Sarchielli, Guido; De Plato, Giovanni; Cavalli, Mario; Albertini, Stefano; Nonni, Ilaria; Bencivenni, Lucia; Montali, Arianna; Ventura, Antonio; Montali, Francesca
2016-01-01
Assessment of the knowledge and application as well as perceived utility by doctors of clinical governance tools in order to explore their impact on clinical units' performance measured through mortality rates and efficiency indicators. This research is a cross-sectional study with a deterministic record-linkage procedure. The sample includes n = 1250 doctors (n = 249 chiefs of clinical units; n = 1001 physicians) working in six public hospitals located in the Emilia-Romagna Region in Italy. Survey instruments include a checklist and a research-made questionnaire which were used for data collection about doctors' knowledge and application as well as perceived utility of clinical governance tools. The analysis was based on clinical units' performance indicators which include patients' mortality, extra-region active mobility rate, average hospital stay, bed occupancy, rotation and turnover rates, and the comparative performance index as efficiency indicators. The clinical governance tools are known and applied differently in all the considered clinical units. Significant differences emerged between roles and organizational levels at which the medical leadership is carried out. The levels of knowledge and application of clinical governance practices are correlated with the clinical units' efficiency indicators (bed occupancy rate, bed turnover interval, and extra-region mobility). These multiple linear regression analyses highlighted that the clinical governance knowledge and application is correlated with clinical units' mortality rates (odds ratio, -8.677; 95% confidence interval, -16.654, -0.700). The knowledge and application, as well as perceived utility by medical professionals of clinical governance tools, are associated with the mortality rates of their units and with some efficiency indicators. However, the medical frontline staff seems to not consider homogeneously useful the clinical governance tools application on its own clinical practice.
Clinical application of radiolabelled platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, C.
1990-01-01
This book presents papers on the clinical applications of radiolabelled platelets. The papers are grouped into six sections on platelet labelling techniques, radiolabelled platelets in cardiology, monitoring of antiplatelet therapy, platelet scintigraphy in stroke patients, platelet scintigraphy in angiology, and platelet scintigraphy in hematology and other clinical applications, including renal transplant rejection.
Clinical application of adipose stem cells in plastic surgery.
Kim, Yong-Jin; Jeong, Jae-Ho
2014-04-01
Adipose stem cells (ASCs) are a type of adult stem cells that share common characteristics with typical mesenchymal stem cells. In the last decade, ASCs have been shown to be a useful cell resource for tissue regeneration. The major role of regenerative medicine in this century is based on cell therapy in which ASCs hold a key position. Active research on this new type of adult stem cell has been ongoing and these cells now have several clinical applications, including fat grafting, overcoming wound healing difficulties, recovery from local tissue ischemia, and scar remodeling. The application of cultured cells will increase the efficiency of cell therapy. However, the use of cultured stem cells is strictly controlled by government regulation to ensure patient safety. Government regulation is a factor that can limit more versatile clinical application of ASCs. In this review, current clinical applications of ASCs in plastic surgery are introduced. Future stem cell applications in clinical field including culturing and banking of ASCs are also discussed in this review.
ERIC Educational Resources Information Center
Lancaster, F. Wilfrid, Ed.
In planning this ninth annual clinic an attempt was made to include papers on a wide range of library applications of on-line computers, as well as to include libraries of various types and various sizes. Two papers deal with on-line circulation control (the Ohio State University system, described by Hugh C. Atkinson, and the Northwestern…
[Development and application of hospital customer service center platform].
Chen, Minya; Zheng, Konglin; Xia, Yong
2012-01-01
This paper introduces the construction and application of the platform of client service center in the general hospital and discusses how to provide patients with an entire service including service before clinic, on clinic and after clinic. It can also provide references for a new service mode for clinic service.
Clinical Applications of Resting State Functional Connectivity
Fox, Michael D.; Greicius, Michael
2010-01-01
During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951
Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review)
HUANG, SHENG; ZHAO, WEILIANG; WANG, ZIHUA; TAO, KAI; LIU, XIAOYAN; CHANG, PENG
2016-01-01
Cell-assisted lipotransfer (CAL) has been widely used in various clinical applications, including breast augmentation following mammectomy, soft-tissue reconstruction and wound healing. However, the clinical application of CAL has been restricted due to the transplanted fat tissues being readily liquefied and absorbed. The present review examines 57 previously published studies involving CAL, including fat grafting or fat transfer with human adipose-stem cells in all known databases. Of these 57 articles, seven reported the clinical application of CAL. In the 57 studies, the majority of the fat tissues were obtained from the abdomen via liposuction of the seven clinical studies, four were performed in patients requiring breast augmentation, one in a patient requiring facial augmentation, one in a patient requiring soft tissue augmentation/reconstruction and one in a patient requiring fat in their upper arms. Despite the potential risks, there has been an increased demand for CAL in in cosmetic or aesthetic applications. Thus, criteria and guidelines are necessary for the clinical application of CAL technology. PMID:26677061
Tissue fluid pressures - From basic research tools to clinical applications
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Akeson, Wayne H.; Mubarak, Scott J.; Owen, Charles A.; Gershuni, David H.
1989-01-01
This paper describes clinical applications of two basic research tools developed and refined in the past 20 years: the wick catheter (for measuring tissue fluid pressure) and the colloid osmometer (for measuring osmotic pressure). Applications of the osmometer include estimations of the reduced osmotic pressure of sickle-cell hemoglobin with deoxygenation, and of reduced swelling pressure of human nucleus pulposus with hydration or upon action of certain enzymes. Clinical uses of the wick-catheter technique include an improvement of diagnosis and treatment of acute and chronic compartment syndromes, the elucidation of the tissue pressure thresholds for neuromuscular dysfunction, and the development of a better tourniquet for orthopedics.
[Related issues in clinical translational application of adipose-derived stem cells].
Liu, Hongwei; Cheng, Biao; Fu, Xiaobing
2012-10-01
To introduce the related issues in the clinical translational application of adipose-derived stem cells (ASCs). The latest papers were extensively reviewed, concerning the issues of ASCs production, management, transportation, use, and safety during clinical application. ASCs, as a new member of adult stem cells family, bring to wide application prospect in the field of regenerative medicine. Over 40 clinical trials using ASCs conducted in 15 countries have been registered on the website (http://www.clinicaltrials.gov) of the National Institutes of Health (NIH), suggesting that ASCs represents a promising approach to future cell-based therapies. In the clinical translational application, the related issues included the quality control standard that management and production should follow, the prevention measures of pathogenic microorganism pollution, the requirements of enzymes and related reagent in separation process, possible effect of donor site, age, and sex in sampling, low temperature storage, product transportation, and safety. ASCs have the advantage of clinical translational application, much attention should be paid to these issues in clinical application to accelerate the clinical translation process.
Clinical grade adult stem cell banking
Thirumala, Sreedhar; Goebel, W Scott
2009-01-01
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678
ERIC Educational Resources Information Center
Cochrane, Pauline Atherton, Ed.; Johnson, Eric H., Ed.
This proceedings represents and documents in part the 16 presentations made at the 34th Annual Clinic on Library Applications of Data Processing. World Wide Web URLs that provide insight into each presentation are included. Presentations include: (1) "Hypostatizing Data Collections, Especially Bibliographic: Abstractions, Representations,…
Clinical Application of Diode Laser (980 nm) in Maxillofacial Surgical Procedures.
Aldelaimi, Tahrir N; Khalil, Afrah A
2015-06-01
For many procedures, lasers are now becoming the treatment of choice by both clinicians and patients, and in some cases, the standard of care. This clinical study was carried out at Department of Maxillofacial Surgery, Ramadi Teaching Hospital, Rashid Private Hospital and Razi Private Hospital, Anbar Health Directorate, Anbar Province, Iraq. A total of 32 patients including 22 (≈ 70%) male and 10 (≈ 30%) female with age range from 5 months to 34 years old. Chirolas 20 W diode laser emitting at 980 nm was used. Our preliminary clinical findings include sufficient hemostasis, coagulation properties, precise incision margin, lack of swelling, bleeding, pain, scar tissue formation and overall satisfaction were observed in the clinical application. The clinical application of the diode (980 nm) laser in maxillofacial surgery proved to be of beneficial effect for daily practice and considered practical, effective, easy to used, offers a safe, acceptable, and impressive alternative for conventional surgical techniques.
The NCI Clinical Assay Development Program (CADP) is requesting project applications from investigators seeking clinical assay validation resources. These resources are designed to assist with the development of assays that may predict therapy response or prognostic behavior of a diagnosed cancer, primarily for use in clinical trials. Approved projects for the NCI CADP will be provided access to the Institute’s assay development and validation resources, including project management support.
Spiral microstrip hyperthermia applicators: technical design and clinical performance.
Samulski, T V; Fessenden, P; Lee, E R; Kapp, D S; Tanabe, E; McEuen, A
1990-01-01
Spiral microstrip microwave (MW) antennas have been developed and adapted for use as clinical hyperthermia applicators. The design has been configured in a variety of forms including single fixed antenna applicators, multi-element arrays, and mechanically scanned single or paired antennas. The latter three configurations have been used to allow an expansion of the effective heating area. Specific absorption rate (SAR) distributions measured in phantom have been used to estimate the depth and volume of effective heating. The estimates are made using the bioheat equation assuming uniformly perfused tissue. In excess of 500 treatments of patients with advanced or recurrent localized superficial tumors have been performed using this applicator technology. Data from clinical treatments have been analyzed to quantify the heating performance and verify the suitability of these applicators for clinical use. Good microwave coupling efficiency together with the compact applicator size have proved to be valuable clinical assets.
[Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.
Ying, Bin-Wu
2016-11-01
Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.
Measuring Workload Demand of Informatics Systems with the Clinical Case Demand Index
Iyengar, M. Sriram; Rogith, Deevakar; Florez-Arango, Jose F
2017-01-01
Introduction: The increasing use of Health Information Technology (HIT) can add substantially to workload on clinical providers. Current methods for assessing workload do not take into account the nature of clinical cases and the use of HIT tools while solving them. Methods: The Clinical Case Demand Index (CCDI), consisting of a summary score and visual representation, was developed to meet this need. Consistency with current perceived workload measures was evaluated in a Randomized Control Trial of a mobile health system. Results: CCDI is significantly correlated with existing workload measures and inversely related to provider performance. Discussion: CCDI combines subjective and objective characteristics of clinical cases along with cognitive and clinical dimensions. Applications include evaluation of HIT tools, clinician scheduling, medical education. Conclusion: CCDI supports comparative effectiveness research of HIT tools. In addition, CCDI could have numerous applications including training, clinical trials, design of clinical workflows, and others. PMID:29854166
Han, Xue-Jie; Liu, Meng-Yu; Lian, Zhi-Hua; Wang, Li-Ying; Shi, Nan-Nan; Zhao, Jun
2017-09-01
To evaluate the applicability and clinical applications of Guidelines for Diagnosis and Treatment of Internal Diseases in Traditional Chinese Medicine, so as to provide the basis for the revision of the guidelines. This study was completed by the research and promotion base for traditional Chinese medicine(TCM) standard. The methods of applicability evaluation and application evaluation were used in the study. The questionnaires were filled out to evaluate applicability of the guideline, including doctor's familiarity with the guideline,the quality of the guideline, applicable conditions and clinical applications. The prospective case study analysis method was used to evaluate application of the guideline, including evaluation of clinical application compliance and application results(such as clinical effects, safety and economy). There were two parts in the guideline, which were TCM guideline and Western medicine guideline. The results of applicability evaluation showed that there were no obvious differences between TCM guideline and Western medicine guideline in doctor's familiarity with guideline(85.43%, 84.57%) and the use of the guideline(52.10%, 54.47%); the guidelines with good quality, and higher scores in the scope of application and the use of the term rationality(91.94%, 93.35%); the rationality scores of relevant contents in syndrome differentiation and treatment were more than 75%; the applicable conditions were better, and the safety score was the the highest. The comprehensive applicability evaluation showed that the proportion of the application of TCM guideline and Western medicine guideline were 77.73%, 75.46%, respectively. The results of application evaluation showed that there was high degree coincidence between the guideline with its clinical application; except for "other treatment" and "recuperation and prevention" in TCM, other items got high scores which were more than 90%; in the evaluation of application effects, safety of the guideline was best, economy of the guideline was better, and clincal effect was good. The comprehensive application evaluation showed that 75%~80% doctors were satisfied with the guideline. The Guidelines for Diagnosis and Treatment of Internal Diseases in Traditional Chinese Medicine has been widely used in clinical practice, which is of high quality, high degree of clinical application,good safety and economy. But there were some disadvantages of the guideline such as lack of evidence-based medicine and innovation, which is need to be improved constantly in the guideline revision. Copyright© by the Chinese Pharmaceutical Association.
An Integrated Computerized Triage System in the Emergency Department
Aronsky, Dominik; Jones, Ian; Raines, Bill; Hemphill, Robin; Mayberry, Scott R; Luther, Melissa A; Slusser, Ted
2008-01-01
Emergency department (ED) triage is a fast-paced process that prioritizes the allocation of limited health care resources to patients in greatest need. This paper describes the experiences with an integrated, computerized triage application. The system exchanges information with other information systems, including the ED patient tracking board, the longitudinal electronic medical record, the computerized provider order entry, and the medication reconciliation application. The application includes decision support capabilities such as assessing the patient’s acuity level, age-dependent alerts for vital signs, and clinical reminders. The browser-based system utilizes the institution’s controlled vocabulary, improves data completeness and quality, such as compliance with capturing required data elements and screening questions, initiates clinical processes, such as pneumococcal vaccination ordering, and reminders to start clinical pathways, issues alerts for clinical trial eligibility, and facilitates various reporting needs. The system has supported the triage documentation of >290,000 pediatric and adult patients. PMID:18999190
Functionalized Nanostructures with Application in Regenerative Medicine
Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.
2012-01-01
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186
Application and Exploration of Big Data Mining in Clinical Medicine.
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-03-20
To review theories and technologies of big data mining and their application in clinical medicine. Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Big data mining has the potential to play an important role in clinical medicine.
Utilising the Intel RealSense Camera for Measuring Health Outcomes in Clinical Research.
Siena, Francesco Luke; Byrom, Bill; Watts, Paul; Breedon, Philip
2018-02-05
Applications utilising 3D Camera technologies for the measurement of health outcomes in the health and wellness sector continues to expand. The Intel® RealSense™ is one of the leading 3D depth sensing cameras currently available on the market and aligns itself for use in many applications, including robotics, automation, and medical systems. One of the most prominent areas is the production of interactive solutions for rehabilitation which includes gait analysis and facial tracking. Advancements in depth camera technology has resulted in a noticeable increase in the integration of these technologies into portable platforms, suggesting significant future potential for pervasive in-clinic and field based health assessment solutions. This paper reviews the Intel RealSense technology's technical capabilities and discusses its application to clinical research and includes examples where the Intel RealSense camera range has been used for the measurement of health outcomes. This review supports the use of the technology to develop robust, objective movement and mobility-based endpoints to enable accurate tracking of the effects of treatment interventions in clinical trials.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
NASA Astrophysics Data System (ADS)
Verdaasdonck, Rudolf M.; van Swol, Christiaan F. P.
1997-06-01
In this proceeding a summary is given of the slides presented at the meeting. For a detailed description of the research and clinical applications, references are included. An update of current research and clinical activities can be found on the web page of the medical laser center: www.cv.ruu.nl/LaserCenter. Links to other laser sites. At this site reprints can be requested.
Wang, Yue-Xi; Liu, Meng-Yu; Wang, Li-Ying; Shi, Nan-Nan; Zhao, Xue-Yao; Liu, Yu-Qi; Wang, Yan-Ping; Han, Xue-Jie
2017-09-01
To assess the quality and application effect of Guidelines for Diagnosis and Treatment of Common Diseases of Dermatology in Traditional Chinese Medicine(Guidelines) through the applicability and applicability evaluation respectively. The questionnaire survey was adopted to evaluate the applicability of the Guidelines, including the utilization, quality, and clinical application conditions. The results showed that the familiarity rate and utilization rate of the Guidelines were 85.37%, 48.78%, respectively. The data showed that the familiarity and the utilization rates were different in the working staff with different professional titles. The evaluation level was the lowest given by the staff with junior professional title (70.97%, 29.03%) in comparison. The assessment showed the overall quality of the Guideline was good and slightly low level for the rationality scores of the other therapeutic methods as well as for the recuperation and prevention (80.49%, 85.37%), which was in line with the clinical compliance of the Guideline. The perspective observation of clinical cases was used for the applicability evaluation, including clinical compliance of the Guideline, effect evaluation, and comprehensive assessment, et al. The results showed that the safety score was the highest, followed by the economic issue and efficacy. For the comprehensive evaluation of the applicability, complete applicability accounted for 29.27%, and the general applicability accounted for 87.80%. It was showed in the three index scores of the applicability evaluation that the accumulative score 7-9 scores were 75.65%, 73.89%, 71.12%. Through the applicability and applicability evaluation, the Guideline was satisfactory in the overall quality, high in the safety of clinical application and good in efficacy and economic issues. There are some limits on the development method and technical issues in the Guideline, which is required to be supplemented in the revision. Additionally, the strategy study on the promotion of the Guideline should be enhanced so as to expedite the recognition and utilization of the Guideline. Copyright© by the Chinese Pharmaceutical Association.
Dumestre, Danielle O; Fraulin, Frankie O G
2017-11-01
Physicians are increasingly using smartphones to take clinical photographs. This study evaluates a smartphone application for clinical photography that prioritizes and facilitates patient security. Ethics approval was obtained to trial a smartphone clinical photography application, PicSafe Medi. Calgary plastic surgeons and residents used the application to obtain informed consent and photograph patients. Surveys gauging the application's usability, consent process, and photograph storage/sharing were then sent to surgeons and patients. Over a 6-month trial period, 15 plastic surgeons and residents used the application to photograph 86 patients. Over half of the patients (57%) completed the survey. The majority of patients (96%) were satisfied with the application's consent process, and all felt their photographs were secure. The majority (93%) of surgeons/residents completed the survey. The application was felt to overcome issues with current photography practices: inadequate consent and storage of photographs (100%), risk to patient confidentiality (92%), and unsecure photograph sharing (93%). Barriers to regular use of the application included need for cellphone service/Internet (54%), sanitary concerns due to the need for patients to sign directly on the phone (46%), inability to obtain proactive/retroactive consent (85%), and difficulty viewing photographs (80%). The majority of surgeons (85%) believe a smartphone application would be suitable for clinical patient photography, but due to its limitations, only 23% would use the trialed application. A smartphone clinical photography application addresses the patient confidentiality risks of current photography methods; however, limitations of the trialed application prevent its broad implementation.
Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions
Breakefield, Xandra O.; Leonard, Joshua N.
2015-01-01
This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury. PMID:25292428
BLOODR: blood donor and requester mobile application
Tatikonda, Vamsi Krishna
2017-01-01
Background With rapid increase in the usage of social networks sites across the world, there is also a steady increase in blood donation requests as being noticed in the number of posts on these sites such as Facebook and twitter seeking blood donors. Finding blood donor is a challenging issue in almost every country. There are some blood donor finder applications in the market such as Blood app by Red Cross and Blood Donor Finder application by Neologix. However, more reliable applications that meet the needs of users are prompted. Methods Several software technologies including languages and framework are used to develop our blood-donor web application known as BLOODR application. These technologies comprise Ruby programming language (simply known as Ruby) along with JavaScript and PostgreSQL for database are used. Ruby on Rails (simply known as Rails) is an open source Web framework that makes it possible to quickly and easily create data-based web applications. Results We show screenshots for the BLOODR application for different types of users including requester, donor, and administrator. Various features of the application are described and their needs of use are analyzed. If a patient needs a blood at a clinic, blood donors in vicinity can be contacted through using a clinic management service provided in this application. Registered donors will get notification for the blood requests only if their blood group is compatible with the requested blood type and in the same city/region. Then matching blood donors can go to the requesting clinic and donate. Conclusions BLOODR application provides a reliable platform to connect local blood donors with patients. BLOODR creates a communication channel through authenticated clinics whenever a patient needs blood donation. It is a useful tool to find compatible blood donors who can receive blood request posts in their local area. Clinics can use this web application to maintain the blood donation activity. Future improvement of the BLOODR is explained. PMID:29184892
BLOODR: blood donor and requester mobile application.
Tatikonda, Vamsi Krishna; El-Ocla, Hosam
2017-01-01
With rapid increase in the usage of social networks sites across the world, there is also a steady increase in blood donation requests as being noticed in the number of posts on these sites such as Facebook and twitter seeking blood donors. Finding blood donor is a challenging issue in almost every country. There are some blood donor finder applications in the market such as Blood app by Red Cross and Blood Donor Finder application by Neologix. However, more reliable applications that meet the needs of users are prompted. Several software technologies including languages and framework are used to develop our blood-donor web application known as BLOODR application. These technologies comprise Ruby programming language (simply known as Ruby) along with JavaScript and PostgreSQL for database are used. Ruby on Rails (simply known as Rails) is an open source Web framework that makes it possible to quickly and easily create data-based web applications. We show screenshots for the BLOODR application for different types of users including requester, donor, and administrator. Various features of the application are described and their needs of use are analyzed. If a patient needs a blood at a clinic, blood donors in vicinity can be contacted through using a clinic management service provided in this application. Registered donors will get notification for the blood requests only if their blood group is compatible with the requested blood type and in the same city/region. Then matching blood donors can go to the requesting clinic and donate. BLOODR application provides a reliable platform to connect local blood donors with patients. BLOODR creates a communication channel through authenticated clinics whenever a patient needs blood donation. It is a useful tool to find compatible blood donors who can receive blood request posts in their local area. Clinics can use this web application to maintain the blood donation activity. Future improvement of the BLOODR is explained.
Du, Na; Guo, Chenglin; Yang, Mei; Ji, Yanli; Wang, Wei; Li, Jie; Li, Chuan; Liu, Lunxu; Che, Guowei
2017-03-20
Though the concept of enhanced recovery after surgery (ERAS) has been progressively known by the surgeons and applied clinically, the current status of its cognition among thoracic surgeons and application in thoracic surgery is still unknown. Based on the analysis of a survey of thoracic surgeons and nurses on chest ERAS during a national conference, we aimed to analyze the status and difficulties of the application of ERAS in thoracic surgery. A total of 773 questionnaires were collected during the first West China chest ERAS Forum and analyzed. The content of the questionnaire can be divided into two parts, including the respondents' institute and personal information, 10 questions on ERAS. (1) Current status of clinical application of ERAS is the concept rather than the practice: 69.6% of the surgeons and 58.7% of the nurses agreed with this view; in addition, 88.5% of the doctors and 85.7% of the nurses believed that the concept of ERAS may be applicable to every branches of surgery; (2) 55.6% of the doctors and 69.1% of the nurses believed that the reason of poor clinical application of ERAS included no mature procedure, lack of consensus and specifications; (3) The best team for the clinical practice of ERAS should be based on surgeon-centered multidisciplinary cooperation and integration of medical care: 62.1% of the surgeons and 70.7% of nurses agreed with this view; (4) 73.7% of the surgeons and 81.9% of the nurses agreed that mean hospital stay, patients' experience in hospital and social satisfaction should be the evaluation standard of ERAS practice. The application of ERAS in thoracic surgery is still the concept rather than the practice. The reason included the lack of clinical applicable specifications and scheme.
ERIC Educational Resources Information Center
Donohue, Brad; Azrin, Nathan; Allen, Daniel N.; Romero, Valerie; Hill, Heather H.; Tracy, Kendra; Lapota, Holly; Gorney, Suzanne; Abdel-al, Ruweida; Caldas, Diana; Herdzik, Karen; Bradshaw, Kelsey; Valdez, Robby; Van Hasselt, Vincent B.
2009-01-01
A comprehensive evidence-based treatment for substance abuse and other associated problems (Family Behavior Therapy) is described, including its application to both adolescents and adults across a wide range of clinical contexts (i.e., criminal justice, child welfare). Relevant to practitioners and applied clinical researchers, topic areas include…
MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
Application and Exploration of Big Data Mining in Clinical Medicine
Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling
2016-01-01
Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378
Endoscopic optical coherence tomography: technologies and clinical applications [Invited
Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde
2017-01-01
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed. PMID:28663882
Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman; Xu, Feng; Wan Abas, Wan Abu Bakar; Choi, Jane Ru; Pingguan-Murphy, Belinda
2015-08-01
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Clinical Applications of 3D Printing: Primer for Radiologists.
Ballard, David H; Trace, Anthony Paul; Ali, Sayed; Hodgdon, Taryn; Zygmont, Matthew E; DeBenedectis, Carolynn M; Smith, Stacy E; Richardson, Michael L; Patel, Midhir J; Decker, Summer J; Lenchik, Leon
2018-01-01
Three-dimensional (3D) printing refers to a number of manufacturing technologies that create physical models from digital information. Radiology is poised to advance the application of 3D printing in health care because our specialty has an established history of acquiring and managing the digital information needed to create such models. The 3D Printing Task Force of the Radiology Research Alliance presents a review of the clinical applications of this burgeoning technology, with a focus on the opportunities for radiology. Topics include uses for treatment planning, medical education, and procedural simulation, as well as patient education. Challenges for creating custom implantable devices including financial and regulatory processes for clinical application are reviewed. Precedent procedures that may translate to this new technology are discussed. The task force identifies research opportunities needed to document the value of 3D printing as it relates to patient care. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Zuñiga, Leyre; Calvo, Begoña
2010-04-01
For similar biological medicinal products, the so-called biosimilars, clinical trials are required rather than just the bioequivalence studies required to support the registration of a generic small molecule drug product. The EU Directive 2001/83/EC, as amended, stated that where a biological medicinal product which is similar to a reference biological product, does not meet the conditions in the definition of generic medicinal products the results of appropriate pre-clinical tests or clinical trials relating to these conditions must be provided. The challenge is to determine the exact nature of the non-clinical and clinical programme required to gain regulatory approval. The applicant is encouraged to provide a detailed description of the strategy used to demonstrate the biosimilar and the reference product have similar profiles in terms of quality, safety and efficacy. The extent to which comparability can be proven will have quite an impact on how many non-clinical and clinical studies the biosimilar applicant will be required to conduct. The dossier submitted by the applicant to the EMEA should cover all aspects of the comparability assessment and must include data on possible unwanted immune reactions to the therapeutic protein. Post-marketing pharmacovigilance plans are also expected to be included in the biosimilar dossier. Copyright 2009 Elsevier Inc. All rights reserved.
Biological Gene Delivery Vehicles: Beyond Viral Vectors
Seow, Yiqi; Wood, Matthew J
2009-01-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications. PMID:19277019
Biological gene delivery vehicles: beyond viral vectors.
Seow, Yiqi; Wood, Matthew J
2009-05-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications.
Boyer, S A
1999-01-01
There is an alternative to classroom lecture that provides faster, more complete instruction and introduces the learner to clinical application of skills in a safe environment. This teaching style uses multiple media to present professional, published resources that provide excellent quality, topic-specific information. The benefits of this type of teaching/learning module include improved use of student and instructor time, scheduling advantages, increased learning, revenue generation potential, and student empowerment. With this approach, a strong, sound educational base is built, and each course includes some degree or form of clinical application as a key component.
Success factors for telehealth--a case study.
Moehr, J R; Schaafsma, J; Anglin, C; Pantazi, S V; Grimm, N A; Anglin, S
2006-01-01
To present the lessons learned from an evaluation of a comprehensive telehealth project regarding success factors and evaluation methodology for such projects. A recent experience with the evaluation of new telehealth services in BC, Canada, is summarized. Two domains of clinical applications, as well as educational and administrative uses, and the project environment were evaluated. In order to contribute to the success of the project, the evaluation included formative and summative approaches employing qualitative and quantitative methods with data collection from telehealth events, participants and existing databases. The evaluation had to be carried out under severe budgetary and time constraints. We therefore deliberately chose a broad ranging exploratory approach within a framework provided, and generated questions to be answered on the basis of initial observations and participant driven interviews with progressively more focused and detailed data gathering, including perusal of a variety of existing data sources. A unique feature was an economic evaluation using static simulation models. The evaluation yielded rich and detailed data, which were able to explain a number of unanticipated findings. One clinical application domain was cancelled after 6 months, the other continues. The factors contributing to success include: Focus on chronic conditions which require visual information for proper management. Involvement of established teams in regular scheduled visits or in sessions scheduled well in advance. Problems arose with: Ad hoc applications, in particular under emergency conditions. Applications that disregard established referral patterns. Applications that support only part of a unit's services. The latter leads to the service mismatch dilemma (SMMD) with the end result that even those e-health services provided are not used. The problems encountered were compounded by issues arising from the manner in which the telehealth services had been introduced, in particular the lack of time for preparation and establishment of routine use. Educational applications had significant clinical benefits. Administrative applications generated savings which exceeded the substantial capital investment and made educational and clinical applications available at variable cost. Evaluation under severe constraints can yield rich information. The identified success factors, including provision of an overarching architecture and infrastructure, strong program management, thorough needs analysis and detailing applications to match the identified needs should improve the sustainability of e-health projects. Insights gained: Existing assumptions before the study was conducted: Evaluation has to proceed from identified questions according to a rigorous experimental design. Emergency and trauma services in remote regions can and should be supported via telehealth based on video-conferencing. Educational applications of telehealth directed at providers are beneficial for recruitment and retention of providers in remote areas. Insights gained by the study: An exploratory approach to evaluation using a multiplicity of methods can yield rich and detailed information even under severe constraints. Ad hoc and emergency clinical applications of telehealth can present problems unless they are based on thorough, detailed analyses of environment and need, conform to established practice patterns and rely on established trusting collaborative relationships. Less difficult applications should be introduced before attempting to support use under emergency conditions. Educational applications are of interest beyond the provider community to patients, family and community members, and have clinical value. In large, sparsely populated areas with difficult travel conditions administrative applications by themselves generate savings that compensate for the substantial capital investment for telehealth required for clinical applications.
Liu, Yu-Qi; Liu, Meng-Yu; Li, Chun; Shi, Nan-Nan; Wang, Yue-Xi; Wang, Li-Ying; Zhao, Xue-Yao; Kou, Shuang; Han, Xue-Jie; Wang, Yan-Ping
2017-09-01
This study is to assess the Guidelines for Diagnosis and Treatment of Common Diseases of Otolaryngology in Traditional Chinese Medicine in clinical application and provide evidence for further guideline revision. The assessment was divided into applicability assessment and practicability assessment. The applicability assessment based on questionnaire survey and the traditional Chinese medicine (TCM) practitioners were asked to independently fill the Questionnaire for Applicability Assessment on the Guidelines for Diagnosis and Treatment in Traditional Chinese Medicine. The practicability assessment was based on prospective case investigation and analysis method and the TCM practitioners-in-charge filled the Case Investigation Questionnaire for Practicability Assessment on the Guidelines for Diagnosis and Treatment in Traditional Chinese Medicine. The data were analyzed in descriptive statistics. 151 questionnaires were investigated for applicability assessment and 1 016 patients were included for practicability assessment. The results showed that 88.74% of them were familiar with the guidelines and 45.70% used them. The guidelines quality and related items were similar in applicability assessment and practicability assessment, and scored highly as more than 85.00% except the "recuperating and prevention". The results suggested that the quality of Guidelines for Diagnosis and Treatment of Common Diseases of Otolaryngology in Traditional Chinese Medicine was high and could better guide the clinical practice. The "recuperating and prevention" part should be improved and the evidence data should be included in future guideline revision, so that the clinical utilization rate could be increased. Copyright© by the Chinese Pharmaceutical Association.
Application of cloud database in the management of clinical data of patients with skin diseases.
Mao, Xiao-fei; Liu, Rui; DU, Wei; Fan, Xue; Chen, Dian; Zuo, Ya-gang; Sun, Qiu-ning
2015-04-01
To evaluate the needs and applications of using cloud database in the daily practice of dermatology department. The cloud database was established for systemic scleroderma and localized scleroderma. Paper forms were used to record the original data including personal information, pictures, specimens, blood biochemical indicators, skin lesions,and scores of self-rating scales. The results were input into the cloud database. The applications of the cloud database in the dermatology department were summarized and analyzed. The personal and clinical information of 215 systemic scleroderma patients and 522 localized scleroderma patients were included and analyzed using the cloud database. The disease status,quality of life, and prognosis were obtained by statistical calculations. The cloud database can efficiently and rapidly store and manage the data of patients with skin diseases. As a simple, prompt, safe, and convenient tool, it can be used in patients information management, clinical decision-making, and scientific research.
Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong; Hwang, Joo Ha
2010-09-01
High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.
Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong
2010-01-01
High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges. PMID:21103296
Smartphone Applications for the Clinical Oncologist in UK Practice.
Rozati, Hamoun; Shah, Sonya Pratik; Shah, Neha
2015-06-01
A number of medical smartphone applications have been developed to assist clinical oncology specialists. Concerns have arisen that the information provided may not be under sufficient scrutiny. This study aims to analyse the current applications available for clinical oncologists in the UK. Applications aimed specifically at physician clinical oncologists were searched for on the major smartphone operating systems: Apple iOS; Google Android; Microsoft Windows OS; and Blackberry OS. All applications were installed and analysed. The applications were scrutinised to assess the following information: cost; whether the information included was referenced; when the information was last updated; and whether they made any reference to UK guidelines. A novel rating score based on these criteria was applied to each application. Fifty applications were identified: 24 for Apple's iOS; 23 for Google's Android; 2 for Blackberry OS; and 1 for Windows OS. The categories of applications available were: drug reference; journal reference; learning; clinical calculators; decision support; guidelines; and dictionaries. Journal reference and guideline applications scored highly on our rating system. Drug reference application costs were prohibitive. Learning tools were poorly referenced and not up-to-date. Smartphones provide easy access to information. There are numerous applications devoted to oncology physicians, many of which are free and contain referenced, up-to-date data. The cost and quality of drug reference and learning applications have significant scope for improvement. A regulatory body is needed to ensure the presence of peer-reviewed, validated applications to ensure their reliability.
Exploring New Frontiers of Microsurgery: From Anatomy to Clinical Methods.
Wang, Zeng Tao; Zheng, You Mao; Zhu, Lei; Hao, Li Wen; Zhang, Ya Bin; Chen, Chao; Xia, Li Feng; Liu, Lin Feng
2017-04-01
This article presents the authors' understanding and experience concerning anatomic studies and clinical methods in microsurgical hand reconstruction. The 4 parts of this article include anatomic study of the hand for developing new flaps; application of miniflaps from the hand, including clinical experience with 8 unique flaps in the hand; anatomic and clinical considerations concerning several flaps from other parts of the human body; And our experience with vascularized free toe joint transfer. Copyright © 2016 Elsevier Inc. All rights reserved.
Application of Platelet-Rich Plasma to Disorders of the Knee Joint
Mandelbaum, Bert R.; McIlwraith, C. Wayne
2013-01-01
Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674
Dwyer‐White, Molly; Doshi, Aalap; Hill, Mary; Pienta, Kenneth J.
2011-01-01
Abstract Recruiting volunteers into clinical research remains a significant challenge for many clinical research study teams, thus the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan developed UMClinicalStudies (http://www.UMClinicalStudies.org)—a Web application that links the community to a single gateway for clinical research. UMClinicalStudies (formerly named “Engage”) is an integral piece of MICHR’s efforts to increase clinical research participation in order to advance medical discoveries. Despite the initial success of the application, barriers to research participation remain, including the applications accessibility for potential research volunteers and study team members. In response, new initiatives were instigated to identify user needs, in order to broaden the ability to simultaneously assist researchers in recruitment activities, while also aiding potential volunteers in the exploration of and participation in clinical research opportunities. To do this, improvements to the interface and functionality were identified and implemented for both the public and the research audiences through extensive system analysis, and through the application of human computer interactivity processes, resulting in significant improvements in usability and ultimately research volunteerism, indicating that utilizing such technology is pivotal in reaching broader audiences for clinical trial participation. Clin Trans Sci 2011; Volume 4: 363–368 PMID:22029810
From Theory to Application: A Study of Knowledge Transfer in Dental Education
ERIC Educational Resources Information Center
Peltz, Ivy D.
2014-01-01
Traditionally, dental education is divided into two phases: pre-clinical and clinical education. The pre-clinical phase of dental education includes the assimilation of theoretical topical knowledge in addition to the completion of simulated exercises. Upon completion of and demonstration of competency in their pre-clinical courses, students begin…
Li, Ting; Zhong, Fulin; Pan, Boan; Li, Zebin; Huang, Chong; Deng, Zishan
2017-01-01
The optoelectronic sensor OPT101 have merits in advanced optoelectronic response characteristics at wavelength range for medical near-infrared spectroscopy and small-size chip design with build-in trans-impedance amplifier. Our lab is devoted to developing a series of portable near-infrared spectroscopy (NIRS) devices embedded with OPT101 for applications in intensive care unit clinics, based on NIRS principle. Here we review the characteristics and advantages of OPT101 relative to clinical NIRS instrumentation, and the most recent achievements, including early-diagnosis and therapeutic effect evaluation of thrombus, noninvasive monitoring of patients' shock severity, and fatigue evaluation. The future prospect on OPT101 improvements in noninvasive clinical applications is also discussed. PMID:28757564
Wireless remote control clinical image workflow: utilizing a PDA for offsite distribution
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean
2004-04-01
Last year we presented in RSNA an application to perform wireless remote control of PACS image distribution utilizing a handheld device such as a Personal Digital Assistant (PDA). This paper describes the clinical experiences including workflow scenarios of implementing the PDA application to route exams from the clinical PACS archive server to various locations for offsite distribution of clinical PACS exams. By utilizing this remote control application, radiologists can manage image workflow distribution with a single wireless handheld device without impacting their clinical workflow on diagnostic PACS workstations. A PDA application was designed and developed to perform DICOM Query and C-Move requests by a physician from a clinical PACS Archive to a CD-burning device for automatic burning of PACS data for the distribution to offsite. In addition, it was also used for convenient routing of historical PACS exams to the local web server, local workstations, and teleradiology systems. The application was evaluated by radiologists as well as other clinical staff who need to distribute PACS exams to offsite referring physician"s offices and offsite radiologists. An application for image workflow management utilizing wireless technology was implemented in a clinical environment and evaluated. A PDA application was successfully utilized to perform DICOM Query and C-Move requests from the clinical PACS archive to various offsite exam distribution devices. Clinical staff can utilize the PDA to manage image workflow and PACS exam distribution conveniently for offsite consultations by referring physicians and radiologists. This solution allows the radiologist to expand their effectiveness in health care delivery both within the radiology department as well as offisite by improving their clinical workflow.
Medical student appraisal: applications for bedside patient education.
Markman, T M; Sampognaro, P J; Mitchell, S L; Weeks, S R; Khalifian, S; Dattilo, J R
2013-01-01
Medical students are often afforded the privilege of counselling patients. In the past resources were limited to pen and paper or anatomic models. The evolution of mobile applications allows for limitless access to resources that facilitate bedside patient education. To evaluate the utility of six applications in patient education and promote awareness of implementing mobile resources in clinical care. Six medical students rotating on various clerkships evaluated a total of six mobile applications. Strengths, limitations, and suggested uses in clinical care were identified. Applications included Meditoons™, VisiblePatient™, DrawMD™, CardioTeach™, Visual Anatomy™, and 360° Patient Education Suite™. Data was generated from narrative responses supplied by each student during their evaluation period. Bedside teaching was enhanced by professional illustrations and animations depicting anatomy and pathophysiology. Impromptu teaching was facilitated, as resources were conveniently available on a student's smartphone or tablet. The ability to annotate and modify images and subsequently email to patients was an extraordinary improvement in provider-patient communication. Universal limitations included small smartphone screens and the novelty of new technology. Mobile applications have the potential to greatly enhance patient education and simultaneously build rapport. Endless opportunities exist for their integration in clinical practice, particularly for new diagnoses, consent for procedures, and at time of discharge. Providers should be encouraged to try new applications and utilize them with patients.
Current advances in research and clinical applications of PLGA-based nanotechnology
Lü, Jian-Ming; Wang, Xinwen; Marin-Muller, Christian; Wang, Hao; Lin, Peter H; Yao, Qizhi; Chen, Changyi
2009-01-01
Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases. PMID:19435455
Skiba, Diane J; Barton, Amy J; Knapfel, Sarah; Moore, Gina; Trinkley, Katy
2014-01-01
The iTEAM goal is to prepare advanced practice nurses, physicians and pharmacists with the interprofessional (IP) core competencies (informatics, patient centric, quality-focused, evidence based care) to provide technology enhanced collaborative care by: offering technology enhanced learning opportunities through a required informatics course, advanced practice courses (team based experiences with both standardized and virtual patients) and team based clinical experiences including e-health experiences. The innovative features of iTEAM project will be achieved through use of social media strategies, a web accessible Electronic Health Records (EHRs) system, a Virtual Clinic/Hospital in Second Life, various e-health applications including traditional telehealth tools and consumer oriented tools such as patient portals, social media consumer groups and mobile health (m-health) applications for health and wellness functions. It builds upon the schools' rich history of IP education and includes clinical partners, such as the VA and other clinical sites focused on care for underserved patient populations.
Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria
2018-01-01
This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.
Clinical Considerations of Biological Correlates of Suicide.
ERIC Educational Resources Information Center
Motto, Jerome A.
1986-01-01
Reviews possible biochemical markers for suicide risk but notes that none has clear application for clinical work in suicide prevention. Comments on other biological aspects of suicide including genetics, plasma drug levels, electroconvulsive therapy (ECT) and psychoimmunology. Encourages ECT use. Cautions against hasty clinical use of other…
Review of functional near-infrared spectroscopy in neurorehabilitation
Mihara, Masahito; Miyai, Ichiro
2016-01-01
Abstract. We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain–computer interface and neurofeedback. PMID:27429995
Finite element modelling of the foot for clinical application: A systematic review.
Behforootan, Sara; Chatzistergos, Panagiotis; Naemi, Roozbeh; Chockalingam, Nachiappan
2017-01-01
Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling has only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hospitals or clinics providing all or a portion of a clinical training program required under § 600.55(e)(1... are located, including all sites at which its students receive clinical training, except those clinical training sites that are not used regularly, but instead are chosen by individual students who take...
Code of Federal Regulations, 2014 CFR
2014-07-01
... hospitals or clinics providing all or a portion of a clinical training program required under § 600.55(e)(1... are located, including all sites at which its students receive clinical training, except those clinical training sites that are not used regularly, but instead are chosen by individual students who take...
Code of Federal Regulations, 2012 CFR
2012-07-01
... hospitals or clinics providing all or a portion of a clinical training program required under § 600.55(e)(1... are located, including all sites at which its students receive clinical training, except those clinical training sites that are not used regularly, but instead are chosen by individual students who take...
[Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].
Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li
2017-06-25
Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.
Closing the gap between knowledge and clinical application: challenges for genomic translation.
Burke, Wylie; Korngiebel, Diane M
2015-01-01
Despite early predictions and rapid progress in research, the introduction of personal genomics into clinical practice has been slow. Several factors contribute to this translational gap between knowledge and clinical application. The evidence available to support genetic test use is often limited, and implementation of new testing programs can be challenging. In addition, the heterogeneity of genomic risk information points to the need for strategies to select and deliver the information most appropriate for particular clinical needs. Accomplishing these tasks also requires recognition that some expectations for personal genomics are unrealistic, notably expectations concerning the clinical utility of genomic risk assessment for common complex diseases. Efforts are needed to improve the body of evidence addressing clinical outcomes for genomics, apply implementation science to personal genomics, and develop realistic goals for genomic risk assessment. In addition, translational research should emphasize the broader benefits of genomic knowledge, including applications of genomic research that provide clinical benefit outside the context of personal genomic risk.
Application of Toxic Chinese Medicine in Chinese Pharmacopoeia
NASA Astrophysics Data System (ADS)
Zhao, Hui; Feng, Yu; Mao, Mingsan
2018-01-01
Objective: Explore the application characteristics of proprietary Chinese medicine prescriptions containing toxic herbs in pharmacopoeia. Methods: In this paper, according to the clinical application of pharmacopoeia proprietary Chinese medicine is divided into table agent, Qushu agent, diarrhea agent, heat agent, Wen Li agent, cough and asthma agents, resuscitation agent, Gutian agent, Fuzheng agent, Anshen agent, hemostatic agent, The traditional Chinese medicine prescription and the clinical application of the Chinese herbal medicine containing the toxic Chinese medicine were analyzed and sorted out., Summed up the compatibility of toxic herbs and application characteristics. Results: Toxic Chinese herbal medicine in the cure of traditional Chinese medicine to play a long-standing role, through the overall thinking, dialectical thinking, and thinking of toxic Chinese medicine in the analysis of Chinese medicine that [2], toxic Chinese medicine in the application of proprietary Chinese medicine can not lack. Conclusion: Pharmacopoeia included proprietary Chinese medicine not only in the clinical treatment of good, but also the application of its toxic traditional Chinese medicine and its understanding of the enrichment of the toxic characteristics of traditional Chinese medicine and treatment-related disease pathology between the points of contact for patients with clinical applications Based on and theoretical guidance of Chinese medicine [3].
Wind energy applications guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
anon.
2001-01-01
The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.
An overview of PET/MR, focused on clinical applications.
Catalano, Onofrio Antonio; Masch, William Roger; Catana, Ciprian; Mahmood, Umar; Sahani, Dushyant Vasudeo; Gee, Michael Stanley; Menezes, Leon; Soricelli, Andrea; Salvatore, Marco; Gervais, Debra; Rosen, Bruce Robert
2017-02-01
Hybrid PET/MR scanners are innovative imaging devices that simultaneously or sequentially acquire and fuse anatomical and functional data from magnetic resonance (MR) with metabolic information from positron emission tomography (PET) (Delso et al. in J Nucl Med 52:1914-1922, 2011; Zaidi et al. in Phys Med Biol 56:3091-3106, 2011). Hybrid PET/MR scanners have the potential to greatly impact not only on medical research but also, and more importantly, on patient management. Although their clinical applications are still under investigation, the increased worldwide availability of PET/MR scanners, and the growing published literature are important determinants in their rising utilization for primarily clinical applications. In this manuscript, we provide a summary of the physical features of PET/MR, including its limitations, which are most relevant to clinical PET/MR implementation and to interpretation. Thereafter, we discuss the most important current and emergent clinical applications of such hybrid technology in the abdomen and pelvis, both in the field of oncologic and non-oncologic imaging, and we provide, when possible, a comparison with clinically consolidated imaging techniques, like for example PET/CT.
Hoff, Brian M; Ford, Diana C; Ince, Dilek; Ernst, Erika J; Livorsi, Daniel J; Heintz, Brett H; Masse, Vincent; Brownlee, Michael J; Ford, Bradley A
2018-01-01
Medical applications for mobile devices allow clinicians to leverage microbiological data and standardized guidelines to treat patients with infectious diseases. We report the implementation of a mobile clinical decision support (CDS) application to augment local antimicrobial stewardship. We detail the implementation of our mobile CDS application over 20 months. Application utilization data were collected and evaluated using descriptive statistics to quantify the impact of our implementation. Project initiation focused on engaging key stakeholders, developing a business case, and selecting a mobile platform. The preimplementation phase included content development, creation of a pathway for content approval within the hospital committee structure, engaging clinical leaders, and formatting the first version of the guide. Implementation involved a media campaign, staff education, and integration within the electronic medical record and hospital mobile devices. The postimplementation phase required ongoing quality improvement, revision of outdated content, and repeated staff education. The evaluation phase included a guide utilization analysis, reporting to hospital leadership, and sustainability and innovation planning. The mobile application was downloaded 3056 times and accessed 9259 times during the study period. The companion web viewer was accessed 8214 times. Successful implementation of a customizable mobile CDS tool enabled our team to expand beyond microbiological data to clinical diagnosis, treatment, and antimicrobial stewardship, broadening our influence on antimicrobial prescribing and incorporating utilization data to inspire new quality and safety initiatives. Further studies are needed to assess the impact on antimicrobial utilization, infection control measures, and patient care outcomes.
