi-center trial. There are three follow-up measures: baseline, post-intervention at week 12, and at week 24. Subjects diagnosed with type 1 DM, type 2 DM, and/or post-transplant DM who initiate basal insulin or intensify their insulin regimen to a basal-bolus regimen are included. After education on insulin dose titration and prevention for hypoglycemia and a 1-week acclimation period, subjects are randomized in a 1:1 ratio to either an ICT-based intervention group or a conventional intervention group. Subjects in the conventional intervention group will save and send their health information to the server via a PHR application, whereas those in ICT-based intervention group will receive additional algorithm-based feedback messages. The health information includes level of blood glucose, insulin dose, details on hypoglycemia, food diary, and step count. The primary outcome will be the proportion of patients who reach an optimal insulin dose within 12 weeks of study enrollment, without severe hypoglycemia or unscheduled clinic visits. This clinical trial will reveal whether insulin dose adjustment based on a smartphone PHR application can facilitate the optimization of insulin doses in patients with DM. In addition, the process evaluation will provide information about the validity and stability of the ICT-based centralized clinical trial monitoring system in this research field. Clinicaltrials.gov NCT 03112343 . Registered on 12 April 2017.
Gait Analysis Using Wearable Sensors
Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian
2012-01-01
Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763
Clinical software development for the Web: lessons learned from the BOADICEA project
2012-01-01
Background In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. Results We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web Application version 1 was released for general use in November 2007. By May 2010, we had > 1200 registered users based in the UK, USA, Canada, South America, Europe, Africa, Middle East, SE Asia, Australia and New Zealand. Conclusions We found that an evolutionary software process was effective when we developed the BOADICEA Web Application. The key clinical software development issues identified during the BOADICEA Web Application project were: software reliability, Web security, clinical data protection and user feedback. PMID:22490389
Clinical software development for the Web: lessons learned from the BOADICEA project.
Cunningham, Alex P; Antoniou, Antonis C; Easton, Douglas F
2012-04-10
In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web Application version 1 was released for general use in November 2007. By May 2010, we had > 1200 registered users based in the UK, USA, Canada, South America, Europe, Africa, Middle East, SE Asia, Australia and New Zealand. We found that an evolutionary software process was effective when we developed the BOADICEA Web Application. The key clinical software development issues identified during the BOADICEA Web Application project were: software reliability, Web security, clinical data protection and user feedback.
Sarchielli, Guido; De Plato, Giovanni; Cavalli, Mario; Albertini, Stefano; Nonni, Ilaria; Bencivenni, Lucia; Montali, Arianna; Ventura, Antonio; Montali, Francesca
2016-01-01
Assessment of the knowledge and application as well as perceived utility by doctors of clinical governance tools in order to explore their impact on clinical units' performance measured through mortality rates and efficiency indicators. This research is a cross-sectional study with a deterministic record-linkage procedure. The sample includes n = 1250 doctors (n = 249 chiefs of clinical units; n = 1001 physicians) working in six public hospitals located in the Emilia-Romagna Region in Italy. Survey instruments include a checklist and a research-made questionnaire which were used for data collection about doctors' knowledge and application as well as perceived utility of clinical governance tools. The analysis was based on clinical units' performance indicators which include patients' mortality, extra-region active mobility rate, average hospital stay, bed occupancy, rotation and turnover rates, and the comparative performance index as efficiency indicators. The clinical governance tools are known and applied differently in all the considered clinical units. Significant differences emerged between roles and organizational levels at which the medical leadership is carried out. The levels of knowledge and application of clinical governance practices are correlated with the clinical units' efficiency indicators (bed occupancy rate, bed turnover interval, and extra-region mobility). These multiple linear regression analyses highlighted that the clinical governance knowledge and application is correlated with clinical units' mortality rates (odds ratio, -8.677; 95% confidence interval, -16.654, -0.700). The knowledge and application, as well as perceived utility by medical professionals of clinical governance tools, are associated with the mortality rates of their units and with some efficiency indicators. However, the medical frontline staff seems to not consider homogeneously useful the clinical governance tools application on its own clinical practice.
Du, Na; Guo, Chenglin; Yang, Mei; Ji, Yanli; Wang, Wei; Li, Jie; Li, Chuan; Liu, Lunxu; Che, Guowei
2017-03-20
Though the concept of enhanced recovery after surgery (ERAS) has been progressively known by the surgeons and applied clinically, the current status of its cognition among thoracic surgeons and application in thoracic surgery is still unknown. Based on the analysis of a survey of thoracic surgeons and nurses on chest ERAS during a national conference, we aimed to analyze the status and difficulties of the application of ERAS in thoracic surgery. A total of 773 questionnaires were collected during the first West China chest ERAS Forum and analyzed. The content of the questionnaire can be divided into two parts, including the respondents' institute and personal information, 10 questions on ERAS. (1) Current status of clinical application of ERAS is the concept rather than the practice: 69.6% of the surgeons and 58.7% of the nurses agreed with this view; in addition, 88.5% of the doctors and 85.7% of the nurses believed that the concept of ERAS may be applicable to every branches of surgery; (2) 55.6% of the doctors and 69.1% of the nurses believed that the reason of poor clinical application of ERAS included no mature procedure, lack of consensus and specifications; (3) The best team for the clinical practice of ERAS should be based on surgeon-centered multidisciplinary cooperation and integration of medical care: 62.1% of the surgeons and 70.7% of nurses agreed with this view; (4) 73.7% of the surgeons and 81.9% of the nurses agreed that mean hospital stay, patients' experience in hospital and social satisfaction should be the evaluation standard of ERAS practice. The application of ERAS in thoracic surgery is still the concept rather than the practice. The reason included the lack of clinical applicable specifications and scheme.
Vision-based body tracking: turning Kinect into a clinical tool.
Morrison, Cecily; Culmer, Peter; Mentis, Helena; Pincus, Tamar
2016-08-01
Vision-based body tracking technologies, originally developed for the consumer gaming market, are being repurposed to form the core of a range of innovative healthcare applications in the clinical assessment and rehabilitation of movement ability. Vision-based body tracking has substantial potential, but there are technical limitations. We use our "stories from the field" to articulate the challenges and offer examples of how these can be overcome. We illustrate that: (i) substantial effort is needed to determine the measures and feedback vision-based body tracking should provide, accounting for the practicalities of the technology (e.g. range) as well as new environments (e.g. home). (ii) Practical considerations are important when planning data capture so that data is analysable, whether finding ways to support a patient or ensuring everyone does the exercise in the same manner. (iii) Home is a place of opportunity for vision-based body tracking, but what we do now in the clinic (e.g. balance tests) or in the home (e.g. play games) will require modifications to achieve capturable, clinically relevant measures. This article articulates how vision-based body tracking works and when it does not to continue to inspire our clinical colleagues to imagine new applications. Implications for Rehabilitation Vision-based body tracking has quickly been repurposed to form the core of innovative healthcare applications in clinical assessment and rehabilitation, but there are clinical as well as practical challenges to make such systems a reality. Substantial effort needs to go into determining what types of measures and feedback vision-based body tracking should provide. This needs to account for the practicalities of the technology (e.g. range) as well as the opportunities of new environments (e.g. the home). Practical considerations need to be accounted for when planning capture in a particular environment so that data is analysable, whether it be finding a chair substitute, ways to support a patient or ensuring everyone does the exercise in the same manner. The home is a place of opportunity with vision-based body tracking, but it would be naïve to think that we can do what we do now in the clinic (e.g. balance tests) or in the home (e.g. play games), without appropriate modifications to what constitutes a practically capturable, clinically relevant measure.
ERIC Educational Resources Information Center
Donohue, Brad; Azrin, Nathan; Allen, Daniel N.; Romero, Valerie; Hill, Heather H.; Tracy, Kendra; Lapota, Holly; Gorney, Suzanne; Abdel-al, Ruweida; Caldas, Diana; Herdzik, Karen; Bradshaw, Kelsey; Valdez, Robby; Van Hasselt, Vincent B.
2009-01-01
A comprehensive evidence-based treatment for substance abuse and other associated problems (Family Behavior Therapy) is described, including its application to both adolescents and adults across a wide range of clinical contexts (i.e., criminal justice, child welfare). Relevant to practitioners and applied clinical researchers, topic areas include…
ERIC Educational Resources Information Center
Hantula, Donald A.
1995-01-01
Clinical applications of statistical process control (SPC) in human service organizations are considered. SPC is seen as providing a standard set of criteria that serves as a common interface for data-based decision making, which may bring decision making under the control of established contingencies rather than the immediate contingencies of…
Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play
Savitz, J B; Rauch, S L; Drevets, W C
2013-01-01
In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders. PMID:23546169
Savitz, J B; Rauch, S L; Drevets, W C
2013-05-01
In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.
FitzGerald, Leah Z; Rorie, Anne; Salem, Benissa E
2015-04-01
To determine the feasibility and acceptability of a mHealth application among nursing students for health promotion and secondary prevention health recommendations for hospitalized adult patients. A pretest-posttest design with a convenience sample of 169 prelicensure master's entry clinical nursing students in a large urban public university. Survey questions assessed intention to use, perceived usefulness, perceived ease of use, subjective norm, voluntariness, clinical area relevance, output quality, and result demonstrability of the United States Preventive Services Task Force (USPSTF) evidence-based practice guidelines via the mHealth application. Descriptive statistics and frequencies were used to explore sociodemographics; paired t-tests were used to evaluate pre- and posttest differences. Pre- and posttest significant differences (p < .01) were found between intention to use, perceived usefulness, subjective norm, voluntariness, image, clinical relevance, result demonstrability, and output quality (p < .02). Ease use of a mHealth application was not significantly different. These findings highlight the need to integrate evidence-based practice tools using mHealth technology among prelicensure master's entry clinical nursing students in order to engage and foster translational learning and improve dissemination of secondary prevention screening guidelines among hospitalized patients. © 2015 Sigma Theta Tau International.
Biermann, Martin
2014-04-01
Clinical trials aiming for regulatory approval of a therapeutic agent must be conducted according to Good Clinical Practice (GCP). Clinical Data Management Systems (CDMS) are specialized software solutions geared toward GCP-trials. They are however less suited for data management in small non-GCP research projects. For use in researcher-initiated non-GCP studies, we developed a client-server database application based on the public domain CakePHP framework. The underlying MySQL database uses a simple data model based on only five data tables. The graphical user interface can be run in any web browser inside the hospital network. Data are validated upon entry. Data contained in external database systems can be imported interactively. Data are automatically anonymized on import, and the key lists identifying the subjects being logged to a restricted part of the database. Data analysis is performed by separate statistics and analysis software connecting to the database via a generic Open Database Connectivity (ODBC) interface. Since its first pilot implementation in 2011, the solution has been applied to seven different clinical research projects covering different clinical problems in different organ systems such as cancer of the thyroid and the prostate glands. This paper shows how the adoption of a generic web application framework is a feasible, flexible, low-cost, and user-friendly way of managing multidimensional research data in researcher-initiated non-GCP clinical projects. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects
Guo, Yelei; Wang, Yao; Han, Weidong
2016-01-01
Recent studies have highlighted the successes of chimeric antigen receptor-modified T- (CART-) cell-based therapy for B-cell malignancies, and early phase clinical trials have been launched in recent years. The few published clinical studies of CART cells in solid tumors have addressed safety and feasibility, but the clinical outcome data are limited. Although antitumor effects were confirmed in vitro and in animal models, CART-cell-based therapy still faces several challenges when directed towards solid tumors, and it has been difficult to achieve the desired outcomes in clinical practice. Many studies have struggled to improve the clinical responses to and benefits of CART-cell treatment of solid tumors. In this review, the status quo of CART cells and their clinical applications for solid tumors will be summarized first. Importantly, we will suggest improvements that could increase the therapeutic effectiveness of CART cells for solid tumors and their future clinical applications. These interventions will make treatment with CART cells an effective and routine therapy for solid tumors. PMID:26998495
A survey of GPU-based medical image computing techniques
Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming
2012-01-01
Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080
A web access script language to support clinical application development.
O'Kane, K C; McColligan, E E
1998-02-01
This paper describes the development of a script language to support the implementation of decentralized, clinical information applications on the World Wide Web (Web). The goal of this work is to facilitate construction of low overhead, fully functional clinical information systems that can be accessed anywhere by low cost Web browsers to search, retrieve and analyze stored patient data. The Web provides a model of network access to data bases on a global scale. Although it was originally conceived as a means to exchange scientific documents, Web browsers and servers currently support access to a wide variety of audio, video, graphical and text based data to a rapidly growing community. Access to these services is via inexpensive client software browsers that connect to servers by means of the open architecture of the Internet. In this paper, the design and implementation of a script language that supports the development of low cost, Web-based, distributed clinical information systems for both Inter- and Intra-Net use is presented. The language is based on the Mumps language and, consequently, supports many legacy applications with few modifications. Several enhancements, however, have been made to support modern programming practices and the Web interface. The interpreter for the language also supports standalone program execution on Unix, MS-Windows, OS/2 and other operating systems.
Bucur, Anca; van Leeuwen, Jasper; Chen, Njin-Zu; Claerhout, Brecht; de Schepper, Kristof; Perez-Rey, David; Paraiso-Medina, Sergio; Alonso-Calvo, Raul; Mehta, Keyur; Krykwinski, Cyril
2016-01-01
This paper describes a new Cohort Selection application implemented to support streamlining the definition phase of multi-centric clinical research in oncology. Our approach aims at both ease of use and precision in defining the selection filters expressing the characteristics of the desired population. The application leverages our standards-based Semantic Interoperability Solution and a Groovy DSL to provide high expressiveness in the definition of filters and flexibility in their composition into complex selection graphs including splits and merges. Widely-adopted ontologies such as SNOMED-CT are used to represent the semantics of the data and to express concepts in the application filters, facilitating data sharing and collaboration on joint research questions in large communities of clinical users. The application supports patient data exploration and efficient collaboration in multi-site, heterogeneous and distributed data environments. PMID:27570644
The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Shi, Tujin; Qian, Wei-Jun
2015-12-04
Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances inmore » LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.« less
Steel, Amie; Adams, Jon
2011-06-01
The approach of evidence-based medicine (EBM), providing a paradigm to validate information sources and a process for critiquing their value, is an important platform for guiding practice. Researchers have explored the application and value of information sources in clinical practice with regard to a range of health professions; however, naturopathic practice has been overlooked. An exploratory study of naturopaths' perspectives of the application and value of information sources has been undertaken. Semi-structured interviews with 12 naturopaths in current clinical practice, concerning the information sources used in clinical practice and their perceptions of these sources. Thematic analysis identified differences in the application of the variety of information sources used, depending upon the perceived validity. Internet databases were viewed as highly valid. Textbooks, formal education and interpersonal interactions were judged based upon a variety of factors, whilst validation of general internet sites and manufacturers information was required prior to use. The findings of this study will provide preliminary aid to those responsible for supporting naturopaths' information use and access. In particular, it may assist publishers, medical librarians and professional associations in developing strategies to expand the clinically useful information sources available to naturopaths. © 2011 The authors. Health Information and Libraries Journal © 2011 Health Libraries Group.
[Evidence-based medicine and 'The Cochrane Collaboration'].
Kawamura, T; Tamakoshi, A; Wakai, K; Ohno, Y
1999-06-01
In Evidence-Based Medicine (EBM), a clinical decision is based neither on pathophysiological theories nor personal experience but on the results derived from scientifically designed clinical epidemiological studies (i.e., evidence). EBM is used in various clinical applications, such as therapy, diagnosis, and prognosis prediction. The process includes (1) asking a clinical question consisting of the three elements of "patient", "exposure", and "outcome"; (2) searching for the best evidence using MEDLINE or Cochrane Library; (3) appraising critically the validity of the method and the magnitude and probability of the result; and finally (4) applying the evidence of the patient. In actual clinical practice, clinical expertise and patient preferences should be as much regarded as research evidence. 'The Cochrane Collaboration' supplies systematic reviews of clinical trials carried out all over the world to its consumers. Its fruit, 'The Cochrane Library (CD-ROM),' is a highly valuable resource. 'The Cochrane Collaboration' serves as the infrastructure for EBM. EBM, which was originally developed for the individual patient care, can also be applicable to community- or workplace-healthcare and policy making by governments. Thus, EBM is both a philosophy and a method to provide people with the most appropriate medical practice.
Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar
2017-01-01
Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.
Smartphone Applications for the Clinical Oncologist in UK Practice.
Rozati, Hamoun; Shah, Sonya Pratik; Shah, Neha
2015-06-01
A number of medical smartphone applications have been developed to assist clinical oncology specialists. Concerns have arisen that the information provided may not be under sufficient scrutiny. This study aims to analyse the current applications available for clinical oncologists in the UK. Applications aimed specifically at physician clinical oncologists were searched for on the major smartphone operating systems: Apple iOS; Google Android; Microsoft Windows OS; and Blackberry OS. All applications were installed and analysed. The applications were scrutinised to assess the following information: cost; whether the information included was referenced; when the information was last updated; and whether they made any reference to UK guidelines. A novel rating score based on these criteria was applied to each application. Fifty applications were identified: 24 for Apple's iOS; 23 for Google's Android; 2 for Blackberry OS; and 1 for Windows OS. The categories of applications available were: drug reference; journal reference; learning; clinical calculators; decision support; guidelines; and dictionaries. Journal reference and guideline applications scored highly on our rating system. Drug reference application costs were prohibitive. Learning tools were poorly referenced and not up-to-date. Smartphones provide easy access to information. There are numerous applications devoted to oncology physicians, many of which are free and contain referenced, up-to-date data. The cost and quality of drug reference and learning applications have significant scope for improvement. A regulatory body is needed to ensure the presence of peer-reviewed, validated applications to ensure their reliability.
A CMOS camera-based system for clinical photoplethysmographic applications
NASA Astrophysics Data System (ADS)
Humphreys, Kenneth; Markham, Charles; Ward, Tomas E.
2005-06-01
In this work an image-based photoplethysmography (PPG) system is developed and tested against a conventional finger-based system as commonly used in clinical practise. A PPG is essentially an optical instrument consisting of a near infrared (NIR) source and detector that is capable of tracking blood flow changes in body tissue. When used with a number of wavelengths in the NIR band blood oxygenation changes as well as other blood chemical signatures can be ascertained yielding a very useful device in the clinical realm. Conventionally such a device requires direct contact with the tissue under investigation which eliminates the possibility of its use for applications like wound management where the tissue oxygenation measurement could be extremely useful. To circumnavigate this shortcoming we have developed a CMOS camera-based system, which can successfully extract the PPG signal without contact with the tissue under investigation. A comparison of our results with conventional techniques has yielded excellent results.
Optimizing biomedical science learning in a veterinary curriculum: a review.
Warren, Amy L; Donnon, Tyrone
2013-01-01
As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.
Liu, Yu-Qi; Liu, Meng-Yu; Li, Chun; Shi, Nan-Nan; Wang, Yue-Xi; Wang, Li-Ying; Zhao, Xue-Yao; Kou, Shuang; Han, Xue-Jie; Wang, Yan-Ping
2017-09-01
This study is to assess the Guidelines for Diagnosis and Treatment of Common Diseases of Otolaryngology in Traditional Chinese Medicine in clinical application and provide evidence for further guideline revision. The assessment was divided into applicability assessment and practicability assessment. The applicability assessment based on questionnaire survey and the traditional Chinese medicine (TCM) practitioners were asked to independently fill the Questionnaire for Applicability Assessment on the Guidelines for Diagnosis and Treatment in Traditional Chinese Medicine. The practicability assessment was based on prospective case investigation and analysis method and the TCM practitioners-in-charge filled the Case Investigation Questionnaire for Practicability Assessment on the Guidelines for Diagnosis and Treatment in Traditional Chinese Medicine. The data were analyzed in descriptive statistics. 151 questionnaires were investigated for applicability assessment and 1 016 patients were included for practicability assessment. The results showed that 88.74% of them were familiar with the guidelines and 45.70% used them. The guidelines quality and related items were similar in applicability assessment and practicability assessment, and scored highly as more than 85.00% except the "recuperating and prevention". The results suggested that the quality of Guidelines for Diagnosis and Treatment of Common Diseases of Otolaryngology in Traditional Chinese Medicine was high and could better guide the clinical practice. The "recuperating and prevention" part should be improved and the evidence data should be included in future guideline revision, so that the clinical utilization rate could be increased. Copyright© by the Chinese Pharmaceutical Association.
An Environment for Guideline-based Decision Support Systems for Outpatients Monitoring.
Zini, Elisa M; Lanzola, Giordano; Bossi, Paolo; Quaglini, Silvana
2017-08-11
We propose an architecture for monitoring outpatients that relies on mobile technologies for acquiring data. The goal is to better control the onset of possible side effects between the scheduled visits at the clinic. We analyze the architectural components required to ensure a high level of abstraction from data. Clinical practice guidelines were formalized with Alium, an authoring tool based on the PROforma language, using SNOMED-CT as a terminology standard. The Alium engine is accessible through a set of APIs that may be leveraged for implementing an application based on standard web technologies to be used by doctors at the clinic. Data sent by patients using mobile devices need to be complemented with those already available in the Electronic Health Record to generate personalized recommendations. Thus a middleware pursuing data abstraction is required. To comply with current standards, we adopted the HL7 Virtual Medical Record for Clinical Decision Support Logical Model, Release 2. The developed architecture for monitoring outpatients includes: (1) a guideline-based Decision Support System accessible through a web application that helps the doctors with prevention, diagnosis and treatment of therapy side effects; (2) an application for mobile devices, which allows patients to regularly send data to the clinic. In order to tailor the monitoring procedures to the specific patient, the Decision Support System also helps physicians with the configuration of the mobile application, suggesting the data to be collected and the associated collection frequency that may change over time, according to the individual patient's conditions. A proof of concept has been developed with a system for monitoring the side effects of chemo-radiotherapy in head and neck cancer patients. Our environment introduces two main innovation elements with respect to similar works available in the literature. First, in order to meet the specific patients' needs, in our work the Decision Support System also helps the physicians in properly configuring the mobile application. Then the Decision Support System is also continuously fed by patient-reported outcomes.
Zhang, Yi-Fan; Gou, Ling; Tian, Yu; Li, Tian-Chang; Zhang, Mao; Li, Jing-Song
2016-05-01
Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.
Bishop, Felicity L; Coghlan, Beverly; Geraghty, Adam Wa; Everitt, Hazel; Little, Paul; Holmes, Michelle M; Seretis, Dionysis; Lewith, George
2017-06-30
Placebo effects can be clinically meaningful but are seldom fully exploited in clinical practice. This review aimed to facilitate translational research by producing a taxonomy of techniques that could augment placebo analgesia in clinical practice. Literature review and survey. We systematically analysed methods which could plausibly be used to elicit placebo effects in 169 clinical and laboratory-based studies involving non-malignant pain, drawn from seven systematic reviews. In a validation exercise, we surveyed 33 leading placebo researchers (mean 12 years’ research experience, SD 9.8), who were asked to comment on and add to the draft taxonomy derived from the literature. The final taxonomy defines 30 procedures that may contribute to placebo effects in clinical and experimental research, proposes 60 possible clinical applications and classifies procedures into five domains: the patient’s characteristics and belief (5 procedures and 11 clinical applications), the practitioner’s characteristics and beliefs (2 procedures and 4 clinical applications), the healthcare setting (8 procedures and 13 clinical applications), treatment characteristics (8 procedures and 14 clinical applications) and the patientâ€"practitioner interaction (7 procedures and 18 clinical applications). The taxonomy provides a preliminary and novel tool with potential to guide translational research aiming to harness placebo effects for patient benefit in practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Clinical applications of a quantitative analysis of regional lift ventricular wall motion
NASA Technical Reports Server (NTRS)
Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.
1975-01-01
Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.
Sittig, D F; Franklin, M; Turetsky, M; Sussman, A J; Bates, D W; Komaroff, A L; Teich, J M
1998-01-01
The process of creating a clinical referral for a patient and the transfer of information from the primary care physician to the specialist and back again is a key component in the struggle to deliver less costly and more effective clinical care. We have created a computer-based clinical referral application which facilitates 1) identifying an appropriate specialist; 2) collecting the clinical, demographic, and financial data required to generate a referral; and 3) transferring the information between the specialist and the primary care physician. Preliminary results indicate that the new computer-based process is faster.
Regulation of Clinical Trials with Advanced Therapy Medicinal Products in Germany.
Renner, Matthias; Anliker, Brigitte; Sanzenbacher, Ralf; Schuele, Silke
2015-01-01
In the European Union, clinical trials for Advanced Therapy Medicinal Products are regulated at the national level, in contrast to the situation for a Marketing Authorisation Application, in which a centralised procedure is foreseen for these medicinal products. Although based on a common understanding regarding the regulatory requirement to be fulfilled before conduct of a clinical trial with an Advanced Therapy Investigational Medicinal Product, the procedures and partly the scientific requirements for approval of a clinical trial application differ between the European Union Member States. This chapter will thus give an overview about the path to be followed for a clinical trial application and the subsequent approval process for an Advanced Therapy Investigational Medicinal Product in Germany and will describe the role of the stakeholders that are involved. In addition, important aspects of manufacturing, quality control and non-clinical testing of Advanced Therapy Medicinal Products in the clinical development phase are discussed. Finally, current and future approaches for harmonisation of clinical trial authorisation between European Union Member States are summarised.
Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María Del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat
2016-01-01
The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer.
Parmaksiz, Mahmut; Dogan, Arin; Odabas, Sedat; Elçin, A Eser; Elçin, Y Murat
2016-03-17
Decellularization is the process of removing the cellular components from tissues or organs. It is a promising technology for obtaining a biomaterial with a highly preserved extracellular matrix (ECM), which may also act as a biological scaffold for tissue engineering and regenerative therapies. Decellularized products are gaining clinical importance and market space due to their ease of standardized production, constant availability for grafting and mechanical or biochemical superiority against competing clinical options, yielding clinical results ahead of the ones with autografts in some applications. Current drawbacks and limitations of traditional treatments and clinical applications can be overcome by using decellularized or acellular matrices. Several companies are leading the market with versatile acellular products designed for diverse use in the reconstruction of tissues and organs. This review describes ECM-based decellularized and acellular products that are currently in use for different branches of clinic.
Li, Ting; Zhong, Fulin; Pan, Boan; Li, Zebin; Huang, Chong; Deng, Zishan
2017-01-01
The optoelectronic sensor OPT101 have merits in advanced optoelectronic response characteristics at wavelength range for medical near-infrared spectroscopy and small-size chip design with build-in trans-impedance amplifier. Our lab is devoted to developing a series of portable near-infrared spectroscopy (NIRS) devices embedded with OPT101 for applications in intensive care unit clinics, based on NIRS principle. Here we review the characteristics and advantages of OPT101 relative to clinical NIRS instrumentation, and the most recent achievements, including early-diagnosis and therapeutic effect evaluation of thrombus, noninvasive monitoring of patients' shock severity, and fatigue evaluation. The future prospect on OPT101 improvements in noninvasive clinical applications is also discussed. PMID:28757564
TMS-EEG: From basic research to clinical applications
NASA Astrophysics Data System (ADS)
Hernandez-Pavon, Julio C.; Sarvas, Jukka; Ilmoniemi, Risto J.
2014-11-01
Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) is a powerful technique for non-invasively studying cortical excitability and connectivity. The combination of TMS and EEG has widely been used to perform basic research and recently has gained importance in different clinical applications. In this paper, we will describe the physical and biological principles of TMS-EEG and different applications in basic research and clinical applications. We will present methods based on independent component analysis (ICA) for studying the TMS-evoked EEG responses. These methods have the capability to remove and suppress large artifacts, making it feasible, for instance, to study language areas with TMS-EEG. We will discuss the different applications and limitations of TMS and TMS-EEG in clinical applications. Potential applications of TMS are presented, for instance in neurosurgical planning, depression and other neurological disorders. Advantages and disadvantages of TMS-EEG and its variants such as repetitive TMS (rTMS) are discussed in comparison to other brain stimulation and neuroimaging techniques. Finally, challenges that researchers face when using this technique will be summarized.
Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging
NASA Astrophysics Data System (ADS)
Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean
2016-06-01
Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.
Web-based multimedia information retrieval for clinical application research
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Hoo, Kent S., Jr.; Zhang, Hong; Ching, Wan; Zhang, Ming; Wong, Stephen T. C.
2001-08-01
We described a web-based data warehousing method for retrieving and analyzing neurological multimedia information. The web-based method supports convenient access, effective search and retrieval of clinical textual and image data, and on-line analysis. To improve the flexibility and efficiency of multimedia information query and analysis, a three-tier, multimedia data warehouse for epilepsy research has been built. The data warehouse integrates clinical multimedia data related to epilepsy from disparate sources and archives them into a well-defined data model.
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
NASA Astrophysics Data System (ADS)
Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris
2015-07-01
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.
[On the issues of functioning of the clinic of research institute of balneology].
2012-01-01
The article presents the results of analysis of effectiveness of application of main resources in organizing and quality supporting of medical diagnostic care to patients in the clinic of research institute of balneology profile. The result data points out the insufficient effectiveness of application of these resources; the defects in organization and quality of curative diagnostic and rehabilitation care. They determine the priority directions of enhancement of functioning of the institution being a clinical base of research institute of balneology.
Clinical implementation of pharmacogenetics.
García-González, Xandra; Cabaleiro, Teresa; Herrero, María José; McLeod, Howard; López-Fernández, Luis A
2016-03-01
In the last decade, pharmacogenetic research has been performed in different fields. However, the application of pharmacogenetic findings to clinical practice has not been as fast as desirable. The current situation of clinical implementation of pharmacogenetics is discussed. This review focuses on the advances of pharmacogenomics to individualize cancer treatments, the relationship between pharmacogenetics and pharmacodynamics in the clinical course of transplant patients receiving a combination of immunosuppressive therapy, the needs and barriers facing pharmacogenetic clinical application, and the situation of pharmacogenetic testing in Spain. It is based on lectures presented by speakers of the Clinical Implementation of Pharmacogenetics Symposium at the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held in April 20, 2015.
ERIC Educational Resources Information Center
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…
NCI Consumers Guide to Peer Review
To define the role consumer advocate in the peer review of applications that support extramural clinical and population-based research and clinical career development and training by various grant and cooperative agreement mechanisms.
OSCE-based Clinical Skill Education for Physical and Occupational Therapists
Sakurai, Hiroaki; Kanada, Yoshikiyo; Sugiura, Yoshito; Motoya, Ikuo; Wada, Yosuke; Yamada, Masayuki; Tomita, Masao; Tanabe, Shigeo; Teranishi, Toshio; Tsujimura, Toru; Sawa, Syunji; Okanishi, Tetsuo
2014-01-01
[Purpose] The aim of this study was to examine the applicability of the Objective Structured Clinical Examination (OSCE) to postgraduate education systems for novice and mid-career therapists in workplaces. [Subjects] Physical and occupational therapists with 1 to 5 years of clinical experience took the OSCE to assess their learning, with a physical or occupational therapy faculty member and a clinical supervisor as examiners. Another clinical supervisor acted as a simulated patient. [Methods] A Wilcoxon signed-rank test was performed to compare skills between before and after OSCE-based learning, and a Mann-Whitney U test was used to compare them between therapists with 1 to 2 years (novice) and 3 to 5 years (mid-career) of clinical experience. [Results] While no experience-related differences were observed in behavioral aspects, mid-career therapists exhibited markedly higher scores compared with novices in technical aspects, such as skills to guide patients for standing up, transfer, and dressing. [Conclusion] The OSCE may be sufficiently applicable to postgraduate education systems in workplaces. PMID:25276021
Bioimpedance imaging: an overview of potential clinical applications.
Bayford, Richard; Tizzard, Andrew
2012-10-21
Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.
Technology assessment for an integrated PC-based platform for three telemedicine applications
NASA Astrophysics Data System (ADS)
Tohme, Walid G.; Hayes, Wendelin S.; Dai, Hailei L.; Komo, Darmadi; Pahira, John J.; Abernethy, Darrell R.; Rennert, Wolfgang; Kuehl, Karen S.; Hauser, Gabriel J.; Mun, Seong K.
1996-05-01
This paper investigates the design and technical efficacy of an integrated PC based platform for three different medical applications. The technical efficacy of such a telemedicine platform has not been evaluated in the literature and optimal technical requirements have not been developed. The first application, with the Department of Surgery, Division of Urology, tests the utility of a telemedicine platform including radiology images for a surgical stone disease consultation service from an off site location in West Virginia. The second application, with the Department of Internal Medicine, Division of Clinical Pharmacology, investigates the usefulness of telemedicine when used for a clinical pharmacology consultation service from an off-site location. The third application, with the Department of Pediatrics, will test telemedicine for trauma care triage service first within an off-site location in Virginia and then from there to Georgetown University Medical Center.
Spieler, Bernadette; Burgsteiner, Harald; Messer-Misak, Karin; Gödl-Purrer, Barbara; Salchinger, Beate
2015-01-01
Findings in physiotherapy have standardized approaches in treatment, but there is also a significant margin of differences in how to implement these standards. Clinical decisions require experience and continuous learning processes to consolidate personal values and opinions and studies suggest that lecturers can influence students positively. Recently, the study course of Physiotherapy at the University of Applied Science in Graz has offered a paper based finding document. This document supported decisions through the adaption of the clinical reasoning process. The document was the starting point for our learning application called "EasyAssess", a Java based web-application for a digital findings documentation. A central point of our work was to ensure efficiency, effectiveness and usability of the web-application through usability tests utilized by both students and lecturers. Results show that our application fulfills the previously defined requirements and can be efficiently used in daily routine largely because of its simple user interface and its modest design. Due to the close cooperation with the study course Physiotherapy, the application has incorporated the various needs of the target audiences and confirmed the usefulness of our application.
Tan, Ming T; Liu, Jian-ping; Lao, Lixing
2012-08-01
Recently, proper use of the statistical methods in traditional Chinese medicine (TCM) randomized controlled trials (RCTs) has received increased attention. Statistical inference based on hypothesis testing is the foundation of clinical trials and evidence-based medicine. In this article, the authors described the methodological differences between literature published in Chinese and Western journals in the design and analysis of acupuncture RCTs and the application of basic statistical principles. In China, qualitative analysis method has been widely used in acupuncture and TCM clinical trials, while the between-group quantitative analysis methods on clinical symptom scores are commonly used in the West. The evidence for and against these analytical differences were discussed based on the data of RCTs assessing acupuncture for pain relief. The authors concluded that although both methods have their unique advantages, quantitative analysis should be used as the primary analysis while qualitative analysis can be a secondary criterion for analysis. The purpose of this paper is to inspire further discussion of such special issues in clinical research design and thus contribute to the increased scientific rigor of TCM research.
Schwaenen, Carsten; Nessling, Michelle; Wessendorf, Swen; Salvi, Tatjana; Wrobel, Gunnar; Radlwimmer, Bernhard; Kestler, Hans A.; Haslinger, Christian; Stilgenbauer, Stephan; Döhner, Hartmut; Bentz, Martin; Lichter, Peter
2004-01-01
B cell chronic lymphocytic leukemia (B-CLL) is characterized by a highly variable clinical course. Recurrent chromosomal imbalances provide significant prognostic markers. Risk-adapted therapy based on genomic alterations has become an option that is currently being tested in clinical trials. To supply a robust tool for such large scale studies, we developed a comprehensive DNA microarray dedicated to the automated analysis of recurrent genomic imbalances in B-CLL by array-based comparative genomic hybridization (matrix–CGH). Validation of this chip in a series of 106 B-CLL cases revealed a high specificity and sensitivity that fulfils the criteria for application in clinical oncology. This chip is immediately applicable within clinical B-CLL treatment trials that evaluate whether B-CLL cases with distinct chromosomal abnormalities should be treated with chemotherapy of different intensities and/or stem cell transplantation. Through the control set of DNA fragments equally distributed over the genome, recurrent genomic imbalances were discovered: trisomy of chromosome 19 and gain of the MYCN oncogene correlating with an elevation of MYCN mRNA expression. PMID:14730057
Evidence Based Medicine – New Approaches and Challenges
Masic, Izet; Miokovic, Milan; Muhamedagic, Belma
2008-01-01
CONFLICT OF INTEREST: NONE DECLARED Evidence based medicine (EBM) is the conscientious, explicit, judicious and reasonable use of modern, best evidence in making decisions about the care of individual patients. EBM integrates clinical experience and patient values with the best available research information. It is a movement which aims to increase the use of high quality clinical research in clinical decision making. EBM requires new skills of the clinician, including efficient literature-searching, and the application of formal rules of evidence in evaluating the clinical literature. The practice of evidence-based medicine is a process of lifelong, self-directed, problem-based learning in which caring for one’s own patients creates the need for clinically important information about diagnosis, prognosis, therapy and other clinical and health care issues. It is not “cookbook” with recipes, but its good application brings cost-effective and better health care. The key difference between evidence-based medicine and traditional medicine is not that EBM considers the evidence while the latter does not. Both take evidence into account; however, EBM demands better evidence than has traditionally been used. One of the greatest achievements of evidence-based medicine has been the development of systematic reviews and meta-analyses, methods by which researchers identify multiple studies on a topic, separate the best ones and then critically analyze them to come up with a summary of the best available evidence. The EBM-oriented clinicians of tomorrow have three tasks: a) to use evidence summaries in clinical practice; b) to help develop and update selected systematic reviews or evidence-based guidelines in their area of expertise; and c) to enrol patients in studies of treatment, diagnosis and prognosis on which medical practice is based. PMID:24109156
Computer-Based Intepretation of the Marital Satisfaction Inventory: Use in Treatment Planning.
ERIC Educational Resources Information Center
Snyder, Douglas K.; And Others
1988-01-01
Describes computer-based interpretive system for Marital Satisfaction Inventory (MSI) and application in initial phases of clinical assessment and treatment planning. Provides case study. Compares clinical findings at intake with MSI profiles for one couple obtained at termination and follow-up. Considers strengths and limitations of self-report…
Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L
2015-02-01
Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.
Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy
2014-01-01
The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.
Ethical and Safety Issues of Stem Cell-Based Therapy.
Volarevic, Vladislav; Markovic, Bojana Simovic; Gazdic, Marina; Volarevic, Ana; Jovicic, Nemanja; Arsenijevic, Nebojsa; Armstrong, Lyle; Djonov, Valentin; Lako, Majlinda; Stojkovic, Miodrag
2018-01-01
Results obtained from completed and on-going clinical studies indicate huge therapeutic potential of stem cell-based therapy in the treatment of degenerative, autoimmune and genetic disorders. However, clinical application of stem cells raises numerous ethical and safety concerns. In this review, we provide an overview of the most important ethical issues in stem cell therapy, as a contribution to the controversial debate about their clinical usage in regenerative and transplantation medicine. We describe ethical challenges regarding human embryonic stem cell (hESC) research, emphasizing that ethical dilemma involving the destruction of a human embryo is a major factor that may have limited the development of hESC-based clinical therapies. With previous derivation of induced pluripotent stem cells (iPSCs) this problem has been overcome, however current perspectives regarding clinical translation of iPSCs still remain. Unlimited differentiation potential of iPSCs which can be used in human reproductive cloning, as a risk for generation of genetically engineered human embryos and human-animal chimeras, is major ethical issue, while undesired differentiation and malignant transformation are major safety issues. Although clinical application of mesenchymal stem cells (MSCs) has shown beneficial effects in the therapy of autoimmune and chronic inflammatory diseases, the ability to promote tumor growth and metastasis and overestimated therapeutic potential of MSCs still provide concerns for the field of regenerative medicine. This review offers stem cell scientists, clinicians and patient's useful information and could be used as a starting point for more in-depth analysis of ethical and safety issues related to clinical application of stem cells.
