Sample records for clinical ct system

  1. Rigor in electronic health record knowledge representation: Lessons learned from a SNOMED CT clinical content encoding exercise.

    PubMed

    Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G

    2016-01-01

    Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.

  2. A patient-mount navigated intervention system for spinal diseases and its clinical trial on percutaneous pulsed radiofrequency stimulation of dorsal root ganglion.

    PubMed

    Yang, Chi-Lin; Yang, Been-Der; Lin, Mu-Lien; Wang, Yao-Hung; Wang, Jaw-Lin

    2010-10-01

    Development of a patient-mount navigated intervention (PaMNI) system for spinal diseases. An in vivo clinical human trial was conducted to validate this system. To verify the feasibility of the PaMNI system with the clinical trial on percutaneous pulsed radiofrequency stimulation of dorsal root ganglion (PRF-DRG). Two major image guiding techniques, i.e., computed tomography (CT)-guided and fluoro-guided, were used for spinal intervention. The CT-guided technique provides high spatial resolution, and is claimed to be more accurate than the fluoro-guided technique. Nevertheless, the CT-guided intervention usually reaches higher radiograph exposure than the fluoro-guided counterpart. Some navigated intervention systems were developed to reduce the radiation of CT-guided intervention. Nevertheless, these systems were not popularly used due to the longer operation time, a new protocol for surgeons, and the availability of such a system. The PaMNI system includes 3 components, i.e., a patient-mount miniature tracking unit, an auto-registered reference frame unit, and a user-friendly image processing unit. The PRF-DRG treatment was conducted to find the clinical feasibility of this system. The in vivo clinical trial showed that the accuracy, visual analog scale evaluation after surgery, and radiograph exposure of the PaMNI-guided technique are comparable to the one of conventional fluoro-guided technique, while the operation time is increased by 5 minutes. Combining the virtues of fluoroscopy and CT-guided techniques, our navigation system is operated like a virtual fluoroscopy with augmented CT images. This system elevates the performance of CT-guided intervention and reduces surgeons' radiation exposure risk to a minimum, while keeping low radiation dose to patients like its fluoro-guided counterpart. The clinical trial of PRF-DRG treatment showed the clinical feasibility and efficacy of this system.

  3. The Use of Automated SNOMED CT Clinical Coding in Clinical Decision Support Systems for Preventive Care.

    PubMed

    Al-Hablani, Bader

    2017-01-01

    The objective of this study is to discuss and analyze the use of automated SNOMED CT clinical coding in clinical decision support systems (CDSSs) for preventive care. The central question that this study seeks to answer is whether the utilization of SNOMED CT in CDSSs can improve preventive care. PubMed, Google Scholar, and Cochrane Library were searched for articles published in English between 2001 and 2012 on SNOMED CT, CDSS, and preventive care. Outcome measures were the sensitivity or specificity of SNOMED CT coded data and the positive predictive value or negative predictive value of SNOMED CT coded data. Additionally, we documented the publication year, research question, study design, results, and conclusions of these studies. The reviewed studies suggested that SNOMED CT successfully represents clinical terms and negated clinical terms. The use of SNOMED CT in CDSS can be considered to provide an answer to the problem of medical errors as well as for preventive care in general. Enhancement of the modifiers and synonyms found in SNOMED CT will be necessary to improve the expected outcome of the integration of SNOMED CT with CDSS. Moreover, the application of the tree-augmented naïve (TAN) Bayesian network method can be considered the best technique to search SNOMED CT data and, consequently, to help improve preventive health services.

  4. The Use of Automated SNOMED CT Clinical Coding in Clinical Decision Support Systems for Preventive Care

    PubMed Central

    Al-Hablani, Bader

    2017-01-01

    Objective The objective of this study is to discuss and analyze the use of automated SNOMED CT clinical coding in clinical decision support systems (CDSSs) for preventive care. The central question that this study seeks to answer is whether the utilization of SNOMED CT in CDSSs can improve preventive care. Method PubMed, Google Scholar, and Cochrane Library were searched for articles published in English between 2001 and 2012 on SNOMED CT, CDSS, and preventive care. Outcome Measures Outcome measures were the sensitivity or specificity of SNOMED CT coded data and the positive predictive value or negative predictive value of SNOMED CT coded data. Additionally, we documented the publication year, research question, study design, results, and conclusions of these studies. Results The reviewed studies suggested that SNOMED CT successfully represents clinical terms and negated clinical terms. Conclusion The use of SNOMED CT in CDSS can be considered to provide an answer to the problem of medical errors as well as for preventive care in general. Enhancement of the modifiers and synonyms found in SNOMED CT will be necessary to improve the expected outcome of the integration of SNOMED CT with CDSS. Moreover, the application of the tree-augmented naïve (TAN) Bayesian network method can be considered the best technique to search SNOMED CT data and, consequently, to help improve preventive health services. PMID:28566995

  5. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans.

    PubMed

    Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki

    2012-10-01

    To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p<0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p<0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. What is Computed Tomography?

    MedlinePlus

    ... CT Imaging System back to top Advances in Technology and Clinical Practice Today most CT systems are ... in relatively less time. Another advancement in the technology is electron beam CT, also known as EBCT. ...

  7. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  8. Automated mapping of clinical terms into SNOMED-CT. An application to codify procedures in pathology.

    PubMed

    Allones, J L; Martinez, D; Taboada, M

    2014-10-01

    Clinical terminologies are considered a key technology for capturing clinical data in a precise and standardized manner, which is critical to accurately exchange information among different applications, medical records and decision support systems. An important step to promote the real use of clinical terminologies, such as SNOMED-CT, is to facilitate the process of finding mappings between local terms of medical records and concepts of terminologies. In this paper, we propose a mapping tool to discover text-to-concept mappings in SNOMED-CT. Name-based techniques were combined with a query expansion system to generate alternative search terms, and with a strategy to analyze and take advantage of the semantic relationships of the SNOMED-CT concepts. The developed tool was evaluated and compared to the search services provided by two SNOMED-CT browsers. Our tool automatically mapped clinical terms from a Spanish glossary of procedures in pathology with 88.0% precision and 51.4% recall, providing a substantial improvement of recall (28% and 60%) over other publicly accessible mapping services. The improvements reached by the mapping tool are encouraging. Our results demonstrate the feasibility of accurately mapping clinical glossaries to SNOMED-CT concepts, by means a combination of structural, query expansion and named-based techniques. We have shown that SNOMED-CT is a great source of knowledge to infer synonyms for the medical domain. Results show that an automated query expansion system overcomes the challenge of vocabulary mismatch partially.

  9. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    NASA Astrophysics Data System (ADS)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  10. The origins of SPECT and SPECT/CT.

    PubMed

    Hutton, Brian F

    2014-05-01

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.

  11. A method for encoding clinical datasets with SNOMED CT.

    PubMed

    Lee, Dennis H; Lau, Francis Y; Quan, Hue

    2010-09-17

    Over the past decade there has been a growing body of literature on how the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) can be implemented and used in different clinical settings. Yet, for those charged with incorporating SNOMED CT into their organisation's clinical applications and vocabulary systems, there are few detailed encoding instructions and examples available to show how this can be done and the issues involved. This paper describes a heuristic method that can be used to encode clinical terms in SNOMED CT and an illustration of how it was applied to encode an existing palliative care dataset. The encoding process involves: identifying input data items; cleaning the data items; encoding the cleaned data items; and exporting the encoded terms as output term sets. Four outputs are produced: the SNOMED CT reference set; interface terminology set; SNOMED CT extension set and unencodeable term set. The original palliative care database contained 211 data elements, 145 coded values and 37,248 free text values. We were able to encode ~84% of the terms, another ~8% require further encoding and verification while terms that had a frequency of fewer than five were not encoded (~7%). From the pilot, it would seem our SNOMED CT encoding method has the potential to become a general purpose terminology encoding approach that can be used in different clinical systems.

  12. Fiber optic video monitoring system for remote CT/MR scanners clinically accepted

    NASA Astrophysics Data System (ADS)

    Tecotzky, Raymond H.; Bazzill, Todd M.; Eldredge, Sandra L.; Tagawa, James; Sayre, James W.

    1992-07-01

    With the proliferation of CT travel to distant scanners to review images before their patients can be released. We designed a fiber-optic broadband video system to transmit images from seven scanner consoles to fourteen remote monitoring stations in real time. This system has been used clinically by radiologists for over one years. We designed and conducted a user survey to categorize the levels of system use by section (Chest, GI, GU, Bone, Neuro, Peds, etc.), to measure operational utilization and acceptance of the system into the clinical environment, to clarify the system''s importance as a clinical tool for saving radiologists travel-time to distant CT the system''s performance and limitations as a diagnostic tool. The study was administered directly to radiologists using a printed survey form. The results of the survey''s compiled data show a high percentage of system usage by a wide spectrum of radiologists. Clearly, this system has been accepted into the clinical environment as a highly valued diagnostic tool in terms of time savings and functional flexibility.

  13. Evaluation of the clinical benefit of an electromagnetic navigation system for CT-guided interventional radiology procedures in the thoraco-abdominal region compared with conventional CT guidance (CTNAV II): study protocol for a randomised controlled trial.

    PubMed

    Rouchy, R C; Moreau-Gaudry, A; Chipon, E; Aubry, S; Pazart, L; Lapuyade, B; Durand, M; Hajjam, M; Pottier, S; Renard, B; Logier, R; Orry, X; Cherifi, A; Quehen, E; Kervio, G; Favelle, O; Patat, F; De Kerviler, E; Hughes, C; Medici, M; Ghelfi, J; Mounier, A; Bricault, I

    2017-07-06

    Interventional radiology includes a range of minimally invasive image-guided diagnostic and therapeutic procedures that have become routine clinical practice. Each procedure involves a percutaneous needle insertion, often guided using computed tomography (CT) because of its availability and usability. However, procedures remain complicated, in particular when an obstacle must be avoided, meaning that an oblique trajectory is required. Navigation systems track the operator's instruments, meaning the position and progression of the instruments are visualised in real time on the patient's images. A novel electromagnetic navigation system for CT-guided interventional procedures (IMACTIS-CT®) has been developed, and a previous clinical trial demonstrated improved needle placement accuracy in navigation-assisted procedures. In the present trial, we are evaluating the clinical benefit of the navigation system during the needle insertion step of CT-guided procedures in the thoraco-abdominal region. This study is designed as an open, multicentre, prospective, randomised, controlled interventional clinical trial and is structured as a standard two-arm, parallel-design, individually randomised trial. A maximum of 500 patients will be enrolled. In the experimental arm (navigation system), the procedures are carried out using navigation assistance, and in the active comparator arm (CT), the procedures are carried out with conventional CT guidance. The randomisation is stratified by centre and by the expected difficulty of the procedure. The primary outcome of the trial is a combined criterion to assess the safety (number of serious adverse events), efficacy (number of targets reached) and performance (number of control scans acquired) of navigation-assisted, CT-guided procedures as evaluated by a blinded radiologist and confirmed by an expert committee in case of discordance. The secondary outcomes are (1) the duration of the procedure, (2) the satisfaction of the operator and (3) the irradiation dose delivered, with (4) subgroup analysis according to the expected difficulty of the procedure, as well as an evaluation of (5) the usability of the device. This trial addresses the lack of published high-level evidence studies in which navigation-assisted CT-guided interventional procedures are evaluated. This trial is important because it addresses the problems associated with conventional CT guidance and is particularly relevant because the number of interventional radiology procedures carried out in routine clinical practice is increasing. ClinicalTrials.gov identifier: NCT01896219 . Registered on 5 July 2013.

  14. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less

  15. Commissioning an in-room mobile CT for adaptive proton therapy with a compact proton system.

    PubMed

    Oliver, Jasmine A; Zeidan, Omar; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R

    2018-05-01

    To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO-specific CT-stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low-density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric-based SPR curves produced over-ranged proton beams when large volumes of low-density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curve's low-density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric-based AIRO SPR curve and the "dose-adjusted" SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single-field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system. © 2018 Orlando Health UF Health Cancer Center. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  17. Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: An observational, multicenter study

    PubMed Central

    Kivisaari, Riku; Svensson, Mikael; Skrifvars, Markus B.