Chen, Junning; Ahmad, Rohana; Li, Wei; Swain, Michael; Li, Qing
2015-01-01
The prevalence of prosthodontic treatment has been well recognized, and the need is continuously increasing with the ageing population. While the oral mucosa plays a critical role in the treatment outcome, the associated biomechanics is not yet fully understood. Using the literature available, this paper provides a critical review on four aspects of mucosal biomechanics, including static, dynamic, volumetric and interactive responses, which are interpreted by its elasticity, viscosity/permeability, apparent Poisson's ratio and friction coefficient, respectively. Both empirical studies and numerical models are analysed and compared to gain anatomical and physiological insights. Furthermore, the clinical applications of such biomechanical knowledge on the mucosa are explored to address some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure–pain thresholds, tissue displaceability and residual bone resorption. Through this review, the state of the art in mucosal biomechanics and their clinical implications are discussed for future research interests, including clinical applications, computational modelling, design optimization and prosthetic fabrication. PMID:26224566
Development of a smartphone application for eating disorder self-monitoring.
Tregarthen, Jenna P; Lock, James; Darcy, Alison M
2015-11-01
This case report aims to (1) describe the development and refinement of a smartphone application for eating disorder self-monitoring; (2) characterize its users in terms of demographic and clinical characteristics; and (3) explore its feasibility and utilization as a self-monitoring tool. We developed a mobile phone application through which people with eating disorders can self-monitor meals, emotions, behaviors, and thoughts. The application also included positive reinforcement, coping skill suggestions, social support, and feedback components. The app was made available on two Internet app stores. Data include number of downloads and subsequent usage statistics, consumer ratings on app-stores are used as indicators of satisfaction, anonymous aggregate demographic data and Eating Disorder Examination Questionnaire scores from 57,940 individuals collected over a two-year period. The app demonstrated population-level utilization with over 100,000 users over a two-year period. Almost 50% percent of users stated that they are not currently receiving clinical treatment and 33% reported they had not told anyone about their eating disorder. A surprising number of people with severe problems are using the app. Smartphone apps have the capacity to reach and engage traditionally underserved individuals with eating disorders at a large scale. Additional work is indicated for the evaluation of the clinical effectiveness of applications for specific user groups and in clinical treatment contexts. © 2015 Wiley Periodicals, Inc.
Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent
2013-09-01
Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.
Transforming practice into clinical scholarship.
Limoges, Jacqueline; Acorn, Sonia
2016-04-01
The aims of this paper were to explicate clinical scholarship as synonymous with the scholarship of application and to explore the evolution of scholarly practice to clinical scholarship. Boyer contributed an expanded view of scholarship that recognized various approaches to knowledge production beyond pure research (discovery) to include the scholarship of integration, application and teaching. There is growing interest in using Boyer's framework to advance knowledge production in nursing but the discussion of clinical scholarship in relation to Boyer's framework is sparse. Discussion paper. Literature from 1983-2015 and Boyer's framework. When clinical scholarship is viewed as a synonym for Boyer's scholarship of application, it can be aligned to this well established framework to support knowledge generated in clinical practice. For instance, applying the three criteria for scholarship (documentation, peer review and dissemination) can ensure that the knowledge produced is rigorous, available for critique and used by others to advance nursing practice and patient care. Understanding the differences between scholarly practice and clinical scholarship can promote the development of clinical scholarship. Supporting clinical leaders to identify issues confronting nursing practice can enable scholarly practice to be transformed into clinical scholarship. Expanding the understanding of clinical scholarship and linking it to Boyer's scholarship of application can assist nurses to generate knowledge that addresses clinical concerns. Further dialogue about how clinical scholarship can address the theory-practice gap and how publication of clinical scholarship could be expanded given the goals of clinical scholarship is warranted. © 2016 John Wiley & Sons Ltd.
[Basics and clinical application of human mesenchymal stromal/stem cells].
Miura, Yasuo
2015-10-01
Human mesenchymal stromal/stem cells (MSCs) show a variety of biological characteristics. The clinical trials database provided by the National Institutes of Health, USA, contains about 400 clinical trials of MSCs for a wide range of therapeutic applications internationally (http://www.clinicaltrials.gov, key words "mesenchymal stem cells", as of April, 2015). Encouraging results from these clinical trials include evidence of efficacy against graft versus host disease (GVHD) in hematopoietic stem cell transplantation. Treatment for and/or prevention of engraftment failure and insufficient hematopoietic recovery have also been explored. Herein, we will address the basic principles of MSCs and the current status of clinical studies using MSCs. Future prospects for MSC-based therapy will also be discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
...] Pilot Program for Early Feasibility Study Investigational Device Exemption Applications AGENCY: Food and... feasibility study investigational device exemption (IDE) applications. The pilot program will conform to the... Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies.'' Under the pilot...
Ultrasound elastography: principles, techniques, and clinical applications.
Dewall, Ryan J
2013-01-01
Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... a grant. Examples of qualifying organizations include: (1) A clinical program at an accredited law, business or accounting school whose students represent low income taxpayers in tax controversies with the...
Micropulsed diode laser therapy: evolution and clinical applications.
Sivaprasad, Sobha; Elagouz, Mohammed; McHugh, Dominic; Shona, Olajumoke; Dorin, Giorgio
2010-01-01
Many clinical trials have demonstrated the clinical efficacy of laser photocoagulation in the treatment of retinal vascular diseases, including diabetic retinopathy. There is, however, collateral iatrogenic retinal damage and functional loss after conventional laser treatment. Such side effects may occur even when the treatment is appropriately performed because of morphological damage caused by the visible endpoint, typically a whitening burn. The development of the diode laser with micropulsed emission has allowed subthreshold therapy without a visible burn endpoint. This greatly reduces the risk of structural and functional retinal damage, while retaining the therapeutic efficacy of conventional laser treatment. Studies using subthreshold micropulse laser protocols have reported successful outcomes for diabetic macular edema, central serous chorioretinopathy, macular edema secondary to retinal vein occlusion, and primary open angle glaucoma. The report includes the rationale and basic principles underlying micropulse diode laser therapy, together with a review of its current clinical applications. Copyright © 2010 Elsevier Inc. All rights reserved.
Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R
2013-01-01
The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.
Jones, David R; McBlane, James W; McNaughton, Graham; Rajakumaraswamy, Nishanthan; Wydenbach, Kirsty
2013-01-01
The safety of trial subjects is the tenet that guides the regulatory assessment of a Clinical Trial Authorization application and applies equally to trials involving small molecules and those with biological/biotechnological products, including Advanced Therapy Medicinal Products. The objective of a regulator is to ensure that the potential risk faced by a trial subject is outweighed by the potential benefit to them from taking part in the trial. The focus of the application review is to assess whether risks have been identified and appropriate steps taken to alleviate these as much as possible. Other factors are also taken into account during a review, such as regulatory requirements, and emerging non-clinical and clinical data from other trials on the same or similar products. This paper examines the regulatory review process of a Clinical Trial Authorization application from the perspectives of Quality, Non-Clinical and Clinical Regulatory Assessors at the Medicines and Healthcare products Regulatory Agency. It should be noted that each perspective has highlighted specific issues from their individual competence and that these can be different between the disciplines. PMID:23216470
Kheir, Nadir; Awaisu, Ahmed; Gad, Hoda; Elazzazy, Shereen; Jibril, Farah; Gajam, Mawadda
2015-12-01
The application of clinical pharmacokinetics (PK) is essential when providing pharmaceutical care. Appropriate application of PK monitoring results in improved patient outcomes including decreased mortality, length of treatment, length of hospital stay, and adverse effects of drug therapy. Despite the well-documented evidence of benefits of clinical PK services, many pharmacists find it challenging to apply PK in clinical practice. To evaluate pharmacists' training backgrounds, attitude, practices, and perceived barriers pertaining to the application of PK in clinical practice in Qatar. All hospitals under Hamad Medical Corporation, the main healthcare provider in Qatar. This was a cross-sectional, descriptive study that was conducted between October 2012 and January 2013, using a self-administered web-based survey. Pharmacists were eligible to participate if they: (1) were working as full-time hospital pharmacists and; (2) have been in practice for at least 1 year. PK contents learned in undergraduate curriculum; perception towards the PK contents and instructions received in the undergraduate curriculum and; application of PK in current clinical practice. A total of 112 pharmacists responded to the questionnaire. The majority of the respondents (n = 91; 81.3 %) reported that they had received PK course(s) in their undergraduate curriculum. Similarly, the majority (70-80 %) of them agreed that the undergraduate PK courses or contents they received were important and relevant to their current practice. The pharmacists identified spending more time on dispensing and inventory issues rather than clinical practice, scarce resources, and manual rather than computerized PK calculations as some of the barriers they encountered in learning about PK and its application. The characteristics of the surveyed pharmacists such as gender, age, highest academic degree, and country of graduation did not influence the pharmacists' perception and attitudes towards PK teaching and application (p > 0.05). PK course contents were perceived to lack depth and relevance to practice, and pharmacist had no experiential training that included aspects of PK. These, and other issues, result in poor application of PK in practice.
Stamenovic, Milorad; Dobraca, Amra; Smajlovic, Mersiha
2018-01-01
The aim of this paper is to present the marketing strategy and the application of management (marketing management) and advertising in order to increase the efficiency of innovative approach in clinical trials that include and involve the use of new technologies and transfer of technologies. This paper has a descriptive character and represents a narrative review of the literature and new model implementation. Marketing models are primarily used to improve the inclusion of a larger (and appropriate) number of patients, but they can be credited for the stay and monitoring of patients in the trial. Regulatory mechanisms play an important role in the application of various marketing strategies within clinical trials. The value for the patient as the most important stakeholder is defined in the field of clinical trials according to Kotler's value model for the consumer. In order to achieve the best results it is important to adequately examine all the elements of clinical trials and apply this knowledge in creation of a marketing plan that will be made in accordance with the legal regulations defined globally and locally. In this paper, two challenges have been highlighted for the adequate application of marketing tools in the field of clinical trials, namely: defining business elements in order to provide an adequate marketing approach for clinical trials and technology transfer and ensuring uniformity and regulatory affirmation of marketing attitudes in clinical trials in all regions in which they are carried out in accordance with ICH-GCP and valid regulations.
Medicinal herbs and phytochitodeztherapy in oncology.
Treskunov, Karp; Treskunova, Olga; Komarov, Boris; Goroshetchenko, Alex; Glebov, Vlad
2003-01-01
Application of clinical phytology in treatment of oncology diseases was limited by intensive development of chemical pharmaceuticals and surgery. The authors had set the task to develop the computer database for phytotherapy application. The database included full information on patient's clinical status (identified diseases, symptoms, syndromes) and applied phytotherapy treatment. Special attention was paid to the application of phyto preparations containing chitosan. The computer database contains information on 2335 patients. It supports reliable data on efficiency of phytotherapy in general and allows to evaluate the efficiency of some particular medicinal herbs and to develop efficient complex phyto preparations for treatment of specific diseases. The application of phytotherapy in treatment of oncology patients confirmed the positive effect on patient's quality of life. In conclusion it should be emphasized that the present situation of practical application of phytotherapy could be considered as unacceptable because of absence of necessary knowledge and practical experience in using phytotherapy in outpatient clinics, hospitals and medicinal centers.
Integrated Warfighter Biodefense Program (IWBP)
2011-08-01
Distribution. Sincerely, Frank T. Abbott VP of Administration & Finance fta @quantumleap.us cc: Dr. Ganesh Vaidyanathan, Project Manager, Code 34...goals of IWBP. Areas of potential application include health care administration, clinical data analysis and health care research applications
Fluorescence fluctuation spectroscopy for clinical applications
NASA Astrophysics Data System (ADS)
Olson, Eben
Fluorescence correlation spectroscopy (FCS) and the related techniques of brightness analysis have become standard tools in biological and biophysical research. By analyzing the statistics of fluorescence emitted from a restricted volume, a number of parameters including concentrations, diffusion coefficients and chemical reaction rates can be determined. The single-molecule sensitivity, spectral selectivity, small sample volume and non-perturbative measurement mechanism of FCS make it an excellent technique for the study of molecular interactions. However, its adoption outside of the research laboratory has been limited. Potential reasons for this include the cost and complexity of the required apparatus. In this work, the application of fluorescence fluctuation analysis to several clinical problems is considered. Optical designs for FCS instruments which reduce the cost and increase alignment tolerance are presented. Brightness analysis of heterogenous systems, with application to the characterization of protein aggregates and multimer distributions, is considered. Methods for FCS-based assays of two clinically relevant proteins, von Willebrand factor and haptoglobin, are presented as well.
MO-A-BRC-02: TG167 Report - Detailed Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, M.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-01: TG167 Report - Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, R.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
Stem cells in clinical practice: applications and warnings.
Lodi, Daniele; Iannitti, Tommaso; Palmieri, Beniamino
2011-01-17
Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy. We have searched Pubmed/Medline for clinical trials, involving the use of human stem cells, using the key words "stem cells" combined with the key words "transplantation", "pathology", "guidelines", "properties" and "risks". All the relevant clinical trials have been included. The results have been divided into different categories, basing on the way stem cells have been employed in different pathological conditions.
Lefterova, Martina I; Suarez, Carlos J; Banaei, Niaz; Pinsky, Benjamin A
2015-11-01
Next-generation sequencing (NGS) technologies are increasingly being used for diagnosis and monitoring of infectious diseases. Herein, we review the application of NGS in clinical microbiology, focusing on genotypic resistance testing, direct detection of unknown disease-associated pathogens in clinical specimens, investigation of microbial population diversity in the human host, and strain typing. We have organized the review into three main sections: i) applications in clinical virology, ii) applications in clinical bacteriology, mycobacteriology, and mycology, and iii) validation, quality control, and maintenance of proficiency. Although NGS holds enormous promise for clinical infectious disease testing, many challenges remain, including automation, standardizing technical protocols and bioinformatics pipelines, improving reference databases, establishing proficiency testing and quality control measures, and reducing cost and turnaround time, all of which would be necessary for widespread adoption of NGS in clinical microbiology laboratories. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
21 CFR 1003.31 - Granting the exemption.
Code of Federal Regulations, 2010 CFR
2010-04-01
... applicable Federal standard is such as to create a significant risk of injury, including genetic injury, to... is desirable. Where such evidence includes nonclinical laboratory studies, the data submitted shall... includes clinical investigations involving human subjects, the data submitted shall include, with respect...
Biomarkers of PTSD: military applications and considerations.
Lehrner, Amy; Yehuda, Rachel
2014-01-01
Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.
Potential and problems in ultrasound-responsive drug delivery systems
Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping
2013-01-01
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531
Applications of mid-infrared spectroscopy in the clinical laboratory setting.
De Bruyne, Sander; Speeckaert, Marijn M; Delanghe, Joris R
2018-01-01
Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.
The clinical application of teaching people about pain.
Louw, Adriaan; Zimney, Kory; O'Hotto, Christine; Hilton, Sandra
2016-07-01
Teaching people about the neurobiology and neurophysiology of their pain experience has a therapeutic effect and has been referred to as pain neuroscience education (PNE). Various high-quality randomized controlled trials and systematic reviews have shown increasing efficacy of PNE decreasing pain, disability, pain catastrophization, movement restrictions, and healthcare utilization. Research studies, however, by virtue of their design, are very controlled environments and, therefore, in contrast to the ever-increasing evidence for PNE, little is known about the clinical application of this emerging therapy. In contrast, case studies, case series, and expert opinion and perspectives by authorities in the world of pain science provide clinicians with a glimpse into potential "real" clinical application of PNE in the face of the ever-increasing chronic pain epidemic. By taking the material from the randomized controlled trials, systematic reviews, case series, case studies, and expert opinion, this article aims to provide a proposed layout of the clinical application of PNE. The article systematically discusses key elements of PNE including examination, educational content, and delivery methods, merging of PNE with movement, goal setting, and progression. This perspectives article concludes with a call for research into the clinical application of PNE.
Oelze, Michael L.; Mamou, Jonathan
2017-01-01
Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy. PMID:26761606
Minimal Residual Disease Assessment in Lymphoma: Methods and Applications.
Herrera, Alex F; Armand, Philippe
2017-12-01
Standard methods for disease response assessment in patients with lymphoma, including positron emission tomography and computed tomography scans, are imperfect. In other hematologic malignancies, particularly leukemias, the ability to detect minimal residual disease (MRD) is increasingly influencing treatment paradigms. However, in many subtypes of lymphoma, the application of MRD assessment techniques, like flow cytometry or polymerase chain reaction-based methods, has been challenging because of the absence of readily detected circulating disease or canonic chromosomal translocations. Newer MRD detection methods that use next-generation sequencing have yielded promising results in a number of lymphoma subtypes, fueling the hope that MRD detection may soon be applicable in clinical practice for most patients with lymphoma. MRD assessment can provide real-time information about tumor burden and response to therapy, noninvasive genomic profiling, and monitoring of clonal dynamics, allowing for many possible applications that could significantly affect the care of patients with lymphoma. Further validation of MRD assessment methods, including the incorporation of MRD assessment into clinical trials in patients with lymphoma, will be critical to determine how best to deploy MRD testing in routine practice and whether MRD assessment can ultimately bring us closer to the goal of personalized lymphoma care. In this review article, we describe the methods available for detecting MRD in patients with lymphoma and their relative advantages and disadvantages. We discuss preliminary results supporting the potential applications for MRD testing in the care of patients with lymphoma and strategies for including MRD assessment in lymphoma clinical trials.
ERIC Educational Resources Information Center
He, Shaoyi
2003-01-01
Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…
The development of a clinical outcomes survey research application: Assessment Center.
Gershon, Richard; Rothrock, Nan E; Hanrahan, Rachel T; Jansky, Liz J; Harniss, Mark; Riley, William
2010-06-01
The National Institutes of Health sponsored Patient-Reported Outcome Measurement Information System (PROMIS) aimed to create item banks and computerized adaptive tests (CATs) across multiple domains for individuals with a range of chronic diseases. Web-based software was created to enable a researcher to create study-specific Websites that could administer PROMIS CATs and other instruments to research participants or clinical samples. This paper outlines the process used to develop a user-friendly, free, Web-based resource (Assessment Center) for storage, retrieval, organization, sharing, and administration of patient-reported outcomes (PRO) instruments. Joint Application Design (JAD) sessions were conducted with representatives from numerous institutions in order to supply a general wish list of features. Use Cases were then written to ensure that end user expectations matched programmer specifications. Program development included daily programmer "scrum" sessions, weekly Usability Acceptability Testing (UAT) and continuous Quality Assurance (QA) activities pre- and post-release. Assessment Center includes features that promote instrument development including item histories, data management, and storage of statistical analysis results. This case study of software development highlights the collection and incorporation of user input throughout the development process. Potential future applications of Assessment Center in clinical research are discussed.
Review and classification of variability analysis techniques with clinical applications.
Bravi, Andrea; Longtin, André; Seely, Andrew J E
2011-10-10
Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis.
Review and classification of variability analysis techniques with clinical applications
2011-01-01
Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis. PMID:21985357
True, Lawrence D
2014-03-01
Paralleling the growth of ever more cost efficient methods to sequence the whole genome in minute fragments of tissue has been the identification of increasingly numerous molecular abnormalities in cancers--mutations, amplifications, insertions and deletions of genes, and patterns of differential gene expression, i.e., overexpression of growth factors and underexpression of tumor suppressor genes. These abnormalities can be translated into assays to be used in clinical decision making. In general terms, the result of such an assay is subject to a large number of variables regarding the characteristics of the available sample, particularities of the used assay, and the interpretation of the results. This review discusses the effects of these variables on assays of tissue-based biomarkers, classified by macromolecule--DNA, RNA (including micro RNA, messenger RNA, long noncoding RNA, protein, and phosphoprotein). Since the majority of clinically applicable biomarkers are immunohistochemically detectable proteins this review focuses on protein biomarkers. However, the principles outlined are mostly applicable to any other analyte. A variety of preanalytical variables impacts on the results obtained, including analyte stability (which is different for different analytes, i.e., DNA, RNA, or protein), period of warm and of cold ischemia, fixation time, tissue processing, sample storage time, and storage conditions. In addition, assay variables play an important role, including reagent specificity (notably but not uniquely an issue concerning antibodies used in immunohistochemistry), technical components of the assay, quantitation, and assay interpretation. Finally, appropriateness of an assay for clinical application is an important issue. Reference is made to publicly available guidelines to improve on biomarker development in general and requirements for clinical use in particular. Strategic goals are formulated in order to improve on the quality of biomarker reporting, including issues of analyte quality, experimental detail, assay efficiency and precision, and assay appropriateness.
Smith, Hadley Stevens; Swint, J Michael; Lalani, Seema R; Yamal, Jose-Miguel; de Oliveira Otto, Marcia C; Castellanos, Stephan; Taylor, Amy; Lee, Brendan H; Russell, Heidi V
2018-05-14
Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Singh, Harminder; Leontiadis, Grigorios I; Hookey, Lawrence; Enns, Robert; Bistritz, Lana; Rioux, Louis-Charles; Hope, Louise; Sinclair, Paul
2014-01-01
An important mandate of the Canadian Association of Gastroenterology (CAG), as documented in the Association’s governance policies, is to optimize the care of patients with digestive disorders. Clinical practice guidelines are one means of achieving this goal. The benefits of timely, high-quality and evidenced-based recommendations include: Enhancing the professional development of clinical members through education and dissemination of synthesized clinical research;Improving patient care provided by members by providing focus on quality and evidence;Creating legislative environments that favour effective clinical practice;Enhancing the clinical care provided to patients with digestive disease by nongastroenterologists; andIdentifying areas that require further information or research to improve clinical care.The present document provides the foundation required to ensure that clinical practice guidelines produced by the CAG are necessary, appropriate, credible and applicable. These recommendations should be adhered to as closely as possible to obtain CAG endorsement. PMID:25314352
Singh, Harminder; Leontiadis, Grigorios I; Hookey, Lawrence; Enns, Robert; Bistritz, Lana; Rioux, Louis-Charles; Hope, Louise; Sinclair, Paul
2014-10-01
An important mandate of the Canadian Association of Gastroenterology (CAG), as documented in the Association's governance policies, is to optimize the care of patients with digestive disorders. Clinical practice guidelines are one means of achieving this goal. The benefits of timely, high-quality and evidenced-based recommendations include: Enhancing the professional development of clinical members through education and dissemination of synthesized clinical research; Improving patient care provided by members by providing focus on quality and evidence; Creating legislative environments that favour effective clinical practice; Enhancing the clinical care provided to patients with digestive disease by nongastroenterologists; and Identifying areas that require further information or research to improve clinical care. The present document provides the foundation required to ensure that clinical practice guidelines produced by the CAG are necessary, appropriate, credible and applicable. These recommendations should be adhered to as closely as possible to obtain CAG endorsement.
MALDI-TOF-mass spectrometry applications in clinical microbiology.
Seng, Piseth; Rolain, Jean-Marc; Fournier, Pierre Edouard; La Scola, Bernard; Drancourt, Michel; Raoult, Didier
2010-11-01
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost-effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
ERP (enterprise resource planning) systems can streamline healthcare business functions.
Jenkins, E K; Christenson, E
2001-05-01
Enterprise resource planning (ERP) software applications are designed to facilitate the systemwide integration of complex processes and functions across a large enterprise consisting of many internal and external constituents. Although most currently available ERP applications generally are tailored to the needs of the manufacturing industry, many large healthcare systems are investigating these applications. Due to the significant differences between manufacturing and patient care, ERP-based systems do not easily translate to the healthcare setting. In particular, the lack of clinical standardization impedes the use of ERP systems for clinical integration. Nonetheless, an ERP-based system can help a healthcare organization integrate many functions, including patient scheduling, human resources management, workload forecasting, and management of workflow, that are not directly dependent on clinical decision making.
Ultrasonography in gastroenterology.
Ødegaard, Svein; Nesje, Lars B; Hausken, Trygve; Gilja, Odd Helge
2015-06-01
Ultrasonography (US) is a safe and available real-time, high-resolution imaging method, which during the last decades has been increasingly integrated as a clinical tool in gastroenterology. New US applications have emerged with enforced data software and new technical solutions, including strain evaluation, three-dimensional imaging and use of ultrasound contrast agents. Specific gastroenterologic applications have been developed by combining US with other diagnostic or therapeutic methods, such as endoscopy, manometry, puncture needles, diathermy and stents. US provides detailed structural information about visceral organs without hazard to the patients and can play an important clinical role by reducing the need for invasive procedures. This paper presents different aspects of US in gastroenterology, with a special emphasis on the contribution from Nordic scientists in developing clinical applications.
Fabbri, Chiara; Serretti, Alessandro
2018-06-12
A frustrating inertia has affected the development of clinical applications of antidepressant pharmacogenetics and personalized treatments of depression are still lacking 20 years after the first findings. Candidate gene studies provided replicated findings for some polymorphisms, but each of them shows at best a small effect on antidepressant efficacy and the cumulative effect of different polymorphisms is unclear. Further, no candidate was immune by at least some negative studies. These considerations give rise to some concerns about the clinical benefits of currently available pharmacogenetic tests since they are based on the results of candidate gene studies. Clinical guidelines in fact suggest that only polymorphisms that alter cytochrome 2D6 or 2C19 enzymatic activity probably provide useful clinical indications, while variants in genes involved in antidepressant pharmacodynamics have no recommended clinical applications. The present review discusses possible strategies to facilitate the identification of genetic biomarkers with clinical usefulness in guiding antidepressant treatments. These include analysis methods for the study of the polygenic/omnigenic nature of antidepressant response, the prioritization of polymorphisms on the basis of functional considerations, the incorporation of clinical-demographic predictors in pharmacogenetic studies (e.g. mixed polygenic and clinical risk scores), the application of methodological improvements to the design of future studies in order to maximize the comparability of results and improve power. Copyright © 2018. Published by Elsevier B.V.
Clay, Patrick; Vaught, Eric; Glaros, Alan; Mangum, Stacy; Hansen, Daniel; Lindsey, Cameron
2007-01-01
Prescription assistance programs (PAPs) are offered by pharmaceutical manufacturers to provide medications at no out-of-pocket cost to various categories of medically indigent patients. some PAPs require only 1 application whereas others require as many as 4 applications per year per drug per patient, depending on the manufacturer's requirements. to measure the costs incurred by a medical clinic that provides chronic prescription medications via PAPs. this project was conducted in a free-standing, inner-city, Midwestern health clinic on the PAP application process for 1 representative drug for 32 pharmaceutical manufacturers that offered PAPs for drugs taken on a long-term basis for chronic conditions. time and motion studies were conducted using a medical assistant with the greatest amount of PAP experience. Assessment of time-to-access and time-to-complete forms was performed outside of normal clinic business hours to avoid interruptions. Personnel time costs also included receipt and delivery of drug to the patient (drug distribution time), which were assessed during normal business hours for actual medications received for 10 patients and included the time required to notify the patient of the arrival of the drug and to dispense the medication to the patient. supply costs for this PAP service included printing and copying costs. submission costs associated with mailing or faxing the documents were determined and calculated using the price of materials only. total application cost was calculated by adding the personnel time cost, supply cost, and submission cost. Annual PAP time was the time spent completing PAPs for 1 medication for 1 patient for 1 year. the time and resources required and the associated costs were aggregated separately for the pharmaceutical manufacturers that required 1, 2, or 4 applications per drug per patient per year. The total average application cost for all 32 companies was $25.18 [SD, $17.23]. Personnel time costs accounted for half or more of the total application cost, regardless of submission mode. the time to complete the form for any PAP was 0:06:20 [SD, 0:05:03] minutes with a range from 0:03:01 to 0:34:22 minutes. Printing costs were $0.20 [SD, $0.10] and copying costs were $1.96 [SD, $0.21]. Average supply costs were $2.16 [SD, $0.23]. Faxing versus mailing PAPs saved $17.90 per application. total annual clinic cost to assist patients in obtaining drugs through a PAP ranged from $10.42 per patient for a drug that requires 1 application per year (15 manufacturers, 47%) to $46.30 per patient for a drug in a PAP that requires 4 (re)applications per year (12 manufacturers, 38%). PAPs transmitted by mail required 0:49:18 [SD, 0:32:18] minutes, approximately 0:25:00 [SD, 0:21:00] minutes more than by fax (0:24:13 [SD, 0:11:32] minutes) or by Internet submissions (0:28:20 minutes), respectively. The number of PAP applications required per patient per medication annually has the greatest impact on clinic time and financial resources. Application submission method also influences the overall costs of providing this service in the clinical setting. Medical clinics should base their decision to provide a PAP application service to patients on the time and costs associated over the course of 1 year and not on the 1-time application cost.
Big data analytics to improve cardiovascular care: promise and challenges.
Rumsfeld, John S; Joynt, Karen E; Maddox, Thomas M
2016-06-01
The potential for big data analytics to improve cardiovascular quality of care and patient outcomes is tremendous. However, the application of big data in health care is at a nascent stage, and the evidence to date demonstrating that big data analytics will improve care and outcomes is scant. This Review provides an overview of the data sources and methods that comprise big data analytics, and describes eight areas of application of big data analytics to improve cardiovascular care, including predictive modelling for risk and resource use, population management, drug and medical device safety surveillance, disease and treatment heterogeneity, precision medicine and clinical decision support, quality of care and performance measurement, and public health and research applications. We also delineate the important challenges for big data applications in cardiovascular care, including the need for evidence of effectiveness and safety, the methodological issues such as data quality and validation, and the critical importance of clinical integration and proof of clinical utility. If big data analytics are shown to improve quality of care and patient outcomes, and can be successfully implemented in cardiovascular practice, big data will fulfil its potential as an important component of a learning health-care system.
Stamenovic, Milorad; Dobraca, Amra; Smajlovic, Mersiha
2018-01-01
Introduction: The aim of this paper is to present the marketing strategy and the application of management (marketing management) and advertising in order to increase the efficiency of innovative approach in clinical trials that include and involve the use of new technologies and transfer of technologies. Material and Methods: This paper has a descriptive character and represents a narrative review of the literature and new model implementation. Results: Marketing models are primarily used to improve the inclusion of a larger (and appropriate) number of patients, but they can be credited for the stay and monitoring of patients in the trial. Regulatory mechanisms play an important role in the application of various marketing strategies within clinical trials. The value for the patient as the most important stakeholder is defined in the field of clinical trials according to Kotler’s value model for the consumer. Conclusion: In order to achieve the best results it is important to adequately examine all the elements of clinical trials and apply this knowledge in creation of a marketing plan that will be made in accordance with the legal regulations defined globally and locally. In this paper, two challenges have been highlighted for the adequate application of marketing tools in the field of clinical trials, namely: defining business elements in order to provide an adequate marketing approach for clinical trials and technology transfer and ensuring uniformity and regulatory affirmation of marketing attitudes in clinical trials in all regions in which they are carried out in accordance with ICH-GCP and valid regulations. PMID:29719318
Renisch, B; Lauer, W
2014-12-01
An integral part of the conformity assessment process for medical devices is a clinical evaluation based on clinical data. Particularly in the case of implantable devices and products of risk class III clinical trials must be performed. Since March 2010 applications for the authorization of clinical trials as well as for the waiver of the authorization requirement must be submitted centrally in Germany to the appropriate federal authority, the Federal Institute for Drugs and Medical Devices (BfArM) or the Paul Ehrlich Institute (PEI). In addition to authorization, approval by the responsible ethics committee is also required under law in order to begin clinical testing of medical devices in Germany. In this paper, the legal framework for the clinical testing of medical devices as well as those involved and possible procedures including evaluation criteria for the initial application of a trial and subsequent amendments are presented in detail. In addition, the reporting requirements for serious adverse events (SAEs) are explained and possible consequences of the evaluation are presented. Finally, a summary of application and registration numbers for all areas of extensive experience of the BfArM as well as requests and guidance for applicants are presented.
The nightmare of FDA clearance/approval to market: perception or reality?
Tylenda, C A
1996-09-01
Over the last few years the Center for Device Evaluation and Research (CDRH) at the Food and Drug Administration (FDA) has received annually over 16 thousand submissions related to medical devices. Over 10,000 of these are major submissions which include applications to conduct clinical trials and applications to market medical devices for a specified indication for use. Each application is carefully considered. FDA personnel work closely with applicants to ensure that clinical trial design minimizes risk to the patients and maximizes benefit with respect to addressing the safety and effectiveness of the device being tested. Applicants are given every opportunity to provide additional information when necessary to assure that applications to market medical devices are complete. Applicants have the opportunity to meet with FDA staff prior to submitting applications in cases where the application is other than a straight forward, uncomplicated submission. In addition, FDA assists applicants through the development of guidance documents, which discuss the type of information that would be beneficial to include in a submission. The Division of Small Manufacturers Assistance at FDA is dedicated to helping interested persons understand the clearance/approval process. This paper will discuss the role of FDA in the regulation of medical devices, with an emphasis on the pathway to obtaining permission to market medical devices in the United States.
Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy
Hsiao, Yi-Hsuan; Kuo, Shou-Jen; Tsai, Horng-Der; Chou, Ming-Chih; Yeh, Guang-Perng
2016-01-01
The treatment of cancer is an important issue in both developing and developed countries. Clinical use of ultrasound in cancer is not only for the diagnosis but also for the treatment. Focused ultrasound surgery (FUS) is a noninvasive technique. By using the combination of high-intensity focused ultrasound (HIFU) and imaging method, FUS has the potential to ablate tumor lesions precisely. The main mechanisms of HIFU ablation involve mechanical and thermal effects. Recent advances in HIFU have increased its popularity. Some promising results were achieved in managing various malignancies, including pancreas, prostate, liver, kidney, breast and bone. Other applications include brain tumor ablation and disruption of the blood-brain barrier. We aim at briefly outlining the clinical utility of FUS as a noninvasive technique for a variety of types of cancer treatment. PMID:26918034
Schneider, Robert H; Walton, Kenneth G; Salerno, John W; Nidich, Sanford I
2006-01-01
This article summarizes the background, rationale, and clinical research on a traditional system of natural health care that may be useful in the prevention of cardiovascular disease (CVD) and promotion of health. Results recently reported include reductions in blood pressure, psychosocial stress, surrogate markers for atherosclerotic CVD, and mortality. The randomized clinical trials conducted so far have involved applications to both primary and secondary prevention as well as to health promotion more generally. The results support the applicability of this approach for reducing ethnic health disparities associated with environmental and psychosocial stress. Proposed mechanisms for the effects of this traditional system include enhanced resistance to physiological and psychological stress and improvements in homeostatic and self-repair processes. This system may offer clinical and cost effectiveness advantages for health care, particularly in preventive cardiology.
Expanding Role of Data Science and Bioinformatics in Drug Discovery and Development.
Fingert, Howard J
2018-01-01
Numerous barriers have been identified which detract from successful applications of clinical trial data and platforms. Despite the challenges, opportunities are growing to advance compliance, quality, and practical applications through top-down establishment of guiding principles, coupled with bottom-up approaches to promote data science competencies among data producers. Recent examples of successful applications include modern treatments for hematologic malignancies, developed with support from public-private partnerships, guiding principles for data-sharing, standards for protocol designs and data management, digital technologies, and quality analytics. © 2017 American Society for Clinical Pharmacology and Therapeutics.
Emerging Non-Cancer Applications of Therapeutic Ultrasound
O’Reilly, Meaghan A.; Hynynen, Kullervo
2015-01-01
Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer, clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programs that have great potential to impact patient care. PMID:25792225
Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.
Karçaaltıncaba, Muşturay; Aktaş, Aykut
2011-09-01
Although dual-energy CT (DECT) was first conceived in the 1970s, it was not widely used for CT indications. Recently, the simultaneous acquisition of volumetric dual-energy data has been introduced using multidetector CT (MDCT) with two X-ray tubes and rapid kVp switching (gemstone spectral imaging). Two major advantages of DECT are material decomposition by acquiring two image series with different kVp and the elimination of misregistration artifacts. Hounsfield unit measurements by DECT are not absolute and can change depending on the kVp used for an acquisition. Typically, a combination of 80/140 kVp is used for DECT, but for some applications, 100/140 kVp is preferred. In this study, we summarized the clinical applications of DECT and included images that were acquired using the dual-source CT and rapid kVp switching. In general, unenhanced images can be avoided by using DECT for body and neurological applications; iodine can be removed from the image, and a virtual, non-contrast (water) image can be obtained. Neuroradiological applications allow for the removal of bone and calcium from the carotid and brain CT angiography. Thorax applications include perfusion imaging in patients with pulmonary thromboemboli and other chest diseases, xenon ventilation-perfusion imaging and solitary nodule characterization. Cardiac applications include dual-energy cardiac perfusion, viability and cardiac iron detection. The removal of calcific plaques from arteries, bone removal and aortic stent graft evaluation may be achieved in the vascular system. Abdominal applications include the detection and characterization of liver and pancreas masses, the diagnosis of steatosis and iron overload, DECT colonoscopy and CT cholangiography. Urinary system applications are urinary calculi characterization (uric acid vs. non-uric acid), renal cyst characterization and mass characterization. Musculoskeletal applications permit the differentiation of gout from pseudogout and a reduction of metal artifacts. Recent introduction of iterative reconstruction techniques can increase the use of DECT techniques; the use of dual energy in patients with a high BMI is limited due to noise and the radiation dose. DECT may be a good alternative to PET-CT. Iodine map images can quantify iodine uptake, and this approach may be more effective than obtaining non-contrast and post-contrast images for the diagnosis of a solid mass. Thus, computer-aided detection may be used more effectively in CT applications. DECT is a promising technique with potential clinical applications.
Advances of high intensity focused ultrasound (HIFU) for pancreatic cancer.
Xiaoping, Li; Leizhen, Zheng
2013-11-01
High intensity focused ultrasound (HIFU) is a novel therapeutic modality. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumours, including pancreatic cancer. Preliminary studies suggest that HIFU may be useful for the palliative therapy of cancer-related pain in patients with unresectable pancreatic cancer. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.
Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P
2017-06-01
A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.
[Clinical use of interventional MR imaging].
Kahn, Thomas; Schulz, Thomas; Moche, Michael; Prothmann, Sascha; Schneider, Jens-Peter
2003-01-01
The integration of diagnostic and therapeutic procedures by MRI is based on the combination of excellent morphologic and functional imaging. The spectrum of MR-guided interventions includes biopsies, thermal ablation procedures, vascular applications, and intraoperative MRI. In all these applications, different scientific groups have obtained convincing results in basic developments as well as in clinical use. Interventional MRI (iMRI) is expected to attain an important role in interventional radiology, minimal invasive therapy, and monitoring of surgical procedures.
A systematic review of clinical audit in companion animal veterinary medicine.
Rose, Nicole; Toews, Lorraine; Pang, Daniel S J
2016-02-26
Clinical audit is a quality improvement process with the goal of continuously improving quality of patient care as assessed by explicit criteria. In human medicine clinical audit has become an integral and required component of the standard of care. In contrast, in veterinary medicine there appear to have been a limited number of clinical audits published, indicating that while clinical audit is recognised, its adoption in veterinary medicine is still in its infancy. A systematic review was designed to report and evaluate the veterinary literature on clinical audit in companion animal species (dog, cat, horse). A systematic search of English and French articles using Proquest Dissertations and Theses database (February 6, 2014), CAB Abstracts (March 21, 2014 and April 4, 2014), Scopus (March 21, 2014), Web of Science Citation index (March 21, 2014) and OVID Medline (March 21, 2014) was performed. Included articles were those either discussing clinical audit (such as review articles and editorials) or reporting parts of, or complete, audit cycles. The majority of articles describing clinical audit were reviews. From 89 articles identified, twenty-one articles were included and available for review. Twelve articles were reviews of clinical audit in veterinary medicine, five articles included at least one veterinary clinical audit, one thesis was identified, one report was of a veterinary clinical audit website and two articles reported incomplete clinical audits. There was no indication of an increase in the number of published clinical audits since the first report in 1998. However, there was evidence of article misclassification, with studies fulfilling the criteria of clinical audit not appropriately recognised. Quality of study design and reporting of findings varied considerably, with information missing on key components, including duration of study, changes in practice implemented between audits, development of explicit criteria and appropriate statistical analyses. Available evidence suggests the application and reporting of clinical audit in veterinary medicine is sporadic despite the potential to improve patient care, though the true incidence of clinical audit reporting is likely to be underestimated due to incorrect indexing. Reporting standards of clinical audits are highly variable, limiting evaluation, application and repeatability of published work.
21 CFR 812.35 - Supplemental applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (including manufacturing changes) that do not constitute a significant change in design or basic principles... reliable information such as clinical information gathered during a trial or marketing. (B) Credible... investigator(s), and/or the data gathered during the clinical trial or marketing. (iv) Notice of IDE change...
Psychiatric diagnoses in a group of astronaut applicants
NASA Technical Reports Server (NTRS)
Santy, Patricia A.; Faulk, Dean M.; Holland, Al W.
1991-01-01
Between 1959 and 1987, the psychiatric evaluation of astronaut candidates evolved from a 30-h intensive examination evaluating applicants for psychopathology, and studying their performance under stress, to a 2-h clinical interview whose structure and contents were determined by the individual examiner. Evaluations done during these years applied both psychiatric (or, 'select-out') criteria and psychological (or, 'select-in') criteria. In an attempt to more rigorously define the psychiatric, 'select-out' component, a standardized, semistructured clinical interview was developed to identify the presence or history of psychiatric disorders listed in the Diagnostic and Statistical Manual of Mental Disorders, 3rd Ed. ('DSM-III'). A total of 117 astronaut applicants underwent this clinical interview as part of a comprehensive medical evaluation during a recent astronaut selection. Of the 117 applicants, 9 (7.7 percent) met DSM-III criteria for a variety of Axis I and Axis II diagnoses, including V-code diagnoses.
Laboratory and software applications for clinical trials: the global laboratory environment.
Briscoe, Chad
2011-11-01
The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.
A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery
Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan
2018-01-01
Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting. PMID:29503698
A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery.
Cho, Woojin; Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan
2018-02-01
Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.
Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption
Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole
2016-01-01
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227
Besinis, Alexandros; De Peralta, Tracy; Tredwin, Christopher J; Handy, Richard D
2015-03-24
Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure.
Application development environment for advanced digital workstations
NASA Astrophysics Data System (ADS)
Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.
1998-06-01
One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.
Ultrasound transducer selection in clinical imaging practice.
Szabo, Thomas L; Lewin, Peter A
2013-04-01
Many types of medical ultrasound transducers are used in clinical practice. They operate at different center frequencies, have different physical dimensions, footprints, and shapes, and provide different image formats. However, little information is available about which transducers are most appropriate for a given application, and the purpose of this article is to address this deficiency. Specifically, the relationship between the transducer, imaging format, and clinical applications is discussed, and systematic selection criteria that allow matching of transducers to specific clinical needs are presented. These criteria include access to and coverage of the region of interest, maximum scan depth, and coverage of essential diagnostic modes required to optimize a patient's diagnosis. Three comprehensive figures organize and summarize the imaging planes, scanning modes, and types of diagnostic transducers to facilitate their selection in clinical diagnosis.
Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.
Smith, Jay; Finnoff, Jonathan T
2009-02-01
Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.
Clinical applications of the functional connectome
Castellanos, F. Xavier; Di Martino, Adriana; Craddock, R. Cameron; Mehta, Ashesh D.; Milham, Michael P.
2013-01-01
Central to the development of clinical applications of functional connectomics for neurology and psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is emerging as a mainstream approach for imaging-based biomarker identification, detecting variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability, sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts, and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-based biomarker identification, highlighting the potential of emerging conceptual, analytical and cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives, and Big Data) to address them. Additionally, we note the need to expand future efforts beyond identification of biomarkers for disease status alone to include clinical variables related to risk, expected treatment response and prognosis. PMID:23631991
Clinical application of the five-factor model.
Widiger, Thomas A; Presnall, Jennifer Ruth
2013-12-01
The Five-Factor Model (FFM) has become the predominant dimensional model of general personality structure. The purpose of this paper is to suggest a clinical application. A substantial body of research indicates that the personality disorders included within the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM) can be understood as extreme and/or maladaptive variants of the FFM (the acronym "DSM" refers to any particular edition of the APA DSM). In addition, the current proposal for the forthcoming fifth edition of the DSM (i.e., DSM-5) is shifting closely toward an FFM dimensional trait model of personality disorder. Advantages of this shifting conceptualization are discussed, including treatment planning. © 2012 Wiley Periodicals, Inc.
Mobile Tablet Use among Academic Physicians and Trainees
Sclafani, Joseph; Tirrell, Timothy F.
2014-01-01
The rapid adoption rate and integration of mobile technology (tablet computing devices and smartphones) by physicians is reshaping the current clinical landscape. These devices have sparked an evolution in a variety of arenas, including educational media dissemination, remote patient data access and point of care applications. Quantifying usage patterns of clinical applications of mobile technology is of interest to understand how these technologies are shaping current clinical care. A digital survey examining mobile tablet and associated application usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, and habits of tablet usage were collected and analyzed. 40 % of respondents used a tablet, of which the iPad was the most popular. Nearly half of the tablet owners reported using the tablet in clinical settings; the most commonly used application types were point of care and electronic medical record access. Increased level of training was associated with decreased support for mobile computing improving physician capabilities and patient interactions. There was strong and consistent desire for institutional support of mobile computing and integration of mobile computing technology into medical education. While many physicians are currently purchasing mobile devices, often without institutional support, successful integration of these devices into the clinical setting is still developing. Potential reasons behind the low adoption rate may include interference of technology in doctor-patient interactions or the lack of appropriate applications available for download. However, the results convincingly demonstrate that physicians recognize a potential utility in mobile computing, indicated by their desire for institutional support and integration of mobile technology into medical education. It is likely that the use of tablet computers in clinical practice will expand in the future. Thus, we believe medical institutions, providers, educators, and developers should collaborate in ways that enhance the efficacy, reliability, and safety of integrating these devices into daily medical practice. PMID:23321961
Kinetic chains: a review of the concept and its clinical applications.
Karandikar, Ninad; Vargas, Oscar O Ortiz
2011-08-01
During the past decade, our understanding of biomechanics and its importance in rehabilitation has advanced significantly. The kinetic chain, a concept borrowed from engineering, has helped us better understand the underlying physiology of human movement. This understanding, in turn, has facilitated the development of new and more rational rehabilitation strategies. The kinetic chain concept has application in a wide spectrum of clinical conditions, including musculoskeletal medicine, sports medicine, and neurorehabilitation, as well as prosthetics and orthotics. The purpose of this review is to provide insights into the biomechanics related to the concept of kinetic chains, with a specific focus on closed kinetic chains and its clinical applications in rehabilitation. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Big Data Analytic, Big Step for Patient Management and Care in Puerto Rico.