Ethical and Safety Issues of Stem Cell-Based Therapy
Volarevic, Vladislav; Markovic, Bojana Simovic; Gazdic, Marina; Volarevic, Ana; Jovicic, Nemanja; Arsenijevic, Nebojsa; Armstrong, Lyle; Djonov, Valentin; Lako, Majlinda; Stojkovic, Miodrag
2018-01-01
Results obtained from completed and on-going clinical studies indicate huge therapeutic potential of stem cell-based therapy in the treatment of degenerative, autoimmune and genetic disorders. However, clinical application of stem cells raises numerous ethical and safety concerns. In this review, we provide an overview of the most important ethical issues in stem cell therapy, as a contribution to the controversial debate about their clinical usage in regenerative and transplantation medicine. We describe ethical challenges regarding human embryonic stem cell (hESC) research, emphasizing that ethical dilemma involving the destruction of a human embryo is a major factor that may have limited the development of hESC-based clinical therapies. With previous derivation of induced pluripotent stem cells (iPSCs) this problem has been overcome, however current perspectives regarding clinical translation of iPSCs still remain. Unlimited differentiation potential of iPSCs which can be used in human reproductive cloning, as a risk for generation of genetically engineered human embryos and human-animal chimeras, is major ethical issue, while undesired differentiation and malignant transformation are major safety issues. Although clinical application of mesenchymal stem cells (MSCs) has shown beneficial effects in the therapy of autoimmune and chronic inflammatory diseases, the ability to promote tumor growth and metastasis and overestimated therapeutic potential of MSCs still provide concerns for the field of regenerative medicine. This review offers stem cell scientists, clinicians and patient's useful information and could be used as a starting point for more in-depth analysis of ethical and safety issues related to clinical application of stem cells. PMID:29333086
Prototypes for Content-Based Image Retrieval in Clinical Practice
Depeursinge, Adrien; Fischer, Benedikt; Müller, Henning; Deserno, Thomas M
2011-01-01
Content-based image retrieval (CBIR) has been proposed as key technology for computer-aided diagnostics (CAD). This paper reviews the state of the art and future challenges in CBIR for CAD applied to clinical practice. We define applicability to clinical practice by having recently demonstrated the CBIR system on one of the CAD demonstration workshops held at international conferences, such as SPIE Medical Imaging, CARS, SIIM, RSNA, and IEEE ISBI. From 2009 to 2011, the programs of CADdemo@CARS and the CAD Demonstration Workshop at SPIE Medical Imaging were sought for the key word “retrieval” in the title. The systems identified were analyzed and compared according to the hierarchy of gaps for CBIR systems. In total, 70 software demonstrations were analyzed. 5 systems were identified meeting the criterions. The fields of application are (i) bone age assessment, (ii) bone fractures, (iii) interstitial lung diseases, and (iv) mammography. Bridging the particular gaps of semantics, feature extraction, feature structure, and evaluation have been addressed most frequently. In specific application domains, CBIR technology is available for clinical practice. While system development has mainly focused on bridging content and feature gaps, performance and usability have become increasingly important. The evaluation must be based on a larger set of reference data, and workflow integration must be achieved before CBIR-CAD is really established in clinical practice. PMID:21892374
A service oriented approach for guidelines-based clinical decision support using BPMN.
Rodriguez-Loya, Salvador; Aziz, Ayesha; Chatwin, Chris
2014-01-01
Evidence-based medical practice requires that clinical guidelines need to be documented in such a way that they represent a clinical workflow in its most accessible form. In order to optimize clinical processes to improve clinical outcomes, we propose a Service Oriented Architecture (SOA) based approach for implementing clinical guidelines that can be accessed from an Electronic Health Record (EHR) application with a Web Services enabled communication mechanism with the Enterprise Service Bus. We have used Business Process Modelling Notation (BPMN) for modelling and presenting the clinical pathway in the form of a workflow. The aim of this study is to produce spontaneous alerts in the healthcare workflow in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). The use of BPMN as a tool to automate clinical guidelines has not been previously employed for providing Clinical Decision Support (CDS).
Application of Toxic Chinese Medicine in Chinese Pharmacopoeia
NASA Astrophysics Data System (ADS)
Zhao, Hui; Feng, Yu; Mao, Mingsan
2018-01-01
Objective: Explore the application characteristics of proprietary Chinese medicine prescriptions containing toxic herbs in pharmacopoeia. Methods: In this paper, according to the clinical application of pharmacopoeia proprietary Chinese medicine is divided into table agent, Qushu agent, diarrhea agent, heat agent, Wen Li agent, cough and asthma agents, resuscitation agent, Gutian agent, Fuzheng agent, Anshen agent, hemostatic agent, The traditional Chinese medicine prescription and the clinical application of the Chinese herbal medicine containing the toxic Chinese medicine were analyzed and sorted out., Summed up the compatibility of toxic herbs and application characteristics. Results: Toxic Chinese herbal medicine in the cure of traditional Chinese medicine to play a long-standing role, through the overall thinking, dialectical thinking, and thinking of toxic Chinese medicine in the analysis of Chinese medicine that [2], toxic Chinese medicine in the application of proprietary Chinese medicine can not lack. Conclusion: Pharmacopoeia included proprietary Chinese medicine not only in the clinical treatment of good, but also the application of its toxic traditional Chinese medicine and its understanding of the enrichment of the toxic characteristics of traditional Chinese medicine and treatment-related disease pathology between the points of contact for patients with clinical applications Based on and theoretical guidance of Chinese medicine [3].
Abbasalizadeh, Saeed; Baharvand, Hossein
2013-12-01
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.
Sun, Jian-Ning; Sun, Wen-Yan; Dong, Shi-Fen
2017-03-01
The Chinese herbal compound formula preparation was made based on theory of Chinese medicine, which was confirmed by long period clinical application, and with multi-compound and multi-target characteristics. During the exploitation process of innovation medicine of Chinese herbal compound formula, selecting and speeding up the research development of drugs with clinical value shall be paid more attention, and as request of rules involved in new drug research and development, the whole process management should be carried out, including project evaluation, manufacturing process determination, establishment of quality control standards, evaluation for pharmacological and toxic effect, as well as new drug application process. This reviews was aimed to give some proposals for pharmacodynamics research methods involved in exploration of Chinese herbal compound formula preparation, including: ①the endpoint criteria should meet the clinical attribution of new drugs; ②the pre-clinical pharmacodynamics evaluation should be carried on appropriate animal models according to the characteristics of diagnosis and therapy of Chinese medicine and observation indexes; ③during the innovation of drug for infants and children, information on drug action conforming to physiological characteristics of infants and children should be supplied, and the pharmacodynamics and toxicology research shall be conducted in immature rats according to the body weight of children. In a summary, the clinical application characteristics are the important criteria for evaluation of pharmacological effect of innovation medicine of Chinese herbal compound formula. Copyright© by the Chinese Pharmaceutical Association.
Allergic effects of the residual monomer used in denture base acrylic resins
Rashid, Haroon; Sheikh, Zeeshan; Vohra, Fahim
2015-01-01
Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use. PMID:26929705
Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent
2013-09-01
Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.
Nielsen, Ann
2016-07-01
Concept-based learning is used increasingly in nursing education to support the organization, transfer, and retention of knowledge. Concept-based learning activities (CBLAs) have been used in clinical education to explore key aspects of the patient situation and principles of nursing care, without responsibility for total patient care. The nature of best practices in teaching and the resultant learning are not well understood. The purpose of this multiple-case study research was to explore and describe concept-based learning in the context of clinical education in inpatient settings. Four clinical groups (each a case) were observed while they used CBLAs in the clinical setting. Major findings include that concept-based learning fosters deep learning, connection of theory with practice, and clinical judgment. Strategies used to support learning, major teaching-learning foci, and preconditions for concept-based teaching and learning will be described. Concept-based learning is promising to support integration of theory with practice and clinical judgment through application experiences with patients. [J Nurs Educ. 2016;55(7):365-371.]. Copyright 2016, SLACK Incorporated.
[Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].
Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li
2017-06-25
Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.
Access control based on attribute certificates for medical intranet applications.
Mavridis, I; Georgiadis, C; Pangalos, G; Khair, M
2001-01-01
Clinical information systems frequently use intranet and Internet technologies. However these technologies have emphasized sharing and not security, despite the sensitive and private nature of much health information. Digital certificates (electronic documents which recognize an entity or its attributes) can be used to control access in clinical intranet applications. To outline the need for access control in distributed clinical database systems, to describe the use of digital certificates and security policies, and to propose the architecture for a system using digital certificates, cryptography and security policy to control access to clinical intranet applications. We have previously developed a security policy, DIMEDAC (Distributed Medical Database Access Control), which is compatible with emerging public key and privilege management infrastructure. In our implementation approach we propose the use of digital certificates, to be used in conjunction with DIMEDAC. Our proposed access control system consists of two phases: the ways users gain their security credentials; and how these credentials are used to access medical data. Three types of digital certificates are used: identity certificates for authentication; attribute certificates for authorization; and access-rule certificates for propagation of access control policy. Once a user is identified and authenticated, subsequent access decisions are based on a combination of identity and attribute certificates, with access-rule certificates providing the policy framework. Access control in clinical intranet applications can be successfully and securely managed through the use of digital certificates and the DIMEDAC security policy.
Designing Health Information Technology Tools to Prevent Gaps in Public Health Insurance.
Hall, Jennifer D; Harding, Rose L; DeVoe, Jennifer E; Gold, Rachel; Angier, Heather; Sumic, Aleksandra; Nelson, Christine A; Likumahuwa-Ackman, Sonja; Cohen, Deborah J
2017-06-23
Changes in health insurance policies have increased coverage opportunities, but enrollees are required to annually reapply for benefits which, if not managed appropriately, can lead to insurance gaps. Electronic health records (EHRs) can automate processes for assisting patients with health insurance enrollment and re-enrollment. We describe community health centers' (CHC) workflow, documentation, and tracking needs for assisting families with insurance application processes, and the health information technology (IT) tool components that were developed to meet those needs. We conducted a qualitative study using semi-structured interviews and observation of clinic operations and insurance application assistance processes. Data were analyzed using a grounded theory approach. We diagramed workflows and shared information with a team of developers who built the EHR-based tools. Four steps to the insurance assistance workflow were common among CHCs: 1) Identifying patients for public health insurance application assistance; 2) Completing and submitting the public health insurance application when clinic staff met with patients to collect requisite information and helped them apply for benefits; 3) Tracking public health insurance approval to monitor for decisions; and 4) assisting with annual health insurance reapplication. We developed EHR-based tools to support clinical staff with each of these steps. CHCs are uniquely positioned to help patients and families with public health insurance applications. CHCs have invested in staff to assist patients with insurance applications and help prevent coverage gaps. To best assist patients and to foster efficiency, EHR based insurance tools need comprehensive, timely, and accurate health insurance information.
Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift.
Fu, Cynthia H Y; Costafreda, Sergi G
2013-09-01
Neuroimaging research has substantiated the functional and structural abnormalities underlying psychiatric disorders but has, thus far, failed to have a significant impact on clinical practice. Recently, neuroimaging-based diagnoses and clinical predictions derived from machine learning analysis have shown significant potential for clinical translation. This review introduces the key concepts of this approach, including how the multivariate integration of patterns of brain abnormalities is a crucial component. We survey recent findings that have potential application for diagnosis, in particular early and differential diagnoses in Alzheimer disease and schizophrenia, and the prediction of clinical response to treatment in depression. We discuss the specific clinical opportunities and the challenges for developing biomarkers for psychiatry in the absence of a diagnostic gold standard. We propose that longitudinal outcomes, such as early diagnosis and prediction of treatment response, offer definite opportunities for progress. We propose that efforts should be directed toward clinically challenging predictions in which neuroimaging may have added value, compared with the existing standard assessment. We conclude that diagnostic and prognostic biomarkers will be developed through the joint application of expert psychiatric knowledge in addition to advanced methods of analysis.
Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.
Siena, Francesco Luke; Byrom, Bill; Watts, Paul; Breedon, Philip
2018-02-05
Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense™ is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology's technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.
An evidence-based guide to clinical instruction in audiology.
Mormer, Elaine; Palmer, Catherine; Messick, Cheryl; Jorgensen, Lindsey
2013-05-01
A significant portion of the AuD curriculum occurs in clinical settings outside the classroom. Expert clinicians, employed within and outside of the university, are called upon to provide this clinical education. Most have had little or no formal training in clinical teaching yet face pedagogical and logistical challenges when simultaneously providing clinical service and teaching. Training to provide optimal methods and approaches to clinical instruction should be based on research evidence; however, there is a paucity of research in this area within the audiology discipline. This article provides a review of literature supplying evidence for important concepts, elements, and approaches to the clinical instruction process. Additionally, we provide readers with some practical tools with which to facilitate application of optimal clinical teaching principles. We conducted a systematic review of literature on clinical education in audiology and across a wide array of health professions. Through the use of content analysis we identified four elements of the clinical teaching process most critical in examining optimal practices. The elements identified as critical to positive clinical learning outcomes include the establishment of mutual expectations and goals; structured content and delivery of feedback; establishment of a positive instructor/student relationship; and questioning strategies that lead to the development of critical thinking skills. Many disciplines outside of audiology demonstrate robust research activity related to understanding and optimizing the clinical education process. The application of a number of evidence-based clinical teaching principles should allow us to improve student outcomes in audiology. Researchers in our field might consider if and how we should develop our own research literature in clinical education. American Academy of Audiology.
Zirconia in dentistry: part 2. Evidence-based clinical breakthrough.
Koutayas, Spiridon Oumvertos; Vagkopoulou, Thaleia; Pelekanos, Stavros; Koidis, Petros; Strub, Jörg Rudolf
2009-01-01
An ideal all-ceramic restoration that conforms well and demonstrates enhanced biocompatibility, strength, fit, and esthetics has always been desirable in clinical dentistry. However, the inherent brittleness, low flexural strength, and fracture toughness of conventional glass and alumina ceramics have been the main obstacles for extensive use. The recent introduction of zirconia-based ceramics as a restorative dental material has generated considerable interest in the dental community, which has been expressed with extensive industrial, clinical, and research activity. Contemporary zirconia powder technology contributes to the fabrication of new biocompatible all-ceramic restorations with improved physical properties for a wide range of promising clinical applications. Especially with the development of computer-aided design (CAD)/computer-aided manufacturing (CAM) systems, high-strength zirconia frameworks can be viable for the fabrication of full and partial coverage crowns, fixed partial dentures, veneers, posts and/or cores, primary double crowns, implant abutments, and implants. Data from laboratory and clinical studies are promising regarding their performance and survival. However, clinical data are considered insufficient and the identified premature complications should guide future research. In addition, different zirconia-based dental auxiliary components (i.e., cutting burs and surgical drills, extra-coronal attachments and orthodontic brackets) can also be technologically feasible. This review aims to present and discuss zirconia manufacturing methods and their potential for successful clinical application in dentistry.
Clinical applications of plasma based electrosurgical systems
NASA Astrophysics Data System (ADS)
Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.
2013-02-01
Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.
[Basics and clinical application of human mesenchymal stromal/stem cells].
Miura, Yasuo
2015-10-01
Human mesenchymal stromal/stem cells (MSCs) show a variety of biological characteristics. The clinical trials database provided by the National Institutes of Health, USA, contains about 400 clinical trials of MSCs for a wide range of therapeutic applications internationally (http://www.clinicaltrials.gov, key words "mesenchymal stem cells", as of April, 2015). Encouraging results from these clinical trials include evidence of efficacy against graft versus host disease (GVHD) in hematopoietic stem cell transplantation. Treatment for and/or prevention of engraftment failure and insufficient hematopoietic recovery have also been explored. Herein, we will address the basic principles of MSCs and the current status of clinical studies using MSCs. Future prospects for MSC-based therapy will also be discussed.
Ultrasound elastography: principles, techniques, and clinical applications.
Dewall, Ryan J
2013-01-01
Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.
Greenes, R A
1991-11-01
Education and decision-support resources useful to radiologists are proliferating for the personal computer/workstation user or are potentially accessible via high-speed networks. These resources are typically made available through a set of application programs that tend to be developed in isolation and operate independently. Nonetheless, there is a growing need for an integrated environment for access to these resources in the context of professional work, during clinical problem-solving and decision-making activities, and for use in conjunction with other information resources. New application development environments are required to provide these capabilities. One such architecture for applications, which we have implemented in a prototype environment called DeSyGNER, is based on separately delineating the component information resources required for an application, termed entities, and the user interface and organizational paradigms, or composition methods, by which the entities are used to provide particular kinds of capability. Examples include composition methods to support query, book browsing, hyperlinking, tutorials, simulations, or question/answer testing. Future steps must address true integration of such applications with existing clinical information systems. We believe that the most viable approach for evolving this capability is based on the use of new software engineering methodologies, open systems, client-server communication, and delineation of standard message protocols.
Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials.
Seifi, Massoud; Matini, Negin-Sadat
2017-01-01
Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed.
Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials
Seifi, Massoud; Matini, Negin-Sadat
2017-01-01
Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed. PMID:29263776
Telehealth on advanced networks.
Wilson, Laurence S; Stevenson, Duncan R; Cregan, Patrick
2010-01-01
We address advanced Internet for complex telehealth applications by reviewing four hospital-based broadband telehealth projects and identifying common threads. These projects were conducted in Australia under a 6-year research project on broadband Internet applications. Each project addressed specific clinical needs and its development was guided by the clinicians involved. Each project was trialed in the field and evaluated against the initial requirements. The four projects covered remote management of a resuscitation team in a district hospital, remote guidance and interpretation of echocardiography, virtual-reality-based instructor-student surgical training, and postoperative outpatient consultations following pediatric surgery. Each was characterized by a high level of interpersonal communication, a high level of clinical expertise, and multiple participants. Each made use of multiple high-quality video and audio links and shared real-time access to clinical data. Four common threads were observed. Each application provided a high level of usability and task focus because the design and use of broadband capability was aimed directly to meet the clinicians' needs. Each used the media quality available over broadband to convey words, gestures, body movements, and facial expressions to support communication and a sense of presence among the participants. Each required a complex information space shared among the participants, including real-time access to stored patient data and real-time interactive access to the patients themselves. Finally, each application supported the social and organizational aspects of their healthcare focus, creating and maintaining relationships between the various participants, and this was done by placing the telehealth application into a wider functioning clinical context. These findings provide evidence for a significantly enhanced role for appropriate telemedicine systems running on advanced networks, in a wider range of clinical applications, more deeply integrated into healthcare systems.
NASA Astrophysics Data System (ADS)
García-Jaramillo, M.; Delgado, J. S.; León-Vargas, F.
2015-12-01
This paper describes a prototype app to induce lifestyle modifications in newly diagnosed type 2 diabetic patients. The app design is based on International Diabetes Federation guidelines and recommendations from clinical studies related to diabetes health-care. Two main approaches, lifestyle modification and self-management education are used owing to significant benefits reported. The method used is based on setting goals under medical support related to physical activity, nutritional habits and weight loss, in addition to educational messages. This is specially implemented to address the main challenges that have limited the success of similar mobile applications already validated on diabetic patients. A traffic light is used to show the overall state of the goals compliance. This state could be understood as excellent (green), there are aspects to improve (yellow), or some individual goals are not carrying out (red). An example of how works this method is presented in results. Furthermore, the app provides recommendations to the user in case the overall state was in yellow or red. The recommendations pretend to induce the user to make changes in their eating habits and physical activity. According to international guidelines and clinical studies, a prototype of mobile application to induce a lifestyle modification in order to prevent adverse risk factors related to diabetes was presented. The resulting application is apparently consistent with clinical judgments, but a formal clinical validation is required. The effectiveness of this app is currently under consideration for the Colombian population with type 2 diabetes.
Loeb, Katharine L; Hirsch, Alicia M; Greif, Rebecca; Hildebrandt, Thomas B
2009-01-01
This article describes the successful application of family-based treatment (FBT) for a 17-year-old identical twin presenting with a 4-month history of clinically significant symptoms of anorexia nervosa (AN). FBT is a manualized treatment that has been studied in randomized controlled trials for adolescents with AN. This case study illustrates the administration of this evidence-based intervention in a clinical setting, highlighting how the best available research was used to make clinical decisions at each stage of treatment delivery.
A mixture gatekeeping procedure based on the Hommel test for clinical trial applications.
Brechenmacher, Thomas; Xu, Jane; Dmitrienko, Alex; Tamhane, Ajit C
2011-07-01
When conducting clinical trials with hierarchically ordered objectives, it is essential to use multiplicity adjustment methods that control the familywise error rate in the strong sense while taking into account the logical relations among the null hypotheses. This paper proposes a gatekeeping procedure based on the Hommel (1988) test, which offers power advantages compared to other p value-based tests proposed in the literature. A general description of the procedure is given and details are presented on how it can be applied to complex clinical trial designs. Two clinical trial examples are given to illustrate the methodology developed in the paper.
A semi-automated, field-portable microscopy platform for clinical diagnostic applications
NASA Astrophysics Data System (ADS)
Jagannadh, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva
2015-08-01
Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined.
The clinical application of research utilization: amphotericin B.
Reedy, A M; Shivnan, J C; Hanson, J L; Haisfield, M E; Gregory, R E
1994-05-01
To describe the first application of the research utilization process by clinical nurses using the Stetler-Marram Model of Research Utilization to the practice of amphotericin B administration; to share the findings; and to discuss issues encountered in the process and their solutions. Published articles identified through computerized literature searches, published abstracts and books, personal communication with one author, and an informal survey of other cancer centers' amphotericin B infusion practices; research articles were selected for review if studies included settings and patient populations similar to those of the authors and if they used experimental designs. Studies were reviewed for scientific merit and clinical applicability according to the Stetler-Marram model; findings were used to develop a specific nursing protocol for infusion times of amphotericin B based on clinical criteria. The Stetler-Marram model helped staff nurses decide how to apply research findings to practice, although using it was difficult and required mentorship. A research base exists for amphotericin B administration time but not for test doses or premedications to prevent or minimize side effects. Staff nurses can use the Stetler-Marram model but need resources and support from individuals, committees, and administration. A specific protocol representing a practice change was implemented and may be applicable to other settings.
Liu, Sheng-bo; Peng, Bin; Song, Ya-ling; Xu, Qing-an
2013-12-01
To investigate the education effect of case-based learning (CBL) pattern on clinical internship of conservative dentistry and endodontics. Forty-one undergraduates were randomly assigned into CBL group and traditional teaching group. After clinical internship in the department of conservative dentistry and endodontics for 11 weeks, each student in the 2 groups underwent comprehensive examinations including medical record writing, case analysis, academic knowledge, professional skills and the ability of winning the trust of the patients. The scores were compared between the 2 groups using SPSS 13.0 software package. There was no significant difference between the 2 groups with regard to the scores of academic knowledge and profession skills (P>0.05). However, the results of medical record writing, case analysis and the ability of winning the trust of the patients showed significant difference between the 2 groups(P<0.05). Proper application of CBL in clinical internship of conservative dentistry and endodontics contributes to improve students' ability of clinical thinking, synthetical analysis and adaptability to different patients.
Experiences of engineering Grid-based medical software.
Estrella, F; Hauer, T; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T
2007-08-01
Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading to a set of recommendations from the delivery of the first deployed Grid-based medical imaging application. We report critically on the application of software engineering techniques in the specification and implementation of the MammoGrid project and show that use-case modelling is a suitable vehicle for representing medical requirements and for communicating effectively with the clinical community. This paper also discusses the practical advantages and limitations of applying the Grid to real-life clinical applications and presents the consequent lessons learned. The work presented in this paper demonstrates that given suitable commitment from collaborating radiologists it is practical to deploy in practice medical imaging analysis applications using the Grid but that standardization in and stability of the Grid software is a necessary pre-requisite for successful healthgrids. The MammoGrid prototype has therefore paved the way for further advanced Grid-based deployments in the medical and biomedical domains.
Method of App Selection for Healthcare Providers Based on Consumer Needs.
Lee, Jisan; Kim, Jeongeun
2018-01-01
Mobile device applications can be used to manage health. However, healthcare providers hesitate to use them because selection methods that consider the needs of health consumers and identify the most appropriate application are rare. This study aimed to create an effective method of identifying applications that address user needs. Women experiencing dysmenorrhea and premenstrual syndrome were the targeted users. First, we searched for related applications from two major sources of mobile applications. Brainstorming, mind mapping, and persona and scenario techniques were used to create a checklist of relevant criteria, which was used to rate the applications. Of the 2784 applications found, 369 were analyzed quantitatively. Of those, five of the top candidates were evaluated by three groups: application experts, clinical experts, and potential users. All three groups ranked one application the highest; however, the remaining rankings differed. The results of this study suggest that the method created is useful because it considers not only the needs of various users but also the knowledge of application and clinical experts. This study proposes a method for finding and using the best among existing applications and highlights the need for nurses who can understand and combine opinions of users and application and clinical experts.
Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat
2016-01-01
The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer. PMID:28269882
Applications of mid-infrared spectroscopy in the clinical laboratory setting.
De Bruyne, Sander; Speeckaert, Marijn M; Delanghe, Joris R
2018-01-01
Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.
Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku
2014-06-01
Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.
Huang, Linda; Fernandes, Helen; Zia, Hamid; Tavassoli, Peyman; Rennert, Hanna; Pisapia, David; Imielinski, Marcin; Sboner, Andrea; Rubin, Mark A; Kluk, Michael; Elemento, Olivier
2017-05-01
This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu ), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB's interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Huang, Linda; Fernandes, Helen; Zia, Hamid; Tavassoli, Peyman; Rennert, Hanna; Pisapia, David; Imielinski, Marcin; Sboner, Andrea; Rubin, Mark A; Kluk, Michael
2017-01-01
Objective: This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. Materials and Methods: PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. Results: At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB’s interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. Discussion: An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. Conclusion: The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API. PMID:27789569
Ryan, Michael C.; Ostmo, Susan; Jonas, Karyn; Berrocal, Audina; Drenser, Kimberly; Horowitz, Jason; Lee, Thomas C.; Simmons, Charles; Martinez-Castellanos, Maria-Ana; Chan, R.V. Paul; Chiang, Michael F.
2014-01-01
Information systems managing image-based data for telemedicine or clinical research applications require a reference standard representing the correct diagnosis. Accurate reference standards are difficult to establish because of imperfect agreement among physicians, and discrepancies between clinical vs. image-based diagnosis. This study is designed to describe the development and evaluation of reference standards for image-based diagnosis, which combine diagnostic impressions of multiple image readers with the actual clinical diagnoses. We show that agreement between image reading and clinical examinations was imperfect (689 [32%] discrepancies in 2148 image readings), as was inter-reader agreement (kappa 0.490-0.652). This was improved by establishing an image-based reference standard defined as the majority diagnosis given by three readers (13% discrepancies with image readers). It was further improved by establishing an overall reference standard that incorporated the clinical diagnosis (10% discrepancies with image readers). These principles of establishing reference standards may be applied to improve robustness of real-world systems supporting image-based diagnosis. PMID:25954463
From impedance theory to needle electrode guidance in tissue
NASA Astrophysics Data System (ADS)
Kalvøy, Håvard; Høyum, Per; Grimnes, Sverre; Martinsen, Ørjan G.
2010-04-01
Fast access to blood vessels or other tissues/organs can be crucial in clinical or acute medical treatment. We have developed a method for needle guidance for use in different types of applications. The feasibility of an automatic application for fast access to blood vessels during acute cardiac arrest, based on this method, has been evaluated. Suited electrode setups were found by development of needle electrode models used in simulation and sensitivity analyses. In vitro measurements were done both to determine the fundamental properties of the electrodes for use in the models and to confirm the simulation results. Development of algorithms for tissue characterization and differentiation was based on in vivo impedance measurement in porcine models and confirmed in human tissue in vivo. Feasibility was proven by application prototyping and impedance data presented as invasive Electrical Impedance Tomography (iEIT). Our conclusion is that this method can be utilized in a wide range of clinical applications.
TREATING HEMOGLOBINOPATHIES USING GENE CORRECTION APPROACHES: PROMISES AND CHALLENGES
Cottle, Renee N.; Lee, Ciaran M.; Bao, Gang
2016-01-01
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed. PMID:27314256
Integrating DXplain into a clinical information system using the World Wide Web.
Elhanan, G; Socratous, S A; Cimino, J J
1996-01-01
The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.
He, Wei; Tong, Yuan-Yuan; Zhao, Ying-Kai; Rong, Pei-Jing; Wang, Hong-Cai
2012-10-01
In the present paper, the authors make a bibliometrics study on clinical indications of acupuncture therapy based on the published foreign articles about acupuncture clinical trials collected from PubMed database and Excerpta Medica database (EMbase). In 1996, 64 acupuncture indications were declared by WHO in Milan conference. But in recent 15 years, clinical trials have been conducted extensively in the foreign countries. Till now, 77 new indications for acupuncture therapy have been found in the foreign journals. The authors recommended that 29 indications (knee osteoarthritis, critique age problems, muscular fasciae ache, anxiety, etc.) should be added to the first class, 4 indications (irritable bowel syndrome, malposition, backache, simple obesity) should be upgraded from the second class to the first class, and the other 3 indications (childbirth pain, male and female barren) should be upgraded from the third class to the first class due to their application frequency in clinical trials. Increase of clinical indications reflects extensive application of acupuncture therapy and may help providing a better service for people's health.
Applicability of randomized trials in radiation oncology to standard clinical practice.
Apisarnthanarax, Smith; Swisher-McClure, Samuel; Chiu, Wing K; Kimple, Randall J; Harris, Stephen L; Morris, David E; Tepper, Joel E
2013-08-15
Randomized controlled trials (RCTs) are commonly used to inform clinical practice; however, it is unclear how generalizable RCT data are to patients in routine clinical practice. The authors of this report assessed the availability and applicability of randomized evidence guiding medical decisions in a cohort of patients who were evaluated for consideration of definitive management in a radiation oncology clinic. The medical records of consecutive, new patient consultations between January and March 2007 were reviewed. Patient medical decisions were classified as those with (Group 1) or without (Group 2) available, relevant level I evidence (phase 3 RCT) supporting recommended treatments. Group 1 medical decisions were further divided into 3 groups based on the extent of fulfilling eligibility criteria for each RCT: Group 1A included decisions that fulfilled all eligibility criteria; Group 1B, decisions that did not fulfill at least 1 minor eligibility criteria; or Group 1C, decisions that did not fulfill at least 1 major eligibility criteria. Patient and clinical characteristics were tested for correlations with the availability of evidence. Of the 393 evaluable patients, malignancies of the breast (30%), head and neck (18%), and genitourinary system (14%) were the most common presenting primary disease sites. Forty-seven percent of all medical decisions (n = 451) were made without available (36%) or applicable (11%) randomized evidence to inform clinical decision making. Primary tumor diagnosis was significantly associated with the availability of evidence (P < .0001). A significant proportion of medical decisions in an academic radiation oncology clinic were made without available or applicable level I evidence, underscoring the limitations of relying solely on RCTs for the development of evidence-based health care. Copyright © 2013 American Cancer Society.
ERIC Educational Resources Information Center
Baker, Elise; McLeod, Sharynne
2011-01-01
Purpose: This article provides both a tutorial and a clinical example of how speech-language pathologists (SLPs) can conduct evidence-based practice (EBP) when working with children with speech sound disorders (SSDs). It is a companion paper to the narrative review of 134 intervention studies for children who have an SSD (Baker & McLeod, 2011).…
Knowledge-based verification of clinical guidelines by detection of anomalies.
Duftschmid, G; Miksch, S
2001-04-01
As shown in numerous studies, a significant part of published clinical guidelines is tainted with different types of semantical errors that interfere with their practical application. The adaptation of generic guidelines, necessitated by circumstances such as resource limitations within the applying organization or unexpected events arising in the course of patient care, further promotes the introduction of defects. Still, most current approaches for the automation of clinical guidelines are lacking mechanisms, which check the overall correctness of their output. In the domain of software engineering in general and in the domain of knowledge-based systems (KBS) in particular, a common strategy to examine a system for potential defects consists in its verification. The focus of this work is to present an approach, which helps to ensure the semantical correctness of clinical guidelines in a three-step process. We use a particular guideline specification language called Asbru to demonstrate our verification mechanism. A scenario-based evaluation of our method is provided based on a guideline for the artificial ventilation of newborn infants. The described approach is kept sufficiently general in order to allow its application to several other guideline representation formats.
Salmikangas, P; Flory, E; Reinhardt, J; Hinz, T; Maciulaitis, R
2010-01-01
The new era of regenerative medicine has led to rapid development of new innovative therapies especially for diseases and tissue/organ defects for which traditional therapies and medicinal products have not provided satisfactory outcome. Although the clinical use and developments of cell-based medicinal products (CBMPs) could be witnessed already for a decade, robust scientific and regulatory provisions for these products have only recently been enacted. The new Regulation for Advanced Therapies (EC) 1394/2007 together with the revised Annex I, Part IV of Directive 2001/83/EC provides the new legal framework for CBMPs. The wide variety of cell-based products and the foreseen limitations (small sample sizes, short shelf life) vs. particular risks (microbiological purity, variability, immunogenicity, tumourigenicity) associated with CBMPs have called for a flexible, case-by-case regulatory approach for these products. Consequently, a risk-based approach has been developed to allow definition of the amount of scientific data needed for a Marketing Authorisation Application (MAA) of each CBMP. The article provides further insight into the initial risk evaluation, as well as to the quality, non-clinical, and clinical requirements of CBMPs. Special somatic cell therapies designed for active immunotherapy are also addressed.
Computational biology for cardiovascular biomarker discovery.
Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel
2009-07-01
Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.
Sutton, Victoria R; Hauser, Susan E
2005-01-01
MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information.
The clinical applications of genome editing in HIV.
Wang, Cathy X; Cannon, Paula M
2016-05-26
HIV/AIDS has long been at the forefront of the development of gene- and cell-based therapies. Although conventional gene therapy approaches typically involve the addition of anti-HIV genes to cells using semirandomly integrating viral vectors, newer genome editing technologies based on engineered nucleases are now allowing more precise genetic manipulations. The possible outcomes of genome editing include gene disruption, which has been most notably applied to the CCR5 coreceptor gene, or the introduction of small mutations or larger whole gene cassette insertions at a targeted locus. Disruption of CCR5 using zinc finger nucleases was the first-in-human application of genome editing and remains the most clinically advanced platform, with 7 completed or ongoing clinical trials in T cells and hematopoietic stem/progenitor cells (HSPCs). Here we review the laboratory and clinical findings of CCR5 editing in T cells and HSPCs for HIV therapy and summarize other promising genome editing approaches for future clinical development. In particular, recent advances in the delivery of genome editing reagents and the demonstration of highly efficient homology-directed editing in both T cells and HSPCs are expected to spur the development of even more sophisticated applications of this technology for HIV therapy. © 2016 by The American Society of Hematology.
Application of a diagnosis-based clinical decision guide in patients with low back pain.
Murphy, Donald R; Hurwitz, Eric L
2011-10-21
Low back pain (LBP) is common and costly. Development of accurate and efficacious methods of diagnosis and treatment has been identified as a research priority. A diagnosis-based clinical decision guide (DBCDG; previously referred to as a diagnosis-based clinical decision rule) has been proposed which attempts to provide the clinician with a systematic, evidence-based means to apply the biopsychosocial model of care. The approach is based on three questions of diagnosis. The purpose of this study is to present the prevalence of findings using the DBCDG in consecutive patients with LBP. Demographic, diagnostic and baseline outcome measure data were gathered on a cohort of LBP patients examined by one of three examiners trained in the application of the DBCDG. Data were gathered on 264 patients. Signs of visceral disease or potentially serious illness were found in 2.7%. Centralization signs were found in 41%, lumbar and sacroiliac segmental signs in 23% and 27%, respectively and radicular signs were found in 24%. Clinically relevant myofascial signs were diagnosed in 10%. Dynamic instability was diagnosed in 63%, fear beliefs in 40%, central pain hypersensitivity in 5%, passive coping in 3% and depression in 3%. The DBCDG can be applied in a busy private practice environment. Further studies are needed to investigate clinically relevant means to identify central pain hypersensitivity, poor coping and depression, correlations and patterns among the diagnostic components of the DBCDG as well as inter-examiner reliability and efficacy of treatment based on the DBCDG.
Fabbri, Chiara; Serretti, Alessandro
2018-06-12
A frustrating inertia has affected the development of clinical applications of antidepressant pharmacogenetics and personalized treatments of depression are still lacking 20 years after the first findings. Candidate gene studies provided replicated findings for some polymorphisms, but each of them shows at best a small effect on antidepressant efficacy and the cumulative effect of different polymorphisms is unclear. Further, no candidate was immune by at least some negative studies. These considerations give rise to some concerns about the clinical benefits of currently available pharmacogenetic tests since they are based on the results of candidate gene studies. Clinical guidelines in fact suggest that only polymorphisms that alter cytochrome 2D6 or 2C19 enzymatic activity probably provide useful clinical indications, while variants in genes involved in antidepressant pharmacodynamics have no recommended clinical applications. The present review discusses possible strategies to facilitate the identification of genetic biomarkers with clinical usefulness in guiding antidepressant treatments. These include analysis methods for the study of the polygenic/omnigenic nature of antidepressant response, the prioritization of polymorphisms on the basis of functional considerations, the incorporation of clinical-demographic predictors in pharmacogenetic studies (e.g. mixed polygenic and clinical risk scores), the application of methodological improvements to the design of future studies in order to maximize the comparability of results and improve power. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Holmes, David R., III; Hanson, Dennis P.; Robb, Richard A.
2006-03-01
One of the greatest challenges for a software engineer is to create a complex application that is comprehensive enough to be useful to a diverse set of users, yet focused enough for individual tasks to be carried out efficiently with minimal training. This "powerful yet simple" paradox is particularly prevalent in advanced medical imaging applications. Recent research in the Biomedical Imaging Resource (BIR) at Mayo Clinic has been directed toward development of an imaging application framework that provides powerful image visualization/analysis tools in an intuitive, easy-to-use interface. It is based on two concepts very familiar to physicians - Cases and Workflows. Each case is associated with a unique patient and a specific set of routine clinical tasks, or a workflow. Each workflow is comprised of an ordered set of general-purpose modules which can be re-used for each unique workflow. Clinicians help describe and design the workflows, and then are provided with an intuitive interface to both patient data and analysis tools. Since most of the individual steps are common to many different workflows, the use of general-purpose modules reduces development time and results in applications that are consistent, stable, and robust. While the development of individual modules may reflect years of research by imaging scientists, new customized workflows based on the new modules can be developed extremely fast. If a powerful, comprehensive application is difficult to learn and complicated to use, it will be unacceptable to most clinicians. Clinical image analysis tools must be intuitive and effective or they simply will not be used.
Vlahovich, Nicole; Hughes, David C; Griffiths, Lyn R; Wang, Guan; Pitsiladis, Yannis P; Pigozzi, Fabio; Bachl, Nobert; Eynon, Nir
2017-11-14
There has been considerable growth in basic knowledge and understanding of how genes are influencing response to exercise training and predisposition to injuries and chronic diseases. On the basis of this knowledge, clinical genetic tests may in the future allow the personalisation and optimisation of physical activity, thus providing an avenue for increased efficiency of exercise prescription for health and disease. This review provides an overview of the current status of genetic testing for the purposes of exercise prescription and injury prevention. As such there are a variety of potential uses for genetic testing, including identification of risks associated with participation in sport and understanding individual response to particular types of exercise. However, there are many challenges remaining before genetic testing has evidence-based practical applications; including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention. Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing.