    2017-01-01

    Background Traumatic brain injury (TBI) is a major contributor to morbidity and mortality. Computerized tomography (CT) scanning of the brain is essential for diagnostic screening of intracranial injuries in need of neurosurgical intervention, but may also provide information concerning patient prognosis and enable baseline risk stratification in clinical trials. Novel CT scoring systems have been developed to improve current prognostic models, including the Stockholm and Helsinki CT scores, but so far have not been extensively validated. The primary aim of this study was to evaluate the Stockholm and Helsinki CT scores for predicting functional outcome, in comparison with the Rotterdam CT score and Marshall CT classification. The secondary aims were to assess which individual components of the CT scores best predict outcome and what additional prognostic value the CT scoring systems contribute to a clinical prognostic model. Methods and findings TBI patients requiring neuro-intensive care and not included in the initial creation of the Stockholm and Helsinki CT scoring systems were retrospectively included from prospectively collected data at the Karolinska University Hospital (n = 720 from 1 January 2005 to 31 December 2014) and Helsinki University Hospital (n = 395 from 1 January 2013 to 31 December 2014), totaling 1,115 patients. The Marshall CT classification and the Rotterdam, Stockholm, and Helsinki CT scores were assessed using the admission CT scans. Known outcome predictors at admission were acquired (age, pupil responsiveness, admission Glasgow Coma Scale, glucose level, and hemoglobin level) and used in univariate, and multivariable, regression models to predict long-term functional outcome (dichotomizations of the Glasgow Outcome Scale [GOS]). In total, 478 patients (43%) had an unfavorable outcome (GOS 1–3). In the combined cohort, overall prognostic performance was more accurate for the Stockholm CT score (Nagelkerke’s pseudo-R2 range 0.24–0.28) and the Helsinki CT score (0.18–0.22) than for the Rotterdam CT score (0.13–0.15) and Marshall CT classification (0.03–0.05). Moreover, the Stockholm and Helsinki CT scores added the most independent prognostic value in the presence of other known clinical outcome predictors in TBI (6% and 4%, respectively). The aggregate traumatic subarachnoid hemorrhage (tSAH) component of the Stockholm CT score was the strongest predictor of unfavorable outcome. The main limitations were the retrospective nature of the study, missing patient information, and the varying follow-up time between the centers. Conclusions The Stockholm and Helsinki CT scores provide more information on the damage sustained, and give a more accurate outcome prediction, than earlier classification systems. The strong independent predictive value of tSAH may reflect an underrated component of TBI pathophysiology. A change to these newer CT scoring systems may be warranted. PMID:28771476

  18. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large animals and humans for HIFU-induced ablation and drug delivery. Integrated CT-guided focused ultrasound holds promise for tissue ablation, enhancing local drug delivery, and CT thermometry for monitoring ablation in near real-time.

  19. A prototype table-top inverse-geometry volumetric CT system.

    PubMed

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J

    2006-06-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.

  20. MR-OPERA: A Multicenter/Multivendor Validation of Magnetic Resonance Imaging-Only Prostate Treatment Planning Using Synthetic Computed Tomography Images.

    PubMed

    Persson, Emilia; Gustafsson, Christian; Nordström, Fredrik; Sohlin, Maja; Gunnlaugsson, Adalsteinn; Petruson, Karin; Rintelä, Niina; Hed, Kristoffer; Blomqvist, Lennart; Zackrisson, Björn; Nyholm, Tufve; Olsson, Lars E; Siversson, Carl; Jonsson, Joakim

    2017-11-01

    To validate the dosimetric accuracy and clinical robustness of a commercially available software for magnetic resonance (MR) to synthetic computed tomography (sCT) conversion, in an MR imaging-only workflow for 170 prostate cancer patients. The 4 participating centers had MriPlanner (Spectronic Medical), an atlas-based sCT generation software, installed as a cloud-based service. A T2-weighted MR sequence, covering the body contour, was added to the clinical protocol. The MR images were sent from the MR scanner workstation to the MriPlanner platform. The sCT was automatically returned to the treatment planning system. Four MR scanners and 2 magnetic field strengths were included in the study. For each patient, a CT-treatment plan was created and approved according to clinical practice. The sCT was rigidly registered to the CT, and the clinical treatment plan was recalculated on the sCT. The dose distributions from the CT plan and the sCT plan were compared according to a set of dose-volume histogram parameters and gamma evaluation. Treatment techniques included volumetric modulated arc therapy, intensity modulated radiation therapy, and conventional treatment using 2 treatment planning systems and different dose calculation algorithms. The overall (multicenter/multivendor) mean dose differences between sCT and CT dose distributions were below 0.3% for all evaluated organs and targets. Gamma evaluation showed a mean pass rate of 99.12% (0.63%, 1 SD) in the complete body volume and 99.97% (0.13%, 1 SD) in the planning target volume using a 2%/2-mm global gamma criteria. Results of the study show that the sCT conversion method can be used clinically, with minimal differences between sCT and CT dose distributions for target and relevant organs at risk. The small differences seen are consistent between centers, indicating that an MR imaging-only workflow using MriPlanner is robust for a variety of field strengths, vendors, and treatment techniques. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Co-registered perfusion SPECT/CT: utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates.

    PubMed

    Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2010-06-01

    To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1s (FEV(1)) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60

  2. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  3. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less

  4. SU-F-P-54: Guidelines to Check Image Registration QA of a Clinical Deformation Registration Software: A Single Institution Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, G; Souri, S; Rea, A

    Purpose: The objective of this study is to verify and analyze the accuracy of a clinical deformable image registration (DIR) software. Methods: To test clinical DIR software qualitatively and quantitatively, we focused on lung radiotherapy and analyzed a single (Lung) patient CT scan. Artificial anatomical changes were applied to account for daily variations during the course of treatment including the planning target volume (PTV) and organs at risk (OAR). The primary CT (pCT) and the structure set (pST) was deformed with commercial tool (ImSimQA-Oncology Systems Limited) and after artificial deformation (dCT and dST) sent to another commercial tool (VelocityAI-Varian Medicalmore » Systems). In Velocity, the deformed CT and structures (dCT and dST) were inversely deformed back to original primary CT (dbpCT and dbpST). We compared the dbpST and pST structure sets using similarity metrics. Furthermore, a binary deformation field vector (BDF) was created and sent to ImSimQA software for comparison with known “ground truth” deformation vector fields (DVF). Results: An image similarity comparison was made by using “ground truth” DVF and “deformed output” BDF with an output of normalized “cross correlation (CC)” and “mutual information (MI)” in ImSimQA software. Results for the lung case were MI=0.66 and CC=0.99. The artificial structure deformation in both pST and dbpST was analyzed using DICE coefficient, mean distance to conformity (MDC) and deformation field error volume histogram (DFEVH) by comparing them before and after inverse deformation. We have noticed inadequate structure match for CTV, ITV and PTV due to close proximity of heart and overall affected by lung expansion. Conclusion: We have seen similarity between pCT and dbpCT but not so well between pST and dbpST, because of inadequate structure deformation in clinical DIR system. This system based quality assurance test will prepare us for adopting the guidelines of upcoming AAPM task group 132 protocol.« less

  5. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept.

    PubMed

    Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian

    To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Report on the development and application of PET/CT in mainland China.

    PubMed

    Chen, Yumei; Chen, Ruohua; Zhou, Xiang; Liu, Jianjun; Huang, Gang

    2017-09-08

    To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose ( 18 F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11 C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China.

  7. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    PubMed

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  8. Prognosis of canine patients with nasal tumors according to modified clinical stages based on computed tomography: a retrospective study.

    PubMed

    Kondo, Yumi; Matsunaga, Satoru; Mochizuki, Manabu; Kadosawa, Tsuyoshi; Nakagawa, Takayuki; Nishimura, Ryohei; Sasaki, Nobuo

    2008-03-01

    To evaluate the efficacy of clinical staging based on computed tomography (CT) imaging over the World Health Organization (WHO) staging system based on radiography for nasal tumors in dogs, a retrospective study was conducted. This study used 112 dogs that had nasal tumors; they had undergone radiography and CT and had been histologically confirmed as having nasal tumors. Among 112 dogs, 85 (75.9%) were diagnosed as adenocarcinoma. Then they were analyzed for survival time according to each staging system. More than 70% of the patients with adenocarcinoma were classified as having WHO stage III. The patients classified under WHO stage II tended to survive longer than those classified under WHO stage III. Dogs classified under WHO stage III were further grouped into CT stages III and IV, and CT stage III patients had a significantly longer survival time than CT stage IV patients. In addition, patients treated with a combination of surgery and radiation had a significantly longer survival time than the patients who did not receive any treatment in CT stage III. On the other hand, different treatment modalities did not show a significant difference in the survival time of CT stage IV dogs. The results suggest that WHO stage III dogs may have various levels of tumor progression, indicating that the CT staging system may be more accurate than the WHO staging system.

  9. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.

  10. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.

  11. Can corneal pannus with trachomatous inflammation--follicular be used in combination as an improved specific clinical sign for current ocular Chlamydia trachomatis infection?

    PubMed

    Derrick, Tamsyn; Holland, Martin J; Cassama, Eunice; Markham-David, Rod; Nabicassa, Meno; Marks, Michael; Bailey, Robin L; Last, Anna R

    2016-01-27

    Trachoma is a blinding disease caused by conjunctival infection with Chlamydia trachomatis (Ct). Mass drug administration (MDA) for trachoma control is administered based on the population prevalence of the clinical sign of trachomatis inflammation - follicular (TF). However, the prevalence of TF is often much higher than the prevalence of Ct infection. The addition of a clinical sign specific for current ocular Ct infection to TF could save resources by preventing unnecessary additional rounds of MDA. Study participants were aged between 1-9 years and resided on 7 islands of the Bijagos Archipelago, Guinea Bissau. Clinical grades for trachoma and corneal pannus and ocular swab samples were taken from 80 children with TF and from 81 matched controls without clinical evidence of trachoma. Ct infection testing was performed using droplet digital PCR. New pannus was significantly associated with Ct infection after adjustment for TF (P = 0.009, OR = 3.65 (1.4-9.8)). Amongst individuals with TF, individuals with new pannus had significantly more Ct infection than individuals with none or old pannus (75.0% vs 45.5%, Chi(2) P = 0.01). TF and new pannus together provide a highly specific (91.7%), but a poorly sensitive (51.9%) clinical diagnostic test for Ct infection. As we move towards trachoma elimination it may be desirable to use a combined clinical sign (new pannus in addition to TF) that is highly specific for current ocular Ct infection. This would allow national health systems to obtain a more accurate estimate of Ct population prevalence to inform further need for MDA without the expense of Ct molecular diagnostics, which are currently unaffordable in programmatic contexts.

  12. SNOMED CT module-driven clinical archetype management.

    PubMed

    Allones, J L; Taboada, M; Martinez, D; Lozano, R; Sobrido, M J

    2013-06-01

    To explore semantic search to improve management and user navigation in clinical archetype repositories. In order to support semantic searches across archetypes, an automated method based on SNOMED CT modularization is implemented to transform clinical archetypes into SNOMED CT extracts. Concurrently, query terms are converted into SNOMED CT concepts using the search engine Lucene. Retrieval is then carried out by matching query concepts with the corresponding SNOMED CT segments. A test collection of the 16 clinical archetypes, including over 250 terms, and a subset of 55 clinical terms from two medical dictionaries, MediLexicon and MedlinePlus, were used to test our method. The keyword-based service supported by the OpenEHR repository offered us a benchmark to evaluate the enhancement of performance. In total, our approach reached 97.4% precision and 69.1% recall, providing a substantial improvement of recall (more than 70%) compared to the benchmark. Exploiting medical domain knowledge from ontologies such as SNOMED CT may overcome some limitations of the keyword-based systems and thus improve the search experience of repository users. An automated approach based on ontology segmentation is an efficient and feasible way for supporting modeling, management and user navigation in clinical archetype repositories. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    PubMed Central

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDIvol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics only increased slightly for radiographic modalities and for chest tomosynthesis. Effective and organ doses normalized to mAs all illustrated an exponential decrease with increasing patient size. As a surface organ, breast doses had less correlation with body size than that of lungs or liver. Conclusions: Patient body size has a much greater impact on radiation dose of chest CT examinations than chest radiography and tomosynthesis. The size of a patient should be considered when choosing the best thoracic imaging modality. PMID:24506654

  14. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  15. Report on the development and application of PET/CT in mainland China

    PubMed Central

    Zhou, Xiang; Liu, Jianjun; Huang, Gang

    2017-01-01

    Purpose To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Methods Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. Results At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose (18F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. Conclusions This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China. PMID:28969081

  16. Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)

    NASA Astrophysics Data System (ADS)

    Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie

    2011-03-01

    In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.