Borrero, Ernesto E
2018-01-01
This letter provides an overview of the application of big data in health care system to improve quality of care, including predictive modelling for risk and resource use, precision medicine and clinical decision support, quality of care and performance measurement, public health and research applications, among others. The author delineates the tremendous potential for big data analytics and discuss how it can be successfully implemented in clinical practice, as an important component of a learning health-care system.
Developing a clinical information system: the role of the chief information officer.
Glaser, J
1994-11-01
Chief information officers (CIOs) must play a pivotal role in the formation and implementation of a clinical information system, the subset of an organizational information system that deals specifically with support of clinical care activities. Major elements include the applications software, technology and data architecture, databases, and analysis. The organizational structures and processes that manage the development of improvement activities, including the clinical information system itself, are just as vital to the design of an information system as the hardware and software. To develop, sustain, and advance an information infrastructure, the CIO must help establish certain organizational precursors, such as medical staff involvement, experience with quality improvement, and ability to meet data needs. The CIO must then work with the senior administrative and medical leadership in developing a vision for the information system. The CIO must also create new roles and knowledge for information system and medical staff members. Interaction between information services and medical staff is vitally important to the success of a clinical information system. Organizational committees and structures that Brigham and Women's Hospital in Boston put in place to formalize the relationship between information systems and medical staff include the Clinical Initiative Development Program and the Center for Applied Medical Information Systems Research. Improving the clinical management of care and the efficacy of care processes involves complex changes in organizational culture and processes, medical practice and information system applications, technologies, staff, and data.
Using Family Photographs to Explore Life Cycle Changes.
ERIC Educational Resources Information Center
Gerace, Laina M.
1989-01-01
The author introduced discussions about family photographs as a clinical technique with depressed clients. During therapy, clients were encouraged to discuss the photos in an open-ended manner. Methods and themes elicited by photo-interview are presented. Comments on the clinical application of phototherapy are included. (CH)
McClintock, Shawn M; Reti, Irving M; Carpenter, Linda L; McDonald, William M; Dubin, Marc; Taylor, Stephan F; Cook, Ian A; O'Reardon, John; Husain, Mustafa M; Wall, Christopher; Krystal, Andrew D; Sampson, Shirlene M; Morales, Oscar; Nelson, Brent G; Latoussakis, Vassilios; George, Mark S; Lisanby, Sarah H
To provide expert recommendations for the safe and effective application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder (MDD). Participants included a group of 17 expert clinicians and researchers with expertise in the clinical application of rTMS, representing both the National Network of Depression Centers (NNDC) rTMS Task Group and the American Psychiatric Association Council on Research (APA CoR) Task Force on Novel Biomarkers and Treatments. The consensus statement is based on a review of extensive literature from 2 databases (OvidSP MEDLINE and PsycINFO) searched from 1990 through 2016. The search terms included variants of major depressive disorder and transcranial magnetic stimulation. The results were limited to articles written in English that focused on adult populations. Of the approximately 1,500 retrieved studies, a total of 118 publications were included in the consensus statement and were supplemented with expert opinion to achieve consensus recommendations on key issues surrounding the administration of rTMS for MDD in clinical practice settings. In cases in which the research evidence was equivocal or unclear, a consensus decision on how rTMS should be administered was reached by the authors of this article and is denoted in the article as "expert opinion." Multiple randomized controlled trials and published literature have supported the safety and efficacy of rTMS antidepressant therapy. These consensus recommendations, developed by the NNDC rTMS Task Group and APA CoR Task Force on Novel Biomarkers and Treatments, provide comprehensive information for the safe and effective clinical application of rTMS in the treatment of MDD. © Copyright 2017 Physicians Postgraduate Press, Inc.
v3NLP Framework: Tools to Build Applications for Extracting Concepts from Clinical Text
Divita, Guy; Carter, Marjorie E.; Tran, Le-Thuy; Redd, Doug; Zeng, Qing T; Duvall, Scott; Samore, Matthew H.; Gundlapalli, Adi V.
2016-01-01
Introduction: Substantial amounts of clinically significant information are contained only within the narrative of the clinical notes in electronic medical records. The v3NLP Framework is a set of “best-of-breed” functionalities developed to transform this information into structured data for use in quality improvement, research, population health surveillance, and decision support. Background: MetaMap, cTAKES and similar well-known natural language processing (NLP) tools do not have sufficient scalability out of the box. The v3NLP Framework evolved out of the necessity to scale-up these tools up and provide a framework to customize and tune techniques that fit a variety of tasks, including document classification, tuned concept extraction for specific conditions, patient classification, and information retrieval. Innovation: Beyond scalability, several v3NLP Framework-developed projects have been efficacy tested and benchmarked. While v3NLP Framework includes annotators, pipelines and applications, its functionalities enable developers to create novel annotators and to place annotators into pipelines and scaled applications. Discussion: The v3NLP Framework has been successfully utilized in many projects including general concept extraction, risk factors for homelessness among veterans, and identification of mentions of the presence of an indwelling urinary catheter. Projects as diverse as predicting colonization with methicillin-resistant Staphylococcus aureus and extracting references to military sexual trauma are being built using v3NLP Framework components. Conclusion: The v3NLP Framework is a set of functionalities and components that provide Java developers with the ability to create novel annotators and to place those annotators into pipelines and applications to extract concepts from clinical text. There are scale-up and scale-out functionalities to process large numbers of records. PMID:27683667
Integration of Web-based and PC-based clinical research databases.
Brandt, C A; Sun, K; Charpentier, P; Nadkarni, P M
2004-01-01
We have created a Web-based repository or data library of information about measurement instruments used in studies of multi-factorial geriatric health conditions (the Geriatrics Research Instrument Library - GRIL) based upon existing features of two separate clinical study data management systems. GRIL allows browsing, searching, and selecting measurement instruments based upon criteria such as keywords and areas of applicability. Measurement instruments selected can be printed and/or included in an automatically generated standalone microcomputer database application, which can be downloaded by investigators for use in data collection and data management. Integration of database applications requires the creation of a common semantic model, and mapping from each system to this model. Various database schema conflicts at the table and attribute level must be identified and resolved prior to integration. Using a conflict taxonomy and a mapping schema facilitates this process. Critical conflicts at the table level that required resolution included name and relationship differences. A major benefit of integration efforts is the sharing of features and cross-fertilization of applications created for similar purposes in different operating environments. Integration of applications mandates some degree of metadata model unification.
[Application of pharmacoeconomics in clinical management].
Amat Díaz, M; Poveda Andrés, J L; Carrera-Hueso, F J
2011-05-01
The present article discusses the importance of clinical management in the transformation of organizations and its role in the daily activities of health professionals and, in particular, of hospital pharmacists. Because of social changes, healthcare models must make the shift from more rigid management models toward new organizational models based on clinical management. From this perspective, pharmacoeconomics is viewed as a useful tool to introduce the criteria of efficiency in all decisions subject to clinical management, including those on pharmacotherapeutics. Subsequently, the application of this discipline is discussed in real decision-making scenarios and settings for its use within the context of the work of hospital pharmacy are proposed. Copyright © 2011 Sociedad Española de Farmacia Hospitalaria. Published by Elsevier Espana. All rights reserved.
Imaging of femoroacetabular impingement-current concepts
Albers, Christoph E.; Wambeek, Nicholas; Hanke, Markus S.; Schmaranzer, Florian; Prosser, Gareth H.; Yates, Piers J.
2016-01-01
Following the recognition of femoroacetabular impingement (FAI) as a clinical entity, diagnostic tools have continuously evolved. While the diagnosis of FAI is primarily made based on the patients’ history and clinical examination, imaging of FAI is indispensable. Routine diagnostic work-up consists of a set of plain radiographs, magnetic resonance imaging (MRI) and MR-arthrography. Recent advances in MRI technology include biochemically sensitive sequences bearing the potential to detect degenerative changes of the hip joint at an early stage prior to their appearance on conventional imaging modalities. Computed tomography may serve as an adjunct. Advantages of CT include superior bone to soft tissue contrast, making CT applicable for image-guiding software tools that allow evaluation of the underlying dynamic mechanisms causing FAI. This article provides a summary of current concepts of imaging in FAI and a review of the literature on recent advances, and their application to clinical practice. PMID:29632685
The sweet and sour of serological glycoprotein tumor biomarker quantification
2013-01-01
Aberrant and dysregulated protein glycosylation is a well-established event in the process of oncogenesis and cancer progression. Years of study on the glycobiology of cancer have been focused on the development of clinically viable diagnostic applications of this knowledge. However, for a number of reasons, there has been only sparse and varied success. The causes of this range from technical to biological issues that arise when studying protein glycosylation and attempting to apply it to practical applications. This review focuses on the pitfalls, advances, and future directions to be taken in the development of clinically applicable quantitative assays using glycan moieties from serum-based proteins as analytes. Topics covered include the development and progress of applications of lectins, mass spectrometry, and other technologies towards this purpose. Slowly but surely, novel applications of established and development of new technologies will eventually provide us with the tools to reach the ultimate goal of quantification of the full scope of heterogeneity associated with the glycosylation of biomarker candidate glycoproteins in a clinically applicable fashion. PMID:23390961
The development of a clinical outcomes survey research application: Assessment CenterSM
Rothrock, Nan E.; Hanrahan, Rachel T.; Jansky, Liz J.; Harniss, Mark; Riley, William
2013-01-01
Introduction The National Institutes of Health sponsored Patient-Reported Outcome Measurement Information System (PROMIS) aimed to create item banks and computerized adaptive tests (CATs) across multiple domains for individuals with a range of chronic diseases. Purpose Web-based software was created to enable a researcher to create study-specific Websites that could administer PROMIS CATs and other instruments to research participants or clinical samples. This paper outlines the process used to develop a user-friendly, free, Web-based resource (Assessment CenterSM) for storage, retrieval, organization, sharing, and administration of patient-reported outcomes (PRO) instruments. Methods Joint Application Design (JAD) sessions were conducted with representatives from numerous institutions in order to supply a general wish list of features. Use Cases were then written to ensure that end user expectations matched programmer specifications. Program development included daily programmer “scrum” sessions, weekly Usability Acceptability Testing (UAT) and continuous Quality Assurance (QA) activities pre- and post-release. Results Assessment Center includes features that promote instrument development including item histories, data management, and storage of statistical analysis results. Conclusions This case study of software development highlights the collection and incorporation of user input throughout the development process. Potential future applications of Assessment Center in clinical research are discussed. PMID:20306332
Artificial Intelligence in Surgery: Promises and Perils.
Hashimoto, Daniel A; Rosman, Guy; Rus, Daniela; Meireles, Ozanan R
2018-07-01
The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care.
Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells
Geyer, Mark B.; Brentjens, Renier J.
2016-01-01
The past several years have been marked by extraordinary advances in clinical applications of immunotherapy. In particular, adoptive cellular therapy utilizing chimeric antigen receptor (CAR) modified T cells targeted to CD19 has demonstrated substantial clinical efficacy in children and adults with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL), and durable clinical benefit in a smaller subset of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) or B cell non-Hodgkin lymphoma (B-NHL). Early phase clinical trials are presently assessing CAR T cell safety and efficacy in additional malignancies. Herein, we discuss clinical results from the largest series to date investigating CD19-targeted CAR T cells in B-ALL, CLL, and B-NHL, including discussion of differences in CAR T cell design and production and treatment approach, as well as clinical efficacy, nature of severe cytokine release syndrome and neurologic toxicities, and CAR T cell expansion and persistence. We additionally review the current and forthcoming use of CAR T cells in multiple myeloma and several solid tumors, and highlight challenges and opportunities afforded by the current state of CAR T cell therapies, including strategies to overcome inhibitory aspects of the tumor microenvironment and enhance antitumor efficacy. PMID:27592405
Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells.
Geyer, Mark B; Brentjens, Renier J
2016-11-01
The past several years have been marked by extraordinary advances in clinical applications of immunotherapy. In particular, adoptive cellular therapy utilizing chimeric antigen receptor (CAR)-modified T cells targeted to CD19 has demonstrated substantial clinical efficacy in children and adults with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL) and durable clinical benefit in a smaller subset of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) or B-cell non-Hodgkin lymphoma (B-NHL). Early-phase clinical trials are currently assessing CAR T-cell safety and efficacy in additional malignancies. Here, we discuss clinical results from the largest series to date investigating CD19-targeted CAR T cells in B-ALL, CLL, and B-NHL, including discussion of differences in CAR T-cell design and production and treatment approach, as well as clinical efficacy, nature of severe cytokine release syndrome and neurologic toxicities, and CAR T-cell expansion and persistence. We additionally review the current and forthcoming use of CAR T cells in multiple myeloma and several solid tumors and highlight challenges and opportunities afforded by the current state of CAR T-cell therapies, including strategies to overcome inhibitory aspects of the tumor microenvironment and enhance antitumor efficacy. Published by Elsevier Inc.
Decision support and disease management: a logic engineering approach.
Fox, J; Thomson, R
1998-12-01
This paper describes the development and application of PROforma, a unified technology for clinical decision support and disease management. Work leading to the implementation of PROforma has been carried out in a series of projects funded by European agencies over the past 13 years. The work has been based on logic engineering, a distinct design and development methodology that combines concepts from knowledge engineering, logic programming, and software engineering. Several of the projects have used the approach to demonstrate a wide range of applications in primary and specialist care and clinical research. Concurrent academic research projects have provided a sound theoretical basis for the safety-critical elements of the methodology. The principal technical results of the work are the PROforma logic language for defining clinical processes and an associated suite of software tools for delivering applications, such as decision support and disease management procedures. The language supports four standard objects (decisions, plans, actions, and enquiries), each of which has an intuitive meaning with well-understood logical semantics. The development toolset includes a powerful visual programming environment for composing applications from these standard components, for verifying consistency and completeness of the resulting specification and for delivering stand-alone or embeddable applications. Tools and applications that have resulted from the work are described and illustrated, with examples from specialist cancer care and primary care. The results of a number of evaluation activities are included to illustrate the utility of the technology.
Lectins and their application to clinical microbiology.
Slifkin, M; Doyle, R J
1990-01-01
Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603
Clinical applications of PET in oncology.
Rohren, Eric M; Turkington, Timothy G; Coleman, R Edward
2004-05-01
Positron emission tomography (PET) provides metabolic information that has been documented to be useful in patient care. The properties of positron decay permit accurate imaging of the distribution of positron-emitting radiopharmaceuticals. The wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. PET is used for characterizing brain disorders such as Alzheimer disease and epilepsy and cardiac disorders such as coronary artery disease and myocardial viability. The neurologic and cardiac applications of PET are not covered in this review. The major utilization of PET clinically is in oncology and consists of imaging the distribution of fluorine 18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. FDG PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. In this review, the physics and instrumentation aspects of PET are described. Many of the clinical applications in oncology are mature and readily covered by third-party payers. Other applications are being used clinically but have not been as carefully evaluated in the literature, and these applications may not be covered by third-party payers. The developing applications of PET are included in this review.
Demner-Fushman, D; Elhadad, N
2016-11-10
This paper reviews work over the past two years in Natural Language Processing (NLP) applied to clinical and consumer-generated texts. We included any application or methodological publication that leverages text to facilitate healthcare and address the health-related needs of consumers and populations. Many important developments in clinical text processing, both foundational and task-oriented, were addressed in community- wide evaluations and discussed in corresponding special issues that are referenced in this review. These focused issues and in-depth reviews of several other active research areas, such as pharmacovigilance and summarization, allowed us to discuss in greater depth disease modeling and predictive analytics using clinical texts, and text analysis in social media for healthcare quality assessment, trends towards online interventions based on rapid analysis of health-related posts, and consumer health question answering, among other issues. Our analysis shows that although clinical NLP continues to advance towards practical applications and more NLP methods are used in large-scale live health information applications, more needs to be done to make NLP use in clinical applications a routine widespread reality. Progress in clinical NLP is mirrored by developments in social media text analysis: the research is moving from capturing trends to addressing individual health-related posts, thus showing potential to become a tool for precision medicine and a valuable addition to the standard healthcare quality evaluation tools.
ERIC Educational Resources Information Center
Gamarra, Soledad; Dudiuk, Catiana; Mancilla, Estefania; Vera Garate, Maria Veronica; Guerrero, Sergio; Garcia-Effron, Guillermo
2013-01-01
"Candida" spp. includes more than 160 species but only 20 species pose clinical problems. "C. albicans" and "C. parapsilosis" account for more than 75% of all the fungemias worldwide. In 1995 and 2005, one "C. albicans" and two "C. parapsilosis"-related species were described, respectively. Using…
Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials.
Seifi, Massoud; Matini, Negin-Sadat
2017-01-01
Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed.
Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials
Seifi, Massoud; Matini, Negin-Sadat
2017-01-01
Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed. PMID:29263776
Mobile Technology for the Practice of Pathology.
Hartman, Douglas J
2016-03-01
Recently, several technological advances have been introduced to mobile phones leading some people to refer to them as "smartphones." These changes have led to widespread consumer adoption. A similar adoption has occurred within the medical field and this revolution is changing the practice of medicine, including pathology. Several mobile applications have been published for dermatology, orthopedics, ophthalmology, neurosurgery, and clinical pathology. The applications are wide ranging, including mobile technology to increase patient engagement, self-monitoring by patients, clinical algorithm calculation, facilitation between experts to resource-poor environments. These advances have been received with mixed reviews. For anatomic pathology, mobile technology applications can be broken into 4 broad categories: (a) educational uses, (b) microscope with mobile phone, (c) mobile phone as microscope/acquisition device, and (d) miscellaneous. Using a mobile phone as an acquisition device paired with a microscope seems to be the most interesting current application because of the need for expert consultation with resource-poor environments. However, several emerging uses for mobile technology may become more prominent as the technology matures including image analysis, alternative light sources, and increased opportunities for clinician and patient engagement. The flexibility represented by mobile technology represents a burgeoning field in pathology informatics.
Joint Models of Longitudinal and Time-to-Event Data with More Than One Event Time Outcome: A Review.
Hickey, Graeme L; Philipson, Pete; Jorgensen, Andrea; Kolamunnage-Dona, Ruwanthi
2018-01-31
Methodological development and clinical application of joint models of longitudinal and time-to-event outcomes have grown substantially over the past two decades. However, much of this research has concentrated on a single longitudinal outcome and a single event time outcome. In clinical and public health research, patients who are followed up over time may often experience multiple, recurrent, or a succession of clinical events. Models that utilise such multivariate event time outcomes are quite valuable in clinical decision-making. We comprehensively review the literature for implementation of joint models involving more than a single event time per subject. We consider the distributional and modelling assumptions, including the association structure, estimation approaches, software implementations, and clinical applications. Research into this area is proving highly promising, but to-date remains in its infancy.
The Emerging Field of Quantitative Blood Metabolomics for Biomarker Discovery in Critical Illnesses
Serkova, Natalie J.; Standiford, Theodore J.
2011-01-01
Metabolomics, a science of systems biology, is the global assessment of endogenous metabolites within a biologic system and represents a “snapshot” reading of gene function, enzyme activity, and the physiological landscape. Metabolite detection, either individual or grouped as a metabolomic profile, is usually performed in cells, tissues, or biofluids by either nuclear magnetic resonance spectroscopy or mass spectrometry followed by sophisticated multivariate data analysis. Because loss of metabolic homeostasis is common in critical illness, the metabolome could have many applications, including biomarker and drug target identification. Metabolomics could also significantly advance our understanding of the complex pathophysiology of acute illnesses, such as sepsis and acute lung injury/acute respiratory distress syndrome. Despite this potential, the clinical community is largely unfamiliar with the field of metabolomics, including the methodologies involved, technical challenges, and, most importantly, clinical uses. Although there is evidence of successful preclinical applications, the clinical usefulness and application of metabolomics in critical illness is just beginning to emerge, the advancement of which hinges on linking metabolite data to known and validated clinically relevant indices. In addition, other important aspects, such as patient selection, sample collection, and processing, as well as the needed multivariate data analysis, have to be taken into consideration before this innovative approach to biomarker discovery can become a reliable tool in the intensive care unit. The purpose of this review is to begin to familiarize clinicians with the field of metabolomics and its application for biomarker discovery in critical illnesses such as sepsis. PMID:21680948
Boycott, Kym; Hartley, Taila; Adam, Shelin; Bernier, Francois; Chong, Karen; Fernandez, Bridget A; Friedman, Jan M; Geraghty, Michael T; Hume, Stacey; Knoppers, Bartha M; Laberge, Anne-Marie; Majewski, Jacek; Mendoza-Londono, Roberto; Meyn, M Stephen; Michaud, Jacques L; Nelson, Tanya N; Richer, Julie; Sadikovic, Bekim; Skidmore, David L; Stockley, Tracy; Taylor, Sherry; van Karnebeek, Clara; Zawati, Ma'n H; Lauzon, Julie; Armour, Christine M
2015-01-01
Purpose and scope The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Methods of statement development Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Results and conclusions Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally. PMID:25951830
Boycott, Kym; Hartley, Taila; Adam, Shelin; Bernier, Francois; Chong, Karen; Fernandez, Bridget A; Friedman, Jan M; Geraghty, Michael T; Hume, Stacey; Knoppers, Bartha M; Laberge, Anne-Marie; Majewski, Jacek; Mendoza-Londono, Roberto; Meyn, M Stephen; Michaud, Jacques L; Nelson, Tanya N; Richer, Julie; Sadikovic, Bekim; Skidmore, David L; Stockley, Tracy; Taylor, Sherry; van Karnebeek, Clara; Zawati, Ma'n H; Lauzon, Julie; Armour, Christine M
2015-07-01
The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Oelze, Michael L; Mamou, Jonathan
2016-02-01
Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and preclinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy.
Reusche, Ryan; Buchanan, Patrick J; Kozlow, Jeffrey H; Vercler, Christian J
2016-01-01
The growth and acceptance of smartphones among clinicians has been remarkable over the last decade. Over 87% of doctors use a smartphone or tablet capable of running third-party software known as applications (apps). In the field of plastic surgery, apps have been designed for personal practice development, education, clinical tools and guidelines, and entertainment. This study reviews the literature on apps related to plastic surgery and determines the number and types of apps available. A systematic review of the literature was performed to find articles written about plastic surgery applications. Queries were run in the Apple iPhone iOS App store and Google Play using the term "plastic surgery." Apps were reviewed for ratings, downloads, and cost. In addition, apps were categorized based on purpose. Categories include practice development, media/literature, clinical tool and guideline apps, or recreation. The literature search yielded 8 articles for review, 2 articles focused on categorizing apps and 6 articles focused on describing useful apps. Searching Apple's iTunes (iOS) store identified 273 and Google Play identified 250 apps related to plastic surgery; since 2013, a 62%, and 580% increase, respectively. The iOS store included practice development (46%), recreation (26%), media/literature (14%), and clinical tool and guideline (11%). Google Play store included recreation apps (44%), practice development (24%), clinical tools and guidelines (11%), and media and literature (9%). Apps related to the field of plastic surgery are increasing in prevalence. The content of these apps are variable, and the majority are intended for marketing and development of private practices. Apps linking to literature, texts, study materials, and clinical tools and guidelines are developed for both practicing plastic surgeons and surgical trainees. Finding "useful" apps takes time because searches are often complicated by a variety of apps.
Simon, Sheldon R
2004-12-01
The technology supporting the analysis of human motion has advanced dramatically. Past decades of locomotion research have provided us with significant knowledge about the accuracy of tests performed, the understanding of the process of human locomotion, and how clinical testing can be used to evaluate medical disorders and affect their treatment. Gait analysis is now recognized as clinically useful and financially reimbursable for some medical conditions. Yet, the routine clinical use of gait analysis has seen very limited growth. The issue of its clinical value is related to many factors, including the applicability of existing technology to addressing clinical problems; the limited use of such tests to address a wide variety of medical disorders; the manner in which gait laboratories are organized, tests are performed, and reports generated; and the clinical understanding and expectations of laboratory results. Clinical use is most hampered by the length of time and costs required for performing a study and interpreting it. A "gait" report is lengthy, its data are not well understood, and it includes a clinical interpretation, all of which do not occur with other clinical tests. Current biotechnology research is seeking to address these problems by creating techniques to capture data rapidly, accurately, and efficiently, and to interpret such data by an assortment of modeling, statistical, wave interpretation, and artificial intelligence methodologies. The success of such efforts rests on both our technical abilities and communication between engineers and clinicians.
WebCIS: large scale deployment of a Web-based clinical information system.
Hripcsak, G; Cimino, J J; Sengupta, S
1999-01-01
WebCIS is a Web-based clinical information system. It sits atop the existing Columbia University clinical information system architecture, which includes a clinical repository, the Medical Entities Dictionary, an HL7 interface engine, and an Arden Syntax based clinical event monitor. WebCIS security features include authentication with secure tokens, authorization maintained in an LDAP server, SSL encryption, permanent audit logs, and application time outs. WebCIS is currently used by 810 physicians at the Columbia-Presbyterian center of New York Presbyterian Healthcare to review and enter data into the electronic medical record. Current deployment challenges include maintaining adequate database performance despite complex queries, replacing large numbers of computers that cannot run modern Web browsers, and training users that have never logged onto the Web. Although the raised expectations and higher goals have increased deployment costs, the end result is a far more functional, far more available system.
Rhoads, Daniel D.; Mathison, Blaine A.; Bishop, Henry S.; da Silva, Alexandre J.; Pantanowitz, Liron
2016-01-01
Context Microbiology laboratories are continually pursuing means to improve quality, rapidity, and efficiency of specimen analysis in the face of limited resources. One means by which to achieve these improvements is through the remote analysis of digital images. Telemicrobiology enables the remote interpretation of images of microbiology specimens. To date, the practice of clinical telemicrobiology has not been thoroughly reviewed. Objective Identify the various methods that can be employed for telemicrobiology, including emerging technologies that may provide value to the clinical laboratory. Data Sources Peer-reviewed literature, conference proceedings, meeting presentations, and expert opinions pertaining to telemicrobiology have been evaluated. Results A number of modalities have been employed for telemicroscopy including static capture techniques, whole slide imaging, video telemicroscopy, mobile devices, and hybrid systems. Telemicrobiology has been successfully implemented for applications including routine primary diagnois, expert teleconsultation, and proficiency testing. Emerging areas include digital culture plate reading, mobile health applications and computer-augmented analysis of digital images. Conclusions Static image capture techniques to date have been the most widely used modality for telemicrobiology, despite the fact that other newer technologies are available and may produce better quality interpretations. Increased adoption of telemicrobiology offers added value, quality, and efficiency to the clinical microbiology laboratory. PMID:26317376
Review of MR Elastography Applications and Recent Developments
Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.
2012-01-01
The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications. PMID:22987755
What can posturography tell us about vestibular function?
NASA Technical Reports Server (NTRS)
Black, F. O.
2001-01-01
Patients with balance disorders want answers to the following basic questions: (1) What is causing my problem? and (2) What can be done about my problem? Information to fully answer these questions must include status of both sensory and motor components of the balance control systems. Computerized dynamic posturography (CDP) provides quantitative assessment of both sensory and motor components of postural control along with how the sensory inputs to the brain interact. This paper reviews the scientific basis and clinical applications of CDP. Specifically, studies describing the integration of vestibular inputs with other sensory systems for postural control are briefly summarized. Clinical applications, including assessment, rehabilitation, and management are presented. Effects of aging on postural control along with prevention and management strategies are discussed.
Intercultural Usage of Mori Folium: Comparison Review from a Korean Medical Perspective
Joh, Byungjin; Jeon, Eun Sang; Lim, Su Hye; Park, Yu Lee; Park, Wansu
2015-01-01
Objectives. A review on studies related to the use of Mori folium, the leaves of Morus alba, was conducted with the goal of identifying new clinical applications in Korean medicine. Methods. Global literature search was conducted using three electronic databases up to January 2015 with the term Morus alba and its Korean terms. KM literatures including textbooks and standard pharmacopoeia were separately hand-searched and reviewed to provide comparison. Data were extracted according to predetermined criteria, and clinical uses were standardized with ICD-10 categories. Results. 159 potentially relevant studies were identified, and 18 articles including 12 ethnopharmacologic and 6 clinical studies were finally included in this analysis. Ethnopharmacologic studies from 8 countries provided 17 clinical uses. We found that five out of six clinical trials were related to diabetes and suggested a moderate short-term to mild long-term effect. And 43 Korean texts also provided 156 clinical uses in 35 categories including ocular and respiratory disorders. Discussion and Conclusions. Though majority of the clinical uses were also found in Korean medicine literature, treatment of infertility, jaundice, cognitive disorder, and hyperpigmentation was found to be effective and diabetes with Morus alba was recognized to have clinical importance. PMID:26539223
Imaging outcome measures for progressive multiple sclerosis trials
Moccia, Marcello; de Stefano, Nicola; Barkhof, Frederik
2017-01-01
Imaging markers that are reliable, reproducible and sensitive to neurodegenerative changes in progressive multiple sclerosis (MS) can enhance the development of new medications with a neuroprotective mode-of-action. Accordingly, in recent years, a considerable number of imaging biomarkers have been included in phase 2 and 3 clinical trials in primary and secondary progressive MS. Brain lesion count and volume are markers of inflammation and demyelination and are important outcomes even in progressive MS trials. Brain and, more recently, spinal cord atrophy are gaining relevance, considering their strong association with disability accrual; ongoing improvements in analysis methods will enhance their applicability in clinical trials, especially for cord atrophy. Advanced magnetic resonance imaging (MRI) techniques (e.g. magnetization transfer ratio (MTR), diffusion tensor imaging (DTI), spectroscopy) have been included in few trials so far and hold promise for the future, as they can reflect specific pathological changes targeted by neuroprotective treatments. Position emission tomography (PET) and optical coherence tomography have yet to be included. Applications, limitations and future perspectives of these techniques in clinical trials in progressive MS are discussed, with emphasis on measurement sensitivity, reliability and sample size calculation. PMID:29041865
Lee, Jie-Eun; Lee, Dong Hwa; Oh, Tae Jung; Kim, Kyoung Min; Choi, Sung Hee; Lim, Soo; Park, Young Joo; Park, Do Joon; Jang, Hak Chul
2018-01-01
Background Thyrotoxicosis is a common disease caused by an excess of thyroid hormones. The prevalence of thyrotoxicosis about 2% and 70-90% of thyrotoxicosis cases are caused by Graves' disease, an autoimmune disease, which has a high recurrence rate when treated with antithyroid drugs such as methimazole or propylthiouracil. The clinical symptoms and signs of thyrotoxicosis include palpitation, weight loss, restlessness, and difficulty sleeping. Although these clinical changes in thyrotoxicosis can be detected by currently available wearable activity trackers, there have been few trials of the clinical application of wearable devices in patients with thyrotoxicosis. Objective The aim of this study is to investigate the clinical applicability of wearable device-generated data to the management of thyrotoxicosis. We are analyzing continuously monitored data for heart rate, physical activity, and sleep in patients with thyrotoxicosis during their clinical course after treatment. Methods Thirty thyrotoxic patients and 10 control subjects were enrolled in this study at Seoul National University Bundang Hospital. Heart rate, physical activity, and sleep are being monitored using a Fitbit Charge HR or Fitbit Charge 2. Clinical data including anthropometric measures, thyroid function test, and hyperthyroidism symptom scale are recorded. Results Study enrollment began in December 2016, and the intervention and follow-up phases are ongoing. The results of the data analysis are expected to be available by September 2017. Conclusions This study will provide a foundational feasibility trial of the clinical applications of biosignal measurements to the differential diagnosis, prediction of clinical course, early detection of recurrence, and treatment in patients with thyrotoxicosis. Trial Registration ClinicalTrials.gov NCT03009357; https://clinicaltrials.gov/ct2/show/NCT03009357 (Archived by WebCite at http://www.webcitation.org/6wh4MWPm2) PMID:29467121
Fermaglich, Lewis J; Chen, Ru; Kim, Carol Y; Chuh, Eunjung Esther; Thomas, Teena; Shetty, Daiva; Lee, Julia; Young, Johnny; Fan, Ying
2018-01-01
The objective of this report is to summarize common deficiencies identified in the filing reviews of abbreviated new drug applications (ANDAs) with clinical endpoint bioequivalence studies and skin irritation, sensitization, and adhesion (I/S/A) studies received by the US Food and Drug Administration (FDA) between 2007 and 2017, to help applicants avoid common deficiencies, minimize "refuse-to-receive" (RTR) actions, "information requests," and ANDA approval delays. Multiple internal FDA databases were searched to evaluate and summarize common deficiencies identified in ANDA submissions containing clinical endpoint studies and skin I/S/A studies that required review by the Division of Clinical Review. A total of 275 ANDA submissions with filing reviews from January 2007 to June 2017 were analyzed in this report. Two hundred eighteen (79.3%) filing reviews contained one or more deficiencies. Seventy-nine (28.7%) ANDAs were issued RTR letters because of major clinical deficiencies, specifically bioequivalence and clinical deficiencies, accounting for 9% of overall identified deficiencies. Twenty-two other categories of deficiencies are summarized into 4 main categories: missing information related to the clinical studies other than data sets (38%), missing data sets (35%), formulation issues (12%), and organization/format issues (6%). The most common deficiency in the "missing information related to the clinical studies other than data sets" category was "missing clarification of information" (22%). We also noted that the Division of Filing Review has identified these same types of deficiencies since assuming responsibility of the filing assessment for ANDAs with clinical endpoint BE studies and skin I/S/A studies. In conclusion, to minimize "refuse-to-receive" actions, "information requests," and approval of ANDA delays for generic drug products, applicants should submit full clinical study reports, including all data sets for drug products recommending clinical studies.
Advances in the manufacturing, types, and applications of biosensors
NASA Astrophysics Data System (ADS)
Ravindra, Nuggehalli M.; Prodan, Camelia; Fnu, Shanmugamurthy; Padronl, Ivan; Sikha, Sushil K.
2007-12-01
In recent years, there have been significant technological advancements in the manufacturing, types, and applications of biosensors. Applications include clinical and non-clinical diagnostics for home, bio-defense, bio-remediation, environment, agriculture, and the food industry. Biosensors have progressed beyond the detection of biological threats such as anthrax and are finding use in a number of non-biological applications. Emerging biosensor technologies such as lab-on-a-chip have revolutionized the integration approaches for a very flexible, innovative, and user-friendly platform. An overview of the fundamentals, types, applications, and manufacturers, as well as the market trends of biosensors is presented here. Two case studies are discussed: one focused on a characterization technique—patch clamping and dielectric spectroscopy as a biological sensor—and the other about lithium phthalocyanine, a material that is being developed for in-vivo oxymetry.
Bucur, Anca; van Leeuwen, Jasper; Chen, Njin-Zu; Claerhout, Brecht; de Schepper, Kristof; Perez-Rey, David; Paraiso-Medina, Sergio; Alonso-Calvo, Raul; Mehta, Keyur; Krykwinski, Cyril
2016-01-01
This paper describes a new Cohort Selection application implemented to support streamlining the definition phase of multi-centric clinical research in oncology. Our approach aims at both ease of use and precision in defining the selection filters expressing the characteristics of the desired population. The application leverages our standards-based Semantic Interoperability Solution and a Groovy DSL to provide high expressiveness in the definition of filters and flexibility in their composition into complex selection graphs including splits and merges. Widely-adopted ontologies such as SNOMED-CT are used to represent the semantics of the data and to express concepts in the application filters, facilitating data sharing and collaboration on joint research questions in large communities of clinical users. The application supports patient data exploration and efficient collaboration in multi-site, heterogeneous and distributed data environments. PMID:27570644
Clinical Bioinformatics: challenges and opportunities
2012-01-01
Background Network Tools and Applications in Biology (NETTAB) Workshops are a series of meetings focused on the most promising and innovative ICT tools and to their usefulness in Bioinformatics. The NETTAB 2011 workshop, held in Pavia, Italy, in October 2011 was aimed at presenting some of the most relevant methods, tools and infrastructures that are nowadays available for Clinical Bioinformatics (CBI), the research field that deals with clinical applications of bioinformatics. Methods In this editorial, the viewpoints and opinions of three world CBI leaders, who have been invited to participate in a panel discussion of the NETTAB workshop on the next challenges and future opportunities of this field, are reported. These include the development of data warehouses and ICT infrastructures for data sharing, the definition of standards for sharing phenotypic data and the implementation of novel tools to implement efficient search computing solutions. Results Some of the most important design features of a CBI-ICT infrastructure are presented, including data warehousing, modularity and flexibility, open-source development, semantic interoperability, integrated search and retrieval of -omics information. Conclusions Clinical Bioinformatics goals are ambitious. Many factors, including the availability of high-throughput "-omics" technologies and equipment, the widespread availability of clinical data warehouses and the noteworthy increase in data storage and computational power of the most recent ICT systems, justify research and efforts in this domain, which promises to be a crucial leveraging factor for biomedical research. PMID:23095472
Review of Virtual Reality Treatment in Psychiatry: Evidence Versus Current Diffusion and Use.
Mishkind, Matthew C; Norr, Aaron M; Katz, Andrea C; Reger, Greg M
2017-09-18
This review provides an overview of the current evidence base for and clinical applications of the use of virtual reality (VR) in psychiatric practice, in context of recent technological developments. The use of VR in psychiatric practice shows promise with much of the research demonstrating clinical effectiveness for conditions including post-traumatic stress disorder, anxiety and phobias, chronic pain, rehabilitation, and addictions. However, more research is needed before the use of VR is considered a clinical standard of practice in some areas. The recent release of first generation consumer VR products signals a change in the viability of further developing VR systems and applications. As applications increase so will the need for good quality research to best understand what makes VR effective, and when VR is not appropriate for clinical services. As the field progresses, it is hopeful that the flexibility afforded by this technology will yield superior outcomes and a better understanding of the underlying mechanisms impacting those outcomes.
A component-based, distributed object services architecture for a clinical workstation.
Chueh, H C; Raila, W F; Pappas, J J; Ford, M; Zatsman, P; Tu, J; Barnett, G O
1996-01-01
Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces.
A component-based, distributed object services architecture for a clinical workstation.
Chueh, H. C.; Raila, W. F.; Pappas, J. J.; Ford, M.; Zatsman, P.; Tu, J.; Barnett, G. O.
1996-01-01
Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces. PMID:8947744
Fundamentals of Clinical Pharmacology With Application for Pregnant Women.
Patil, Avinash S; Sheng, Jessica; Dotters-Katz, Sarah K; Schmoll, Maria S; Onslow, Mitchell; Pierson, Rebecca C
2017-05-01
Medication use is common in pregnancy, yet for most medications the optimal formulation and dosage have not been described specifically for pregnant women. Often, adverse effects are only discovered anecdotally or after extensive off-label use occurs. Since pharmacologic research that includes pregnant women is sparse and animal studies are often not applicable to the human fetus, providers must use knowledge of drug behavior and normal physiologic changes of pregnancy to personalize treatment for pregnant women. In this review, we present an overview of the basic concepts of clinical pharmacology: pharmacokinetics, pharmacodynamics, and pharmacogenomics. The normal physiologic changes of pregnancy are presented as a framework to understand alterations in drug behavior. A clinical vignette that addresses 4 pregnancy scenarios involving medications-preterm birth, vaccination, herpes simplex virus infection, and codeine toxicity-is provided to illustrate application of core clinical pharmacologic concepts. Discussion of relevant literature illustrates the challenges of offering individualized pharmacologic therapy in pregnancy. © 2017 by the American College of Nurse-Midwives.
Nursing in the information age: status quo and future of ICT use in German hospitals.
Hübner, Ursula; Sellemann, Björn
2004-01-01
Hospital information systems (HIS) should give support to nurses in their clinical and managerial duties. Though there are statistical data on the current use of HIS systems we know only little about the numbers of nursing modules implemented. We therefore conducted a nationwide survey in Germany (n = 2182) on the current state and future plans of HIS modules including nursing applications (response rate of 27.6 %). The findings show that management applications (84 % accounting) are still more frequent than clinical applications, in particular clinical patient record systems (19 %). What applied for HIS modules in general held also true for nursing on a lower level. Whereas 51 % of the hospitals had rostering systems in place only 6 % used care planning software. Priorities and plans for the future reveal no change in the rank order of systems. We argue that in order for clinical documentation and planning systems to catch up they must be immediately rewarding for the clinicians in their daily need for information
Miao, Tianxin; Wang, Junqing; Zeng, Yun; Chen, Xiaoyuan
2018-01-01
Abstract Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide‐based drug delivery systems. PMID:29721408
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
Establishing pan-European clinical trials: regulatory compliance and other practical considerations.
Grienenberger, Aurelie
2004-01-01
There are currently many concerns in the pharmaceutical and scientific community working in or around clinical research on the EU Directive 2001/20/EC or Clinical Trials Directive. The Directive introduces regulatory requirements for all phases of study in human subjects, drawing no distinction between commercially funded drug trials and non-commercial/academic research. The Directive makes Good Clinical Practice (GCP) a legal requirement in Europe and all clinical research will be subjected to the same rigorous standards including GCP and Good Manufacturing Practice (GMP) application even at the early clinical phases as well as exhaustive pharmacovigilance and protection of trial subjects. Some of these requirements may be seen as additional burden and a brake to clinical research in Europe. However, the application of the directive should provide a single and highly regulated market of 25 European countries for investigational medicinal products. This article reviews the main aspects and areas of concern of the Directive and provide US sponsor with useful references.
Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku
2014-06-01
Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.
Huang, Linda; Fernandes, Helen; Zia, Hamid; Tavassoli, Peyman; Rennert, Hanna; Pisapia, David; Imielinski, Marcin; Sboner, Andrea; Rubin, Mark A; Kluk, Michael; Elemento, Olivier
2017-05-01
This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu ), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB's interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Huang, Linda; Fernandes, Helen; Zia, Hamid; Tavassoli, Peyman; Rennert, Hanna; Pisapia, David; Imielinski, Marcin; Sboner, Andrea; Rubin, Mark A; Kluk, Michael
2017-01-01
Objective: This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu), an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade cancer mutation interpretations. Materials and Methods: PMKB was built using the Ruby on Rails Web application framework. Leveraging existing standards such as the Human Genome Variation Society variant description format, we implemented a data model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include support for all major variant types, standardized authentication, distinct user roles including high-level approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming interface (API) was implemented to query the PMKB programmatically. Results: At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations. The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants. PMKB’s interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests. The interpretations are accessed either directly via the Web interface or programmatically via the existing API. Discussion: An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical to the success of precision medicine programs. The open-access, programmatically accessible PMKB represents an important attempt at creating such a resource in the field of oncology. Conclusion: The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and facilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clinical cancer genomics automated reporting pipelines via an API. PMID:27789569
Automated information systems provide health information management support to veterans' healthcare.
Lloyd, S S
1992-06-01
The Veterans Health Administration has implemented a comprehsnsive DHCP which supports the VA healthcare system at both local and national levels. Numerous clinical and management modules have been developed; an overview was given of selected applications impacting health information managers. Continuing development includes an automated clinical record and expanded electronic data exchange.
Khin, N A; Yang, P; Hung, H M J; Maung-U, K; Chen, Y-F; Meeker-O'Connell, A; Okwesili, P; Yasuda, S U; Ball, L K; Huang, S-M; O'Neill, R T; Temple, R
2013-08-01
Globalization of clinical research has led to an increase in clinical trials conducted outside of the United States that are submitted to the US Food and Drug Administration (FDA) in new drug applications. This article discusses the FDA's experience with these submissions in specific therapeutic areas, including the extent of this practice, differences between the effectiveness and safety outcomes of studies conducted inside and outside the United States, and the FDA's approach to acceptance of these trials.
Clinical applications of bioactive milk components
Newburg, David S.
2015-01-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications. PMID:26011900
Clinical applications of bioactive milk components.
Hill, David R; Newburg, David S
2015-07-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications.
Zheng, Qi; Liu, Bangshan; Xu, Shuyin; Liao, Mei; Zhang, Yan; Li, Lingjiang
2017-04-28
Cognition deficit is one of the most common symptoms of schizophrenia, including abstract thinking and memory, and attention deficits. Previous studies have suggested that the improvement of cognition is very important for the recovery of disease and social function for the patients. Recent studies indicated that two new atypical antipsychotics, blonanserin and lurasidone, are expected to improve the cognitive impairment in patients with schizophrenia. This review introduces pathogenesis of cognitive impairment in schizophrenia, mechanisms of blonanserin and lurasidone in the improvement of cognitive impairment and progress in their clinical application for schizophrenia. We hope that this review could guide clinical use of antipsychotics and provide new directions for future studies.
Bioethics of Clinical Applications of Stem Cells.
Petrini, Carlo
2017-04-12
The clinical applications of stem cells pose a multitude of problems, including safety, efficacy, information and consent, the right to unproven treatments, the "right to try", costs, access, sustainability, scientific scrupulousness, patents and regulatory aspects, to name but a few. This article does not address individual issues, but rather introduces and discusses some of the possible approaches to solving the problems. The first part compares the consequentialist and deontological approaches, offering an overview of "top-down" and "bottom-up" models and proposing the principles of personalism as applied in clinical settings. The second part of the article suggests practical frameworks for organising the ethical issues, focusing in particular on the medical indications, patient preferences, quality of life, and contextual features.
Criteria for evidence-based practice in Iranian traditional medicine.
Soltani Arabshahi, SeyyedKamran; Mohammadi Kenari, Hoorieh; Kordafshari, Gholamreza; Shams-Ardakani, MohammadReza; Bigdeli, Shoaleh
2015-07-01
The major difference between Iranian traditional medicine and allopathic medicine is in the application of evidence and documents. In this study, criteria for evidence-based practice in Iranian traditional medicine and its rules of practice were studied. The experts' views were investigated through in- depth, semi-structured interviews and the results were categorized into four main categories including Designing clinical questions/clinical question-based search, critical appraisal, resource search criteria and clinical prescription appraisal. Although the application of evidence in Iranian traditional medicine follows Evidence Based Medicine (EBM) principles but it benefits from its own rules, regulations, and criteria that are compatible with EBM.
Noiri, Eisei; Tsukahara, Hirokazu
2005-05-01
Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Mulcahy, Maureen; Piyasena, Rohan; Zhou, Tong; Dieterich, Sonja; Xu, Sheng; Banovac, Filip; Wong, Kenneth H.
2005-04-01
Tracking organ motion due to respiration is important for precision treatments in interventional radiology and radiation oncology, among other areas. In interventional radiology, the ability to track and compensate for organ motion could lead to more precise biopsies for applications such as lung cancer screening. In radiation oncology, image-guided treatment of tumors is becoming technically possible, and the management of organ motion then becomes a major issue. This paper will review the state-of-the-art in respiratory motion and present two related clinical applications. Respiratory motion is an important topic for future work in image-guided surgery and medical robotics. Issues include how organs move due to respiration, how much they move, how the motion can be compensated for, and what clinical applications can benefit from respiratory motion compensation. Technology that can be applied for this purpose is now becoming available, and as that technology evolves, the subject will become an increasingly interesting and clinically valuable topic of research.
Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?
Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H
2013-03-01
Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.
Payne, Philip R.O.; Greaves, Andrew W.; Kipps, Thomas J.