Access Control based on Attribute Certificates for Medical Intranet Applications
Georgiadis, Christos; Pangalos, George; Khair, Marie
2001-01-01
Background Clinical information systems frequently use intranet and Internet technologies. However these technologies have emphasized sharing and not security, despite the sensitive and private nature of much health information. Digital certificates (electronic documents which recognize an entity or its attributes) can be used to control access in clinical intranet applications. Objectives To outline the need for access control in distributed clinical database systems, to describe the use of digital certificates and security policies, and to propose the architecture for a system using digital certificates, cryptography and security policy to control access to clinical intranet applications. Methods We have previously developed a security policy, DIMEDAC (Distributed Medical Database Access Control), which is compatible with emerging public key and privilege management infrastructure. In our implementation approach we propose the use of digital certificates, to be used in conjunction with DIMEDAC. Results Our proposed access control system consists of two phases: the ways users gain their security credentials; and how these credentials are used to access medical data. Three types of digital certificates are used: identity certificates for authentication; attribute certificates for authorization; and access-rule certificates for propagation of access control policy. Once a user is identified and authenticated, subsequent access decisions are based on a combination of identity and attribute certificates, with access-rule certificates providing the policy framework. Conclusions Access control in clinical intranet applications can be successfully and securely managed through the use of digital certificates and the DIMEDAC security policy. PMID:11720951
Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool
Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry
2011-01-01
Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144
Singh, Harminder; Leontiadis, Grigorios I; Hookey, Lawrence; Enns, Robert; Bistritz, Lana; Rioux, Louis-Charles; Hope, Louise; Sinclair, Paul
2014-01-01
An important mandate of the Canadian Association of Gastroenterology (CAG), as documented in the Association’s governance policies, is to optimize the care of patients with digestive disorders. Clinical practice guidelines are one means of achieving this goal. The benefits of timely, high-quality and evidenced-based recommendations include: Enhancing the professional development of clinical members through education and dissemination of synthesized clinical research;Improving patient care provided by members by providing focus on quality and evidence;Creating legislative environments that favour effective clinical practice;Enhancing the clinical care provided to patients with digestive disease by nongastroenterologists; andIdentifying areas that require further information or research to improve clinical care.The present document provides the foundation required to ensure that clinical practice guidelines produced by the CAG are necessary, appropriate, credible and applicable. These recommendations should be adhered to as closely as possible to obtain CAG endorsement. PMID:25314352
Singh, Harminder; Leontiadis, Grigorios I; Hookey, Lawrence; Enns, Robert; Bistritz, Lana; Rioux, Louis-Charles; Hope, Louise; Sinclair, Paul
2014-10-01
An important mandate of the Canadian Association of Gastroenterology (CAG), as documented in the Association's governance policies, is to optimize the care of patients with digestive disorders. Clinical practice guidelines are one means of achieving this goal. The benefits of timely, high-quality and evidenced-based recommendations include: Enhancing the professional development of clinical members through education and dissemination of synthesized clinical research; Improving patient care provided by members by providing focus on quality and evidence; Creating legislative environments that favour effective clinical practice; Enhancing the clinical care provided to patients with digestive disease by nongastroenterologists; and Identifying areas that require further information or research to improve clinical care. The present document provides the foundation required to ensure that clinical practice guidelines produced by the CAG are necessary, appropriate, credible and applicable. These recommendations should be adhered to as closely as possible to obtain CAG endorsement.
Choma, Kim; McKeever, Amy E
2015-02-01
The literature reports great variation in the knowledge levels and application of the recent changes of cervical cancer screening guidelines into clinical practice. Evidence-based screening guidelines for the prevention and early detection of cervical cancer offers healthcare providers the opportunity to improve practice patterns among female adolescents by decreasing psychological distress as well as reducing healthcare costs and morbidities associated with over-screening. The purpose of this pilot intervention study was to determine the effects of a Web-based continuing education unit (CEU) program on advanced practice nurses' (APNs) knowledge of current cervical cancer screening evidence-based recommendations and their application in practice. This paper presents a process improvement project as an example of a way to disseminate updated evidence-based practice guidelines among busy healthcare providers. This Web-based CEU program was developed, piloted, and evaluated specifically for APNs. The program addressed their knowledge level of cervical cancer and its relationship with high-risk human papillomavirus. It also addressed the new cervical cancer screening guidelines and the application of those guidelines into clinical practice. Results of the study indicated that knowledge gaps exist among APNs about cervical cancer screening in adolescents. However, when provided with a CEU educational intervention, APNs' knowledge levels increased and their self-reported clinical practice behaviors changed in accordance with the new cervical cancer screening guidelines. Providing convenient and readily accessible up-to-date electronic content that provides CEU enhances the adoption of clinical practice guidelines, thereby decreasing the potential of the morbidities associated with over-screening for cervical cancer in adolescents and young women. © 2014 Sigma Theta Tau International.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabat, C; Cline, K; Li, Y
Purpose: With increasing numbers of cancer patients being diagnosed and the complexity of radiotherapy treatments rising it’s paramount that patient plan development continues to stay fluid within the clinic. In order to maintain a high standard of care and clinical efficiency the establishment of a tracking system for patient plan development allows healthcare providers to view real time plan progression and drive clinical workflow. In addition, it provides statistical datasets which can further identify inefficiencies within the clinic. Methods: An application was developed utilizing Microsoft’s ODBC SQL database engine to track patient plan status throughout the treatment planning process whilemore » also managing key factors pertaining to the patient’s treatment. Pertinent information is accessible to staff in many locations, including tracking monitors within dosimetry, the clinic network for both computers and handheld devices, and through email notifications. Plans are initiated with a CT and continually tracked through planning stages until final approval by staff. Patient’s status is dynamically updated by the physicians, dosimetrists, and medical physicists based on the stage of the patient’s plan. Results: Our application has been running over a six month period with all patients being processed through the system. Modifications have been made to allow for new features to be implemented along with additional tracking parameters. Based on in-house feedback, the application has been supportive in streamlining patient plans through the treatment planning process and data has been accumulating to further improve procedures within the clinic. Conclusion: Over time the clinic will continue to track data with this application. As data accumulates the clinic will be able to highlight inefficiencies within the workflow and adapt accordingly. We will add in new features to help support the treatment planning process in the future.« less
Spirulina in Clinical Practice: Evidence-Based Human Applications
Karkos, P. D.; Leong, S. C.; Karkos, C. D.; Sivaji, N.; Assimakopoulos, D. A.
2011-01-01
Spirulina or Arthrospira is a blue-green alga that became famous after it was successfully used by NASA as a dietary supplement for astronauts on space missions. It has the ability to modulate immune functions and exhibits anti-inflammatory properties by inhibiting the release of histamine by mast cells. Multiple studies investigating the efficacy and the potential clinical applications of Spirulina in treating several diseases have been performed and a few randomized controlled trials and systematic reviews suggest that this alga may improve several symptoms and may even have an anticancer, antiviral and antiallergic effects. Current and potential clinical applications, issues of safety, indications, side-effects and levels of evidence are addressed in this review. Areas of ongoing and future research are also discussed. PMID:18955364
NASA Astrophysics Data System (ADS)
Franz, Astrid; Carlsen, Ingwer C.; Renisch, Steffen; Wischmann, Hans-Aloys
2006-03-01
Elastic registration of medical images is an active field of current research. Registration algorithms have to be validated in order to show that they fulfill the requirements of a particular clinical application. Furthermore, validation strategies compare the performance of different registration algorithms and can hence judge which algorithm is best suited for a target application. In the literature, validation strategies for rigid registration algorithms have been analyzed. For a known ground truth they assess the displacement error at a few landmarks, which is not sufficient for elastic transformations described by a huge number of parameters. Hence we consider the displacement error averaged over all pixels in the whole image or in a region-of-interest of clinical relevance. Using artificially, but realistically deformed images of the application domain, we use this quality measure to analyze an elastic registration based on transformations defined on adaptive irregular grids for the following clinical applications: Magnetic Resonance (MR) images of freely moving joints for orthopedic investigations, thoracic Computed Tomography (CT) images for the detection of pulmonary embolisms, and transmission images as used for the attenuation correction and registration of independently acquired Positron Emission Tomography (PET) and CT images. The definition of a region-of-interest allows to restrict the analysis of the registration accuracy to clinically relevant image areas. The behaviour of the displacement error as a function of the number of transformation control points and their placement can be used for identifying the best strategy for the initial placement of the control points.
Gordan, Valeria V.
2012-01-01
Clinical studies are of paramount importance for testing and translation of the research findings to the community. Despite the existence of clinical studies, a significant delay exists between the generation of new knowledge and its application into the medical/dental community and their patients. One example is the repair of defective dental restorations. About 75% of practitioners in general dental practices do not consider the repair of dental restorations as a viable alternative to the replacement of defective restorations. Engaging and partnering with health practitioners in the field on studies addressing everyday clinical research questions may offer a solution to speed up the translation of the research findings. Practice-based research (PBR) offers a unique opportunity for practitioners to be involved in the research process, formulating clinical research questions. Additionally, PBR generates evidence-based knowledge with a broader spectrum that can be more readily generalized to the public. With PBR, clinicians are involved in the entire research process from its inception to its dissemination. Early practitioner interaction in the research process may result in ideas being more readily incorporated into practice. This paper discusses PBR as a mean to speed up the translation of research findings to clinical practice. It also reviews repair versus replacement of defective restorations as one example of the delay in the application of research findings to clinical practice. PMID:22889478
MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
Biomarkers in Prodromal Parkinson Disease: a Qualitative Review.
Cooper, Christine A; Chahine, Lama M
2016-11-01
Over the past several years, the concept of prodromal Parkinson disease (PD) has been increasingly recognized. This term refers to individuals who do not fulfill motor diagnostic criteria for PD, but who have clinical, genetic, or biomarker characteristics suggesting risk of developing PD in the future. Clinical diagnosis of prodromal PD has low specificity, prompting the need for objective biomarkers with higher specificity. In this qualitative review, we discuss objectively defined putative biomarkers for PD and prodromal PD. We searched Pubmed and Embase for articles pertaining to objective biomarkers for PD and their application in prodromal cohorts. Articles were selected based on relevance and methodology. Objective biomarkers of demonstrated utility in prodromal PD include ligand-based imaging and transcranial sonography. Development of serum, cerebrospinal fluid, and tissue-based biomarkers is underway, but their application in prodromal PD has yet to meaningfully occur. Combining objective biomarkers with clinical or genetic prodromal features increases the sensitivity and specificity for identifying prodromal PD. Several objective biomarkers for prodromal PD show promise but require further study, including their application to and validation in prodromal cohorts followed longitudinally. Accurate identification of prodromal PD will likely require a multimodal approach. (JINS, 2016, 22, 956-967).
White matter fiber tracking computation based on diffusion tensor imaging for clinical applications.
Dellani, Paulo R; Glaser, Martin; Wille, Paulo R; Vucurevic, Goran; Stadie, Axel; Bauermann, Thomas; Tropine, Andrei; Perneczky, Axel; von Wangenheim, Aldo; Stoeter, Peter
2007-03-01
Fiber tracking allows the in vivo reconstruction of human brain white matter fiber trajectories based on magnetic resonance diffusion tensor imaging (MR-DTI), but its application in the clinical routine is still in its infancy. In this study, we present a new software for fiber tracking, developed on top of a general-purpose DICOM (digital imaging and communications in medicine) framework, which can be easily integrated into existing picture archiving and communication system (PACS) of radiological institutions. Images combining anatomical information and the localization of different fiber tract trajectories can be encoded and exported in DICOM and Analyze formats, which are valuable resources in the clinical applications of this method. Fiber tracking was implemented based on existing line propagation algorithms, but it includes a heuristic for fiber crossings in the case of disk-shaped diffusion tensors. We successfully performed fiber tracking on MR-DTI data sets from 26 patients with different types of brain lesions affecting the corticospinal tracts. In all cases, the trajectories of the central spinal tract (pyramidal tract) were reconstructed and could be applied at the planning phase of the surgery as well as in intraoperative neuronavigation.
Valle, Xavier; Alentorn-Geli, Eduard; Tol, Johannes L; Hamilton, Bruce; Garrett, William E; Pruna, Ricard; Til, Lluís; Gutierrez, Josep Antoni; Alomar, Xavier; Balius, Ramón; Malliaropoulos, Nikos; Monllau, Joan Carles; Whiteley, Rodney; Witvrouw, Erik; Samuelsson, Kristian; Rodas, Gil
2017-07-01
Muscle injuries are among the most common injuries in sport and continue to be a major concern because of training and competition time loss, challenging decision making regarding treatment and return to sport, and a relatively high recurrence rate. An adequate classification of muscle injury is essential for a full understanding of the injury and to optimize its management and return-to-play process. The ongoing failure to establish a classification system with broad acceptance has resulted from factors such as limited clinical applicability, and the inclusion of subjective findings and ambiguous terminology. The purpose of this article was to describe a classification system for muscle injuries with easy clinical application, adequate grouping of injuries with similar functional impairment, and potential prognostic value. This evidence-informed and expert consensus-based classification system for muscle injuries is based on a four-letter initialism system: MLG-R, respectively referring to the mechanism of injury (M), location of injury (L), grading of severity (G), and number of muscle re-injuries (R). The goal of the classification is to enhance communication between healthcare and sports-related professionals and facilitate rehabilitation and return-to-play decision making.
Getrich, Christina; Heying, Shirley; Willging, Cathleen; Waitzkin, Howard
2007-07-01
Community-based health interventions have emerged as a growing focus for anthropological research. The application of ethnographic approaches in clinical practice settings reveals that community-based interventions must grapple with "noise," or unanticipated factors such as patients' own perceptions of illness and treatment, primary care providers' non-adherence to guidelines-based treatment, the social dynamics of the clinic site itself, and incomplete understanding and acceptance of an intervention by a clinic's staff members. Such noise can influence the implementation and quality of treatment. Thus, identifying clinic-based noise is critical in assessments of fidelity to intervention protocols as well as outcomes of community-based interventions. This paper highlights findings from an evaluation of a mental health intervention focusing on the role of promotoras (briefly trained, non-professional community health workers) as mental health practitioners in two urban New Mexico, USA, community health centers. Our research identified three areas of clinic-based noise: the clinics' physical ability to "absorb" the intervention, the challenges of co-worker instability and interpersonal relationships, and balancing extra workplace demands. The findings demonstrate the value of ethnographic approaches in community-based intervention research.
Renisch, B; Lauer, W
2014-12-01
An integral part of the conformity assessment process for medical devices is a clinical evaluation based on clinical data. Particularly in the case of implantable devices and products of risk class III clinical trials must be performed. Since March 2010 applications for the authorization of clinical trials as well as for the waiver of the authorization requirement must be submitted centrally in Germany to the appropriate federal authority, the Federal Institute for Drugs and Medical Devices (BfArM) or the Paul Ehrlich Institute (PEI). In addition to authorization, approval by the responsible ethics committee is also required under law in order to begin clinical testing of medical devices in Germany. In this paper, the legal framework for the clinical testing of medical devices as well as those involved and possible procedures including evaluation criteria for the initial application of a trial and subsequent amendments are presented in detail. In addition, the reporting requirements for serious adverse events (SAEs) are explained and possible consequences of the evaluation are presented. Finally, a summary of application and registration numbers for all areas of extensive experience of the BfArM as well as requests and guidance for applicants are presented.
Mulugeta, Lealem; Drach, Andrew; Erdemir, Ahmet; Hunt, C. A.; Horner, Marc; Ku, Joy P.; Myers Jr., Jerry G.; Vadigepalli, Rajanikanth; Lytton, William W.
2018-01-01
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations. PMID:29713272
Mulugeta, Lealem; Drach, Andrew; Erdemir, Ahmet; Hunt, C A; Horner, Marc; Ku, Joy P; Myers, Jerry G; Vadigepalli, Rajanikanth; Lytton, William W
2018-01-01
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
Baldwin, Austin S; Denman, Deanna C; Sala, Margarita; Marks, Emily G; Shay, L Aubree; Fuller, Sobha; Persaud, Donna; Lee, Simon Craddock; Skinner, Celette Sugg; Wiebe, Deborah J; Tiro, Jasmin A
2017-04-01
Self-persuasion is an effective behavior change strategy, but has not been translated for low-income, less educated, uninsured populations attending safety-net clinics or to promote human papillomavirus (HPV) vaccination. We developed a tablet-based application (in English and Spanish) to elicit parental self-persuasion for adolescent HPV vaccination and evaluated its feasibility in a safety-net population. Parents (N=45) of age-eligible adolescents used the self-persuasion application. Then, during cognitive interviews, staff gathered quantitative and qualitative feedback on the self-persuasion tasks including parental decision stage. The self-persuasion tasks were rated as easy to complete and helpful. We identified six question prompts rated as uniformly helpful, not difficult to answer, and generated non-redundant responses from participants. Among the 33 parents with unvaccinated adolescents, 27 (81.8%) reported deciding to get their adolescent vaccinated after completing the self-persuasion tasks. The self-persuasion application was feasible and resulted in a change in parents' decision stage. Future studies can now test the efficacy of the tablet-based application on HPV vaccination. The self-persuasion application facilitates verbalization of reasons for HPV vaccination in low literacy, safety-net settings. This self-administered application has the potential to be more easily incorporated into clinical practice than other patient education approaches. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Laboratory and clinical trials of cocamide diethanolamine lotion against head lice
Brunton, Elizabeth R.; Brown, Christine M.
2015-01-01
Context. During the late 1990s, insecticide resistance had rendered a number of treatment products ineffective; some companies saw this as an opportunity to develop alternative types of treatment. We investigated the possibility that a surfactant-based lotion containing 10% cocamide diethanolamine (cocamide DEA) was effective to eliminate head louse infestation. Settings and Design. Initial in vitro testing of the lotion formulation versus laboratory reared body/clothing lice, followed by two randomised, controlled, community-based, assessor blinded, clinical studies. Materials and Methods. Preliminary laboratory tests were performed by exposing lice or louse eggs to the product using a method that mimicked the intended use. Clinical Study 1: Children and adults with confirmed head louse infestation were treated by investigators using a single application of aqueous 10% cocamide DEA lotion applied for 60 min followed by shampooing or a single 1% permethrin creme rinse treatment applied to pre-washed hair for 10 min. Clinical Study 2: Compared two treatment regimens using 10% cocamide DEA lotion that was concentrated by hair drying. A single application left on for 8 h/overnight was compared with two applications 7 days apart of 2 h duration, followed by a shampoo wash. Results. The initial laboratory tests showed a pediculicidal effect for a 60 min application but limited ovicidal effect. A longer application time of 8 h or overnight was found capable of killing all eggs but this differed between batches of test material. Clinical Study 1: Both treatments performed badly with only 3/23 (13%) successful treatments using cocamide DEA and 5/25 (23.8%) using permethrin. Clinical Study 2: The single overnight application of cocamide DEA concentrated by hair drying gave 10/56 (17.9%) successes compared with 19/56 (33.9%) for the 2 h application regimen repeated after 1 week. Intention to treat analysis showed no significant difference (p = 0.0523) between the treatments. Over the two studies, there were 18 adverse events possibly or probably associated with treatment, most of which were increased pruritus after treatment. Conclusions. Cocamide DEA 10% lotion, even when concentrated by hair drying, showed limited activity to eliminate head louse infestation. PMID:26557439
A comparative study: classification vs. user-based collaborative filtering for clinical prediction.
Hao, Fang; Blair, Rachael Hageman
2016-12-08
Recommender systems have shown tremendous value for the prediction of personalized item recommendations for individuals in a variety of settings (e.g., marketing, e-commerce, etc.). User-based collaborative filtering is a popular recommender system, which leverages an individuals' prior satisfaction with items, as well as the satisfaction of individuals that are "similar". Recently, there have been applications of collaborative filtering based recommender systems for clinical risk prediction. In these applications, individuals represent patients, and items represent clinical data, which includes an outcome. Application of recommender systems to a problem of this type requires the recasting a supervised learning problem as unsupervised. The rationale is that patients with similar clinical features carry a similar disease risk. As the "Big Data" era progresses, it is likely that approaches of this type will be reached for as biomedical data continues to grow in both size and complexity (e.g., electronic health records). In the present study, we set out to understand and assess the performance of recommender systems in a controlled yet realistic setting. User-based collaborative filtering recommender systems are compared to logistic regression and random forests with different types of imputation and varying amounts of missingness on four different publicly available medical data sets: National Health and Nutrition Examination Survey (NHANES, 2011-2012 on Obesity), Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT), chronic kidney disease, and dermatology data. We also examined performance using simulated data with observations that are Missing At Random (MAR) or Missing Completely At Random (MCAR) under various degrees of missingness and levels of class imbalance in the response variable. Our results demonstrate that user-based collaborative filtering is consistently inferior to logistic regression and random forests with different imputations on real and simulated data. The results warrant caution for the collaborative filtering for the purpose of clinical risk prediction when traditional classification is feasible and practical. CF may not be desirable in datasets where classification is an acceptable alternative. We describe some natural applications related to "Big Data" where CF would be preferred and conclude with some insights as to why caution may be warranted in this context.
Genomic Sequence Variation Markup Language (GSVML).
Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi
2010-02-01
With the aim of making good use of internationally accumulated genomic sequence variation data, which is increasing rapidly due to the explosive amount of genomic research at present, the development of an interoperable data exchange format and its international standardization are necessary. Genomic Sequence Variation Markup Language (GSVML) will focus on genomic sequence variation data and human health applications, such as gene based medicine or pharmacogenomics. We developed GSVML through eight steps, based on case analysis and domain investigations. By focusing on the design scope to human health applications and genomic sequence variation, we attempted to eliminate ambiguity and to ensure practicability. We intended to satisfy the requirements derived from the use case analysis of human-based clinical genomic applications. Based on database investigations, we attempted to minimize the redundancy of the data format, while maximizing the data covering range. We also attempted to ensure communication and interface ability with other Markup Languages, for exchange of omics data among various omics researchers or facilities. The interface ability with developing clinical standards, such as the Health Level Seven Genotype Information model, was analyzed. We developed the human health-oriented GSVML comprising variation data, direct annotation, and indirect annotation categories; the variation data category is required, while the direct and indirect annotation categories are optional. The annotation categories contain omics and clinical information, and have internal relationships. For designing, we examined 6 cases for three criteria as human health application and 15 data elements for three criteria as data formats for genomic sequence variation data exchange. The data format of five international SNP databases and six Markup Languages and the interface ability to the Health Level Seven Genotype Model in terms of 317 items were investigated. GSVML was developed as a potential data exchanging format for genomic sequence variation data exchange focusing on human health applications. The international standardization of GSVML is necessary, and is currently underway. GSVML can be applied to enhance the utilization of genomic sequence variation data worldwide by providing a communicable platform between clinical and research applications. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Designing informed game-based rehabilitation tasks leveraging advances in virtual reality.
Lange, Belinda; Koenig, Sebastian; Chang, Chien-Yen; McConnell, Eric; Suma, Evan; Bolas, Mark; Rizzo, Albert
2012-01-01
This paper details a brief history and rationale for the use of virtual reality (VR) technology for clinical research and intervention, and then focuses on game-based VR applications in the area of rehabilitation. An analysis of the match between rehabilitation task requirements and the assets available with VR technology is presented. Low-cost camera-based systems capable of tracking user behavior at sufficient levels for game-based virtual rehabilitation activities are currently available for in-home use. Authoring software is now being developed that aims to provide clinicians with a usable toolkit for leveraging this technology. This will facilitate informed professional input on software design, development and application to ensure safe and effective use in the rehabilitation context. The field of rehabilitation generally stands to benefit from the continual advances in VR technology, concomitant system cost reductions and an expanding clinical research literature and knowledge base. Home-based activity within VR systems that are low-cost, easy to deploy and maintain, and meet the requirements for "good" interactive rehabilitation tasks could radically improve users' access to care, adherence to prescribed training and subsequently enhance functional activity in everyday life in clinical populations.
Biomarkers in nutrition: new frontiers in research and application
USDA-ARS?s Scientific Manuscript database
Nutritional biomarkers—biochemical, functional, or clinical indices of nutrient intake, status, or functional effects—are needed to support evidence-based clinical guidance and effective health programs and policies related to food, nutrition, and health. Such indices can reveal information about bi...
Rothgangel, Andreas; Braun, Susy; de Witte, Luc; Beurskens, Anna; Smeets, Rob
2016-04-01
To describe the development and content of a clinical framework for mirror therapy (MT) in patients with phantom limb pain (PLP) following amputation. Based on an a priori formulated theoretical model, 3 sources of data collection were used to develop the clinical framework. First, a review of the literature took place on important clinical aspects and the evidence on the effectiveness of MT in patients with phantom limb pain. In addition, questionnaires and semi-structured interviews were used to analyze clinical experiences and preferences of physical and occupational therapists and patients suffering from PLP regarding the application of MT. All data were finally clustered into main and subcategories and were used to complement and refine the theoretical model. For every main category of the a priori formulated theoretical model, several subcategories emerged from the literature search, patient, and therapist interviews. Based on these categories, we developed a clinical flowchart that incorporates the main and subcategories in a logical way according to the phases in methodical intervention defined by the Royal Dutch Society for Physical Therapy. In addition, we developed a comprehensive booklet that illustrates the individual steps of the clinical flowchart. In this study, a structured clinical framework for the application of MT in patients with PLP was developed. This framework is currently being tested for its effectiveness in a multicenter randomized controlled trial. © 2015 World Institute of Pain.
[Research on the Clinical Alarm Management Mechanism Based on Closed-loop Control Theory].
Lin, Zhongkuan; Zheng, Kun; Shen, Yunming; Wu, Yunyun
2018-05-30
This paper proposes a clinical alarm management system based on the theory of the closed loop control. The alarm management mechanism can be divided into the expected standard, improving execution rule, rule execution, medical devices with alarm functions, results analysis strategy and the output link. And, we make relevant application and discussion. Results showed that the mechanism can be operable and effective.
ERIC Educational Resources Information Center
Painter, Diane D.
2016-01-01
The four-week university-sponsored summer Computer-based Writing (CBW) Program directed by the head of a special education initial teacher licensure program gave teaching interns opportunities to work with young struggling writers in a supervised clinical setting to address keyboarding skills, writing conventions and knowledge and application of…
An Integrated Computerized Triage System in the Emergency Department
Aronsky, Dominik; Jones, Ian; Raines, Bill; Hemphill, Robin; Mayberry, Scott R; Luther, Melissa A; Slusser, Ted
2008-01-01
Emergency department (ED) triage is a fast-paced process that prioritizes the allocation of limited health care resources to patients in greatest need. This paper describes the experiences with an integrated, computerized triage application. The system exchanges information with other information systems, including the ED patient tracking board, the longitudinal electronic medical record, the computerized provider order entry, and the medication reconciliation application. The application includes decision support capabilities such as assessing the patient’s acuity level, age-dependent alerts for vital signs, and clinical reminders. The browser-based system utilizes the institution’s controlled vocabulary, improves data completeness and quality, such as compliance with capturing required data elements and screening questions, initiates clinical processes, such as pneumococcal vaccination ordering, and reminders to start clinical pathways, issues alerts for clinical trial eligibility, and facilitates various reporting needs. The system has supported the triage documentation of >290,000 pediatric and adult patients. PMID:18999190
Sutton, Victoria R.; Hauser, Susan E.
2005-01-01
MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information. PMID:16779415
[Clinical use of interventional MR imaging].
Kahn, Thomas; Schulz, Thomas; Moche, Michael; Prothmann, Sascha; Schneider, Jens-Peter
2003-01-01
The integration of diagnostic and therapeutic procedures by MRI is based on the combination of excellent morphologic and functional imaging. The spectrum of MR-guided interventions includes biopsies, thermal ablation procedures, vascular applications, and intraoperative MRI. In all these applications, different scientific groups have obtained convincing results in basic developments as well as in clinical use. Interventional MRI (iMRI) is expected to attain an important role in interventional radiology, minimal invasive therapy, and monitoring of surgical procedures.
Gray, Joshua C.; MacKillop, James
2016-01-01
We review recent advances in the application of behavioral economics to alcohol use disorders (AUDs). Specifically, we review individual differences in alcohol demand (i.e., the relative reinforcing value of alcohol) and delayed reward discounting (i.e., impulsive decision making) in relation to AUDs. Additionally, we review the efficacy of reinforcement-based clinical applications. What emerges from the literature is an extensive body of cross-sectional research implicating alcohol demand and delayed reward discounting with alcohol misuse. However, more research is needed to examine these domains across the lifespan in order to understand their longitudinal trajectories. Similarly, clinical research is consistently supportive of reinforcement-based clinical interventions, but the number of randomized controlled trials to date is relatively small and there has been limited examination of the putative mechanisms of behavior change. PMID:27795939
Levenhagen, Kimberly; Davies, Claire; Perdomo, Marisa; Ryans, Kathryn
2017-01-01
Abstract The Oncology Section of the American Physical Therapy Association (APTA) developed a clinical practice guideline to aid the clinician in diagnosing secondary upper quadrant cancer-related lymphedema. Following a systematic review of published studies and a structured appraisal process, recommendations were written to guide the physical therapist and other health care clinicians in the diagnostic process. Overall clinical practice recommendations were formulated based on the evidence for each diagnostic method and were assigned a grade based on the strength of the evidence for different patient presentations and clinical utility. In an effort to maximize clinical applicability, recommendations were based on the characteristics as to the location and stage of a patient's upper quadrant lymphedema. PMID:28838217
The circle of security parenting and parental conflict: a single case study
Pazzagli, Chiara; Laghezza, Loredana; Manaresi, Francesca; Mazzeschi, Claudia; Powell, Bert
2014-01-01
The Circle of Security Parenting (COS-P) is an early attachment based intervention that can be used with groups, dyads, and individuals. Created in the USA and now used in many countries, COS-P is a visually based approach that demonstrates its central principles through videos of parent/child interactions. The core purpose of the COS-P is to provide an opportunity for caregivers to reflect on their child's needs and on the challenges each parent faces in meeting those needs. Even though there is a wide range of clinical settings in which child/parent attachment is an important component of assessment there is limited empirical data on when and how attachment based interventions are appropriate for specific clinical profiles and contexts. The aim of this paper is to present a clinical application of COS-P in order to explore and reflect on some specific therapeutic tasks where it works and on some clinical indicators and contexts appropriate for its application. A single case study of a father, “M.” (43 years old) in conflict for the custody of his 5 years old daughter is reported. The Adult Attachment Projective Picture System (AAP), the Parenting Stress Index, the Strengths and Difficulties Questionnaire, and the Parental Alliance Measure, were administered pre- and post-intervention. The clinical significance analysis method revealed that numerous changes occurred in the father. The AAP showed improvements in the level of agency of self. M. made gains in his capacity to use internal resources and to increase his agency of self. M. was classified as recovered in his perception of the child's functioning and as improved in his parenting stress and parenting alliance with the mother. Considerations on specific contexts and clinical indicators for the application of COS-P are proposed. PMID:25161643
Upshur, R E G; Colak, Errol
2003-01-01
This essay explores the role of informal logic and its application in the context of current debates regarding evidence-based medicine. This aim is achieved through a discussion of the goals and objectives of evidence-based medicine and a review of the criticisms raised against evidence-based medicine. The contributions to informal logic by Stephen Toulmin and Douglas Walton are explicated and their relevance for evidence-based medicine is discussed in relation to a common clinical scenario: hypertension management. This essay concludes with a discussion on the relationship between clinical reasoning, rationality, and evidence. It is argued that informal logic has the virtue of bringing explicitness to the role of evidence in clinical reasoning, and brings sensitivity to understanding the role of dialogical context in the need for evidence in clinical decision making.
Liu, Shenglin; Zhang, Xutian; Wang, Guohong; Zhang, Qiang
2012-03-01
Based on specified demands on medical devices maintenance for clinical engineers and Browser/Server architecture technology, a medical device maintenance information platform was developed, which implemented the following modules such as repair, preventive maintenance, accessories management, training, document, system management and regional cooperation. The characteristics of this system were summarized and application in increase of repair efficiency, improvement of preventive maintenance and cost control was introduced. The application of this platform increases medical device maintenance service level.
A Bridging Opportunities Work-frame to develop mobile applications for clinical decision making
van Rooij, Tibor; Rix, Serena; Moore, James B; Marsh, Sharon
2015-01-01
Background: Mobile applications (apps) providing clinical decision support (CDS) may show the greatest promise when created by and for frontline clinicians. Our aim was to create a generic model enabling healthcare providers to direct the development of CDS apps. Methods: We combined Change Management with a three-tier information technology architecture to stimulate CDS app development. Results: A Bridging Opportunities Work-frame model was developed. A test case was used to successfully develop an app. Conclusion: Healthcare providers can re-use this globally applicable model to actively create and manage regional decision support applications to translate evidence-based medicine in the use of emerging medication or novel treatment regimens. PMID:28031883
Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper
Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A.; del Portillo, Hernando A.; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M.; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C.; Hendrix, An; Hermann, Dirk M.; Hill, Andrew F.; Hochberg, Fred; Horn, Peter A.; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W.; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J.; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A.; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G.; Rivera, Francisco J.; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W. M.; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd
2015-01-01
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed. PMID:26725829
Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper.
Lener, Thomas; Gimona, Mario; Aigner, Ludwig; Börger, Verena; Buzas, Edit; Camussi, Giovanni; Chaput, Nathalie; Chatterjee, Devasis; Court, Felipe A; Del Portillo, Hernando A; O'Driscoll, Lorraine; Fais, Stefano; Falcon-Perez, Juan M; Felderhoff-Mueser, Ursula; Fraile, Lorenzo; Gho, Yong Song; Görgens, André; Gupta, Ramesh C; Hendrix, An; Hermann, Dirk M; Hill, Andrew F; Hochberg, Fred; Horn, Peter A; de Kleijn, Dominique; Kordelas, Lambros; Kramer, Boris W; Krämer-Albers, Eva-Maria; Laner-Plamberger, Sandra; Laitinen, Saara; Leonardi, Tommaso; Lorenowicz, Magdalena J; Lim, Sai Kiang; Lötvall, Jan; Maguire, Casey A; Marcilla, Antonio; Nazarenko, Irina; Ochiya, Takahiro; Patel, Tushar; Pedersen, Shona; Pocsfalvi, Gabriella; Pluchino, Stefano; Quesenberry, Peter; Reischl, Ilona G; Rivera, Francisco J; Sanzenbacher, Ralf; Schallmoser, Katharina; Slaper-Cortenbach, Ineke; Strunk, Dirk; Tonn, Torsten; Vader, Pieter; van Balkom, Bas W M; Wauben, Marca; Andaloussi, Samir El; Théry, Clotilde; Rohde, Eva; Giebel, Bernd
2015-01-01
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Diana, Tanja; Kahaly, George J
2018-05-02
Thyroid stimulating hormone receptor antibodies (TSHR-Ab) cause autoimmune hyperthyroidism and are prevalent in patients with related thyroid eye disease (TED). To provide a historical perspective on TSHR-Ab and to present evidence-based recommendations for clinical contemporary use. The authors review the recent literature pertaining to TSHR-Ab in patients with TED and describe the various immunoassays currently used for detecting TSHR-Ab and their clinical applications. We provide a historical summary and description of the various methods used to detect TSHR-Ab, foremost, the functional TSHR-Ab. Increasing experimental and clinical data demonstrate the clinical usefulness of cell-based bioassays for measurements of functional TSHR-Ab in the diagnosis and management of patients with autoimmune TED and in the characterization of patients with autoimmune-induced hyperthyroidism and hypothyroidism. Thyroid stimulating hormone receptor antibodies, especially the functional stimulating antibodies, are sensitive, specific, and reproducible biomarkers for patients with autoimmune TED and correlate well with clinical disease activity and clinical severity. Unlike competitive-binding assays, bioassays have the advantage of indicating not only the presence of antibodies but also their functional activity and potency. Measurement of TSHR-Ab (especially stimulating antibodies) is a clinically useful tool for the management of patients with TED.
Information systems: the key to evidence-based health practice.
Rodrigues, R. J.
2000-01-01
Increasing prominence is being given to the use of best current evidence in clinical practice and health services and programme management decision-making. The role of information in evidence-based practice (EBP) is discussed, together with questions of how advanced information systems and technology (IS&T) can contribute to the establishment of a broader perspective for EBP. The author examines the development, validation and use of a variety of sources of evidence and knowledge that go beyond the well-established paradigm of research, clinical trials, and systematic literature review. Opportunities and challenges in the implementation and use of IS&T and knowledge management tools are examined for six application areas: reference databases, contextual data, clinical data repositories, administrative data repositories, decision support software, and Internet-based interactive health information and communication. Computerized and telecommunications applications that support EBP follow a hierarchy in which systems, tasks and complexity range from reference retrieval and the processing of relatively routine transactions, to complex "data mining" and rule-driven decision support systems. PMID:11143195
Tablet-Based Education to Reduce Depression-Related Stigma
ERIC Educational Resources Information Center
Lu, Catherine; Winkelman, Megan; Wong, Shane Shucheng
2016-01-01
Objectives: This study investigated the efficacy of a tablet-based multimedia education application, the Project Not Alone Depression Module, in improving depression literacy and reducing depression stigma among a community-based mental health clinic population. Methods: A total of 93 participants completed either a tablet-based multimedia…
Therapeutic Applications of Herbal Medicines for Cancer Patients
Yin, Shu-Yi; Wei, Wen-Chi; Jian, Feng-Yin; Yang, Ning-Sun
2013-01-01
Medicinal herbs and their derivative phytocompounds are being increasingly recognized as useful complementary treatments for cancer. A large volume of clinical studies have reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. Here, we briefly review some examples of clinical studies that investigated the use of herbal medicines for various cancers and the development of randomized controlled trials (RCTs) in this emerging research area. In addition, we also report recent studies on the biochemical and cellular mechanisms of herbal medicines in specific tumor microenvironments and the potential application of specific phytochemicals in cell-based cancer vaccine systems. This review should provide useful technological support for evidence-based application of herbal medicines in cancer therapy. PMID:23956768
Kibbelaar, R E; Oortgiesen, B E; van der Wal-Oost, A M; Boslooper, K; Coebergh, J W; Veeger, N J G M; Joosten, P; Storm, H; van Roon, E N; Hoogendoorn, M
2017-11-01
Randomised clinical trials (RCTs) are considered the basis of evidence-based medicine. It is recognised more and more that application of RCT results in daily practice of clinical decision-making is limited because the RCT world does not correspond with the clinical real world. Recent strategies aiming at substitution of RCT databases by improved population-based registries (PBRs) or by improved electronic health record (EHR) systems to provide significant data for clinical science are discussed. A novel approach exemplified by the HemoBase haemato-oncology project is presented. In this approach, a PBR is combined with an advanced EHR, providing high-quality data for observational studies and support of best practice development. This PBR + EHR approach opens a perspective on randomised registry trials. Copyright © 2017 Elsevier Ltd. All rights reserved.
RNAi therapeutics and applications of microRNAs in cancer treatment.
Uchino, Keita; Ochiya, Takahiro; Takeshita, Fumitaka
2013-06-01
RNA interference-based therapies are proving to be powerful tools for combating various diseases, including cancer. Scientists are researching the development of safe and efficient systems for the delivery of small RNA molecules, which are extremely fragile in serum, to target organs and cells in the human body. A dozen pre-clinical and clinical trials have been under way over the past few years involving biodegradable nanoparticles, lipids, chemical modification and conjugation. On the other hand, microRNAs, which control the balance of cellular biological processes, have been studied as attractive therapeutic targets in cancer treatment. In this review, we provide an overview of RNA interference-based therapeutics in clinical trials and discuss the latest technology for the systemic delivery of nucleic acid drugs. Furthermore, we focus on dysregulated microRNAs in human cancer, which have progressed in pre-clinical trials as therapeutic targets, and describe a wide range of strategies to control the expression levels of endogenous microRNAs. Further development of RNA interference technologies and progression of clinical trials will contribute to the achievement of practical applications of nucleic acid drugs.