  17. Lightweight Expression of Granular Objects (LEGO) Content Modeling Using the SNOMED CT Observables Model to Represent Nursing Assessment Data.

    PubMed

    Johnson, Christie

    2016-01-01

    This poster presentation presents a content modeling strategy using the SNOMED CT Observable Model to represent large amounts of detailed clinical data in a consistent and computable manner that can support multiple use cases. Lightweight Expression of Granular Objects (LEGOs) represent question/answer pairs on clinical data collection forms, where a question is modeled by a (usually) post-coordinated SNOMED CT expression. LEGOs transform electronic patient data into a normalized consumable, which means that the expressions can be treated as extensions of the SNOMED CT hierarchies for the purpose of performing subsumption queries and other analytics. Utilizing the LEGO approach for modeling clinical data obtained from a nursing admission assessment provides a foundation for data exchange across disparate information systems and software applications. Clinical data exchange of computable LEGO patient information enables the development of more refined data analytics, data storage and clinical decision support.

  18. A practical method to standardise and optimise the Philips DoseRight 2.0 CT automatic exposure control system.

    PubMed

    Wood, T J; Moore, C S; Stephens, A; Saunderson, J R; Beavis, A W

    2015-09-01

    Given the increasing use of computed tomography (CT) in the UK over the last 30 years, it is essential to ensure that all imaging protocols are optimised to keep radiation doses as low as reasonably practicable, consistent with the intended clinical task. However, the complexity of modern CT equipment can make this task difficult to achieve in practice. Recent results of local patient dose audits have shown discrepancies between two Philips CT scanners that use the DoseRight 2.0 automatic exposure control (AEC) system in the 'automatic' mode of operation. The use of this system can result in drifting dose and image quality performance over time as it is designed to evolve based on operator technique. The purpose of this study was to develop a practical technique for configuring examination protocols on four CT scanners that use the DoseRight 2.0 AEC system in the 'manual' mode of operation. This method used a uniform phantom to generate reference images which form the basis for how the AEC system calculates exposure factors for any given patient. The results of this study have demonstrated excellent agreement in the configuration of the CT scanners in terms of average patient dose and image quality when using this technique. This work highlights the importance of CT protocol harmonisation in a modern Radiology department to ensure both consistent image quality and radiation dose. Following this study, the average radiation dose for a range of CT examinations has been reduced without any negative impact on clinical image quality.

  19. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  20. CT imaging, then and now: a 30-year review of the economics of computed tomography.

    PubMed

    Stockburger, Wayne T

    2004-01-01

    The first computed tomography (CT) scanner in the US was installed in June 1973 at the Mayo Clinic in Rochester, MN. By the end of 1974, 44 similar systems had been installed at medical facilities around the country. Less than 4 years after the introduction of CT imaging in the US, at least 400 CT systems had been installed. The practice of pneumoencephalography was eliminated. The use of nuclear medicine brain scans significantly diminished. At the time, CT imaging was limited to head studies, but with the introduction of contrast agents and full body CT systems the changes in the practice of medicine became even more significant. CT imaging was hailed by the US medical community as the greatest advance in radiology since the discovery of x-rays. But the rapid spread of CT systems, their frequency of use, and the associated increase in healthcare costs combined to draw the attention of decision-makers within the federal and state governments, specifically to establish policies regarding the acquisition and use of diagnostic technologies. Initially, CT imaging was limited to neurological applications, but in the 30 years since its inception, capabilities and applications have been expanded as a result of the advancements in technology and software development. While neurological disorders are still a common reason for CT imaging, many other medical disciplines (oncology, emergency medicine, orthopedics, etc.) have found CT imaging to be the definitive tool for diagnostic information. As such, the clinical demand for CT imaging has steadily increased. Economically, the development of CT imaging has been one of success, even in the face of governmental action to restrict its acquisition and utilization by healthcare facilities. CTimaging has increased the cost of healthcare, but in turn has added unquantifiable value to the practice of medicine in the US.

  1. [CT morphometry for calcaneal fractures and comparison of the Zwipp and Sanders classifications].

    PubMed

    Andermahr, J; Jesch, A B; Helling, H J; Jubel, A; Fischbach, R; Rehm, K E

    2002-01-01

    The aim of the study is to correlate the CT-morphological changes of fractured calcaneus and the classifications of Zwipp and Sanders with the clinical outcome. In a retrospective clinical study, the preoperative CT scans of 75 calcaneal fractures were analysed. The morphometry of the fractures was determined by measuring height, length diameter and calcaneo-cuboidal angle in comparison to the intact contralateral side. At a mean of 38 months after trauma 44 patients were clinically followed-up. The data of CT image morphometry were correlated with the severity of fracture classified by Zwipp or Sanders as well as with the functional outcome. There was a good correlation between the fracture classifications and the morphometric data. Both fracture classifying systems have a predictive impact for functional outcome. The more exacting and accurate Zwipp classification considers the most important cofactors like involvement of the calcaneo-cuboidal joint, soft tissue damage, additional fractures etc. The Sanders classification is easier to use during clinical routine. The Zwipp classification includes more relevant cofactors (fracture of the calcaneo-cuboidal-joint, soft tissue swelling, etc.) and presents a higher correlation to the choice of therapy. Both classification systems present a prognostic impact concerning the clinical outcome.

  2. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.

    PubMed

    Tomita, Naofumi; Cheung, Yvonne Y; Hassanpour, Saeed

    2018-07-01

    Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. WITH: a system to write clinical trials using XML and RDBMS.

    PubMed Central

    Fazi, Paola; Luzi, Daniela; Manco, Mariarosaria; Ricci, Fabrizio L.; Toffoli, Giovanni; Vignetti, Marco

    2002-01-01

    The paper illustrates the system WITH (Write on Internet clinical Trials in Haematology) which supports the writing of a clinical trial (CT) document. The requirements of this system have been defined analysing the writing process of a CT and then modelling the content of its sections together with their logical and temporal relationships. The system WITH allows: a) editing the document text; b) re-using the text; and c) facilitating the cooperation and the collaborative writing. It is based on XML mark-up language, and on a RDBMS. This choice guarantees: a) process standardisation; b) process management; c) efficient delivery of information-based tasks; and d) explicit focus on process design. PMID:12463823

  4. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    PubMed

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definiummore » 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics only increased slightly for radiographic modalities and for chest tomosynthesis. Effective and organ doses normalized to mAs all illustrated an exponential decrease with increasing patient size. As a surface organ, breast doses had less correlation with body size than that of lungs or liver. Conclusions: Patient body size has a much greater impact on radiation dose of chest CT examinations than chest radiography and tomosynthesis. The size of a patient should be considered when choosing the best thoracic imaging modality.« less

  6. Likelihood of aneurysmal subarachnoid haemorrhage in patients with normal unenhanced CT, CSF xanthochromia on spectrophotometry and negative CT angiography.

    PubMed

    Rana, A K; Turner, H E; Deans, K A

    2013-01-01

    Patients with suspected subarachnoid haemorrhage, a normal noncontrast computed tomography (CT) and cerebrospinal fluid (CSF) evidence of haemoglobin breakdown products often undergo CT angiography (CTA). If this is normal, then invasive catheter angiography may be offered. In current clinical practice, haemoglobin breakdown products are detected by spectrophotometry rather than visible xanthochromia, and CTA is performed on multidetector scanners. The aim of this study was to determine if such patients should still have a catheter angiography, given the associated risks. Patients positive for CSF spectrophotometry (n=26) were retrospectively identified from the clinical biochemistry information system and imaging data from the electronic radiology records were reviewed. Discharge letters were consulted to relate the biochemistry and radiology results to the final diagnosis. 15 patients with CT angiography were found. Nine patients had normal CT angiography. No causative aneurysms had been missed. One patient had small, coincidental aneurysms missed on initial reading of the CTA. The likelihood of a clinically significant aneurysm in a patient who is CT negative, lumbar puncture positive and CTA negative is low. Double reporting of negative CT angiograms may be advisable.

  7. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    PubMed

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility of dual-energy CT in disease management.

  8. Targeted treatment in primary care for low back pain: the treatment system and clinical training programmes used in the IMPaCT Back study (ISRCTN 55174281)

    PubMed Central

    Sowden, Gail; Hill, Jonathan C; Konstantinou, Kika; Khanna, Meenee; Main, Chris J; Salmon, Paula; Somerville, Simon; Wathall, Simon; Foster, Nadine E

    2012-01-01

    Background. The IMPaCT Back study (IMplementation to improve Patient Care through Targeted treatment for Back pain) is a quality improvement study which aims to investigate the effects of introducing and supporting a subgrouping for targeted treatment system for patients with low back pain (LBP) in primary care. This paper details the subgrouping for targeted treatment system and the clinical training and mentoring programmes aimed at equipping clinicians to deliver it. The subgrouping and targeted treatment system. This system differs from ‘one-size fits all’ usual practice as it suggests that first contact health care practitioners should systematically allocate LBP patients to one of the three subgroups according to key modifiable prognostic indicators for chronicity. Patients in each subgroup (those at low, medium or high risk of chronicity) are then managed according to a targeted treatment system of increasing complexity. The subgrouping tools. Subgrouping tools help guide clinical decision-making about treatment and onward referral. Two subgrouping tools have been used in the IMPaCT Back study, a 9-item version used by participating physiotherapists and a 6-item version used by GPs. The targeted treatments. The targeted treatments include a minimal intervention delivered by GPs (for those patients at low risk of poor outcome) or referral to primary care physiotherapists who can apply physiotherapy approaches to addressing pain and disability (for those at medium risk) and additional cognitive-behavioural approaches to help address psychological and social obstacles to recovery (for those at high risk). The training packages. Building on previous interventions for other pilot studies and randomized trials, we have developed and delivered clinical training and support programmes for GPs and physiotherapists. Discussion. This paper describes in detail the IMPaCT Back study’s subgrouping for targeted treatment system and the training and mentoring packages aimed at equipping clinicians to deliver it, within the IMPaCT Back study. Study registration. ISRCTN55174281. PMID:21708984

  9. Influenceable and Avoidable Risk Factors for Systemic Air Embolism due to Percutaneous CT-Guided Lung Biopsy: Patient Positioning and Coaxial Biopsy Technique—Case Report, Systematic Literature Review, and a Technical Note

    PubMed Central

    2014-01-01

    Following the first case of a systemic air embolism due to percutaneous CT-guided lung biopsy in our clinic we analysed the literature regarding this matter in view of influenceable or avoidable risk factors. A systematic review of literature reporting cases of systemic air embolism due to CT-guided lung biopsy was performed to find out whether prone positioning might be a risk factor regarding this issue. In addition, a technical note concerning coaxial biopsy practice is presented. Prone position seems to have relevance for the development and/or clinical manifestation of air embolism due to CT-guided lung biopsy and should be considered a risk factor, at least as far as lesions in the lower parts of the lung are concerned. Biopsies of small or cavitary lesions in coaxial technique should be performed using a hemostatic valve. PMID:25431666

  10. Interventional robotic systems: Applications and technology state-of-the-art

    PubMed Central

    CLEARY, KEVIN; MELZER, ANDREAS; WATSON, VANCE; KRONREIF, GERNOT; STOIANOVICI, DAN

    2011-01-01

    Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere. PMID:16754193

  11. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Bowsher, J; Yan, S

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less

  12. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy.