2003-01-01
The Chronic Lymphocytic Leukemia (CLL) Research Consortium (CRC) consists of 9 geographically distributed sites conducting a program of research including both basic science and clinical components. To enable the CRC’s clinical research efforts, a system providing for real-time collaboration was required. CTMS provides such functionality, and demonstrates that the use of novel data modeling, web-application platforms, and management strategies provides for the deployment of an extensible, cost effective solution in such an environment. PMID:14728471
TU-A-210-00: HIFU Therapies - A Primer
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis inmore » 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with HIFU is likely the first of several applications of the technology Learn about some similarities and differences between HIFU and ionizing radiation in terms of physics and biological effects. Learn about some of the technical challenges HIFU faces that might benefit from the experience of radiation oncology physicists including treatment planning improvements, quality assurance procedures, and treatment risk analysis. David Schlesinger receives research support from Elekta Instruments, AB. Matt Eames is an employee of the Focused Ultrasound Foundation which supports research and clinical trials. Dr. Eames conducts research which is supported by the Focused Ultrasound Foundation.« less
TU-A-210-01: HIFU Physics and Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eames, M.
2015-06-15
High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis inmore » 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with HIFU is likely the first of several applications of the technology Learn about some similarities and differences between HIFU and ionizing radiation in terms of physics and biological effects. Learn about some of the technical challenges HIFU faces that might benefit from the experience of radiation oncology physicists including treatment planning improvements, quality assurance procedures, and treatment risk analysis. David Schlesinger receives research support from Elekta Instruments, AB. Matt Eames is an employee of the Focused Ultrasound Foundation which supports research and clinical trials. Dr. Eames conducts research which is supported by the Focused Ultrasound Foundation.« less
Optics education in an optometric setting
NASA Astrophysics Data System (ADS)
Putnam, Nicole M.
2017-08-01
The first year optics curriculum at the Arizona College of Optometry aims to provide students with an understanding of geometrical, physical, and visual optics principals that will be the foundation of their clinical understanding of the optics of the eye and its correction in advanced courses such as ophthalmic optics and contact lenses. Although the optics of the eye are a fantastic model to use in optics education, the clinical applications may not become apparent until later in the course of study. Successful strategies are needed to engage students and facilitate the understanding of optical principals and the growth of process skills including problem solving, analysis, and critical thinking that will help in their future as health care providers. These include the implementation of ophthalmic applications as early as possible, encouragement of group work including open office hours, and the use of video problem set solutions to supplement traditional static solutions.
Gut microbiota in autoimmunity: potential for clinical applications.
Kim, Donghyun; Yoo, Seung-Ah; Kim, Wan-Uk
2016-11-01
Microbial habitation in the human body begins immediately after birth, and adults are colonized by microbes outnumbering human cells by a factor of ten. Especially, intestinal track is a living space for diverse microbial species that have coevolved symbiotically. A principal function of the gut microbiota is to protect the host from harmful bacteria and to provide benefits for the host through several mechanisms, including direct competition for limited nutrients, training of host immune systems to recognize specifically foreign materials and conversion of otherwise indigestible food into energy and absorbable nutrients. Therefore, gut dysbiosis, a bacterial imbalance state, is related with the pathogenesis of various host diseases including autoimmune diseases. In the current review, we highlight the importance of gut microbiota in the normal health and autoimmune diseases. We also discuss regulation of gut dysbiosis and future direction for potential clinical applications, including treatment and diagnostics of autoimmune diseases.
Implications of pharmacogenomics for drug development and clinical practice.
Ginsburg, Geoffrey S; Konstance, Richard P; Allsbrook, Jennifer S; Schulman, Kevin A
2005-11-14
Pharmacogenomics is likely to be among the first clinical applications of the Human Genome Project and is certain to have an enormous impact on the clinical practice of medicine. Herein, we discuss the potential implications of pharmacogenomics on the drug development process, including drug safety, productivity, market segmentation, market expansion, differentiation, and personalized health care. We also review 3 challenges facing the translation of pharmacogenomics into clinical practice: dependence on information technology, limited health care financing, and the scientific uncertainty surrounding validation of specific applications of the technology. To our knowledge, there is currently no formal agenda to promote and cultivate innovation, to develop progressive information technology, or to obtain the financing that would be required to advance the use of pharmacogenomic technologies in patient care. Although the potential of these technologies is driving change in the development of clinical sciences, it remains to be seen which health care systems level needs will be addressed.
The value of item response theory in clinical assessment: a review.
Thomas, Michael L
2011-09-01
Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. Although IRT has become prevalent in the measurement of ability and achievement, its contributions to clinical domains have been less extensive. Applications of IRT to clinical assessment are reviewed to appraise its current and potential value. Benefits of IRT include comprehensive analyses and reduction of measurement error, creation of computer adaptive tests, meaningful scaling of latent variables, objective calibration and equating, evaluation of test and item bias, greater accuracy in the assessment of change due to therapeutic intervention, and evaluation of model and person fit. The theory may soon reinvent the manner in which tests are selected, developed, and scored. Although challenges remain to the widespread implementation of IRT, its application to clinical assessment holds great promise. Recommendations for research, test development, and clinical practice are provided.
Resilient Systemics to Telehealth Support for Clinical Psychiatry and Psychology.
Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano
2015-01-01
Reliably expanding our clinical practice and lowering our overhead with telepsychiatry, telepsychology, distance counseling and online therapy, requires resilient and antifragile system and tools. When utilized appropriately these technologies may provide greater access to needed services to include more reliable treatment, consultation, supervision, and training. The wise and proper use of technology is fundamental to create and boost outstanding social results. We present, as an example, the main steps to achieve application resilience and antifragility at system level, for diagnostic and therapeutic telepractice and telehealth support, devoted to psychiatry and psychology application. This article presents a number of innovations that can take psychotherapy treatment, supervision, training, and research forward, towards increased effectiveness application.
Towards advanced OCT clinical applications
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Panteleeva, Olga; Agrba, Pavel; Pasukhin, Mikhail; Sergeeva, Ekaterina; Plankina, Elena; Dudenkova, Varvara; Gubarkova, Ekaterina; Kiseleva, Elena; Gladkova, Natalia; Shakhova, Natalia; Vitkin, Alex
2015-07-01
In this paper we report on our recent achievement in application of conventional and cross-polarization OCT (CP OCT) modalities for in vivo clinical diagnostics in different medical areas including gynecology, dermatology, and stomatology. In gynecology, CP OCT was employed for diagnosing fallopian tubes and cervix; in dermatology OCT for monitoring of treatment of psoriasis, scleroderma and atopic dermatitis; and in stomatology for diagnosis of oral diseases. For all considered application, we propose and develop different image processing methods which enhance the diagnostic value of the technique. In particular, we use histogram analysis, Fourier analysis and neural networks, thus calculating different tissue characteristics as revealed by OCT's polarization evolution. These approaches enable improved OCT image quantification and increase its resultant diagnostic accuracy.
Defining Nano, Nanotechnology and Nanomedicine: Why Should It Matter?
Satalkar, Priya; Elger, Bernice Simone; Shaw, David M
2016-10-01
Nanotechnology, which involves manipulation of matter on a 'nano' scale, is considered to be a key enabling technology. Medical applications of nanotechnology (commonly known as nanomedicine) are expected to significantly improve disease diagnostic and therapeutic modalities and subsequently reduce health care costs. However, there is no consensus on the definition of nanotechnology or nanomedicine, and this stems from the underlying debate on defining 'nano'. This paper aims to present the diversity in the definition of nanomedicine and its impact on the translation of basic science research in nanotechnology into clinical applications. We present the insights obtained from exploratory qualitative interviews with 46 stakeholders involved in translational nanomedicine from Europe and North America. The definition of nanomedicine has implications for many aspects of translational research including: fund allocation, patents, drug regulatory review processes and approvals, ethical review processes, clinical trials and public acceptance. Given the interdisciplinary nature of the field and common interest in developing effective clinical applications, it is important to have honest and transparent communication about nanomedicine, its benefits and potential harm. A clear and consistent definition of nanomedicine would significantly facilitate trust among various stakeholders including the general public while minimizing the risk of miscommunication and undue fear of nanotechnology and nanomedicine.
Fractals in the neurosciences, Part II: clinical applications and future perspectives.
Di Ieva, Antonio; Esteban, Francisco J; Grizzi, Fabio; Klonowski, Wlodzimierz; Martín-Landrove, Miguel
2015-02-01
It has been ascertained that the human brain is a complex system studied at multiple scales, from neurons and microcircuits to macronetworks. The brain is characterized by a hierarchical organization that gives rise to its highly topological and functional complexity. Over the last decades, fractal geometry has been shown as a universal tool for the analysis and quantification of the geometric complexity of natural objects, including the brain. The fractal dimension has been identified as a quantitative parameter for the evaluation of the roughness of neural structures, the estimation of time series, and the description of patterns, thus able to discriminate different states of the brain in its entire physiopathological spectrum. Fractal-based computational analyses have been applied to the neurosciences, particularly in the field of clinical neurosciences including neuroimaging and neuroradiology, neurology and neurosurgery, psychiatry and psychology, and neuro-oncology and neuropathology. After a review of the basic concepts of fractal analysis and its main applications to the basic neurosciences in part I of this series, here, we review the main applications of fractals to the clinical neurosciences for a holistic approach towards a fractal geometry model of the brain. © The Author(s) 2013.
Biomarkers in Prodromal Parkinson Disease: a Qualitative Review.
Cooper, Christine A; Chahine, Lama M
2016-11-01
Over the past several years, the concept of prodromal Parkinson disease (PD) has been increasingly recognized. This term refers to individuals who do not fulfill motor diagnostic criteria for PD, but who have clinical, genetic, or biomarker characteristics suggesting risk of developing PD in the future. Clinical diagnosis of prodromal PD has low specificity, prompting the need for objective biomarkers with higher specificity. In this qualitative review, we discuss objectively defined putative biomarkers for PD and prodromal PD. We searched Pubmed and Embase for articles pertaining to objective biomarkers for PD and their application in prodromal cohorts. Articles were selected based on relevance and methodology. Objective biomarkers of demonstrated utility in prodromal PD include ligand-based imaging and transcranial sonography. Development of serum, cerebrospinal fluid, and tissue-based biomarkers is underway, but their application in prodromal PD has yet to meaningfully occur. Combining objective biomarkers with clinical or genetic prodromal features increases the sensitivity and specificity for identifying prodromal PD. Several objective biomarkers for prodromal PD show promise but require further study, including their application to and validation in prodromal cohorts followed longitudinally. Accurate identification of prodromal PD will likely require a multimodal approach. (JINS, 2016, 22, 956-967).
Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua
2017-01-01
Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894
Anticoagulant treatment of medical patients with complex clinical conditions.
Ruiz-Ruiz, F; Medrano, F J; Santos-Lozano, J M; Rodríguez-Torres, P; Navarro-Puerto, A; Calderón, E J
2018-06-12
There is scarce available information on the treatment or prophylaxis with anticoagulant drugs of outpatients with medical diseases and complex clinical conditions. There are no clinical practice guidelines and/or specific recommendations for this patient subgroup, which are frequently treated by internists. Complex clinical conditions are those in which, due to comorbidity, age, vital prognosis or multiple treatment with drugs, a clinical situation arises of disease-disease, disease-drug or drug-drug interactions that is not included within the scenarios that commonly generate the scientific evidence. The objective of this narrative review is collecting and adapting of the clinical guidelines recommendations and systematic reviews to complex clinical conditions, in which the direct application of recommendations based on studies that do not include patients with this complexity and comorbidity could be problematic. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Elhadad, N.
2016-01-01
Summary Objectives This paper reviews work over the past two years in Natural Language Processing (NLP) applied to clinical and consumer-generated texts. Methods We included any application or methodological publication that leverages text to facilitate healthcare and address the health-related needs of consumers and populations. Results Many important developments in clinical text processing, both foundational and task-oriented, were addressed in community-wide evaluations and discussed in corresponding special issues that are referenced in this review. These focused issues and in-depth reviews of several other active research areas, such as pharmacovigilance and summarization, allowed us to discuss in greater depth disease modeling and predictive analytics using clinical texts, and text analysis in social media for healthcare quality assessment, trends towards online interventions based on rapid analysis of health-related posts, and consumer health question answering, among other issues. Conclusions Our analysis shows that although clinical NLP continues to advance towards practical applications and more NLP methods are used in large-scale live health information applications, more needs to be done to make NLP use in clinical applications a routine widespread reality. Progress in clinical NLP is mirrored by developments in social media text analysis: the research is moving from capturing trends to addressing individual health-related posts, thus showing potential to become a tool for precision medicine and a valuable addition to the standard healthcare quality evaluation tools. PMID:27830255
I-Maculaweb: A Tool to Support Data Reuse in Ophthalmology
Bonetto, Monica; Nicolò, Massimo; Gazzarata, Roberta; Fraccaro, Paolo; Rosa, Raffaella; Musetti, Donatella; Musolino, Maria; Traverso, Carlo E.
2016-01-01
This paper intends to present a Web-based application to collect and manage clinical data and clinical trials together in a unique tool. I-maculaweb is a user-friendly Web-application designed to manage, share, and analyze clinical data from patients affected by degenerative and vascular diseases of the macula. The unique and innovative scientific and technological elements of this project are the integration with individual and population data, relevant for degenerative and vascular diseases of the macula. Clinical records can also be extracted for statistical purposes and used for clinical decision support systems. I-maculaweb is based on an existing multilevel and multiscale data management model, which includes general principles that are suitable for several different clinical domains. The database structure has been specifically built to respect laterality, a key aspect in ophthalmology. Users can add and manage patient records, follow-up visits, treatment, diagnoses, and clinical history. There are two different modalities to extract records: one for the patient’s own center, in which personal details are shown and the other for statistical purposes, where all center’s anonymized data are visible. The Web-platform allows effective management, sharing, and reuse of information within primary care and clinical research. Clear and precise clinical data will improve understanding of real-life management of degenerative and vascular diseases of the macula as well as increasing precise epidemiologic and statistical data. Furthermore, this Web-based application can be easily employed as an electronic clinical research file in clinical studies. PMID:27170913
Clinical EPR: Unique Opportunities and Some Challenges
Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan
2014-01-01
Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333
Nurses' use of mobile instant messaging applications: A uses and gratifications perspective.
Bautista, John Robert; Lin, Trisha T C
2017-10-01
To explore how and why mobile instant messaging applications are used by Filipino nurses as part of their work. Guided by the uses and gratifications theory, in-depth interviews with 20 staff nurses working in 9 hospitals (ie, 4 private and 5 public hospitals) in the Philippines were conducted in July 2015. Interview data were analysed through a phenomenological perspective to thematic analysis. Results show that mobile instant messaging applications such as Facebook Messenger and Viber were mostly used by staff nurses and these were accessed using their own smartphones. Thematic analysis indicates that they were used to meet staff nurses' need for information exchange, socialization, and catharsis. Moreover, user interactions vary depending on members within a chat group. For instance, communication via mobile instant messaging applications are much formal when superiors are included in a chat group. In general, the results show that mobile instant messaging applications are routinely used by Filipino staff nurses not only for clinical purposes (ie, information exchange) but also for non-clinical purposes (ie, socialization and catharsis). This paper ends with several practical and theoretical implications including future research directions. © 2017 John Wiley & Sons Australia, Ltd.
Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction
Khattab, Ahmad; Islam, Mohammad Ariful; Hweij, Khaled Abou; Zeitouny, Joya; Waters, Renae; Sayegh, Malek; Hossain, Md Monowar; Paul, Arghya
2015-01-01
Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI. PMID:27668147
Applicable or non-applicable: investigations of clinical heterogeneity in systematic reviews.
Chess, Laura E; Gagnier, Joel J
2016-02-17
Clinical heterogeneity can be defined as differences in participant characteristics, types or timing of outcome measurements and intervention characteristics. Clinical heterogeneity in systematic reviews has the possibility to significantly affect statistical heterogeneity leading to inaccurate conclusions and misled decision making. The aim of this study is to identify to what extent investigators are assessing clinical heterogeneity in both Cochrane and non-Cochrane systematic reviews. The most recent 100 systematic reviews from the top five journals in medicine-JAMA, Archives of Internal Medicine, British Medical Journal, The Lancet, and PLOS Medicine-and the 100 most recently published and/or updated systematic reviews from Cochrane were collected. Various defined items of clinical heterogeneity were extracted from the included reviews. Investigators used chi-squared tests, logarithmic modeling and linear regressions to determine if the presence of such items served as a predictor for clinical heterogeneity when comparing Cochrane to non-Cochrane reviews. Extracted variables include number of studies, number of participants, presence of quantitative synthesis, exploration of clinical heterogeneity, heterogeneous characteristics explored, basis and methods used for investigating clinical heterogeneity, plotting/visual aids, author contact, inferences from clinical heterogeneity investigation, reporting assessment, and the presence of a priori or post-hoc analysis. A total of 317 systematic reviews were considered, of which 199 were in the final analysis. A total of 81% of Cochrane reviews and 90% of non-Cochrane reviews explored characteristics that are considered aspects of clinical heterogeneity and also described the methods they planned to use to investigate the influence of those characteristics. Only 1% of non-Cochrane reviews and 8% of Cochrane reviews explored the clinical characteristics they initially chose as potential for clinical heterogeneity. Very few studies mentioned clinician training, compliance, brand, co-interventions, dose route, ethnicity, prognostic markers and psychosocial variables as covariates to investigate as potentially clinically heterogeneous. Addressing aspects of clinical heterogeneity was not different between Cochrane and non-Cochrane reviews. The ability to quantify and compare the clinical differences of trials within a meta-analysis is crucial to determining its applicability and use in clinical practice. Despite Cochrane Collaboration emphasis on methodology, the proportion of reviews that assess clinical heterogeneity is less than those of non-Cochrane reviews. Our assessment reveals that there is room for improvement in assessing clinical heterogeneity in both Cochrane and non-Cochrane reviews.
[Technical specification for clinical application of critical ultrasonography].
Yin, M G; Wang, X T; Liu, D W; Chao, Y G; Guan, X D; Kang, Y; Yan, J; Ma, X C; Tang, Y Q; Hu, Z J; Yu, K J; Chen, D C; Ai, Y H; Zhang, L N; Zhang, H M; Wu, J; Liu, L X; Zhu, R; He, W; Zhang, Q; Ding, X; Li, L; Li, Y; Liu, H T; Zeng, Q B; Si, X; Chen, H; Zhang, J W; Xu, Q H; Chen, W J; Chen, X K; Huang, D Z; Cai, S H; Shang, X L; Guan, J; Du, J; Zhao, L; Wang, M J; Cui, S; Wang, X M; Zhou, R; Zeng, X Y; Wang, Y P; Lyu, L W; Zhu, W H; Zhu, Y; Duan, J; Yang, J; Yang, H
2018-06-01
Critical ultrasonography(CUS) is different from the traditional diagnostic ultrasound, the examiner and interpreter of the image are critical care medicine physicians. The core content of CUS is to evaluate the pathophysiological changes of organs and systems and etiology changes. With the idea of critical care medicine as the soul, it can integrate the above information and clinical information, bedside real-time diagnosis and titration treatment, and evaluate the therapeutic effect so as to improve the outcome. CUS is a traditional technique which is applied as a new application method. The consensus of experts on critical ultrasonography in China released in 2016 put forward consensus suggestions on the concept, implementation and application of CUS. It should be further emphasized that the accurate and objective assessment and implementation of CUS requires the standardization of ultrasound image acquisition and the need to establish a CUS procedure. At the same time, the standardized training for CUS accepted by critical care medicine physicians requires the application of technical specifications, and the establishment of technical specifications is the basis for the quality control and continuous improvement of CUS. Chinese Critical Ultrasound Study Group and Critical Hemodynamic Therapy Collabration Group, based on the rich experience of clinical practice in critical care and research, combined with the essence of CUS, to learn the traditional ultrasonic essence, established the clinical application technical specifications of CUS, including in five parts: basic view and relevant indicators to obtain in CUS; basic norms for viscera organ assessment and special assessment; standardized processes and systematic inspection programs; examples of CUS applications; CUS training and the application of qualification certification. The establishment of applied technology standard is helpful for standardized training and clinical correct implementation. It is helpful for clinical evaluation and correct guidance treatment, and is also helpful for quality control and continuous improvement of CUS application.
TU-AB-207-03: Tomosynthesis: Clinical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidment, A.
2015-06-15
Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact,more » the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.« less
Toxicity of inorganic nanomaterials in biomedical imaging.
Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang
2014-01-01
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Mesenchymal stem cells for bone repair and metabolic bone diseases.
Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep
2009-10-01
Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.
Physiotherapy in Rheumatoid Arthritis
Kavuncu, Vural; Evcik, Deniz
2004-01-01
Rheumatoid arthritis (RA) is a chronic and painful clinical condition that leads to progressive joint damage, disability, deterioration in quality of life, and shortened life expectancy. Even mild inflammation may result in irreversible damage and permanent disability. The clinical course according to symptoms may be either intermittent or progressive in patients with RA. In most patients, the clinical course is progressive, and structural damage develops in the first 2 years. The aim of RA management is to achieve pain relief and prevent joint damage and functional loss. Physiotherapy and rehabilitation applications significantly augment medical therapy by improving the management of RA and reducing handicaps in daily living for patients with RA. In this review, the application of physiotherapy modalities is examined, including the use of cold/heat applications, electrical stimulation, and hydrotherapy. Rehabilitation treatment techniques for patients with RA such as joint protection strategies, massage, exercise, and patient education are also presented. PMID:15266230
Chen, Xiaojun; Xu, Lu; Wang, Wei; Li, Xing; Sun, Yi; Politis, Constantinus
2016-09-01
The surgical template is a guide aimed at directing the implant placement, tumor resection, osteotomy and bone repositioning. Using it, preoperative planning can be transferred to the actual surgical site, and the precision, safety and reliability of the surgery can be improved. However, the actual workflow of the surgical template design and manufacturing is quite complicated before the final clinical application. The major goal of the paper is to provide a comprehensive reference source of the current and future development of the template design and manufacturing for relevant researchers. Expert commentary: This paper aims to present a review of the necessary procedures in the template-guided surgery including the image processing, 3D visualization, preoperative planning, surgical guide design and manufacturing. In addition, the template-guided clinical applications for various kinds of surgeries are reviewed, and it demonstrated that the precision of the surgery has been improved compared with the non-guided operations.
Jiang, Junjie; Xie, Yanming
2011-10-01
The usage and dosage of Chinese patent medicine are determined by rigorous evaluation which include four clinical trail stages: I, II, III. But the usage and dosage of Chinese patent medicine are lacked re-evaluation after marketing. And this lead to unchanging or fixed of the usage and dosage of Chinese patent medicine instead of different quantity based on different situations in individual patients. The situation of Chinese patent medicine used in clinical application is far away from the idea of the "Treatment based on syndrome differentiation" in traditional Chinese medicine and personalized therapy. Human population pharmacokinetics provides data support to the personalized therapy in clinical application, and achieved the postmarking reevaluating of the usage and dosage of Chinese patent medicine. This paper briefly introduced the present situation, significance and the application of human population pharmacokinetics about re-evaluation of the usage and dosage of Chinese patent medicine after marketing.
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-01-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens. PMID:18385440
Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens
2008-06-01
In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.
The application of ozone in dentistry: a systematic review of literature.
Azarpazhooh, Amir; Limeback, Hardy
2008-02-01
(1) To systematically review the clinical application and remineralization potentials of ozone in dentistry; (2) To summarize the available in vitro applications of ozone in dentistry. Ovid MEDLINE, CINAHL, etc. (up to April 2007). In vitro or in vivo English language publications, original studies, and reviews were included. Conference papers, abstracts, and posters were excluded. In vitro: Good evidence of ozone biocompatibility with human oral epithelial cells, gingival fibroblast, and periodontal cells; Conflicting evidence of antimicrobial efficacy of ozone but some evidence that ozone is effective in removing the microorganisms from dental unit water lines, the oral cavity, and dentures; Conflicting evidence for the application of ozone in endodontics; Insufficient evidence for the application of ozone in oral surgery and implantology; Good evidence of the prophylactic application of ozone in restorative dentistry prior to etching and the placement of dental sealants and restorations. In vivo: Despite the promising in vitro evidence, the clinical application of ozone in dentistry (so far in management of dental and root caries) has not achieved a strong level of efficacy and cost-effectiveness. While laboratory studies suggest a promising potential of ozone in dentistry, this has not been fully realised in clinical studies to date. More well designed and conducted double-blind randomised clinical trials with adequate sample size, limited or no loss to follow up, and carefully standardised methods of measurement and analyses are needed to evaluate the possible use of ozone as a treatment modality in dentistry.
Comparing ECT data of two different inpatient clinics: propofol or thiopental?
Yazici, Esra; Bosgelmez, Sukriye; Tas, Halil Ibrahim; Karabulut, Umit; Yazici, Ahmet Bulent; Yildiz, Mustafa; Kirpinar, Ismet
2013-10-01
This study compares the data of (modified) electroconvulsive theraphy (ECT) applications from two different inpatient clinics in Turkey: Kocaeli Derince Training and Research Hospital (Clinic-I) and Kocaeli University (Clinic-II). Recorded files of patients from the two clinics were compared in terms of ECT indications, number and duration of seizures, and anesthetic agents used (propofol vs. thiopental). ECT applications occurring between January 2011 and January 2013 were included in the study. A total of 86 patients (9.5% of the inpatients) received ECT in Clinic-I and 103 patients (21.1% of the inpatients) in Clinic-II during the period studied. The yearly ECT rate (treated person rate per 10,000 per year) was 0.59/10,000 for Kocaeli (Turkey) as a whole. The overall number of ECT applications was 539 in Clinic-I and 999 in Clinic-II, and the average number of ECT sessions for each patient was 6.4 ± 2.33 in Clinic-I and 9.69 ± 4.66 in Clinic-II. The majority of indications were depressive disorders and insufficient response to medicine. Patients in the clinic which utilized thiopental as the anesthetic agent experienced more cardiovascular and respiratory side effects than the one which used propofol. The number of ECT sessions required was greater for patients with schizoaffective disorder than for others. The administration of ECT was considered to be a reliable method of treatment in these clinics. With respect to specific anesthetic agents, propofol was found to have less hemodynamic side effects and shorter seizure durations than thiopental.
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
2016-06-10
I placed on the search engine: “English language,” “5 years.” Journal categories included core clinical journals , dental journals , MEDLINE, and...Army) AE Adverse event AHRQ Agency for Healthcare Research and Quality AHS Army Health System AMEDD Army Medical Department CPQ Clinical Practice...harm to a patient (Joint Commission 2015). Clinical Quality Management: A systematic, organized , multidisciplinary approach to the ongoing
A Smartphone App and Cloud-Based Consultation System for Burn Injury Emergency Care.
Wallis, Lee A; Fleming, Julian; Hasselberg, Marie; Laflamme, Lucie; Lundin, Johan
2016-01-01
Each year more than 10 million people worldwide are burned severely enough to require medical attention, with clinical outcomes noticeably worse in resource poor settings. Expert clinical advice on acute injuries can play a determinant role and there is a need for novel approaches that allow for timely access to advice. We developed an interactive mobile phone application that enables transfer of both patient data and pictures of a wound from the point-of-care to a remote burns expert who, in turn, provides advice back. The application is an integrated clinical decision support system that includes a mobile phone application and server software running in a cloud environment. The client application is installed on a smartphone and structured patient data and photographs can be captured in a protocol driven manner. The user can indicate the specific injured body surface(s) through a touchscreen interface and an integrated calculator estimates the total body surface area that the burn injury affects. Predefined standardised care advice including total fluid requirement is provided immediately by the software and the case data are relayed to a cloud server. A text message is automatically sent to a burn expert on call who then can access the cloud server with the smartphone app or a web browser, review the case and pictures, and respond with both structured and personalized advice to the health care professional at the point-of-care. In this article, we present the design of the smartphone and the server application alongside the type of structured patient data collected together with the pictures taken at point-of-care. We report on how the application will be introduced at point-of-care and how its clinical impact will be evaluated prior to roll out. Challenges, strengths and limitations of the system are identified that may help materialising or hinder the expected outcome to provide a solution for remote consultation on burns that can be integrated into routine acute clinical care and thereby promote equity in injury emergency care, a growing public health burden.
A Smartphone App and Cloud-Based Consultation System for Burn Injury Emergency Care
Wallis, Lee A.; Fleming, Julian; Hasselberg, Marie; Laflamme, Lucie; Lundin, Johan
2016-01-01
Background Each year more than 10 million people worldwide are burned severely enough to require medical attention, with clinical outcomes noticeably worse in resource poor settings. Expert clinical advice on acute injuries can play a determinant role and there is a need for novel approaches that allow for timely access to advice. We developed an interactive mobile phone application that enables transfer of both patient data and pictures of a wound from the point-of-care to a remote burns expert who, in turn, provides advice back. Methods and Results The application is an integrated clinical decision support system that includes a mobile phone application and server software running in a cloud environment. The client application is installed on a smartphone and structured patient data and photographs can be captured in a protocol driven manner. The user can indicate the specific injured body surface(s) through a touchscreen interface and an integrated calculator estimates the total body surface area that the burn injury affects. Predefined standardised care advice including total fluid requirement is provided immediately by the software and the case data are relayed to a cloud server. A text message is automatically sent to a burn expert on call who then can access the cloud server with the smartphone app or a web browser, review the case and pictures, and respond with both structured and personalized advice to the health care professional at the point-of-care. Conclusions In this article, we present the design of the smartphone and the server application alongside the type of structured patient data collected together with the pictures taken at point-of-care. We report on how the application will be introduced at point-of-care and how its clinical impact will be evaluated prior to roll out. Challenges, strengths and limitations of the system are identified that may help materialising or hinder the expected outcome to provide a solution for remote consultation on burns that can be integrated into routine acute clinical care and thereby promote equity in injury emergency care, a growing public health burden. PMID:26918631
Oviedo-Joekes, Eugenia; Marchand, Kirsten; Lock, Kurt; MacDonald, Scott; Guh, Daphne; Schechter, Martin T
2015-01-26
The Study to Assess Long-term Opioid Medication Effectiveness (SALOME) is a two-stage phase III, single site (Vancouver, Canada), randomized, double blind controlled trial designed to test if hydromorphone is as effective as diacetylmorphine for the treatment of long-term illicit opioid injection. Recruiting participants for clinical trials continues to be a challenge in medical and addiction research, with many studies not being able to reach the planned sample size in a timely manner. The aim of this study is to describe the recruitment strategies in SALOME, which offered appealing treatments but had limited clinic capacity and no guaranteed post-trial continuation of the treatments. SALOME included chronic opioid-dependent, current illicit injection opioid users who had at least one previous episode of opioid maintenance treatment. Regulatory approvals were received in June 2011 and recruitment strategies were implemented over the next 5 months. Recruitment strategies included ongoing open communication with the community, a consistent and accessible team and participant-centered screening. All applicants completed a pre-screening checklist to assess prerequisites. Applicants meeting these prerequisites were later contacted to commence the screening process. A total of 598 applications were received over the two-year recruitment period; 130 were received on the first day of recruitment. Of these applicants, 485 met prerequisites; however, many could not be found or were not reached before recruitment ended. For the 253 candidates who initiated the screening process, the average time lapse between application and screening date was 8.3 months (standard deviation [SD] = 4.44) and for the 202 randomized to the study, the average processing time from initial screen to randomization was 25.9 days (SD = 37.48; Median = 15.0). As in prior trials offering injectable diacetylmorphine within a supervised model, recruiting participants for this study took longer than planned. The recruitment challenges overcome in SALOME were due to the high number of applicants compared with the limited number that could be randomized and treated. Our study emphasizes the value of integrating these strategies into clinical addiction research to overcome study-specific barriers. ClinicalTrials.gov: NCT01447212.
Technology assessment for an integrated PC-based platform for three telemedicine applications
NASA Astrophysics Data System (ADS)
Tohme, Walid G.; Hayes, Wendelin S.; Dai, Hailei L.; Komo, Darmadi; Pahira, John J.; Abernethy, Darrell R.; Rennert, Wolfgang; Kuehl, Karen S.; Hauser, Gabriel J.; Mun, Seong K.
1996-05-01
This paper investigates the design and technical efficacy of an integrated PC based platform for three different medical applications. The technical efficacy of such a telemedicine platform has not been evaluated in the literature and optimal technical requirements have not been developed. The first application, with the Department of Surgery, Division of Urology, tests the utility of a telemedicine platform including radiology images for a surgical stone disease consultation service from an off site location in West Virginia. The second application, with the Department of Internal Medicine, Division of Clinical Pharmacology, investigates the usefulness of telemedicine when used for a clinical pharmacology consultation service from an off-site location. The third application, with the Department of Pediatrics, will test telemedicine for trauma care triage service first within an off-site location in Virginia and then from there to Georgetown University Medical Center.
Agmatine: clinical applications after 100 years in translation.
Piletz, John E; Aricioglu, Feyza; Cheng, Juei-Tang; Fairbanks, Carolyn A; Gilad, Varda H; Haenisch, Britta; Halaris, Angelos; Hong, Samin; Lee, Jong Eun; Li, Jin; Liu, Ping; Molderings, Gerhard J; Rodrigues, Ana Lúcia S; Satriano, Joseph; Seong, Gong Je; Wilcox, George; Wu, Ning; Gilad, Gad M
2013-09-01
Agmatine (decarboxylated arginine) has been known as a natural product for over 100 years, but its biosynthesis in humans was left unexplored owing to long-standing controversy. Only recently has the demonstration of agmatine biosynthesis in mammals revived research, indicating its exceptional modulatory action at multiple molecular targets, including neurotransmitter systems, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for broad therapeutic applications. This timely review, a concerted effort by 16 independent research groups, draws attention to the substantial preclinical and initial clinical evidence, and highlights challenges and opportunities, for the use of agmatine in treating a spectrum of complex diseases with unmet therapeutic needs, including diabetes mellitus, neurotrauma and neurodegenerative diseases, opioid addiction, mood disorders, cognitive disorders and cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cross-cultural re-entry for missionaries: a new application for the Dual Process Model.
Selby, Susan; Clark, Sheila; Braunack-Mayer, Annette; Jones, Alison; Moulding, Nicole; Beilby, Justin
Nearly half a million foreign aid workers currently work worldwide, including over 140,000 missionaries. During re-entry these workers may experience significant psychological distress. This article positions previous research about psychological distress during re-entry, emphasizing loss and grief. At present there is no identifiable theoretical framework to provide a basis for assessment, management, and prevention of re-entry distress in the clinical setting. The development of theoretical concepts and frameworks surrounding loss and grief including the Dual Process Model (DPM) are discussed. All the parameters of the DPM have been shown to be appropriate for the proposed re-entry model, the Dual Process Model applied to Re-entry (DPMR). It is proposed that the DPMR is an appropriate framework to address the processes and strategies of managing re-entry loss and grief. Possible future clinical applications and limitations of the proposed model are discussed. The DPMR is offered for further validation and use in clinical practice.
Multidisciplinary approaches to stimulate wound healing.
Businaro, Rita; Corsi, Mariangela; Di Raimo, Tania; Marasco, Sergio; Laskin, Debra L; Salvati, Bruno; Capoano, Raffaele; Ricci, Serafino; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena
2016-08-01
New civil wars and waves of terrorism are causing crucial social changes, with consequences in all fields, including health care. In particular, skin injuries are evolving as an epidemic issue. From a physiological standpoint, although wound repair takes place more rapidly in the skin than in other tissues, it is still a complex organ to reconstruct. Genetic and clinical variables, such as diabetes, smoking, and inflammatory/immunological pathologies, are also important risk factors limiting the regenerative potential of many therapeutic applications. Therefore, optimization of current clinical strategies is critical. Here, we summarize the current state of the field by focusing on stem cell therapy applications in wound healing, with an emphasis on current clinical approaches being developed. These involve protocols for the ex vivo expansion of adipose tissue-derived mesenchymal stem cells by means of a patented Good Manufacturing Practice-compliant platelet lysate. Combinations of multiple strategies, including genetic modifications and stem cells, biomimetic scaffolds, and novel vehicles, such as nanoparticles, are also discussed as future approaches. © 2016 New York Academy of Sciences.
The effectiveness of telemental health applications: a review.
Hailey, David; Roine, Risto; Ohinmaa, Arto
2008-11-01
To review the evidence of benefit from use of telemental health (TMH) in studies that reported clinical or administrative outcomes. Relevant publications were identified through computerized literature searches using several electronic databases. Included for review were scientifically valid articles that described controlled studies, comparing TMH with a non-TMH alternative, and uncontrolled studies that had no fewer than 20 participants. Quality of the evidence was assessed with an approach that considers both study performance and study design. Judgments were made on whether further data were needed to establish each TMH application as suitable for routine clinical use. Included in the review were 72 papers that described 65 clinical studies; 32 (49%) studies were of high or good quality. Quality of evidence was higher for Internet- and telephone-based interventions than for video conferencing approaches. There was evidence of success with TMH in the areas of child psychiatry, depression, dementia, schizophrenia, suicide prevention, posttraumatic stress, panic disorders, substance abuse, eating disorders, and smoking prevention. Evidence of success for general TMH programs and in the management of obsessive-compulsive disorder were less convincing. Further study was judged to be necessary or desirable in 53 (82%) of the studies. Evidence of benefit from TMH applications is encouraging, though still limited. There is a need for more good-quality studies on the use of TMH in routine care. The emerging use of Internet-based applications is an important development that deserves further evaluation.
Endodontic applications of 3D printing.
Anderson, J; Wealleans, J; Ray, J
2018-02-27
Computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies can leverage cone beam computed tomography data for production of objects used in surgical and nonsurgical endodontics and in educational settings. The aim of this article was to review all current applications of 3D printing in endodontics and to speculate upon future directions for research and clinical use within the specialty. A literature search of PubMed, Ovid and Scopus was conducted using the following terms: stereolithography, 3D printing, computer aided rapid prototyping, surgical guide, guided endodontic surgery, guided endodontic access, additive manufacturing, rapid prototyping, autotransplantation rapid prototyping, CAD, CAM. Inclusion criteria were articles in the English language documenting endodontic applications of 3D printing. Fifty-one articles met inclusion criteria and were utilized. The endodontic literature on 3D printing is generally limited to case reports and pre-clinical studies. Documented solutions to endodontic challenges include: guided access with pulp canal obliteration, applications in autotransplantation, pre-surgical planning and educational modelling and accurate location of osteotomy perforation sites. Acquisition of technical expertise and equipment within endodontic practices present formidable obstacles to widespread deployment within the endodontic specialty. As knowledge advances, endodontic postgraduate programmes should consider implementing 3D printing into their curriculums. Future research directions should include clinical outcomes assessments of treatments employing 3D printed objects. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Zhang, Xiao-Meng; Li, Fan; Zhang, Bing; Chen, Xiao-Fen; Piao, Jing-Zhu
2018-01-01
The common Aconitum herbs in clinical application mainly include Aconiti Radix(Chuanwu), Aconiti Kusnezoffii Radix(Caowu) and Aconiti Lateralis Radix Praeparaia(Fuzi), all of which have toxicity. Therefore, the safety of using Chinese patent drugs including Aconitum herbs has become an hot topic in clinical controversy. Based on the data-mining methods, this study explored the characteristics and causes of adverse drug reactions/events (ADR/ADE) of the Chinese patent drugs including Aconitum, in order to provide pharmacovigilance and rational drug use suggestions for clinical application. The detailed ADR/ADE reports about the Chinese patent drugs including Aconitum herbs were retrieved in the domestic literature databases since 1984 to now. The information extraction and data-mining were conducted based on the platforms of Microsoft office Excel 2016, Clementine 12.0 and Cytoscape 3.3.0. Finally, 78 detailed ADR/ADE reports involving a total of 30 varieties were included. 92.31% ADR/ADE were surely or likely led by the Chinese patent drugs including Aconitum, mostly involving multiple system/organ damages with good prognosis, and even 1 case of death. The incidence of included ADRs/ADEs was associated with various factors such as the patient idiosyncratic, drug toxicity, as well as clinical medication. The patient age was most closely related to ADR/ADEs, and those aged from 60 to 69 were more easily suffered from the ADRs/ADEs of Chinese patent drugs including Aconitum. The probability of ADR/ADEs for the drugs including Chuanwu or Caowu was greater than that of Fuzi, and the using beyond the instructions dose was the most important potential safety hazard in the clinical medication process. For the regular and characteristics of ADR/ADEs led by Chinese patent drugs including Aconitum, special attention shall be paid to the elder patients or with the patients with allergies; strictly control the dosage and course of treatment, strengthen the safety medication education to public, and avoid misuse or abuse to ensure rational drug use. Copyright© by the Chinese Pharmaceutical Association.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... second language, or both, can apply for a grant for the 2012 grant cycle. Examples of Qualifying Organizations Include: (1) Clinical programs at accredited law, business or accounting schools, whose students... with the IRS or inform individuals for whom English is a second language of their taxpayer rights and...
Developing and using online courses to prepare nurses for employment in critical care.
Billings, Diane M; Jeffries, Pamela R; Daniels, Dawn Marie; Rowles, Connie; Stone, Cynthia L; Stephenson, Evelyn
2006-01-01
Using online courses is one way to simplify orientation programs and leverage educator resources. Three critical care courses were created using a distributed authoring model with geographically diverse clinical experts. A companion online orientation course prepares preceptors to assist with clinical application. Course outcomes include preparation for practice, career mobility/advancement, and learner satisfaction.
Carollo, Anna; Rieutord, André; Launay-Vacher, Vincent
2012-04-01
This glossary is a tool for clinicians who have to confront topics in which medical, scientific and technical jargon is closely linked. It provides definitions for the key concepts and terms of pharmaceutical care, clinical pharmacy, and research in the health care system in clinical settings. It includes items that are not particularly technical, but that should be part of the know-how of staff working in medical and scientific fields. In fact, the glossary can also help clinical technicians who want to understand the precise definition of scientific terms, which often do not coincide with the ones used in the practice setting. PRINCIPAL GOALS AND OBJECTIVES: The aim of this glossary is to aid in the development of more standardized and established terminology for clinical pharmacy, facilitate communication among different stakeholders and, ultimately, contribute to a higher-quality health care system. The glossary contains 165 definitions of concepts and principles in clinical pharmacy, and terms widely used in this field. The criteria for the inclusion of terms were specific applications in health promotion, or terms used in other fields that have a specific meaning or application when used in reference to clinical activity. The glossary arose from the need to standardize terminology in the scientific field. It was not intended as a comprehensive listing that would include all medical terms, but as a useful tool for clinical pharmacists working in this area, and for users who occasionally encounter unusual, often hard to understand, terminology.
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes
Ganesan, Kavita; Lloyd, Shane; Sarkar, Vikren
2016-01-01
The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases. PMID:27656096
Steinert, Andre F.; Rackwitz, Lars; Gilbert, Fabian; Nöth, Ulrich
2012-01-01
Regenerative therapies in the musculoskeletal system are based on the suitable application of cells, biomaterials, and/or factors. For an effective approach, numerous aspects have to be taken into consideration, including age, disease, target tissue, and several environmental factors. Significant research efforts have been undertaken in the last decade to develop specific cell-based therapies, and in particular adult multipotent mesenchymal stem cells hold great promise for such regenerative strategies. Clinical translation of such therapies, however, remains a work in progress. In the clinical arena, autologous cells have been harvested, processed, and readministered according to protocols distinct for the target application. As outlined in this review, such applications range from simple single-step approaches, such as direct injection of unprocessed or concentrated blood or bone marrow aspirates, to fabrication of engineered constructs by seeding of natural or synthetic scaffolds with cells, which were released from autologous tissues and propagated under good manufacturing practice conditions (for example, autologous chondrocyte implantation). However, only relatively few of these cell-based approaches have entered the clinic, and none of these treatments has become a “standard of care” treatment for an orthopaedic disease to date. The multifaceted reasons for the current status from the medical, research, and regulatory perspectives are discussed here. In summary, this review presents the scientific background, current state, and implications of clinical mesenchymal stem cell application in the musculoskeletal system and provides perspectives for future developments. PMID:23197783
Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U
2015-06-01
These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Novel Biomaterials Used in Medical 3D Printing Techniques.
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-02-07
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.
Protein mislocalization: mechanisms, functions and clinical applications in cancer
Wang, Xiaohong; Li, Shulin
2014-01-01
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy. PMID:24709009
Recio-Rodriguez, José I.; Gómez-Marcos, Manuel A.; Agudo-Conde, Cristina; Ramirez, Ignasi; Gonzalez-Viejo, Natividad; Gomez-Arranz, Amparo; Salcedo-Aguilar, Fernando; Rodriguez-Sanchez, Emiliano; Alonso-Domínguez, Rosario; Sánchez-Aguadero, Natalia; Gonzalez-Sanchez, Jesus; Garcia-Ortiz, Luis
2018-01-01
Abstract Introduction: Mobile technology, when included within multicomponent interventions, could contribute to more effective weight loss. The objective of this project is to assess the impact of adding the use of the EVIDENT 3 application, designed to promote healthy living habits, to traditional modification strategies employed for weight loss. Other targeted behaviors (walking, caloric-intake, sitting time) and outcomes (quality of life, inflammatory markers, measurements of arterial aging) will also be evaluated. Methods: Randomized, multicentre clinical trial with 2 parallel groups. The study will be conducted in the primary care setting and will include 700 subjects 20 to 65 years, with a body mass index (27.5–40 kg/m2), who are clinically classified as sedentary. The primary outcome will be weight loss. Secondary outcomes will include change in walking (steps/d), sitting time (min/wk), caloric intake (kcal/d), quality of life, arterial aging (augmentation index), and pro-inflammatory marker levels. Outcomes will be measured at baseline, after 3 months, and after 1 year. Participants will be randomly assigned to either the intervention group (IG) or the control group (CG). Both groups will receive the traditional primary care lifestyle counseling prior to randomization. The subjects in the IG will be lent a smartphone and a smartband for a 3-month period, corresponding to the length of the intervention. The EVIDENT 3 application integrates the information collected by the smartband on physical activity and the self-reported information by participants on daily food intake. Using this information, the application generates recommendations and personalized goals for weight loss. Discussion: There is a great diversity in the applications used obtaining different results on lifestyle improvement and weight loss. The populations studied are not homogeneous and generate different results. The results of this study will help our understanding of the efficacy of new technologies, combined with traditional counseling, towards reducing obesity and enabling healthier lifestyles. Ethics and dissemination: The study was approved by the Clinical Research Ethics Committee of the Health Area of Salamanca (“CREC of Health Area of Salamanca”) on April 2016. A SPIRIT checklist is available for this protocol. The trial was registered in ClinicalTrials.gov provided by the US National Library of Medicine-number NCT03175614. PMID:29480874
Cardiac mechanics: Physiological, clinical, and mathematical considerations
NASA Technical Reports Server (NTRS)
Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.
1974-01-01
Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.
Bioethics of Clinical Applications of Stem Cells
Petrini, Carlo
2017-01-01
The clinical applications of stem cells pose a multitude of problems, including safety, efficacy, information and consent, the right to unproven treatments, the “right to try”, costs, access, sustainability, scientific scrupulousness, patents and regulatory aspects, to name but a few. This article does not address individual issues, but rather introduces and discusses some of the possible approaches to solving the problems. The first part compares the consequentialist and deontological approaches, offering an overview of “top–down” and “bottom–up” models and proposing the principles of personalism as applied in clinical settings. The second part of the article suggests practical frameworks for organising the ethical issues, focusing in particular on the medical indications, patient preferences, quality of life, and contextual features. PMID:28417921
The Challenge and Potential of Metagenomics in the Clinic
Mulcahy-O’Grady, Heidi; Workentine, Matthew L.