Magnetic nanoparticles based cancer therapy: current status and applications.
Zhang, Huan; Liu, Xiao Li; Zhang, Yi Fan; Gao, Fei; Li, Ga Long; He, Yuan; Peng, Ming Li; Fan, Hai Ming
2018-04-01
Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging (MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.
Driver acceptance of collision warning applications based on heavy-truck V2V technology
DOT National Transportation Integrated Search
2016-10-01
Battelle conducted a series of driver acceptance clinics (DACs) with heavy-truck drivers to gauge their acceptance of collision-warning applications using vehicle-to-vehicle (V2V) communication technology. This report describes the results from Volpe...
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
Pathak, Jyotishman; Bailey, Kent R; Beebe, Calvin E; Bethard, Steven; Carrell, David S; Chen, Pei J; Dligach, Dmitriy; Endle, Cory M; Hart, Lacey A; Haug, Peter J; Huff, Stanley M; Kaggal, Vinod C; Li, Dingcheng; Liu, Hongfang; Marchant, Kyle; Masanz, James; Miller, Timothy; Oniki, Thomas A; Palmer, Martha; Peterson, Kevin J; Rea, Susan; Savova, Guergana K; Stancl, Craig R; Sohn, Sunghwan; Solbrig, Harold R; Suesse, Dale B; Tao, Cui; Taylor, David P; Westberg, Les; Wu, Stephen; Zhuo, Ning; Chute, Christopher G
2013-01-01
Research objective To develop scalable informatics infrastructure for normalization of both structured and unstructured electronic health record (EHR) data into a unified, concept-based model for high-throughput phenotype extraction. Materials and methods Software tools and applications were developed to extract information from EHRs. Representative and convenience samples of both structured and unstructured data from two EHR systems—Mayo Clinic and Intermountain Healthcare—were used for development and validation. Extracted information was standardized and normalized to meaningful use (MU) conformant terminology and value set standards using Clinical Element Models (CEMs). These resources were used to demonstrate semi-automatic execution of MU clinical-quality measures modeled using the Quality Data Model (QDM) and an open-source rules engine. Results Using CEMs and open-source natural language processing and terminology services engines—namely, Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) and Common Terminology Services (CTS2)—we developed a data-normalization platform that ensures data security, end-to-end connectivity, and reliable data flow within and across institutions. We demonstrated the applicability of this platform by executing a QDM-based MU quality measure that determines the percentage of patients between 18 and 75 years with diabetes whose most recent low-density lipoprotein cholesterol test result during the measurement year was <100 mg/dL on a randomly selected cohort of 273 Mayo Clinic patients. The platform identified 21 and 18 patients for the denominator and numerator of the quality measure, respectively. Validation results indicate that all identified patients meet the QDM-based criteria. Conclusions End-to-end automated systems for extracting clinical information from diverse EHR systems require extensive use of standardized vocabularies and terminologies, as well as robust information models for storing, discovering, and processing that information. This study demonstrates the application of modular and open-source resources for enabling secondary use of EHR data through normalization into standards-based, comparable, and consistent format for high-throughput phenotyping to identify patient cohorts. PMID:24190931
Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T
2011-11-21
We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30-16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9-67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning.
IgE-based Immunotherapy of Cancer -A Comparative Oncology Approach
Singer, Josef; Jensen-Jarolim, Erika
2014-01-01
Antibody-based immunotherapies are important therapy options in human oncology. Although human humoral specific immunity is constituted of five different immunoglobulin classes, currently only IgG-based immunotherapies have proceeded to clinical application. This review, however, discusses the benefits and difficulties of IgE-based immunotherapy of cancer, with special emphasis on how to translate promising preclinical results into clinical studies. Pursuing the “Comparative Oncology” approach, novel drug candidates are investigated in clinical trials with veterinary cancer patients, most often dogs. By this strategy drug development could be speeded up, animal experiments could be reduced and novel therapy options could be introduced benefitting humans as well as man’s best friend. PMID:25264496
Kolltveit, Beate-Christin Hope; Thorne, Sally; Graue, Marit; Gjengedal, Eva; Iversen, Marjolein M; Kirkevold, Marit
2018-03-01
To investigate the application of a telemedicine intervention in diabetes foot ulcer care, and its implications for the healthcare professionals in the clinical field. Contextual factors are found to be important when applying technology in health care and applying telemedicine in home-based care has been identified as particularly complex. We conducted field observations and individual interviews among healthcare professionals in home-based care and specialist health care in a diabetes foot care telemedicine RCT (Clin.Trial.gov: NCT01710774) during 2016. This study was guided by Interpretive Description, an inductive qualitative methodology. Overall, we identified unequal possibilities for applying telemedicine in diabetes foot ulcer care within the hospital and home care contexts. Different circumstances and possibilities in home-based care made the application of telemedicine as intended more difficult. The healthcare professionals in both care contexts perceived the application of telemedicine to facilitate a more comprehensive approach towards the patients, but with different possibilities to enact it. Application of telemedicine in home-based care was more challenging than in the outpatient clinic setting. Introducing more updated equipment and minor structural adjustments in consultation time and resources could make the use of telemedicine in home-based care more robust. Application of telemedicine in diabetes foot ulcer follow-up may enhance the nursing staff's ability to conduct comprehensive assessment and care of the foot ulcer as well as the patient's total situation. Access to adequate equipment and time, particularly in home-based care, is necessary to capitalise on this new technology. © 2017 John Wiley & Sons Ltd.
Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm
Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea
2011-01-01
Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830
Technological choices for mobile clinical applications.
Ehrler, Frederic; Issom, David; Lovis, Christian
2011-01-01
The rise of cheaper and more powerful mobile devices make them a new and attractive platform for clinical applications. The interaction paradigm and portability of the device facilitates bedside human-machine interactions. The better accessibility to information and decision-support anywhere in the hospital improves the efficiency and the safety of care processes. In this study, we attempt to find out what are the most appropriate Operating System (OS) and Software Development Kit (SDK) to support the development of clinical applications on mobile devices. The Android platform is a Linux-based, open source platform that has many advantages. Two main SDKs are available on this platform: the native Android and the Adobe Flex SDK. Both of them have interesting features, but the latter has been preferred due its portability at comparable performance and ease of development.
Evaluation systems for clinical governance development: a comparative study.
Hooshmand, Elaheh; Tourani, Sogand; Ravaghi, Hamid; Ebrahimipour, Hossein
2014-01-01
Lack of scientific and confirmed researches and expert knowledge about evaluation systems for clinical governance development in Iran have made studies on different evaluation systems for clinical governance development a necessity. These studies must provide applied strategies to design criteria of implementing clinical governance for hospital's accreditation. This is a descriptive and comparative study on development of clinical governance models all over the world. Data have been gathered by reviewing related articles. Models have been studied in comprehensive review method. The evaluated models of clinical governance development were Australian, NHS, SPOCK and OPTIGOV. The final aspects extracted from these models were Responsiveness, Policies and Strategies, Organizational Structure, Allocating Resources, Education and Occupational Development, Performance Evaluation, External Evaluation, Patient Oriented Approach, Risk Management, Personnel's Participation, Information Technology, Human Resources, Research and Development, Evidence Based Medicine, Clinical Audit, Health Technology Assessment and Quality. These results are applicable for completing the present criteria which evaluating clinical governance application and provide practical framework to evaluate country's hospital on the basis of clinical governance elements.
Artificial intelligence in hematology.
Zini, Gina
2005-10-01
Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.
Mobile phone-based clinical guidance for rural health providers in India.
Gautham, Meenakshi; Iyengar, M Sriram; Johnson, Craig W
2015-12-01
There are few tried and tested mobile technology applications to enhance and standardize the quality of health care by frontline rural health providers in low-resource settings. We developed a media-rich, mobile phone-based clinical guidance system for management of fevers, diarrhoeas and respiratory problems by rural health providers. Using a randomized control design, we field tested this application with 16 rural health providers and 128 patients at two rural/tribal sites in Tamil Nadu, Southern India. Protocol compliance for both groups, phone usability, acceptability and patient feedback for the experimental group were evaluated. Linear mixed-model analyses showed statistically significant improvements in protocol compliance in the experimental group. Usability and acceptability among patients and rural health providers were very high. Our results indicate that mobile phone-based, media-rich procedural guidance applications have significant potential for achieving consistently standardized quality of care by diverse frontline rural health providers, with patient acceptance. © The Author(s) 2014.
Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro
2016-01-01
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813
Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers
Chen, Hao; Zhu, Zhitu; Zhu, Yichun; Wang, Jian; Mei, Yunqing; Cheng, Yunfeng
2015-01-01
It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein–protein or gene–gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed. PMID:25560835
Capoccia, Massimo; Marconi, Silvia; Singh, Sanjeet Avtaar; Pisanelli, Domenico M; De Lazzari, Claudio
2018-05-02
Modelling and simulation may become clinically applicable tools for detailed evaluation of the cardiovascular system and clinical decision-making to guide therapeutic intervention. Models based on pressure-volume relationship and zero-dimensional representation of the cardiovascular system may be a suitable choice given their simplicity and versatility. This approach has great potential for application in heart failure where the impact of left ventricular assist devices has played a significant role as a bridge to transplant and more recently as a long-term solution for non eligible candidates. We sought to investigate the value of simulation in the context of three heart failure patients with a view to predict or guide further management. CARDIOSIM © was the software used for this purpose. The study was based on retrospective analysis of haemodynamic data previously discussed at a multidisciplinary meeting. The outcome of the simulations addressed the value of a more quantitative approach in the clinical decision process. Although previous experience, co-morbidities and the risk of potentially fatal complications play a role in clinical decision-making, patient-specific modelling may become a daily approach for selection and optimisation of device-based treatment for heart failure patients. Willingness to adopt this integrated approach may be the key to further progress.
Grappling with the Future Use of Big Data for Translational Medicine and Clinical Care.
Murphy, S; Castro, V; Mandl, K
2017-08-01
Objectives: Although patients may have a wealth of imaging, genomic, monitoring, and personal device data, it has yet to be fully integrated into clinical care. Methods: We identify three reasons for the lack of integration. The first is that "Big Data" is poorly managed by most Electronic Medical Record Systems (EMRS). The data is mostly available on "cloud-native" platforms that are outside the scope of most EMRs, and even checking if such data is available on a patient often must be done outside the EMRS. The second reason is that extracting features from the Big Data that are relevant to healthcare often requires complex machine learning algorithms, such as determining if a genomic variant is protein-altering. The third reason is that applications that present Big Data need to be modified constantly to reflect the current state of knowledge, such as instructing when to order a new set of genomic tests. In some cases, applications need to be updated nightly. Results: A new architecture for EMRS is evolving which could unite Big Data, machine learning, and clinical care through a microservice-based architecture which can host applications focused on quite specific aspects of clinical care, such as managing cancer immunotherapy. Conclusion: Informatics innovation, medical research, and clinical care go hand in hand as we look to infuse science-based practice into healthcare. Innovative methods will lead to a new ecosystem of applications (Apps) interacting with healthcare providers to fulfill a promise that is still to be determined. Georg Thieme Verlag KG Stuttgart.
Kart, Özge; Mevsim, Vildan; Kut, Alp; Yürek, İsmail; Altın, Ayşe Özge; Yılmaz, Oğuz
2017-11-29
Physicians' guideline use rates for diagnosis, treatment and monitoring of diabetes mellitus (DM) is very low. Time constraints, patient overpopulation, and complex guidelines require alternative solutions for real time patient monitoring. Rapidly evolving e-health technology combined with clinical decision support and monitoring systems (CDSMS) provides an effective solution to these problems. The purpose of the study is to develop a user-friendly, comprehensive, fully integrated web and mobile-based Clinical Decision Support and Monitoring System (CDSMS) for the screening, diagnosis, treatment, and monitoring of DM diseases which is used by physicians and patients in primary care and to determine the effectiveness of the system. The CDSMS will be based on evidence-based guidelines for DM disease. A web and mobile-based application will be developed in which the physician will remotely monitor patient data through mobile applications in real time. The developed CDSMS will be tested in two stages. In the first stage, the usability, understandability, and adequacy of the application will be determined. Five primary care physicians will use the developed application for at least 16 DM patients. Necessary improvements will be made according to physician feedback. In the second phase, a parallel, single-blind, randomized controlled trial will be implemented. DM diagnosed patients will be recruited for the CDSMS trial by their primary care physicians. Ten physicians and their 439 patients will be involved in the study. Eligible participants will be assigned to intervention and control groups with simple randomization. The significance level will be accepted as p < 0.05. In the intervention group, the system will make recommendations on patient monitoring, diagnosis, and treatment. These recommendations will be implemented at the physician's discretion. Patients in the control group will be treated by physicians according to current DM treatment standards. Patients in both groups will be monitored for 6 months. Patient data will be compared between 0th and 6th month of the study. . Clinical and laboratory outcomes will be assessed in person while others will be self-assessed online. The developed system will be the first of its kind to utilize evidence based guidelines to provide health services to DM patients. ClinicalTrials.gov NCT02917226 . 28 September 2016.
Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery
Mendelsohn, Adam; Desai, Tejal
2014-01-01
Materials advances enabled by nanotechnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic β-cells represents the most anticipated application of cell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success. PMID:20384222
The sweet and sour of serological glycoprotein tumor biomarker quantification
2013-01-01
Aberrant and dysregulated protein glycosylation is a well-established event in the process of oncogenesis and cancer progression. Years of study on the glycobiology of cancer have been focused on the development of clinically viable diagnostic applications of this knowledge. However, for a number of reasons, there has been only sparse and varied success. The causes of this range from technical to biological issues that arise when studying protein glycosylation and attempting to apply it to practical applications. This review focuses on the pitfalls, advances, and future directions to be taken in the development of clinically applicable quantitative assays using glycan moieties from serum-based proteins as analytes. Topics covered include the development and progress of applications of lectins, mass spectrometry, and other technologies towards this purpose. Slowly but surely, novel applications of established and development of new technologies will eventually provide us with the tools to reach the ultimate goal of quantification of the full scope of heterogeneity associated with the glycosylation of biomarker candidate glycoproteins in a clinically applicable fashion. PMID:23390961
Applications of Chondrocyte-Based Cartilage Engineering: An Overview
Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha
2016-01-01
Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002
Ultrasound Elastography: Review of Techniques and Clinical Applications
Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.
2017-01-01
Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467
Kawamoto, Kensaku; Lobach, David F
2005-01-01
Despite their demonstrated ability to improve care quality, clinical decision support systems are not widely used. In part, this limited use is due to the difficulty of sharing medical knowledge in a machine-executable format. To address this problem, we developed a decision support Web service known as SEBASTIAN. In SEBASTIAN, individual knowledge modules define the data requirements for assessing a patient, the conclusions that can be drawn using that data, and instructions on how to generate those conclusions. Using standards-based XML messages transmitted over HTTP, client decision support applications provide patient data to SEBASTIAN and receive patient-specific assessments and recommendations. SEBASTIAN has been used to implement four distinct decision support systems; an architectural overview is provided for one of these systems. Preliminary assessments indicate that SEBASTIAN fulfills all original design objectives, including the re-use of executable medical knowledge across diverse applications and care settings, the straightforward authoring of knowledge modules, and use of the framework to implement decision support applications with significant clinical utility.
TU-F-201-00: Radiochromic Film Dosimetry Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
TU-F-201-01: General Aspects of Radiochromic Film Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niroomand-Rad, A.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu-Tsao, S.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
False dichotomies: EBM, clinical freedom, and the art of medicine.
Parker, M
2005-06-01
According to numerous commentators, clinical freedom, the art of medicine, and, by implication, a degree of patient welfare, are threatened by evidence based medicine (EBM). As EBM has developed over the last fifteen years, claims about better evidence for medical treatments, and improvements in healthcare delivery, have been matched by critiques of EBM's reductionism and uniformity, its problematic application to individual patients, and its alleged denial of the continuing need for clinical interpretation, insight, and judgment. Most of these attacks on EBM and defences of clinical freedom fail. They are based on erroneous understandings of the relationships between inductive knowledge, clinical uncertainty, and action. Evidence based medicine is a necessary condition for clinical freedom, not a threat to it, and EBM is not something to be balanced with either clinical experience or patient preferences. The art and science of medicine are more conceptually and practically connected than the defenders of clinical freedom, whatever they conceive that to be, are willing to admit.
[Application of pharmacoeconomics in clinical management].
Amat Díaz, M; Poveda Andrés, J L; Carrera-Hueso, F J
2011-05-01
The present article discusses the importance of clinical management in the transformation of organizations and its role in the daily activities of health professionals and, in particular, of hospital pharmacists. Because of social changes, healthcare models must make the shift from more rigid management models toward new organizational models based on clinical management. From this perspective, pharmacoeconomics is viewed as a useful tool to introduce the criteria of efficiency in all decisions subject to clinical management, including those on pharmacotherapeutics. Subsequently, the application of this discipline is discussed in real decision-making scenarios and settings for its use within the context of the work of hospital pharmacy are proposed. Copyright © 2011 Sociedad Española de Farmacia Hospitalaria. Published by Elsevier Espana. All rights reserved.
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less
Embodied Conversational Agents in Clinical Psychology: A Scoping Review
Lau, Ho Ming; Ruwaard, Jeroen; Riper, Heleen
2017-01-01
Background Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors. Objective We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. Methods Given the large variety of applied methodologies, types of applications, and scientific disciplines involved in ECA research, we conducted a systematic scoping review. Scoping reviews aim to map key concepts and types of evidence underlying an area of research, and answer less-specific questions than traditional systematic reviews. Systematic searches for ECA applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application that targeted one of the disorders. We mapped each study’s background information, how the different disorders were addressed, how ECAs and users could interact with one another, methodological aspects, and the study’s aims and outcomes. Results This study included N=54 publications (N=49 studies). More than half of the studies (n=26) focused on autism treatment, and ECAs were used most often for social skills training (n=23). Applications ranged from simple reinforcement of social behaviors through emotional expressions to sophisticated multimodal conversational systems. Most applications (n=43) were still in the development and piloting phase, that is, not yet ready for routine practice evaluation or application. Few studies conducted controlled research into clinical effects of ECAs, such as a reduction in symptom severity. Conclusions ECAs for mental disorders are emerging. State-of-the-art techniques, involving, for example, communication through natural language or nonverbal behavior, are increasingly being considered and adopted for psychotherapeutic interventions in ECA research with promising results. However, evidence on their clinical application remains scarce. At present, their value to clinical practice lies mostly in the experimental determination of critical human support factors. In the context of using ECAs as an adjunct to existing interventions with the aim of supporting users, important questions remain with regard to the personalization of ECAs’ interaction with users, and the optimal timing and manner of providing support. To increase the evidence base with regard to Internet interventions, we propose an additional focus on low-tech ECA solutions that can be rapidly developed, tested, and applied in routine practice. PMID:28487267
Embodied Conversational Agents in Clinical Psychology: A Scoping Review.
Provoost, Simon; Lau, Ho Ming; Ruwaard, Jeroen; Riper, Heleen
2017-05-09
Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors. We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. Given the large variety of applied methodologies, types of applications, and scientific disciplines involved in ECA research, we conducted a systematic scoping review. Scoping reviews aim to map key concepts and types of evidence underlying an area of research, and answer less-specific questions than traditional systematic reviews. Systematic searches for ECA applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application that targeted one of the disorders. We mapped each study's background information, how the different disorders were addressed, how ECAs and users could interact with one another, methodological aspects, and the study's aims and outcomes. This study included N=54 publications (N=49 studies). More than half of the studies (n=26) focused on autism treatment, and ECAs were used most often for social skills training (n=23). Applications ranged from simple reinforcement of social behaviors through emotional expressions to sophisticated multimodal conversational systems. Most applications (n=43) were still in the development and piloting phase, that is, not yet ready for routine practice evaluation or application. Few studies conducted controlled research into clinical effects of ECAs, such as a reduction in symptom severity. ECAs for mental disorders are emerging. State-of-the-art techniques, involving, for example, communication through natural language or nonverbal behavior, are increasingly being considered and adopted for psychotherapeutic interventions in ECA research with promising results. However, evidence on their clinical application remains scarce. At present, their value to clinical practice lies mostly in the experimental determination of critical human support factors. In the context of using ECAs as an adjunct to existing interventions with the aim of supporting users, important questions remain with regard to the personalization of ECAs' interaction with users, and the optimal timing and manner of providing support. To increase the evidence base with regard to Internet interventions, we propose an additional focus on low-tech ECA solutions that can be rapidly developed, tested, and applied in routine practice. ©Simon Provoost, Ho Ming Lau, Jeroen Ruwaard, Heleen Riper. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.05.2017.
Substrates for clinical applicability of stem cells
Enam, Sanjar; Jin, Sha
2015-01-01
The capability of human pluripotent stem cells (hPSCs) to differentiate into a variety of cells in the human body holds great promise for regenerative medicine. Many substrates exist on which hPSCs can be self-renewed, maintained and expanded to further the goal of clinical application of stem cells. In this review, we highlight numerous extracellular matrix proteins, peptide and polymer based substrates, scaffolds and hydrogels that have been pioneered. We discuss their benefits and shortcomings and offer future directions as well as emphasize commercially available synthetic peptides as a type of substrate that can bring the benefits of regenerative medicine to clinical settings. PMID:25815112
Demner-Fushman, D; Elhadad, N
2016-11-10
This paper reviews work over the past two years in Natural Language Processing (NLP) applied to clinical and consumer-generated texts. We included any application or methodological publication that leverages text to facilitate healthcare and address the health-related needs of consumers and populations. Many important developments in clinical text processing, both foundational and task-oriented, were addressed in community- wide evaluations and discussed in corresponding special issues that are referenced in this review. These focused issues and in-depth reviews of several other active research areas, such as pharmacovigilance and summarization, allowed us to discuss in greater depth disease modeling and predictive analytics using clinical texts, and text analysis in social media for healthcare quality assessment, trends towards online interventions based on rapid analysis of health-related posts, and consumer health question answering, among other issues. Our analysis shows that although clinical NLP continues to advance towards practical applications and more NLP methods are used in large-scale live health information applications, more needs to be done to make NLP use in clinical applications a routine widespread reality. Progress in clinical NLP is mirrored by developments in social media text analysis: the research is moving from capturing trends to addressing individual health-related posts, thus showing potential to become a tool for precision medicine and a valuable addition to the standard healthcare quality evaluation tools.
SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic
Wang, Xiaobo; Feng, Han; Zhao, Shichao; Xu, Junling; Wu, Xinyu; Cui, Jing; Zhang, Ying; Qin, Yuhua; Liu, Zhiguo; Gao, Tang; Gao, Yongju; Zeng, Wenbin
2017-01-01
Owing to the central role of apoptosis in many human diseases and the wide-spread application of apoptosis-based therapeutics, molecular imaging of apoptosis in clinical practice is of great interest for clinicians, and holds great promises. Based on the well-defined biochemical changes for apoptosis, a rich assortment of probes and approaches have been developed for molecular imaging of apoptosis with various imaging modalities. Among these imaging techniques, nuclear imaging (including single photon emission computed tomography and positron emission tomography) remains the premier clinical method owing to their high specificity and sensitivity. Therefore, the corresponding radiopharmaceuticals have been a major focus, and some of them like 99mTc-Annexin V, 18F-ML-10, 18F-CP18, and 18F-ICMT-11 are currently under clinical investigations in Phase I/II or Phase II/III clinical trials on a wide scope of diseases. In this review, we summarize these radiopharmaceuticals that have been widely used in clinical trials and elaborate them in terms of radiosynthesis, pharmacokinetics and dosimetry, and their applications in different clinical stages. We also explore the unique features required to qualify a desirable radiopharmaceutical for imaging apoptosis in clinical practice. Particularly, a perspective of the impact of these clinical efforts, namely, apoptosis imaging as predictive and prognostic markers, early-response indicators and surrogate endpoints, is also the highlight of this review. PMID:28108738
Applying problem-based learning to otolaryngology teaching.
Abou-Elhamd, K A; Rashad, U M; Al-Sultan, A I
2011-02-01
Undergraduate medical education requires ongoing improvement in order to keep pace with the changing demands of twenty-first century medical practice. Problem-based learning is increasingly being adopted in medical schools worldwide. We review its application in the specialty of ENT, and we present our experience of using this approach combined with more traditional methods. We introduced problem-based learning techniques into the ENT course taught to fifth-year medical students at Al-Ahsa College of Medicine, King Faisal University, Saudi Arabia. As a result, the teaching schedule included both clinical and theoretical activities. Six clinical teaching days were allowed for history-taking, examination techniques and clinical scenario discussion. Case scenarios were discussed in small group teaching sessions. Conventional methods were employed to teach audiology and ENT radiology (one three-hour session each); a three-hour simulation laboratory session and three-hour student presentation were also scheduled. In addition, students attended out-patient clinics for three days, and used multimedia facilities to learn about various otolaryngology diseases (in another three-hour session). This input was supplemented with didactic teaching in the form of 16 instructional lectures per semester (one hour per week). From our teaching experience, we believe that the application of problem-based learning to ENT teaching has resulted in a substantial increase in students' knowledge. Furthermore, students have given encouraging feedback on their experience of combined problem-based learning and conventional teaching methods.
Using default methodologies to derive an acceptable daily exposure (ADE).
Faria, Ellen C; Bercu, Joel P; Dolan, David G; Morinello, Eric J; Pecquet, Alison M; Seaman, Christopher; Sehner, Claudia; Weideman, Patricia A
2016-08-01
This manuscript discusses the different historical and more recent default approaches that have been used to derive an acceptable daily exposure (ADE). While it is preferable to derive a health-based ADE based on a complete nonclinical and clinical data package, this is not always possible. For instance, for drug candidates in early development there may be no or limited nonclinical or clinical trial data. Alternative approaches that can support decision making with less complete data packages represent a variety of methods that rely on default assumptions or data inputs where chemical-specific data on health effects are lacking. A variety of default approaches are used including those based on certain toxicity estimates, a fraction of the therapeutic dose, cleaning-based limits, the threshold of toxicological concern (TTC), and application of hazard banding tools such as occupational exposure banding (OEB). Each of these default approaches is discussed in this manuscript, including their derivation, application, strengths, and limitations. In order to ensure patient safety when faced with toxicological and clinical data-gaps, default ADE methods should be purposefully as or more protective than ADEs derived from full data packages. Reliance on the subset of default approaches (e.g., TTC or OEB) that are based on toxicological data is preferred over other methods for establishing ADEs in early development while toxicology and clinical data are still being collected. Copyright © 2016. Published by Elsevier Inc.
GAC: Gene Associations with Clinical, a web based application.
Zhang, Xinyan; Rupji, Manali; Kowalski, Jeanne
2017-01-01
We present GAC, a shiny R based tool for interactive visualization of clinical associations based on high-dimensional data. The tool provides a web-based suite to perform supervised principal component analysis (SuperPC), an approach that uses both high-dimensional data, such as gene expression, combined with clinical data to infer clinical associations. We extended the approach to address binary outcomes, in addition to continuous and time-to-event data in our package, thereby increasing the use and flexibility of SuperPC. Additionally, the tool provides an interactive visualization for summarizing results based on a forest plot for both binary and time-to-event data. In summary, the GAC suite of tools provide a one stop shop for conducting statistical analysis to identify and visualize the association between a clinical outcome of interest and high-dimensional data types, such as genomic data. Our GAC package has been implemented in R and is available via http://shinygispa.winship.emory.edu/GAC/. The developmental repository is available at https://github.com/manalirupji/GAC.
Sempere, Lorenzo F
2014-01-01
miRNAs are short, non-coding, regulatory RNAs that exert cell type-dependent, context-dependent, transcriptome-wide gene expression control under physiological and pathological conditions. Tissue slide-based assays provide qualitative (tumor compartment) and semi-quantitative (expression levels) information about altered miRNA expression at single-cell resolution in clinical tumor specimens. Reviewed here are key technological advances in the last 5 years that have led to implementation of fully automated, robust and reproducible tissue slide-based assays for in situ miRNA detection on US FDA-approved instruments; recent tissue slide-based discovery studies that suggest potential clinical applications of specific miRNAs in cancer medicine are highlighted; and the challenges in bringing tissue slide-based miRNA assays into the clinic are discussed, including clinical validation, biomarker performance, biomarker space and integration with other biomarkers. PMID:25090088
Case formulation and management using pattern-based formulation (PBF) methodology: clinical case 1.
Fernando, Irosh; Cohen, Martin
2014-02-01
A tool for psychiatric case formulation known as pattern-based formulation (PBF) has been recently introduced. This paper presents an application of this methodology in formulating and managing complex clinical cases. The symptomatology of the clinical presentation has been parsed into individual clinical phenomena and interpreted by selecting explanatory models. The clinical presentation demonstrates how PBF has been used as a clinical tool to guide clinicians' thinking, that takes a structured approach to manage multiple issues using a broad range of management strategies. In doing so, the paper also introduces a number of patterns related to the observed clinical phenomena that can be re-used as explanatory models when formulating other clinical cases. It is expected that this paper will assist clinicians, and particularly trainees, to better understand PBF methodology and apply it to improve their formulation skills.
Rural Doctors' Views on and Experiences with Evidence-Based Medicine: The FrEEDoM Qualitative Study.
Hisham, Ranita; Liew, Su May; Ng, Chirk Jenn; Mohd Nor, Kamaliah; Osman, Iskandar Firzada; Ho, Gah Juan; Hamzah, Nurazira; Glasziou, Paul
2016-01-01
Evidence-based medicine is the integration of individual clinical expertise, best external evidence and patient values which was introduced more than two decades ago. Yet, primary care physicians in Malaysia face unique barriers in accessing scientific literature and applying it to their clinical practice. This study aimed to explore the views and experiences of rural doctors' about evidence-based medicine in their daily clinical practice in a rural primary care setting. Qualitative methodology was used. The interviews were conducted in June 2013 in two rural health clinics in Malaysia. The participants were recruited using purposive sampling. Four focus group discussions with 15 medical officers and three individual in-depth interviews with family medicine specialists were carried out. All interviews were conducted using a topic guide and were audio-recorded, transcribed verbatim, checked and analyzed using a thematic approach. Key themes identified were: (1) doctors viewed evidence-based medicine mainly as statistics, research and guidelines, (2) reactions to evidence-based medicine were largely negative, (3) doctors relied on specialists, peers, guidelines and non-evidence based internet sources for information, (4) information sources were accessed using novel methods such as mobile applications and (5) there are several barriers to evidence-based practice, including doctor-, evidence-based medicine-, patient- and system-related factors. These included inadequacies in knowledge, attitude, management support, time and access to evidence-based information sources. Participants recommended the use of online services to support evidence-based practice in the rural settings. The level of evidence-based practice is low in the rural setting due to poor awareness, knowledge, attitude and resources. Doctors use non-evidence based sources and access them through new methods such as messaging applications. Further research is recommended to develop and evaluate interventions to overcome the identified barriers.
Kane, Michael D; Springer, John A; Sprague, Jon E
2008-07-01
The rationale and overall system-wide behavior of a clinical genotyping information system (both DNA analysis and data management) requires a near-term, scalable approach, which is emerging in the focused implementation of pharmacogenomics and drug safety assurance. The challenges to implementing a successful clinical genotyping system are described, as are how the benefits of a focused, near-term system for drug safety assessment and assurance overcome the logistical and operational challenges that perpetually hinder the development of a societal-scale clinical genotyping system. This rationale is based on the premise that a focused application domain for clinical genotyping, specifically drug safety assurance, provides a transition paradigm for both professionals and consumers of healthcare, thereby facilitating the movement of genotyping from bench to bedside and paving the way for the adoption of prognostic and diagnostic applications in clinical genomics.
High-intensity therapeutic ultrasound: metrological requirements versus clinical usage
NASA Astrophysics Data System (ADS)
Aubry, J.-F.
2012-10-01
High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.
KommonBase - A precise direct bonding system for labial fixed appliances.
Miyashita, Wataru; Komori, Akira; Takemoto, Kyoto
2017-09-01
"KommonBase" is a system designed to customize the bracket base by means of an extended resin base covering the tooth. This system enables precise bracket placement and accurate fit on teeth. Moreover, KommonBase can be easily fabricated in a laboratory and bonded on each tooth using simple clinical procedures. Straight-wire treatment without wire bending was achieved in the clinical cases presented in this article using the KommonBase system for a labial fixed appliance. The application of KommonBase to the vestibular side enables efficient orthodontic treatment using simple mechanics. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.
Formal Representations of Eligibility Criteria: A Literature Review
Weng, Chunhua; Tu, Samson W.; Sim, Ida; Richesson, Rachel
2010-01-01
Standards-based, computable knowledge representations for eligibility criteria are increasingly needed to provide computer-based decision support for automated research participant screening, clinical evidence application, and clinical research knowledge management. We surveyed the literature and identified five aspects of eligibility criteria knowledge representations that contribute to the various research and clinical applications: the intended use of computable eligibility criteria, the classification of eligibility criteria, the expression language for representing eligibility rules, the encoding of eligibility concepts, and the modeling of patient data. We consider three of them (expression language, codification of eligibility concepts, and patient data modeling), to be essential constructs of a formal knowledge representation for eligibility criteria. The requirements for each of the three knowledge constructs vary for different use cases, which therefore should inform the development and choice of the constructs toward cost-effective knowledge representation efforts. We discuss the implications of our findings for standardization efforts toward sharable knowledge representation of eligibility criteria. PMID:20034594
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Jacobs, Jon M.
Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is an imperative goal for the field of medicine. While mass spectrometry (MS)-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry (IMS) separations [1, 2] with liquid chromatography (LC) andmore » MS to dramatically increase measurement sensitivity and throughput, further enabling future MS-based clinical applications. An initial application of the LC-IMS-MS platform for the analysis of blood serum samples from stratified post-liver transplant patients with recurrent fibrosis progression illustrates its potential utility for disease characterization and use in personalized medicine [3, 4].« less
Bréant, C; Borst, F; Campi, D; Griesser, V; Momjian, S
1999-01-01
The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG.
Bréant, C.; Borst, F.; Campi, D.; Griesser, V.; Momjian, S.
1999-01-01
The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG. Images Figure 1 PMID:10566451
Remote magnetic actuation using a clinical scale system
Stehning, Christian; Gleich, Bernhard
2018-01-01
Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions. PMID:29494647
Genome editing systems in novel therapies.
Jang, Yoon-Young; Cai, Liuhong; Ye, Zhaohui
2016-01-01
Genome editing is the process in which DNA sequences at precise genomic locations are modified. In the past three decades, genome editing by homologous recombination has been successfully performed in mouse for generating genetic models. The low efficiency of this process in human cells, however, had prevented its clinical application until the recent advancements in designer endonuclease technologies. The significantly improved genome editing efficiencies aided by ZFN, TALEN, and CRISPR systems provide unprecedented opportunities not only for biomedical research, but also for developing novel therapies. Applications based on these genome editing tools to disrupt deleterious genes, correct genetic mutations, deliver functional transgenes more effectively or even modify the epigenetic landscape are being actively investigated for gene and cell therapy purposes. Encouraging results have been obtained in limited clinical trials in the past two years. While most of the applications are still in proof-of-principle or preclinical development stages, it is anticipated that the coming years will see increasing clinical success in novel therapies based on the modern genome editing technologies. It should be noted that critical issues still remain before the technologies can be translated into more reliable therapies. These key issues include off-target evaluation, establishing appropriate preclinical models and improving the currently low efficiency of homology-based precise gene replacement. In this review we discuss the preclinical and clinical studies aiming at translating the genome editing technologies as well as the issues that are important for more successful translation.
Mustonen, Enni-Kaisa; Palomäki, Tiina; Pasanen, Markku
2017-11-01
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Wong, Stephen T C; Tjandra, Donny; Wang, Huili; Shen, Weimin
2003-09-01
Few information systems today offer a flexible means to define and manage the automated part of radiology processes, which provide clinical imaging services for the entire healthcare organization. Even fewer of them provide a coherent architecture that can easily cope with heterogeneity and inevitable local adaptation of applications and can integrate clinical and administrative information to aid better clinical, operational, and business decisions. We describe an innovative enterprise architecture of image information management systems to fill the needs. Such a system is based on the interplay of production workflow management, distributed object computing, Java and Web techniques, and in-depth domain knowledge in radiology operations. Our design adapts the approach of "4+1" architectural view. In this new architecture, PACS and RIS become one while the user interaction can be automated by customized workflow process. Clinical service applications are implemented as active components. They can be reasonably substituted by applications of local adaptations and can be multiplied for fault tolerance and load balancing. Furthermore, the workflow-enabled digital radiology system would provide powerful query and statistical functions for managing resources and improving productivity. This paper will potentially lead to a new direction of image information management. We illustrate the innovative design with examples taken from an implemented system.
NASA Astrophysics Data System (ADS)
Rucinski, A.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.
2018-03-01
Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like \
Mobile-Assisted Grammar Exercises: Effects on Self-Editing in L2 Writing
ERIC Educational Resources Information Center
Li, Zhi; Hegelheimer, Volker
2013-01-01
In this paper, we report on the development and implementation of a web-based mobile application, "Grammar Clinic," for an ESL writing class. Drawing on insights from the interactionist approach to Second Language Acquisition (SLA), the Noticing Hypothesis, and mobile-assisted language learning (MALL), "Grammar Clinic" was…
The Translation of Health Research in Kinesiology
ERIC Educational Resources Information Center
Ainsworth, Barbara E.
2009-01-01
The translation of health research is a process of transforming scientific discoveries arising from laboratory, clinical, or population studies into clinical or population-based applications to improve health by reducing disease incidence, morbidity, and mortality. Initiated by the National Institutes for Health Roadmap Initiative and the U.S.…
Blood compatibility of magnesium and its alloys.
Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine
2015-10-01
Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks.
Martin, Ulrich
2017-01-01
Stem-cell-based therapies are considered to be promising and innovative but complex approaches. Induced pluripotent stem cells (iPSCs) combine the advantages of adult stem cells with the hitherto unique characteristics of embryonic stem cells (ESCs). Major progress has already been achieved with regard to reprogramming technology, but also regarding targeted genome editing and scalable expansion and differentiation of iPSCs and ESCs, in some cases yielding highly enriched preparations of well-defined cell lineages at clinically required dimensions. It is noteworthy, however, that for many applications critical requirements such as the targeted specification into distinct cellular subpopulations and a proper cell maturation remain to be achieved. Moreover, current hurdles such as low survival rates and insufficient functional integration of cellular transplants remain to be overcome. Nevertheless, PSC technologies obviously have come of age and matured to a stage where various clinical applications of PSC-based cellular therapies have been initiated and are conducted.
Swallow, Veronica M; Hall, Andrew G; Carolan, Ian; Santacroce, Sheila; Webb, Nicholas J A; Smith, Trish; Hanif, Noreen
2014-02-18
There is a lack of online, evidence-based information and resources to support home-based care of childhood CKD stages 3-5. Qualitative interviews were undertaken with parents, patients and professionals to explore their views on content of the proposed online parent information and support (OPIS) web-application. Data were analysed using Framework Analysis, guided by the concept of Self-efficacy. 32 parents, 26 patients and 12 professionals were interviewed. All groups wanted an application that explains, demonstrates, and enables parental clinical care-giving, with condition-specific, continously available, reliable, accessible material and a closed communication system to enable contact between families living with CKD. Professionals advocated a regularly updated application to empower parents to make informed health-care decisions. To address these requirements, key web-application components were defined as: (i) Clinical care-giving support (information on treatment regimens, video-learning tools, condition-specific cartoons/puzzles, and a question and answer area) and (ii) Psychosocial support for care-giving (social-networking, case studies, managing stress, and enhancing families' health-care experiences). Developing a web-application that meets parents' information and support needs will maximise its utility, thereby augmenting parents' self-efficacy for CKD caregiving, and optimising outcomes. Self-efficacy theory provides a schema for how parents' self-efficacy beliefs about management of their child's CKD could potentially be promoted by OPIS.