    PubMed

    Alix-Panabières, Catherine; Pantel, Klaus

    2016-05-01

    "Liquid biopsy" focusing on the analysis of circulating tumor cells (CTC) and circulating cell-free tumor DNA (ctDNA) in the blood of patients with cancer has received enormous attention because of its obvious clinical implications for personalized medicine. Analyses of CTCs and ctDNA have paved new diagnostic avenues and are, to date, the cornerstones of liquid biopsy diagnostics. The present review focuses on key areas of clinical applications of CTCs and ctDNA, including detection of cancer, prediction of prognosis in patients with curable disease, monitoring systemic therapies, and stratification of patients based on the detection of therapeutic targets or resistance mechanisms. The application of CTCs and ctDNA for the early detection of cancer is of high public interest, but it faces serious challenges regarding specificity and sensitivity of the current assays. Prediction of prognosis in patients with curable disease can already be achieved in several tumor entities, particularly in breast cancer. Monitoring the success or failure of systemic therapies (i.e., chemotherapy, hormonal therapy, or other targeted therapies) by sequential measurements of CTCs or ctDNA is also feasible. Interventional studies on treatment stratification based on the analysis of CTCs and ctDNA are needed to implement liquid biopsy into personalized medicine. Cancer Discov; 6(5); 479-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. High-Throughput Testing of Urogenital and Extragenital Specimens for Detection of Chlamydia Trachomatis and Neisseria Gonorrhoeae with Cobas® CT/NG.

    PubMed

    Marlowe, Elizabeth M; Hardy, David; Krevolin, Mark; Gohl, Peter; Bertram, Alexander; Arcenas, Rodney; Seiverth, Britta; Schneider, Tanja; Liesenfeld, Oliver

    2017-09-01

    We compared the analytical and clinical performance of cobas ® CT/NG for use on the Cobas ® 6800/8800 Systems with the Cobas ® 4800 CT/NG Test from urogenital and extragenital specimens in over 12,000 specimens from both male and female subjects in Germany and the United States. The analytical sensitivity was ≤40 EB/ml for Chlamydia trachomatis (CT) and ≤1 CFU/ml for Neisseria gonorrhoeae (NG). Using clinical specimens, the overall percent agreement with the Cobas ® 4800 CT/NG Test was >98.5%. Across urogenital specimens, there were 93 discrepant specimens; 76 (93.8%) of 81 CT discrepant specimens were 6800+/4800- and 10 (83.3%) of 12 NG discrepant specimens were 6800+/4800-. Sequencing verified CT results for 45 (61.6%) of 73 samples positive by 6800 and 1 (20%) of 5 positive by 4800. Similarly, 7 (70.0%) of 10 NG samples positive by 6800 and 1 of 2 positive by 4800 were confirmed by sequencing. Among discrepant extragenital specimens (all 6800+/4800-), 7 (50%) of 14 oropharyngeal and 23 (76.7%) of 30 anorectal CT discordant samples were confirmed as CT positive by sequencing; all 8 anorectal and 20 (90.9%) of 22 oropharyngeal NG discordant results were also confirmed as NG positive. In conclusion, Cobas ® CT/NG for use on the Cobas ® 6800/8800 Systems provides high-throughput automated solutions for sexually transmitted infection (STI) screening programs.

  14. SU-E-T-574: Fessiblity of Using the Calypso System for HDR Interstitial Catheter Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J S; Ma, C

    2014-06-01

    Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system wasmore » used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use.« less

  15. Investigation of a Dedicated, High Resolution PET/CT Scanner for Staging and Treatment Planning of Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Stolin, Alexander V.; Sompalli, Prashanth; Randall, Nicole Bunda; Martone, Peter F.; Clinthorne, Neal H.

    2015-10-01

    Staging of head and neck cancer (HNC) is often hindered by the limited resolution of standard whole body PET scanners, which can make it challenging to detect small areas of metastatic disease in regional lymph nodes and accurately delineate tumor boundaries. In this investigation, the performance of a proposed high resolution PET/CT scanner designed specifically for imaging of the head and neck region was explored. The goal is to create a dedicated PET/CT system that will enhance the staging and treatment of HNCs. Its performance was assessed by simulating the scanning of a three-dimensional Rose-Burger contrast phantom. To extend the results from the simulation studies, an existing scanner with a similar geometry to the dedicated system and a whole body, clinical PET/CT scanner were used to image a Rose-Burger contrast phantom and a phantom simulating the neck of an HNC patient (out-of-field-of-view sources of activity were not included). Images of the contrast detail phantom acquired with Breast-PET/CT and simulated head and neck scanner both produced object contrasts larger than the images created by the clinical scanner. Images of a neck phantom acquired with the Breast-PET/CT scanner permitted the identification of all of the simulated metastases, while it was not possible to identify any of the simulated metastasis with the clinical scanner. The initial results from this study demonstrate the potential benefits of high-resolution PET systems for improving the diagnosis and treatment of HNC.

  16. A proposed protocol for acceptance and constancy control of computed tomography systems: a Nordic Association for Clinical Physics (NACP) work group report.

    PubMed

    Kuttner, Samuel; Bujila, Robert; Kortesniemi, Mika; Andersson, Henrik; Kull, Love; Østerås, Bjørn Helge; Thygesen, Jesper; Tarp, Ivanka Sojat

    2013-03-01

    Quality assurance (QA) of computed tomography (CT) systems is one of the routine tasks for medical physicists in the Nordic countries. However, standardized QA protocols do not yet exist and the QA methods, as well as the applied tolerance levels, vary in scope and extent at different hospitals. To propose a standardized protocol for acceptance and constancy testing of CT scanners in the Nordic Region. Following a Nordic Association for Clinical Physics (NACP) initiative, a group of medical physicists, with representatives from four Nordic countries, was formed. Based on international literature and practical experience within the group, a comprehensive standardized test protocol was developed. The proposed protocol includes tests related to the mechanical functionality, X-ray tube, detector, and image quality for CT scanners. For each test, recommendations regarding the purpose, equipment needed, an outline of the test method, the measured parameter, tolerance levels, and the testing frequency are stated. In addition, a number of optional tests are briefly discussed that may provide further information about the CT system. Based on international references and medical physicists' practical experiences, a comprehensive QA protocol for CT systems is proposed, including both acceptance and constancy tests. The protocol may serve as a reference for medical physicists in the Nordic countries.

  17. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    PubMed

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  18. Automatic detection of pulmonary nodules at spiral CT: first clinical experience with a computer-aided diagnosis system

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter

    2000-06-01

    We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.

  19. Investigating existing medical CT segmentation techniques within automated baggage and package inspection

    NASA Astrophysics Data System (ADS)

    Megherbi, Najla; Breckon, Toby P.; Flitton, Greg T.

    2013-10-01

    3D Computed Tomography (CT) image segmentation is already well established tool in medical research and in routine daily clinical practice. However, such techniques have not been used in the context of 3D CT image segmentation for baggage and package security screening using CT imagery. CT systems are increasingly used in airports for security baggage examination. We propose in this contribution an investigation of the current 3D CT medical image segmentation methods for use in this new domain. Experimental results of 3D segmentation on real CT baggage security imagery using a range of techniques are presented and discussed.

  20. [Diagnostic values of bronchoscopy and multi-slice spiral CT for congenital dysplasia of the respiratory system in infants: a comparative study].

    PubMed

    Wang, Xing-Lu; Huang, Ying; Li, Qu-Bei; Dai, Ji-Hong

    2013-09-01

    To investigate and compare the diagnostic values of bronchoscopy and multi-slice spiral computed tomography (CT) for congenital dysplasia of the respiratory system in infants. Analysis was performed on the clinical data, bronchoscopic findings and multi-slice spiral CT findings of 319 infants (≤1 years old) who underwent bronchoscopy and/or multi-slice spiral CT and were diagnosed with congenital dysplasia of the respiratory system. A total of 476 cases of congenital dysplasia of the respiratory system were found in the 319 infants, including primary dysplasia of the respiratory system (392 cases) and compressive dysplasia of the respiratory system (84 cases). Of the 392 cases of primary dysplasia of the respiratory system, 225 (57.4%) were diagnosed by bronchoscopy versus 167 (42.6%) by multi-slice spiral CT. There were significant differences in etiological diagnosis between bronchoscopy and multi-slice spiral CT in infants with congenital dysplasia of the respiratory system (P<0.05). All 76 cases of primary dysplasia of the respiratory system caused by tracheobronchomalacia were diagnosed by bronchoscopy and all 17 cases of primary dysplasia of the respiratory system caused by lung tissue dysplasia were diagnosed by multi-slice spiral CT. Of the 84 cases of compressive dysplasia of the respiratory system, 74 cases were diagnosed by multi-slice spiral CT and only 10 cases were diagnosed by bronchoscopy. Compared with multi-slice spiral CT, bronchoscopy can detect primary dysplasia of the respiratory system more directly. Bronchoscopy is valuable in the confirmed diagnosis of tracheobronchomalacia. Multi-slice spiral CT has a higher diagnostic value for lung tissue dysplasia than bronchoscopy.

  1. Effect of clinical decision rules, patient cost and malpractice information on clinician brain CT image ordering: a randomized controlled trial.

    PubMed

    Gimbel, Ronald W; Pirrallo, Ronald G; Lowe, Steven C; Wright, David W; Zhang, Lu; Woo, Min-Jae; Fontelo, Paul; Liu, Fang; Connor, Zachary

    2018-03-12

    The frequency of head computed tomography (CT) imaging for mild head trauma patients has raised safety and cost concerns. Validated clinical decision rules exist in the published literature and on-line sources to guide medical image ordering but are often not used by emergency department (ED) clinicians. Using simulation, we explored whether the presentation of a clinical decision rule (i.e. Canadian CT Head Rule - CCHR), findings from malpractice cases related to clinicians not ordering CT imaging in mild head trauma cases, and estimated patient out-of-pocket cost might influence clinician brain CT ordering. Understanding what type and how information may influence clinical decision making in the ordering advanced medical imaging is important in shaping the optimal design and implementation of related clinical decision support systems. Multi-center, double-blinded simulation-based randomized controlled trial. Following standardized clinical vignette presentation, clinicians made an initial imaging decision for the patient. This was followed by additional information on decision support rules, malpractice outcome review, and patient cost; each with opportunity to modify their initial order. The malpractice and cost information differed by assigned group to test the any temporal relationship. The simulation closed with a second vignette and an imaging decision. One hundred sixteen of the 167 participants (66.9%) initially ordered a brain CT scan. After CCHR presentation, the number of clinicians ordering a CT dropped to 76 (45.8%), representing a 21.1% reduction in CT ordering (P = 0.002). This reduction in CT ordering was maintained, in comparison to initial imaging orders, when presented with malpractice review information (p = 0.002) and patient cost information (p = 0.002). About 57% of clinicians changed their order during study, while 43% never modified their imaging order. This study suggests that ED clinician brain CT imaging decisions may be influenced by clinical decision support rules, patient out-of-pocket cost information and findings from malpractice case review. NCT03449862 , February 27, 2018, Retrospectively registered.

  2. Optimization of a secondary VOI protocol for lung imaging in a clinical CT scanner.

    PubMed

    Larsen, Thomas C; Gopalakrishnan, Vissagan; Yao, Jianhua; Nguyen, Catherine P; Chen, Marcus Y; Moss, Joel; Wen, Han

    2018-05-21

    We present a solution to meet an unmet clinical need of an in-situ "close look" at a pulmonary nodule or at the margins of a pulmonary cyst revealed by a primary (screening) chest CT while the patient is still in the scanner. We first evaluated options available on current whole-body CT scanners for high resolution screening scans, including ROI reconstruction of the primary scan data and HRCT, but found them to have insufficient SNR in lung tissue or discontinuous slice coverage. Within the capabilities of current clinical CT systems, we opted for the solution of a secondary, volume-of-interest (VOI) protocol where the radiation dose is focused into a short-beam axial scan at the z position of interest, combined with a small-FOV reconstruction at the xy position of interest. The objective of this work was to design a VOI protocol that is optimized for targeted lung imaging in a clinical whole-body CT system. Using a chest phantom containing a lung-mimicking foam insert with a simulated cyst, we identified the appropriate scan mode and optimized both the scan and recon parameters. The VOI protocol yielded 3.2 times the texture amplitude-to-noise ratio in the lung-mimicking foam when compared to the standard chest CT, and 8.4 times the texture difference between the lung mimicking and reference foams. It improved details of the wall of the simulated cyst and better resolution in a line-pair insert. The Effective Dose of the secondary VOI protocol was 42% on average and up to 100% in the worst-case scenario of VOI positioning relative to the standard chest CT. The optimized protocol will be used to obtain detailed CT textures of pulmonary lesions, which are biomarkers for the type and stage of lung diseases. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  3. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  4. Enriching the international clinical nomenclature with Chinese daily used synonyms and concept recognition in physician notes.