2016-01-01
The bacteria, fungi, and viruses that live on and in us have a tremendous impact on our day-to-day health and are often linked to many diseases, including autoimmune disorders and infections. Diagnosing and treating these disorders relies on accurate identification and characterization of the microbial community. Current sequencing technologies allow the sequencing of the entire nucleic acid complement of a sample providing an accurate snapshot of the community members present in addition to the full genetic potential of that microbial community. There are a number of clinical applications that stand to benefit from these data sets, such as the rapid identification of pathogens present in a sample. Other applications include the identification of antibiotic-resistance genes, diagnosis and treatment of gastrointestinal disorders, and many other diseases associated with bacterial, viral, and fungal microbiomes. Metagenomics also allows the physician to probe more complex phenotypes such as microbial dysbiosis with intestinal disorders and disruptions of the skin microbiome that may be associated with skin disorders. Many of these disorders are not associated with a single pathogen but emerge as a result of complex ecological interactions within microbiota. Currently, we understand very little about these complex phenotypes, yet clearly they are important and in some cases, as with fecal microbiota transplants in Clostridium difficile infections, treating the microbiome of the patient is effective. Here, we give an overview of metagenomics and discuss a number of areas where metagenomics is applicable in the clinic, and progress being made in these areas. This includes (1) the identification of unknown pathogens, and those pathogens particularly hard to culture, (2) utilizing functional information and gene content to understand complex infections such as Clostridium difficile, and (3) predicting antimicrobial resistance of the community using genetic determinants of resistance identified from the sequencing data. All of these applications rely on sophisticated computational tools, and we also discuss the importance of skilled bioinformatic support for the implementation and use of metagenomics in the clinic. PMID:26870044
[The use of systematic review to develop a self-management program for CKD].
Lee, Yu-Chin; Wu, Shu-Fang Vivienne; Lee, Mei-Chen; Chen, Fu-An; Yao, Yen-Hong; Wang, Chin-Ling
2014-12-01
Chronic kidney disease (CKD) has become a public health issue of international concern due to its high prevalence. The concept of self-management has been comprehensively applied in education programs that address chronic diseases. In recent years, many studies have used self-management programs in CKD interventions and have investigated the pre- and post-intervention physiological and psychological effectiveness of this approach. However, a complete clinical application program in the self-management model has yet to be developed for use in clinical renal care settings. A systematic review is used to develop a self-management program for CKD. Three implementation steps were used in this study. These steps include: (1) A systematic literature search and review using databases including CEPS (Chinese Electronic Periodical Services) of Airiti, National Digital Library of Theses and Dissertations in Taiwan, CINAHL, Pubmed, Medline, Cochrane Library, and Joanna Briggs Institute. A total of 22 studies were identified as valid and submitted to rigorous analysis. Of these, 4 were systematic literature reviews, 10 were randomized experimental studies, and 8 were non-randomized experimental studies. (2) Empirical evidence then was used to draft relevant guidelines on clinical application. (3) Finally, expert panels tested the validity of the draft to ensure the final version was valid for application in practice. This study designed a self-management program for CKD based on the findings of empirical studies. The content of this program included: design principles, categories, elements, and the intervention measures used in the self-management program. This program and then was assessed using the content validity index (CVI) and a four-point Liker's scale. The content validity score was .98. The guideline of self-management program to CKD was thus developed. This study developed a self-management program applicable to local care of CKD. It is hoped that the guidelines developed in this study offer a reference for clinical caregivers to improve their healthcare practices.
Protecting patient privacy when sharing patient-level data from clinical trials.
Tucker, Katherine; Branson, Janice; Dilleen, Maria; Hollis, Sally; Loughlin, Paul; Nixon, Mark J; Williams, Zoë
2016-07-08
Greater transparency and, in particular, sharing of patient-level data for further scientific research is an increasingly important topic for the pharmaceutical industry and other organisations who sponsor and conduct clinical trials as well as generally in the interests of patients participating in studies. A concern remains, however, over how to appropriately prepare and share clinical trial data with third party researchers, whilst maintaining patient confidentiality. Clinical trial datasets contain very detailed information on each participant. Risk to patient privacy can be mitigated by data reduction techniques. However, retention of data utility is important in order to allow meaningful scientific research. In addition, for clinical trial data, an excessive application of such techniques may pose a public health risk if misleading results are produced. After considering existing guidance, this article makes recommendations with the aim of promoting an approach that balances data utility and privacy risk and is applicable across clinical trial data holders. Our key recommendations are as follows: 1. Data anonymisation/de-identification: Data holders are responsible for generating de-identified datasets which are intended to offer increased protection for patient privacy through masking or generalisation of direct and some indirect identifiers. 2. Controlled access to data, including use of a data sharing agreement: A legally binding data sharing agreement should be in place, including agreements not to download or further share data and not to attempt to seek to identify patients. Appropriate levels of security should be used for transferring data or providing access; one solution is use of a secure 'locked box' system which provides additional safeguards. This article provides recommendations on best practices to de-identify/anonymise clinical trial data for sharing with third-party researchers, as well as controlled access to data and data sharing agreements. The recommendations are applicable to all clinical trial data holders. Further work will be needed to identify and evaluate competing possibilities as regulations, attitudes to risk and technologies evolve.
[Application of decamethoxin solution in the treatment of surgical peritonitis].
Boĭko, V V; Lohachev, V K; Tymchenko, M Ie
2012-12-01
Basing on analysis of results of clinical and experimental investigations, there was established, that application of the cationic antiseptics solution (including 0.02% solution of decametoxin) for the abdominal cavity sanation permits to reduce the microbal soiling while sanation performance and as well so on--the postoperative complications rate and mortality in surgical peritonitis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... where the applicant has been found to be afflicted with active or inactive tuberculosis or an infectious... Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND..., including clinics and local, county and state health departments employing qualified civil surgeons, as he...
Code of Federal Regulations, 2012 CFR
2012-01-01
... where the applicant has been found to be afflicted with active or inactive tuberculosis or an infectious... Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND..., including clinics and local, county and state health departments employing qualified civil surgeons, as he...
Code of Federal Regulations, 2011 CFR
2011-01-01
... where the applicant has been found to be afflicted with active or inactive tuberculosis or an infectious... Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND..., including clinics and local, county and state health departments employing qualified civil surgeons, as he...
Quentzel, H L; Nadelman, R B; Ng, J; Wormser, G P
1989-01-01
Over the next few years, le Système international d'Unités or SI units may replace the presently used metric system in reporting laboratory data. The change to SI units will likely result in some confusion among clinicians who are not well versed in the new system. Application of SI units to the clinical practice of infectious diseases is discussed, including changes in drug dosages, serum drug levels, and minimum inhibitory concentrations. A table is presented to facilitate conversion of metric units to SI units and vice versa.
77 FR 8887 - Office of the Director Notice of Establishment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... (Board), in the National Center for Advancing Translation Sciences (NCATS). The Council will advise... barriers to successful translation of basic science into clinical application (including issues under the...
Nanotechnology in radiation oncology.
Wang, Andrew Z; Tepper, Joel E
2014-09-10
Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. © 2014 by American Society of Clinical Oncology.
Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.
Krumm, Patrick; Mangold, Stefanie; Gatidis, Sergios; Nikolaou, Konstantin; Nensa, Felix; Bamberg, Fabian; la Fougère, Christian
2018-05-01
Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible 'killer-application' for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.
An update on the clinical evidence that supports biosimilar approvals in Europe.
Mielke, Johanna; Jilma, Bernd; Jones, Byron; Koenig, Franz
2018-03-25
Sponsors and regulators have more than 10 years of experience with the development of biosimilars in Europe. However, the regulatory pathway is still evolving. The present article provides an update on biosimilar development in practice by reviewing the clinical development programmes of recently approved biosimilars in Europe. We used the European public assessment reports (EPARs) which are published by the European Medicines Agency (EMA) for a comparison of the clinical development programmes of the 37 approved biosimilars in Europe. Here, we present novel strategies in the development of biosimilars by focusing specifically on the 17 biosimilars that have gained approval in the last year, but we also compare additional key characteristics for all approved biosimilars. The high variability of the clinical development strategies that we found previously was confirmed in the present analysis. Compared with earlier biosimilar applications, more nonstandard development strategies have been used recently. This includes, for example, applications without any studies in patients, and more complex study designs. During this study, we found that the EPARs for biosimilars seem to be improving; however, we identified important details which were still often missing. We provide a proposal for a checklist of the minimum information that should be included in biosimilar EPARs for giving the general public insights into the rationale for the approval of biosimilars. European regulators still seem to be open to consider approaches that differ from the guidelines or previous applications, as long as justification is provided. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Andrade, E L; Bento, A F; Cavalli, J; Oliveira, S K; Schwanke, R C; Siqueira, J M; Freitas, C S; Marcon, R; Calixto, J B
2016-12-12
The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose.
A technical guide to tDCS, and related non-invasive brain stimulation tools.
Woods, A J; Antal, A; Bikson, M; Boggio, P S; Brunoni, A R; Celnik, P; Cohen, L G; Fregni, F; Herrmann, C S; Kappenman, E S; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, P C; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, M A
2016-02-01
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
Medically related activities of application team program
NASA Technical Reports Server (NTRS)
1971-01-01
Application team methodology identifies and specifies problems in technology transfer programs to biomedical areas through direct contact with users of aerospace technology. The availability of reengineering sources increases impact of the program on the medical community and results in broad scale application of some bioinstrumentation systems. Examples are given that include devices adapted to the rehabilitation of neuromuscular disorders, power sources for artificial organs, and automated monitoring and detection equipment in clinical medicine.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Sun, Jian-Ning; Sun, Wen-Yan; Dong, Shi-Fen
2017-03-01
The Chinese herbal compound formula preparation was made based on theory of Chinese medicine, which was confirmed by long period clinical application, and with multi-compound and multi-target characteristics. During the exploitation process of innovation medicine of Chinese herbal compound formula, selecting and speeding up the research development of drugs with clinical value shall be paid more attention, and as request of rules involved in new drug research and development, the whole process management should be carried out, including project evaluation, manufacturing process determination, establishment of quality control standards, evaluation for pharmacological and toxic effect, as well as new drug application process. This reviews was aimed to give some proposals for pharmacodynamics research methods involved in exploration of Chinese herbal compound formula preparation, including: ①the endpoint criteria should meet the clinical attribution of new drugs; ②the pre-clinical pharmacodynamics evaluation should be carried on appropriate animal models according to the characteristics of diagnosis and therapy of Chinese medicine and observation indexes; ③during the innovation of drug for infants and children, information on drug action conforming to physiological characteristics of infants and children should be supplied, and the pharmacodynamics and toxicology research shall be conducted in immature rats according to the body weight of children. In a summary, the clinical application characteristics are the important criteria for evaluation of pharmacological effect of innovation medicine of Chinese herbal compound formula. Copyright© by the Chinese Pharmaceutical Association.
Bringing a humanistic approach to cancer clinical trials
Arai, Roberto Jun; Longo, Elaine Santana; Sponton, Maria Helena; Del Pilar Estevez Diz, Maria
2017-01-01
In this article, we describe some practical aspects that promote the humanisation of clinical research. Actions are not limited to improving the communication skills of medical staff but also include maintenance of care continuity, accessible written information, and application of theoretic models such as shared decision-making and management of stress in decision-making under uncertainty. We believe that a comprehensive strategy will increase patients’ motivation to participate in and adhere to clinical research. PMID:28596804
Clinically oriented three-year medical physics curriculum: a new design for the future.
Nachiappan, Arun C; Lee, Stephen R; Willis, Marc H; Galfione, Matthew R; Chinnappan, Raj R; Diaz-Marchan, Pedro J; Bushong, Stewart C
2012-09-01
Medical physics instruction for diagnostic radiology residency at our institution has been redesigned with an interactive and image-based approach that encourages clinical application. The new medical physics curriculum spans the first 3 years of radiology residency and is integrated with the core didactic curriculum. Salient features include clinical medical physics conferences, fundamentals of medical physics lectures, practicums, online modules, journal club, and a final review before the American Board of Radiology core examination.
Kalil, Andre C; Sun, Junfeng
2014-10-01
To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.
WE-E-BRD-01: HDR Brachytherapy I: Overview of Clinical Application and QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, B; Showalter, T
2014-06-15
With the increased usage of high dose rate (HDR) brachytherapy and the introduction of dedicated image guided brachytherapy suites, it is necessary to review the processes and procedures associated with safely delivering these treatments in the expedited time scales that dedicated treatment suites afford. The speakers will present the clinical aspects of switching from LDR to HDR treatments, including guidelines for patient selection, and the clinical outcomes comparing LDR to HDR. The speakers will also discuss the HDR treatment process itself, because the shortened clinical timeline involved with a streamlined scan/plan/treat workflow can introduce other issues. Safety and QA aspectsmore » involved with the streamlined process, including increased personnel required for parallel tasks, and possible interfering tasks causing delays in patient treatments will also be discussed. Learning Objectives: To understand the clinical aspects of HDR Brachytherapy, including common clinical indications, patient selection, and the evolving evidence in support of this therapeutic modality To review the current prominent clinical trials for HDR brachytherapy To interpret the established guidelines for HDR brachytherapy quality assurance for implementation into practical clinical settings. To introduce the basic requirements for image guided brachytherapy.« less
Evidence-based dentistry on laser paediatric dentistry: review and outlook.
Olivi, G; Genovese, M D; Caprioglio, C
2009-03-01
The goal of paediatric dentistry is to provide preventive education to parents and patients as well as interception and therapy of dental diseases in a minimally invasive way using a stress-free approach. Different laser wavelengths are used for different applications following these minimally invasive concepts: argon, KTP, diode, Nd:YAG, and CO2 lasers are used for soft tissue applications and the erbium family is used for both soft and hard tissue procedures. This paper offers a revision and a discussion of the international literature, showing also some clinical procedures. related to these scientific studies. Soft tissues laser applications in Pediatric Dentistry include application in oral surgery as well as in periodontics and orthodontics. Laser applications on hard tissues include caries prevention and detection and application for sealing of pits and fissures. Also application for cavity preparation, carious removal and pulp therapy are discussed.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success.
Yankeelov, Thomas E; An, Gary; Saut, Oliver; Luebeck, E Georg; Popel, Aleksander S; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A; Ye, Kaiming; Genin, Guy M
2016-09-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.
Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift.
Fu, Cynthia H Y; Costafreda, Sergi G
2013-09-01
Neuroimaging research has substantiated the functional and structural abnormalities underlying psychiatric disorders but has, thus far, failed to have a significant impact on clinical practice. Recently, neuroimaging-based diagnoses and clinical predictions derived from machine learning analysis have shown significant potential for clinical translation. This review introduces the key concepts of this approach, including how the multivariate integration of patterns of brain abnormalities is a crucial component. We survey recent findings that have potential application for diagnosis, in particular early and differential diagnoses in Alzheimer disease and schizophrenia, and the prediction of clinical response to treatment in depression. We discuss the specific clinical opportunities and the challenges for developing biomarkers for psychiatry in the absence of a diagnostic gold standard. We propose that longitudinal outcomes, such as early diagnosis and prediction of treatment response, offer definite opportunities for progress. We propose that efforts should be directed toward clinically challenging predictions in which neuroimaging may have added value, compared with the existing standard assessment. We conclude that diagnostic and prognostic biomarkers will be developed through the joint application of expert psychiatric knowledge in addition to advanced methods of analysis.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success
Yankeelov, Thomas E.; An, Gary; Saut, Oliver; Luebeck, E. Georg; Popel, Aleksander S.; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A.; Ye, Kaiming; Genin, Guy M.
2016-01-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology. PMID:27384942
The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications.
Blute, Michael L; Damaschke, Nathan A; Jarrard, David F
2015-01-01
There is a major deficit in our ability to detect and predict the clinical behavior of prostate cancer (PCa). Epigenetic changes are associated with PCa development and progression. This review will focus on recent results in the clinical application of diagnostic and prognostic epigenetic markers. The development of high throughput technology has seen an enormous increase in the discovery of new markers that encompass epigenetic changes including those in DNA methylation and histone modifications. Application of these findings to urine and other biofluids, but also cancer and noncancerous prostate tissue, has resulted in new biomarkers. There has been a recent commercial development of a DNA methylation-based assay for identifying PCa risk from normal biopsy tissue. Other biomarkers are currently in the validation phase and encompass combinations of multiple genes. Epigenetic changes improve the specificity and sensitivity of PCa diagnosis and have the potential to help determine clinical prognosis. Additional studies will not only provide new and better biomarker candidates, but also have the potential to inform new therapeutic strategies given the reversibility of these processes.
Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications.
Al-Niaimi, Firas; Chiang, Nicole Yi Zhen
2017-07-01
OBJECTIVE: This review article details the main mechanisms of action and clinical applications of topical vitamin C on the skin, including its antioxidative, photoprotective, antiaging, and antipigmentary effects. DESIGN: A PubMed search for the relevant articles on vitamin C and the skin was conducted using the following key words: "vitamin C," "ascorbic acid," "ascorbyl-6-palmitate,"and "magnesium ascorbyl phosphate." RESULTS: As one of the most powerful antioxidants in the skin, vitamin C has been shown to protect against photoaging, ultraviolet-induced immunosuppression, and photocarcinogenesis. It also has an antiaging effect by increasing collagen synthesis, stabilizing collagen fibers, and decreasing collagen degradation. It decreases melanin formation, thereby reducing pigmentation. Vitamin C is the primary replenisher of vitamin E and works synergistically with vitamin E in the protection against oxidative damage. CONCLUSION: Topical vitamin C has a wide range of clinical applications, from antiaging and antipigmentary to photoprotective. Currently, clinical studies on the efficacy of topical formulations of vitamin C remain limited, and the challenge lies in finding the most stable and permeable formulation in achieving the optimal results.
Meyer, Anne-Laure; Meyer, Amanda; Etherington, Sarah; Leboeuf-Yde, Charlotte
2017-01-01
Functional Neurology (FN), a seemingly attractive treatment approach used by some chiropractors, proposes to have an effect on a multitude of conditions but some of its concepts are controversial. A scoping review was performed to describe, in the context of chiropractic manual therapy, 1) the FN theories, and 2) its clinical applications (i.e. its indications, examination procedures, treatment modalities, treatment plans, and clinical outcomes) using four sources: i) one key textbook, ii) the scientific peer-reviewed literature, iii) websites from chiropractors using FN, and iv) semi-structured interviews of chiropractors using FN. The scientific literature was searched in PubMed, PsycINFO, and SPORTDiscus, completed by a hand search in the journal Functional Neurology, Rehabilitation and Ergonomics (November 2016 and March 2017, respectively). The only textbook on the topic we found was included and articles were chosen if they had an element of manual therapy. There was no restriction for study design but discussion papers were excluded. Websites were found in Google using the search term "Functional Neurology". Chiropractors, known to use FN, were invited based on their geographical location. Theories were mainly uncovered in the textbook as were all aspects of the clinical applications except treatment plans. The other three sources were used for the five aspects of clinical applications. Results were summarized and reported extensively in tables. Eleven articles were included, five websites scrutinized, and four semi-structured interviews performed. FN is based on the belief that reversible lesions in the nervous system are the cause of a multitude of conditions and that specific clusters of neurons can be positively affected by manipulative therapy, but also by many other stimuli. Diagnostic procedures include both conventional and unusual tests, with an interpretation specific to FN. Initial treatment is intense and clinical outcomes reported as positive. FN gives the impression to be a complex alternative to the old variant of the chiropractic subluxation model, in which the vertebral subluxation is replaced by "physiological lesions" of the brain, and the treatment, spinal adjustments, are complemented by various neurological stimuli. Both models purport to treat not the symptoms but the cause. We conclude there is a need for more scientific documentation on the validity of FN.
Menachemi, Nir; Chukmaitov, Askar; Saunders, Charles; Brooks, Robert G
2008-01-01
Hospitals have been slow to adopt information technology (IT) largely because of a lack of generalizable evidence of the value associated with such adoption. To explore the relationship between IT adoption and quality of care in acute-care hospitals. Primary data on hospital IT adoption were combined with secondary hospital discharge data. Regression analyses were used to examine the relationship between various measures of IT adoption and several quality indicators after controlling for confounders. Adoption of IT was measured using a previously validated method that considers clinical, administrative, and strategic IT capabilities of acute-care hospitals. Quality measures included the Inpatient Quality Indicators developed by the Agency for Healthcare Research and Quality. Data from 98 hospitals were available for analyses. Hospitals adopted an average of 11.3 (45.2%) clinical IT applications, 15.7 (74.8%) administrative IT applications, and 5 (50%) strategic IT applications. In multivariate regression analyses, hospitals that adopted a greater number of IT applications were significantly more likely to have desirable quality outcomes on seven Inpatient Quality Indicator measures, including risk-adjusted mortality from percutaneous transluminal coronary angioplasty, gastrointestinal hemorrhage, and acute myocardial infarction. An increase in clinical IT applications was also inversely correlated with utilization of incidental appendectomy, and an increase in the adoption of strategic IT applications was inversely correlated with risk-adjusted mortality from craniotomy and laparoscopic cholecystectomy. Hospital adoption of IT is associated with desirable quality outcomes across hospitals in Florida. These findings will assist hospital leaders interested in understanding better the effect of costly IT adoption on quality of care in their institutions.
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
NASA Astrophysics Data System (ADS)
Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris
2015-07-01
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.
21 CFR 1308.31 - Application for exemption of a nonnarcotic prescription product.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the following information: (1) The complete quantitative composition of the dosage form. (2... product including animal investigations and clinical evaluations and studies, with emphasis on the psychic...
... Units Division of Epidemiology and Clinical Applications eyeGENE Research Directors Office Office of the Scientific Director Sheldon S. ... friends about diabetic eye disease. This module includes descriptive audio and captioning. Diabetic eye disease has no ...
Photodynamic therapy for infections: clinical applications.
Kharkwal, Gitika B; Sharma, Sulbha K; Huang, Ying-Ying; Dai, Tianhong; Hamblin, Michael R
2011-09-01
Photodynamic therapy (PDT) was discovered over 100 years ago by its ability to kill various microorganisms when the appropriate dye and light were combined in the presence of oxygen. However it is only in relatively recent times that PDT has been studied as a treatment for various types of localized infections. This resurgence of interest has been partly motivated by the alarming increase in drug resistance amongst bacteria and other pathogens. This review will focus on the clinical applications of antimicrobial PDT. The published peer-reviewed literature was reviewed between 1960 and 2011. The basics of antimicrobial PDT are discussed. Clinical applications of antimicrobial PDT to localized viral infections caused by herpes and papilloma viruses, and nonviral dermatological infections such as acne and other yeast, fungal and bacterial skin infections are covered. PDT has been used to treat bacterial infections in brain abscesses and non-healing ulcers. PDT for dental infections including periodontitis and endodontics has been well studied. PDT has also been used for cutaneous Leishmaniasis. Clinical trials of PDT and blue light alone therapy for gastric Helicobacter pylori infection are also covered. As yet clinical PDT for infections has been mainly in the field of dermatology using 5-aminolevulanic acid and in dentistry using phenothiazinium dyes. We expect more to see applications of PDT to more challenging infections using advanced antimicrobial photosensitizers targeted to microbial cells in the years to come. Copyright © 2011 Wiley-Liss, Inc.
Clinical Application of Earlobe Augmentation with Hyaluronic Acid Filler in the Chinese Population.
Qian, Wei; Zhang, Yan-Kun; Cao, Qian; Hou, Ying; Lv, Wei; Fan, Ju-Feng
2017-02-01
Larger earlobes, which are a symbol of "richness" in traditional Chinese culture, are favored by Chinese patients. The objective of this paper is to investigate the application of earlobe augmentation with hyaluronic acid (HA) filler injection and its clinical effects in the Chinese population. A total of 19 patients (38 ears) who received earlobe augmentation with HA filler injections between March 2013 and March 2015 were included. The clinical effects, duration, and complications of these cases were investigated. All patients who received earlobe HA injections showed immediate postoperative effects with obvious morphological improvement of their earlobes. The volume of HA filler injected into each ear was 0.3-0.5 ml. The duration of the effect was 6-9 months. Two of the 19 cases (3 ears) demonstrated mild bruising at the injection site, but the bruising completely disappeared within 7 days after the injection. No vascular embolism, infection, nodule, or granuloma complications were observed in the studied group. The application of earlobe augmentation with HA filler injection is a safe, effective, simple procedure for earlobe shaping. It has an easy clinical application with good clinical prospects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Intelligent Assistive Technology for Alzheimer's Disease and Other Dementias: A Systematic Review.
Ienca, Marcello; Fabrice, Jotterand; Elger, Bernice; Caon, Maurizio; Pappagallo, Alessandro Scoccia; Kressig, Reto W; Wangmo, Tenzin
2017-01-01
Intelligent assistive technologies (IATs) have the potential of offering innovative solutions to mitigate the global burden of dementia and provide new tools for dementia care. While technological opportunities multiply rapidly, clinical applications are rare as the technological potential of IATs remains inadequately translated into dementia care. In this article, the authors present the results of a systematic review and the resulting comprehensive technology index of IATs with application in dementia care. Computer science, engineering, and medical databases were extensively searched and the retrieved items were systematically reviewed. For each IAT, the authors examined their technological type, application, target population, model of development, and evidence of clinical validation. The findings reveal that the IAT spectrum is expanding rapidly in volume and variety over time, and encompasses intelligent systems supporting various assistive tasks and clinical uses. At the same time, the results confirm the persistence of structural limitations to successful adoption including partial lack of clinical validation and insufficient focus on patients' needs. This index is designed to orient clinicians and relevant stakeholders involved in the implementation and management of dementia care across the current capabilities, applications, and limitations of IATs and to facilitate the translation of medical engineering research into clinical practice. In addition, a discussion of the major methodological challenges and policy implications for the successful and ethically responsible implementation of IAT into dementia care is provided.
Adaptive optics for in-vivo exploration of human retinal structures
NASA Astrophysics Data System (ADS)
Paques, Michel; Meimon, Serge; Grieve, Kate; Rossant, Florence
2017-06-01
Adaptive optics (AO)-enhanced imaging of the retina is now reaching a level of technical maturity which fosters its expanding use in research and clinical centers in the world. By achieving wavelength-limited resolution it did not only allow a better observation of retinal substructures already visible by other means, it also broke anatomical frontiers such as individual photoreceptors or vessel walls. The clinical applications of AO-enhanced imaging has been slower than that of optical coherence tomography because of the combination of technical complexity, costs and the paucity of interpretative scheme of complex data. In several diseases, AO-enhanced imaging has already proven to provide added clinical value and quantitative biomarkers. Here, we will review some of the clinical applications of AO-enhanced en face imaging, and trace perspectives to improve its clinical pertinence in these applications. An interesting perspective is to document cell motion through time-lapse imaging such as during agerelated macular degeneration. In arterial hypertension, the possibility to measure parietal thickness and perform fine morphometric analysis is of interest for monitoring patients. In the near future, implementation of novel approaches and multimodal imaging, including in particular optical coherence tomography, will undoubtedly expand our imaging capabilities. Tackling the technical, scientific and medical challenges offered by high resolution imaging are likely to contribute to our rethinking of many retinal diseases, and, most importantly, may find applications in other areas of medicine.
Thrall, J H; Boland, G
1998-04-01
Telemedicine is defined as the "delivery of health care and sharing of medical knowledge over a distance using telecommunication systems." The concept of telemedicine is not new. Beyond the use of the telephone, there were numerous attempts to develop telemedicine programs in the 1960s mostly based on interactive television. The early experience was conceptionally encouraging but suffered inadequate technology. With a few notable exceptions such as the telemetry of medical data in the space program, there was very little advancement of telemedicine in the 1970s and 1980s. Interest in telemedicine has exploded in the 1990s with the development of medical devices suited to capturing images and other data in digital electronic form and the development and installation of high speed, high bandwidth telecommunication systems around the world. Clinical applications of telemedicine are now found in virtually every specialty. Teleradiology is the most common application followed by cardiology, dermatology, psychiatry, emergency medicine, home health care, pathology, and oncology. The technological basis and the practical issues are highly variable from one clinical application to another. Teleradiology, including telenuclear medicine, is one of the more well-defined telemedicine services. Techniques have been developed for the acquisition and digitization of images, image compression, image transmission, and image interpretation. The American College of Radiology has promulgated standards for teleradiology, including the requirement for the use of high resolution 2000 x 2000 pixel workstations for the interpretation of plain films. Other elements of the standard address image annotation, patient confidentiality, workstation functionality, cathode ray tube brightness, and image compression. Teleradiology systems are now widely deployed in clinical practice. Applications include providing service from larger to smaller institutions, coverage of outpatient clinics, imaging centers, and nursing homes. Teleradiology is also being used in international applications. Unresolved issues in telemedicine include licensure, the development of standards, reimbursement for services, patient confidentiality, and telecommunications infrastructure and cost. A number of states and medical boards have instituted policies and regulations to prevent physicians who are not licensed in the respective state to provide telemedicine services. This is a major impediment to the delivery of telemedicine between states. Telemedicine, including teleradiology, is here to stay and is changing the practice of medicine dramatically. National and international communications networks are being created that enable the sharing of information and knowledge at a distance. Technological barriers are being overcome leaving organizational, legal, financial, and special interest issues as the major impediments to the further development of telemedicine and realization of its benefits.
A critical narrative review of transfer of basic science knowledge in health professions education.
Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole
2018-06-01
'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Site management of health issues in the 2001 World Trade Center disaster.
Bradt, David A
2003-06-01
The terrorist destruction of the World Trade Center led to the greatest loss of life from a criminal incident in the history of the United States. There were 2,801 persons killed or missing at the disaster site, including 147 dead on two hijacked aircraft. Hundreds of buildings sustained direct damage or contamination. Forty different agencies responded with command and control exercised by an incident command system as well as an emergency operations center. Dozens of hazards complicated relief and recovery efforts. Five victims were rescued from the rubble. Up to 1,000 personnel worked daily at the World Trade Center disaster site. These workers collectively made an average of 270 daily presentations to health care providers in the first month post-disaster. Of presentations for clinical symptoms, leading clinical diagnoses were ocular injuries, headaches, and lung injuries. Mechanical injury accounted for 39% of clinical presentations and appeared preventable by personal protective equipment. Limitations emerged in the site application of emergency triage and clinical care. Notable assets in the site management of health issues include action plans from the incident command system, geographic information system products, wireless application technology, technical consensus among health and safety authorities, and workers' respite care.
TU-F-201-00: Radiochromic Film Dosimetry Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
TU-F-201-01: General Aspects of Radiochromic Film Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niroomand-Rad, A.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu-Tsao, S.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses
Khan, Parvez; Idrees, Danish; Moxley, Michael A.; Corbett, John A.; Ahmad, Faizan; von Figura, Guido; Sly, William S.; Waheed, Abdul
2015-01-01
Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields. PMID:24752935
Clinical applications of plasma based electrosurgical systems
NASA Astrophysics Data System (ADS)
Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.
2013-02-01
Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.
Preclinical Development of Cell-Based Products: a European Regulatory Science Perspective.
McBlane, James W; Phul, Parvinder; Sharpe, Michaela
2018-06-25
This article describes preclinical development of cell-based medicinal products for European markets and discusses European regulatory mechanisms open to developers to aid successful product development. Cell-based medicinal products are diverse, including cells that are autologous or allogeneic, have been genetically modified, or not, or expanded ex vivo, and applied systemically or to an anatomical site different to that of their origin; comments applicable to one product may not be applicable to others, so bespoke development is needed, for all elements - quality, preclinical and clinical. After establishing how the product is produced, proof of potential for therapeutic efficacy, and then safety, of the product need to be determined. This includes understanding biodistribution, persistence and toxicity, including potential for malignant transformation. These elements need to be considered in the context of the intended clinical development. This article describes regulatory mechanisms available to developers to support product development that aim to resolve scientific issues prior to marketing authorization application, to enable patients to have faster access to the product than would otherwise be the case. Developers are encouraged to be aware of both the scientific issues and regulatory mechanisms to ensure patients can be supplied with these products.
Low intensity laser therapy: the clinical approach
NASA Astrophysics Data System (ADS)
Kahn, Fred
2006-02-01
Recently, there has been significant improvement in the process of research and application of Low Intensity Laser Therapy (LILT). Despite this positive direction, a wide discrepancy between the research component and clinical understanding of the technology remains. In our efforts to achieve better clinical results and more fully comprehend the mechanisms of interaction between light and cells, further studies are required. The clinical results presented in this paper are extrapolated from a wide range of musculoskeletal problems including degenerative osteoarthritis, repetitive motion injuries, sports injuries, etc. The paper includes three separate clinical studies comprising 151, 286 and 576 consecutive patient discharges at our clinic. Each patient studied received a specific course of treatment that was designed for that individual and was modified on a continuing basis as the healing process advanced. On each visit, clinical status correlation with the duration, dosage and other parameters was carried out. The essentials of the treatment consisted of a three stage approach. This involved a photon stream emanating from a number of specified gallium-aluminum-arsenide diodes; stage one, red light array, stage two consisting of an array of infrared diodes and stage three consisting of the application of an infrared laser diode probe. On average, each of these groups required less than 10 treatments per patient and resulted in a significant improvement / cure rate greater than 90% in all conditions treated. This report clearly demonstrates the benefits of LILT, indicating that it should be more widely adapted in all medical therapeutic settings.
Kim, Sung-Wan; Lee, Ga-Young; Yu, Hye-Young; Jung, Eun-I; Lee, Ju-Yeon; Kim, Seon-Young; Kim, Jae-Min; Shin, Il-Seon; Yoon, Jin-Sang
2017-05-18
This article describes the development of the smartphone application for cognitive-behavioural case management of young individuals with early psychosis and examines the acceptance and potential clinical benefits of this application through a pilot survey. Gwangju Bukgu-Community Mental Health Center developed and launched a smartphone application (Heal Your Mind [HYM]) for cognitive-behavioural case management and symptom monitoring. The HYM application for clients includes 6 main modules including thought record, symptom record, daily life record, official notices, communication and scales. The key module is the "thought record" for self-directed cognitive-behavioural treatment. When the client writes and sends the self-cognitive-behavioural therapy sheet to the case manager, the latter receives a notification and can provide feedback in real time. We conducted a survey to investigate the acceptance and feasibility of this approach among young clients with early psychosis. A total of 24 clients with early psychosis participated in this survey. More than 80% of participants reported that it was easy to learn to use this application, and no one described this application as very complicated or reported that they needed a long time to learn how to use it. About 80% of participants were satisfied with this application, and 70% reported that they received help as a result of using this application. This study suggests that this smartphone application is useful for young individuals with early psychosis and that it may contribute to the development of both young customer- and case manager-friendly systems for this clinical population. © 2017 John Wiley & Sons Australia, Ltd.
Dhawan, Atam P
2016-01-01
Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9-10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment.
Evidence-based medicine in HBP surgery: Is there any?
Thorlacius, Henrik
2005-01-01
Background. Evidence-based medicine (EBM) has become widely accepted as a basis for clinical decision in many fields of medicine. This review examines the specific role of EBM in hepato-biliary and pancreatic (HBP) surgery. EBM relies on four main sources, including clinical guidelines, meta-analyses, primary information and clinical experience. Randomized controlled trials (RCTs) constitute the cornerstone of EBM and a recent study reported that there are relatively few RCTs evaluating the effectiveness of surgical therapies and procedures (1,530 out of 45,342 or 3.4% in five leading surgical journals) and only a few in HBP surgery. Although the effort must be to implement EBM as far as possible in HBP surgery, there are several obstacles to conducting RCTs in HBP surgery, including problems associated with standardization of surgical skills, sham-operations often impossible to perform, and the general applicability of specific findings may be uncertain. Discussion. This paper will provide two relevant examples of EBM in HBP surgery in patients with hepatic metastases and pancreatic adenocarcinoma, illustrating some problems but also the potential of introducing EBM in HBP surgery. In the future, our effort must be devoted to implementing EBM in applicable areas of HBP surgery but also remembering that in certain areas accumulated knowledge from observational studies, including drainage of abscesses and surgical treatment of intestinal obstruction, may have similar or even higher clinical value than RCTs. PMID:18333189
Lee, Jie-Eun; Lee, Dong Hwa; Oh, Tae Jung; Kim, Kyoung Min; Choi, Sung Hee; Lim, Soo; Park, Young Joo; Park, Do Joon; Jang, Hak Chul; Moon, Jae Hoon
2018-02-21
Thyrotoxicosis is a common disease caused by an excess of thyroid hormones. The prevalence of thyrotoxicosis about 2% and 70-90% of thyrotoxicosis cases are caused by Graves' disease, an autoimmune disease, which has a high recurrence rate when treated with antithyroid drugs such as methimazole or propylthiouracil. The clinical symptoms and signs of thyrotoxicosis include palpitation, weight loss, restlessness, and difficulty sleeping. Although these clinical changes in thyrotoxicosis can be detected by currently available wearable activity trackers, there have been few trials of the clinical application of wearable devices in patients with thyrotoxicosis. The aim of this study is to investigate the clinical applicability of wearable device-generated data to the management of thyrotoxicosis. We are analyzing continuously monitored data for heart rate, physical activity, and sleep in patients with thyrotoxicosis during their clinical course after treatment. Thirty thyrotoxic patients and 10 control subjects were enrolled in this study at Seoul National University Bundang Hospital. Heart rate, physical activity, and sleep are being monitored using a Fitbit Charge HR or Fitbit Charge 2. Clinical data including anthropometric measures, thyroid function test, and hyperthyroidism symptom scale are recorded. Study enrollment began in December 2016, and the intervention and follow-up phases are ongoing. The results of the data analysis are expected to be available by September 2017. This study will provide a foundational feasibility trial of the clinical applications of biosignal measurements to the differential diagnosis, prediction of clinical course, early detection of recurrence, and treatment in patients with thyrotoxicosis. ClinicalTrials.gov NCT03009357; https://clinicaltrials.gov/ct2/show/NCT03009357 (Archived by WebCite at http://www.webcitation.org/6wh4MWPm2). ©Jie-Eun Lee, Dong Hwa Lee, Tae Jung Oh, Kyoung Min Kim, Sung Hee Choi, Soo Lim, Young Joo Park, Do Joon Park, Hak Chul Jang, Jae Hoon Moon. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 21.02.2018.
A Bayesian prediction model between a biomarker and the clinical endpoint for dichotomous variables.
Jiang, Zhiwei; Song, Yang; Shou, Qiong; Xia, Jielai; Wang, William
2014-12-20
Early biomarkers are helpful for predicting clinical endpoints and for evaluating efficacy in clinical trials even if the biomarker cannot replace clinical outcome as a surrogate. The building and evaluation of an association model between biomarkers and clinical outcomes are two equally important concerns regarding the prediction of clinical outcome. This paper is to address both issues in a Bayesian framework. A Bayesian meta-analytic approach is proposed to build a prediction model between the biomarker and clinical endpoint for dichotomous variables. Compared with other Bayesian methods, the proposed model only requires trial-level summary data of historical trials in model building. By using extensive simulations, we evaluate the link function and the application condition of the proposed Bayesian model under scenario (i) equal positive predictive value (PPV) and negative predictive value (NPV) and (ii) higher NPV and lower PPV. In the simulations, the patient-level data is generated to evaluate the meta-analytic model. PPV and NPV are employed to describe the patient-level relationship between the biomarker and the clinical outcome. The minimum number of historical trials to be included in building the model is also considered. It is seen from the simulations that the logit link function performs better than the odds and cloglog functions under both scenarios. PPV/NPV ≥0.5 for equal PPV and NPV, and PPV + NPV ≥1 for higher NPV and lower PPV are proposed in order to predict clinical outcome accurately and precisely when the proposed model is considered. Twenty historical trials are required to be included in model building when PPV and NPV are equal. For unequal PPV and NPV, the minimum number of historical trials for model building is proposed to be five. A hypothetical example shows an application of the proposed model in global drug development. The proposed Bayesian model is able to predict well the clinical endpoint from the observed biomarker data for dichotomous variables as long as the conditions are satisfied. It could be applied in drug development. But the practical problems in applications have to be studied in further research.
Kriston, Levente; Meister, Ramona
2014-03-01
Judging applicability (relevance) of meta-analytical findings to particular clinical decision-making situations remains challenging. We aimed to describe an evidence synthesis method that accounts for possible uncertainty regarding applicability of the evidence. We conceptualized uncertainty regarding applicability of the meta-analytical estimates to a decision-making situation as the result of uncertainty regarding applicability of the findings of the trials that were included in the meta-analysis. This trial-level applicability uncertainty can be directly assessed by the decision maker and allows for the definition of trial inclusion probabilities, which can be used to perform a probabilistic meta-analysis with unequal probability resampling of trials (adaptive meta-analysis). A case study with several fictitious decision-making scenarios was performed to demonstrate the method in practice. We present options to elicit trial inclusion probabilities and perform the calculations. The result of an adaptive meta-analysis is a frequency distribution of the estimated parameters from traditional meta-analysis that provides individually tailored information according to the specific needs and uncertainty of the decision maker. The proposed method offers a direct and formalized combination of research evidence with individual clinical expertise and may aid clinicians in specific decision-making situations. Copyright © 2014 Elsevier Inc. All rights reserved.
Predictors of future success in otolaryngology residency applicants.
Chole, Richard A; Ogden, M Allison
2012-08-01
To evaluate the information available about otolaryngology residency applicants for factors that may predict future success as an otolaryngologist. Retrospective review of residency applications; survey of resident graduates and otolaryngology clinical faculty. Otolaryngology residency program. Otolaryngology program graduates from 2001 to 2010 and current clinical faculty from Barnes-Jewish Hospital/Washington University School of Medicine. Overall ratings of the otolaryngology graduates by clinical faculty (on a 5-point scale) were compared with the resident application attributes that might predict success. The application factors studied are United States Medical Licensing Examination part 1 score, Alpha Omega Alpha Honor Medical Society election, medical school grades, letter of recommendation, rank of the medical school, extracurricular activities, residency interview, experience with acting intern, and extracurricular activities. Forty-six graduates were included in the study. The overall faculty rating of the residents showed good interrater reliability. The objective factors, letters of recommendation, experience as an acting intern, and musical excellence showed no correlation with higher faculty rating. Rank of the medical school and faculty interview weakly correlated with faculty rating. Having excelled in a team sport correlated with higher faculty rating. Many of the application factors typically used during otolaryngology residency candidate selection may not be predictive of future capabilities as a clinician. Prior excellence in a team sport may suggest continued success in the health care team.
Greenes, R A
1991-11-01
Education and decision-support resources useful to radiologists are proliferating for the personal computer/workstation user or are potentially accessible via high-speed networks. These resources are typically made available through a set of application programs that tend to be developed in isolation and operate independently. Nonetheless, there is a growing need for an integrated environment for access to these resources in the context of professional work, during clinical problem-solving and decision-making activities, and for use in conjunction with other information resources. New application development environments are required to provide these capabilities. One such architecture for applications, which we have implemented in a prototype environment called DeSyGNER, is based on separately delineating the component information resources required for an application, termed entities, and the user interface and organizational paradigms, or composition methods, by which the entities are used to provide particular kinds of capability. Examples include composition methods to support query, book browsing, hyperlinking, tutorials, simulations, or question/answer testing. Future steps must address true integration of such applications with existing clinical information systems. We believe that the most viable approach for evolving this capability is based on the use of new software engineering methodologies, open systems, client-server communication, and delineation of standard message protocols.
Application of nutrient intake values (NIVs).
Vorster, Hester H; Murphy, Suzanne P; Allen, Lindsay H; King, Janet C
2007-03-01
The process of applying nutrient intake values (NIVs) for dietary assessment, planning, and implementing programs is discussed in this paper. In addition to assessing, monitoring, and evaluating nutritional situations, applications include planning food policies, strategies, and programs for promotion of optimal nutrition and preventing and treating malnutrition (both over- and undernutrition). Other applications include nutrition education, food and nutrient legislation, marketing and labeling, research, product development, food procurement and trade (import and export), food aid, and therapeutic (clinical) nutrition. Specific examples of how NIVs are used to develop food labels, fortification policies, and food-based dietary guidelines are described. Applications in both developed and developing countries are also described. In summary, NIVs are the scientific backbone of all aspects of nutrition policy in countries and regions worldwide.
ERIC Educational Resources Information Center
Hill, P. D.
1989-01-01
Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)
Keyhanmanesh, Rana; Gholamnezhad, Zahra; Boskabady, Mohammad Hossien
2014-01-01
Nigella sativa (N. sativa) is a spice plant which has been traditionally used for culinary and medicinal purposes. Different therapeutic properties including the beneficial effects on asthma and dyspnea, digestive and gynecology disorders have been described for the seeds of N. sativa. There is evidence of the relaxant effects of this plant and some of its constituents on different types of smooth muscle including rabbit aorta, rabbit jejunum and trachea. The relaxant effect of N. sativa could be of therapeutic importance such as bronchodilation in asthma, vasodilation in hypertension and therapeutic effect on digestive or urogenital disorders. Therefore in the present article, the relaxant effects of N. sativa and its constituents on smooth muscles and its possible mechanisms as well as clinical application of this effect were reviewed. PMID:25859297
TiO2 nanotube platforms for smart drug delivery: a review
Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun
2016-01-01
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided. PMID:27703349
TiO2 nanotube platforms for smart drug delivery: a review.
Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.
RPMIS: The Roswell Park Management Information System
Priore, R.L.; Lane, W.W.; Edgerton, F.T.; Naeher, C.H.; Reese, P.A.
1978-01-01
This paper presents a generalized approach to data entry and editing utilizing formatted video computer terminals. The purpose of the system developed is to facilitate the creation of many small data bases, with a minimum of implementation time, while maintaining extensive editing capability and preserving ease of use by data entry personnel. RPMIS has demonstrated its utility in shortening the time between research activities and clinical application of results. The system allows entry and retrieval of overlapping subsets of the patient's record in an order and format most appropriate to the individual application. It is used for production of synoptic presentations of information from the labs, the ward and the clinic. RPMIS was designed for the clinical trials setting and has been well received and implemented for numerous such studies. Additional uses have included several registries, screening clinics, retrospective studies, and epidemiologic investigations. The system has found fortuitous use in maintaining curriculum vitae, publications lists and continuing medical education credits.
A regional assessment of information technology sophistication in Missouri nursing homes.
Alexander, Gregory L; Madsen, Richard; Wakefield, Douglas
2010-08-01
To provide a state profile of information technology (IT) sophistication in Missouri nursing homes. Primary survey data were collected from December 2006 to August 2007. A descriptive, exploratory cross-sectional design was used to investigate dimensions of IT sophistication (technological, functional, and integration) related to resident care, clinical support, and administrative processes. Each dimension was used to describe the clinical domains and demographics (ownership, regional location, and bed size). The final sample included 185 nursing homes. A wide range of IT sophistication is being used in administrative and resident care management processes, but very little in clinical support activities. Evidence suggests nursing homes in Missouri are expanding use of IT beyond traditional administrative and billing applications to patient care and clinical applications. This trend is important to provide support for capabilities which have been implemented to achieve national initiatives for meaningful use of IT in health care settings.
Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta
2011-10-01
Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.
Pai, Vinay M; Rodgers, Mary; Conroy, Richard; Luo, James; Zhou, Ruixia; Seto, Belinda
2014-01-01
In April 2012, the National Institutes of Health organized a two-day workshop entitled ‘Natural Language Processing: State of the Art, Future Directions and Applications for Enhancing Clinical Decision-Making’ (NLP-CDS). This report is a summary of the discussions during the second day of the workshop. Collectively, the workshop presenters and participants emphasized the need for unstructured clinical notes to be included in the decision making workflow and the need for individualized longitudinal data tracking. The workshop also discussed the need to: (1) combine evidence-based literature and patient records with machine-learning and prediction models; (2) provide trusted and reproducible clinical advice; (3) prioritize evidence and test results; and (4) engage healthcare professionals, caregivers, and patients. The overall consensus of the NLP-CDS workshop was that there are promising opportunities for NLP and CDS to deliver cognitive support for healthcare professionals, caregivers, and patients. PMID:23921193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzurovic, I; Devlin, P; Hansen, J
Purpose: Contemporary brachytherapy treatment planning systems-(TPS) include the applicator model libraries to improve digitization; however, the library of surface-flap-applicators-(SFA) is not incorporated into the commercial TPS. We propose the dynamic library-(DL) for SFA and investigate if such library can eliminate applicator reconstruction, source activation and dose normalization. Methods: DL was generated for the SFA using the C++class libraries of the Visualization Toolkit-(VTK) and Qt-application framework for complete abstraction of the graphical interface. DL was designed such that the user can initially choose the size of the applicator that corresponds to the one clinically placed to the patient. The virtual applicator-(VA)more » has an elastic property so that it can be registered to the clinical CT images with a real applicator-(RA) on it. The VA and RA matching is performed by adjusting the position and curvature of the VA. The VA does not elongate or change its size so each catheter could always be at a distance of 5mm from the skin and 10mm apart from the closest catheter maintaining the physical accuracy of the clinical setup. Upon the applicator placement, the dwell positions were automatically activated, and the dose is normalized to the prescription depth. The accuracy of source positioning was evaluated using various applicator sizes. Results: The accuracy of the applicator placement was in the sub-millimeter range. The time-study reveals that up to 50% of the planning time can be saved depending on the complexity of the clinical setup. Unlike in the classic approach, the planning time was not highly dependent on the applicator size. Conclusion: The practical benefits of the DL of the SFA were demonstrated. The time demanding planning processes can be partially automated. Consequently, the planner can dedicate effort to fine tuning, which can result in the improvement of the quality of treatment plans in surface brachytherapy.« less
Implementation of customized health information technology in diabetes self management programs.
Alexander, Susan; Frith, Karen H; O'Keefe, Louise; Hennigan, Michael A
2011-01-01
The project was a nurse-led implementation of a software application, designed to combine clinical and demographic records for a diabetes education program, which would result in secure, long-term record storage. Clinical information systems may be prohibitively expensive for small practices and require extensive training for implementation. A review of the literature suggests that the use of simple, practice-based registries offer an economical method of monitoring the outcomes of diabetic patients. The database was designed using a common software application, Microsoft Access. The theory used to guide implementation and staff training was Rogers' Diffusion of Innovations theory (1995). Outcomes after a 3-month period included incorporation of 100% of new clinical and demographic patient records into the database and positive changes in staff attitudes regarding software applications used in diabetes self-management training. These objectives were met while keeping project costs under budgeted amounts. As a function of the clinical nurse specialist (CNS) researcher role, there is a need for CNSs to identify innovative and economical methods of data collection. The success of this nurse-led project reinforces suggestions in the literature for less costly methods of data maintenance in small practice settings. Ongoing utilization and enhancement have resulted in the creation of a robust database that could aid in the research of multiple clinical issues. Clinical nurse specialists can use existing evidence to guide and improve both their own practice and outcomes for patients and organizations. Further research regarding specific factors that predict efficient transition of informatics applications, how these factors vary according to practice settings, and the role of the CNS in implementation of such applications is needed.
Vlahovich, Nicole; Hughes, David C; Griffiths, Lyn R; Wang, Guan; Pitsiladis, Yannis P; Pigozzi, Fabio; Bachl, Nobert; Eynon, Nir
2017-11-14
There has been considerable growth in basic knowledge and understanding of how genes are influencing response to exercise training and predisposition to injuries and chronic diseases. On the basis of this knowledge, clinical genetic tests may in the future allow the personalisation and optimisation of physical activity, thus providing an avenue for increased efficiency of exercise prescription for health and disease. This review provides an overview of the current status of genetic testing for the purposes of exercise prescription and injury prevention. As such there are a variety of potential uses for genetic testing, including identification of risks associated with participation in sport and understanding individual response to particular types of exercise. However, there are many challenges remaining before genetic testing has evidence-based practical applications; including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention. Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing.
Biomarkers for oxidative stress: clinical application in pediatric medicine.
Tsukahara, Hirokazu
2007-01-01
Loads of reactive oxygen species (ROS), including superoxide anion and nitric oxide, that overburden antioxidant systems induce oxidative stress in the body. Major cellular targets of ROS are membrane lipids, proteins, nucleic acids, and carbohydrates. Circumstantial evidence suggests that ROS play a crucial role in the initiation and progression of various diseases in children and adolescents. The involvement of ROS and oxidative stress in pediatric diseases is an important concern, but oxidative stress status in young subjects and appropriate methods for its measurement remain to be defined. Recently, specific biomarkers for oxidative damage and antioxidant defense have been introduced into the field of pediatric medicine. This review is intended to provide an overview of clinical applications of oxidative stress biomarkers in the field of pediatric medicine. First, this review presents the biochemistry and pathophysiology of ROS and antioxidant defense systems. Second, it presents a list of clinically applicable biomarkers, along with pediatric diseases in which enhanced oxidative stress might be involved. The discussion emphasizes that several reliable biomarkers are easily measurable using enzyme-linked immunosorbent assay. Third, this review presents age-related reference normal ranges of oxidative stress biomarkers, including urinary acrolein-lysine, 8-hydroxy-2'-deoxyguanosine, nitrite/nitrate, and pentosidine, and the changes of the parameters in several clinical conditions, including atopic dermatitis and diabetes mellitus. New and interesting data on oxidative stress and antioxidant defenses in neonatal biology are also presented. Fourth, this review discusses the ever-accumulating body of data linking oxidative stress to disturbances of the nitric oxide system and vascular endothelial activation/dysfunction. Finally, this review describes the reported clinical trials that have evaluated the efficacy of antioxidants for oxidative-stress related diseases. Suggestions are advanced for the direction of future trials using antioxidant therapies. Repeated measurement of appropriate parameters will enable us to discern the pathophysiological patterns of pediatric diseases and guide our therapies appropriately.
Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F
2015-01-01
Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and recommendations could be categorized under the following eight objectives to be safeguarded during clinical application of artificial gametes: (i) timing the implementation of new treatments correctly, (ii) meeting 'plausible demands of patients', (iii) improving and safeguarding public health, (iv) promoting the progress of medical science in the interest of future patients, (v) providing treatments that are morally acceptable for the general public, (vi) controlling medical practice, (vii) offering treatments that allow acquisition of informed consent and (viii) funding treatments fairly. Professionals specialized in biomedical science, science journalists and professionals specialized in ethics all addressed these eight objectives on artificial gametes, whereas professionals specialized in law or political science addressed seven objectives. Although one study reported on the perspective of parents of under-aged patients on three objectives, the perspectives of patients themselves were not reported by the reviewed literature. Of course, clinical introduction of artificial gametes should only be considered on the basis of reassuring outcomes of appropriate preclinical effectiveness and safety studies. In addition, potential users' views on the desirability and acceptability of artificial gametes should be studied before clinical introduction. A societal debate including all stakeholders is needed to determine the relative importance of all arguments in favor of and against the introduction of artificial gametes into clinical practice. More broadly, establishing pre-implementation processes for new medical techniques is relevant for all fields of medicine. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Telehealth on advanced networks.
Wilson, Laurence S; Stevenson, Duncan R; Cregan, Patrick
2010-01-01
We address advanced Internet for complex telehealth applications by reviewing four hospital-based broadband telehealth projects and identifying common threads. These projects were conducted in Australia under a 6-year research project on broadband Internet applications. Each project addressed specific clinical needs and its development was guided by the clinicians involved. Each project was trialed in the field and evaluated against the initial requirements. The four projects covered remote management of a resuscitation team in a district hospital, remote guidance and interpretation of echocardiography, virtual-reality-based instructor-student surgical training, and postoperative outpatient consultations following pediatric surgery. Each was characterized by a high level of interpersonal communication, a high level of clinical expertise, and multiple participants. Each made use of multiple high-quality video and audio links and shared real-time access to clinical data. Four common threads were observed. Each application provided a high level of usability and task focus because the design and use of broadband capability was aimed directly to meet the clinicians' needs. Each used the media quality available over broadband to convey words, gestures, body movements, and facial expressions to support communication and a sense of presence among the participants. Each required a complex information space shared among the participants, including real-time access to stored patient data and real-time interactive access to the patients themselves. Finally, each application supported the social and organizational aspects of their healthcare focus, creating and maintaining relationships between the various participants, and this was done by placing the telehealth application into a wider functioning clinical context. These findings provide evidence for a significantly enhanced role for appropriate telemedicine systems running on advanced networks, in a wider range of clinical applications, more deeply integrated into healthcare systems.
Computational biology for cardiovascular biomarker discovery.
Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel
2009-07-01
Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.
Liu, Sheng-bo; Peng, Bin; Song, Ya-ling; Xu, Qing-an
2013-12-01
To investigate the education effect of case-based learning (CBL) pattern on clinical internship of conservative dentistry and endodontics. Forty-one undergraduates were randomly assigned into CBL group and traditional teaching group. After clinical internship in the department of conservative dentistry and endodontics for 11 weeks, each student in the 2 groups underwent comprehensive examinations including medical record writing, case analysis, academic knowledge, professional skills and the ability of winning the trust of the patients. The scores were compared between the 2 groups using SPSS 13.0 software package. There was no significant difference between the 2 groups with regard to the scores of academic knowledge and profession skills (P>0.05). However, the results of medical record writing, case analysis and the ability of winning the trust of the patients showed significant difference between the 2 groups(P<0.05). Proper application of CBL in clinical internship of conservative dentistry and endodontics contributes to improve students' ability of clinical thinking, synthetical analysis and adaptability to different patients.
Research methods to change clinical practice for patients with rare cancers.
Billingham, Lucinda; Malottki, Kinga; Steven, Neil
2016-02-01
Rare cancers are a growing group as a result of reclassification of common cancers by molecular markers. There is therefore an increasing need to identify methods to assess interventions that are sufficiently robust to potentially affect clinical practice in this setting. Methods advocated for clinical trials in rare diseases are not necessarily applicable in rare cancers. This Series paper describes research methods that are relevant for rare cancers in relation to the range of incidence levels. Strategies that maximise recruitment, minimise sample size, or maximise the usefulness of the evidence could enable the application of conventional clinical trial design to rare cancer populations. Alternative designs that address specific challenges for rare cancers with the aim of potentially changing clinical practice include Bayesian designs, uncontrolled n-of-1 trials, and umbrella and basket trials. Pragmatic solutions must be sought to enable some level of evidence-based health care for patients with rare cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2014-01-01
Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.
Imaging macrophages with nanoparticles
NASA Astrophysics Data System (ADS)
Weissleder, Ralph; Nahrendorf, Matthias; Pittet, Mikael J.
2014-02-01
Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.
TU-A-210-02: HIFU: Why Should a Radiation Oncology Physicist Pay Attention?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesinger, D.
High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis inmore » 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with HIFU is likely the first of several applications of the technology Learn about some similarities and differences between HIFU and ionizing radiation in terms of physics and biological effects. Learn about some of the technical challenges HIFU faces that might benefit from the experience of radiation oncology physicists including treatment planning improvements, quality assurance procedures, and treatment risk analysis. David Schlesinger receives research support from Elekta Instruments, AB. Matt Eames is an employee of the Focused Ultrasound Foundation which supports research and clinical trials. Dr. Eames conducts research which is supported by the Focused Ultrasound Foundation.« less
Colon cleansing protocol in children: research conditions vs. clinical practice.
Elitsur, Yoram; Balfaqih, Yaslam; Preston, Deborah
2018-04-01
Colon preparation rates are the limiting factor for a successful diagnostic colonoscopy in children. Different colon cleansing protocols have been published for use in children. Unfortunately, the applicability of those published research protocols has not been formally evaluated in routine clinical practice. We investigated the success rate of our previously published colon cleansing protocol as utilized in our clinical practice. This was a retrospective study. In the clinical practice, the colon cleansing protocol included PEG-3350 at a dose of 2 g/kg/day plus Dulcolax (Bisacodyl, Boehringer Ingelheim, TX USA) 5 mg/day for 2 days. Adequate colon preparation was graded between 1 - 5, as previously described, and grade ≥ 4.0 was considered an adequate preparation. Patients were instructed to complete a questionnaire that included PEG-3350 dose, number of stools per day, consistency of each stool, and side effects (vomiting, abdominal pain). Clinical and endoscopic results were compared between the protocol under research conditions and routine practice. The success rate of the colon preparation in our clinical practice was similar to the results observed under our research protocol (75 % vs. 73.6 %). Moreover, the total number of stools, stool consistency, and the intubation rate of the terminal ileum were also similar. We concluded, that in our experience, the colon cleansing protocol used under research conditions was effective and appropriate for use in routine clinical practice. We recommend testing each new protocol under the routine conditions of clinical practice to confirm its applicability for general practitioners.
The clinical application of research utilization: amphotericin B.
Reedy, A M; Shivnan, J C; Hanson, J L; Haisfield, M E; Gregory, R E
1994-05-01
To describe the first application of the research utilization process by clinical nurses using the Stetler-Marram Model of Research Utilization to the practice of amphotericin B administration; to share the findings; and to discuss issues encountered in the process and their solutions. Published articles identified through computerized literature searches, published abstracts and books, personal communication with one author, and an informal survey of other cancer centers' amphotericin B infusion practices; research articles were selected for review if studies included settings and patient populations similar to those of the authors and if they used experimental designs. Studies were reviewed for scientific merit and clinical applicability according to the Stetler-Marram model; findings were used to develop a specific nursing protocol for infusion times of amphotericin B based on clinical criteria. The Stetler-Marram model helped staff nurses decide how to apply research findings to practice, although using it was difficult and required mentorship. A research base exists for amphotericin B administration time but not for test doses or premedications to prevent or minimize side effects. Staff nurses can use the Stetler-Marram model but need resources and support from individuals, committees, and administration. A specific protocol representing a practice change was implemented and may be applicable to other settings.
Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review
John, Hannah Eliza; Niumsawatt, Vachara; Whitaker, Iain S.
2016-01-01
Background Infrared thermography (IRT) has become an increasingly utilized adjunct to more expensive and/or invasive investigations in a range of surgical fields, no more so than in plastic surgery. The combination of functional assessment, flow characteristics and anatomical localization has led to increasing applications of this technology. This article aims to perform a systematic review of the clinical applications of IRT in plastic surgery. Methods A systematic literature search using the keywords ‘IRT’ and ‘dynamic infrared thermography (DIRT)’ has been accomplished. A total of 147 papers were extracted from various medical databases, of which 34 articles were subjected to a full read by two independent reviewers, to ensure the papers satisfied the inclusion and exclusion criteria. Studies focusing on the use of IRT in breast cancer diagnosis were excluded. Results A systematic review of 29 publications demonstrated the clinical applications of IRT in plastic surgery today. They include preoperative planning of perforators for free flaps, post operative monitoring of free flaps, use of IRT as an adjunct in burns depth analysis, in assessment of response to treatment in hemangioma and as a diagnostic test for cutaneous melanoma and carpal tunnel syndrome (CTS). Conclusions Modern infrared imaging technology with improved standardization protocols is now a credible, useful non-invasive tool in clinical practice. PMID:27047781
Embodied Conversational Agents in Clinical Psychology: A Scoping Review
Lau, Ho Ming; Ruwaard, Jeroen; Riper, Heleen
2017-01-01
Background Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors. Objective We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. Methods Given the large variety of applied methodologies, types of applications, and scientific disciplines involved in ECA research, we conducted a systematic scoping review. Scoping reviews aim to map key concepts and types of evidence underlying an area of research, and answer less-specific questions than traditional systematic reviews. Systematic searches for ECA applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application that targeted one of the disorders. We mapped each study’s background information, how the different disorders were addressed, how ECAs and users could interact with one another, methodological aspects, and the study’s aims and outcomes. Results This study included N=54 publications (N=49 studies). More than half of the studies (n=26) focused on autism treatment, and ECAs were used most often for social skills training (n=23). Applications ranged from simple reinforcement of social behaviors through emotional expressions to sophisticated multimodal conversational systems. Most applications (n=43) were still in the development and piloting phase, that is, not yet ready for routine practice evaluation or application. Few studies conducted controlled research into clinical effects of ECAs, such as a reduction in symptom severity. Conclusions ECAs for mental disorders are emerging. State-of-the-art techniques, involving, for example, communication through natural language or nonverbal behavior, are increasingly being considered and adopted for psychotherapeutic interventions in ECA research with promising results. However, evidence on their clinical application remains scarce. At present, their value to clinical practice lies mostly in the experimental determination of critical human support factors. In the context of using ECAs as an adjunct to existing interventions with the aim of supporting users, important questions remain with regard to the personalization of ECAs’ interaction with users, and the optimal timing and manner of providing support. To increase the evidence base with regard to Internet interventions, we propose an additional focus on low-tech ECA solutions that can be rapidly developed, tested, and applied in routine practice. PMID:28487267
Embodied Conversational Agents in Clinical Psychology: A Scoping Review.
Provoost, Simon; Lau, Ho Ming; Ruwaard, Jeroen; Riper, Heleen
2017-05-09
Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors. We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. Given the large variety of applied methodologies, types of applications, and scientific disciplines involved in ECA research, we conducted a systematic scoping review. Scoping reviews aim to map key concepts and types of evidence underlying an area of research, and answer less-specific questions than traditional systematic reviews. Systematic searches for ECA applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application that targeted one of the disorders. We mapped each study's background information, how the different disorders were addressed, how ECAs and users could interact with one another, methodological aspects, and the study's aims and outcomes. This study included N=54 publications (N=49 studies). More than half of the studies (n=26) focused on autism treatment, and ECAs were used most often for social skills training (n=23). Applications ranged from simple reinforcement of social behaviors through emotional expressions to sophisticated multimodal conversational systems. Most applications (n=43) were still in the development and piloting phase, that is, not yet ready for routine practice evaluation or application. Few studies conducted controlled research into clinical effects of ECAs, such as a reduction in symptom severity. ECAs for mental disorders are emerging. State-of-the-art techniques, involving, for example, communication through natural language or nonverbal behavior, are increasingly being considered and adopted for psychotherapeutic interventions in ECA research with promising results. However, evidence on their clinical application remains scarce. At present, their value to clinical practice lies mostly in the experimental determination of critical human support factors. In the context of using ECAs as an adjunct to existing interventions with the aim of supporting users, important questions remain with regard to the personalization of ECAs' interaction with users, and the optimal timing and manner of providing support. To increase the evidence base with regard to Internet interventions, we propose an additional focus on low-tech ECA solutions that can be rapidly developed, tested, and applied in routine practice. ©Simon Provoost, Ho Ming Lau, Jeroen Ruwaard, Heleen Riper. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.05.2017.
Ultrasonic propulsion of kidney stones.
May, Philip C; Bailey, Michael R; Harper, Jonathan D
2016-05-01
Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.
Ultrasonic propulsion of kidney stones
May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.
2016-01-01
Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428
The Power Prior: Theory and Applications
Ibrahim, Joseph G.; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang
2015-01-01
The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A to Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Prequentist properties of power priors in posterior inference are established and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials. PMID:26346180
Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool
Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry
2011-01-01
Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144
Drugs, money and society (Part II).
Walley, Tom
2010-09-01
Pharmacoeconomics started as marketing but has developed into a valuable tool in the fuller assessment of drug therapies. Its principles are now widely accepted, and many countries have government-funded agencies with responsibility for its application, most notably the National Institute for Health and Clinical Excellence in England. Many clinical pharmacologists are active in this area, and the discipline itself is part of the clinical pharmacology trainees' curriculum. Further developments will include value-based pricing and its use in cost sharing arrangements between health service and manufacturers.
Kraiss, A; Kraft, W; Gothe, R
1987-01-01
A review is presented on the biology of the causative agent, epidemiology, pathogenesis, clinical features, diagnosis and therapy of canine Sarcoptes scabiei infestation. This survey includes also clinical data of the period 1978-1986 in the Small Animal Hospital, Munich Veterinary Faculty. Several skin scrapings are usually necessary for diagnosis. For therapy application of acaricides once a week, altogether at least three times is sufficient. Simultaneously a decontamination of the dog's surroundings should be carried out.
Emerging technology: applications of Raman spectroscopy for prostate cancer.
Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W
2014-09-01
There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.
NASA Astrophysics Data System (ADS)
Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew
2013-10-01
A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.
Palmer, Antony L; Lee, Chris; Ratcliffe, Ailsa J; Bradley, David; Nisbet, Andrew
2013-10-07
A novel phantom is presented for 'full system' dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.
Telemedicine: history, applications, and impact on librarianship.
Zundel, K M
1996-01-01
This paper traces the uses of telecommunications in health care from the Civil War era to the present. Topics include the National Aeronautics and Space Administration's involvement in the origins of current telemedicine systems and the impact of television. Applications of telemedicine discussed include remote consultation and diagnosis, specialty clinical care (including examples from anesthesia, dermatology, cardiology, psychiatry, radiology, critical care, and oncology), and others (including examples of patient education, home monitoring, and continuing education). The concluding section highlights how telemedicine affects health sciences librarianship, beginning with the development of online computerized literature searching. This section also discusses the medical resources available to health sciences librarians as a result of the Internet. PMID:8938332
Lewandowska, Dagmara W; Zagordi, Osvaldo; Geissberger, Fabienne-Desirée; Kufner, Verena; Schmutz, Stefan; Böni, Jürg; Metzner, Karin J; Trkola, Alexandra; Huber, Michael
2017-08-08
Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
Therapeutic applications of circadian rhythms for the cardiovascular system
Tsimakouridze, Elena V.; Alibhai, Faisal J.; Martino, Tami A.
2015-01-01
The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically. PMID:25941487
Emerging diagnostic and therapeutic molecular imaging applications in vascular disease
Eraso, Luis H; Reilly, Muredach P; Sehgal, Chandra; Mohler, Emile R
2013-01-01
Assessment of vascular disease has evolved from mere indirect and direct measurements of luminal stenosis to sophisticated imaging methods to depict millimeter structural changes of the vasculature. In the near future, the emergence of multimodal molecular imaging strategies may enable robust therapeutic and diagnostic (‘theragnostic’) approaches to vascular diseases that comprehensively consider structural, functional, biological and genomic characteristics of the disease in individualized risk assessment, early diagnosis and delivery of targeted interventions. This review presents a summary of recent preclinical and clinical developments in molecular imaging and theragnostic applications covering diverse atherosclerosis events such as endothelial activation, macrophage infammatory activity, plaque neovascularization and arterial thrombosis. The main focus is on molecular targets designed for imaging platforms commonly used in clinical medicine including magnetic resonance, computed tomography and positron emission tomography. A special emphasis is given to vascular ultrasound applications, considering the important role this imaging platform plays in the clinical and research practice of the vascular medicine specialty. PMID:21310769
Shouval, R; Bondi, O; Mishan, H; Shimoni, A; Unger, R; Nagler, A
2014-03-01
Data collected from hematopoietic SCT (HSCT) centers are becoming more abundant and complex owing to the formation of organized registries and incorporation of biological data. Typically, conventional statistical methods are used for the development of outcome prediction models and risk scores. However, these analyses carry inherent properties limiting their ability to cope with large data sets with multiple variables and samples. Machine learning (ML), a field stemming from artificial intelligence, is part of a wider approach for data analysis termed data mining (DM). It enables prediction in complex data scenarios, familiar to practitioners and researchers. Technological and commercial applications are all around us, gradually entering clinical research. In the following review, we would like to expose hematologists and stem cell transplanters to the concepts, clinical applications, strengths and limitations of such methods and discuss current research in HSCT. The aim of this review is to encourage utilization of the ML and DM techniques in the field of HSCT, including prediction of transplantation outcome and donor selection.
Current laser applications in reconstructive microsurgery: A review of the literature.
Leclère, Franck Marie; Vogt, Peter; Schoofs, Michel; Delattre, Maryline; Mordon, Serge
2016-06-01
Microvascular surgery has become an important method for reconstructing surgical defects following trauma, tumor resection, or burns. Laser-assisted microanastomoses (LAMA) were introduced by Jain in 1979 in order to help the microsurgeon reduce both operating time and complications. This article reviews the literature on clinical applications of LAMA. A Medline literature search was performed and cross-referenced. Articles between 1979 and 2014 were included. Keywords used were laser, laser microanastomoses, laser microanastomosis, LAMA, and microsurgery. Only seven clinical studies using three different wavelengths were found in the literature: 1,064 nm (Nd: YAG), 10,600 nm (CO2), 514 nm (Argon), and 1,950 nm (Diode). Clinical outcomes, type of procedures, laser wavelength and parameters, and possible wider applications in the operating room are discussed in each case. The success rate for reconstructive free flap surgery and hand surgery achieved with LAMA appears promising. In particular, use of the 1950-nm diode laser for microsurgery is likely to increase in the near future.
Optical coherence tomography in gastroenterology: a review and future outlook
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Han; Leggett, Cadman L.; Trindade, Arvind J.; Sethi, Amrita; Swager, Anne-Fré; Joshi, Virendra; Bergman, Jacques J.; Mashimo, Hiroshi; Nishioka, Norman S.; Namati, Eman
2017-12-01
Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.
Decision support systems and the healthcare strategic planning process: a case study.
Lundquist, D L; Norris, R M
1991-01-01
The repertoire of applications that comprises health-care decision support systems (DSS) includes analyses of clinical, financial, and operational activities. As a whole, these applications facilitate developing comprehensive and interrelated business and medical models that support the complex decisions required to successfully manage today's health-care organizations. Kennestone Regional Health Care System's use of DSS to facilitate strategic planning has precipitated marked changes in the organization's method of determining capital allocations. This case study discusses Kennestone's use of DSS in the strategic planning process, including profiles of key DSS modeling components.
Smartphone applications: A contemporary resource for dermatopathology
Hanna, Matthew G.; Parwani, Anil V.; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Introduction: Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. “MyDermPath” is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. Materials and Methods: “MyDermPath” was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. Results: The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Conclusions: Smartphone applications have tremendous potential for advancing pathology education. “MyDermPath” represents an interactive reference tool for dermatology and dermatopathologists. PMID:26284155
Smartphone applications: A contemporary resource for dermatopathology.
Hanna, Matthew G; Parwani, Anil V; Pantanowitz, Liron; Punjabi, Vinod; Singh, Rajendra
2015-01-01
Smartphone applications in medicine are becoming increasingly prevalent. Given that most pathologists and pathology trainees today use smartphones, an obvious modality for pathology education is through smartphone applications. "MyDermPath" is a novel smartphone application that was developed as an interactive reference tool for dermatology and dermatopathology, available for iOS and Android. "MyDermPath" was developed using Apple Xcode and Google Android SDK. Dermatology images (static and virtual slides) were annotated and configured into an algorithmic format. Each image comprised educational data (diagnosis, clinical information, histopathology, special stains, differential diagnosis, clinical management, linked PubMed references). Added functionality included personal note taking, pop quiz, and image upload capabilities. A website was created (http://mydermpath.com) to mirror the app. The application was released in August 2011 and updated in November 2013. More than 1,100 reference diagnoses, with over 2,000 images are available via the application and website. The application has been downloaded approximately 14,000 times. The application is available for use on iOS and Android platforms. Smartphone applications have tremendous potential for advancing pathology education. "MyDermPath" represents an interactive reference tool for dermatology and dermatopathologists.
Clinical application of high throughput molecular screening techniques for pharmacogenomics
Wiita, Arun P; Schrijver, Iris
2011-01-01
Genetic analysis is one of the fastest-growing areas of clinical diagnostics. Fortunately, as our knowledge of clinically relevant genetic variants rapidly expands, so does our ability to detect these variants in patient samples. Increasing demand for genetic information may necessitate the use of high throughput diagnostic methods as part of clinically validated testing. Here we provide a general overview of our current and near-future abilities to perform large-scale genetic testing in the clinical laboratory. First we review in detail molecular methods used for high throughput mutation detection, including techniques able to monitor thousands of genetic variants for a single patient or to genotype a single genetic variant for thousands of patients simultaneously. These methods are analyzed in the context of pharmacogenomic testing in the clinical laboratories, with a focus on tests that are currently validated as well as those that hold strong promise for widespread clinical application in the near future. We further discuss the unique economic and clinical challenges posed by pharmacogenomic markers. Our ability to detect genetic variants frequently outstrips our ability to accurately interpret them in a clinical context, carrying implications both for test development and introduction into patient management algorithms. These complexities must be taken into account prior to the introduction of any pharmacogenomic biomarker into routine clinical testing. PMID:23226057
Wu, Harold Y; Yin, Ophelia; Monseur, Brent; Selter, Jessica; Collins, Lillian J; Lau, Brandyn D; Christianson, Mindy S
2017-07-01
To assess geographical distribution and practice characteristics of fertility clinics inclusive of lesbian, gay, bisexual, and transgender (LGBT) patients. Cross-sectional analysis. Not applicable. None. None. Prevalence and geographical distribution of fertility clinic websites with LGBT-specific content, indicated by keywords and home page cues specific to the LGBT patient population. Assessment of relationship between LGBT-specific content and clinic characteristics, including U.S. region, clinic size, private versus academic setting, and state-mandated fertility insurance coverage. Of 379 websites analyzed, 201 (53%) contained LGBT content. Clinics with the highest proportion of LGBT website content were in the Northeast (59/82, 72%) and West (63/96, 66%), while the lowest proportion was in the Midwest (29/74, 39%) and South (50/127, 39%). Most frequently used terms included lesbian (72%), LGBT/LGBTQ (69%), and gay (68%), while less used terms included trans/transgender (32%) and bisexual (15%). Larger clinic size was associated with LGBT-specific website content (odds ratio, 4.42; 95% confidence interval, 2.07-9.67). Practice type and state-mandated fertility insurance coverage were not associated with a clinic website having LGBT content. Over half of Society for Assisted Reproductive Technology member fertility clinics included LGBT content on their websites, yet those in the Midwest and South were significantly less likely to do so. Predictive factors for having LGBT website content included location in northeastern and western regions and increasing clinic size. Further studies are needed to evaluate whether inclusion of LGBT content on clinic websites impacts use of reproductive services by the LGBT patient population. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
ddpcr: an R package and web application for analysis of droplet digital PCR data.
Attali, Dean; Bidshahri, Roza; Haynes, Charles; Bryan, Jennifer
2016-01-01
Droplet digital polymerase chain reaction (ddPCR) is a novel platform for exact quantification of DNA which holds great promise in clinical diagnostics. It is increasingly popular due to its digital nature, which provides more accurate quantification and higher sensitivity than traditional real-time PCR. However, clinical adoption has been slowed in part by the lack of software tools available for analyzing ddPCR data. Here, we present ddpcr - a new R package for ddPCR visualization and analysis. In addition, ddpcr includes a web application (powered by the Shiny R package) that allows users to analyze ddPCR data using an interactive graphical interface.
An update on Lab Rover: A hospital material transporter
NASA Technical Reports Server (NTRS)
Mattaboni, Paul
1994-01-01
The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.
Berg, Jonathan S; Powell, Cynthia M
2015-10-05
Since newborn screening (NBS) began in the 1960s, technological advances have enabled its expansion to include an increasing number of disorders. Recent developments now make it possible to sequence an infant's genome relatively quickly and economically. Clinical application of whole-exome and whole-genome sequencing is expanding at a rapid pace but presents many challenges. Its utility in NBS has yet to be demonstrated and its application in the pediatric population requires examination, not only for potential clinical benefits, but also for the unique ethical challenges it presents. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Fundamentals of Pharmacogenetics in Personalized, Precision Medicine.
Valdes, Roland; Yin, DeLu Tyler
2016-09-01
This article introduces fundamental principles of pharmacogenetics as applied to personalized and precision medicine. Pharmacogenetics establishes relationships between pharmacology and genetics by connecting phenotypes and genotypes in predicting the response of therapeutics in individual patients. We describe differences between precision and personalized medicine and relate principles of pharmacokinetics and pharmacodynamics to applications in laboratory medicine. We also review basic principles of pharmacogenetics, including its evolution, how it enables the practice of personalized therapeutics, and the role of the clinical laboratory. These fundamentals are a segue for understanding specific clinical applications of pharmacogenetics described in subsequent articles in this issue. Copyright © 2016 Elsevier Inc. All rights reserved.
Garcia, Sofia F; Cella, David; Clauser, Steven B; Flynn, Kathryn E; Lad, Thomas; Lai, Jin-Shei; Reeve, Bryce B; Smith, Ashley Wilder; Stone, Arthur A; Weinfurt, Kevin
2007-11-10
Patient-reported outcomes (PROs), such as symptom scales or more broad-based health-related quality-of-life measures, play an important role in oncology clinical trials. They frequently are used to help evaluate cancer treatments, as well as for supportive and palliative oncology care. To be most beneficial, these PROs must be relevant to patients and clinicians, valid, and easily understood and interpreted. The Patient-Reported Outcomes Measurement Information System (PROMIS) Network, part of the National Institutes of Health Roadmap Initiative, aims to improve appreciably how PROs are selected and assessed in clinical research, including clinical trials. PROMIS is establishing a publicly available resource of standardized, accurate, and efficient PRO measures of major self-reported health domains (eg, pain, fatigue, emotional distress, physical function, social function) that are relevant across chronic illnesses including cancer. PROMIS is also developing measures of self-reported health domains specifically targeted to cancer, such as sleep/wake function, sexual function, cognitive function, and the psychosocial impacts of the illness experience (ie, stress response and coping; shifts in self-concept, social interactions, and spirituality). We outline the qualitative and quantitative methods by which PROMIS measures are being developed and adapted for use in clinical oncology research. At the core of this activity is the formation and application of item banks using item response theory modeling. We also present our work in the fatigue domain, including a short-form measure, as a sample of PROMIS methodology and work to date. Plans for future validation and application of PROMIS measures are discussed.
Recent Advances in Clinical Natural Language Processing in Support of Semantic Analysis.
Velupillai, S; Mowery, D; South, B R; Kvist, M; Dalianis, H
2015-08-13
We present a review of recent advances in clinical Natural Language Processing (NLP), with a focus on semantic analysis and key subtasks that support such analysis. We conducted a literature review of clinical NLP research from 2008 to 2014, emphasizing recent publications (2012-2014), based on PubMed and ACL proceedings as well as relevant referenced publications from the included papers. Significant articles published within this time-span were included and are discussed from the perspective of semantic analysis. Three key clinical NLP subtasks that enable such analysis were identified: 1) developing more efficient methods for corpus creation (annotation and de-identification), 2) generating building blocks for extracting meaning (morphological, syntactic, and semantic subtasks), and 3) leveraging NLP for clinical utility (NLP applications and infrastructure for clinical use cases). Finally, we provide a reflection upon most recent developments and potential areas of future NLP development and applications. There has been an increase of advances within key NLP subtasks that support semantic analysis. Performance of NLP semantic analysis is, in many cases, close to that of agreement between humans. The creation and release of corpora annotated with complex semantic information models has greatly supported the development of new tools and approaches. Research on non-English languages is continuously growing. NLP methods have sometimes been successfully employed in real-world clinical tasks. However, there is still a gap between the development of advanced resources and their utilization in clinical settings. A plethora of new clinical use cases are emerging due to established health care initiatives and additional patient-generated sources through the extensive use of social media and other devices.
Recent Advances in Clinical Natural Language Processing in Support of Semantic Analysis
Mowery, D.; South, B. R.; Kvist, M.; Dalianis, H.
2015-01-01
Summary Objectives We present a review of recent advances in clinical Natural Language Processing (NLP), with a focus on semantic analysis and key subtasks that support such analysis. Methods We conducted a literature review of clinical NLP research from 2008 to 2014, emphasizing recent publications (2012-2014), based on PubMed and ACL proceedings as well as relevant referenced publications from the included papers. Results Significant articles published within this time-span were included and are discussed from the perspective of semantic analysis. Three key clinical NLP subtasks that enable such analysis were identified: 1) developing more efficient methods for corpus creation (annotation and de-identification), 2) generating building blocks for extracting meaning (morphological, syntactic, and semantic subtasks), and 3) leveraging NLP for clinical utility (NLP applications and infrastructure for clinical use cases). Finally, we provide a reflection upon most recent developments and potential areas of future NLP development and applications. Conclusions There has been an increase of advances within key NLP subtasks that support semantic analysis. Performance of NLP semantic analysis is, in many cases, close to that of agreement between humans. The creation and release of corpora annotated with complex semantic information models has greatly supported the development of new tools and approaches. Research on non-English languages is continuously growing. NLP methods have sometimes been successfully employed in real-world clinical tasks. However, there is still a gap between the development of advanced resources and their utilization in clinical settings. A plethora of new clinical use cases are emerging due to established health care initiatives and additional patient-generated sources through the extensive use of social media and other devices. PMID:26293867
Computer laser system for prevention and treatment of dental diseases: new methods and results
NASA Astrophysics Data System (ADS)
Fedyai, S. G.; Prochonchukov, Alexander A.; Zhizhina, Nina A.; Metelnikov, Michael A.
1995-05-01
We report results of clinical application of the new computer-laser system. The system includes hardware and software means, which are applied for new efficient methods of prevention and treatment of main dental diseases. The hardware includes a laser physiotherapeutic device (LPD) `Optodan' and a fiberoptic laser delivery system with special endodontic rigging. The semiconductor AG-AL-AG laser diode with wavelengths in the spectral range of 850 - 950 nm (produced by Scientific-Industrial Concern `Reflector') is used as a basic unit. The LPD `Optodan' and methods of treatment are covered by Russian patent No 2014107 and certified by the Russian Ministry of Health. The automated computer system allows us to examine patients quickly and to input differential diagnosis, to determine indications (and contraindications), parameters and regimen of laser therapy, to control treatment efficacy (for carious -- through clinical indexes of enamel solubles, velocity of demineralization and other tests; for periodontal diseases trough complex of the periodontal indexes with automated registry and calculation). We present last results of application of the new technique and methods in treatment of dental diseases in Russian clinics.
Chen, Jie-Fu; Zhu, Yazhen; Lu, Yi-Tsung; Hodara, Elisabeth; Hou, Shuang; Agopian, Vatche G.; Tomlinson, James S.; Posadas, Edwin M.; Tseng, Hsian-Rong
2016-01-01
Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma. PMID:27375790
Applicability of randomized trials in radiation oncology to standard clinical practice.
Apisarnthanarax, Smith; Swisher-McClure, Samuel; Chiu, Wing K; Kimple, Randall J; Harris, Stephen L; Morris, David E; Tepper, Joel E
2013-08-15
Randomized controlled trials (RCTs) are commonly used to inform clinical practice; however, it is unclear how generalizable RCT data are to patients in routine clinical practice. The authors of this report assessed the availability and applicability of randomized evidence guiding medical decisions in a cohort of patients who were evaluated for consideration of definitive management in a radiation oncology clinic. The medical records of consecutive, new patient consultations between January and March 2007 were reviewed. Patient medical decisions were classified as those with (Group 1) or without (Group 2) available, relevant level I evidence (phase 3 RCT) supporting recommended treatments. Group 1 medical decisions were further divided into 3 groups based on the extent of fulfilling eligibility criteria for each RCT: Group 1A included decisions that fulfilled all eligibility criteria; Group 1B, decisions that did not fulfill at least 1 minor eligibility criteria; or Group 1C, decisions that did not fulfill at least 1 major eligibility criteria. Patient and clinical characteristics were tested for correlations with the availability of evidence. Of the 393 evaluable patients, malignancies of the breast (30%), head and neck (18%), and genitourinary system (14%) were the most common presenting primary disease sites. Forty-seven percent of all medical decisions (n = 451) were made without available (36%) or applicable (11%) randomized evidence to inform clinical decision making. Primary tumor diagnosis was significantly associated with the availability of evidence (P < .0001). A significant proportion of medical decisions in an academic radiation oncology clinic were made without available or applicable level I evidence, underscoring the limitations of relying solely on RCTs for the development of evidence-based health care. Copyright © 2013 American Cancer Society.
MNE Scan: Software for real-time processing of electrophysiological data.
Esch, Lorenz; Sun, Limin; Klüber, Viktor; Lew, Seok; Baumgarten, Daniel; Grant, P Ellen; Okada, Yoshio; Haueisen, Jens; Hämäläinen, Matti S; Dinh, Christoph
2018-06-01
Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
The clinical applications of genome editing in HIV.
Wang, Cathy X; Cannon, Paula M
2016-05-26
HIV/AIDS has long been at the forefront of the development of gene- and cell-based therapies. Although conventional gene therapy approaches typically involve the addition of anti-HIV genes to cells using semirandomly integrating viral vectors, newer genome editing technologies based on engineered nucleases are now allowing more precise genetic manipulations. The possible outcomes of genome editing include gene disruption, which has been most notably applied to the CCR5 coreceptor gene, or the introduction of small mutations or larger whole gene cassette insertions at a targeted locus. Disruption of CCR5 using zinc finger nucleases was the first-in-human application of genome editing and remains the most clinically advanced platform, with 7 completed or ongoing clinical trials in T cells and hematopoietic stem/progenitor cells (HSPCs). Here we review the laboratory and clinical findings of CCR5 editing in T cells and HSPCs for HIV therapy and summarize other promising genome editing approaches for future clinical development. In particular, recent advances in the delivery of genome editing reagents and the demonstration of highly efficient homology-directed editing in both T cells and HSPCs are expected to spur the development of even more sophisticated applications of this technology for HIV therapy. © 2016 by The American Society of Hematology.
Zhang, Wei; Chen, Longkun; Chen, Jialin; Wang, Lingshuang; Gui, Xuexian; Ran, Jisheng; Xu, Guowei; Zhao, Hongshi; Zeng, Mengfeng; Ji, Junfeng; Qian, Li; Zhou, Jianda; Ouyang, Hongwei; Zou, Xiaohui
2017-05-01
Due to its excellent biological and mechanical properties, silk fibroin has been intensively explored for tissue engineering and regenerative medicine applications. However, lack of translational evidence has hampered its clinical application for tissue repair. Here a silk fibroin film is developed and its translational potential is investigated for skin repair by performing comprehensive preclinical and clinical studies to fully evaluate its safety and effectiveness. The silk fibroin film fabricated using all green chemistry approaches demonstrates remarkable characteristics, including transmittance, fluid handling capacity, moisture vapor permeability, waterproofness, bacterial barrier properties, and biocompatibility. In vivo rabbit full-thickness skin defect study shows that the silk fibroin film effectively reduces the average wound healing time with better skin regeneration compared with the commercial wound dressings. Subsequent assessment in porcine model confirms its long-term safety and effectiveness for full-thickness skin defects. Finally, a randomized single-blind parallel controlled clinical trial with 71 patients shows that the silk fibroin film significantly reduces the time to wound healing and incidence of adverse events compared to commercial dressing. Therefore, the study provides systematic preclinical and clinical evidence that the silk fibroin film promotes wound healing thereby establishing a foundation towards its application for skin repair and regeneration in the clinic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Features of ciguatera fish poisoning cases in Hong Kong 2004-2007.
Wong, Chun-Kwan; Hung, Patricia; Lee, Kellie L H; Mok, Tina; Chung, Thomas; Kam, Kai-Man
2008-12-01
To review the clinical features and laboratory investigations of ciguatera patients in Hong Kong between 2004 and 2007 in order to show the timely sampling of implicated fish from ciguatera victims and application of validated mouse bioassay for confirming suspected clinical cases of ciguatera. Diagnosis of the ciguatera victims was based on history of coral fish consumption and clinical presentations stated in official guidelines for clinical diagnosis of ciguatera fish poisoning in Hong Kong. Food remnants of coral fish samples were collected swiftly from ciguatera victims between 2004 and 2007 for ciguatoxins (CTXs) analysis. Major clinical symptoms in ciguatera patients included gastrointestinal and neurological effects including limb numbness and diarrhoea, which developed at 0.5 to 15 hours after consumption of fish. In most cases, neurological symptoms were more common than gastrointestinal symptoms. A broad range of attack rate (10%-100%) was observed in each ciguatera outbreak. Validated mouse bioassay on ether extracts of the food remnant samples confirmed that all were CTXs-positive (<0.5 - 4.3 MU/20 mg ether extract) and directly linked to the corresponding ciguatera cases. Consistency between clinical and laboratory analysis for ciguatera poisoning illustrates the application of laboratory mouse bioassay in a timely fashion for confirming ciguatera poisoning cases and implementing effective public health measures. With further improvement in laboratory techniques, features of ciguatera fish poisoning cases can be better defined. Further studies are needed to determine the risk of each class of CTXs (Pacific-, Indian- and Caribbean-CTXs) in Hong Kong.
Abbasalizadeh, Saeed; Baharvand, Hossein
2013-12-01
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
A Scoping Review of Health Game Research: Past, Present, and Future
Lu, Amy Shirong; Gharghabi, Fardad; Coleman, Whitney
2012-01-01
Abstract Health game research has flourished over the last decade. The number of peer-reviewed scientific publications has surged as the clinical application of health games has diversified. In response to this growth, several past literature reviews have assessed the effectiveness of health games in specific clinical subdomains. The past literature reviews, however, have not provided a general scope of health games independent of clinical context. The present systematic review identified 149 publications. All sources were published before 2011 in a peer-reviewed venue. To be included in this review, publications were required (1) to be an original research, (2) to focus on health, (3) to utilize a sound research design, (4) to report quantitative health outcomes, and (5) to target healthcare receivers. Initial findings showed certain trends in health game publications: Focus on younger male demographics, relatively low number of study participants, increased number of controlled trials, short duration of intervention periods, short duration and frequency of user–game interaction, dominance of exercise and rehab games, lack of underlying theoretical frameworks, and concentration on clinical contexts such as physical activity and nutrition. The review concludes that future research should (1) widen the demographics to include females and elderly, (2) increase the number of participants in controlled trials, (3) lengthen both the intervention period and user–game interaction duration, and (4) expand the application of health games in new clinical contexts. PMID:24416638
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
Engineering Stem Cells for Biomedical Applications
Yin, Perry T.; Han, Edward
2018-01-01
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134
Engineered Hydrogels for Local and Sustained Delivery of RNA-Interference Therapies.