Stern, Robert A; Seichepine, Daniel; Tschoe, Christine; Fritts, Nathan G; Alosco, Michael L; Berkowitz, Oren; Burke, Peter; Howland, Jonathan; Olshaker, Jonathan; Cantu, Robert C; Baugh, Christine M; Holsapple, James W
2017-02-15
Evidence-based clinical practice guidelines can facilitate proper evaluation and management of concussions in the emergency department (ED), often the initial and primary point of contact for concussion care. There is no universally adopted set of guidelines for concussion management, and extant evidence suggests that there may be variability in concussion care practices and limited application of clinical practice guidelines in the ED. This study surveyed EDs throughout New England to examine current practices of concussion care and utilization of evidence-based clinical practice guidelines in the evaluation and management of concussions. In 2013, a 32-item online survey was e-mailed to 149/168 EDs throughout New England (Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Maine). Respondents included senior administrators asked to report on their EDs use of clinical practice guidelines, neuroimaging decision-making, and discharge instructions for concussion management. Of the 72/78 respondents included, 35% reported absence of clinical practice guidelines, and 57% reported inconsistency in the type of guidelines used. Practitioner preference guided neuroimaging decision-making for 57%. Although 94% provided written discharge instructions, there was inconsistency in the recommended time frame for follow-up care (13% provided no specific time frame), the referral specialist to be seen (25% did not recommend any specialist), and return to activity instructions were inconsistent. There is much variability in concussion care practices and application of evidence-based clinical practice guidelines in the evaluation and management of concussions in New England EDs. Knowledge translational efforts will be critical to improve concussion management in the ED setting.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent
2017-03-01
Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.
Yücel, Meryem A.; Selb, Juliette; Boas, David A.; Cash, Sydney S.; Cooper, Robert J.
2013-01-01
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90 % and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. PMID:23796546
Business intelligence and capacity planning: web-based solutions.
James, Roger
2010-07-01
Income (activity) and expenditure (costs) form the basis of a modern hospital's 'business intelligence'. However, clinical engagement in business intelligence is patchy. This article describes the principles of business intelligence and outlines some recent developments using web-based applications.
Petruzzi, Massimo; De Benedittis, Michele
2016-03-01
Increased use of smartphone and related software applications has created a new era in clinical data exchange among patients and clinicians. This study describes use of the smartphone-based application WhatsApp to share clinical oral medicine information. Clinical images and related questions were submitted by general dentists, physicians, dental hygienists, and patients to the authors via WhatsApp. For each submission, a clinical impression was made and categorized as traumatic, infective, neoplastic, autoimmune, or unclassified. Submissions were summarized by sender type, number of photographs per sender, and category of question. Patients were invited to undergo a clinical examination with biopsy, when indicated. The telemedicine impression was compared to the clinicopathologic diagnosis. Three hundred and thirty-nine images were received for 96 patients; 92 (95.8%) patients underwent clinicopathologic examination, and 45 (49%) received a biopsy. General dentists (62%) and dental hygienists (26%) were the most frequent senders. The most common question was related to diagnosis (56%). The telemedicine impression agreed with the clinicopathologic assessment for 82% of cases. Telemedicine applications, such as WhatsApp, can support communication about oral conditions among clinicians and patients. Telemedicine consultation reduced geographic barriers to initial clinical consultation and encouraged the significant majority of patients to pursue expert clinical examination. Copyright © 2016 Elsevier Inc. All rights reserved.
Duriez, Elodie; Armengaud, Jean; Fenaille, François; Ezan, Eric
2016-03-01
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up. Copyright © 2016 John Wiley & Sons, Ltd.
BLOODR: blood donor and requester mobile application
Tatikonda, Vamsi Krishna
2017-01-01
Background With rapid increase in the usage of social networks sites across the world, there is also a steady increase in blood donation requests as being noticed in the number of posts on these sites such as Facebook and twitter seeking blood donors. Finding blood donor is a challenging issue in almost every country. There are some blood donor finder applications in the market such as Blood app by Red Cross and Blood Donor Finder application by Neologix. However, more reliable applications that meet the needs of users are prompted. Methods Several software technologies including languages and framework are used to develop our blood-donor web application known as BLOODR application. These technologies comprise Ruby programming language (simply known as Ruby) along with JavaScript and PostgreSQL for database are used. Ruby on Rails (simply known as Rails) is an open source Web framework that makes it possible to quickly and easily create data-based web applications. Results We show screenshots for the BLOODR application for different types of users including requester, donor, and administrator. Various features of the application are described and their needs of use are analyzed. If a patient needs a blood at a clinic, blood donors in vicinity can be contacted through using a clinic management service provided in this application. Registered donors will get notification for the blood requests only if their blood group is compatible with the requested blood type and in the same city/region. Then matching blood donors can go to the requesting clinic and donate. Conclusions BLOODR application provides a reliable platform to connect local blood donors with patients. BLOODR creates a communication channel through authenticated clinics whenever a patient needs blood donation. It is a useful tool to find compatible blood donors who can receive blood request posts in their local area. Clinics can use this web application to maintain the blood donation activity. Future improvement of the BLOODR is explained. PMID:29184892
BLOODR: blood donor and requester mobile application.
Tatikonda, Vamsi Krishna; El-Ocla, Hosam
2017-01-01
With rapid increase in the usage of social networks sites across the world, there is also a steady increase in blood donation requests as being noticed in the number of posts on these sites such as Facebook and twitter seeking blood donors. Finding blood donor is a challenging issue in almost every country. There are some blood donor finder applications in the market such as Blood app by Red Cross and Blood Donor Finder application by Neologix. However, more reliable applications that meet the needs of users are prompted. Several software technologies including languages and framework are used to develop our blood-donor web application known as BLOODR application. These technologies comprise Ruby programming language (simply known as Ruby) along with JavaScript and PostgreSQL for database are used. Ruby on Rails (simply known as Rails) is an open source Web framework that makes it possible to quickly and easily create data-based web applications. We show screenshots for the BLOODR application for different types of users including requester, donor, and administrator. Various features of the application are described and their needs of use are analyzed. If a patient needs a blood at a clinic, blood donors in vicinity can be contacted through using a clinic management service provided in this application. Registered donors will get notification for the blood requests only if their blood group is compatible with the requested blood type and in the same city/region. Then matching blood donors can go to the requesting clinic and donate. BLOODR application provides a reliable platform to connect local blood donors with patients. BLOODR creates a communication channel through authenticated clinics whenever a patient needs blood donation. It is a useful tool to find compatible blood donors who can receive blood request posts in their local area. Clinics can use this web application to maintain the blood donation activity. Future improvement of the BLOODR is explained.
A systematic review of healthcare applications for smartphones.
Mosa, Abu Saleh Mohammad; Yoo, Illhoi; Sheets, Lincoln
2012-07-10
Advanced mobile communications and portable computation are now combined in handheld devices called "smartphones", which are also capable of running third-party software. The number of smartphone users is growing rapidly, including among healthcare professionals. The purpose of this study was to classify smartphone-based healthcare technologies as discussed in academic literature according to their functionalities, and summarize articles in each category. In April 2011, MEDLINE was searched to identify articles that discussed the design, development, evaluation, or use of smartphone-based software for healthcare professionals, medical or nursing students, or patients. A total of 55 articles discussing 83 applications were selected for this study from 2,894 articles initially obtained from the MEDLINE searches. A total of 83 applications were documented: 57 applications for healthcare professionals focusing on disease diagnosis (21), drug reference (6), medical calculators (8), literature search (6), clinical communication (3), Hospital Information System (HIS) client applications (4), medical training (2) and general healthcare applications (7); 11 applications for medical or nursing students focusing on medical education; and 15 applications for patients focusing on disease management with chronic illness (6), ENT-related (4), fall-related (3), and two other conditions (2). The disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students. Many medical applications for smartphones have been developed and widely used by health professionals and patients. The use of smartphones is getting more attention in healthcare day by day. Medical applications make smartphones useful tools in the practice of evidence-based medicine at the point of care, in addition to their use in mobile clinical communication. Also, smartphones can play a very important role in patient education, disease self-management, and remote monitoring of patients.
A Systematic Review of Healthcare Applications for Smartphones
2012-01-01
Background Advanced mobile communications and portable computation are now combined in handheld devices called “smartphones”, which are also capable of running third-party software. The number of smartphone users is growing rapidly, including among healthcare professionals. The purpose of this study was to classify smartphone-based healthcare technologies as discussed in academic literature according to their functionalities, and summarize articles in each category. Methods In April 2011, MEDLINE was searched to identify articles that discussed the design, development, evaluation, or use of smartphone-based software for healthcare professionals, medical or nursing students, or patients. A total of 55 articles discussing 83 applications were selected for this study from 2,894 articles initially obtained from the MEDLINE searches. Results A total of 83 applications were documented: 57 applications for healthcare professionals focusing on disease diagnosis (21), drug reference (6), medical calculators (8), literature search (6), clinical communication (3), Hospital Information System (HIS) client applications (4), medical training (2) and general healthcare applications (7); 11 applications for medical or nursing students focusing on medical education; and 15 applications for patients focusing on disease management with chronic illness (6), ENT-related (4), fall-related (3), and two other conditions (2). The disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students. Conclusions Many medical applications for smartphones have been developed and widely used by health professionals and patients. The use of smartphones is getting more attention in healthcare day by day. Medical applications make smartphones useful tools in the practice of evidence-based medicine at the point of care, in addition to their use in mobile clinical communication. Also, smartphones can play a very important role in patient education, disease self-management, and remote monitoring of patients. PMID:22781312
Harvest: a web-based biomedical data discovery and reporting application development platform.
Italia, Michael J; Pennington, Jeffrey W; Ruth, Byron; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; Miller, Jeffrey; White, Peter S
2013-01-01
Biomedical researchers share a common challenge of making complex data understandable and accessible. This need is increasingly acute as investigators seek opportunities for discovery amidst an exponential growth in the volume and complexity of laboratory and clinical data. To address this need, we developed Harvest, an open source framework that provides a set of modular components to aid the rapid development and deployment of custom data discovery software applications. Harvest incorporates visual representations of multidimensional data types in an intuitive, web-based interface that promotes a real-time, iterative approach to exploring complex clinical and experimental data. The Harvest architecture capitalizes on standards-based, open source technologies to address multiple functional needs critical to a research and development environment, including domain-specific data modeling, abstraction of complex data models, and a customizable web client.
Huang, Anpeng; Xu, Wenyao; Li, Zhinan; Xie, Linzhen; Sarrafzadeh, Majid; Li, Xiaoming; Cong, Jason
2014-09-01
Cardiovascular disease (CVD) is a major issue to public health. It contributes 41% to the Chinese death rate each year. This huge loss encouraged us to develop a Wearable Efficient teleCARdiology systEm (WE-CARE) for early warning and prevention of CVD risks in real time. WE-CARE is expected to work 24/7 online for mobile health (mHealth) applications. Unfortunately, this purpose is often disrupted in system experiments and clinical trials, even if related enabling technologies work properly. This phenomenon is rooted in the overload issue of complex Electrocardiogram (ECG) data in terms of system integration. In this study, our main objective is to get a system light-loading technology to enable mHealth with a benchmarked ECG anomaly recognition rate. To achieve this objective, we propose an approach to purify clinical features from ECG raw data based on manifold learning, called the Manifold-based ECG-feature Purification algorithm. Our clinical trials verify that our proposal can detect anomalies with a recognition rate of up to 94% which is highly valuable in daily public health-risk alert applications based on clinical criteria. Most importantly, the experiment results demonstrate that the WE-CARE system enabled by our proposal can enhance system reliability by at least two times and reduce false negative rates to 0.76%, and extend the battery life by 40.54%, in the system integration level.
An application of actuarial methods in psychiatric diagnosis.
Overall, J E; Higgins, C W
1977-10-01
An actuarial program for psychiatric diagnosis is evaluated for agreement with final clinical diagnosis in a series of 288 patients. The acturial program provides a probability differential diagnosis based on an analysis of history and background data, symptom rating profiles, and MMPI clinical scale profiles. The observed agreement with final clinical diagnosis is approximately 50% higher than previously reported for psychological testing in this same setting. The results emphasize the importance for psychologists of clinical interview and observation skills.
Levenhagen, Kimberly; Davies, Claire; Perdomo, Marisa; Ryans, Kathryn
2017-01-01
Introduction: The Oncology Section of APTA developed a clinical practice guideline to aid the clinician in diagnosing secondary upper-quadrant cancer-related lymphedema. Methods: Following a systematic review of published studies and a structured appraisal process, recommendations were written to guide the physical therapist and other health care clinicians in their diagnostic process. Overall, clinical practice recommendations were formulated on the basis of the evidence for each diagnostic method and were assigned a grade based on the strength of the evidence for different patient presentations and clinical utility. Recommendations: In an effort to make these clinically applicable, recommendations were based on the characteristics as to the location and stage of a patient's upper-quadrant lymphedema. PMID:28748128
Lewiecki, E Michael; Binkley, Neil
2009-01-01
To evaluate the benefits and limitations of randomized controlled trials (RCTs), clinical practice guidelines (CPGs), and clinical judgment in the management of osteoporosis. A review was conducted of the English-language literature on the origins and applications of RCTs, CPGs, evidence-based medicine, and clinical judgment in the management of osteoporosis. Evidence-based medicine is use of the currently available best evidence in making clinical decisions for individual patients. CPGs are recommendations for making clinical decisions based on research evidence, sometimes with consideration of expert opinion, health care policy, and costs of care. The highest levels of medical evidence are usually thought to be RCTs and meta-analyses of high-quality RCTs. Although it is desirable and appropriate for clinicians to consider research evidence from RCTs and recommendations presented in CPGs in making clinical decisions, other factors-such as patient preference, comorbidities, affordability, and availability of care-are important for the actual implementation of evidence-based medicine. Decisions about who to treat, which drug to use, how best to monitor, and how long to treat require clinical skills in addition to knowledge of medical research. The necessity of integrating common sense and clinical judgment is highlighted by the fact that many patients treated for osteoporosis in clinical practice would not qualify for participation in the pivotal clinical trials that demonstrated efficacy and safety of the drugs used to treat them.
Clinical instruction: using the strengths-based approach with nursing students.
Cederbaum, Julie; Klusaritz, Heather A
2009-08-01
Clinical instruction experience can vary significantly based on the needs of the organization and the individual characteristics of instructors and students. Clinical instructors may encounter difficulties in their relationships with students, such as personality conflicts, differences in style and values, and limited skill levels or a lack of interest on the part of students. To reduce obstacles when working with challenging students, a strengths perspective approach is recommended. This framework emphasizes discovering, affirming, and enhancing the capabilities, interests, knowledge, resources, goals, and objectives of individuals. The strengths perspective can provide an innovative framework for working with nursing students, one that emphasizes student empowerment, collaborative learning, and mutual growth. Strength-based strategies for supervision of students in clinical placements are shared, highlighting the practical application of the framework's tenets. Copyright 2009, SLACK Incorporated.
Evidence and resources to implement Pharmacogenetic Knowledge for Precision Medicine
Caudle, Kelly E.; Gammal, Roseann S.; Whirl-Carrillo, Michelle; Hoffman, James M.; Relling, Mary V.; Klein, Teri E.
2016-01-01
Purpose Implementation of pharmacogenetics into clinical practice has been relatively slow despite substantial scientific progress over the last decade. One barrier that inhibits uptake of pharmacogenetics into routine clinical practice is the lack of knowledge of how to translate a genetic test into a clinical action based on current evidence. The purpose of this paper is to describe the current state of pharmacogenetic evidence and evidence-based resources that facilitate the uptake of pharmacogenetics into clinical practice. Summary Controversy exists over the required evidence threshold needed for routine clinical implementation of pharmacogenetics. Large randomized controlled trials are not clinically feasible or necessary for many pharmacogenetic applications. Online resources exist like the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Pharmacogenomics Knowledgebase (PharmGKB) that provide freely available, evidence-based resources that facilitate the translation of genetic laboratory test results into actionable prescribing recommendations for specific drugs. Conclusion Resources provided by organizations such as CPIC and PharmGKB that use standardized approaches to evaluate the literature and provide clinical guidance are essential for the implementation of pharmacogenetics into routine clinical practice. PMID:27864205
Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair
Mondadori, Carlotta; Mainardi, Valerio Luca; Talò, Giuseppe; Candrian, Christian; Święszkowski, Wojciech
2018-01-01
Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects. PMID:29535776
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
... withdrawing approval of a new drug application (NDA) for MERIDIA (sibutramine hydrochloride (HCl)) oral... requested that Abbott voluntarily withdraw MERIDIA (sibutramine HCl) oral capsules from the market, based on FDA's recent analysis of clinical trial data from the Sibutramine Cardiovascular Outcomes Trial (SCOUT...
Developing a knowledge base to support the annotation of ultrasound images of ectopic pregnancy.
Dhombres, Ferdinand; Maurice, Paul; Friszer, Stéphanie; Guilbaud, Lucie; Lelong, Nathalie; Khoshnood, Babak; Charlet, Jean; Perrot, Nicolas; Jauniaux, Eric; Jurkovic, Davor; Jouannic, Jean-Marie
2017-01-31
Ectopic pregnancy is a frequent early complication of pregnancy associated with significant rates of morbidly and mortality. The positive diagnosis of this condition is established through transvaginal ultrasound scanning. The timing of diagnosis depends on the operator expertise in identifying the signs of ectopic pregnancy, which varies dramatically among medical staff with heterogeneous training. Developing decision support systems in this context is expected to improve the identification of these signs and subsequently improve the quality of care. In this article, we present a new knowledge base for ectopic pregnancy, and we demonstrate its use on the annotation of clinical images. The knowledge base is supported by an application ontology, which provides the taxonomy, the vocabulary and definitions for 24 types and 81 signs of ectopic pregnancy, 484 anatomical structures and 32 technical elements for image acquisition. The knowledge base provides a sign-centric model of the domain, with the relations of signs to ectopic pregnancy types, anatomical structures and the technical elements. The evaluation of the ontology and knowledge base demonstrated a positive feedback from a panel of 17 medical users. Leveraging these semantic resources, we developed an application for the annotation of ultrasound images. Using this application, 6 operators achieved a precision of 0.83 for the identification of signs in 208 ultrasound images corresponding to 35 clinical cases of ectopic pregnancy. We developed a new ectopic pregnancy knowledge base for the annotation of ultrasound images. The use of this knowledge base for the annotation of ultrasound images of ectopic pregnancy showed promising results from the perspective of clinical decision support system development. Other gynecological disorders and fetal anomalies may benefit from our approach.
Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic
Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert
2010-01-01
In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles. PMID:20402623
Review of Virtual Reality Treatment in Psychiatry: Evidence Versus Current Diffusion and Use.
Mishkind, Matthew C; Norr, Aaron M; Katz, Andrea C; Reger, Greg M
2017-09-18
This review provides an overview of the current evidence base for and clinical applications of the use of virtual reality (VR) in psychiatric practice, in context of recent technological developments. The use of VR in psychiatric practice shows promise with much of the research demonstrating clinical effectiveness for conditions including post-traumatic stress disorder, anxiety and phobias, chronic pain, rehabilitation, and addictions. However, more research is needed before the use of VR is considered a clinical standard of practice in some areas. The recent release of first generation consumer VR products signals a change in the viability of further developing VR systems and applications. As applications increase so will the need for good quality research to best understand what makes VR effective, and when VR is not appropriate for clinical services. As the field progresses, it is hopeful that the flexibility afforded by this technology will yield superior outcomes and a better understanding of the underlying mechanisms impacting those outcomes.
Distributed user interfaces for clinical ubiquitous computing applications.
Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik
2005-08-01
Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.
Measuring Practitioner Attitudes toward Evidence-Based Treatments: A Validation Study
ERIC Educational Resources Information Center
Ashcraft, Rindee G. P.; Foster, Sharon L.; Lowery, Amy E.; Henggeler, Scott W.; Chapman, Jason E.; Rowland, Melisa D.
2011-01-01
A better understanding of clinicians' attitudes toward evidence-based treatments (EBT) will presumably enhance the transfer of EBTs for substance-abusing adolescents from research to clinical application. The reliability and validity of two measures of therapist attitudes toward EBT were examined: the Evidence-Based Practice Attitude Scale…
Applying Brain-Based Learning Principles to Athletic Training Education
ERIC Educational Resources Information Center
Craig, Debbie I.
2007-01-01
Objective: To present different concepts and techniques related to the application of brain-based learning principles to Athletic Training clinical education. Background: The body of knowledge concerning how our brains physically learn continues to grow. Brain-based learning principles, developed by numerous authors, offer advice on how to…
Magnesium-based implants: a mini-review.
Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine
2014-01-01
The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Walsh, Timothy J.; Beltran, Chris J.; Stoker, Joshua B.; Mundy, Daniel W.; Parry, Mark D.; Bues, Martin; Fatyga, Mirek
2016-04-01
The use of radiation therapy for the treatment of cancer has been carried out clinically since the late 1800's. Early on however, it was discovered that a radiation dose sufficient to destroy cancer cells can also cause severe injury to surrounding healthy tissue. Radiation oncologists continually strive to find the perfect balance between a dose high enough to destroy the cancer and one that avoids damage to healthy organs. Spot scanning or "pencil beam" proton radiotherapy offers another option to improve on this. Unlike traditional photon therapy, proton beams stop in the target tissue, thus better sparing all organs beyond the targeted tumor. In addition, the beams are far narrower and thus can be more precisely "painted" onto the tumor, avoiding exposure to surrounding healthy tissue. To safely treat patients with proton beam radiotherapy, dose verification should be carried out for each plan prior to treatment. Proton dose verification systems are not currently commercially available so the Department of Radiation Oncology at the Mayo Clinic developed its own, called DOSeCHECK, which offers two distinct dose simulation methods: GPU-based Monte Carlo and CPU-based analytical. The three major components of the system include the web-based user interface, the Linux-based dose verification simulation engines, and the supporting services and components. The architecture integrates multiple applications, libraries, platforms, programming languages, and communication protocols and was successfully deployed in time for Mayo Clinic's first proton beam therapy patient. Having a simple, efficient application for dose verification greatly reduces staff workload and provides additional quality assurance, ultimately improving patient safety.
Vavken, Patrick; Ganal-Antonio, Anne Kathleen B.; Quidde, Julia; Shen, Francis H.; Chapman, Jens R.; Samartzis, Dino
2015-01-01
Study Design A broad narrative review. Objectives Outcome assessment in spinal disorders is imperative to help monitor the safety and efficacy of the treatment in an effort to change the clinical practice and improve patient outcomes. The following article, part two of a two-part series, discusses the various outcome tools and instruments utilized to address spinal disorders and their management. Methods A thorough review of the peer-reviewed literature was performed, irrespective of language, addressing outcome research, instruments and tools, and applications. Results Numerous articles addressing the development and implementation of health-related quality-of-life, neck and low back pain, overall pain, spinal deformity, and other condition-specific outcome instruments have been reported. Their applications in the context of the clinical trial studies, the economic analyses, and overall evidence-based orthopedics have been noted. Additional issues regarding the problems and potential sources of bias utilizing outcomes scales and the concept of minimally clinically important difference were discussed. Conclusion Continuing research needs to assess the outcome instruments and tools used in the clinical outcome assessment for spinal disorders. Understanding the fundamental principles in spinal outcome assessment may also advance the field of “personalized spine care.” PMID:26225283
Roadblocks en route to the clinical application of induced pluripotent stem cells.
Lowry, William E; Quan, William L
2010-03-01
Since the first studies of human embryonic stem cells (hESCs) and, more recently, human induced pluripotent stem cells (hiPSCs), the stem-cell field has been abuzz with the promise that these pluripotent populations will one day be a powerful therapeutic tool. Although it has been proposed that hiPSCs will supersede hESCs with respect to their research and/or clinical potential because of the ease of their derivation and the ability to create immunologically matched iPSCs for each individual patient, recent evidence suggests that iPSCs in fact have several underappreciated characteristics that might mean they are less suitable for clinical application. Continuing research is revealing the similarities, differences and deficiencies of various pluripotent stem-cell populations, and suggests that many years will pass before the clinical utility of hESCs and hiPSCs is realized. There are a plethora of ethical, logistical and technical roadblocks on the route to the clinical application of pluripotent stem cells, particularly of iPSCs. In this Essay, we discuss what we believe are important issues that should be considered when attempting to bring hiPSC-based technology to the clinic.
Engineering the extracellular matrix for clinical applications: endoderm, mesoderm, and ectoderm.
Williams, Miguel L; Bhatia, Sujata K
2014-03-01
Tissue engineering is rapidly progressing from a research-based discipline to clinical applications. Emerging technologies could be utilized to develop therapeutics for a wide range of diseases, but many are contingent on a cell scaffold that can produce proper tissue ultrastructure. The extracellular matrix, which a cell scaffold simulates, is not merely a foundation for tissue growth but a dynamic participant in cellular crosstalk and organ homeostasis. Cells change their growth rates, recruitment, and differentiation in response to the composition, modulus, and patterning of the substrate on which they reside. Cell scaffolds can regulate these factors through precision design, functionalization, and application. The ideal therapy would utilize highly specialized cell scaffolds to best mimic the tissue of interest. This paper discusses advantages and challenges of optimized cell scaffold design in the endoderm, mesoderm, and ectoderm for clinical applications in tracheal transplant, cardiac regeneration, and skin grafts, respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noiri, Eisei; Tsukahara, Hirokazu
2005-05-01
Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.
WebCIS: large scale deployment of a Web-based clinical information system.
Hripcsak, G; Cimino, J J; Sengupta, S
1999-01-01
WebCIS is a Web-based clinical information system. It sits atop the existing Columbia University clinical information system architecture, which includes a clinical repository, the Medical Entities Dictionary, an HL7 interface engine, and an Arden Syntax based clinical event monitor. WebCIS security features include authentication with secure tokens, authorization maintained in an LDAP server, SSL encryption, permanent audit logs, and application time outs. WebCIS is currently used by 810 physicians at the Columbia-Presbyterian center of New York Presbyterian Healthcare to review and enter data into the electronic medical record. Current deployment challenges include maintaining adequate database performance despite complex queries, replacing large numbers of computers that cannot run modern Web browsers, and training users that have never logged onto the Web. Although the raised expectations and higher goals have increased deployment costs, the end result is a far more functional, far more available system.
Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko
2013-01-01
To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.
A novel hydrogel electrolyte extender for rapid application of EEG sensors and extended recordings.
Kleffner-Canucci, Killian; Luu, Phan; Naleway, John; Tucker, Don M
2012-04-30
Dense-array EEG recordings are now commonplace in research and gaining acceptance in clinical settings. Application of many sensors with traditional electrolytes is time consuming. Saline electrolytes can be used to minimize application time but recording duration is limited due to evaporation. In the present study, we evaluate a NIPAm (N-isopropyl acrylamide:acrylic acid) base electrolyte extender for use with saline electrolytes. Sensor-scalp impedances and EEG data quality acquired with the electrolyte extender are compared with those obtained for saline and an EEG electrolyte commonly used in clinical exams (Elefix). The results show that when used in conjunction with saline, electrode-scalp impedances and data across the EEG spectrum are comparable with those obtained using Elefix EEG paste. When used in conjunction with saline, the electrolyte extender permits rapid application of dense-sensor arrays and stable, high-quality EEG data to be obtained for at least 4.5 h. This is an enabling technology that will make benefits of dense-array EEG recordings practical for clinical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Methodology of development of a Delirium clinical application and initial feasibility results.
Zhang, Melvyn W B; Ho, Roger C M; Sockalingam, Sanjeev
2015-01-01
Delirium is a highly prevalent condition in the hospital settings, with prevalence rates ranging from 6% to 56%, based on previous studies. A recent review provides evidence for the need of practice tools at the point of care to increase impact and to improve patient outcomes related to delirium care. The major challenge is to help maintain the skill-sets required by clinicians and allied healthcare workers over time. There have been massive advancements in smartphone technologies, as well as several papers being published recently about how clinicians could be application developers. The following study will serve to illustrate how the authors made use of the latest advances in application creation technologies in designing a Delirium education application, containing protocols that are appropriate to their healthcare setting. The study in itself will serve as a pilot project aimed at implementing smartphone technologies in delirium education, to determine its feasibility as well as user's perspectives towards such an implementation. The Delirium UHN Application was developed between the months of February 2013 to September 2014. Making use of the methodologies shared by Zhang MWB et al., the authors embarked on the development of the web-based and the native application. The web-based application was developed using HTML5 programming language and with the aid of an online application builder. Psychiatry residents and allied health professionals, at the University of Toronto were recruited to help evaluate the pilot web-based version of the application. Since the introduction of the web-based application during the delirium awareness week, there has been a total of 1165 unique access to the online web-based application. Of significance, there is a shift in the confidence levels of the participants with regards to the management of delirium after using the application. The majority of the participants (44.0%) reported being moderately comfortable with managing delirium prior to the usage of the application, but this changed after the implementation of the application, with 39.0% reporting being very confident and 44.0% being extremely confident about managing delirium after using the application. 69.0% of the participants also perceived the smartphone application to be of use to their clinical care for delirious patients. This study is one of the first to demonstrate the potential usage of smartphone innovations in delirium education. The current study demonstrated the added feasibility of smartphone applications, and demonstrated that users perceived that they are more abled with managing delirium after the usage of the smartphone application.
Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.
Hardy, John G; Palma, Matteo; Wind, Shalom J; Biggs, Manus J
2016-07-01
Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paper-Based Quantification of Male Fertility Potential.
Nosrati, Reza; Gong, Max M; San Gabriel, Maria C; Pedraza, Claudio E; Zini, Armand; Sinton, David
2016-03-01
More than 70 million couples worldwide are affected by infertility, with male-factor infertility accounting for about half of the cases. Semen analysis is critical for determining male fertility potential, but conventional testing is costly and complex. Here, we demonstrate a paper-based microfluidic approach to quantify male fertility potential, simultaneously measuring 3 critical semen parameters in 10 min: live and motile sperm concentrations and sperm motility. The device measures the colorimetric change of yellow tetrazolium dye to purple formazan by the diaphorase flavoprotein enzyme present in metabolically active human sperm to quantify live and motile sperm concentration. Sperm motility was determined as the ratio of motile to live sperm. We assessed the performance of the device by use of clinical semen samples, in parallel with standard clinical approaches. Detection limits of 8.46 and 15.18 million/mL were achieved for live and motile sperm concentrations, respectively. The live and motile sperm concentrations and motility values from our device correlated with those of the standard clinical approaches (R(2) ≥ 0.84). In all cases, our device provided 100% agreement in terms of clinical outcome. The device was also robust and could tolerate conditions of high absolute humidity (22.8 g/m(3)) up to 16 weeks when packaged with desiccant. Our device outperforms existing commercial paper-based assays by quantitatively measuring live and motile sperm concentrations and motility, in only 10 min. This approach is applicable to current clinical practices as well as self-diagnostic applications. © 2015 American Association for Clinical Chemistry.
A web-based library consult service for evidence-based medicine: Technical development.
Schwartz, Alan; Millam, Gregory
2006-03-16
Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement.
Elloumi-Hannachi, I; Yamato, M; Okano, T
2010-01-01
Cell sheet technology (CST) is based on the use of thermoresponsive polymers, poly(N-isopropylacrylamide) (PIPAAm). The surface of PIPAAms is formulated in such a way as to make its typical thickness <100 nm. In this review, we first focus on how the methods of PIPAAm-grafted surface preparations and functionalization are important to be able to harvest a functional cell sheet, to be further transplanted. Then, we present aspects of tissue mimics and three-dimensional reconstruction of a tissue in vitro. Finally, we give an overview of clinical applications and clinically relevant animal experimentations of the technology, such as cardiomyopathy, visual acuity, periodonty, oesophageal ulcerations and type 1 diabetes.
Mobile Applications for Women's Health and Midwifery Care: A Pocket Reference for the 21st Century.
Arbour, Megan W; Stec, Melissa A
2018-05-01
Midwives and other women's health care providers are charged with providing high-quality care to women based on the most current available evidence. Quick, reliable, and accurate access to evidence-based information is essential. Numerous smartphone and mobile device applications (apps) are available to assist clinicians in providing care for women. This article discusses clinical reference apps, including those for evidence-based care guidelines, women's health care, pharmacologic reference, laboratory and diagnostic guides, as well as apps for information storage and management, electronic health records, and client education. Midwives and other clinicians are encouraged to thoughtfully integrate mobile apps into their clinical practices to improve client outcomes and clinician and client satisfaction. Although the thousands of health care apps that are available may seem daunting, this article highlights key apps that may help clinicians improve their care of women. By adding one app at a time, midwives and other women's health care providers can successfully integrate mobile apps into clinical practice. © 2018 by the American College of Nurse-Midwives.
Grabbe, Stephan; Haas, Heinrich; Diken, Mustafa; Kranz, Lena M; Langguth, Peter; Sahin, Ugur
2016-10-01
The development of nucleic acid based vaccines against cancer has gained considerable momentum through the advancement of modern sequencing technologies and on novel RNA-based synthetic drug formats, which can be readily adapted following identification of every patient's tumor-specific mutations. Furthermore, affordable and individual 'on demand' production of molecularly optimized vaccines should allow their application in large groups of patients. This has resulted in the therapeutic concept of an active personalized cancer vaccine, which has been brought into clinical testing. Successful trials have been performed by intranodal administration of sterile isotonic solutions of synthetic RNA vaccines. The second generation of RNA vaccines which is currently being developed encompasses intravenously injectable RNA nanoparticle formulations (lipoplexes), made up from lipid excipients, denoted RNA (LIP) . A first product that has made its way from bench to bedside is a therapeutic vaccine for intravenous administration based on a fixed set of four RNA lipoplex drug products, each encoding for one shared tumor antigen (Lipoplex Melanoma RNA Immunotherapy, 'Lipo-MERIT'). This article describes the steps for translating these novel RNA nanomedicines into clinical trials.
Boyer, S A
1999-01-01
There is an alternative to classroom lecture that provides faster, more complete instruction and introduces the learner to clinical application of skills in a safe environment. This teaching style uses multiple media to present professional, published resources that provide excellent quality, topic-specific information. The benefits of this type of teaching/learning module include improved use of student and instructor time, scheduling advantages, increased learning, revenue generation potential, and student empowerment. With this approach, a strong, sound educational base is built, and each course includes some degree or form of clinical application as a key component.
From bench to bedside and to health policies: ethics in translational research.
Petrini, C
2011-01-01
Translation of biomedical research knowledge to effective clinical treatment is essential to the public good. The first level of translation ("from bench to bedside") corresponds to efficacy studies under controlled conditions with careful attention to internal validity (clinical research). The second level is the translation of results from clinical studies into everyday clinical practice and health decision making. The article summarises the ethical issues involved in the translation of biomedical research advances to clinical applications and to clinical practice. In particular, the article synthesizes theory from clinical ethics, operational design, and philosophy to examine the unique bioethical issues raised by the recent focus on translational research. In this framework safety of study participants and balancing of risk due to treatment with the potential benefits of the research are crucial: in clinical research there is a danger that the emphasis on advancements in scientific knowledge might prevail over the protection of the people who participate in research. These issues involve basic scientists, clinicians and bioethicists because of their application to comparative effectiveness research, clinical trials and evidence-based medicine, as well basic biomedical research.
Oelze, Michael L.; Mamou, Jonathan
2017-01-01
Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy. PMID:26761606
High-speed polarization sensitive optical coherence tomography for retinal diagnostics
NASA Astrophysics Data System (ADS)
Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.
2012-01-01
We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.
Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli
2016-01-01
Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications.
Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli
2016-01-01
Objects: Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. Methods: The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. Results: The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Conclusions: Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications. PMID:27199729
Griffin, Jeanne; Priddy, David A
2005-06-01
To assess the usefulness of a rehabilitation-based assessment program designed to determine the eligibility, according to Americans With Disabilities Act criteria, of applicants for paratransit bus services. Retrospective summary statistics on 500 consecutive paratransit evaluations. Outpatient physical medicine and rehabilitation center. Applicants for a community paratransit bus service. Not applicable. Clinical assessment of each applicants functional physical and cognitive ability to ride a fixed-route or paratransit bus system. Of the 500 applicants for specialized paratransit services, 38 (8%) were found to be ineligible, based on rehabilitation professionals evaluations of their physical and cognitive abilities. Mass transit organizations must adjust to the rapidly growing demand for paratransit services. Rehabilitation-based assessment programs, because of the expertise they provide in assessing functional abilities, are uniquely qualified to provide objective determinations of paratransit eligibility.
MO-A-BRC-02: TG167 Report - Detailed Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, M.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-01: TG167 Report - Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, R.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
Elhadad, N.
2016-01-01
Summary Objectives This paper reviews work over the past two years in Natural Language Processing (NLP) applied to clinical and consumer-generated texts. Methods We included any application or methodological publication that leverages text to facilitate healthcare and address the health-related needs of consumers and populations. Results Many important developments in clinical text processing, both foundational and task-oriented, were addressed in community-wide evaluations and discussed in corresponding special issues that are referenced in this review. These focused issues and in-depth reviews of several other active research areas, such as pharmacovigilance and summarization, allowed us to discuss in greater depth disease modeling and predictive analytics using clinical texts, and text analysis in social media for healthcare quality assessment, trends towards online interventions based on rapid analysis of health-related posts, and consumer health question answering, among other issues. Conclusions Our analysis shows that although clinical NLP continues to advance towards practical applications and more NLP methods are used in large-scale live health information applications, more needs to be done to make NLP use in clinical applications a routine widespread reality. Progress in clinical NLP is mirrored by developments in social media text analysis: the research is moving from capturing trends to addressing individual health-related posts, thus showing potential to become a tool for precision medicine and a valuable addition to the standard healthcare quality evaluation tools. PMID:27830255
A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy
ERIC Educational Resources Information Center
Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf
2009-01-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…
Yang, Wei; Yi, Dan-Hui; Xie, Yan-Ming; Yang, Wei; Dai, Yi; Zhi, Ying-Jie; Zhuang, Yan; Yang, Hu
2013-09-01
To estimate treatment effects of Shuxuetong injection on abnormal changes on ALT index, that is, to explore whether the Shuxuetong injection harms liver function in clinical settings and to provide clinical guidance for its safe application. Clinical information of traditional Chinese medicine (TCM) injections is gathered from hospital information system (HIS) of eighteen general hospitals. This is a retrospective cohort study, using abnormal changes in ALT index as an outcome. A large number of confounding biases are taken into account through the generalized boosted models (GBM) and multiple logistic regression model (MLRM) to estimate the treatment effects of Shuxuetong injections on abnormal changes in ALT index and to explore possible influencing factors. The advantages and process of application of GBM has been demonstrated with examples which eliminate the biases from most confounding variables between groups. This serves to modify the estimation of treatment effects of Shuxuetong injection on ALT index making the results more reliable. Based on large scale clinical observational data from HIS database, significant effects of Shuxuetong injection on abnormal changes in ALT have not been found.
Olver, Mark E; Beggs Christofferson, Sarah M; Wong, Stephen C P
2015-02-01
We examined the use of the clinically significant change (CSC) method with the Violence Risk Scale-Sexual Offender version (VRS-SO), and its implications for risk communication, in a combined sample of 945 treated sexual offenders from three international settings, followed up for a minimum 5 years post-release. The reliable change (RC) index was used to identify thresholds of clinically meaningful change and to create four CSC groups (already okay, recovered, improved, unchanged) based on VRS-SO dynamic scores and amount of change made. Outcome analyses demonstrated important CSC-group differences in 5-year rates of sexual and violent recidivism. However, when baseline risk was controlled via Cox regression survival analysis, the pattern and magnitude of CSC-group differences in sexual and violent recidivism changed to suggest that observed variation in recidivism base rates could be at least partly explained by pre-existing group differences in risk level. Implications for communication of risk-change information and applications to clinical practice are discussed. Copyright © 2015 John Wiley & Sons, Ltd.
SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owrangi, A; Jolly, S; Balter, J
2014-06-01
Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction,more » each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.« less
[Technical specification for clinical application of critical ultrasonography].
Yin, M G; Wang, X T; Liu, D W; Chao, Y G; Guan, X D; Kang, Y; Yan, J; Ma, X C; Tang, Y Q; Hu, Z J; Yu, K J; Chen, D C; Ai, Y H; Zhang, L N; Zhang, H M; Wu, J; Liu, L X; Zhu, R; He, W; Zhang, Q; Ding, X; Li, L; Li, Y; Liu, H T; Zeng, Q B; Si, X; Chen, H; Zhang, J W; Xu, Q H; Chen, W J; Chen, X K; Huang, D Z; Cai, S H; Shang, X L; Guan, J; Du, J; Zhao, L; Wang, M J; Cui, S; Wang, X M; Zhou, R; Zeng, X Y; Wang, Y P; Lyu, L W; Zhu, W H; Zhu, Y; Duan, J; Yang, J; Yang, H
2018-06-01
Critical ultrasonography(CUS) is different from the traditional diagnostic ultrasound, the examiner and interpreter of the image are critical care medicine physicians. The core content of CUS is to evaluate the pathophysiological changes of organs and systems and etiology changes. With the idea of critical care medicine as the soul, it can integrate the above information and clinical information, bedside real-time diagnosis and titration treatment, and evaluate the therapeutic effect so as to improve the outcome. CUS is a traditional technique which is applied as a new application method. The consensus of experts on critical ultrasonography in China released in 2016 put forward consensus suggestions on the concept, implementation and application of CUS. It should be further emphasized that the accurate and objective assessment and implementation of CUS requires the standardization of ultrasound image acquisition and the need to establish a CUS procedure. At the same time, the standardized training for CUS accepted by critical care medicine physicians requires the application of technical specifications, and the establishment of technical specifications is the basis for the quality control and continuous improvement of CUS. Chinese Critical Ultrasound Study Group and Critical Hemodynamic Therapy Collabration Group, based on the rich experience of clinical practice in critical care and research, combined with the essence of CUS, to learn the traditional ultrasonic essence, established the clinical application technical specifications of CUS, including in five parts: basic view and relevant indicators to obtain in CUS; basic norms for viscera organ assessment and special assessment; standardized processes and systematic inspection programs; examples of CUS applications; CUS training and the application of qualification certification. The establishment of applied technology standard is helpful for standardized training and clinical correct implementation. It is helpful for clinical evaluation and correct guidance treatment, and is also helpful for quality control and continuous improvement of CUS application.
Gutenstein, Marc; Pickering, John W; Than, Martin
2018-06-01
Clinical pathways are used to support the management of patients in emergency departments. An existing document-based clinical pathway was used as the foundation on which to design and build a digital clinical pathway for acute chest pain, with the aim of improving clinical calculations, clinician decision-making, documentation, and data collection. Established principles of decision support system design were used to build an application within the existing electronic health record, before testing with a multidisciplinary team of doctors using a think-aloud protocol. Technical authoring was successful, however, usability testing revealed that the user experience and the flexibility of workflow within the application were critical barriers to implementation. Emergency medicine and acute care decision support systems face particular challenges to existing models of linear workflow that should be deliberately addressed in digital pathway design. We make key recommendations regarding digital pathway design in emergency medicine.
Wagner, Elissa A
2014-06-01
This article reports the outcomes of a kinesthetic learning strategy used during a cardiac lecture to engage students and to improve the use of classroom-acquired knowledge in today's challenging clinical settings. Nurse educators are constantly faced with finding new ways to engage students, stimulate critical thinking, and improve clinical application in a rapidly changing and complex health care system. Educators who deviate from the traditional pedagogy of didactic, content-driven teaching to a concept-based, student-centered approach using active and kinesthetic learning activities can enhance engagement and improve clinical problem solving, communication skills, and critical thinking to provide graduates with the tools necessary to be successful. The goals of this learning activity were to decrease the well-known classroom-clinical gap by enhancing engagement, providing deeper understanding of cardiac function and disorders, enhancing critical thinking, and improving clinical application. Copyright 2014, SLACK Incorporated.
Barriers to the clinical translation of orthopedic tissue engineering.
Evans, Christopher H
2011-12-01
Tissue engineering and regenerative medicine have been the subject of increasingly intensive research for over 20 years, and there is concern in some quarters over the lack of clinically useful products despite the large sums of money invested. This review provides one perspective on orthopedic applications from a biologist working in academia. It is suggested that the delay in clinical application is not atypical of new, biologically based technologies. Some barriers to progress are acknowledged and discussed, but it is also noted that preclinical studies have identified several promising types of cells, scaffolds, and morphogenetic signals, which, although not optimal, are worth advancing toward human trials to establish a bridgehead in the clinic. Although this transitional technology will be replaced by more sophisticated, subsequent systems, it will perform valuable pioneering functions and facilitate the clinical development of the field. Some strategies for achieving this are suggested. © Mary Ann Liebert, Inc.
Folker, Marie Paldam; Helverskov, Trine; Nielsen, Amalie Søgaard; Jørgensen, Ulla Skov; Larsen, John Teilmann
2018-04-23
Digital technologies in mental healthcare are envisioned to offer easier, faster and more cost-effective access to mental healthcare. The scope for integrating digital technology into mental healthcare is vast: video conferencing, developing novel treatments using interactive software, mobile applications, and sensor technologies. We outline technology-based interventions, which are relevant to clinical practice, and present the evidence base for using digital technology as well as emerging challenges for their implementation in clinical practice.
2016-10-01
and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT...Applicability: Well- designed CAT-PRO questionnaires can be used in both clinical trials and day-to-day clinical practice. For clinical trials, they provide...confirm that items are responsive to self-reported changes in milestone ability over a time period consistent with design of contemporary clinical
Everly, George S; Barnett, Daniel J; Links, Jonathan M
2012-01-01
There appears to be virtual universal endorsement of the need for and value of acute "psychological first aid" (PFA) in the wake of trauma and disasters. In this paper, we describe the development of the curriculum for The Johns Hopkins RAPID-PFA model of psychological first aid. We employed an adaptation of the basic framework for the development of a clinical science as recommended by Millon which entailed: historical review, theoretical development, and content validation. The process of content validation of the RAPID-PFA curriculum entailed the assessment of attitudes (confidence in the application of PFA interventions, preparedness in the application of PFA); knowledge related to the application of immediate mental health interventions; and behavior (the ability to recognize clinical markers in the field as assessed via a videotape recognition exercise). Results of the content validation phase suggest the six-hour RAPID-PFA curriculum, initially based upon structural modeling analysis, can improve confidence in the application of PFA interventions, preparedness in the application of PFA, knowledge related to the application of immediate mental health interventions, and the ability to recognize clinical markers in the field as assessed via a videotape recognition exercise.
Clinical application of locked plating system in children. An orthopaedic view
Zafra-Jimenez, Jose Alberto; Rodriguez Martin, Juan
2010-01-01
In recent years, the locked plating system has gained favour in the treatment of certain fractures in adults; however, there is not much information regarding its use in children. We think there could be some advantages and applications such as: an alternative to external fixation, the bridge plating technique, unicortical screws, removal of hardware, metadiaphyseal fractures, periarticular fractures, poor quality bone, and allograft fixation. However, there are some disadvantages to keep in mind and the final decision for using it should be based on the osteosynthesis method principle the surgeon would like to apply. In this review article we discuss the up-to-date possible clinical applications and issues of this system. PMID:20162415
NASA Astrophysics Data System (ADS)
Bosca, Ryan J.; Jackson, Edward F.
2016-01-01
Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.
[Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].
Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei
2016-03-01
Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.
Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B
2011-04-10
Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.
Mihaescu, Raluca; Detmar, Symone B; Cornel, Martina C; van der Flier, Wiesje M; Heutink, Peter; Hol, Elly M; Rikkert, Marcel G M Olde; van Duijn, Cornelia M; Janssens, A Cecile J W
2010-01-01
Alzheimer's disease (AD) is the most prevalent form of dementia and the number of cases is expected to increase exponentially worldwide. Three highly penetrant genes (AbetaPP, PSEN1, and PSEN2) explain only a small number of AD cases with a Mendelian transmission pattern. Many genes have been analyzed for association with non-Mendelian AD, but the only consistently replicated finding is APOE. At present, possibilities for prevention, early detection, and treatment of the disease are limited. Predictive and diagnostic genetic testing is available only in Mendelian forms of AD. Currently, APOE genotyping is not considered clinically useful for screening, presymptomatic testing, or clinical diagnosis of non-Mendelian AD. However, clinical management of the disease is expected to benefit from the rapid pace of discoveries in the genomics of AD. Following a recently developed framework for the continuum of translation research that is needed to move genetic discoveries to health applications, this paper reviews recent genetic discoveries as well as translational research on genomic applications in the prevention, early detection, and treatment of AD. The four phases of translation research include: 1) translation of basic genomics research into a potential health care application; 2) evaluation of the application for the development of evidence-based guidelines; 3) evaluation of the implementation and use of the application in health care practice; and 4) evaluation of the achieved population health impact. Most research on genome-based applications in AD is still in the first phase of the translational research framework, which means that further research is still needed before their implementation can be considered.
A multimedia perioperative record keeper for clinical research.
Perrino, A C; Luther, M A; Phillips, D B; Levin, F L
1996-05-01
To develop a multimedia perioperative recordkeeper that provides: 1. synchronous, real-time acquisition of multimedia data, 2. on-line access to the patient's chart data, and 3. advanced data analysis capabilities through integrated, multimedia database and analysis applications. To minimize cost and development time, the system design utilized industry standard hardware components and graphical. software development tools. The system was configured to use a Pentium PC complemented with a variety of hardware interfaces to external data sources. These sources included physiologic monitors with data in digital, analog, video, and audio as well as paper-based formats. The development process was guided by trials in over 80 clinical cases and by the critiques from numerous users. As a result of this process, a suite of custom software applications were created to meet the design goals. The Perioperative Data Acquisition application manages data collection from a variety of physiological monitors. The Charter application provides for rapid creation of an electronic medical record from the patient's paper-based chart and investigator's notes. The Multimedia Medical Database application provides a relational database for the organization and management of multimedia data. The Triscreen application provides an integrated data analysis environment with simultaneous, full-motion data display. With recent technological advances in PC power, data acquisition hardware, and software development tools, the clinical researcher now has the ability to collect and examine a more complete perioperative record. It is hoped that the description of the MPR and its development process will assist and encourage others to advance these tools for perioperative research.
Prospects for a Clinical Science of Mindfulness-Based Intervention
Dimidjian, Sona; Segal, Zindel V.
2017-01-01
Mindfulness-based interventions are at a pivotal point in their future development. Spurred on by an ever-increasing number of studies and breadth of clinical application, the value of such approaches may appear self-evident. We contend, however, that the public health impact of mindfulness-based interventions can be enhanced significantly by situating this work in a broader framework of clinical psychological science. Utilizing the National Institute of Health stage model (Onken, Carroll, Shoham, Cuthbert, & Riddle, 2014), we map the evidence base for mindfulness-based cognitive therapy and mindfulness-based stress reduction as exemplars of mindfulness-based interventions. From this perspective, we suggest that important gaps in the current evidence base become apparent and, furthermore, that generating more of the same types of studies without addressing such gaps will limit the relevance and reach of these interventions. We offer a set of 7 recommendations that promote an integrated approach to core research questions, enhanced methodological quality of individual studies, and increased logical links among stages of clinical translation in order to increase the potential of MBIs to impact positively the mental health needs of individuals and communities. PMID:26436311
Success factors for telehealth--a case study.
Moehr, J R; Schaafsma, J; Anglin, C; Pantazi, S V; Grimm, N A; Anglin, S
2006-01-01
To present the lessons learned from an evaluation of a comprehensive telehealth project regarding success factors and evaluation methodology for such projects. A recent experience with the evaluation of new telehealth services in BC, Canada, is summarized. Two domains of clinical applications, as well as educational and administrative uses, and the project environment were evaluated. In order to contribute to the success of the project, the evaluation included formative and summative approaches employing qualitative and quantitative methods with data collection from telehealth events, participants and existing databases. The evaluation had to be carried out under severe budgetary and time constraints. We therefore deliberately chose a broad ranging exploratory approach within a framework provided, and generated questions to be answered on the basis of initial observations and participant driven interviews with progressively more focused and detailed data gathering, including perusal of a variety of existing data sources. A unique feature was an economic evaluation using static simulation models. The evaluation yielded rich and detailed data, which were able to explain a number of unanticipated findings. One clinical application domain was cancelled after 6 months, the other continues. The factors contributing to success include: Focus on chronic conditions which require visual information for proper management. Involvement of established teams in regular scheduled visits or in sessions scheduled well in advance. Problems arose with: Ad hoc applications, in particular under emergency conditions. Applications that disregard established referral patterns. Applications that support only part of a unit's services. The latter leads to the service mismatch dilemma (SMMD) with the end result that even those e-health services provided are not used. The problems encountered were compounded by issues arising from the manner in which the telehealth services had been introduced, in particular the lack of time for preparation and establishment of routine use. Educational applications had significant clinical benefits. Administrative applications generated savings which exceeded the substantial capital investment and made educational and clinical applications available at variable cost. Evaluation under severe constraints can yield rich information. The identified success factors, including provision of an overarching architecture and infrastructure, strong program management, thorough needs analysis and detailing applications to match the identified needs should improve the sustainability of e-health projects. Insights gained: Existing assumptions before the study was conducted: Evaluation has to proceed from identified questions according to a rigorous experimental design. Emergency and trauma services in remote regions can and should be supported via telehealth based on video-conferencing. Educational applications of telehealth directed at providers are beneficial for recruitment and retention of providers in remote areas. Insights gained by the study: An exploratory approach to evaluation using a multiplicity of methods can yield rich and detailed information even under severe constraints. Ad hoc and emergency clinical applications of telehealth can present problems unless they are based on thorough, detailed analyses of environment and need, conform to established practice patterns and rely on established trusting collaborative relationships. Less difficult applications should be introduced before attempting to support use under emergency conditions. Educational applications are of interest beyond the provider community to patients, family and community members, and have clinical value. In large, sparsely populated areas with difficult travel conditions administrative applications by themselves generate savings that compensate for the substantial capital investment for telehealth required for clinical applications.
Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease.
Hung, Sandy S C; McCaughey, Tristan; Swann, Olivia; Pébay, Alice; Hewitt, Alex W
2016-07-01
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) and CRISPR-associated protein (Cas) system has enabled an accurate and efficient means to edit the human genome. Rapid advances in this technology could results in imminent clinical application, and with favourable anatomical and immunological profiles, ophthalmic disease will be at the forefront of such work. There have been a number of breakthroughs improving the specificity and efficacy of CRISPR/Cas-mediated genome editing. Similarly, better methods to identify off-target cleavage sites have also been developed. With the impending clinical utility of CRISPR/Cas technology, complex ethical issues related to the regulation and management of the precise applications of human gene editing must be considered. This review discusses the current progress and recent breakthroughs in CRISPR/Cas-based gene engineering, and outlines some of the technical issues that must be addressed before gene correction, be it in vivo or in vitro, is integrated into ophthalmic care. We outline a clinical pipeline for CRISPR-based treatments of inherited eye diseases and provide an overview of the important ethical implications of gene editing and how these may influence the future of this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
The development of a clinical outcomes survey research application: Assessment Center.
Gershon, Richard; Rothrock, Nan E; Hanrahan, Rachel T; Jansky, Liz J; Harniss, Mark; Riley, William
2010-06-01
The National Institutes of Health sponsored Patient-Reported Outcome Measurement Information System (PROMIS) aimed to create item banks and computerized adaptive tests (CATs) across multiple domains for individuals with a range of chronic diseases. Web-based software was created to enable a researcher to create study-specific Websites that could administer PROMIS CATs and other instruments to research participants or clinical samples. This paper outlines the process used to develop a user-friendly, free, Web-based resource (Assessment Center) for storage, retrieval, organization, sharing, and administration of patient-reported outcomes (PRO) instruments. Joint Application Design (JAD) sessions were conducted with representatives from numerous institutions in order to supply a general wish list of features. Use Cases were then written to ensure that end user expectations matched programmer specifications. Program development included daily programmer "scrum" sessions, weekly Usability Acceptability Testing (UAT) and continuous Quality Assurance (QA) activities pre- and post-release. Assessment Center includes features that promote instrument development including item histories, data management, and storage of statistical analysis results. This case study of software development highlights the collection and incorporation of user input throughout the development process. Potential future applications of Assessment Center in clinical research are discussed.
GAC: Gene Associations with Clinical, a web based application
Zhang, Xinyan; Rupji, Manali; Kowalski, Jeanne
2018-01-01
We present GAC, a shiny R based tool for interactive visualization of clinical associations based on high-dimensional data. The tool provides a web-based suite to perform supervised principal component analysis (SuperPC), an approach that uses both high-dimensional data, such as gene expression, combined with clinical data to infer clinical associations. We extended the approach to address binary outcomes, in addition to continuous and time-to-event data in our package, thereby increasing the use and flexibility of SuperPC. Additionally, the tool provides an interactive visualization for summarizing results based on a forest plot for both binary and time-to-event data. In summary, the GAC suite of tools provide a one stop shop for conducting statistical analysis to identify and visualize the association between a clinical outcome of interest and high-dimensional data types, such as genomic data. Our GAC package has been implemented in R and is available via http://shinygispa.winship.emory.edu/GAC/. The developmental repository is available at https://github.com/manalirupji/GAC. PMID:29263780
[Progress of midfacial fat compartments and related clinical applications].
Wen, Lihong; Wang, Jinhuang; Li, Yang; Liu, Dalie
2018-02-01
To review the research progress of midfacial fat compartments, and to thoroughly understand its current state of the anatomy and the aging morphologic characters of midfacial fat compartments, as well as the current status of clinical applications. The recent literature concerning the midfacial fat compartments and related clinical applications were extensively reviewed and analyzed. Midfacial fat layer has been considered as a fusion and a continuous layer, experiencing a global atrophy when aging. As more anatomical researches have done, recent studies have shown that midfacial fat layer is broadly divided into superficial and deep layers, which are both divided into different fat compartments by fascia, ligaments, or muscles. Midfacial fat compartments tend to atrophy with age, specifically in the deep fat compartments while hypertrophy in the superficial fat compartments. Clinical applications show that fat volumetric restoration with deep medial cheek fat and Ristow's space can restore the appearance of midface effectively. In recent years, the researches of midfacial fat compartments have achieved obvious progress, which will provide new ideas and basis for fat volumetric restoration. Corresponding treatments are selected based on different sites and different layers with different aging changes, reshaping a more youthful midface.
Medical beam monitor—Pre-clinical evaluation and future applications
NASA Astrophysics Data System (ADS)
Frais-Kölbl, Helmut; Griesmayer, Erich; Schreiner, Thomas; Georg, Dietmar; Pernegger, Heinz
2007-10-01
Future medical ion beam applications for cancer therapy which are based on scanning technology will require advanced beam diagnostics equipment. For a precise analysis of beam parameters we want to resolve time structures in the range of microseconds to nanoseconds. A prototype of an advanced beam monitor was developed by the University of Applied Sciences Wiener Neustadt and its research subsidiary Fotec in co-operation with CERN RD42, Ohio State University and the Jožef Stefan Institute in Ljubljana. The detector is based on polycrystalline Chemical Vapor Deposition (pCVD) diamond substrates and is equipped with readout electronics up to 2 GHz analog bandwidth. In this paper we present the design of the pCVD-detector system and results of tests performed in various particle accelerator based facilities. Measurements performed in clinical high energy photon beams agreed within 1.2% with results obtained by standard ionization chambers.
Fernandes, Alinda R; Chari, Divya M
2016-09-28
Both neurotrophin-based therapy and neural stem cell (NSC)-based strategies have progressed to clinical trials for treatment of neurological diseases and injuries. Brain-derived neurotrophic factor (BDNF) in particular can confer neuroprotective and neuro-regenerative effects in preclinical studies, complementing the cell replacement benefits of NSCs. Therefore, combining both approaches by genetically-engineering NSCs to express BDNF is an attractive approach to achieve combinatorial therapy for complex neural injuries. Current genetic engineering approaches almost exclusively employ viral vectors for gene delivery to NSCs though safety and scalability pose major concerns for clinical translation and applicability. Magnetofection, a non-viral gene transfer approach deploying magnetic nanoparticles and DNA with magnetic fields offers a safe alternative but significant improvements are required to enhance its clinical application for delivery of large sized therapeutic plasmids. Here, we demonstrate for the first time the feasibility of using minicircles with magnetofection technology to safely engineer NSCs to overexpress BDNF. Primary mouse NSCs overexpressing BDNF generated increased daughter neuronal cell numbers post-differentiation, with accelerated maturation over a four-week period. Based on our findings we highlight the clinical potential of minicircle/magnetofection technology for therapeutic delivery of key neurotrophic agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Goddard, Katrina A.B.; Knaus, William A.; Whitlock, Evelyn; Lyman, Gary H.; Feigelson, Heather Spencer; Schully, Sheri D.; Ramsey, Scott; Tunis, Sean; Freedman, Andrew N.; Khoury, Muin J.; Veenstra, David L.
2013-01-01
Background The clinical utility is uncertain for many cancer genomic applications. Comparative effectiveness research (CER) can provide evidence to clarify this uncertainty. Objectives To identify approaches to help stakeholders make evidence-based decisions, and to describe potential challenges and opportunities using CER to produce evidence-based guidance. Methods We identified general CER approaches for genomic applications through literature review, the authors’ experiences, and lessons learned from a recent, seven-site CER initiative in cancer genomic medicine. Case studies illustrate the use of CER approaches. Results Evidence generation and synthesis approaches include comparative observational and randomized trials, patient reported outcomes, decision modeling, and economic analysis. We identified significant challenges to conducting CER in cancer genomics: the rapid pace of innovation, the lack of regulation, the limited evidence for clinical utility, and the beliefs that genomic tests could have personal utility without having clinical utility. Opportunities to capitalize on CER methods in cancer genomics include improvements in the conduct of evidence synthesis, stakeholder engagement, increasing the number of comparative studies, and developing approaches to inform clinical guidelines and research prioritization. Conclusions CER offers a variety of methodological approaches to address stakeholders’ needs. Innovative approaches are needed to ensure an effective translation of genomic discoveries. PMID:22516979
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
Seichepine, Daniel; Tschoe, Christine; Fritts, Nathan G.; Alosco, Michael L.; Berkowitz, Oren; Burke, Peter; Howland, Jonathan; Olshaker, Jonathan; Cantu, Robert C.; Baugh, Christine M.; Holsapple, James W.
2017-01-01
Abstract Evidence-based clinical practice guidelines can facilitate proper evaluation and management of concussions in the emergency department (ED), often the initial and primary point of contact for concussion care. There is no universally adopted set of guidelines for concussion management, and extant evidence suggests that there may be variability in concussion care practices and limited application of clinical practice guidelines in the ED. This study surveyed EDs throughout New England to examine current practices of concussion care and utilization of evidence-based clinical practice guidelines in the evaluation and management of concussions. In 2013, a 32-item online survey was e-mailed to 149/168 EDs throughout New England (Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Maine). Respondents included senior administrators asked to report on their EDs use of clinical practice guidelines, neuroimaging decision-making, and discharge instructions for concussion management. Of the 72/78 respondents included, 35% reported absence of clinical practice guidelines, and 57% reported inconsistency in the type of guidelines used. Practitioner preference guided neuroimaging decision-making for 57%. Although 94% provided written discharge instructions, there was inconsistency in the recommended time frame for follow-up care (13% provided no specific time frame), the referral specialist to be seen (25% did not recommend any specialist), and return to activity instructions were inconsistent. There is much variability in concussion care practices and application of evidence-based clinical practice guidelines in the evaluation and management of concussions in New England EDs. Knowledge translational efforts will be critical to improve concussion management in the ED setting. PMID:27112592
Towards iconic language for patient records, drug monographs, guidelines and medical search engines.
Lamy, Jean-Baptiste; Duclos, Catherine; Hamek, Saliha; Beuscart-Zéphir, Marie-Catherine; Kerdelhué, Gaetan; Darmoni, Stefan; Favre, Madeleine; Falcoff, Hector; Simon, Christian; Pereira, Suzanne; Serrot, Elisabeth; Mitouard, Thierry; Hardouin, Etienne; Kergosien, Yannick; Venot, Alain
2010-01-01
Practicing physicians have limited time for consulting medical knowledge and records. We have previously shown that using icons instead of text to present drug monographs may allow contraindications and adverse effects to be identified more rapidly and more accurately. These findings were based on the use of an iconic language designed for drug knowledge, providing icons for many medical concepts, including diseases, antecedents, drug classes and tests. In this paper, we describe a new project aimed at extending this iconic language, and exploring the possible applications of these icons in medicine. Based on evaluators' comments, focus groups of physicians and opinions of academic, industrial and associative partners, we propose iconic applications related to patient records, for example summarizing patient conditions, searching for specific clinical documents and helping to code structured data. Other applications involve the presentation of clinical practice guidelines and improving the interface of medical search engines. These new applications could use the same iconic language that was designed for drug knowledge, with a few additional items that respect the logic of the language.
Magnesium-based biodegradable alloys: Degradation, application, and alloying elements
Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii
2017-01-01
In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response. PMID:28932493
Nanoscale platforms for messenger RNA delivery.
Li, Bin; Zhang, Xinfu; Dong, Yizhou
2018-05-04
Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
[Development and practice evaluation of blood acid-base imbalance analysis software].
Chen, Bo; Huang, Haiying; Zhou, Qiang; Peng, Shan; Jia, Hongyu; Ji, Tianxing
2014-11-01
To develop a blood gas, acid-base imbalance analysis computer software to diagnose systematically, rapidly, accurately and automatically determine acid-base imbalance type, and evaluate the clinical application. Using VBA programming language, a computer aided diagnostic software for the judgment of acid-base balance was developed. The clinical data of 220 patients admitted to the Second Affiliated Hospital of Guangzhou Medical University were retrospectively analyzed. The arterial blood gas [pH value, HCO(3)(-), arterial partial pressure of carbon dioxide (PaCO₂)] and electrolytes included data (Na⁺ and Cl⁻) were collected. Data were entered into the software for acid-base imbalances judgment. At the same time the data generation was calculated manually by H-H compensation formula for determining the type of acid-base imbalance. The consistency of judgment results from software and manual calculation was evaluated, and the judgment time of two methods was compared. The clinical diagnosis of the types of acid-base imbalance for the 220 patients: 65 cases were normal, 90 cases with simple type, mixed type in 41 cases, and triplex type in 24 cases. The accuracy of the judgment results of the normal and triplex types from computer software compared with which were calculated manually was 100%, the accuracy of the simple type judgment was 98.9% and 78.0% for the mixed type, and the total accuracy was 95.5%. The Kappa value of judgment result from software and manual judgment was 0.935, P=0.000. It was demonstrated that the consistency was very good. The time for software to determine acid-base imbalances was significantly shorter than the manual judgment (seconds:18.14 ± 3.80 vs. 43.79 ± 23.86, t=7.466, P=0.000), so the method of software was much faster than the manual method. Software judgment can replace manual judgment with the characteristics of rapid, accurate and convenient, can improve work efficiency and quality of clinical doctors and has great clinical application promotion value.
Of lamp posts, keys, and fabled drunkards: A perspectival tale of 4 guidelines.
Greenhalgh, Trisha
2018-04-15
Evidence-based medicine is the application of research findings to inform individual clinical decisions. There is a tension-both philosophical and practical-between the average result from a population study and the circumstances and needs of an individual patient. This personal account of "evidence-based" trauma care illustrates and explores this tension. The author, a keen athlete, describes her experience of a high-impact cycle accident that led to limb fractures (which were diagnosed and treated according to evidence-based guidelines) and also an occult injury to the cervical spine (which was not diagnosed at the time). Some evidence-based guidelines are reviewed and applied to the case. The clinical record described the cycle accident as a "fall." Initial assessment directed the clinicians' gaze to the obvious injuries, whose treatment was straightforward. On admission, the patient (aged 55 years at the time) was offered "falls prevention" via a guideline-based checklist. Several months later, neurological sequelae indicated possible damage to the cervical spine. But the NICE Guideline recommending cervical spine imaging in cases of high-impact trauma had not been considered-perhaps because the clinical narrative had been prematurely assigned to the script of "older person with fall." Furthermore, the author, who was (appropriately) treated with neurosurgery, was surprised at the response of clinical colleagues, based on application of an irrelevant section of a guideline, that her cervical discectomy was "nonevidence based." Nonsteroidal anti-inflammatory drugs for postoperative pain were indicated in this patient even though they were not recommended for the average patient. As Sir John Grimley Evans' warned, we should avoid using evidence-based guidelines in the manner of the fabled drunkard who searched under the lamp post for his key because that was where the light was, even though he knew he had lost his key somewhere else. © 2018 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.
2013-01-01
Background The high burden and rising incidence of cardiovascular disease (CVD) in resource constrained countries necessitates implementation of robust and pragmatic primary and secondary prevention strategies. Many current CVD management guidelines recommend absolute cardiovascular (CV) risk assessment as a clinically sound guide to preventive and treatment strategies. Development of non-laboratory based cardiovascular risk assessment algorithms enable absolute risk assessment in resource constrained countries. The objective of this review is to evaluate the performance of existing non-laboratory based CV risk assessment algorithms using the benchmarks for clinically useful CV risk assessment algorithms outlined by Cooney and colleagues. Methods A literature search to identify non-laboratory based risk prediction algorithms was performed in MEDLINE, CINAHL, Ovid Premier Nursing Journals Plus, and PubMed databases. The identified algorithms were evaluated using the benchmarks for clinically useful cardiovascular risk assessment algorithms outlined by Cooney and colleagues. Results Five non-laboratory based CV risk assessment algorithms were identified. The Gaziano and Framingham algorithms met the criteria for appropriateness of statistical methods used to derive the algorithms and endpoints. The Swedish Consultation, Framingham and Gaziano algorithms demonstrated good discrimination in derivation datasets. Only the Gaziano algorithm was externally validated where it had optimal discrimination. The Gaziano and WHO algorithms had chart formats which made them simple and user friendly for clinical application. Conclusion Both the Gaziano and Framingham non-laboratory based algorithms met most of the criteria outlined by Cooney and colleagues. External validation of the algorithms in diverse samples is needed to ascertain their performance and applicability to different populations and to enhance clinicians’ confidence in them. PMID:24373202
Swinford, A E; McKeag, D B
1990-01-01
There has been recent interest in the development of problem-based human genetics curricula in U.S. medical schools. The College of Human Medicine at Michigan State University has had a problem-based curriculum since 1974. The vertical integration of genetics within the problem-based curriculum, called "Track II," has recently been revised. On first inspection, the curriculum appeared to lack a significant genetics component; however, on further analysis it was found that many genetics concepts were covered in the biochemistry, microbiology, pathology, and clinical science components. Both basic science concepts and clinical applications of genetics are covered in the curriculum by providing appropriate references for basic concepts and including inherited conditions within the differential diagnosis in the cases studied. Evaluations consist of a multiple-choice content exam and a modified essay exam based on a clinical case, allowing evaluation of both basic concepts and problem-solving ability. This curriculum prepares students to use genetics in a clinical context in their future careers. PMID:2220816
Modelling and simulation of passive Lab-on-a-Chip (LoC) based micromixer for clinical application
NASA Astrophysics Data System (ADS)
Saikat, Chakraborty; Sharath, M.; Srujana, M.; Narayan, K.; Pattnaik, Prasant Kumar
2016-03-01
In biomedical application, micromixer is an important component because of many processes requires rapid and efficient mixing. At micro scale, the flow is Laminar due to small channel size which enables controlled rapid mixing. The reduction in analysis time along with high throughput can be achieved with the help of rapid mixing. In LoC application, micromixer is used for mixing of fluids especially for the devices which requires efficient mixing. Micromixer of this type of microfluidic devices with a rapid mixing is useful in application such as DNA/RNA synthesis, drug delivery system & biological agent detection. In this work, we design and simulate a microfluidic based passive rapid micromixer for lab-on-a-chip application.
NASA Astrophysics Data System (ADS)
Diederich, Chris J.; Wootton, Jeff; Prakash, Punit; Salgaonkar, Vasant; Juang, Titania; Scott, Serena; Chen, Xin; Cunha, Adam; Pouliot, Jean; Hsu, I. C.
2011-03-01
A clinical treatment delivery platform has been developed and is being evaluated in a clinical pilot study for providing 3D controlled hyperthermia with catheter-based ultrasound applicators in conjunction with high dose rate (HDR) brachytherapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within HDR brachytherapy implants during radiation therapy in the treatment of cervix and prostate. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length × 180 deg and 3-4 cm × 360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers × dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and six prostate implants. 100 % of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target volume (HTV) and clinical target volume (CTV) are reported. Catheter-based ultrasound hyperthermia with HDR appears feasible with therapeutic temperature coverage of the target volume within the prostate or cervix while sparing surrounding more sensitive regions.
Mkit: A Cell Migration Assay Based on Microfluidic Device and Smartphone
Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis
2017-01-01
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. PMID:28772229
Notni, Johannes; Wester, Hans-Jürgen
2018-03-01
The potential and future role of certain metal radionuclides, for example, 44 Sc, 89 Zr, 86 Y, 64 Cu, 68 Ga, 177 Lu, 225 Ac, and 213 Bi, and several terbium isotopes has been controversially discussed in the past decades. Furthermore, the possible benefits of "matched pairs" of isotopes for tandem applications of diagnostics and therapeutics (theranostics) have been emphasized, while such approaches still have not made their way into routine clinical practice. Analysis of bibliographical data illustrates how popularity of certain nuclides has been promoted by cycles of availability and applications. We furthermore discuss the different practical requirements for diagnostic and therapeutic radiopharmaceuticals and the resulting consequences for efficient development of clinically useful pairs of radionuclide theranostics, with particular emphasis on the underlying economical factors. Based on an exemplary assessment of overall production costs for 68 Ga and 18 F radiopharmaceuticals, we venture a look into the future of theranostics and predict that high-throughput PET applications, that is, diagnosis of frequent conditions, will ultimately rely on 18 F tracers. PET radiometals will occupy a niche in the clinical low-throughput sector (diagnosis of rare diseases), but above all, dominate preclinical research and clinical translation. Matched isotope pairs will be of lesser relevance for theranostics but may become important for future PET-based therapeutic dosimetry. Copyright © 2017 John Wiley & Sons, Ltd.
Farrell, Susan E; Hopson, Laura R; Wolff, Margaret; Hemphill, Robin R; Santen, Sally A
2016-09-01
The 2012 Academic Emergency Medicine Consensus Conference, "Education Research in Emergency Medicine: Opportunities, Challenges, and Strategies for Success" noted that emergency medicine (EM) educators often rely on theory and tradition in molding their approaches to teaching and learning, and called on the EM education community to advance the teaching of our specialty through the performance and application of research in teaching and assessment methods, cognitive function, and the effects of education interventions. The purpose of this article is to review the research-based evidence for the effectiveness of the one-minute preceptor (OMP) teaching method, and to provide suggestions for its use in clinical teaching and learning in EM. This article reviews hypothesis-testing education research related to the use of the OMP as a pedagogical method applicable to clinical teaching. Evidence indicates that the OMP prompts the teaching of higher level concepts, facilitates the assessment of students' knowledge, and prompts the provision of feedback. Students indicate satisfaction with this method of clinical case-based discussion teaching. Advancing EM education will require that high quality education research results be translated into actual curricular, pedagogical, assessment, and professional development changes. The OMP is a pedagogical method that is applicable to teaching in the emergency department. Copyright © 2016 Elsevier Inc. All rights reserved.
Yu, Panxi; Zhai, Zhen; Jin, Xiaolei; Yang, Xiaonan; Qi, Zuoliang
2018-04-01
Platelet-rich fibrin (PRF) has been applied in the clinical field for more than a decade, but largely in oral surgery and implant dentistry. Its utilization in plastic and reconstructive surgery is limited and lacking a comprehensive review. Hence, this article focuses on the various clinical applications of PRF pertaining to the plastic and reconstructive field through a systematic review. In this review, articles describing the clinical application of PRF in plastic and reconstructive surgery were screened using predetermined inclusion and exclusion criteria. The articles were summarized and divided into groups based on the utilization of PRF. The effects and complications of PRF were analyzed and concluded. Among the 634 articles searched, 7 articles describing 151 cases are eligible. PRF was applied on 116 (76.8%) wounds to facilitate tissue healing, and the complete wound closure rate was 91.4% (106/116). Otherwise, PRF was applied in 10 (6.6%) cases of zygomaticomaxillary fracture to reconstruct orbital floor defects and in 25 (16.6%) cases of facial autologous fat grafts to increase the fat retention rate successfully. There is no report of PRF-related complications. PRF could facilitate wound healing, including the healing of soft tissues and bony tissues, and facilitate fat survival rate. Further studies are needed to test the mechanism of PRF and expand its scope of application in plastic and reconstructive surgery. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Applicability of an electrosurgical device based on electromagnetics in neurosurgery.
Gharabaghi, Alireza; Rosahl, Steffen K; Samii, Amir; Feigl, Guenther C; Safavi-Abbasi, Sam; Bundschuh, Otto; Tatagiba, Marcos; Samii, Madjid
2006-07-01
Because of electrical and thermal spread to healthy nervous tissue, the application of electrosurgical tools in neurosurgery has specific limitations. This is true for both bipolar and monopolar devices. These limitations are not inherent to an instrument in which action is based on electromagnetic interaction with human tissue. We evaluated the indications and the clinical applicability of a new radiofrequency electrosurgical unit that works on this biophysical principle. The system was found to be a useful addition for the resection of morphologically tougher tissue with keyhole approaches in which the ultrasound aspirator cannot easily be applied.
Workflow based framework for life science informatics.
Tiwari, Abhishek; Sekhar, Arvind K T
2007-10-01
Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.
DEVELOPING AN IPAD® APPLICATION FOR DATA COLLECTION IN A RHEUMATOLOGY RESEARCH CLINIC.
Kaka, Hussam; Ayearst, Renise; Tran, Maithy; Touma, Zahi; Bagovich, Maria; Vinik, Ophir; Somaily, Mansour; Haddad, Amir; Gladman, Dafna D; Chandran, Vinod
2015-01-01
Clinical research data are often collected on paper and later inputted onto an electronic database. This method is time consuming and potentially introduces errors. Therefore, to make primary data collection more efficient and less error prone we aimed to develop a touch-screen application for data collection in a psoriatic arthritis research clinic and compared it with the pre-existing paper-based system. We developed a Web application using Java and optimized it for the iPad®. It highlights missing fields for physicians in real time, and only permits submission of data collection form after corrections are made. For its evaluation, seven physicians participated, and before each patient visit they were randomly assigned paper or iPad® data entry. Number of errors, length of visit, and time between clinic visit and completion of data entry were measured. A total of 106 patients seen in the clinic who agreed to participate were randomly assigned to be evaluated by clinic physicians using the iPad® (fifty-three patients) or a paper protocol (fifty-three patients). On average, 3.34 omissions were found per paper form, of which 2.24 would have been detected on the iPad®. The iPad® increased the mean patient encounter time from 37.2 minutes to 46.5 minutes, but eliminated delay between a clinic visit and its data entry. Entering data using the iPad® application makes the patient encounter slightly longer, but reduces "missing fields." It also eliminates the delay between clinic visit and data entry thus improving the efficiency of clinical data capture in a research setting.