    PubMed

    Zhang, Rui; Liu, Jialin; Huang, Yong; Wang, Miye; Shi, Qingke; Chen, Jun; Zeng, Zhi

    2017-05-02

    It has been shown that the entities in everyday clinical text are often expressed in a way that varies from how they are expressed in the nomenclature. Owing to lots of synonyms, abbreviations, medical jargons or even misspellings in the daily used physician notes in clinical information system (CIS), the terminology without enough synonyms may not be adequately suitable for the task of Chinese clinical term recognition. This paper demonstrates a validated system to retrieve the Chinese term of clinical finding (CTCF) from CIS and map them to the corresponding concepts of international clinical nomenclature, such as SNOMED CT. The system focuses on the SNOMED CT with Chinese synonyms enrichment (SCCSE). The literal similarity and the diagnosis-related similarity metrics were used for concept mapping. Two CTCF recognition methods, the rule- and terminology-based approach (RTBA) and the conditional random field machine learner (CRF), were adopted to identify the concepts in physician notes. The system was validated against the history of present illness annotated by clinical experts. The RTBA and CRF could be combined to predict new CTCFs besides SCCSE persistently. Around 59,000 CTCF candidates were accepted as valid and 39,000 of them occurred at least once in the history of present illness. 3,729 of them were accordant with the description in referenced Chinese clinical nomenclature, which could cross map to other international nomenclature such as SNOMED CT. With the hybrid similarity metrics, another 7,454 valid CTCFs (synonyms) were succeeded in concept mapping. For CTCF recognition in physician notes, a series of experiments were performed to find out the best CRF feature set, which gained an F-score of 0.887. The RTBA achieved a better F-score of 0.919 by the CTCF dictionary created in this research. This research demonstrated that it is feasible to help the SNOMED CT with Chinese synonyms enrichment based on physician notes in CIS. With continuous maintenance of SCCSE, the CTCFs could be precisely retrieved from free text, and the CTCFs arranged in semantic hierarchy of SNOMED CT could greatly improve the meaningful use of electronic health record in China. The methodology is also useful for clinical synonyms enrichment in other languages.

  5. CT-guided thermocouple placement for hyperthermia treatment.

    PubMed

    Banerian, K G; Roberts, J L; Borrego, J C; Martinez, A

    1990-05-01

    There is a well-documented synergistic cytotoxic effect when heat is combined with ionizing radiation. An integral component of hyperthermia treatments is the placement of thermocouple probes used for thermal dosimetry. With the surge in interest in the clinical use of hyperthermia, our department is performing an increasing number of thermocouple placements under computed tomographic (CT) guidance. We describe our technique for CT-guided thermocouple placement with two different systems: a trocar introduction system and a peel-away needle introduction system. We discuss the rationale for thermocouple placement, our early experience with this technique, and some potential complications.

  6. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.

    2017-04-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  7. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    NASA Astrophysics Data System (ADS)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the spatial resolution bar patterns demonstrated that the BONE (GE) and B46f (Siemens) showed higher spatial resolution compared to the STANDARD (GE) or B30f (Siemens) reconstruction algorithms typically used for routine body CT imaging. Only the sharper images were deemed clinically acceptable for the evaluation of diffuse lung disease (e.g. emphysema). Quantitative analyses of the extent of emphysema in patient data showed the percent volumes above the -950 HU threshold as 9.4% for the BONE reconstruction, 5.9% for the STANDARD reconstruction, and 4.7% for the BONE filtered images. Contrary to the practice of using standard resolution CT images for the quantitation of diffuse lung disease, these data demonstrate that a single sharp reconstruction (BONE/B46f) should be used for both the qualitative and quantitative evaluation of diffuse lung disease. The sharper reconstruction images, which are required for diagnostic interpretation, provide accurate CT numbers over the range of -1000 to +900 HU and preserve the fidelity of small structures in the reconstructed images. A filtered version of the sharper images can be accurately substituted for images reconstructed with smoother kernels for comparison to previously published results.

  8. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Umoh, Joseph; Nikolov, Hristo N.; Pollmann, Steven I.; Lee, Ting-Yim; Holdsworth, David W.

    2007-12-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 µm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm-1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  9. High-Throughput Testing of Urogenital and Extragenital Specimens for Detection of Chlamydia Trachomatis and Neisseria Gonorrhoeae with Cobas® CT/NG

    PubMed Central

    Marlowe, Elizabeth M.; Hardy, David; Krevolin, Mark; Gohl, Peter; Bertram, Alexander; Arcenas, Rodney; Seiverth, Britta; Schneider, Tanja; Liesenfeld, Oliver

    2017-01-01

    We compared the analytical and clinical performance of cobas® CT/NG for use on the Cobas® 6800/8800 Systems with the Cobas® 4800 CT/NG Test from urogenital and extragenital specimens in over 12,000 specimens from both male and female subjects in Germany and the United States. The analytical sensitivity was ≤40 EB/ml for Chlamydia trachomatis (CT) and ≤1 CFU/ml for Neisseria gonorrhoeae (NG). Using clinical specimens, the overall percent agreement with the Cobas® 4800 CT/NG Test was >98.5%. Across urogenital specimens, there were 93 discrepant specimens; 76 (93.8%) of 81 CT discrepant specimens were 6800+/4800– and 10 (83.3%) of 12 NG discrepant specimens were 6800+/4800–. Sequencing verified CT results for 45 (61.6%) of 73 samples positive by 6800 and 1 (20%) of 5 positive by 4800. Similarly, 7 (70.0%) of 10 NG samples positive by 6800 and 1 of 2 positive by 4800 were confirmed by sequencing. Among discrepant extragenital specimens (all 6800+/4800–), 7 (50%) of 14 oropharyngeal and 23 (76.7%) of 30 anorectal CT discordant samples were confirmed as CT positive by sequencing; all 8 anorectal and 20 (90.9%) of 22 oropharyngeal NG discordant results were also confirmed as NG positive. In conclusion, Cobas® CT/NG for use on the Cobas® 6800/8800 Systems provides high-throughput automated solutions for sexually transmitted infection (STI) screening programs. PMID:29034107

  10. A preliminary study on the use of FX-Glycine gel and an in-house optical cone beam CT readout for IMRT and RapidArc verification

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.

    2017-05-01

    The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.

  11. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: experimental assessment of noise performance.

    PubMed

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-04-01

    To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo(®), GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a "redder" NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)(-β) with the component β ≈ 0.25, which violated the classical σ ∝ (dose)(-0.5) power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A composite image generated from two MBIR images acquired at two different dose levels (D1 and D2) demonstrated lower noise than that of an image acquired at a dose level of D1+D2. The noise characteristics of the MBIR method are significantly different from those of the FBP method. The well known tradeoff relationship between CT image noise and radiation dose has been modified by MBIR to establish a more gradual dependence of noise on dose. Additionally, some other CT noise properties that had been well understood based on the linear system theory have also been altered by MBIR. Clinical CT scan protocols that had been optimized based on the classical CT noise properties need to be carefully re-evaluated for systems equipped with MBIR in order to maximize the method's potential clinical benefits in dose reduction and/or in CT image quality improvement. © 2014 American Association of Physicists in Medicine.

  12. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Tang, Jie; Chen, Guang-Hong, E-mail: gchen7@wisc.edu

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD,more » GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A composite image generated from two MBIR images acquired at two different dose levels (D1 and D2) demonstrated lower noise than that of an image acquired at a dose level of D1+D2. Conclusions: The noise characteristics of the MBIR method are significantly different from those of the FBP method. The well known tradeoff relationship between CT image noise and radiation dose has been modified by MBIR to establish a more gradual dependence of noise on dose. Additionally, some other CT noise properties that had been well understood based on the linear system theory have also been altered by MBIR. Clinical CT scan protocols that had been optimized based on the classical CT noise properties need to be carefully re-evaluated for systems equipped with MBIR in order to maximize the method's potential clinical benefits in dose reduction and/or in CT image quality improvement.« less

  13. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    NASA Astrophysics Data System (ADS)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  14. [Usefulness of imaging examinations in preoperative diagnosis of acute appendicitis].

    PubMed

    Nitoń, Tomasz; Górecka-Nitoń, Aleksandra

    2014-01-01

    Acute appendicitis (AA) is the cause one of most operations perform in department of general surgery on emergency ward. Frequency of acute appendicitis range from 6-8% of population. Clinical presentation is frequently unspecified and despite common occurence leads to many difficulties in diagnosis. Diagnosis of acute appendicitis includes clinical examination, laboratory tests, diagnostic scoring systems, computer programs as physisian aids and imaging examinations. About 30-45% patients suspected of acute appendicitis have untypical clinical presentation and here use of US or CT is very helpful. Longstanding use of US resulted in high AA evaluation accuracy with high sensitivity (75-90%) and specificity (84-100%). CT demonstrates above 95% ratio of correct diagnoses, reduces negative appendectomy rates and perforation rates as well as unnecessary observations. CT sensitivity and specificity CT is estimated between 83-100% among different authors. Expedited AA diagnosis, surgery and reduced hospitalization time are possible advantages of imaging tests. Additionally these tests can detect alternative deseases imitating acute appnedicitis. Use of imaging tests especially CT is beneficial in fertile women because of frequent genito-urinary disorders leading to the most diagnostic errors. However thera are contraindications in use of CT, for example it can not be performed in early pregnancy etc...

  15. F-18 FDG PET/CT in 26 patients with SAPHO syndrome: a new vision of clinical and bone scintigraphy correlation.

    PubMed

    Sun, Xiaochuan; Li, Chen; Cao, Yihan; Shi, Ximin; Li, Li; Zhang, Weihong; Wu, Xia; Wu, Nan; Jing, Hongli; Zhang, Wen

    2018-05-22

    Whole-body bone scintigraphy (WBBS) and MRI are widely used in assessment of patients with synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. However, the value of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in SAPHO syndrome was unclear. The aim of this study was to characterize the manifestation of SAPHO syndrome on 18 F-FDG PET/CT and explore its relationship with clinical symptoms and WBBS. Twenty-six patients who suffered from SAPHO syndrome and had undergone whole-body 18 F-FDG PET/CT were recruited in Peking Union Medical College Hospital from 2004 to 2016. Clinical manifestations and laboratory findings were recorded for all patients. Imaging data on 18F-FDG PET/CT and WBBS were collected and analyzed retrospectively. All the 26 patients (20 females and 6 males) exhibited skeletal abnormalities on 18 F-FDG PET/CT. Multiple skeletal lesions affecting the anterior chest wall or spine with low to moderate 18 F-FDG uptake and coexistence of osteolysis and osteosclerosis presented as the typical features of SAPHO syndrome. Sixteen (61.5%) patients had abnormal 18 F-FDG uptake outside the osteoarticular system. PET scan had moderate to substantial agreement with CT and WBBS in revealing lesions in the anterior chest wall and axial skeleton. Nonetheless, the correlation between increased 18 F-FDG uptake and clinical symptoms was weak. SAPHO syndrome exhibits characteristic features on 18 F-FDG PET/CT. It showed comparable capacity in revealing skeletal lesions with bone scintigraphy.

  16. NLP-based Identification of Pneumonia Cases from Free-Text Radiological Reports

    PubMed Central

    Elkin, Peter L.; Froehling, David; Wahner-Roedler, Dietlind; Trusko, Brett; Welsh, Gail; Ma, Haobo; Asatryan, Armen X.; Tokars, Jerome I.; Rosenbloom, S. Trent; Brown, Steven H.