Wang, Leo L; Burdick, Jason A
2017-01-01
It has been nearly two decades since RNA-interference (RNAi) was first reported. While there are no approved clinical uses, several phase II and III clinical trials suggest the great promise of RNAi therapeutics. One challenge for RNAi therapies is the controlled localization and sustained presentation to target tissues, to both overcome systemic toxicity concerns and to enhance in vivo efficacy. One approach that is emerging to address these limitations is the entrapment of RNAi molecules within hydrogels for local and sustained release. In these systems, nucleic acids are either delivered as siRNA conjugates or within nanoparticles. A plethora of hydrogels has been implemented using these approaches, including both traditional hydrogels that have already been developed for other applications and new hydrogels developed specifically for RNAi delivery. These hydrogels have been applied to various applications in vivo, including cancer, bone regeneration, inflammation and cardiac repair. This review will examine the design and implementation of such hydrogel RNAi systems and will cover the most recent applications of these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Biomaterials Used in Medical 3D Printing Techniques
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-01-01
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail. PMID:29414913
Implications of the Java language on computer-based patient records.
Pollard, D; Kucharz, E; Hammond, W E
1996-01-01
The growth of the utilization of the World Wide Web (WWW) as a medium for the delivery of computer-based patient records (CBPR) has created a new paradigm in which clinical information may be delivered. Until recently the authoring tools and environment for application development on the WWW have been limited to Hyper Text Markup Language (HTML) utilizing common gateway interface scripts. While, at times, this provides an effective medium for the delivery of CBPR, it is a less than optimal solution. The server-centric dynamics and low levels of interactivity do not provide for a robust application which is required in a clinical environment. The emergence of Sun Microsystems' Java language is a solution to the problem. In this paper we examine the Java language and its implications to the CBPR. A quantitative and qualitative assessment was performed. The Java environment is compared to HTML and Telnet CBPR environments. Qualitative comparisons include level of interactivity, server load, client load, ease of use, and application capabilities. Quantitative comparisons include data transfer time delays. The Java language has demonstrated promise for delivering CBPRs.
Cardiac radiology: centenary review.
de Roos, Albert; Higgins, Charles B
2014-11-01
During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.
Ameredes, Bill T
2011-04-01
Biomarkers ranging from simple to sophisticated have been used by man for many years of his existence. The main use for biomarkers over that time has been to assess relative states health and well-being, including the presence of functional limitations that presage debilitation and even death. In recent years, there has been intense interest in the development of non-invasive biomarkers to accurately predict disease state and progression, as well as potential drug therapy to assist in early mitigation of morbidity and possibly, forestall premature mortality. The development of biomarkers of airway status has followed a similar pattern, and in recent years, several biomarkers have followed the progression from basic and pre-clinical development, to clinical/translational application, and finally to potential clinical therapeutic application. Inherent in this progression is the refinement of technology that has allowed measurement of these biomarkers in a fast, convenient, and reliable fashion, such that they can be obtainable within a clinical practice setting, to allow the physician to make treatment decisions for diseases such as asthma and COPD. While the clinical therapeutic application of airway biomarkers such as exhaled nitric oxide and β(2)-adrenoreceptor Arg-16 polymorphism are still in their infancy, they have followed this common pathway of development, and now will require some years of application to demonstrate their true utility as predictive biomarkers of airway status and treatment response. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Application and outlook of three-dimensional printing in prosthetic dentistry].
Sun, Y C; Li, R; Zhou, Y S; Wang, Y
2017-06-09
At present, three-dimensional (3D) printing has been applied in many aspects in the field of prosthodontics, such as dental models, wax patterns, guide plates, dental restoration and customized implants. The common forming principles include light curing, sintering and melting-condensation, the materials include pure wax, resin, metal and ceramics. However, the printing precision and the strength of multi-material integrated forming, remains to be improved. In addition, as a technology by which the internal structure of a material can be customized manufacturing, further advantage of 3D printing used in the manufacture of dental restoration lies in the customization functional bionic micro-structures, but the related research is still in its infancy. The review briefly summarizes the commonly used 3D printing crafts in prosthetic dentistry, and details clinical applications and evaluations, provides references for clinical decision and further research.
The clinical application of anterolateral thigh flap.
Lee, Yao-Chou; Chiu, Haw-Yen; Shieh, Shyh-Jou
2011-01-01
The anterolateral thigh flap can provide a large skin paddle nourished by a long and large-caliber pedicle and can be harvested by two-team work. Most importantly, the donor-site morbidity is minimal. However, the anatomic variations decreased its popularity. By adapting free-style flap concepts, such as preoperative mapping of the perforators and being familiar with retrograde perforator dissection, this disadvantage had been overcome gradually. Furthermore, several modifications widen its clinical applications: the fascia lata can be included for sling or tendon reconstruction, the bulkiness could be created by including vastus lateralis muscle or deepithelization of skin flap, the pliability could be increased by suprafascial dissection or primary thinning, the pedicle length could be lengthening by proximally eccentric placement of the perforator, and so forth. Combined with these technical and conceptual advancements, the anterolateral thigh flap has become the workhorse flap for soft-tissue reconstructions from head to toe.
The Clinical Application of Anterolateral Thigh Flap
Lee, Yao-Chou; Chiu, Haw-Yen; Shieh, Shyh-Jou
2011-01-01
The anterolateral thigh flap can provide a large skin paddle nourished by a long and large-caliber pedicle and can be harvested by two-team work. Most importantly, the donor-site morbidity is minimal. However, the anatomic variations decreased its popularity. By adapting free-style flap concepts, such as preoperative mapping of the perforators and being familiar with retrograde perforator dissection, this disadvantage had been overcome gradually. Furthermore, several modifications widen its clinical applications: the fascia lata can be included for sling or tendon reconstruction, the bulkiness could be created by including vastus lateralis muscle or deepithelization of skin flap, the pliability could be increased by suprafascial dissection or primary thinning, the pedicle length could be lengthening by proximally eccentric placement of the perforator, and so forth. Combined with these technical and conceptual advancements, the anterolateral thigh flap has become the workhorse flap for soft-tissue reconstructions from head to toe. PMID:22567234
Compact, Automated, Frequency-Agile Microspectrofluorimeter
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.
1995-01-01
Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.
A Practical Approach to Governance and Optimization of Structured Data Elements.
Collins, Sarah A; Gesner, Emily; Morgan, Steven; Mar, Perry; Maviglia, Saverio; Colburn, Doreen; Tierney, Diana; Rocha, Roberto
2015-01-01
Definition and configuration of clinical content in an enterprise-wide electronic health record (EHR) implementation is highly complex. Sharing of data definitions across applications within an EHR implementation project may be constrained by practical limitations, including time, tools, and expertise. However, maintaining rigor in an approach to data governance is important for sustainability and consistency. With this understanding, we have defined a practical approach for governance of structured data elements to optimize data definitions given limited resources. This approach includes a 10 step process: 1) identification of clinical topics, 2) creation of draft reference models for clinical topics, 3) scoring of downstream data needs for clinical topics, 4) prioritization of clinical topics, 5) validation of reference models for clinical topics, and 6) calculation of gap analyses of EHR compared against reference model, 7) communication of validated reference models across project members, 8) requested revisions to EHR based on gap analysis, 9) evaluation of usage of reference models across project, and 10) Monitoring for new evidence requiring revisions to reference model.
Cooper, Stephen A; Desjardins, Paul J; Turk, Dennis C; Dworkin, Robert H; Katz, Nathaniel P; Kehlet, Henrik; Ballantyne, Jane C; Burke, Laurie B; Carragee, Eugene; Cowan, Penney; Croll, Scott; Dionne, Raymond A; Farrar, John T; Gilron, Ian; Gordon, Debra B; Iyengar, Smriti; Jay, Gary W; Kalso, Eija A; Kerns, Robert D; McDermott, Michael P; Raja, Srinivasa N; Rappaport, Bob A; Rauschkolb, Christine; Royal, Mike A; Segerdahl, Märta; Stauffer, Joseph W; Todd, Knox H; Vanhove, Geertrui F; Wallace, Mark S; West, Christine; White, Richard E; Wu, Christopher
2016-02-01
This article summarizes the results of a meeting convened by the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) on key considerations and best practices governing the design of acute pain clinical trials. We discuss the role of early phase clinical trials, including pharmacokinetic-pharmacodynamic (PK-PD) trials, and the value of including both placebo and active standards of comparison in acute pain trials. This article focuses on single-dose and short-duration trials with emphasis on the perioperative and study design factors that influence assay sensitivity. Recommendations are presented on assessment measures, study designs, and operational factors. Although most of the methodological advances have come from studies of postoperative pain after dental impaction, bunionectomy, and other surgeries, the design considerations discussed are applicable to many other acute pain studies conducted in different settings.
Partial Treatment Requests and Underlying Motives of Applicants for Gender Affirming Interventions.
Beek, Titia F; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T; Steensma, Thomas D
2015-11-01
Historically, only individuals with a cross-gender identity who wanted to receive a full treatment, were eligible for "complete sex reassignment" consisting of feminizing/masculinizing hormone treatment and several surgical interventions including genital surgery (full treatment). Currently, it is unclear what motives underlie a request for hormones only or surgery only or a combination of hormones and surgery (e.g., a mastectomy), but no genital surgery (partial treatment). The aims of this study were (i) to describe treatment requests of applicants at a specialized gender identity clinic in the Netherlands; and (ii) to explore the motives underlying a partial treatment request, including the role of (non-binary) gender identity. Information was collected on all 386 adults who applied for treatment at the Center of Expertise on Gender Dysphoria of the VU University Medical Center in Amsterdam, the Netherlands, in the year 2013. Treatment requests were available for 360 individuals: 233 natal men (64.7%) and 127 natal women (35.3%). Treatment requests were systematically collected during assessment. Individuals were classified as either desiring a full or partial treatment. The motives behind a partial treatment request were collected and categorized as well. The majority of applicants at our gender identity clinic requested full treatment. Among those who requested partial treatment, the most reported underlying motive was surgical risks/outcomes. Only a small number of applicants requested partial treatment to bring their body into alignment with their non-binary gender identity. It becomes clear that partial treatment is requested by a substantial number of applicants. This emphasizes the need for gender identity clinics to provide information about the medical possibilities and limitations, and careful introduction and evaluation of non-standard treatment options. © 2015 International Society for Sexual Medicine.
Yamamoto, Keiichi; Ota, Keiko; Akiya, Ippei; Shintani, Ayumi
2017-06-01
The Clinical Data Interchange Standards Consortium (CDISC) Study Data Tabulation Model (SDTM) can be used for new drug application studies as well as secondarily for creating a clinical research data warehouse to leverage clinical research study data across studies conducted within the same disease area. However, currently not all clinical research uses Clinical Data Acquisition Standards Harmonization (CDASH) beginning in the set-up phase of the study. Once already initiated, clinical studies that have not utilized CDASH are difficult to map in the SDTM format. In addition, most electronic data capture (EDC) systems are not equipped to export data in SDTM format; therefore, in many cases, statistical software is used to generate SDTM datasets from accumulated clinical data. In order to facilitate efficient secondary use of accumulated clinical research data using SDTM, it is necessary to develop a new tool to enable mapping of information for SDTM, even during or after the clinical research. REDCap is an EDC system developed by Vanderbilt University and is used globally by over 2100 institutions across 108 countries. In this study, we developed a simulated clinical trial to evaluate a tool called REDCap2SDTM that maps information in the Field Annotation of REDCap to SDTM and executes data conversion, including when data must be pivoted to accommodate the SDTM format, dynamically, by parsing the mapping information using R. We confirmed that generating SDTM data and the define.xml file from REDCap using REDCap2SDTM was possible. Conventionally, generation of SDTM data and the define.xml file from EDC systems requires the creation of individual programs for each clinical study. However, our proposed method can be used to generate this data and file dynamically without programming because it only involves entering the mapping information into the Field Annotation, and additional data into specific files. Our proposed method is adaptable not only to new drug application studies but also to all types of research, including observational and public health studies. Our method is also adaptable to clinical data collected with CDASH at the beginning of a study in non-standard format. We believe that this tool will reduce the workload of new drug application studies and will support data sharing and reuse of clinical research data in academia. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song
2016-01-01
The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabat, C; Cline, K; Li, Y
Purpose: With increasing numbers of cancer patients being diagnosed and the complexity of radiotherapy treatments rising it’s paramount that patient plan development continues to stay fluid within the clinic. In order to maintain a high standard of care and clinical efficiency the establishment of a tracking system for patient plan development allows healthcare providers to view real time plan progression and drive clinical workflow. In addition, it provides statistical datasets which can further identify inefficiencies within the clinic. Methods: An application was developed utilizing Microsoft’s ODBC SQL database engine to track patient plan status throughout the treatment planning process whilemore » also managing key factors pertaining to the patient’s treatment. Pertinent information is accessible to staff in many locations, including tracking monitors within dosimetry, the clinic network for both computers and handheld devices, and through email notifications. Plans are initiated with a CT and continually tracked through planning stages until final approval by staff. Patient’s status is dynamically updated by the physicians, dosimetrists, and medical physicists based on the stage of the patient’s plan. Results: Our application has been running over a six month period with all patients being processed through the system. Modifications have been made to allow for new features to be implemented along with additional tracking parameters. Based on in-house feedback, the application has been supportive in streamlining patient plans through the treatment planning process and data has been accumulating to further improve procedures within the clinic. Conclusion: Over time the clinic will continue to track data with this application. As data accumulates the clinic will be able to highlight inefficiencies within the workflow and adapt accordingly. We will add in new features to help support the treatment planning process in the future.« less
[Evidence-based medicine and 'The Cochrane Collaboration'].
Kawamura, T; Tamakoshi, A; Wakai, K; Ohno, Y
1999-06-01
In Evidence-Based Medicine (EBM), a clinical decision is based neither on pathophysiological theories nor personal experience but on the results derived from scientifically designed clinical epidemiological studies (i.e., evidence). EBM is used in various clinical applications, such as therapy, diagnosis, and prognosis prediction. The process includes (1) asking a clinical question consisting of the three elements of "patient", "exposure", and "outcome"; (2) searching for the best evidence using MEDLINE or Cochrane Library; (3) appraising critically the validity of the method and the magnitude and probability of the result; and finally (4) applying the evidence of the patient. In actual clinical practice, clinical expertise and patient preferences should be as much regarded as research evidence. 'The Cochrane Collaboration' supplies systematic reviews of clinical trials carried out all over the world to its consumers. Its fruit, 'The Cochrane Library (CD-ROM),' is a highly valuable resource. 'The Cochrane Collaboration' serves as the infrastructure for EBM. EBM, which was originally developed for the individual patient care, can also be applicable to community- or workplace-healthcare and policy making by governments. Thus, EBM is both a philosophy and a method to provide people with the most appropriate medical practice.
Platelet Immunology in China: Research and Clinical Applications.
Wu, Guoguang; Zhou, Yan; Li, Lilan; Zhong, Zhoulin; Li, Hengchong; Li, Haiyan; Yu, Mei; Shen, Weidong; Ni, Heyu
2017-04-01
Immunization against human platelet alloantigens (HPAs) is associated with a number of clinical complications. The detection and identification of clinically relevant platelet antibodies are important for the diagnosis and management of patients affected with immune-mediated thrombocytopenias. Human platelet alloantigen frequencies and the characteristics of antiplatelet antibodies vary widely between ethnic groups. Since 2008, the importance of platelet immunology in the field of transfusion medicine has gained greater recognition by clinical laboratories in China. Laboratories in China have established and improved methods for platelet antibody detection and HPA genotyping techniques, which are used for the diagnosis of alloimmune platelet disorders in clinic and research environments. Research has revealed the frequencies of HPA alleles in different Chinese ethnic groups and compared the differences in HPA gene frequencies between the Chinese Han and other ethnic groups of the world. Production of anti-CD36 isoantibodies is an important risk factor for immune-mediated thrombocytopenia in the Chinese population. Advances in research and clinical application of platelet immunology have significantly improved the clinical diagnosis, treatment including transfusion support, and prevention of alloimmune platelet disorders in the Chinese population. Copyright © 2017. Published by Elsevier Inc.
An update on the clinical use of drug-coated balloons in percutaneous coronary interventions.
Cheng, Yanping; Leon, Martin B; Granada, Juan F
2016-06-01
Drug-coated balloons (DCB) promise to deliver anti-proliferative drugs and prevent restenosis leaving nothing behind. Although, randomized clinical trials have demonstrated their efficacy for the treatment of in-stent restenosis, clinical evidence supporting their use in other coronary applications is still lacking. This review summarizes the development status of clinically available DCB technologies and provides an update on the current data for their coronary use. Current generation DCB prevent restenosis by delivering paclitaxel particles on the surface of the vessel wall. Although clinically available technologies share a common mechanism of action, important differences in pharmacokinetic behavior and safety profiles do exist. Future technological improvements include the development of coatings displaying: high transfer efficiency; low particle embolization potential; and alternative drug formulations. Optimized balloon-based delivery systems and drug encapsulation technologies also promise to improve the technical limitations of current generation DCB. Although proving clinical superiority against DES may prove to be difficult in mainstream applications (i.e., de novo), new generation DCB technologies have the potential to achieve a strong position in the interventional field in clinical settings in which the efficacy of DES use is not proven or justified (i.e., bifurcations).
ERIC Educational Resources Information Center
Heelan, Ann; Halligan, Phil; Quirke, Mary
2015-01-01
In 2013 Ireland's Association for Higher Education, Access and Disability (AHEAD), in partnership with the School of Nursing University College Dublin (UCD), hosted a summer school for professionals working in the Health Sciences sector who have responsibility for including students with disabilities in the health professions, including clinical…
Rater reliability and construct validity of a mobile application for posture analysis
Szucs, Kimberly A.; Brown, Elena V. Donoso
2018-01-01
[Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings. PMID:29410561
Rater reliability and construct validity of a mobile application for posture analysis.
Szucs, Kimberly A; Brown, Elena V Donoso
2018-01-01
[Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings.
Yttrium-90 -- current status, expected availability and applications of a high beta energy emitter.
Montaña, R Leyva; González, I Hernández; Ramirez, A Alberti; Garaboldi, L; Chinol, M
2012-07-01
Yttrium-90 ((90)Y, T(1/2) 64.14 h) is a key example of a high beta energy-emitting radionuclide which is available from the strontium-90 ((90)Sr)/(90)Y radionuclide generator system. Clinical uses of (90)Y-labeled radiopharmaceutical agents have been pursued for many years and many applications have proven to be clinical effective. These most notably include the application of 90Y-labeled antibodies for a variety of applications such as for effective treatment of non-Hodgkin's lymphoma. One of the major advantages for use of (90)Y is ready availability from the very long-lived (90)Sr parent (T(1/2) 28.78 y). Because of the importance of maintaining generator performance and minimizing parent breakthrough, this paper describes development, use and quality control of both high capacity cation adsorption-type and electrochemical generator systems. In addition, the preparation and targeting to tumors in mice of DOTA-conjugated Nimotuzamab (h-R3) antibody which recognizes the external domain of the EPFR antibody radiolabeled with (90)Y obtained from the electrochemical generator is also described. As a key example for clinical applications of (90)Y, the use of (90)Y-labeled biotin for intra-operative pre-targeting for radionuclide therapy (IART®) of breast cancer is also described.
Federating heterogeneous datasets to enhance data sharing and experiment reproducibility
NASA Astrophysics Data System (ADS)
Prieto, Juan C.; Paniagua, Beatriz; Yatabe, Marilia S.; Ruellas, Antonio C. O.; Fattori, Liana; Muniz, Luciana; Styner, Martin; Cevidanes, Lucia
2017-03-01
Recent studies have demonstrated the difficulties to replicate scientific findings and/or experiments published in past.1 The effects seen in the replicated experiments were smaller than previously reported. Some of the explanations for these findings include the complexity of the experimental design and the pressure on researches to report positive findings. The International Committee of Medical Journal Editors (ICMJE) suggests that every study considered for publication must submit a plan to share the de-identified patient data no later than 6 months after publication. There is a growing demand to enhance the management of clinical data, facilitate data sharing across institutions and also to keep track of the data from previous experiments. The ultimate goal is to assure the reproducibility of experiments in the future. This paper describes Shiny-tooth, a web based application created to improve clinical data acquisition during the clinical trial; data federation of such data as well as morphological data derived from medical images; Currently, this application is being used to store clinical data from an osteoarthritis (OA) study. This work is submitted to the SPIE Biomedical Applications in Molecular, Structural, and Functional Imaging conference.
NASA Astrophysics Data System (ADS)
Marcus, Stuart L.; Sobel, Russel S.; Golub, Allyn L.; Carroll, Ronald L.; Lundahl, Scott L.; Shulman, D. Geoffrey
1996-04-01
Exogenous provision of ALA to many tissues results in the accumulation of sufficient quantities of the endogenous photosensitizer protoporphyrin IX, (PpIX), to produce a photodynamic effect. Therefore, ALA may be considered the only current PDT agent in clinical development which is a biochemical precursor of a photosensitizer. Topical ALA application, followed by exposure to activating light (ALA PDT), has been reported effective for the treatment of a variety of dermatologic diseases including cutaneous T-cell lymphoma, superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses, and is also being examined for treatment of acne and hirsutism. PpIX induced by ALA application also may serve as a fluorescence detection marker for photodiagnosis (PD) of malignant and pre- malignant conditions of the urinary bladder and other organs. Local internal application of ALA has also been used for selective endometrial ablation in animal model systems and is beginning to be examined in human clinical studies. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer, various gastrointestinal cancers, and the condition known as Barrett's esophagus. This brief paper reviews the current clinical and development status of ALA PDT.
Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications
Al-Niaimi, Firas
2017-01-01
OBJECTIVE: This review article details the main mechanisms of action and clinical applications of topical vitamin C on the skin, including its antioxidative, photoprotective, antiaging, and antipigmentary effects. DESIGN: A PubMed search for the relevant articles on vitamin C and the skin was conducted using the following key words: “vitamin C,” “ascorbic acid,” “ascorbyl-6-palmitate,”and “magnesium ascorbyl phosphate.” RESULTS: As one of the most powerful antioxidants in the skin, vitamin C has been shown to protect against photoaging, ultraviolet-induced immunosuppression, and photocarcinogenesis. It also has an antiaging effect by increasing collagen synthesis, stabilizing collagen fibers, and decreasing collagen degradation. It decreases melanin formation, thereby reducing pigmentation. Vitamin C is the primary replenisher of vitamin E and works synergistically with vitamin E in the protection against oxidative damage. CONCLUSION: Topical vitamin C has a wide range of clinical applications, from antiaging and antipigmentary to photoprotective. Currently, clinical studies on the efficacy of topical formulations of vitamin C remain limited, and the challenge lies in finding the most stable and permeable formulation in achieving the optimal results. PMID:29104718
WE-D-BRB-04: Clinical Applications of CBCT for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, B.
The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less
Transforming community services through the use of a multidimensional model of clinical leadership.
Leigh, Jacqueline Anne; Wild, Jill; Hynes, Celia; Wells, Stuart; Kurien, Anish; Rutherford, June; Rosen, Lyn; Ashcroft, Tim; Hartley, Victoria
2015-03-01
To evaluate the application of a Multidimensional Model of Clinical Leadership on the community healthcare leader and on transforming community services. Healthcare policy advocates clinical leadership as the vehicle to transform community and healthcare services. Few studies have identified the key components of an effective clinical leadership development model. The first two stages of Kirkpatrick's (Personnel Administrator 28, 1983, 62) Four/Five Levels of Evaluation were used to evaluate the application of the multidimensional model of clinical leadership. Eighty community healthcare leaders were exposed to this multidimensional clinical leadership development model through attendance of a community clinical leadership development programme. Twenty five leaders participated in focus group interviews. Data from the interviews were analysed utilising thematic content analysis. Three key themes emerged that influenced the development of best practice principles for clinical leadership development: 1. Personal leadership development 2. Organisational leadership 3. The importance of multiprofessional action learning/reflective groups Emergent best practice principles for clinical leadership development include adopting a multidimensional development approach. This approach encompasses: preparing the individual leader in the role and seeking organisational leadership development that promotes the vision and corporate values of the organisation and delivers on service improvement and innovation. Moreover, application of the Multidimensional Model of Clinical Leadership could offer the best platform for embedding the Six C's of Nursing (Compassion in Practice - Our Culture of Compassionate Care, Department of Health, Crown Copyright, 2012) within the culture of the healthcare organisation: care, compassion, courage, commitment, communication, and competency. This is achieved in part through the application of emotional intelligence to understand self and to develop the personal integrity of the healthcare leader and through supporting a culture of lifelong leadership learning. Embedding the best practice principles of clinical leadership development within a multidimensional model of clinical leadership provides a promising approach to: equipping the healthcare leader with those transferable leadership skills required to help them embark on a journey of lifelong leadership learning; and producing the healthcare leader who is caring, compassionate and can confidently and effectively transform community services. © 2014 John Wiley & Sons Ltd.
Alexander, Sarah; Greenberg, Mark; Malkin, David; Portwine, Carol; Johnston, Donna; Silva, Mariana; Zelcer, Shayna; Sonshine, Samantha; Manzo, Janet; Bennett, Carla; Brodeur-Robb, Kathy; Deveault, Catherine; Ramachandran, Nivetha; Gibson, Paul
2018-04-01
Opportunities for participation in clinical trials are a core component of the care of children with cancer. In Ontario, many pediatric patients live long distances from their cancer center. This paper describes the work that was done in order to allow patients participating in Children's Oncology Group trials to receive care, including research protocol related care, jointly between the tertiary pediatric cancer center and the closer-to-home satellite center. The system is a pragmatic risk-based model, supporting excellence in care while ensuring good conduct of the research in compliance with applicable regulations and guidelines, including ethics oversight. © 2017 Wiley Periodicals, Inc.
Yataba, Ikuko; Otsuka, Noboru; Matsushita, Isao; Matsumoto, Hideo; Hoshino, Yuichi
2016-08-01
The newly developed S-flurbiprofen plaster (SFPP) is a tape-type patch that shows innovative percutaneous absorption. This study was designed to evaluate the safety of a long-term 52-week SFPP application to osteoarthritis (OA) patients. This was a multi-center, open-label, uncontrolled prospective study that included 201 OA patients. SFPP at 40 mg/day was applied to the site of pain in 101 patients and at 80 mg/day (2 patches) in 100 patients at a total of 301 sites for 52 weeks. The affected sites assessed included the knee (192), lumbar spine (66), cervical spine (26), and others (17). Drug safety was evaluated by medical examination, laboratory tests, and examination of vital signs. Efficacy was evaluated by the patient's and clinician's global assessments and clinical symptoms. Most patients (80.1 %) completed the 52-week SFPP application. The majority of drug-related adverse events (AEs) included mild dermatitis at the application sites and occurred in 46.8 % of the sites. No photosensitive dermatitis was observed. Systemic AEs occurred in 9.0 % of the patients; a serious AE (gastric ulcer hemorrhage) occurred in one patient. No clinically significant changes in the laboratory tests and vital signs were observed. The efficacy evaluation showed an improvement from 2 weeks after the SFPP application, which continued during the 52 weeks' treatment. No apparent safety concerns were observed, even during the long-term SFPP application. Therefore, SFPP could be an additional pharmacotherapy in OA treatment.
Brown, Gabrielle E; Botto, Nina; Butler, Daniel C; Murase, Jenny E
2015-01-01
The repeated open application test (ROAT) provides useful information regarding allergens in suspected cases of allergic contact dermatitis; however, standardized methodology has not been established. The aim of this study was to assess how ROAT is used in clinical and research settings. We distributed a survey regarding ROAT practice to the American Contact Dermatitis Society and conducted a literature review of ROAT utilization in research. A total of 67 American Contact Dermatitis Society members participated in the survey. Respondents most frequently recommend application of leave-on products twice daily (46.0%) and rinse-off products once daily (43.5%). The most commonly used anatomical sites include the forearm (38.7%) and antecubital fossa (32.3%). Most respondents continue ROAT for 1 (49.2%) or 2 weeks (31.7%). Literature review of 32 studies (26 leave-on, 6 rinse-off) revealed that application frequency is most common at twice daily for both leave-on (96.2%) and rinse-off (50.0%) products. The most common anatomical site is the forearm (62.5%), with an overall study duration of 3 to 4 weeks (65.6%). When comparing ROAT clinical and research practice, the majority trend was consistent for leave-on product application frequency and anatomical site, but not for rinse-off product application frequency, or overall duration. Further research is needed to determine best practice recommendations.
Baldwin, Austin S; Denman, Deanna C; Sala, Margarita; Marks, Emily G; Shay, L Aubree; Fuller, Sobha; Persaud, Donna; Lee, Simon Craddock; Skinner, Celette Sugg; Wiebe, Deborah J; Tiro, Jasmin A
2017-04-01
Self-persuasion is an effective behavior change strategy, but has not been translated for low-income, less educated, uninsured populations attending safety-net clinics or to promote human papillomavirus (HPV) vaccination. We developed a tablet-based application (in English and Spanish) to elicit parental self-persuasion for adolescent HPV vaccination and evaluated its feasibility in a safety-net population. Parents (N=45) of age-eligible adolescents used the self-persuasion application. Then, during cognitive interviews, staff gathered quantitative and qualitative feedback on the self-persuasion tasks including parental decision stage. The self-persuasion tasks were rated as easy to complete and helpful. We identified six question prompts rated as uniformly helpful, not difficult to answer, and generated non-redundant responses from participants. Among the 33 parents with unvaccinated adolescents, 27 (81.8%) reported deciding to get their adolescent vaccinated after completing the self-persuasion tasks. The self-persuasion application was feasible and resulted in a change in parents' decision stage. Future studies can now test the efficacy of the tablet-based application on HPV vaccination. The self-persuasion application facilitates verbalization of reasons for HPV vaccination in low literacy, safety-net settings. This self-administered application has the potential to be more easily incorporated into clinical practice than other patient education approaches. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2016-01-01
Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9–10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment. PMID:28560119
Artificial intelligence in hematology.
Zini, Gina
2005-10-01
Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.
Liquid biopsy genotyping in lung cancer: ready for clinical utility?
Huang, Wei-Lun; Chen, Yi-Lin; Yang, Szu-Chun; Ho, Chung-Liang; Wei, Fang; Wong, David T; Su, Wu-Chou; Lin, Chien-Chung
2017-03-14
Liquid biopsy is a blood test that detects evidence of cancer cells or tumor DNA in the circulation. Despite complicated collection methods and the requirement for technique-dependent platforms, it has generated substantial interest due, in part, to its potential to detect driver oncogenes such as epidermal growth factor receptor (EGFR) mutants in lung cancer. This technology is advancing rapidly and is being incorporated into numerous EGFR tyrosine kinase inhibitor (EGFR-TKI) development programs. It appears ready for integration into clinical care. Recent studies have demonstrated that biological fluids such as saliva and urine can also be used for detecting EGFR mutant DNA through application other user-friendly techniques. This review focuses on the clinical application of liquid biopsies to lung cancer genotyping, including EGFR and other targets of genotype-directed therapy and compares multiple platforms used for liquid biopsy.
[Molecular Biology for Surgical Treatment of Lung Cancer].
Suda, Kenichi; Mitsudomi, Tetsuya
2017-01-01
Progress in lung cancer research achieved during the last 10 years was summarized. These include identification of novel driver mutations and application of targeted therapies, resistance mechanisms to targeted therapies, and immunotherapy with immune checkpoint inhibitors. Molecular biology also affects the field of surgical treatment. Several molecular markers have been reported to predict benign/ malignant or stable/growing tumors, although far from clinical application. In perioperative period, there is a possibility of atrial natriuretic peptide to prevent cancer metastasis. As adjuvant settings, although biomarker-based cytotoxic therapies failed to show clinical efficacy, several trials are ongoing employing molecular targeted agents (EGFR-TKI or ALK-TKI) or immune checkpoint inhibitors. In clinical practice, mutational information is sometimes used to distinguish 2nd primary tumors from pulmonary metastases of previous cancers. Surgery also has important role for oligo-progressive disease during molecular targeted therapies.
Goddard, Katrina A.B.; Knaus, William A.; Whitlock, Evelyn; Lyman, Gary H.; Feigelson, Heather Spencer; Schully, Sheri D.; Ramsey, Scott; Tunis, Sean; Freedman, Andrew N.; Khoury, Muin J.; Veenstra, David L.
2013-01-01
Background The clinical utility is uncertain for many cancer genomic applications. Comparative effectiveness research (CER) can provide evidence to clarify this uncertainty. Objectives To identify approaches to help stakeholders make evidence-based decisions, and to describe potential challenges and opportunities using CER to produce evidence-based guidance. Methods We identified general CER approaches for genomic applications through literature review, the authors’ experiences, and lessons learned from a recent, seven-site CER initiative in cancer genomic medicine. Case studies illustrate the use of CER approaches. Results Evidence generation and synthesis approaches include comparative observational and randomized trials, patient reported outcomes, decision modeling, and economic analysis. We identified significant challenges to conducting CER in cancer genomics: the rapid pace of innovation, the lack of regulation, the limited evidence for clinical utility, and the beliefs that genomic tests could have personal utility without having clinical utility. Opportunities to capitalize on CER methods in cancer genomics include improvements in the conduct of evidence synthesis, stakeholder engagement, increasing the number of comparative studies, and developing approaches to inform clinical guidelines and research prioritization. Conclusions CER offers a variety of methodological approaches to address stakeholders’ needs. Innovative approaches are needed to ensure an effective translation of genomic discoveries. PMID:22516979
Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy
Yu, Mi Kyung; Park, Jinho; Jon, Sangyong
2012-01-01
Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217
Dual-Energy CT: New Horizon in Medical Imaging
Goo, Jin Mo
2017-01-01
Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151
Hunter, Gary W; Dweik, Raed A
2010-01-01
The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933
Knai, Cécile; Brusamento, Serena; Legido-Quigley, Helena; Saliba, Vanessa; Panteli, Dimitra; Turk, Eva; Car, Josip; McKee, Martin; Busse, Reinhard
2012-10-01
The use of evidence-based clinical guidelines is an essential component of chronic disease management. However, there is well-documented concern about variability in the quality of clinical guidelines, with evidence of persisting methodological shortcomings. The most widely accepted approach to assessing the quality of guidelines is the Appraisal of Guidelines for Research and Evaluation (AGREE) instrument. We have conducted a systematic review of the methodological quality (as assessed by AGREE) of clinical guidelines developed in Europe for the management of chronic diseases published since 2000. The systematic review was undertaken in accordance with the Cochrane methodology. The inclusion criteria were that studies should have appraised European clinical guidelines for certain selected chronic disorders using the AGREE instrument. We searched five databases (Cab Abstracts, EMBASE, MEDLINE, Trip and EPPI). Nine studies reported in 10 papers, analysing a total of 28 European guidelines from eight countries as well as pan-European, were included. There was considerable variation in the quality of clinical guidelines across the AGREE domains. The least well addressed domains were 'editorial independence' (with a mean domain score of 41%), 'applicability' (44%), 'stakeholder involvement' (55%), and 'rigour of development' (64%), while 'clarity of presentation' (80%) and 'scope and purpose' (84%) were less problematic. This review indicates that there is considerable scope for improvement in the methods used to develop clinical guidelines for the prevention, management and treatment of chronic diseases in Europe. Given the importance of decision support strategies such as clinical guidelines in chronic disease management, improvement measures should include the explicit and transparent involvement of key stakeholders (especially scientific experts, guideline users and methodological specialists) and consideration of the implications for guideline implementation and applicability early on in the process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
42 CFR 425.204 - Content of the application.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... implement these processes. (iii) Materials documenting the ACO's organization and management structure... structures, and job descriptions for senior administrative and clinical leaders including administrative and...
42 CFR 425.204 - Content of the application.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... implement these processes. (iii) Materials documenting the ACO's organization and management structure... structures, and job descriptions for senior administrative and clinical leaders including administrative and...
Clinical Assessment Applications of Ambulatory Biosensors
ERIC Educational Resources Information Center
Haynes, Stephen N.; Yoshioka, Dawn T.
2007-01-01
Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…
Documet, Jorge; Liu, Brent J; Documet, Luis; Huang, H K
2006-07-01
This paper describes a picture archiving and communication system (PACS) tool based on Web technology that remotely manages medical images between a PACS archive and remote destinations. Successfully implemented in a clinical environment and also demonstrated for the past 3 years at the conferences of various organizations, including the Radiological Society of North America, this tool provides a very practical and simple way to manage a PACS, including off-site image distribution and disaster recovery. The application is robust and flexible and can be used on a standard PC workstation or a Tablet PC, but more important, it can be used with a personal digital assistant (PDA). With a PDA, the Web application becomes a powerful wireless and mobile image management tool. The application's quick and easy-to-use features allow users to perform Digital Imaging and Communications in Medicine (DICOM) queries and retrievals with a single interface, without having to worry about the underlying configuration of DICOM nodes. In addition, this frees up dedicated PACS workstations to perform their specialized roles within the PACS workflow. This tool has been used at Saint John's Health Center in Santa Monica, California, for 2 years. The average number of queries per month is 2,021, with 816 C-MOVE retrieve requests. Clinical staff members can use PDAs to manage image workflow and PACS examination distribution conveniently for off-site consultations by referring physicians and radiologists and for disaster recovery. This solution also improves radiologists' effectiveness and efficiency in health care delivery both within radiology departments and for off-site clinical coverage.
Motor Rehabilitation Using Kinect: A Systematic Review.
Da Gama, Alana; Fallavollita, Pascal; Teichrieb, Veronica; Navab, Nassir
2015-04-01
Interactive systems are being developed with the intention to help in the engagement of patients on various therapies. Amid the recent technological advances, Kinect™ from Microsoft (Redmond, WA) has helped pave the way on how user interaction technology facilitates and complements many clinical applications. In order to examine the actual status of Kinect developments for rehabilitation, this article presents a systematic review of articles that involve interactive, evaluative, and technical advances related to motor rehabilitation. Systematic research was performed in the IEEE Xplore and PubMed databases using the key word combination "Kinect AND rehabilitation" with the following inclusion criteria: (1) English language, (2) page number >4, (3) Kinect system for assistive interaction or clinical evaluation, or (4) Kinect system for improvement or evaluation of the sensor tracking or movement recognition. Quality assessment was performed by QualSyst standards. In total, 109 articles were found in the database research, from which 31 were included in the review: 13 were focused on the development of assistive systems for rehabilitation, 3 in evaluation, 3 in the applicability category, 7 on validation of Kinect anatomic and clinical evaluation, and 5 on improvement techniques. Quality analysis of all included articles is also presented with their respective QualSyst checklist scores. Research and development possibilities and future works with the Kinect for rehabilitation application are extensive. Methodological improvements when performing studies on this area need to be further investigated.
Powell, G A; Bonnett, L J; Tudur-Smith, C; Hughes, D A; Williamson, P R; Marson, A G
2017-08-23
In the UK, routinely recorded data may benefit prospective studies including randomised controlled trials (RCTs). In an on-going study, we aim to assess the feasibility of access and agreement of routinely recorded clinical and non-clinical data compared to data collected during a RCT using standard prospective methods. This paper will summarise available UK routinely recorded data sources and discuss our experience with the feasibility of accessing routinely recorded data for participants of a RCT before finally proposing recommendations for improving the access and implementation of routinely recorded data in RCTs. Setting: the case study RCT is the Standard and New Antiepileptic Drugs II (SANAD II) trial, a pragmatic, UK, multicentre, phase IV RCT assessing the clinical and cost-effectiveness of antiepileptic drug treatments for newly diagnosed epilepsy. 98 participants have provided written consent to permit the request of routinely recorded data. Study procedures: routinely recorded clinical and non-clinical data were identified and data requested through formal applications from available data holders for the duration that participants have been recruited into SANAD II. The feasibility of accessing routinely recorded data during a RCT is assessed and recommendations for improving access proposed. Secondary-care clinical and socioeconomic data is recorded on a national basis and can be accessed, although there are limitations in the application process. Primary-care data are recorded by a number of organisations on a de-identified basis but access for specific individuals has not been feasible. Access to data recorded by non-clinical sources, including The Department for Work and Pensions and The Driving and Vehicle Licensing Agency, was not successful. Recommendations discussed include further research to assess the attributes of routinely recorded data, an assessment of public perceptions and the development of strategies to collaboratively improve access to routinely recorded data for research. International Standard Randomised Controlled Trials, ISRCTN30294119 . Registered on 3 July 2012. EudraCT No: 2012-001884-64. Registered on 9 May 2012.
Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki
2016-06-15
Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.
Zhang, Melvyn; Bingham, Kathleen; Kantarovich, Karin; Laidlaw, Jennifer; Urbach, David; Sockalingam, Sanjeev; Ho, Roger
2016-04-30
Delirium is a common medical condition with a high prevalence in hospital settings. Effective delirium management requires a multi-component intervention, including the use of Interprofessional teams and evidence-based interventions at the point of care. One vehicle for increasing access of delirium practice tools at the point of care is E-health. There has been a paucity of studies describing the implementation of delirium related clinical application. The purpose of this current study is to acquire users' perceptions of the utility, feasibility and effectiveness of a smartphone application for delirium care in a general surgery unit. In addition, the authors aimed to elucidate the potential challenges with implementing this application. This quantitative study was conducted between January 2015 and June 2015 at the University Health Network, Toronto General Hospital site. Participants met inclusion criteria if they were clinical staff on the General Surgery Unit at the Toronto General Hospital site and had experience caring for patients with delirium. At the conclusion of the 4 weeks after the implementation of the intervention, participants were invited by email to participate in a focus group to discuss their perspectives related to using the delirium application Our findings identified several themes related to the implementation and use of this smartphone application in an acute care clinical setting. These themes will provide clinicians preparing to use a smartphone application to support delirium care with an implementation framework. This study is one of the first to demonstrate the potential utility of a smartphone application for delirium inter-professional education. While this technology does appeal to healthcare professionals, it is important to note potential implementation challenges. Our findings provide insights into these potential barriers and can be used to assist healthcare professionals considering the development and use of an inter-professional clinical care application in their setting.
Application of an Electronic Medical Record in Space Medicine
NASA Technical Reports Server (NTRS)
McGinnis, Patrick J.
2000-01-01
Electronic Medical Records (EMR) have been emerging over the past decade. Today, they are replacing the paper chart in clinics throughout the nation. Approximately three years ago, the NASA-JSC Flight Medicine Clinic initiated an assessment of the EMRs available on the market. This assessment included comparing these products with the particular scope of practice at JSC. In 1998, the Logician EMR from Medicalogic was selected for the JSC Flight Medicine Clinic. This presentation reviews the process of selection and implementation of the EMR into the unique practice of aerospace medicine at JSC.
Analyses of group sequential clinical trials.
Koepcke, W
1989-12-01
In the first part of this article the methodology of group sequential plans is reviewed. After introducing the basic definition of such plans the main properties are shown. At the end of this section three different plans (Pocock, O'Brien-Fleming, Koepcke) are compared. In the second part of the article some unresolved issues and recent developments in the application of group sequential methods to long-term controlled clinical trials are discussed. These include deviation from the assumptions, life table methods, multiple-arm clinical trials, multiple outcome measures, and confidence intervals.
Therapeutic potential of peptide toxins that target ion channels.
Beraud, Evelyne; Chandy, K George
2011-10-01
Traditional healthcare systems in China, India, Greece and the Middle East have for centuries exploited venomous creatures as a resource for medicines. This review focuses on one class of pharmacologically active compounds from venom, namely peptide toxins that target ion channels. We highlight their therapeutic potential and the specific channels they target. The field of therapeutic application is vast, including pain, inflammation, cancer, neurological disorders, cardioprotection, and autoimmune diseases. One of these peptides is in clinical use, and many others are in various stages of pre-clinical and clinical development.
Mertz, Leslie
2016-01-01
Interest in stem cells escalated in 2006 when scientists figured out how to reprogram some specialized adult cells to assume a stem-cell-like state. Called induced pluripotent stem cells (iPSCs), these cells opened the door to a range of potential applications, including generating cells and tissues to replace those that are faulty or missing in patients with cancer, diabetes, cardiovascular disease, or other maladies (Figure 1). Visions of new treatments and even cures for debilitating and fatal illnesses proliferated, and some of that work is well under way (see "A Wealth of Research"). Now, ten years later, those visions are looking more like real possibilities as research moves from the lab to the clinic and expands toward a greater understanding of the basic science behind stem cells and its applications.
Hage, David S.
2017-01-01
BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561
Current evidence of percutaneous nucleoplasty for the cervical herniated disk: a systematic review.
Wullems, Jorgen A; Halim, Willy; van der Weegen, Walter
2014-07-01
Although percutaneous cervical nucleoplasty (PCN) has been shown to be both safe and effective, its application is still debated. PCN applied in disk herniation has not been systematically reviewed before, resulting in a limited insight into its effectiveness and safety, and the quality of available evidence. Therefore, we systematically reviewed the evidence on the efficacy and safety of PCN in patients with a (contained) herniated disk. MEDLINE, EMBASE, and the Cochrane Library (Central Register of Controlled Trials) were searched for randomized controlled trials (RCTs) and nonrandomized studies using the following keywords: "Nucleoplasty," "Cervical," "Hernia," "Herniation," "Prolapse," "Protrusion," "Intervertebral disk," and "Percutaneous disk decompression." First, all articles were appraised for methodological quality, and then, RCTs were graded for the level of evidence according a best-evidence synthesis, because a meta-analysis was not possible. Finally, the RCTs' applicability and clinical relevance also was assessed. Of 75 identified abstracts, 10 full-text articles were included (3 RCTs and 7 nonrandomized studies). These studies represented a total of 1021 patients: 823 patients (≥ 892 disks) were treated by PCN. All studies showed low methodological quality, except for two. The level of evidence of the RCTs was graded as moderate, with low to moderate applicability and clinical relevance. All included studies showed PCN to be an effective and safe procedure in the treatment of (contained) herniated disks at short-, mid-, and long-term follow-up. However, the level of evidence is moderate and shows only low to moderate applicability and clinical relevance. © 2013 World Institute of Pain.
Bottlenecks to clinical translation of direct brain-computer interfaces.
Serruya, Mijail D
2014-01-01
Despite several decades of research into novel brain-implantable devices to treat a range of diseases, only two-cochlear implants for sensorineural hearing loss and deep brain stimulation for movement disorders-have yielded any appreciable clinical benefit. Obstacles to translation include technical factors (e.g., signal loss due to gliosis or micromotion), lack of awareness of current clinical options for patients that the new therapy must outperform, traversing between federal and corporate funding needed to support clinical trials, and insufficient management expertise. This commentary reviews these obstacles preventing the translation of promising new neurotechnologies into clinical application and suggests some principles that interdisciplinary teams in academia and industry could adopt to enhance their chances of success.
An Automated Medical Information Management System (OpScan-MIMS) in a Clinical Setting
Margolis, S.; Baker, T.G.; Ritchey, M.G.; Alterescu, S.; Friedman, C.
1981-01-01
This paper describes an automated medical information management system within a clinic setting. The system includes an optically scanned data entry system (OpScan), a generalized, interactive retrieval and storage software system(Medical Information Management System, MIMS) and the use of time-sharing. The system has the advantages of minimal hardware purchase and maintenance, rapid data entry and retrieval, user-created programs, no need for user knowledge of computer language or technology and is cost effective. The OpScan-MIMS system has been operational for approximately 16 months in a sexually transmitted disease clinic. The system's application to medical audit, quality assurance, clinic management and clinical training are demonstrated.
An exploration into study design for biomarker identification: issues and recommendations.