Shaikh, Faiq; Franc, Benjamin; Allen, Erastus; Sala, Evis; Awan, Omer; Hendrata, Kenneth; Halabi, Safwan; Mohiuddin, Sohaib; Malik, Sana; Hadley, Dexter; Shrestha, Rasu
2018-03-01
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancement in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration has ushered in the era of radiomics, a paradigm shift that holds tremendous potential in clinical decision support as well as drug discovery. However, there are important issues to consider to incorporate radiomics into a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that point to enterprise development (Part 2). In Part 2 of this two-part series, we study the components of the strategy pipeline, from clinical implementation to building enterprise solutions. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Microchip-Based Single-Cell Functional Proteomics for Biomedical Applications
Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui
2017-01-01
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that fail to be addressed by traditional population-based methods. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical framework to extract new biology. In this review article, we highlight a few biological and clinical applications in which the microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating well-contolled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies. PMID:28280819
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
García-Sáez, Gema; Rigla, Mercedes; Martínez-Sarriegui, Iñaki; Shalom, Erez; Peleg, Mor; Broens, Tom; Pons, Belén; Caballero-Ruíz, Estefanía; Gómez, Enrique J; Hernando, M Elena
2014-03-01
The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients' self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient's access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients' personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients' acceptance of the whole system. © 2014 Diabetes Technology Society.
Sridhara, Rajeshwari; Johnson, John R; Justice, Robert; Keegan, Patricia; Chakravarty, Aloka; Pazdur, Richard
2010-02-24
The Office of Oncology Drug Products (OODP) in the Center for Drug Evaluation and Research at the US Food and Drug Administration began reviewing marketing applications for oncological and hematologic indications in July 2005. We conducted an overview of products that were reviewed by the OODP for marketing approval and the regulatory actions taken during July 2005 to December 2007. We identified all applications that were reviewed by the OODP from July 1, 2005, through December 31, 2007, and reviewed the actions that OODP took. We also sought the basis for the actions taken, including the clinical trial design, endpoints used, patient accrual in the trial(s) supporting approval, and the type of regulatory approval. During the study period, the OODP reviewed marketing applications for 60 new indications and took regulatory action on 58 indications. Regulatory action was based on a risk-benefit evaluation of the data submitted with each application. Products that demonstrated efficacy and had an acceptable risk-benefit ratio were granted either regular or accelerated marketing approval for use in the specific indication that was studied. Regular approval was based on endpoints that demonstrated that the drug provided clinical benefit as evidenced by a longer or better life or a favorable effect on an established surrogate for a longer or better life. Accelerated approval was based on a less well-established surrogate endpoint that was reasonably likely to predict a longer or better life. Of the 53 new indications that were approved during the study period, 39 received regular approval, nine received accelerated approval, and five were converted from accelerated to regular approval. Five applications were not approved, and two applications were withdrawn before any regulatory action was taken. Eighteen of the 53 indications that were approved were for new molecular entities. During the study period, regulatory action was taken on 58 of the 60 marketing applications. Fifty-three applications were approved. A variety of clinical trial endpoints were used in the approval trials.
The effectiveness of telemental health applications: a review.
Hailey, David; Roine, Risto; Ohinmaa, Arto
2008-11-01
To review the evidence of benefit from use of telemental health (TMH) in studies that reported clinical or administrative outcomes. Relevant publications were identified through computerized literature searches using several electronic databases. Included for review were scientifically valid articles that described controlled studies, comparing TMH with a non-TMH alternative, and uncontrolled studies that had no fewer than 20 participants. Quality of the evidence was assessed with an approach that considers both study performance and study design. Judgments were made on whether further data were needed to establish each TMH application as suitable for routine clinical use. Included in the review were 72 papers that described 65 clinical studies; 32 (49%) studies were of high or good quality. Quality of evidence was higher for Internet- and telephone-based interventions than for video conferencing approaches. There was evidence of success with TMH in the areas of child psychiatry, depression, dementia, schizophrenia, suicide prevention, posttraumatic stress, panic disorders, substance abuse, eating disorders, and smoking prevention. Evidence of success for general TMH programs and in the management of obsessive-compulsive disorder were less convincing. Further study was judged to be necessary or desirable in 53 (82%) of the studies. Evidence of benefit from TMH applications is encouraging, though still limited. There is a need for more good-quality studies on the use of TMH in routine care. The emerging use of Internet-based applications is an important development that deserves further evaluation.
Zhang, Yonghong; Sun, Weihong; Gutchell, Emily M; Kvecher, Leonid; Kohr, Joni; Bekhash, Anthony; Shriver, Craig D; Liebman, Michael N; Mural, Richard J; Hu, Hai
2013-01-01
In clinical and translational research as well as clinical trial projects, clinical data collection is prone to errors such as missing data, and misinterpretation or inconsistency of the data. A good quality assurance (QA) program can resolve many such errors though this requires efficient communications between the QA staff and data collectors. Managing such communications is critical to resolving QA problems but imposes a major challenge for a project involving multiple clinical and data processing sites. We have developed a QA issue tracking (QAIT) system to support clinical data QA in the Clinical Breast Care Project (CBCP). This web-based application provides centralized management of QA issues with role-based access privileges. It has greatly facilitated the QA process and enhanced the overall quality of the CBCP clinical data. As a stand-alone system, QAIT can supplement any other clinical data management systems and can be adapted to support other projects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Chaves, Paula; Simões, Daniela; Paço, Maria; Pinho, Francisco; Duarte, José Alberto; Ribeiro, Fernando
2017-12-01
Deep friction massage is one of several physiotherapy interventions suggested for the management of tendinopathy. To determine the prevalence of deep friction massage use in clinical practice, to characterize the application parameters used by physiotherapists, and to identify empirical model-based patterns of deep friction massage application in degenerative tendinopathy. observational, analytical, cross-sectional and national web-based survey. 478 physiotherapists were selected through snow-ball sampling method. The participants completed an online questionnaire about personal and professional characteristics as well as specific questions regarding the use of deep friction massage. Characterization of deep friction massage parameters used by physiotherapists were presented as counts and proportions. Latent class analysis was used to identify the empirical model-based patterns. Crude and adjusted odds ratios and 95% confidence intervals were computed. The use of deep friction massage was reported by 88.1% of the participants; tendinopathy was the clinical condition where it was most frequently used (84.9%) and, from these, 55.9% reported its use in degenerative tendinopathy. The "duration of application" parameters in chronic phase and "frequency of application" in acute and chronic phases are those that diverge most from those recommended by the author of deep friction massage. We found a high prevalence of deep friction massage use, namely in degenerative tendinopathy. Our results have shown that the application parameters are heterogeneous and diverse. This is reflected by the identification of two application patterns, although none is in complete agreement with Cyriax's description. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical coherence elastography in ophthalmology
NASA Astrophysics Data System (ADS)
Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2017-12-01
Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.
Autologous blood cell therapies from pluripotent stem cells
Lengerke, Claudia; Daley, George Q.
2010-01-01
Summary The discovery of human embryonic stem cells (hESCs) raised promises for a universal resource for cell based therapies in regenerative medicine. Recently, fast-paced progress has been made towards the generation of pluripotent stem cells (PSCs) amenable for clinical applications, culminating in reprogramming of adult somatic cells to autologous PSCs that can be indefinitely expanded in vitro. However, besides the efficient generation of bona fide, clinically safe PSCs (e.g. without the use of oncoproteins and gene transfer based on viruses inserting randomly into the genome), a major challenge in the field remains how to efficiently differentiate PSCs to specific lineages and how to select for cells that will function normally upon transplantation in adults. In this review, we analyse the in vitro differentiation potential of PSCs to the hematopoietic lineage discussing blood cell types that can be currently obtained, limitations in derivation of adult-type HSCs and prospects for clinical application of PSCs-derived blood cells. PMID:19910091
ERIC Educational Resources Information Center
Ullah, Shahnoor M.; Bodrogi, Andrew; Cristea, Octav; Johnson, Marjorie; McAlister, Vivian C.
2012-01-01
Didactic and laboratory anatomical education have seen significant reductions in the medical school curriculum due, in part, to the current shift from basic science to more clinically based teaching in North American medical schools. In order to increase medical student exposure to anatomy, with clinical applicability, a student-run initiative…
Adventure Counseling as an Adjunct to Group Counseling in Hospital and Clinical Settings
ERIC Educational Resources Information Center
Gillen, Mark C.; Balkin, Richard S.
2006-01-01
Adventure counseling has been thought of as a highly specialized application of group counseling skills in a wilderness environment. In fact, adventure counseling is based on a developmental theory of group, can be useful for a variety of clients, and can be thoughtfully integrated into clinical and hospital settings. This article describes the…
USDA-ARS?s Scientific Manuscript database
This book chapter identifies treatments for pediatric obesity that have been shown to be effective in research settings and discusses how these treatments can be implemented in an applied clinical setting. Behavior-based treatments have demonstrated the best outcomes. Commonly used behavioral strate...
ERIC Educational Resources Information Center
Anderson, M. Brownell, Ed.
1997-01-01
Provides summary reports of 81 innovative approaches to medical education in the areas of program management and assessment, admission and student-support programs, computer applications, preclinical and clinical course integration, development of professional skills and values, introduction to clinical medicine, community-based experiences,…
Caboche, Ségolène; Audebert, Christophe; Hot, David
2014-01-01
The recent progresses of high-throughput sequencing (HTS) technologies enable easy and cost-reduced access to whole genome sequencing (WGS) or re-sequencing. HTS associated with adapted, automatic and fast bioinformatics solutions for sequencing applications promises an accurate and timely identification and characterization of pathogenic agents. Many studies have demonstrated that data obtained from HTS analysis have allowed genome-based diagnosis, which has been consistent with phenotypic observations. These proofs of concept are probably the first steps toward the future of clinical microbiology. From concept to routine use, many parameters need to be considered to promote HTS as a powerful tool to help physicians and clinicians in microbiological investigations. This review highlights the milestones to be completed toward this purpose. PMID:25437800
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.
Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander
2017-08-07
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications
Longo, Dario Livio; Aime, Silvio
2017-01-01
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106
Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar
2017-01-12
The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http://calculator.clinicalgenome.org . By enabling evidence-based reasoning about the pathogenicity of genetic variants and by documenting supporting evidence, the Calculator contributes toward the creation of a knowledge commons and more accurate interpretation of sequence variants in research and clinical care.
Mass spectrometry-based proteomics for translational research: a technical overview.
Paulo, Joao A; Kadiyala, Vivek; Banks, Peter A; Steen, Hanno; Conwell, Darwin L
2012-03-01
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.
Mass Spectrometry-Based Proteomics for Translational Research: A Technical Overview
Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.
2012-01-01
Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease. PMID:22461744
2011-01-01
Background A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. Methods We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. Results The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Conclusions Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases. PMID:21385459
Lin, Hsueh-Chun; Wu, Hsi-Chin; Chang, Chih-Hung; Li, Tsai-Chung; Liang, Wen-Miin; Wang, Jong-Yi Wang
2011-03-08
A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases.
Utilization of the concentric circle model in clinical nursing: a review.
Kazuma, K
1999-12-01
In this article, I review applications of the concentric circle model in clinical nursing. The concentric circle model is based on the cross-sectional shape of the body extremities at several points, and can be used in the areas of both kinesiology and nutritional science. This model makes it possible to calculate the cross-sectional area of muscles from measurement of the circumference of the extremities and the thickness of adipose (fatty) tissue. Then, changes in muscle strength or nutritional status can be inferred or assessed from these data. This model requires only simple and non-invasive measurements, and this is a significant and essential characteristic for its use by nurses, both in clinical and research applications.
Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.
Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin
2015-04-02
Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.
Ethical dilemmas of a large national multi-centre study in Australia: time for some consistency.
Driscoll, Andrea; Currey, Judy; Worrall-Carter, Linda; Stewart, Simon
2008-08-01
To examine the impact and obstacles that individual Institutional Research Ethics Committee (IRECs) had on a large-scale national multi-centre clinical audit called the National Benchmarks and Evidence-based National Clinical guidelines for Heart failure management programmes Study. Multi-centre research is commonplace in the health care system. However, IRECs continue to fail to differentiate between research and quality audit projects. The National Benchmarks and Evidence-based National Clinical guidelines for Heart failure management programmes study used an investigator-developed questionnaire concerning a clinical audit for heart failure programmes throughout Australia. Ethical guidelines developed by the National governing body of health and medical research in Australia classified the National Benchmarks and Evidence-based National Clinical guidelines for Heart failure management programmes Study as a low risk clinical audit not requiring ethical approval by IREC. Fifteen of 27 IRECs stipulated that the research proposal undergo full ethical review. None of the IRECs acknowledged: national quality assurance guidelines and recommendations nor ethics approval from other IRECs. Twelve of the 15 IRECs used different ethics application forms. Variability in the type of amendments was prolific. Lack of uniformity in ethical review processes resulted in a six- to eight-month delay in commencing the national study. Development of a national ethics application form with full ethical review by the first IREC and compulsory expedited review by subsequent IRECs would resolve issues raised in this paper. IRECs must change their ethics approval processes to one that enhances facilitation of multi-centre research which is now normative process for health services. The findings of this study highlight inconsistent ethical requirements between different IRECs. Also highlighted are the obstacles and delays that IRECs create when undertaking multi-centre clinical audits. However, in our clinical practice it is vital that clinical audits are undertaken for evaluation purposes. The findings of this study raise awareness of inconsistent ethical processes and highlight the need for expedient ethical review for clinical audits.
ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials
2012-01-01
Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols. PMID:22595088
Korkontzelos, Ioannis; Mu, Tingting; Ananiadou, Sophia
2012-04-30
Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols.
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller
NASA Astrophysics Data System (ADS)
Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.
2014-06-01
Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
Perdikis, S; Leeb, R; Williamson, J; Ramsay, A; Tavella, M; Desideri, L; Hoogerwerf, E-J; Al-Khodairy, A; Murray-Smith, R; Millán, J D R
2014-06-01
While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Rural Doctors’ Views on and Experiences with Evidence-Based Medicine: The FrEEDoM Qualitative Study
Hisham, Ranita; Liew, Su May; Ng, Chirk Jenn; Mohd Nor, Kamaliah; Osman, Iskandar Firzada; Ho, Gah Juan; Hamzah, Nurazira; Glasziou, Paul
2016-01-01
Background Evidence-based medicine is the integration of individual clinical expertise, best external evidence and patient values which was introduced more than two decades ago. Yet, primary care physicians in Malaysia face unique barriers in accessing scientific literature and applying it to their clinical practice. Aim This study aimed to explore the views and experiences of rural doctors’ about evidence-based medicine in their daily clinical practice in a rural primary care setting. Methods Qualitative methodology was used. The interviews were conducted in June 2013 in two rural health clinics in Malaysia. The participants were recruited using purposive sampling. Four focus group discussions with 15 medical officers and three individual in-depth interviews with family medicine specialists were carried out. All interviews were conducted using a topic guide and were audio-recorded, transcribed verbatim, checked and analyzed using a thematic approach. Results Key themes identified were: (1) doctors viewed evidence-based medicine mainly as statistics, research and guidelines, (2) reactions to evidence-based medicine were largely negative, (3) doctors relied on specialists, peers, guidelines and non-evidence based internet sources for information, (4) information sources were accessed using novel methods such as mobile applications and (5) there are several barriers to evidence-based practice, including doctor-, evidence-based medicine-, patient- and system-related factors. These included inadequacies in knowledge, attitude, management support, time and access to evidence-based information sources. Participants recommended the use of online services to support evidence-based practice in the rural settings. Conclusion The level of evidence-based practice is low in the rural setting due to poor awareness, knowledge, attitude and resources. Doctors use non-evidence based sources and access them through new methods such as messaging applications. Further research is recommended to develop and evaluate interventions to overcome the identified barriers. PMID:27031700
Current trends and progress in clinical applications of oocyte cryopreservation.
Cil, Aylin P; Seli, Emre
2013-06-01
To delineate the current trends in the clinical application of oocyte cryopreservation. Although the first live birth from oocyte cryopreservation was reported approximately three decades ago, significant improvement in the clinical application of oocyte cryopreservation took place only over the past decade. On the basis of the available evidence suggesting that success rates with donor oocyte vitrification are similar to that of IVF with fresh donor oocytes, the American Society of Reproductive Medicine has recently stated that oocyte cryopreservation should no longer be considered experimental for medical indications, outlying elective oocyte cryopreservation. Meanwhile, a few surveys on the attitudes toward oocyte cryopreservation revealed that elective use for the postponement of fertility is currently the most common indication for oocyte cryopreservation. Most recently, a randomized controlled trial revealed important evidence on the safety of nondonor oocyte cryopreservation, and confirmed that the clinical success of vitrification is comparable to that of IVF with fresh oocytes. The evidence suggesting similar IVF success rates with both donor and nondonor cryopreserved oocytes compared with fresh oocytes will increase the utilization of elective oocyte cryopreservation. Appropriate counseling of women for oocyte cryopreservation requires the establishment of age-based clinical success rates with cryopreserved oocytes for various indications.
A prognostic model for temporal courses that combines temporal abstraction and case-based reasoning.
Schmidt, Rainer; Gierl, Lothar
2005-03-01
Since clinical management of patients and clinical research are essentially time-oriented endeavours, reasoning about time has become a hot topic in medical informatics. Here we present a method for prognosis of temporal courses, which combines temporal abstractions with case-based reasoning. It is useful for application domains where neither well-known standards, nor known periodicity, nor a complete domain theory exist. We have used our method in two prognostic applications. The first one deals with prognosis of the kidney function for intensive care patients. The idea is to elicit impairments on time, especially to warn against threatening kidney failures. Our second application deals with a completely different domain, namely geographical medicine. Its intention is to compute early warnings against approaching infectious diseases, which are characterised by irregular cyclic occurrences. So far, we have applied our program on influenza and bronchitis. In this paper, we focus on influenza forecast and show first experimental results.
Applicability of central auditory processing disorder models.
Jutras, Benoît; Loubert, Monique; Dupuis, Jean-Luc; Marcoux, Caroline; Dumont, Véronique; Baril, Michèle
2007-12-01
Central auditory processing disorder ([C]APD) is a relatively recent construct that has given rise to 2 theoretical models: the Buffalo Model and the Bellis/Ferre Model. These models describe 4 and 5 (C)APD categories, respectively. The present study examines the applicability of these models to clinical practice. Neither of these models was based on data from peer-reviewed sources. This is a retrospective study that reviewed 178 records of children diagnosed with (C)APD, of which 48 were retained for analysis. More than 80% of the children could be classified into one of the Buffalo Model categories, while more than 90% remained unclassified under the Bellis/Ferre Model. This discrepancy can be explained by the fact that the classification of the Buffalo Model is based primarily on a single central auditory test (Staggered Spondaic Word), whereas the Bellis/Ferre Model classification uses a combination of auditory test results. The 2 models provide a conceptual framework for (C)APD, but they must be further refined to be fully applicable in clinical settings.
Interactive surface correction for 3D shape based segmentation
NASA Astrophysics Data System (ADS)
Schwarz, Tobias; Heimann, Tobias; Tetzlaff, Ralf; Rau, Anne-Mareike; Wolf, Ivo; Meinzer, Hans-Peter
2008-03-01
Statistical shape models have become a fast and robust method for segmentation of anatomical structures in medical image volumes. In clinical practice, however, pathological cases and image artifacts can lead to local deviations of the detected contour from the true object boundary. These deviations have to be corrected manually. We present an intuitively applicable solution for surface interaction based on Gaussian deformation kernels. The method is evaluated by two radiological experts on segmentations of the liver in contrast-enhanced CT images and of the left heart ventricle (LV) in MRI data. For both applications, five datasets are segmented automatically using deformable shape models, and the resulting surfaces are corrected manually. The interactive correction step improves the average surface distance against ground truth from 2.43mm to 2.17mm for the liver, and from 2.71mm to 1.34mm for the LV. We expect this method to raise the acceptance of automatic segmentation methods in clinical application.
Design and applications of a multimodality image data warehouse framework.
Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L
2002-01-01
A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.
An, Fei-Fei; Zhang, Xiao-Hong
2017-01-01
Biosafety is the primary concern in clinical translation of nanomedicine. As an intrinsic ingredient of human blood without immunogenicity and encouraged by its successful clinical application in Abraxane, albumin has been regarded as a promising material to produce nanoparticles for bioimaging and drug delivery. The strategies for synthesizing albumin-based nanoparticles could be generally categorized into five classes: template, nanocarrier, scaffold, stabilizer and albumin-polymer conjugate. This review introduces approaches utilizing albumin in the preparation of nanoparticles and thereby provides scientists with knowledge of goal-driven design on albumin-based nanomedicine. PMID:29109768
Graphene-based materials for tissue engineering.
Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali
2016-10-01
Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.
Kalil, Andre C; Sun, Junfeng
2014-10-01
To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Chui, Huixia; Domish, Larissa; Hernandez, Drexler; Wang, Gehua
2016-01-01
Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS‐based diagnosis methods for bacteria identification and typing have been created, not only on well‐accepted MALDI‐TOF‐MS‐based fingerprint matches, but also on solving the insufficiencies of MALDI‐TOF‐MS‐based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS‐based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria. PMID:26751976
A web-based library consult service for evidence-based medicine: Technical development
Schwartz, Alan; Millam, Gregory
2006-01-01
Background Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. Results To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. Conclusion A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement. PMID:16542453
Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants.
Jäger, Marcus; Jennissen, Herbert P; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise
2017-11-13
The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of "smaller, faster, cheaper", nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.
IBM Application System/400 as the foundation of the Mayo Clinic/IBM PACS project
NASA Astrophysics Data System (ADS)
Rothman, Melvyn L.; Morin, Richard L.; Persons, Kenneth R.; Gibbons, Patricia S.
1990-08-01
An IBM Application System/400 (AS/400) anchors the Mayo Clinic/IBM joint development PACS project. This paper highlights some of the AS/400's features and the resulting benefits which make it a strong foundation for a medical image archival and review system. Among the AS/400's key features are: 1. A high-level machine architecture 2. Object orientation 3. Relational data base and other functions integrated into the system's architecture 4. High-function interfaces to IBM Personal Computers and IBM Personal System/2s' (pS/2TM).
Ni, Dalong; Jiang, Dawei; Ehlerding, Emily B; Huang, Peng; Cai, Weibo
2018-03-20
As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124 I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes ( 64 Cu, 89 Zr, 18 F, 68 Ga, 124 I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO 2 ), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO 2 , MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.
Framework for a clinical information system.
Van De Velde, R; Lansiers, R; Antonissen, G
2002-01-01
The design and implementation of Clinical Information System architecture is presented. This architecture has been developed and implemented based on components following a strong underlying conceptual and technological model. Common Object Request Broker and n-tier technology featuring centralised and departmental clinical information systems as the back-end store for all clinical data are used. Servers located in the "middle" tier apply the clinical (business) model and application rules. The main characteristics are the focus on modelling and reuse of both data and business logic. Scalability as well as adaptability to constantly changing requirements via component driven computing are the main reasons for that approach.
2014-01-01
Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different proteomic–based methodologies can be applied depending on the specific clinical context of use. Moreover, current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision making. To improve on this current situation, a well-defined study design has to be established driven by a clear clinical need, while several checkpoints between the different phases of discovery, verification and validation have to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline, exemplified by clinical applications in the field of bladder cancer biomarker research. PMID:24679154
Clinical Application of Earlobe Augmentation with Hyaluronic Acid Filler in the Chinese Population.
Qian, Wei; Zhang, Yan-Kun; Cao, Qian; Hou, Ying; Lv, Wei; Fan, Ju-Feng
2017-02-01
Larger earlobes, which are a symbol of "richness" in traditional Chinese culture, are favored by Chinese patients. The objective of this paper is to investigate the application of earlobe augmentation with hyaluronic acid (HA) filler injection and its clinical effects in the Chinese population. A total of 19 patients (38 ears) who received earlobe augmentation with HA filler injections between March 2013 and March 2015 were included. The clinical effects, duration, and complications of these cases were investigated. All patients who received earlobe HA injections showed immediate postoperative effects with obvious morphological improvement of their earlobes. The volume of HA filler injected into each ear was 0.3-0.5 ml. The duration of the effect was 6-9 months. Two of the 19 cases (3 ears) demonstrated mild bruising at the injection site, but the bruising completely disappeared within 7 days after the injection. No vascular embolism, infection, nodule, or granuloma complications were observed in the studied group. The application of earlobe augmentation with HA filler injection is a safe, effective, simple procedure for earlobe shaping. It has an easy clinical application with good clinical prospects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications.
Blute, Michael L; Damaschke, Nathan A; Jarrard, David F
2015-01-01
There is a major deficit in our ability to detect and predict the clinical behavior of prostate cancer (PCa). Epigenetic changes are associated with PCa development and progression. This review will focus on recent results in the clinical application of diagnostic and prognostic epigenetic markers. The development of high throughput technology has seen an enormous increase in the discovery of new markers that encompass epigenetic changes including those in DNA methylation and histone modifications. Application of these findings to urine and other biofluids, but also cancer and noncancerous prostate tissue, has resulted in new biomarkers. There has been a recent commercial development of a DNA methylation-based assay for identifying PCa risk from normal biopsy tissue. Other biomarkers are currently in the validation phase and encompass combinations of multiple genes. Epigenetic changes improve the specificity and sensitivity of PCa diagnosis and have the potential to help determine clinical prognosis. Additional studies will not only provide new and better biomarker candidates, but also have the potential to inform new therapeutic strategies given the reversibility of these processes.
ERIC Educational Resources Information Center
Frasier, Lori D.; Thraen, Ioana; Kaplan, Rich; Goede, Patricia
2012-01-01
Objectives: The training of physicians, nurse examiners, social workers and other health professional on the evidentiary findings of sexual abuse in children is challenging. Our objective was to develop peer reviewed training cases for medical examiners of child sexual abuse, using a secure web based telehealth application (TeleCAM). Methods:…
[Application of decamethoxin solution in the treatment of surgical peritonitis].
Boĭko, V V; Lohachev, V K; Tymchenko, M Ie
2012-12-01
Basing on analysis of results of clinical and experimental investigations, there was established, that application of the cationic antiseptics solution (including 0.02% solution of decametoxin) for the abdominal cavity sanation permits to reduce the microbal soiling while sanation performance and as well so on--the postoperative complications rate and mortality in surgical peritonitis.
Lightweight application for generating clinical research information systems: MAGIC.
Leskošek, Brane; Pajntar, Marjan
2015-12-01
Our purpose was to build and test a lightweight solution for generating clinical research information systems (CRIS) that would allow non-IT professionals with basic knowledge of computer usage to quickly define and build a ready-to-use, safe and secure web-based clinical research system for data management. We use the acronym MAGIC (Medical Application Generator InteraCtive) for the system. The generated CRIS should be very easy to build and use, so a common LAMP (Linux Apache MySQL Perl) platform was used, which also enables short development cycles. The application was built and tested using eXtreme Programming (XP) principles by a small development team consisting of one informatics specialist, one physician and one graphical designer/programmer. The parameter and graphical user interface (GUI) definitions for the CRIS can be made by non-IT professionals using an intuitive English-language-like formalism called application definition language (ADL). From these definitions, the MAGIC builds an end-user CRIS that can be used on a wide variety of platforms (from standard workstations to hand-held devices). A working example of a national health-care-quality assessment program is presented to illustrate this process. The lightweight application for generating CRIS (MAGIC) has proven to be useful for both clinical and analytical users in real working environment. To achieve better performance and interoperability, we are planning to recompile the application using XML schemas (XSD) in HL7 CDA or openEHR archetypes formats used for parameters definition and for data interchange between different information systems.
Cillessen, Felix H J M; de Vries Robbé, Pieter F; Biermans, Marion C J
2017-05-17
To evaluate the use, usability, and physician satisfaction of a locally developed problem-oriented clinical notes application that replaced paper-based records in a large Dutch university medical center. Using a clinical notes database and an application event log file and a cross-sectional survey of usability, authors retrospectively analyzed system usage for medical specialties, users, and patients over 4 years. A standardized questionnaire measured usability. Authors analyzed the effects of sex, age, professional experience, training hours, and medical specialty on user satisfaction via univariate analysis of variance. Authors also examined the correlation between user satisfaction in relation to users' intensity of use of the application. In total 1,793 physicians used the application to record progress notes for 219,755 patients. The overall satisfaction score was 3.2 on a scale from 1 (highly dissatisfied) to 5 (highly satisfied). A statistically significant difference occurred in satisfaction by medical specialty, but no statistically significant differences in satisfaction took place by sex, age, professional experience, or training hours. Intensity of system use did not correlate with physician satisfaction. By two years after the start of the implementation, all medical specialties utilized the clinical notes application. User satisfaction was neutral (3.2 on a 1-5 scale). Authors believe that the significant factors facilitating this transition mirrored success factors reported by other groups: a generic, consistent, and transparent design of the application; intensive collaboration; continuous monitoring; and an incremental rollout.
ERIC Educational Resources Information Center
Oliveira, Carla; Lousada, Marisa; Jesus, Luis M. T.
2015-01-01
Children with speech sound disorders (SSD) represent a large number of speech and language therapists' caseloads. The intervention with children who have SSD can involve different therapy approaches, and these may be articulatory or phonologically based. Some international studies reveal a widespread application of articulatory based approaches in…
Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.
Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin
2016-01-01
Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.
Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition
Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin
2016-01-01
Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498
A Roadmap for the Development of Applied Computational Psychiatry.
Paulus, Martin P; Huys, Quentin J M; Maia, Tiago V
2016-09-01
Computational psychiatry is a burgeoning field that utilizes mathematical approaches to investigate psychiatric disorders, derive quantitative predictions, and integrate data across multiple levels of description. Computational psychiatry has already led to many new insights into the neurobehavioral mechanisms that underlie several psychiatric disorders, but its usefulness from a clinical standpoint is only now starting to be considered. Examples of computational psychiatry are highlighted, and a phase-based pipeline for the development of clinical computational-psychiatry applications is proposed, similar to the phase-based pipeline used in drug development. It is proposed that each phase has unique endpoints and deliverables, which will be important milestones to move tasks, procedures, computational models, and algorithms from the laboratory to clinical practice. Application of computational approaches should be tested on healthy volunteers in Phase I, transitioned to target populations in Phase IB and Phase IIA, and thoroughly evaluated using randomized clinical trials in Phase IIB and Phase III. Successful completion of these phases should be the basis of determining whether computational models are useful tools for prognosis, diagnosis, or treatment of psychiatric patients. A new type of infrastructure will be necessary to implement the proposed pipeline. This infrastructure should consist of groups of investigators with diverse backgrounds collaborating to make computational psychiatry relevant for the clinic.
The ART of Social Networking: How SART member clinics are connecting with patients online
OMURTAG, Kenan; JIMENEZ, Patricia T.; RATTS, Valerie; ODEM, Randall; COOPER, Amber R.
2013-01-01
Objective To study and describe the use of social networking websites among SART member clinics Design Cross-sectional study Setting University Based Practice Patients Not Applicable Interventions Not Applicable Main Outcome Measure Prevalence of social networking websites among SART member clinics and evaluation of content, volume and location (i.e mandated state, region) using multivariate regression analysis Results 384 SART registered clinics and 1,382 social networking posts were evaluated. Of the clinics, 96% have a website and 30% link to a social networking website. The majority of clinics (89%) with social networking websites were affiliated with non-academic centers. Social networking posts mostly provide information (31%) and/or advertise (28%), while the remaining offer support (19%) or are irrelevant (17%) to the target audience. Only 5% of posts involved patients requesting information. Clinic volume correlates with the presence of a clinic website and a social networking website (p<0.001). Conclusion Almost all SART member clinics have a website. Nearly one-third of these clinics host a social networking website like Facebook, Twitter and/or a Web-log (“blog”). Larger volume clinics commonly host social networking websites. These sites provide new ways to communicate with patients, but clinics should maintain policies on the incorporation of social networks into practice. PMID:22088209
iDEAS: A web-based system for dry eye assessment.
Remeseiro, Beatriz; Barreira, Noelia; García-Resúa, Carlos; Lira, Madalena; Giráldez, María J; Yebra-Pimentel, Eva; Penedo, Manuel G
2016-07-01
Dry eye disease is a public health problem, whose multifactorial etiology challenges clinicians and researchers making necessary the collaboration between different experts and centers. The evaluation of the interference patterns observed in the tear film lipid layer is a common clinical test used for dry eye diagnosis. However, it is a time-consuming task with a high degree of intra- as well as inter-observer variability, which makes the use of a computer-based analysis system highly desirable. This work introduces iDEAS (Dry Eye Assessment System), a web-based application to support dry eye diagnosis. iDEAS provides a framework for eye care experts to collaboratively work using image-based services in a distributed environment. It is composed of three main components: the web client for user interaction, the web application server for request processing, and the service module for image analysis. Specifically, this manuscript presents two automatic services: tear film classification, which classifies an image into one interference pattern; and tear film map, which illustrates the distribution of the patterns over the entire tear film. iDEAS has been evaluated by specialists from different institutions to test its performance. Both services have been evaluated in terms of a set of performance metrics using the annotations of different experts. Note that the processing time of both services has been also measured for efficiency purposes. iDEAS is a web-based application which provides a fast, reliable environment for dry eye assessment. The system allows practitioners to share images, clinical information and automatic assessments between remote computers. Additionally, it save time for experts, diminish the inter-expert variability and can be used in both clinical and research settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Translational progress on tumor biomarkers
Guo, Hongwei; Zhou, Xiaolin; Lu, Yi; Xie, Liye; Chen, Qian; Keller, Evan T; Liu, Qian; Zhou, Qinghua; Zhang, Jian
2015-01-01
There is an urgent need to apply basic research achievements to the clinic. In particular, mechanistic studies should be developed by bench researchers, depending upon clinical demands, in order to improve the survival and quality of life of cancer patients. To date, translational medicine has been addressed in cancer biology, particularly in the identification and characterization of novel tumor biomarkers. This review focuses on the recent achievements and clinical application prospects in tumor biomarkers based on translational medicine. PMID:26557902
Clinically oriented three-year medical physics curriculum: a new design for the future.
Nachiappan, Arun C; Lee, Stephen R; Willis, Marc H; Galfione, Matthew R; Chinnappan, Raj R; Diaz-Marchan, Pedro J; Bushong, Stewart C
2012-09-01
Medical physics instruction for diagnostic radiology residency at our institution has been redesigned with an interactive and image-based approach that encourages clinical application. The new medical physics curriculum spans the first 3 years of radiology residency and is integrated with the core didactic curriculum. Salient features include clinical medical physics conferences, fundamentals of medical physics lectures, practicums, online modules, journal club, and a final review before the American Board of Radiology core examination.
Evidence-based dentistry: a model for clinical practice.
Faggion, Clóvis M; Tu, Yu-Kang
2007-06-01
Making decisions in dentistry should be based on the best evidence available. The objective of this study was to demonstrate a practical procedure and model that clinicians can use to apply the results of well-conducted studies to patient care by critically appraising the evidence with checklists and letter grade scales. To demonstrate application of this model for critically appraising the quality of research evidence, a hypothetical case involving an adult male with chronic periodontitis is used as an example. To determine the best clinical approach for this patient, a four-step, evidence-based model is demonstrated, consisting of the following: definition of a research question using the PICO format, search and selection of relevant literature, critical appraisal of identified research reports using checklists, and the application of evidence. In this model, the quality of research evidence was assessed quantitatively based on different levels of quality that are assigned letter grades of A, B, and C by evaluating the studies against the QUOROM (Quality of Reporting Meta-Analyses) and CONSORT (Consolidated Standards of Reporting Trials) checklists in a tabular format. For this hypothetical periodontics case, application of the model identified the best available evidence for clinical decision making, i.e., one randomized controlled trial and one systematic review of randomized controlled trials. Both studies showed similar answers for the research question. The use of a letter grade scale allowed an objective analysis of the quality of evidence. A checklist-driven model that assesses and applies evidence to dental practice may substantially improve dentists' decision making skill.
TERMTrial--terminology-based documentation systems for cooperative clinical trials.
Merzweiler, A; Weber, R; Garde, S; Haux, R; Knaup-Gregori, P
2005-04-01
Within cooperative groups of multi-center clinical trials a standardized documentation is a prerequisite for communication and sharing of data. Standardizing documentation systems means standardizing the underlying terminology. The management and consistent application of terminology systems is a difficult and fault-prone task, which should be supported by appropriate software tools. Today, documentation systems for clinical trials are often implemented as so-called Remote-Data-Entry-Systems (RDE-systems). Although there are many commercial systems, which support the development of RDE-systems there is none offering a comprehensive terminological support. Therefore, we developed the software system TERMTrial which consists of a component for the definition and management of terminology systems for cooperative groups of clinical trials and two components for the terminology-based automatic generation of trial databases and terminology-based interactive design of electronic case report forms (eCRFs). TERMTrial combines the advantages of remote data entry with a comprehensive terminological control.
Pairwise domain adaptation module for CNN-based 2-D/3-D registration.
Zheng, Jiannan; Miao, Shun; Jane Wang, Z; Liao, Rui
2018-04-01
Accurate two-dimensional to three-dimensional (2-D/3-D) registration of preoperative 3-D data and intraoperative 2-D x-ray images is a key enabler for image-guided therapy. Recent advances in 2-D/3-D registration formulate the problem as a learning-based approach and exploit the modeling power of convolutional neural networks (CNN) to significantly improve the accuracy and efficiency of 2-D/3-D registration. However, for surgery-related applications, collecting a large clinical dataset with accurate annotations for training can be very challenging or impractical. Therefore, deep learning-based 2-D/3-D registration methods are often trained with synthetically generated data, and a performance gap is often observed when testing the trained model on clinical data. We propose a pairwise domain adaptation (PDA) module to adapt the model trained on source domain (i.e., synthetic data) to target domain (i.e., clinical data) by learning domain invariant features with only a few paired real and synthetic data. The PDA module is designed to be flexible for different deep learning-based 2-D/3-D registration frameworks, and it can be plugged into any pretrained CNN model such as a simple Batch-Norm layer. The proposed PDA module has been quantitatively evaluated on two clinical applications using different frameworks of deep networks, demonstrating its significant advantages of generalizability and flexibility for 2-D/3-D medical image registration when a small number of paired real-synthetic data can be obtained.
New technology continues to invade healthcare. What are the strategic implications/outcomes?
Smith, Coy
2004-01-01
Healthcare technology continues to advance and be implemented in healthcare organizations. Nurse executives must strategically evaluate the effectiveness of each proposed system or device using a strategic planning process. Clinical information systems, computer-chip-based clinical monitoring devices, advanced Web-based applications with remote, wireless communication devices, clinical decision support software--all compete for capital and registered nurse salary dollars. The concept of clinical transformation is developed with new models of care delivery being supported by technology rather than driving care delivery. Senior nursing leadership's role in clinical transformation and healthcare technology implementation is developed. Proposed standards, expert group action, business and consumer groups, and legislation are reviewed as strategic drivers in the development of an electronic health record and healthcare technology. A matrix of advancing technology and strategic decision-making parameters are outlined.
SAM: speech-aware applications in medicine to support structured data entry.
Wormek, A. K.; Ingenerf, J.; Orthner, H. F.