    2008-01-01

    Radiological reports are a rich source of clinical data which can be mined to assist with biosurveillance of emerging infectious diseases. In addition to biosurveillance, radiological reports are an important source of clinical data for health service research. Pneumonias and other radiological findings on chest xray or chest computed tomography (CT) are one type of relevant finding to both biosurveillance and health services research. In this study we examined the ability of a Natural Language Processing system to accurately identify pneumonias and other lesions from within free-text radiological reports. The system encoded the reports in the SNOMED CT Ontology and then a set of SNOMED CT based rules were created in our Health Archetype Language aimed at the identification of these radiological findings and diagnoses. The encoded rule was executed against the SNOMED CT encodings of the radiological reports. The accuracy of the reports was compared with a Clinician review of the Radiological Reports. The accuracy of the system in the identification of pneumonias was high with a Sensitivity (recall) of 100%, a specificity of 98%, and a positive predictive value (precision) of 97%. We conclude that SNOMED CT based computable rules are accurate enough for the automated biosurveillance of pneumonias from radiological reports. PMID:18998791

  17. Multidetector CT of musculoskeletal disease in the pediatric patient: principles, techniques, and clinical applications.

    PubMed

    Fayad, Laura M; Johnson, Pamela; Fishman, Elliot K

    2005-01-01

    Computed tomography (CT) plays an important role in the evaluation of musculoskeletal disease in the pediatric patient. With the advent of high-performance 16-section multidetector CT, images can be produced with subsecond gantry rotation times and with submillimeter acquisition, which yields true isotropic high-resolution volume data sets; these features are not attainable with older spiral CT technology. Such capabilities are particularly helpful in the evaluation of pediatric patients by virtually eliminating the need for sedation and minimizing dependence on patient cooperation. The role of three-dimensional (3D) volume imaging in the evaluation of pediatric musculoskeletal disease continues to evolve, with this technique becoming increasingly important in detection and characterization of lesions as well as in decisions about patient care. Specific designs and protocols for multidetector CT studies can be selected to minimize radiation dose to the patient. Principal clinical applications of 3D CT in evaluation of the pediatric musculoskeletal system include developmental abnormalities, trauma, neoplasms, and postoperative imaging.

  18. A Survey of Direct Users and Uses of SNOMED CT: 2010 Status

    PubMed Central

    Elhanan, Gai; Perl, Yehoshua; Geller, James

    2010-01-01

    SNOMED CT is gaining momentum and endorsements as an international clinical terminology. However, many vendors await a clearer business case and clients’ demand. We conducted a survey of direct users of SNOMED CT to determine the current profile of users, modes of use, and attitudes towards different aspects of the terminology. A web-base survey, consisting of 43 questions was distributed in January 2010, and 215 responses were elicited. This paper summarizes findings regarding profiles of users and their SNOMED CT use. The results indicate significant use by non-researchers and by industry and government sectors. Many users are relative newcomers with less than 3 years experience with SNOMED CT, and production-related use was reported by 39% of respondents. Most users are satisfied with the level of content coverage. The results indicate that SNOMED CT has a solid footing in production systems, and that SCT is mostly used for concept searches and clinical coding. PMID:21346970

  19. Computed tomography in cases of coccidioidal meningitis, with clinical correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetter, A.G.; Fischer, D.W.; Flom, R.A.

    1985-06-01

    Cranial computed tomographic (CT) scans of 22 patients with coccidioidal meningitis were reviewed and their clinical course was analyzed. Abnormalities of the ventricular system or the basilar cisterns or both were present in 16 instances. Although it is not a definitive diagnostic tool, the CT scan is helpful in suggesting a diagnosis of coccidioidal meningitis and in predicting the prognosis of patients affected by the disease. 19 references, 4 figures, 2 tables.

  20. Structured physician order entry for trauma CT: value in improving clinical information transfer and billing efficiency.

    PubMed

    Wortman, Jeremy R; Goud, Asha; Raja, Ali S; Marchello, Dana; Sodickson, Aaron

    2014-12-01

    The purpose of this study was to measure the effects of use of a structured physician order entry system for trauma CT on the communication of clinical information and on coding practices and reimbursement efficiency. This study was conducted between April 1, 2011, and January 14, 2013, at a level I trauma center with 59,000 annual emergency department visits. On March 29, 2012, a structured order entry system was implemented for head through pelvis trauma CT, so-called pan-scan CT. This study compared the following factors before and after implementation: communication of clinical signs and symptoms and mechanism of injury, primary International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) code category, success of reimbursement, and time required for successful reimbursement for the examination. Chi-square statistics were used to compare all categoric variables before and after the intervention, and the Wilcoxon rank sum test was used to compare billing cycle times. A total of 457 patients underwent pan-scan CT in 2734 distinct examinations. After the intervention, there was a 62% absolute increase in requisitions containing clinical signs or symptoms (from 0.4% to 63%, p<0.0001) and a 99% absolute increase in requisitions providing mechanism of injury (from 0.4% to 99%, p<0.0001). There was a 19% absolute increase in primary ICD-9-CM codes representing clinical signs or symptoms (from 2.9% to 21.8%, p<0.0001), and a 7% absolute increase in reimbursement success for examinations submitted to insurance carriers (from 83.0% to 89.7%, p<0.0001). For reimbursed studies, there was a 14.7-day reduction in mean billing cycle time (from 68.4 days to 53.7 days, p=0.008). Implementation of structured physician order entry for trauma CT was associated with significant improvement in the communication of clinical history to radiologists. The improvement was also associated with changes in coding practices, greater billing efficiency, and an increase in reimbursement success.

  1. Reliability of injury grading systems for patients with blunt splenic trauma.

    PubMed

    Olthof, D C; van der Vlies, C H; Scheerder, M J; de Haan, R J; Beenen, L F M; Goslings, J C; van Delden, O M

    2014-01-01

    The most widely used grading system for blunt splenic injury is the American Association for the Surgery of Trauma (AAST) organ injury scale. In 2007 a new grading system was developed. This 'Baltimore CT grading system' is superior to the AAST classification system in predicting the need for angiography and embolization or surgery. The objective of this study was to assess inter- and intraobserver reliability between radiologists in classifying splenic injury according to both grading systems. CT scans of 83 patients with blunt splenic injury admitted between 1998 and 2008 to an academic Level 1 trauma centre were retrospectively reviewed. Inter and intrarater reliability were expressed in Cohen's or weighted Kappa values. Overall weighted interobserver Kappa coefficients for the AAST and 'Baltimore CT grading system' were respectively substantial (kappa=0.80) and almost perfect (kappa=0.85). Average weighted intraobserver Kappa's values were in the 'almost perfect' range (AAST: kappa=0.91, 'Baltimore CT grading system': kappa=0.81). The present study shows that overall the inter- and intraobserver reliability for grading splenic injury according to the AAST grading system and 'Baltimore CT grading system' are equally high. Because of the integration of vascular injury, the 'Baltimore CT grading system' supports clinical decision making. We therefore recommend use of this system in the classification of splenic injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A navigation system for percutaneous needle interventions based on PET/CT images: design, workflow and error analysis of soft tissue and bone punctures.

    PubMed

    Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan

    2011-01-01

    Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.

  3. German cardiac CT registry: indications, procedural data and clinical consequences in 7061 patients undergoing cardiac computed tomography.

    PubMed

    Marwan, Mohamed; Achenbach, Stephan; Korosoglou, Grigorios; Schmermund, Axel; Schneider, Steffen; Bruder, Oliver; Hausleiter, Jörg; Schroeder, Stephen; Barth, Sebastian; Kerber, Sebastian; Leber, Alexander; Moshage, Werner; Senges, Jochen

    2018-05-01

    Cardiac computed tomography permits quantification of coronary calcification as well as detection of coronary artery stenoses after contrast enhancement. Moreover, cardiac CT offers high-resolution morphologic and functional imaging of cardiac structures which is valuable for various structural heart disease interventions and electrophysiology procedures. So far, only limited data exist regarding the spectrum of indications, image acquisition parameters as well as results and clinical consequences of cardiac CT examinations using state-of-the-art CT systems in experienced centers. Twelve cardiology centers with profound expertise in cardiovascular imaging participated in the German Cardiac CT Registry. Criteria for participation included adequate experience in cardiac CT as well of the availability of a 64-slice or newer CT system. Between 2009 and 2014, 7061 patients were prospectively enrolled. For all cardiac CT examinations, patient parameters, procedural data, indication and clinical consequences of the examination were documented. Mean patient age was 61 ± 12 years, 63% were males. The majority (63%) of all cardiac CT examinations were performed in an outpatient setting, 37% were performed during an inpatient stay. 91% were elective and 9% were scheduled in an acute setting. In most examinations (48%), reporting was performed by cardiologists, in 4% by radiologists and in 47% of the cases as a consensus reading. Cardiac CT was limited to native acquisitions for assessment of coronary artery calcification in 9% of patients, only contrast-enhanced coronary CT angiography was performed in 16.6% and combined native and contrast-enhanced coronary CT angiography was performed in 57.7% of patients. Non-coronary cardiac CT examinations constituted 16.6% of all cases. Coronary artery calcification assessment was performed using prospectively ECG-triggered acquisition in 76.9% of all cases. The median dose length product (DLP) was 42 mGy cm (estimated effective radiation dose of 0.6 mSv). Coronary CT angiography was performed using prospectively ECG-triggered acquisition in 77.3% of all cases. Tube voltage was 120 kV in 67.8% of patients and 100 kV in 30.7% of patients, with a resultant median DLP of 256 mGy cm (estimated effective dose of 3.6 mSv). Clinical consequences of cardiac CT were as follows: in 46.8% of the cases, invasive coronary angiography could be avoided; ischemia testing was recommended in 4.7% of the cases, invasive coronary angiography was recommended in 16.4% of the cases and change in medication in 21.6% of the examinations. Cardiac CT is performed in the majority of patients for non-invasive evaluation of the coronary arteries. CT frequently resulted in medication change, and otherwise planned downstream testing including invasive angiography could be avoided in a high percentage of patients. Radiation exposure in experienced centers is relatively low.

  4. Inter-radiologist agreement for CT scoring of pediatric splenic injuries and effect on an established clinical practice guideline.

    PubMed

    Leschied, Jessica R; Mazza, Michael B; Davenport, Matthew; Chong, Suzanne T; Smith, Ethan A; Hoff, Carrie N; Ladino-Torres, Maria F; Khalatbari, Shokoufeh; Ehrlich, Peter F; Dillman, Jonathan R

    2016-02-01

    The American Pediatric Surgical Association (APSA) advocates for the use of a clinical practice guideline to direct management of hemodynamically stable pediatric spleen injuries. The clinical practice guideline is based on the CT score of the spleen injury according to the American Association for the Surgery of Trauma (AAST) CT scoring system. To determine the potential effect of radiologist agreement for CT scoring of pediatric spleen injuries on an established APSA clinical practice guideline. We retrospectively analyzed blunt splenic injuries occurring in children from January 2007 to January 2012 at a single level 1 trauma center (n = 90). Abdominal CT exams performed at clinical presentation were reviewed by four radiologists who documented the following: (1) splenic injury grade (AAST system), (2) arterial extravasation and (3) pseudoaneurysm. Inter-rater agreement for AAST injury grade was assessed using the multi-rater Fleiss kappa and Kendall coefficient of concordance. Inter-rater agreement was assessed using weighted (AAST injury grade) or prevalence-adjusted bias-adjusted (binary measures) kappa statistics; 95% confidence intervals were calculated. We evaluated the hypothetical effect of radiologist disagreement on an established APSA clinical practice guideline. Inter-rater agreement was good for absolute AAST injury grade (kappa: 0.64 [0.59–0.69]) and excellent for relative AAST injury grade (Kendall w: 0.90). All radiologists agreed on the AAST grade in 52% of cases. Based on an established clinical practice guideline, radiologist disagreement could have changed the decision for intensive care management in 11% (10/90) of children, changed the length of hospital stay in 44% (40/90), and changed the time to return to normal activity in 44% (40/90). Radiologist agreement when assigning splenic AAST injury grades is less than perfect, and disagreements have the potential to change management in a substantial number of pediatric patients.

  5. [Experiences with power-injectable port systems: complications, patient satisfaction and clinical benefit].