Hall, Jacqueline A; Brown, Robert; Paul, Jim
2007-01-01
Genomic profiling produces large amounts of data and a challenge remains in identifying relevant biological processes associated with clinical outcome. Many candidate biomarkers have been identified but few have been successfully validated and make an impact clinically. This review focuses on some of the study design issues encountered in data mining for biomarker identification with illustrations of how study design may influence the final results. This includes issues of clinical endpoint use and selection, power, statistical, biological and clinical significance. We give particular attention to study design for the application of supervised clustering methods for identification of gene networks associated with clinical outcome and provide recommendations for future work to increase the success of identification of clinically relevant biomarkers.
Considerations in the development of circulating tumor cell technology for clinical use
2012-01-01
This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC) technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development–analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA) and the US National Cancer Institute (NCI). PMID:22747748
NASA Astrophysics Data System (ADS)
Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent
2017-03-01
Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.
Culture as a variable in neuroscience and clinical neuropsychology: A comprehensive review
Wajman, José Roberto; Bertolucci, Paulo Henrique Ferreira; Mansur, Letícia Lessa; Gauthier, Serge
2015-01-01
Culture is a dynamic system of bidirectional influences among individuals and their environment, including psychological and biological processes, which facilitate adaptation and social interaction. One of the main challenges in clinical neuropsychology involves cognitive, behavioral and functional assessment of people with different sociocultural backgrounds. In this review essay, examining culture from a historical perspective to ethical issues in cross-cultural research, including the latest significant and publications, the authors sought to explore the main features related to cultural variables in neuropsychological practice and to debate the challenges found regarding the operational methods currently in use. Literature findings suggest a more comprehensive approach in cognitive and behavioral neuroscience, including an interface between elementary disciplines and applied neuropsychology. Thus, as a basis for discussion on this issue, the authors analyzed key-topics related to the study of new trends in sociocultural neuroscience and the application of their concepts from a clinical perspective. PMID:29213964
International models of investigator-initiated trials: implications for Japan
Trimble, E. L.; Ledermann, J.; Law, K.; Miyata, T.; Imamura, C. K.; Nam, B.-H.; Kim, Y.H.; Bang, Y.-J.; Michaels, M.; Ardron, D.; Amano, S.; Ando, Y.; Tominaga, T.; Kurokawa, K.; Takebe, N.
2012-01-01
Background Academic/institutional investigator-initiated clinical trials benefit individuals and society by supplementing gaps in industry-sponsored clinical trials. Materials In May 2010, experts from Japan, the Republic of Korea, the UK, and the United States, met at a symposium in Tokyo, Japan, to discuss how policies related to the conduct of clinical trials, which have been shown to be effective, may be applied to other regions of the world. Results In order to increase the availability of anticancer drugs world-wide, nations including Japan should examine the benefits of increasing the number of investigator-initiated clinical trials. These trials represent one of the most effective ways to translate basic scientific knowledge into clinical practice. These trials should be conducted under GCP guidelines and include Investigational New Drug application submissions with the ultimate goal of future drug approval. Conclusions To maximize the effectiveness of these trials, a policy to educate health care professionals, cancer patients and their families, and the public in general on the benefits of clinical trials should be strengthened. Finally, policies that expedite the clinical development of novel cancer drugs which have already been shown to be effective in other countries are needed in many nations including Japan to accelerate drug approval. PMID:22843420
Clinical research informatics and electronic health record data.
Richesson, R L; Horvath, M M; Rusincovitch, S A
2014-08-15
The goal of this survey is to discuss the impact of the growing availability of electronic health record (EHR) data on the evolving field of Clinical Research Informatics (CRI), which is the union of biomedical research and informatics. Major challenges for the use of EHR-derived data for research include the lack of standard methods for ensuring that data quality, completeness, and provenance are sufficient to assess the appropriateness of its use for research. Areas that need continued emphasis include methods for integrating data from heterogeneous sources, guidelines (including explicit phenotype definitions) for using these data in both pragmatic clinical trials and observational investigations, strong data governance to better understand and control quality of enterprise data, and promotion of national standards for representing and using clinical data. The use of EHR data has become a priority in CRI. Awareness of underlying clinical data collection processes will be essential in order to leverage these data for clinical research and patient care, and will require multi-disciplinary teams representing clinical research, informatics, and healthcare operations. Considerations for the use of EHR data provide a starting point for practical applications and a CRI research agenda, which will be facilitated by CRI's key role in the infrastructure of a learning healthcare system.
Clinical Research Informatics and Electronic Health Record Data
Horvath, M. M.; Rusincovitch, S. A.
2014-01-01
Summary Objectives The goal of this survey is to discuss the impact of the growing availability of electronic health record (EHR) data on the evolving field of Clinical Research Informatics (CRI), which is the union of biomedical research and informatics. Results Major challenges for the use of EHR-derived data for research include the lack of standard methods for ensuring that data quality, completeness, and provenance are sufficient to assess the appropriateness of its use for research. Areas that need continued emphasis include methods for integrating data from heterogeneous sources, guidelines (including explicit phenotype definitions) for using these data in both pragmatic clinical trials and observational investigations, strong data governance to better understand and control quality of enterprise data, and promotion of national standards for representing and using clinical data. Conclusions The use of EHR data has become a priority in CRI. Awareness of underlying clinical data collection processes will be essential in order to leverage these data for clinical research and patient care, and will require multi-disciplinary teams representing clinical research, informatics, and healthcare operations. Considerations for the use of EHR data provide a starting point for practical applications and a CRI research agenda, which will be facilitated by CRI’s key role in the infrastructure of a learning healthcare system. PMID:25123746
Shalansky, Stephen J; Virk, Roohina; Ackman, Margaret; Jackevicius, Cynthia; Kertland, Heather; Tsuyuki, Ross; Humphries, Karin
2003-02-01
Access to new therapies in hospitals depends upon both clinical trial evidence and local Pharmacy and Therapeutics (P&T) committee approval. The process of formulary evaluation by P&T committees is not well-understood. To describe the formulary decision-making process in Canadian hospitals for cardiovascular medications recently made available on the Canadian market. Postal survey of hospital pharmacy directors in all Canadian hospitals with more than 50 beds. Target drugs included abciximab, enoxaparin, dalteparin, clopidogrel, eptifibatide and tirofiban. Of 428 surveys mailed, responses were received from 164 P&T committees representing 350 hospitals for an effective response rate of 82%. While physicians make up the largest proportion of committee membership, pharmacists play an influential role. Information most commonly cited as influencing formulary decisions included published clinical trials (97%), regional guidelines (90%), pharmacoeconomic data (84%), decisions at peer hospitals (73%) and local opinion leaders (60%). However, this information was often not required on formulary applications. Approval timelines varied widely for target medications but there were no regional, hospital or P&T committee characteristics that were independent predictors of early formulary application or approval. There is wide variability in the time taken for Canadian institutions to adopt new cardiovascular therapies, which is not explained by regional, hospital or P&T committee characteristics. Standardization of the formulary application and evaluation processes, including sharing of information amongst institutions, would lead to broader understanding of the applicable issues, more objectivity and improved efficiency.
Clinical applications of fundus autofluorescence in retinal disease.
Yung, Madeline; Klufas, Michael A; Sarraf, David
2016-01-01
Fundus autofluorescence (FAF) is a non-invasive retinal imaging modality used in clinical practice to provide a density map of lipofuscin, the predominant ocular fluorophore, in the retinal pigment epithelium. Multiple commercially available imaging systems, including the fundus camera, the confocal scanning laser ophthalmoscope, and the ultra-widefield imaging device, are available to the clinician. Each offers unique advantages for evaluating various retinal diseases. The clinical applications of FAF continue to expand. It is now an essential tool for evaluating age related macular degeneration, macular dystrophies, retinitis pigmentosa, white dot syndromes, retinal drug toxicities, and various other retinal disorders. FAF may detect abnormalities beyond those detected on funduscopic exam, fluorescein angiography, or optical coherence tomography, and can be used to elucidate disease pathogenesis, form genotype-phenotype correlations, diagnose and monitor disease, and evaluate novel therapies. Given its ease of use, non-invasive nature, and value in characterizing retinal disease, FAF enjoys increasing clinical relevance. This review summarizes common ocular fluorophores, imaging modalities, and FAF findings for a wide spectrum of retinal disorders.
Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza
2015-01-01
Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.
Induced pluripotent stem cells in hematology: current and future applications
Focosi, D; Amabile, G; Di Ruscio, A; Quaranta, P; Tenen, D G; Pistello, M
2014-01-01
Reprogramming somatic cells into induced pluripotent stem (iPS) cells is nowadays approaching effectiveness and clinical grade. Potential uses of this technology include predictive toxicology, drug screening, pathogenetic studies and transplantation. Here, we review the basis of current iPS cell technology and potential applications in hematology, ranging from disease modeling of congenital and acquired hemopathies to hematopoietic stem and other blood cell transplantation. PMID:24813079
Garnweidner-Holme, Lisa Maria; Borgen, Iren; Garitano, Iñaki; Noll, Josef; Lukasse, Mirjam
2015-01-01
The prevalence of Gestational Diabetes Mellitus (GDM) is increasing worldwide. Controlling blood sugar levels is fundamental to the management of GDM. Current practice in Norway includes patients registering blood sugar levels in a booklet and receiving verbal and/or written health information. A smartphone application may provide patients individually targeted and easily available advice to control blood sugar levels. The aim of this paper is to document the process of designing and developing a smartphone application (the Pregnant+ app) that automatically transfers blood sugar levels from the glucometer and has information about healthy eating and physical activity. This formative research included expert-group discussions among health professionals, researchers and experts in data privacy and security. User-involvement studies were conducted to discuss prototypes of the app. Results indicated that the content of the application should be easy to understand given the varying degree of patients’ literacy and in line with the information they receive at clinics. The final version of the app incorporated behavior change techniques such as self-monitoring and cues to action. Results from the first round of interactions show the importance of involving expert groups and patients when developing a mobile health-care device. PMID:27417764
The power prior: theory and applications.
Ibrahim, Joseph G; Chen, Ming-Hui; Gwon, Yeongjin; Chen, Fang
2015-12-10
The power prior has been widely used in many applications covering a large number of disciplines. The power prior is intended to be an informative prior constructed from historical data. It has been used in clinical trials, genetics, health care, psychology, environmental health, engineering, economics, and business. It has also been applied for a wide variety of models and settings, both in the experimental design and analysis contexts. In this review article, we give an A-to-Z exposition of the power prior and its applications to date. We review its theoretical properties, variations in its formulation, statistical contexts for which it has been used, applications, and its advantages over other informative priors. We review models for which it has been used, including generalized linear models, survival models, and random effects models. Statistical areas where the power prior has been used include model selection, experimental design, hierarchical modeling, and conjugate priors. Frequentist properties of power priors in posterior inference are established, and a simulation study is conducted to further examine the empirical performance of the posterior estimates with power priors. Real data analyses are given illustrating the power prior as well as the use of the power prior in the Bayesian design of clinical trials. Copyright © 2015 John Wiley & Sons, Ltd.
Application of evidence-based dentistry: from research to clinical periodontal practice.
Kwok, Vivien; Caton, Jack G; Polson, Alan M; Hunter, Paul G
2012-06-01
Dentists need to make daily decisions regarding patient care, and these decisions should essentially be scientifically sound. Evidence-based dentistry is meant to empower clinicians to provide the most contemporary treatment. The benefits of applying the evidence-based method in clinical practice include application of the most updated treatment and stronger reasoning to justify the treatment. A vast amount of information is readily accessible with today's digital technology, and a standardized search protocol can be developed to ensure that a literature search is valid, specific and repeatable. It involves developing a preset question (population, intervention, comparison and outcome; PICO) and search protocol. It is usually used academically to perform commissioned reviews, but it can also be applied to answer simple clinical queries. The scientific evidence thus obtained can then be considered along with patient preferences and values, clinical patient circumstances and the practitioner's experience and judgment in order to make the treatment decision. This paper describes how clinicians can incorporate evidence-based methods into patient care and presents a clinical example to illustrate the process. © 2012 John Wiley & Sons A/S.
RNAi therapeutics and applications of microRNAs in cancer treatment.
Uchino, Keita; Ochiya, Takahiro; Takeshita, Fumitaka
2013-06-01
RNA interference-based therapies are proving to be powerful tools for combating various diseases, including cancer. Scientists are researching the development of safe and efficient systems for the delivery of small RNA molecules, which are extremely fragile in serum, to target organs and cells in the human body. A dozen pre-clinical and clinical trials have been under way over the past few years involving biodegradable nanoparticles, lipids, chemical modification and conjugation. On the other hand, microRNAs, which control the balance of cellular biological processes, have been studied as attractive therapeutic targets in cancer treatment. In this review, we provide an overview of RNA interference-based therapeutics in clinical trials and discuss the latest technology for the systemic delivery of nucleic acid drugs. Furthermore, we focus on dysregulated microRNAs in human cancer, which have progressed in pre-clinical trials as therapeutic targets, and describe a wide range of strategies to control the expression levels of endogenous microRNAs. Further development of RNA interference technologies and progression of clinical trials will contribute to the achievement of practical applications of nucleic acid drugs.
A CAD System for Hemorrhagic Stroke.
Nowinski, Wieslaw L; Qian, Guoyu; Hanley, Daniel F
2014-09-01
Computer-aided detection/diagnosis (CAD) is a key component of routine clinical practice, increasingly used for detection, interpretation, quantification and decision support. Despite a critical need, there is no clinically accepted CAD system for stroke yet. Here we introduce a CAD system for hemorrhagic stroke. This CAD system segments, quantifies, and displays hematoma in 2D/3D, and supports evacuation of hemorrhage by thrombolytic treatment monitoring progression and quantifying clot removal. It supports seven-step workflow: select patient, add a new study, process patient's scans, show segmentation results, plot hematoma volumes, show 3D synchronized time series hematomas, and generate report. The system architecture contains four components: library, tools, application with user interface, and hematoma segmentation algorithm. The tools include a contour editor, 3D surface modeler, 3D volume measure, histogramming, hematoma volume plot, and 3D synchronized time-series hematoma display. The CAD system has been designed and implemented in C++. It has also been employed in the CLEAR and MISTIE phase-III, multicenter clinical trials. This stroke CAD system is potentially useful in research and clinical applications, particularly for clinical trials.
Approaches using molecular imaging technology - use of PET in clinical microdose studies§
Wagner, Claudia C; Langer, Oliver
2013-01-01
Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing. PMID:20887762
Parental insightfulness: retrospect and prospect.
Koren-Karie, Nina; Oppenheim, David
2018-06-01
We open this introductory paper to the special issue with the theoretical and clinical roots of the insightfulness concept. Next, the Insightfulness Assessment (IA) is presented, followed by a review of key empirical findings supporting the IA. The central points in the papers in this special issue are reviewed next. These include the use of the IA with parents of children ranging in age from infancy to adolescence, its applicability outside the parent-child relationship (e.g. insightfulness toward a close friend), its use with high-risk mothers, and the usefulness of insightfulness both as a continuous and a categorical measure. The clinical applications of the IA are discussed, and we close with future directions for IA research.
NASA Astrophysics Data System (ADS)
Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.
Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.
The role of lasers and intense pulsed light technology in dermatology
Husain, Zain; Alster, Tina S
2016-01-01
The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574
Convection-enhanced delivery to the central nervous system.
Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H
2015-03-01
Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.
Genetics and molecular biology in laboratory medicine, 1963-2013.
Whitfield, John B
2013-01-01
The past 50 years have seen many changes in laboratory medicine, either as causes or consequences of increases in productivity and expansion of the range of information which can be provided. The drivers and facilitators of change in relation to clinical applications of molecular biology included the need for diagnostic tools for genetic diseases and technical advances such as PCR and sequencing. However, molecular biology techniques have proved to have far wider applications, from detection of infectious agents to molecular characterization of tumors. Journals such as Clinical Chemistry and Laboratory Medicine play an important role in communication of these advances to the laboratory medicine community and in publishing evaluations of their practical value.
Bringing DNA vaccines closer to commercial use.
Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A
2009-10-01
Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
Mass spectrometry. [review of techniques
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.
1976-01-01
Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, E; Harrison, A; Eldredge-Hindy, H
Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less
Medical Information Management System (MIMS) CareWindows.
Stiphout, R. M.; Schiffman, R. M.; Christner, M. F.; Ward, R.; Purves, T. M.
1991-01-01
The demonstration of MIMS/CareWindows will include: (1) a review of the application environment and development history, (2) a demonstration of a very large, comprehensive clinical information system with a cost effective graphic user server and communications interface. PMID:1807755
Nuclear pharmacy: An introduction to the clinical application of radiopharmaceuticals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilton, H.M.; Witcofski, R.L.
1986-01-01
This introductory text reviews fundamental concepts of nuclear pharmacy in a logical, stepwise manner. It presents those aspects of radioactivity basic to nuclear pharmacy including production of radioactivity and the types of instrumentation used to detect and measure radiation.
Medical Informatics in Academic Health Science Centers.
ERIC Educational Resources Information Center
Frisse, Mark E.
1992-01-01
An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…
Code of Federal Regulations, 2013 CFR
2013-04-01
... include separate sections on nonclinical laboratory studies and on clinical investigations involving human... the device, and the significant physical and performance characteristics of the device. A brief... other person. (v) Summary of studies. An abstract of any information or report described in the PMA...
Code of Federal Regulations, 2011 CFR
2011-04-01
... include separate sections on nonclinical laboratory studies and on clinical investigations involving human... the device, and the significant physical and performance characteristics of the device. A brief... other person. (v) Summary of studies. An abstract of any information or report described in the PMA...
Code of Federal Regulations, 2012 CFR
2012-04-01
... include separate sections on nonclinical laboratory studies and on clinical investigations involving human... the device, and the significant physical and performance characteristics of the device. A brief... other person. (v) Summary of studies. An abstract of any information or report described in the PMA...
ERIC Educational Resources Information Center
McMahon, Brian T., Ed.
1983-01-01
Discusses the expanding role of the rehabilitation counselor into private sector rehabilitation in the seven articles of this special issue. Topics cover private rehabilitation in an insurance context including forensics issues, computer applications, recent trends, services in a multiprogram private clinic, and rehabilitation counselor training.…
Factors affecting residency rank-listing: a Maxdiff survey of graduating Canadian medical students.
Wang, Tao; Wong, Benson; Huang, Alexander; Khatri, Prateek; Ng, Carly; Forgie, Melissa; Lanphear, Joel H; O'Neill, Peter J
2011-08-25
In Canada, graduating medical students consider many factors, including geographic, social, and academic, when ranking residency programs through the Canadian Residency Matching Service (CaRMS). The relative significance of these factors is poorly studied in Canada. It is also unknown how students differentiate between their top program choices. This survey study addresses the influence of various factors on applicant decision making. Graduating medical students from all six Ontario medical schools were invited to participate in an online survey available for three weeks prior to the CaRMS match day in 2010. Max-Diff discrete choice scaling, multiple choice, and drop-list style questions were employed. The Max-Diff data was analyzed using a scaled simple count method. Data for how students distinguish between top programs was analyzed as percentages. Comparisons were made between male and female applicants as well as between family medicine and specialist applicants; statistical significance was determined by the Mann-Whitney test. In total, 339 of 819 (41.4%) eligible students responded. The variety of clinical experiences and resident morale were weighed heavily in choosing a residency program; whereas financial incentives and parental leave attitudes had low influence. Major reasons that applicants selected their first choice program over their second choice included the distance to relatives and desirability of the city. Both genders had similar priorities when selecting programs. Family medicine applicants rated the variety of clinical experiences more importantly; whereas specialty applicants emphasized academic factors more. Graduating medical students consider program characteristics such as the variety of clinical experiences and resident morale heavily in terms of overall priority. However, differentiation between their top two choice programs is often dependent on social/geographic factors. The results of this survey will contribute to a better understanding of the CaRMS decision making process for both junior medical students and residency program directors.
Jewell, Mark L; Desilets, Charles; Smoller, Bruce R
2011-05-01
High-intensity focused ultrasound (HIFU) has been applied clinically for the noninvasive treatment of pathological conditions in various organs for over 50 years; however, there are little data describing the use of thermal HIFU to ablate fat for body contouring and treatment of collagen-rich layers. A novel device under clinical investigation (LipoSonix; Medicis Technologies Corporation, Bothell, Washington) uses HIFU to eliminate unwanted adipose tissue. The authors describe the results of HIFU treatment in a series of preclinical studies performed in a validated porcine model. Preclinical research included in vivo treatment of the abdominal subcutaneous adipose tissue of swine with transcutaneous HIFU therapy. Endpoint analyses included thermocouple temperature data, full-body necropsy, local pathology and histology studies, clinical hematology, urinalysis, and blood chemistry parameters, including lipid panels. The application of HIFU energy levels of 166 to 372 J/cm(2) generated tissue temperature approaching 70°C, which was restricted to the focal area (n = seven). Application of 68 and 86 J/cm(2) did not produce clinically-significant changes in serum liver function tests, free fatty acids, or cholesterol (n = eight). Gross examination of tissue from various organs showed no evidence of fat emboli or accumulation (n = two). Histology demonstrated well-preserved vasculature and intact nerve fibers within the HIFU focal area (n = three). Following treatment with 85.3 to 270 J/cm(2), normal healing response included the migration of macrophages into the damaged tissue and removal of disrupted cellular debris and lipids (n = 8). In a preclinical swine model, the controlled thermal effect of HIFU appears to provide a safe and effective means for ablating subcutaneous adipose tissue.
Overview on Clinical Relevance of Intra-Tumor Heterogeneity.
Stanta, Giorgio; Bonin, Serena
2018-01-01
Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.
Clinical application of next-generation sequencing for Mendelian diseases.
Jamuar, Saumya Shekhar; Tan, Ene-Choo
2015-06-16
Over the past decade, next-generation sequencing (NGS) has led to an exponential increase in our understanding of the genetic basis of Mendelian diseases. NGS allows for the analysis of multiple regions of the genome in one single reaction and has been shown to be a cost-effective and efficient tool in investigating patients with Mendelian diseases. More recently, NGS has been successfully deployed in the clinics, with a reported diagnostic yield of ~25 %. However, recommendations on clinical implementation of NGS are still evolving with numerous key challenges that impede the widespread use of genetics in everyday medicine. These challenges include when to order, on whom to order, what type of test to order, and how to interpret and communicate the results, including incidental findings, to the patient and family. In this review, we discuss these challenges and suggest guidelines on implementing NGS in the routine clinical workflow.
Zhou, Li; Friedman, Carol; Parsons, Simon; Hripcsak, George
2005-01-01
Exploring temporal information in narrative Electronic Medical Records (EMRs) is essential and challenging. We propose an architecture for an integrated approach to process temporal information in clinical narrative reports. The goal is to initiate and build a foundation that supports applications which assist healthcare practice and research by including the ability to determine the time of clinical events (e.g., past vs. present). Key components include: (1) a temporal constraint structure for temporal expressions and the development of an associated tagger; (2) a Natural Language Processing (NLP) system for encoding and extracting medical events and associating them with formalized temporal data; (3) a post-processor, with a knowledge-based subsystem to help discover implicit information, that resolves temporal expressions and deals with issues such as granularity and vagueness; and (4) a reasoning mechanism which models clinical reports as Simple Temporal Problems (STPs). PMID:16779164
Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore
2011-12-01
Randomization is a key step in reducing selection bias during the treatment allocation phase in randomized clinical trials. The process of randomization follows specific steps, which include generation of the randomization list, allocation concealment, and implementation of randomization. The phenomenon in the dental and orthodontic literature of characterizing treatment allocation as random is frequent; however, often the randomization procedures followed are not appropriate. Randomization methods assign, at random, treatment to the trial arms without foreknowledge of allocation by either the participants or the investigators thus reducing selection bias. Randomization entails generation of random allocation, allocation concealment, and the actual methodology of implementing treatment allocation randomly and unpredictably. Most popular randomization methods include some form of restricted and/or stratified randomization. This article introduces the reasons, which make randomization an integral part of solid clinical trial methodology, and presents the main randomization schemes applicable to clinical trials in orthodontics.
High-throughput cell analysis and sorting technologies for clinical diagnostics and therapeutics
NASA Astrophysics Data System (ADS)
Leary, James F.; Reece, Lisa M.; Szaniszlo, Peter; Prow, Tarl W.; Wang, Nan
2001-05-01
A number of theoretical and practical limits of high-speed flow cytometry/cell sorting are important for clinical diagnostics and therapeutics. Three applications include: (1) stem cell isolation with tumor purging for minimal residual disease monitoring and treatment, (2) identification and isolation of human fetal cells from maternal blood for prenatal diagnostics and in-vitro therapeutics, and (3) high-speed library screening for recombinant vaccine production against unknown pathogens.
Space medicine research publications: 1984-1986
NASA Technical Reports Server (NTRS)
Wallace, Janice S.
1988-01-01
A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.
Ultrasound Molecular Imaging: Moving Towards Clinical Translation
Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.
2015-01-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932
Ultrasound molecular imaging: Moving toward clinical translation.
Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K
2015-09-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Topaz, Maxim; Lai, Kenneth; Dowding, Dawn; Lei, Victor J; Zisberg, Anna; Bowles, Kathryn H; Zhou, Li
2016-12-01
Electronic health records are being increasingly used by nurses with up to 80% of the health data recorded as free text. However, only a few studies have developed nursing-relevant tools that help busy clinicians to identify information they need at the point of care. This study developed and validated one of the first automated natural language processing applications to extract wound information (wound type, pressure ulcer stage, wound size, anatomic location, and wound treatment) from free text clinical notes. First, two human annotators manually reviewed a purposeful training sample (n=360) and random test sample (n=1100) of clinical notes (including 50% discharge summaries and 50% outpatient notes), identified wound cases, and created a gold standard dataset. We then trained and tested our natural language processing system (known as MTERMS) to process the wound information. Finally, we assessed our automated approach by comparing system-generated findings against the gold standard. We also compared the prevalence of wound cases identified from free-text data with coded diagnoses in the structured data. The testing dataset included 101 notes (9.2%) with wound information. The overall system performance was good (F-measure is a compiled measure of system's accuracy=92.7%), with best results for wound treatment (F-measure=95.7%) and poorest results for wound size (F-measure=81.9%). Only 46.5% of wound notes had a structured code for a wound diagnosis. The natural language processing system achieved good performance on a subset of randomly selected discharge summaries and outpatient notes. In more than half of the wound notes, there were no coded wound diagnoses, which highlight the significance of using natural language processing to enrich clinical decision making. Our future steps will include expansion of the application's information coverage to other relevant wound factors and validation of the model with external data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parallel MR imaging: a user's guide.
Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin
2005-01-01
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.
Ultrasound Elastography: Review of Techniques and Clinical Applications
Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.
2017-01-01
Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467
Kawamoto, Kensaku; Lobach, David F
2005-01-01
Despite their demonstrated ability to improve care quality, clinical decision support systems are not widely used. In part, this limited use is due to the difficulty of sharing medical knowledge in a machine-executable format. To address this problem, we developed a decision support Web service known as SEBASTIAN. In SEBASTIAN, individual knowledge modules define the data requirements for assessing a patient, the conclusions that can be drawn using that data, and instructions on how to generate those conclusions. Using standards-based XML messages transmitted over HTTP, client decision support applications provide patient data to SEBASTIAN and receive patient-specific assessments and recommendations. SEBASTIAN has been used to implement four distinct decision support systems; an architectural overview is provided for one of these systems. Preliminary assessments indicate that SEBASTIAN fulfills all original design objectives, including the re-use of executable medical knowledge across diverse applications and care settings, the straightforward authoring of knowledge modules, and use of the framework to implement decision support applications with significant clinical utility.
Roadmap to a Comprehensive Clinical Data Warehouse for Precision Medicine Applications in Oncology
Foran, David J; Chen, Wenjin; Chu, Huiqi; Sadimin, Evita; Loh, Doreen; Riedlinger, Gregory; Goodell, Lauri A; Ganesan, Shridar; Hirshfield, Kim; Rodriguez, Lorna; DiPaola, Robert S
2017-01-01
Leading institutions throughout the country have established Precision Medicine programs to support personalized treatment of patients. A cornerstone for these programs is the establishment of enterprise-wide Clinical Data Warehouses. Working shoulder-to-shoulder, a team of physicians, systems biologists, engineers, and scientists at Rutgers Cancer Institute of New Jersey have designed, developed, and implemented the Warehouse with information originating from data sources, including Electronic Medical Records, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology and Pathology archives, and Next Generation Sequencing services. Innovative solutions were implemented to detect and extract unstructured clinical information that was embedded in paper/text documents, including synoptic pathology reports. Supporting important precision medicine use cases, the growing Warehouse enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information of patient tumors individually or as part of large cohorts to identify changes and patterns that may influence treatment decisions and potential outcomes. PMID:28469389
Healthcare Applications of Smart Watches
Lu, Tsung-Chien; Fu, Chia-Ming; Ma, Matthew Huei-Ming; Fang, Cheng-Chung
2016-01-01
Summary Objective The aim of this systematic review is to synthesize research studies involving the use of smart watch devices for healthcare. Materials and Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the systematic review methodology. We searched PubMed, CINAHL Plus, EMBASE, ACM, and IEEE Xplore. In order to include ongoing clinical trials, we also searched ClinicalTrials.gov. Two investigators evaluated the retrieved articles for inclusion. Discrepancies between investigators regarding article inclusion and extracted data were resolved through team discussion. Results 356 articles were screened and 24 were selected for review. The most common publication venue was in conference proceedings (13, 54%). The majority of studies were published or presented in 2015 (19, 79%). We identified two registered clinical trials underway. A large proportion of the identified studies focused on applications involving health monitoring for the elderly (6, 25%). Five studies focused on patients with Parkinson’s disease and one on cardiac arrest. There were no studies which reported use of usability testing before implementation. Discussion Most of the reviewed studies focused on the chronically ill elderly. There was a lack of detailed description of user-centered design or usability testing before implementation. Based on our review, the most commonly used platform in healthcare research was that of the Android Wear. The clinical application of smart watches as assistive devices deserves further attention. Conclusion Smart watches are unobtrusive and easy to wear. While smart watch technology supplied with biosensors has potential to be useful in a variety of healthcare applications, rigorous research with their use in clinical settings is needed. PMID:27623763
Healthcare Applications of Smart Watches. A Systematic Review.
Lu, Tsung-Chien; Fu, Chia-Ming; Ma, Matthew Huei-Ming; Fang, Cheng-Chung; Turner, Anne M
2016-09-14
The aim of this systematic review is to synthesize research studies involving the use of smart watch devices for healthcare. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was chosen as the systematic review methodology. We searched PubMed, CINAHL Plus, EMBASE, ACM, and IEEE Xplore. In order to include ongoing clinical trials, we also searched ClinicalTrials.gov. Two investigators evaluated the retrieved articles for inclusion. Discrepancies between investigators regarding article inclusion and extracted data were resolved through team discussion. 356 articles were screened and 24 were selected for review. The most common publication venue was in conference proceedings (13, 54%). The majority of studies were published or presented in 2015 (19, 79%). We identified two registered clinical trials underway. A large proportion of the identified studies focused on applications involving health monitoring for the elderly (6, 25%). Five studies focused on patients with Parkinson's disease and one on cardiac arrest. There were no studies which reported use of usability testing before implementation. Most of the reviewed studies focused on the chronically ill elderly. There was a lack of detailed description of user-centered design or usability testing before implementation. Based on our review, the most commonly used platform in healthcare research was that of the Android Wear. The clinical application of smart watches as assistive devices deserves further attention. Smart watches are unobtrusive and easy to wear. While smart watch technology supplied with biosensors has potential to be useful in a variety of healthcare applications, rigorous research with their use in clinical settings is needed.
Report on the development and application of PET/CT in mainland China.
Chen, Yumei; Chen, Ruohua; Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-09-08
To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose ( 18 F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11 C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China.
Stern, Robert A; Seichepine, Daniel; Tschoe, Christine; Fritts, Nathan G; Alosco, Michael L; Berkowitz, Oren; Burke, Peter; Howland, Jonathan; Olshaker, Jonathan; Cantu, Robert C; Baugh, Christine M; Holsapple, James W
2017-02-15
Evidence-based clinical practice guidelines can facilitate proper evaluation and management of concussions in the emergency department (ED), often the initial and primary point of contact for concussion care. There is no universally adopted set of guidelines for concussion management, and extant evidence suggests that there may be variability in concussion care practices and limited application of clinical practice guidelines in the ED. This study surveyed EDs throughout New England to examine current practices of concussion care and utilization of evidence-based clinical practice guidelines in the evaluation and management of concussions. In 2013, a 32-item online survey was e-mailed to 149/168 EDs throughout New England (Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Maine). Respondents included senior administrators asked to report on their EDs use of clinical practice guidelines, neuroimaging decision-making, and discharge instructions for concussion management. Of the 72/78 respondents included, 35% reported absence of clinical practice guidelines, and 57% reported inconsistency in the type of guidelines used. Practitioner preference guided neuroimaging decision-making for 57%. Although 94% provided written discharge instructions, there was inconsistency in the recommended time frame for follow-up care (13% provided no specific time frame), the referral specialist to be seen (25% did not recommend any specialist), and return to activity instructions were inconsistent. There is much variability in concussion care practices and application of evidence-based clinical practice guidelines in the evaluation and management of concussions in New England EDs. Knowledge translational efforts will be critical to improve concussion management in the ED setting.
NASA Astrophysics Data System (ADS)
Eshein, Adam; Nguyen, The-Quyen; Radosevich, Andrew J.; Gould, Bradley; Wu, Wenli; Konda, Vani; Yang, Leslie W.; Koons, Ann; Feder, Seth; Valuckaite, Vesta; Roy, Hemant K.; Backman, Vadim
2016-03-01
While there are a plethora of in-vivo spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials, very few techniques have successfully become a fully realized clinical technology. This is primarily due to the stringent demands on a clinical device for widespread implementation. Some of these demands include: simple operation requiring minimal or no training, safe for in-vivo patient use, no disruption to normal clinic workflow, tracking of system performance, warning for measurement abnormality, and meeting all FDA guidelines for medical use. Previously, our group developed a fiber optic probe-based optical sensing technique known as low-coherence enhanced backscattering spectroscopy (LEBS) to quantify tissue ultrastructure in-vivo. Now we have developed this technique for the application of prescreening patients for colonoscopy in a primary care (PC) clinical setting. To meet the stringent requirements for a viable medical device used in a PC clinical setting, we developed several novel components including an automated calibration tool, optical contact sensor for signal acquisition, and a contamination sensor to identify measurements which have been affected by debris. The end result is a state-of-the-art medical device that can be realistically used by a PC physician to assess a person's risk for harboring colorectal precancerous lesions. The pilot study of this system shows great promise with excellent stability and accuracy in identifying high-risk patients. While this system has been designed and optimized for our specific application, the system and design concepts are universal to most in-vivo fiber optic based spectroscopic techniques.
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less
An Ontology-based Architecture for Integration of Clinical Trials Management Applications
Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.
2007-01-01
Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919
The Challenges of Measuring Glycemic Variability
Rodbard, David
2012-01-01
This commentary reviews several of the challenges encountered when attempting to quantify glycemic variability and correlate it with risk of diabetes complications. These challenges include (1) immaturity of the field, including problems of data accuracy, precision, reliability, cost, and availability; (2) larger relative error in the estimates of glycemic variability than in the estimates of the mean glucose; (3) high correlation between glycemic variability and mean glucose level; (4) multiplicity of measures; (5) correlation of the multiple measures; (6) duplication or reinvention of methods; (7) confusion of measures of glycemic variability with measures of quality of glycemic control; (8) the problem of multiple comparisons when assessing relationships among multiple measures of variability and multiple clinical end points; and (9) differing needs for routine clinical practice and clinical research applications. PMID:22768904
Legacy system integration using web technology
NASA Astrophysics Data System (ADS)
Kennedy, Richard L.; Seibert, James A.; Hughes, Chris J.
2000-05-01
As healthcare moves towards a completely digital, multimedia environment there is an opportunity to provide for cost- effective, highly distributed physician access to clinical information including radiology-based imaging. In order to address this opportunity a Universal Clinical Desktop (UCD) system was developed. A UCD provides a single point of entry into an integrated view of all types of clinical data available within a network of disparate healthcare information systems. In order to explore the application of a UCD in a hospital environment, a pilot study was established with the University of California Davis Medical Center using technology from Trilix Information Systems. Within this pilot environment the information systems integrated under the UCD include a radiology information system (RIS), a picture archive and communication system (PACS) and a laboratory information system (LIS).
Shang, Yu; Li, Ting; Yu, Guoqiang
2017-01-01
Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219
Liquid biopsy genotyping in lung cancer: ready for clinical utility?
Ho, Chung-Liang; Wei, Fang; Wong, David T.; Su, Wu-Chou; Lin, Chien-Chung
2017-01-01
Liquid biopsy is a blood test that detects evidence of cancer cells or tumor DNA in the circulation. Despite complicated collection methods and the requirement for technique-dependent platforms, it has generated substantial interest due, in part, to its potential to detect driver oncogenes such as epidermal growth factor receptor (EGFR) mutants in lung cancer. This technology is advancing rapidly and is being incorporated into numerous EGFR tyrosine kinase inhibitor (EGFR-TKI) development programs. It appears ready for integration into clinical care. Recent studies have demonstrated that biological fluids such as saliva and urine can also be used for detecting EGFR mutant DNA through application other user-friendly techniques. This review focuses on the clinical application of liquid biopsies to lung cancer genotyping, including EGFR and other targets of genotype-directed therapy and compares multiple platforms used for liquid biopsy. PMID:28099915
Adaptive change in electrically stimulated muscle: a framework for the design of clinical protocols.
Salmons, Stanley
2009-12-01
Adult mammalian skeletal muscles have a remarkable capacity for adapting to increased use. Although this behavior is familiar from the changes brought about by endurance exercise, it is seen to a much greater extent in the response to long-term neuromuscular stimulation. The associated phenomena include a markedly increased resistance to fatigue, and this is the key to several clinical applications. However, a more rational basis is needed for designing regimes of stimulation that are conducive to an optimal outcome. In this review I examine relevant factors, such as the amount, frequency, and duty cycle of stimulation, the influence of force generation, and the animal model. From these considerations a framework emerges for the design of protocols that yield an overall functional profile appropriate to the application. Three contrasting examples illustrate the issues that need to be addressed clinically.
Linguistic analysis of discourse in aphasia: A review of the literature.
Bryant, Lucy; Ferguson, Alison; Spencer, Elizabeth
This review examined previous research applications of linguistic discourse analysis to assess the language of adults with aphasia. A comprehensive literature search of seven databases identified 165 studies that applied linguistic measures to samples of discourse collected from people with aphasia. Analysis of methodological applications revealed an increase in published research using linguistic discourse analysis over the past 40 years, particularly to measure the generalisation of therapy outcomes to language in use. Narrative language samples were most frequently subject to analysis though all language genres were observed across included studies. A total of 536 different linguistic measures were applied to examine language behaviours. Growth in the research use of linguistic discourse analysis and suggestions that this growth may be reflected in clinical practice requires further investigation. Future research directions are discussed to investigate clinical use of discourse analysis and examine the differences that exist between research and clinical practice.
Pharmacogenomics in early-phase clinical development
Burt, Tal; Dhillon, Savita
2015-01-01
Pharmacogenomics (PGx) offers the promise of utilizing genetic fingerprints to predict individual responses to drugs in terms of safety, efficacy and pharmacokinetics. Early-phase clinical trial PGx applications can identify human genome variations that are meaningful to study design, selection of participants, allocation of resources and clinical research ethics. Results can inform later-phase study design and pipeline developmental decisions. Nevertheless, our review of the clinicaltrials.gov database demonstrates that PGx is rarely used by drug developers. Of the total 323 trials that included PGx as an outcome, 80% have been conducted by academic institutions after initial regulatory approval. Barriers for the application of PGx are discussed. We propose a framework for the role of PGx in early-phase drug development and recommend PGx be universally considered in study design, result interpretation and hypothesis generation for later-phase studies, but PGx results from underpowered studies should not be used by themselves to terminate drug-development programs. PMID:23837482
Hodges, Romilly E; Minich, Deanna M
2015-01-01
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.
Schneider, Robert H.; Walton, Kenneth G.; Salerno, John W.; Nidich, Sanford I.
2008-01-01
This article summarizes the background, rationale, and clinical research on a traditional system of natural health care that may be useful in the prevention of cardiovascular disease (CVD) and promotion of health. Results recently reported indude reductions in blood pressure, psychosocial stress, surrogate markers for atherosclerotic CVD, and mortality. The randomized clinical trials conducted so far have involved applications to both primary and secondary prevention as well as to health promotion more generally. The results support the applicability of this approach for reducing ethnic health disparities associated with environmental and psychosocial stress. Proposed mechanisms for the effects of this traditional system include enhanced resistance to physiological and psychological stress and improvements in homeostatic and self-repair processes. This system may offer clinical and cost effectiveness advantages for health care, particularly in preventive cardiology. PMID:16938913
Hodges, Romilly E.; Minich, Deanna M.
2015-01-01
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent. PMID:26167297
Rethinking cancer nanotheranostics
NASA Astrophysics Data System (ADS)
Chen, Hongmin; Zhang, Weizhong; Zhu, Guizhi; Xie, Jin; Chen, Xiaoyuan
2017-07-01
Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau 'nanotheranostics'. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle-tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.
Harnessing neuroplasticity for clinical applications
Sur, Mriganka; Dobkin, Bruce H.; O'Brien, Charles; Sanger, Terence D.; Trojanowski, John Q.; Rumsey, Judith M.; Hicks, Ramona; Cameron, Judy; Chen, Daofen; Chen, Wen G.; Cohen, Leonardo G.; deCharms, Christopher; Duffy, Charles J.; Eden, Guinevere F.; Fetz, Eberhard E.; Filart, Rosemarie; Freund, Michelle; Grant, Steven J.; Haber, Suzanne; Kalivas, Peter W.; Kolb, Bryan; Kramer, Arthur F.; Lynch, Minda; Mayberg, Helen S.; McQuillen, Patrick S.; Nitkin, Ralph; Pascual-Leone, Alvaro; Reuter-Lorenz, Patricia; Schiff, Nicholas; Sharma, Anu; Shekim, Lana; Stryker, Michael; Sullivan, Edith V.; Vinogradov, Sophia
2011-01-01
Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies. PMID:21482550
hCG: Biological Functions and Clinical Applications
Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-01-01
Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80–85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications. PMID:28937611
hCG: Biological Functions and Clinical Applications.
Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-09-22
Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80-85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications.
Frosini, Francesco; Miniati, Roberto; Grillone, Saverio; Dori, Fabrizio; Gentili, Guido Biffi; Belardinelli, Andrea
2016-11-14
The following study proposes and tests an integrated methodology involving Health Technology Assessment (HTA) and Failure Modes, Effects and Criticality Analysis (FMECA) for the assessment of specific aspects related to robotic surgery involving safety, process and technology. The integrated methodology consists of the application of specific techniques coming from the HTA joined to the aid of the most typical models from reliability engineering such as FMEA/FMECA. The study has also included in-site data collection and interviews to medical personnel. The total number of robotic procedures included in the analysis was 44: 28 for urology and 16 for general surgery. The main outcomes refer to the comparative evaluation between robotic, laparoscopic and open surgery. Risk analysis and mitigation interventions come from FMECA application. The small sample size available for the study represents an important bias, especially for the clinical outcomes reliability. Despite this, the study seems to confirm the better trend for robotics' surgical times with comparison to the open technique as well as confirming the robotics' clinical benefits in urology. More complex situation is observed for general surgery, where robotics' clinical benefits directly measured are the lowest blood transfusion rate.
Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes
No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala
2017-01-01
Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513
Kim, Gyuri; Bae, Ji Cheol; Yi, Byoung Kee; Hur, Kyu Yeon; Chang, Dong Kyung; Lee, Moon-Kyu; Kim, Jae Hyeon; Jin, Sang-Man
2017-07-18
A Personal Health Record (PHR) is an online application that allows patients to access, manage, and share their health data. PHRs not only enhance shared decision making with healthcare providers, but also enable remote monitoring and at-home-collection of detailed data. The benefits of PHRs can be maximized in insulin dose adjustment for patients starting or intensifying insulin regimens, as frequent self-monitoring of glucose, self-adjustment of insulin dose, and precise at-home data collection during the visit-to-visit period are important for glycemic control. The aim of this study is to examine the efficacy and safety of insulin dose adjustment based on a smartphone PHR application in patients with diabetes mellitus (DM) and to confirm the validity and stability of an information and communication technology (ICT)-based centralized clinical trial monitoring system. This is a 24-week, open-label, randomized, multi-center trial. There are three follow-up measures: baseline, post-intervention at week 12, and at week 24. Subjects diagnosed with type 1 DM, type 2 DM, and/or post-transplant DM who initiate basal insulin or intensify their insulin regimen to a basal-bolus regimen are included. After education on insulin dose titration and prevention for hypoglycemia and a 1-week acclimation period, subjects are randomized in a 1:1 ratio to either an ICT-based intervention group or a conventional intervention group. Subjects in the conventional intervention group will save and send their health information to the server via a PHR application, whereas those in ICT-based intervention group will receive additional algorithm-based feedback messages. The health information includes level of blood glucose, insulin dose, details on hypoglycemia, food diary, and step count. The primary outcome will be the proportion of patients who reach an optimal insulin dose within 12 weeks of study enrollment, without severe hypoglycemia or unscheduled clinic visits. This clinical trial will reveal whether insulin dose adjustment based on a smartphone PHR application can facilitate the optimization of insulin doses in patients with DM. In addition, the process evaluation will provide information about the validity and stability of the ICT-based centralized clinical trial monitoring system in this research field. Clinicaltrials.gov NCT 03112343 . Registered on 12 April 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, Ravinder; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com; DeWerd, Larry A.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications andmore » includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. Nuclear Regulatory Commission, U.S. Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, U.S. Food and Drug Administration, European Commission for CE Marking (Conformité Européenne), and institutional review boards and radiation safety committees.« less
Vischer, N; Pfeiffer, C; Joller, A; Klingmann, I; Ka, A; Kpormegbe, S K; Burri, C
2016-08-01
To explore the advantages and challenges of working with the Good Clinical Practice (GCP)-International Conference of Harmonization (ICH) E6 guideline and its interpretation from the perspective of clinical trial teams based in sub-Saharan Africa. We conducted 60 key informant interviews with clinical trial staff at different levels in clinical research centres in Kenya, Ghana, Burkina Faso and Senegal and thematically analysed the responses. Clinical trial teams perceived working with ICH-GCP as highly advantageous and regarded ICH-GCP as applicable to their setting and efficiently applied. Only for informed consent did some clinical trial staff (one-third) perceive the guideline as insufficiently applicable. Specific challenges included meeting the requirements for written and individual consent, conditions for impartial witnesses for illiterates or legally acceptable representatives for children, guaranteeing voluntary participation and ensuring full understanding of the consent given. It was deemed important to have ICH-GCP compliance monitored by relevant ethics committees and regulatory authorities, without having guidelines applied overcautiously. Clinical trial teams in sub-Saharan Africa perceived GCP as a helpful guideline, despite having been developed by northern organisations and despite the high administrative burden of implementing it. To mitigate consent challenges, we suggest adapting GCP and making use of the flexibility it offers. © 2016 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.