1997-01-01
In the last two years, improvement in speech recognition technology has directed the medical community's interest to porting and using such innovations in clinical systems. The acceptance of speech recognition systems in clinical domains increases with recognition speed, large medical vocabulary, high accuracy, continuous speech recognition, and speaker independence. Although some commercial speech engines approach these requirements, the greatest benefit can be achieved in adapting a speech recognizer to a specific medical application. The goals of our work are first, to develop a speech-aware core component which is able to establish connections to speech recognition engines of different vendors. This is realized in SAM. Second, with applications based on SAM we want to support the physician in his/her routine clinical care activities. Within the STAMP project (STAndardized Multimedia report generator in Pathology), we extend SAM by combining a structured data entry approach with speech recognition technology. Another speech-aware application in the field of Diabetes care is connected to a terminology server. The server delivers a controlled vocabulary which can be used for speech recognition. PMID:9357730
Automated population of an i2b2 clinical data warehouse from an openEHR-based data repository.
Haarbrandt, Birger; Tute, Erik; Marschollek, Michael
2016-10-01
Detailed Clinical Model (DCM) approaches have recently seen wider adoption. More specifically, openEHR-based application systems are now used in production in several countries, serving diverse fields of application such as health information exchange, clinical registries and electronic medical record systems. However, approaches to efficiently provide openEHR data to researchers for secondary use have not yet been investigated or established. We developed an approach to automatically load openEHR data instances into the open source clinical data warehouse i2b2. We evaluated query capabilities and the performance of this approach in the context of the Hanover Medical School Translational Research Framework (HaMSTR), an openEHR-based data repository. Automated creation of i2b2 ontologies from archetypes and templates and the integration of openEHR data instances from 903 patients of a paediatric intensive care unit has been achieved. In total, it took an average of ∼2527s to create 2.311.624 facts from 141.917 XML documents. Using the imported data, we conducted sample queries to compare the performance with two openEHR systems and to investigate if this representation of data is feasible to support cohort identification and record level data extraction. We found the automated population of an i2b2 clinical data warehouse to be a feasible approach to make openEHR data instances available for secondary use. Such an approach can facilitate timely provision of clinical data to researchers. It complements analytics based on the Archetype Query Language by allowing querying on both, legacy clinical data sources and openEHR data instances at the same time and by providing an easy-to-use query interface. However, due to different levels of expressiveness in the data models, not all semantics could be preserved during the ETL process. Copyright © 2016 Elsevier Inc. All rights reserved.
Carbon nanotubes: potential medical applications and safety concerns.
Amenta, Valeria; Aschberger, Karin
2015-01-01
Carbon nanotubes (CNTs) have unique atomic structure, as well as outstanding thermal, mechanical, and electronic properties, making them extremely attractive materials for several different applications. Many research groups are focusing on biomedical applications of carbon-based nanomaterials, however the application of CNTs to the biomedical field is not developing as fast as in other areas. While CNTs-based products are already being used in textiles, polymer matrices to strengthen materials, sports articles, microelectronics, energy storage, etc., medicinal products and medical devices for in vivo application based on CNTs have not been commercialized yet. However, CNTs for biomedical application, i.e., CNTs conjugated to siRNA for cancer therapy, or CNTs for imaging of colorectal cancer and many other products may enter clinical trials in the next years. Concerns related to the toxicity of CNTs must be overcome in order to have these products commercialized in a near future. This article reviews emerging biomedical applications of CNTs, specifically for therapy. It also deals with challenges associated with possible medical applications of CNTs, such as their not fully understood toxicological profile in the human body. © 2014 Wiley Periodicals, Inc.
Implementation of customized health information technology in diabetes self management programs.
Alexander, Susan; Frith, Karen H; O'Keefe, Louise; Hennigan, Michael A
2011-01-01
The project was a nurse-led implementation of a software application, designed to combine clinical and demographic records for a diabetes education program, which would result in secure, long-term record storage. Clinical information systems may be prohibitively expensive for small practices and require extensive training for implementation. A review of the literature suggests that the use of simple, practice-based registries offer an economical method of monitoring the outcomes of diabetic patients. The database was designed using a common software application, Microsoft Access. The theory used to guide implementation and staff training was Rogers' Diffusion of Innovations theory (1995). Outcomes after a 3-month period included incorporation of 100% of new clinical and demographic patient records into the database and positive changes in staff attitudes regarding software applications used in diabetes self-management training. These objectives were met while keeping project costs under budgeted amounts. As a function of the clinical nurse specialist (CNS) researcher role, there is a need for CNSs to identify innovative and economical methods of data collection. The success of this nurse-led project reinforces suggestions in the literature for less costly methods of data maintenance in small practice settings. Ongoing utilization and enhancement have resulted in the creation of a robust database that could aid in the research of multiple clinical issues. Clinical nurse specialists can use existing evidence to guide and improve both their own practice and outcomes for patients and organizations. Further research regarding specific factors that predict efficient transition of informatics applications, how these factors vary according to practice settings, and the role of the CNS in implementation of such applications is needed.
Recent Developments of Liposomes as Nanocarriers for Theranostic Applications
Xing, Hang; Hwang, Kevin; Lu, Yi
2016-01-01
Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed. PMID:27375783
Kheir, Nadir; Awaisu, Ahmed; Gad, Hoda; Elazzazy, Shereen; Jibril, Farah; Gajam, Mawadda
2015-12-01
The application of clinical pharmacokinetics (PK) is essential when providing pharmaceutical care. Appropriate application of PK monitoring results in improved patient outcomes including decreased mortality, length of treatment, length of hospital stay, and adverse effects of drug therapy. Despite the well-documented evidence of benefits of clinical PK services, many pharmacists find it challenging to apply PK in clinical practice. To evaluate pharmacists' training backgrounds, attitude, practices, and perceived barriers pertaining to the application of PK in clinical practice in Qatar. All hospitals under Hamad Medical Corporation, the main healthcare provider in Qatar. This was a cross-sectional, descriptive study that was conducted between October 2012 and January 2013, using a self-administered web-based survey. Pharmacists were eligible to participate if they: (1) were working as full-time hospital pharmacists and; (2) have been in practice for at least 1 year. PK contents learned in undergraduate curriculum; perception towards the PK contents and instructions received in the undergraduate curriculum and; application of PK in current clinical practice. A total of 112 pharmacists responded to the questionnaire. The majority of the respondents (n = 91; 81.3 %) reported that they had received PK course(s) in their undergraduate curriculum. Similarly, the majority (70-80 %) of them agreed that the undergraduate PK courses or contents they received were important and relevant to their current practice. The pharmacists identified spending more time on dispensing and inventory issues rather than clinical practice, scarce resources, and manual rather than computerized PK calculations as some of the barriers they encountered in learning about PK and its application. The characteristics of the surveyed pharmacists such as gender, age, highest academic degree, and country of graduation did not influence the pharmacists' perception and attitudes towards PK teaching and application (p > 0.05). PK course contents were perceived to lack depth and relevance to practice, and pharmacist had no experiential training that included aspects of PK. These, and other issues, result in poor application of PK in practice.
Volume-of-interest reconstruction from severely truncated data in dental cone-beam CT
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Kusnoto, Budi; Han, Xiao; Sidky, E. Y.; Pan, Xiaochuan
2015-03-01
As cone-beam computed tomography (CBCT) has gained popularity rapidly in dental imaging applications in the past two decades, radiation dose in CBCT imaging remains a potential, health concern to the patients. It is a common practice in dental CBCT imaging that only a small volume of interest (VOI) containing the teeth of interest is illuminated, thus substantially lowering imaging radiation dose. However, this would yield data with severe truncations along both transverse and longitudinal directions. Although images within the VOI reconstructed from truncated data can be of some practical utility, they often are compromised significantly by truncation artifacts. In this work, we investigate optimization-based reconstruction algorithms for VOI image reconstruction from CBCT data of dental patients containing severe truncations. In an attempt to further reduce imaging dose, we also investigate optimization-based image reconstruction from severely truncated data collected at projection views substantially fewer than those used in clinical dental applications. Results of our study show that appropriately designed optimization-based reconstruction can yield VOI images with reduced truncation artifacts, and that, when reconstructing from only one half, or even one quarter, of clinical data, it can also produce VOI images comparable to that of clinical images.
Chen, Kevin G; Mallon, Barbara S; Johnson, Kory R; Hamilton, Rebecca S; McKay, Ronald D G; Robey, Pamela G
2014-05-01
Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications. Published by Elsevier B.V.
Value-based medicine: concepts and application.
Bae, Jong-Myon
2015-01-01
Global healthcare in the 21st century is characterized by evidence-based medicine (EBM), patient-centered care, and cost effectiveness. EBM involves clinical decisions being made by integrating patient preference with medical treatment evidence and physician experiences. The Center for Value-Based Medicine suggested value-based medicine (VBM) as the practice of medicine based upon the patient-perceived value conferred by an intervention. VBM starts with the best evidence-based data and converts it to patient value-based data, so that it allows clinicians to deliver higher quality patient care than EBM alone. The final goals of VBM are improving quality of healthcare and using healthcare resources efficiently. This paper introduces the concepts and application of VBM and suggests some strategies for promoting related research.
Value-based medicine: concepts and application
Bae, Jong-Myon
2015-01-01
Global healthcare in the 21st century is characterized by evidence-based medicine (EBM), patient-centered care, and cost effectiveness. EBM involves clinical decisions being made by integrating patient preference with medical treatment evidence and physician experiences. The Center for Value-Based Medicine suggested value-based medicine (VBM) as the practice of medicine based upon the patient-perceived value conferred by an intervention. VBM starts with the best evidence-based data and converts it to patient value-based data, so that it allows clinicians to deliver higher quality patient care than EBM alone. The final goals of VBM are improving quality of healthcare and using healthcare resources efficiently. This paper introduces the concepts and application of VBM and suggests some strategies for promoting related research. PMID:25773441
Problem Based Learning: Use of the Portable Patient Problem Pack (P4).
ERIC Educational Resources Information Center
Scheiman, Mitchell; Whittaker, Steve
1991-01-01
The format and production of the portable patient problem pack, a patient simulation method designed for problem-based learning, are described. Clinical and didactic applications and development of materials specifically for optometric education are discussed and additional information for designing optometry-related materials is appended.…
Case-Based Learning for Orofacial Pain and Temporomandibular Disorders.
ERIC Educational Resources Information Center
Clark, Glenn T.; And Others
1993-01-01
The use of interactive computer-based simulation of cases of chronic orofacial pain and temporomandibular joint disfunction patients for clinical dental education is described. Its application as a voluntary study aid in a third-year dental course is evaluated for effectiveness and for time factors in case completion. (MSE)
Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F
2015-01-01
Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and recommendations could be categorized under the following eight objectives to be safeguarded during clinical application of artificial gametes: (i) timing the implementation of new treatments correctly, (ii) meeting 'plausible demands of patients', (iii) improving and safeguarding public health, (iv) promoting the progress of medical science in the interest of future patients, (v) providing treatments that are morally acceptable for the general public, (vi) controlling medical practice, (vii) offering treatments that allow acquisition of informed consent and (viii) funding treatments fairly. Professionals specialized in biomedical science, science journalists and professionals specialized in ethics all addressed these eight objectives on artificial gametes, whereas professionals specialized in law or political science addressed seven objectives. Although one study reported on the perspective of parents of under-aged patients on three objectives, the perspectives of patients themselves were not reported by the reviewed literature. Of course, clinical introduction of artificial gametes should only be considered on the basis of reassuring outcomes of appropriate preclinical effectiveness and safety studies. In addition, potential users' views on the desirability and acceptability of artificial gametes should be studied before clinical introduction. A societal debate including all stakeholders is needed to determine the relative importance of all arguments in favor of and against the introduction of artificial gametes into clinical practice. More broadly, establishing pre-implementation processes for new medical techniques is relevant for all fields of medicine. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Poli, G; Dall'Ara, P; Binda, S; Santus, G; Poli, A; Cocilovo, A; Ponti, W
2001-01-01
Recurrent herpes simplex labialis represents a disease still difficult to treat, despite the availability of many established antiviral drugs used in clinical research since 30 years ago. Although differences between the human disease and that obtained in experimental animal suggest caution in predicting an effective clinical response from the experimental results, some of the animal models seem to be useful in optimising the topical formulation of single antiviral drugs. In the present work the dorsal cutaneous guinea pig model was used to compare 5 different topical antiviral formulations with clinical promise (active molecule: 5% w/w micronized aciclovir, CAS 59277-89-3), using both roll-on and lipstick application systems. The aim being to evaluate which vehicle (water, oil, low melting and high melting fatty base) and application system (roll-on, lipstick) enhances the skin penetration and the antiviral activity of the drug, after an experimental intradermal infection with Herpes simplex virus type 1 (HSV-1). As reference, a commercial formulation (5% aciclovir ointment) was used. The cumulative results of this study showed that the formulation A, containing 5% aciclovir in an aqueous base in a roll-on application system, has the better antiviral efficacy in reducing the severity of cutaneous lesions and the viral titer; among the lipsticks preparations, the formulation D, containing 5% aciclovir in a low melting fatty base, demonstrates a very strong antiviral activity, though slightly less than formulation A. This experimental work confirms the validity of the dorsal cutaneous guinea pig model as a rapid and efficient method to compare the antiviral efficacy of new formulations, with clinical promise, to optimise the topical formulation of the active antiviral drugs.
Sun, Guanghao; Nakayama, Yosuke; Dagdanpurev, Sumiyakhand; Abe, Shigeto; Nishimura, Hidekazu; Kirimoto, Tetsuo; Matsui, Takemi
2017-02-01
Infrared thermography (IRT) is used to screen febrile passengers at international airports, but it suffers from low sensitivity. This study explored the application of a combined visible and thermal image processing approach that uses a CMOS camera equipped with IRT to remotely sense multiple vital signs and screen patients with suspected infectious diseases. An IRT system that produced visible and thermal images was used for image acquisition. The subjects' respiration rates were measured by monitoring temperature changes around the nasal areas on thermal images; facial skin temperatures were measured simultaneously. Facial blood circulation causes tiny color changes in visible facial images that enable the determination of the heart rate. A logistic regression discriminant function predicted the likelihood of infection within 10s, based on the measured vital signs. Sixteen patients with an influenza-like illness and 22 control subjects participated in a clinical test at a clinic in Fukushima, Japan. The vital-sign-based IRT screening system had a sensitivity of 87.5% and a negative predictive value of 91.7%; these values are higher than those of conventional fever-based screening approaches. Multiple vital-sign-based screening efficiently detected patients with suspected infectious diseases. It offers a promising alternative to conventional fever-based screening. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The Clinical Use of Robots for Individuals with Autism Spectrum Disorders: A Critical Review
ERIC Educational Resources Information Center
Diehl, Joshua J.; Schmitt, Lauren M.; Villano, Michael; Crowell, Charles R.
2012-01-01
We examined peer-reviewed studies in order to understand the current status of empirically based evidence on the clinical applications of robots in the diagnosis and treatment of Autism Spectrum Disorders (ASD). Studies are organized into four broad categories: (a) the response of individuals with ASD to robots or robot-like behavior in comparison…
Countertransference in working with victims of political repression.
Comas-Díaz, L; Padilla, A M
1990-01-01
The countertransferential reactions of psychotherapists working in a threatening environment with victims of political repression are described. Via case studies based on clinical consultation and direct testimony, this paper examines the effects on Chilean therapists living and working in that country. It is suggested that these clinical observations may have application to therapeutic work with victims in other stressful settings.
McQuade, Kevin; Price, Robert; Liu, Nelson; Ciol, Marcia A
2012-08-30
Examination of articular joints is largely based on subjective assessment of the "end-feel" of the joint in response to manually applied forces at different joint orientations. This technical report aims to describe the development of an objective method to examine joints in general, with specific application to the shoulder, and suitable for clinical use. We adapted existing hardware and developed laptop-based software to objectively record the force/displacement behavior of the glenohumeral joint during three common manual joint examination tests with the arm in six positions. An electromagnetic tracking system recorded three-dimensional positions of sensors attached to a clinician examiner and a patient. A hand-held force transducer recorded manually applied translational forces. The force and joint displacement were time-synchronized and the joint stiffness was calculated as a quantitative representation of the joint "end-feel." A methodology and specific system checks were developed to enhance clinical testing reproducibility and precision. The device and testing protocol were tested on 31 subjects (15 with healthy shoulders, and 16 with a variety of shoulder impairments). Results describe the stiffness responses, and demonstrate the feasibility of using the device and methods in clinical settings.
RPMIS: The Roswell Park Management Information System
Priore, R.L.; Lane, W.W.; Edgerton, F.T.; Naeher, C.H.; Reese, P.A.
1978-01-01
This paper presents a generalized approach to data entry and editing utilizing formatted video computer terminals. The purpose of the system developed is to facilitate the creation of many small data bases, with a minimum of implementation time, while maintaining extensive editing capability and preserving ease of use by data entry personnel. RPMIS has demonstrated its utility in shortening the time between research activities and clinical application of results. The system allows entry and retrieval of overlapping subsets of the patient's record in an order and format most appropriate to the individual application. It is used for production of synoptic presentations of information from the labs, the ward and the clinic. RPMIS was designed for the clinical trials setting and has been well received and implemented for numerous such studies. Additional uses have included several registries, screening clinics, retrospective studies, and epidemiologic investigations. The system has found fortuitous use in maintaining curriculum vitae, publications lists and continuing medical education credits.
Lansky, Alexandra J; Messé, Steven R; Brickman, Adam M; Dwyer, Michael; Bart van der Worp, H; Lazar, Ronald M; Pietras, Cody G; Abrams, Kevin J; McFadden, Eugene; Petersen, Nils H; Browndyke, Jeffrey; Prendergast, Bernard; Ng, Vivian G; Cutlip, Donald E; Kapadia, Samir; Krucoff, Mitchell W; Linke, Axel; Scala Moy, Claudia; Schofer, Joachim; van Es, Gerrit-Anne; Virmani, Renu; Popma, Jeffrey; Parides, Michael K; Kodali, Susheel; Bilello, Michel; Zivadinov, Robert; Akar, Joseph; Furie, Karen L; Gress, Daryl; Voros, Szilard; Moses, Jeffrey; Greer, David; Forrest, John K; Holmes, David; Kappetein, Arie P; Mack, Michael; Baumbach, Andreas
2018-05-14
Surgical and catheter-based cardiovascular procedures and adjunctive pharmacology have an inherent risk of neurological complications. The current diversity of neurological endpoint definitions and ascertainment methods in clinical trials has led to uncertainties in the neurological risk attributable to cardiovascular procedures and inconsistent evaluation of therapies intended to prevent or mitigate neurological injury. Benefit-risk assessment of such procedures should be on the basis of an evaluation of well-defined neurological outcomes that are ascertained with consistent methods and capture the full spectrum of neurovascular injury and its clinical effect. The Neurologic Academic Research Consortium is an international collaboration intended to establish consensus on the definition, classification, and assessment of neurological endpoints applicable to clinical trials of a broad range of cardiovascular interventions. Systematic application of the proposed definitions and assessments will improve our ability to evaluate the risks of cardiovascular procedures and the safety and effectiveness of preventive therapies.
Pai, Vinay M; Rodgers, Mary; Conroy, Richard; Luo, James; Zhou, Ruixia; Seto, Belinda
2014-01-01
In April 2012, the National Institutes of Health organized a two-day workshop entitled ‘Natural Language Processing: State of the Art, Future Directions and Applications for Enhancing Clinical Decision-Making’ (NLP-CDS). This report is a summary of the discussions during the second day of the workshop. Collectively, the workshop presenters and participants emphasized the need for unstructured clinical notes to be included in the decision making workflow and the need for individualized longitudinal data tracking. The workshop also discussed the need to: (1) combine evidence-based literature and patient records with machine-learning and prediction models; (2) provide trusted and reproducible clinical advice; (3) prioritize evidence and test results; and (4) engage healthcare professionals, caregivers, and patients. The overall consensus of the NLP-CDS workshop was that there are promising opportunities for NLP and CDS to deliver cognitive support for healthcare professionals, caregivers, and patients. PMID:23921193
pH-based fiber optic biosensors for use in clinical and biotechnological applications
NASA Astrophysics Data System (ADS)
Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas
1995-05-01
The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.
Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications
Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K.
2016-01-01
Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications. PMID:27231630
Disaster management mobile protocols: a technology that will save lives.
Williamson, Hope M
2011-01-01
Although training and education have long been accepted as integral to disaster preparedness, many currently taught practices are neither evidence based nor standardized. The need for effective evidence-based disaster education for healthcare workers at all levels in the multidisciplinary medical response to major events has been designated by the disaster response community as a high priority. This article describes a disaster management mobile application of systematic evidence-based practice. The application is interactive and comprises portable principles, algorithms, and emergency protocols that are agile, concise, comprehensive, and response relevant to all healthcare workers. Early recognition through clinical assessment versus laboratory and diagnostic procedures in chemical, biological, radiological, and nuclear (CBRNE) exposures grounded in an evidence-based skill set is especially important. During the immediate threat, the clinical diagnosis can get frustrating because CBRNE casualties can mimic everyday healthcare illnesses and initially present with nonspecific respiratory or flu-like symptoms. As there is minimal time in a catastrophic event for the medical provider to make accurate decisions, access to accurate, timely, and comprehensive information in these situations is critical. The CBRNE mobile application is intended to provide a credible source for treatment and management of numerous patients in an often intimidating environment with scarce resources and overwhelming tasks.
Sarmaga, Don; DuBois, Jeffrey A; Lyon, Martha E
2011-01-01
Background Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. Method The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). Results No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). Conclusion The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. PMID:22226263
Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E
2011-11-01
Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical (<0.3 mmol/liter) or statistical differences (p > .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (<0.3 mmol/liter). The on-meter dosed glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.
Wiebe, Ericka; Easton, Harry; Thomas, Gillian; Barbera, Lisa; D'Alimonte, Laura; Ravi, Ananth
2015-01-01
A novel customized vaginal brachytherapy mould technique has been developed for clinical use. This image-guided technique provides a brachytherapy applicator solution for irregular vaginal vault configuration and/or a wide vaginal apex relative to the vaginal introitus that would be sub-optimally treated with standard cylinders. The customized vaginal applicator is generated by the following process: CT images are obtained with contrast-soaked vaginal packing in situ to highlight unique anatomical detail. A 3-dimensional digital model is developed from the images and subsequently converted into a custom applicator with the use of stereolithography, which is an additive manufacturing technique whereby layers 50-100 μm thick of resin are deposited and polymerized using a laser to create intricate 3-dimensional objects. The density of the applicator and the dose delivered using the custom applicator were both measured to ensure accurate dosimetry. The CT-based densities of a clinical vaginal cylinder and the cylinder generated using stereolithography were 1.29 ± 0.06 g/cm(3) vs 1.28 ± 0.01 g/cm(3), respectively. The mean measured dose from a representative stereolithographed applicator normalized to dose measured for a single plastic catheter was 99.8 ± 4.2%. In patient dosimetric results indicate improved coverage of the lateral aspect of vaginal vault with the custom cylinder relative to the standard cylinder; 700 cGy vs 328 cGy, respectively, at a representative lateral vaginal dose point, while simultaneously achieving relatively narrow dose distribution in the anterior/posterior direction. Stereolithographic applicator production was available within a clinically acceptable timeframe, and its clinical feasibility and utility has been demonstrated. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Research methods to change clinical practice for patients with rare cancers.
Billingham, Lucinda; Malottki, Kinga; Steven, Neil
2016-02-01
Rare cancers are a growing group as a result of reclassification of common cancers by molecular markers. There is therefore an increasing need to identify methods to assess interventions that are sufficiently robust to potentially affect clinical practice in this setting. Methods advocated for clinical trials in rare diseases are not necessarily applicable in rare cancers. This Series paper describes research methods that are relevant for rare cancers in relation to the range of incidence levels. Strategies that maximise recruitment, minimise sample size, or maximise the usefulness of the evidence could enable the application of conventional clinical trial design to rare cancer populations. Alternative designs that address specific challenges for rare cancers with the aim of potentially changing clinical practice include Bayesian designs, uncontrolled n-of-1 trials, and umbrella and basket trials. Pragmatic solutions must be sought to enable some level of evidence-based health care for patients with rare cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antenatal noninvasive DNA testing: clinical experience and impact.
Ferres, Millie A; Hui, Lisa; Bianchi, Diana W
2014-08-01
Nearly two decades ago, the discovery of circulating cell-free fetal DNA in maternal blood created a paradigm shift in prenatal testing. Recent advances in DNA sequencing technology have facilitated the rapid translation of DNA-based testing into clinical antenatal care. In this review, we summarize the technical approaches and current clinical applications of noninvasive testing using cell-free DNA in maternal plasma. We discuss the impact of these tests on clinical care, outline proposed integration models, and suggest future directions for the field. The use of cell-free DNA in maternal blood for the detection of fetal rhesus D antigen status, fetal sex, and common whole chromosomal aneuploidies is now well established, although testing for aneuploidy is still considered screening and not diagnostic. Further advances in technology and bioinformatics may see future clinical applications extend to the noninvasive detection of fetal subchromosomal aneuploidy, single gene disorders, and the entire fetal genome. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
[SmartCare: automatizing clinical guidelines].
Mersmann, Stefan
2009-10-01
In critical care environments, important medical and economic challenges are presented by the enhancement of therapeutic quality and the reduction of therapeutic costs. For this purpose, several clinical studies have demonstrated a positive impact of the adoption of so-called clinical guidelines. Clinical guidelines represent well documented best practices in healthcare and are fundamental aspects of evidence-based medicine. However, at the bedside, such clinical guidelines remain difficult to use by clinical staff. The knowledge-based technology SmartCare allows incorporation of arbitrary computerized clinical guidelines into various medical target systems. SmartCare constitutes a clinical guideline engine because it executes one or more clinical guidelines on a specific medical device. SmartCare was initially applied for the automated control of a mechanical ventilator to assist the process of weaning from a medical device. The methodology allows further applications to be implemented effectively with other medical devices and/or with other appropriate guidelines. In this paper, we report on the methodology and the resulting versatility of such a system, as well as the clinical evaluation of SmartCare/PS and its perspectives.
Delays in new drug applications in Japan and industrial R&D strategies.
Hirai, Y; Kinoshita, H; Kusama, M; Yasuda, K; Sugiyama, Y; Ono, S
2010-02-01
The gap between Japan and both the United States (US) and the European Union (EU) with regard to access to new drugs is becoming a major issue in Japan. We analyzed the time lags involved in new drug application (NDA) and biological license application submissions in Japan, the US, and the EU in order to identify the causes of delayed access. The time lag related to submission of applications ("submission lag") was longer for in-licensed products and for non-Japanese companies. Factors related to costs of clinical studies and potential volumes of sales were not associated with the submission lag. A bridging strategy (extrapolative use of foreign clinical data in the clinical data package based on International Conference on Harmonisation guideline E5) seemed to reduce submission lag, but the association between the two diminished when the cause-and-effect relationship was specifically investigated. These results suggest that multinational companies are likely to place more emphasis on the choice of development strategies that successfully lead to their goal rather than on direct costs and expected sales when deciding to introduce their pharmaceutical products in Japan. Our findings indicate that the clinical development guidances that helps pharmaceutical companies decide on investment and strategies are also the key to narrowing the gap in access to new drugs.
Estey, Mathew P; Cohen, Ashley H; Colantonio, David A; Chan, Man Khun; Marvasti, Tina Binesh; Randell, Edward; Delvin, Edgard; Cousineau, Jocelyne; Grey, Vijaylaxmi; Greenway, Donald; Meng, Qing H; Jung, Benjamin; Bhuiyan, Jalaluddin; Seccombe, David; Adeli, Khosrow
2013-09-01
The CALIPER program recently established a comprehensive database of age- and sex-stratified pediatric reference intervals for 40 biochemical markers. However, this database was only directly applicable for Abbott ARCHITECT assays. We therefore sought to expand the scope of this database to biochemical assays from other major manufacturers, allowing for a much wider application of the CALIPER database. Based on CLSI C28-A3 and EP9-A2 guidelines, CALIPER reference intervals were transferred (using specific statistical criteria) to assays performed on four other commonly used clinical chemistry platforms including Beckman Coulter DxC800, Ortho Vitros 5600, Roche Cobas 6000, and Siemens Vista 1500. The resulting reference intervals were subjected to a thorough validation using 100 reference specimens (healthy community children and adolescents) from the CALIPER bio-bank, and all testing centers participated in an external quality assessment (EQA) evaluation. In general, the transferred pediatric reference intervals were similar to those established in our previous study. However, assay-specific differences in reference limits were observed for many analytes, and in some instances were considerable. The results of the EQA evaluation generally mimicked the similarities and differences in reference limits among the five manufacturers' assays. In addition, the majority of transferred reference intervals were validated through the analysis of CALIPER reference samples. This study greatly extends the utility of the CALIPER reference interval database which is now directly applicable for assays performed on five major analytical platforms in clinical use, and should permit the worldwide application of CALIPER pediatric reference intervals. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Yücel, Meryem A; Selb, Juliette; Boas, David A; Cash, Sydney S; Cooper, Robert J
2014-01-15
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. Copyright © 2013 Elsevier Inc. All rights reserved.
Preclinical Development of Cell-Based Products: a European Regulatory Science Perspective.
McBlane, James W; Phul, Parvinder; Sharpe, Michaela
2018-06-25
This article describes preclinical development of cell-based medicinal products for European markets and discusses European regulatory mechanisms open to developers to aid successful product development. Cell-based medicinal products are diverse, including cells that are autologous or allogeneic, have been genetically modified, or not, or expanded ex vivo, and applied systemically or to an anatomical site different to that of their origin; comments applicable to one product may not be applicable to others, so bespoke development is needed, for all elements - quality, preclinical and clinical. After establishing how the product is produced, proof of potential for therapeutic efficacy, and then safety, of the product need to be determined. This includes understanding biodistribution, persistence and toxicity, including potential for malignant transformation. These elements need to be considered in the context of the intended clinical development. This article describes regulatory mechanisms available to developers to support product development that aim to resolve scientific issues prior to marketing authorization application, to enable patients to have faster access to the product than would otherwise be the case. Developers are encouraged to be aware of both the scientific issues and regulatory mechanisms to ensure patients can be supplied with these products.
Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.
2014-01-01
Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551
Mourcou, Quentin; Fleury, Anthony; Diot, Bruno; Franco, Céline; Vuillerme, Nicolas
2015-01-01
Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home. PMID:26583101
The development of a clinical outcomes survey research application: Assessment CenterSM
Rothrock, Nan E.; Hanrahan, Rachel T.; Jansky, Liz J.; Harniss, Mark; Riley, William
2013-01-01
Introduction The National Institutes of Health sponsored Patient-Reported Outcome Measurement Information System (PROMIS) aimed to create item banks and computerized adaptive tests (CATs) across multiple domains for individuals with a range of chronic diseases. Purpose Web-based software was created to enable a researcher to create study-specific Websites that could administer PROMIS CATs and other instruments to research participants or clinical samples. This paper outlines the process used to develop a user-friendly, free, Web-based resource (Assessment CenterSM) for storage, retrieval, organization, sharing, and administration of patient-reported outcomes (PRO) instruments. Methods Joint Application Design (JAD) sessions were conducted with representatives from numerous institutions in order to supply a general wish list of features. Use Cases were then written to ensure that end user expectations matched programmer specifications. Program development included daily programmer “scrum” sessions, weekly Usability Acceptability Testing (UAT) and continuous Quality Assurance (QA) activities pre- and post-release. Results Assessment Center includes features that promote instrument development including item histories, data management, and storage of statistical analysis results. Conclusions This case study of software development highlights the collection and incorporation of user input throughout the development process. Potential future applications of Assessment Center in clinical research are discussed. PMID:20306332
2011-01-01
Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform. PMID:21477364
Thangaratinam, Shakila; Barnfield, Gemma; Weinbrenner, Susanne; Meyerrose, Berit; Arvanitis, Theodoros N; Horvath, Andrea R; Zanrei, Gianni; Kunz, Regina; Suter, Katja; Walczak, Jacek; Kaleta, Anna; Oude Rengerink, Katrien; Gee, Harry; Mol, Ben W J; Khan, Khalid S
2009-09-10
Evidence based medicine (EBM) is considered an integral part of medical training, but integration of teaching various EBM steps in everyday clinical practice is uncommon. Currently EBM is predominantly taught through theoretical courses, workshops and e-learning. However, clinical teachers lack confidence in teaching EBM in workplace and are often unsure of the existing opportunities for teaching EBM in the clinical setting. There is a need for continuing professional development (CPD) courses that train clinical trainers to teach EBM through on-the-job training by demonstration of applied EBM real time in clinical practice. We developed such a course to encourage clinically relevant teaching of EBM in post-graduate education in various clinical environments. We devised an e-learning course targeting trainers with EBM knowledge to impart educational methods needed to teach application of EBM teaching in commonly used clinical settings. The curriculum development group comprised experienced EBM teachers, clinical epidemiologists, clinicians and educationalists from institutions in seven European countries. The e-learning sessions were designed to allow participants (teachers) to undertake the course in the workplace during short breaks within clinical activities. An independent European steering committee provided input into the process. The curriculum defined specific learning objectives for teaching EBM by exploiting educational opportunities in six different clinical settings. The e-modules incorporated video clips that demonstrate practical and effective methods of EBM teaching in everyday clinical practice. The course encouraged focussed teaching activities embedded within a trainer's personal learning plan and documentation in a CPD portfolio for reflection. This curriculum will help senior clinicians to identify and make the best use of available opportunities in everyday practice in clinical situations to teach various steps of EBM and demonstrate their applicability to clinical practice. Once fully implemented, the ultimate outcome of this pilot project will be a European qualification in teaching EBM, which will be used by doctors, hospitals, professional bodies responsible for postgraduate qualifications and continuing medical education.
Thangaratinam, Shakila; Barnfield, Gemma; Weinbrenner, Susanne; Meyerrose, Berit; Arvanitis, Theodoros N; Horvath, Andrea R; Zanrei, Gianni; Kunz, Regina; Suter, Katja; Walczak, Jacek; Kaleta, Anna; Rengerink, Katrien Oude; Gee, Harry; Mol, Ben WJ; Khan, Khalid S
2009-01-01
Background Evidence based medicine (EBM) is considered an integral part of medical training, but integration of teaching various EBM steps in everyday clinical practice is uncommon. Currently EBM is predominantly taught through theoretical courses, workshops and e-learning. However, clinical teachers lack confidence in teaching EBM in workplace and are often unsure of the existing opportunities for teaching EBM in the clinical setting. There is a need for continuing professional development (CPD) courses that train clinical trainers to teach EBM through on-the-job training by demonstration of applied EBM real time in clinical practice. We developed such a course to encourage clinically relevant teaching of EBM in post-graduate education in various clinical environments. Methods We devised an e-learning course targeting trainers with EBM knowledge to impart educational methods needed to teach application of EBM teaching in commonly used clinical settings. The curriculum development group comprised experienced EBM teachers, clinical epidemiologists, clinicians and educationalists from institutions in seven European countries. The e-learning sessions were designed to allow participants (teachers) to undertake the course in the workplace during short breaks within clinical activities. An independent European steering committee provided input into the process. Results The curriculum defined specific learning objectives for teaching EBM by exploiting educational opportunities in six different clinical settings. The e-modules incorporated video clips that demonstrate practical and effective methods of EBM teaching in everyday clinical practice. The course encouraged focussed teaching activities embedded within a trainer's personal learning plan and documentation in a CPD portfolio for reflection. Conclusion This curriculum will help senior clinicians to identify and make the best use of available opportunities in everyday practice in clinical situations to teach various steps of EBM and demonstrate their applicability to clinical practice. Once fully implemented, the ultimate outcome of this pilot project will be a European qualification in teaching EBM, which will be used by doctors, hospitals, professional bodies responsible for postgraduate qualifications and continuing medical education. PMID:19744327
75 FR 75496 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... controlled substances listed in schedule I and II: Drug Schedule Marijuana (7360) I Tetrahydrocannabinols... customers for non- clinical, laboratory-based research only. In reference to drug code 7360 (Marijuana), the...
A context-adaptable approach to clinical guidelines.
Terenziani, Paolo; Montani, Stefania; Bottrighi, Alessio; Torchio, Mauro; Molino, Gianpaolo; Correndo, Gianluca
2004-01-01
One of the most relevant obstacles to the use and dissemination of clinical guidelines is the gap between the generality of guidelines (as defined, e.g., by physicians' committees) and the peculiarities of the specific context of application. In particular, general guidelines do not take into account the fact that the tools needed for laboratory and instrumental investigations might be unavailable at a given hospital. Moreover, computer-based guideline managers must also be integrated with the Hospital Information System (HIS), and usually different DBMS are adopted by different hospitals. The GLARE (Guideline Acquisition, Representation and Execution) system addresses these issues by providing a facility for automatic resource-based adaptation of guidelines to the specific context of application, and by providing a modular architecture in which only limited and well-localised changes are needed to integrate the system with the HIS at hand.
[Standardization of the terms for Chinese herbal functions based on functional targeting].
Xiao, Bin; Tao, Ou; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang
2011-03-01
Functional analysis concisely summarizes and concentrates on the therapeutic characteristics and features of Chinese herbal medicine. Standardization of the terms for Chinese herbal functions not only plays a key role in modern research and development of Chinese herbal medicine, but also has far-reaching clinical applications. In this paper, a new method for standardizing the terms for Chinese herbal function was proposed. Firstly, functional targets were collected. Secondly, the pathological conditions and the mode of action of every functional target were determined by analyzing the references. Thirdly, the relationships between the pathological condition and the mode of action were determined based on Chinese medicine theory and data. This three-step approach allows for standardization of the terms for Chinese herbal functions. Promoting the standardization of Chinese medicine terms will benefit the overall clinical application of Chinese herbal medicine.
Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy
2018-04-30
Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Richesson, Rachel L; Smerek, Michelle M; Blake Cameron, C
2016-01-01
The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use.
Richesson, Rachel L.; Smerek, Michelle M.; Blake Cameron, C.
2016-01-01
Introduction: The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. Method: Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. Framework: An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. Next Steps: We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use. PMID:27563686
Mkit: A cell migration assay based on microfluidic device and smartphone.
Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis
2018-01-15
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS 2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS 2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS 2 -based cell functional assay for testing cell migration (the M kit ). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the M kit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the M kit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the M kit . In addition to research applications, we demonstrated the effective use of the M kit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed M kit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
[Rule of Clinical Application of Auricular Acupuncture Based on Data Mining].
Bao, Na; Wang, Qiong; Sun, Yan-Hui; Shi, Jing; Li, Xiao-Feng; Xu, Jing; Xing, Hai-Jiao; Zhang, Xuan-Ping; Zhang, Xin; Du, Yu-Zhu; Li, Jun-Lei; Yang, Qing-Qing; Feng, Xin-Xin; Jia, Chun-Sheng; Wang, Jian-Ling
2017-02-25
To explore the rule of clinical application of auricular acupuncture therapy by data mining in order to guide clinical practice. The data base about single auricular acupuncture therapy for different clinical diseases was established by collection, sorting, screening, recording, collation, data extraction, statistic analysis on data samples from journals, academic theses dissertations published in near 60 years. The application rules of auricular therapy including its predominant diseases, stimulus modality, therapeutic effect, and angle of needling were summarized by data mining technique. Auricular acupuncture therapy has been widely and mostly used in the internal medicine department, accounting for 48.56%. Of stimulus modalities, auricular point paste and pressure is applied with the highest frequency, accounting for 64%. The highest effective rate is found in the surgery department diseases(81.41%). Pressure is the most effective stimulus in the internal medi-cine department, and bloodletting combined with paste and pressure in the surgery department, auricular point injection in the gynecology and pediatrics departments, bloodletting in the ophthalmology and otorhinolaryngology department, and auricular point incision in the dermatology department. Auricular point injection has remarkable effect. Bloodletting combined with paste and pressure has nearly the same effect as bloodletting in the same medical department except dematology department. Otherwise, angle of needling is rarely studied. Auricular therapy is widely used and has remarkable effect in treating diseases by using different stimulus modalities. Whereas the angle of needling is rarely studied and future investigation is needed.