    PubMed

    Chang, D-H; Kabbasch, C; Bovenschulte, H; Libicher, M; Maintz, D; Bangard, C

    2013-05-01

    Evaluation of complications, patient satisfaction and clinical benefit of port systems with authorization for high pressure injection of contrast agent during CT/MR examinations. Ultrasound-guided insertions of central venous port catheters were performed through the lateral subclavian vein at a university teaching hospital. The radiological information system (HIS/RIS) was used to evaluate technical success and complication rates. Assessment of patient satisfaction and clinical benefit was carried out by a questionnaire during a telephone call 6 months after implantation of the port system. A total of 195 port systems in 193 patients were implanted. The catheter remained in place for a mean duration of 169 days (overall 29,210 catheter days). The technical success rate was 99.5 % and the overall complication rate was 17.4 % (24/138; 0.82 per 1000 catheter days). Follow-up revealed 13 early port explantations (9 %). Most of the patients reported high satisfaction in general (satisfied/very satisfied: 94 %). 34/209 contrast-enhanced CT/MRT scans (16 %) were performed using the port for contrast media injection. There were no complications during or after administration of contrast agent via the port system. The Powerport system is a safe alternative for peripheral i. v. contrast media injection during CT/MR scans, but has been infrequently used. Most patients reported high overall satisfaction with the port system. © Georg Thieme Verlag KG Stuttgart · New York.

  6. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less

  7. Experimental Actinobacillus pleuropneumoniae challenge in swine: Comparison of computed tomographic and radiographic findings during disease

    PubMed Central

    2012-01-01

    Background In pigs, diseases of the respiratory tract like pleuropneumonia due to Actinobacillus pleuropneumoniae (App) infection have led to high economic losses for decades. Further research on disease pathogenesis, pathogen-host-interactions and new prophylactic and therapeutic approaches are needed. In most studies, a large number of experimental animals are required to assess lung alterations at different stages of the disease. In order to reduce the required number of animals but nevertheless gather information on the nature and extent of lung alterations in living pigs, a computed tomographic scoring system for quantifying gross pathological findings was developed. In this study, five healthy pigs served as control animals while 24 pigs were infected with App, the causative agent of pleuropneumonia in pigs, in an established model for respiratory tract disease. Results Computed tomographic (CT) findings during the course of App challenge were verified by radiological imaging, clinical, serological, gross pathology and histological examinations. Findings from clinical examinations and both CT and radiological imaging, were recorded on day 7 and day 21 after challenge. Clinical signs after experimental App challenge were indicative of acute to chronic disease. Lung CT findings of infected pigs comprised ground-glass opacities and consolidation. On day 7 and 21 the clinical scores significantly correlated with the scores of both imaging techniques. At day 21, significant correlations were found between clinical scores, CT scores and lung lesion scores. In 19 out of 22 challenged pigs the determined disease grades (not affected, slightly affected, moderately affected, severely affected) from CT and gross pathological examination were in accordance. Disease classification by radiography and gross pathology agreed in 11 out of 24 pigs. Conclusions High-resolution, high-contrast CT examination with no overlapping of organs is superior to radiography in the assessment of pneumonic lung lesions after App challenge. The new CT scoring system allows for quantification of gross pathological lung alterations in living pigs. However, computed tomographic findings are not informative of the etiology of respiratory disease. PMID:22546414

  8. Spotting L3 slice in CT scans using deep convolutional network and transfer learning.

    PubMed

    Belharbi, Soufiane; Chatelain, Clément; Hérault, Romain; Adam, Sébastien; Thureau, Sébastien; Chastan, Mathieu; Modzelewski, Romain

    2017-08-01

    In this article, we present a complete automated system for spotting a particular slice in a complete 3D Computed Tomography exam (CT scan). Our approach does not require any assumptions on which part of the patient's body is covered by the scan. It relies on an original machine learning regression approach. Our models are learned using the transfer learning trick by exploiting deep architectures that have been pre-trained on imageNet database, and therefore it requires very little annotation for its training. The whole pipeline consists of three steps: i) conversion of the CT scans into Maximum Intensity Projection (MIP) images, ii) prediction from a Convolutional Neural Network (CNN) applied in a sliding window fashion over the MIP image, and iii) robust analysis of the prediction sequence to predict the height of the desired slice within the whole CT scan. Our approach is applied to the detection of the third lumbar vertebra (L3) slice that has been found to be representative to the whole body composition. Our system is evaluated on a database collected in our clinical center, containing 642 CT scans from different patients. We obtained an average localization error of 1.91±2.69 slices (less than 5 mm) in an average time of less than 2.5 s/CT scan, allowing integration of the proposed system into daily clinical routines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    PubMed

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P < 0.001), image noise was significantly lower (both P < 0.001), whereas volume CT dose index was unchanged (both P > 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  10. Three-dimensional rotational micro-angiography

    NASA Astrophysics Data System (ADS)

    Patel, Vikas

    Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.

  11. Percutaneous needle placement using laser guidance: a practical solution

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Kapoor, Ankur; Abi-Jaoudeh, Nadine; Imbesi, Kimberly; Hong, Cheng William; Mazilu, Dumitru; Sharma, Karun; Venkatesan, Aradhana M.; Levy, Elliot; Wood, Bradford J.

    2013-03-01

    In interventional radiology, various navigation technologies have emerged aiming to improve the accuracy of device deployment and potentially the clinical outcomes of minimally invasive procedures. While these technologies' performance has been explored extensively, their impact on daily clinical practice remains undetermined due to the additional cost and complexity, modification of standard devices (e.g. electromagnetic tracking), and different levels of experience among physicians. Taking these factors into consideration, a robotic laser guidance system for percutaneous needle placement is developed. The laser guidance system projects a laser guide line onto the skin entry point of the patient, helping the physician to align the needle with the planned path of the preoperative CT scan. To minimize changes to the standard workflow, the robot is integrated with the CT scanner via optical tracking. As a result, no registration between the robot and CT is needed. The robot can compensate for the motion of the equipment and keep the laser guide line aligned with the biopsy path in real-time. Phantom experiments showed that the guidance system can benefit physicians at different skill levels, while clinical studies showed improved accuracy over conventional freehand needle insertion. The technology is safe, easy to use, and does not involve additional disposable costs. It is our expectation that this technology can be accepted by interventional radiologists for CT guided needle placement procedures.

  12. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  13. Review of an initial experience with an experimental spectral photon-counting computed tomography system

    NASA Astrophysics Data System (ADS)

    Si-Mohamed, Salim; Bar-Ness, Daniel; Sigovan, Monica; Cormode, David P.; Coulon, Philippe; Coche, Emmanuel; Vlassenbroek, Alain; Normand, Gabrielle; Boussel, Loic; Douek, Philippe

    2017-11-01

    Spectral photon-counting CT (SPCCT) is an emerging X-ray imaging technology that extends the scope of available diagnostic imaging tools. The main advantage of photon-counting CT technology is better sampling of the spectral information from the transmitted spectrum in order to benefit from additional physical information being produced during matter interaction, including photo-electric and Compton effects, and the K-edge effect. The K-edge, which is specific for a given element, is the increase in X-ray absorption of the element above the binding energy between its inner electronic shell and the nucleus. Hence, the spectral information contributes to better characterization of tissues and materials of interest, explaining the excitement surrounding this area of X-ray imaging. Other improvements of SPCCT compared with conventional CT, such as higher spatial resolution, lower radiation exposure and lower noise are also expected to provide benefits for diagnostic imaging. In this review, we describe multi-energy CT imaging, from dual energy to photon counting technology, and our initial experience results using a clinical-scale spectral photon counting CT (SPCCT) prototype system in vitro and in vivo. In addition, possible clinical applications are introduced.

  14. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.

    PubMed

    Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François

    2015-05-01

    Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p < 10(-4)). The difference between the single-pixel peak temperature rise and the surrounding-pixel mean, which reflects the sharpness of the thermal focus, was also significantly larger for aberration-corrected sonications. There was no significant difference between the sonication results achieved using CT-based and MR-based aberration correction. The authors have demonstrated that transcranial focal heating can be significantly improved in vitro by using UTE MRI to compute skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on current 0.7 MHz clinical TcMRgFUS devices. The MR image acquisition and segmentation procedure demonstrated here would add less than 15 min to a clinical MRgFUS treatment session.

  15. Illustrative cases for monitoring by quantitative analysis of BRAF/NRAS ctDNA mutations in liquid biopsies of metastatic melanoma patients who gained clinical benefits from anti-PD1 antibody therapy.

    PubMed

    Seremet, Teofila; Planken, Simon; Schreuer, Max; Jansen, Yanina; Delaunoy, Mélanie; El Housni, Hakim; Lienard, Danielle; Del Marmol, Véronique; Heimann, Pierre; Neyns, Bart

    2018-02-01

    Anti-programmed death 1 (PD-1) monoclonal antibodies improve the survival of metastatic melanoma patients. Predictive or monitoring biomarkers for response to this therapy could improve the clinical management of these patients. To date, no established biomarkers are available for monitoring the response to immunotherapy. Tumor- specific mutations in circulating tumor DNA (ctDNA) such as BRAF and NRAS mutations for melanoma patients have been proposed for monitoring of immunotherapy response. We present seven illustrative cases for the use of ctDNA BRAF and NRAS mutations' monitoring in plasma. The cases described exemplify four distinct clinical benefit patterns: rapid and durable complete response (CR), early progression, followed by CR, CR followed by early progression after interrupting treatment and long-term disease stabilization. These representative cases suggest that comprehensive BRAF/NRAS ctDNA monitoring during anti-PD1 therapy is informative and can be of added value for the monitoring of melanoma patients gaining clinical benefit on anti-PD1 treatment. An important advantage of our approach is that using the cartridge system on the Idylla platform for mutation analysis, the results become available the same day 2 h after plasma collection. Therefore, in the future, the ctDNA level can be an element in the clinical management of the patients.

  16. Computer-assisted categorizing of head computed tomography reports for clinical decision rule research.

    PubMed

    Wall, Stephen P; Mayorga, Oliver; Banfield, Christine E; Wall, Mark E; Aisic, Ilan; Auerbach, Carl; Gennis, Paul

    2006-11-01

    To develop software that categorizes electronic head computed tomography (CT) reports into groups useful for clinical decision rule research. Data were obtained from the Second National Emergency X-Radiography Utilization Study, a cohort of head injury patients having received head CT. CT reports were reviewed manually for presence or absence of clinically important subdural or epidural hematoma, defined as greater than 1.0 cm in width or causing mass effect. Manual categorization was done by 2 independent researchers blinded to each other's results. A third researcher adjudicated discrepancies. A random sample of 300 reports with radiologic abnormalities was selected for software development. After excluding reports categorized manually or by software as indeterminate (neither positive nor negative), we calculated sensitivity and specificity by using manual categorization as the standard. System efficiency was defined as the percentage of reports categorized as positive or negative, regardless of accuracy. Software was refined until analysis of the training data yielded sensitivity and specificity approximating 95% and efficiency exceeding 75%. To test the system, we calculated sensitivity, specificity, and efficiency, using the remaining 1,911 reports. Of the 1,911 reports, 160 had clinically important subdural or epidural hematoma. The software exhibited good agreement with manual categorization of all reports, including indeterminate ones (weighted kappa 0.62; 95% confidence interval [CI] 0.58 to 0.65). Sensitivity, specificity, and efficiency of the computerized system for identifying manual positives and negatives were 96% (95% CI 91% to 98%), 98% (95% CI 98% to 99%), and 79% (95% CI 77% to 80%), respectively. Categorizing head CT reports by computer for clinical decision rule research is feasible.

  17. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    PubMed

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.

  19. The influence of CT based attenuation correction on PET/CT registration: an evaluation study

    NASA Astrophysics Data System (ADS)

    Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin

    2007-03-01

    We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.

  20. Technical Note: Confirming the prescribed angle of CT localizer radiographs and c-arm projection acquisitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, Timothy P., E-mail: tszczykutowicz@uwhealth.org; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2016-02-15

    Purpose: Accurate CT radiograph angle is not usually important in diagnostic CT. However, there are applications in radiation oncology and interventional radiology in which the orientation of the x-ray source and detector with respect to the patient is clinically important. The authors present a method for measuring the accuracy of the tube/detector assembly with respect to the prescribed tube/detector position for CT localizer, fluoroscopic, and general radiograph imaging using diagnostic, mobile, and c-arm based CT systems. Methods: A mathematical expression relating the x-ray projection of two metal BBs is related to gantry angle. Measurement of the BBs at a prescribedmore » gantry (i.e., c-arm) angle can be obtained and using this relation the prescribed versus actual gantry angle compared. No special service mode or proprietary information is required, only access to projection images is required. Projection images are available in CT via CT localizer radiographs and in the interventional setting via fluorography. Results: The technique was demonstrated on two systems, a mobile CT scanner and a diagnostic CT scanner. The results confirmed a known issue with the mobile scanner and accurately described the CT localizer angle of the diagnostic system tested. Conclusions: This method can be used to quantify gantry angle, which is important when projection images are used for procedure guidance, such as in brachytherapy and interventional radiology applications.« less

  1. A proposal for a CT driven classification of left colon acute diverticulitis.

    PubMed

    Sartelli, Massimo; Moore, Frederick A; Ansaloni, Luca; Di Saverio, Salomone; Coccolini, Federico; Griffiths, Ewen A; Coimbra, Raul; Agresta, Ferdinando; Sakakushev, Boris; Ordoñez, Carlos A; Abu-Zidan, Fikri M; Karamarkovic, Aleksandar; Augustin, Goran; Costa Navarro, David; Ulrych, Jan; Demetrashvili, Zaza; Melo, Renato B; Marwah, Sanjay; Zachariah, Sanoop K; Wani, Imtiaz; Shelat, Vishal G; Kim, Jae Il; McFarlane, Michael; Pintar, Tadaja; Rems, Miran; Bala, Miklosh; Ben-Ishay, Offir; Gomes, Carlos Augusto; Faro, Mario Paulo; Pereira, Gerson Alves; Catani, Marco; Baiocchi, Gianluca; Bini, Roberto; Anania, Gabriele; Negoi, Ionut; Kecbaja, Zurabs; Omari, Abdelkarim H; Cui, Yunfeng; Kenig, Jakub; Sato, Norio; Vereczkei, Andras; Skrovina, Matej; Das, Koray; Bellanova, Giovanni; Di Carlo, Isidoro; Segovia Lohse, Helmut A; Kong, Victor; Kok, Kenneth Y; Massalou, Damien; Smirnov, Dmitry; Gachabayov, Mahir; Gkiokas, Georgios; Marinis, Athanasios; Spyropoulos, Charalampos; Nikolopoulos, Ioannis; Bouliaris, Konstantinos; Tepp, Jaan; Lohsiriwat, Varut; Çolak, Elif; Isik, Arda; Rios-Cruz, Daniel; Soto, Rodolfo; Abbas, Ashraf; Tranà, Cristian; Caproli, Emanuele; Soldatenkova, Darija; Corcione, Francesco; Piazza, Diego; Catena, Fausto

    2015-01-01

    Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice.

  2. Creation of virtual patients from CT images of cadavers to enhance integration of clinical and basic science student learning in anatomy.

    PubMed

    Jacobson, Stanley; Epstein, Scott K; Albright, Susan; Ochieng, Joseph; Griffiths, Jeffrey; Coppersmith, Veronica; Polak, Joseph F

    2009-08-01

    The goal of this study was to determine whether computerized tomographic (CT) images of cadavers could be used in addition to images from patients to develop virtual patients (VPs) to enhance integrated learning of basic and clinical science. We imaged 13 cadavers on a Siemens CT system. The DICOM images from the CT were noted to be of high quality by a radiologist who systematically identified all abnormal and pathological findings. The pathological findings from the CT images and the cause of death were used to develop plausible clinical cases and study questions. Each case was designed to highlight and explain the abnormal anatomic findings encountered during the cadaveric dissection. A 3D reconstruction was produced using OsiriX and then formatted into a QuickTime movie which was then stored on the Tufts University Sciences Knowledgebase (TUSK) as a VP. We conclude that CT scanning of cadavers produces high-quality images that can be used to develop VPs. Although the use of the VPs was optional and fewer than half of the students had an imaged cadaver for dissection, 59 of the 172 (34%) students accessed and reviewed the cases and images positively and were very encouraging for us to continue.

  3. Combined multispectral spatial frequency domain imaging and computed tomography system for intraoperative breast tumor margin assessment

    NASA Astrophysics Data System (ADS)

    McClatchy, D. M.; Rizzo, E. J.; Krishnaswamy, V.; Kanick, S. C.; Wells, W. A.; Paulsen, K. D.; Pogue, B. W.

    2017-02-01

    There is a dire clinical need for surgical margin guidance in breast conserving therapy (BCT). We present a multispectral spatial frequency domain imaging (SFDI) system, spanning the visible and near-infrared (NIR) wavelengths, combined with a shielded X-ray computed tomography (CT) system, designed for intraoperative breast tumor margin assessment. While the CT can provide a volumetric visualization of the tumor core and its spiculations, the co-registered SFDI can provide superficial and quantitative information about localized changes tissue morphology from light scattering parameters. These light scattering parameters include both model-based parameters of sub-diffusive light scattering related to the particle size scale distribution and also textural information of the high spatial frequency reflectance. Because the SFDI and CT components are rigidly fixed, a simple transformation can be used to simultaneously display the SFDI and CT data in the same coordinate system. This is achieved through the Visualization Toolkit (vtk) file format in the open-source Slicer medical imaging software package. In this manuscript, the instrumentation, data processing, and preliminary human specimen data will be presented. The ultimate goal of this work is to evaluate this technology in a prospective clinical trial, and the current limitations and engineering solutions to meet this goal will also be discussed.

  4. CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, Tilman, E-mail: TSchubert@uhbs.ch; Jacob, Augustinus L.; Pansini, Michele

    2013-08-01

    PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targetingmore » precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.« less

  5. Contrast-enhanced ultrasound (CEUS) liver imaging reporting and data system (LI-RADS) 2017 – a review of important differences compared to the CT/MRI system

    PubMed Central

    Noh, Seung Yeon; Wilson, Stephanie R; Kono, Yuko; Piscaglia, Fabio; Jang, Hyun-Jung; Lyshchik, Andrej; Dietrich, Christoph F.; Willmann, Juergen K.; Vezeridis, Alexander; Sirlin, Claude B

    2017-01-01

    Medical imaging plays an important role in the diagnosis and management of hepatocellular carcinoma (HCC). The Liver Imaging Reporting and Data System (LI-RADS) was initially created to standardize the reporting and data collection of CT and MR imaging for patients at risk for HCC. As contrast-enhanced ultrasound (CEUS) has been widely used in clinical practice, it has recently been added to the LI-RADS. While CEUS LI-RADS shares fundamental concepts with CT/MRI LI-RADS, there are key differences between the modalities reflecting dissimilarities in the underlying methods of image acquisition and types of contrast material. This review introduces a recent update of CEUS LI-RADS and explains the key differences from CT/MRI LI-RADS. PMID:28911220

  6. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Natwa, M; Hall, NC

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less

  7. [Clinical application of high-pitch excretory phase images during dual-source CT urography with stellar photon detector].

    PubMed

    Sun, Hao; Xue, Hua-dan; Jin, Zheng-yu; Wang, Xuan; Chen, Yu; He, Yong-lan; Zhang, Da-ming; Zhu, Liang; Wang, Yun; Qi, Bing; Xu, Kai; Wang, Ming

    2014-10-01

    To retrospectively evaluate the clinical feasibility of high-pitch excretory phase images during dual-source CT urography with Stellar photon detector. Totally 100 patients received dual-source CT high-pitch urinary excretory phase scanning with Stellar photon detector [80 kV, ref.92 mAs, CARE Dose 4D and CARE kV, pitch of 3.0, filter back projection reconstruction algorithm (FBP)] (group A). Another 100 patients received dual-source CT high-pitch urinary excretory phase scanning with common detector(100 kV, ref.140 mAs, CARE Dose 4D, pitch of 3.0, FBP) (group B). Quantitative measurement of CT value of urinary segments (Hounsfield units), image noise (Hounsfield units), and effective radiation dose (millisievert) were compared using independent-samples t test between two groups. Urinary system subjective opacification scores were compared using Mann-Whitney U test between two groups. There was no significant difference in subjective opacification score of intrarenal collecting system and ureters between two groups (all P>0.05). The group A images yielded significantly higher CT values of all urinary segments (all P<0.01). There was no significant difference in image noise (P>0.05). The effective radiation dose of group A (1.1 mSv) was significantly lower than that of group B (3.79 mSv) (P<0.01). High-pitch low-tube-voltage during excretory phase dual-source CT urography with Stellar photon detector is feasible, with acceptable image noise and lower radiation dose.

  8. Clinical Value of FDG-PET/CT for the Evaluation of Rheumatic Diseases: Rheumatoid Arthritis, Polymyalgia Rheumatica, and Relapsing Polychondritis.

    PubMed

    Kubota, Kazuo; Yamashita, Hiroyuki; Mimori, Akio

    2017-07-01

    FDG is a tracer for visualizing glucose metabolism. PET/CT using FDG is widely used for the diagnosis of cancer, because glycolysis is elevated in cancer cells. Similarly, active inflammatory tissue also exhibits elevated glucose metabolism because of glycolysis in activated macrophages and proliferating fibroblasts. Elevated FDG uptake by active inflammatory tissues, such as those affected by arthritis, vasculitis, lymphadenitis, and chondritis, has enabled the diagnosis of inflammatory diseases using FDG-PET/CT. Rheumatoid arthritis (RA) is a systemic, chronic inflammation of the joints resulting in synovitis. Several clinical studies of RA have demonstrated that FDG uptake in affected joints reflects the disease activity of RA, with strong correlations between FDG uptake and various clinical parameters having been noted. Furthermore, the use of FDG-PET for the sensitive detection and early monitoring of the response to RA therapy has been reported. RA is sometimes associated with subclinical vasculitis, which is related to systemic inflammation. FDG-PET/CT can be used to evaluate subclinical vasculitis in the aorta or carotid artery. Polymyalgia rheumatica (PMR) is an autoimmune musculoskeletal disease of unknown etiology characterized by pain and stiffness in the shoulder, neck, and pelvic girdle, but not in the small finger joints in the hands, together with fever, fatigue, and weight loss. There is no specific test for PMR, and its diagnosis is based on clinical diagnostic criteria and the exclusion of other diseases with similar symptoms. However, FDG-PET/CT reveals a characteristic FDG uptake by the bursitis in ischial tuberosity, greater trochanter, lumbar or cervical spinous process, and scapulohumeral joint. A combination of FDG-PET/CT findings showed a high diagnostic value for PMR in a differential diagnosis from RA. FDG-PET/CT is also very useful for evaluating large vessel vasculitis, which is often associated with PMR. Relapsing polychondritis is a rare multisystem disease of unknown etiology involving cartilaginous and proteoglycan-rich structures. Its rarity and diversity of symptoms often result in a delayed diagnosis. FDG-PET/CT reveals unique FDG uptake findings for chondritis in the auricular, nasal, trachea, bronchial tree, and costal cartilage and in the cartilage of joints. Thus, the spread of knowledge regarding these very specific FDG-PET/CT findings could promote the early diagnosis and improved disease control of relapsing polychondritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intraoperative computed tomography with integrated navigation system in spinal stabilizations.

    PubMed

    Zausinger, Stefan; Scheder, Ben; Uhl, Eberhard; Heigl, Thomas; Morhard, Dominik; Tonn, Joerg-Christian

    2009-12-15

    STUDY DESIGN.: A prospective interventional case-series study plus a retrospective analysis of historical patients for comparison of data. OBJECTIVE.: To evaluate workflow, feasibility, and clinical outcome of navigated stabilization procedures with data acquisition by intraoperative computed tomography. SUMMARY OF BACKGROUND DATA.: Routine fluoroscopy to assess pedicle screw placement is not consistently reliable. Our hypothesis was that image-guided spinal navigation using an intraoperative CT-scanner can improve the safety and precision of spinal stabilization surgery. METHODS.: CT data of 94 patients (thoracolumbar [n = 66], C1/2 [n = 12], cervicothoracic instability [n = 16]) were acquired after positioning the patient in the final surgical position. A sliding gantry 40-slice CT was used for image acquisition. Data were imported to a frameless infrared-based neuronavigation workstation. Intraoperative CT was obtained to assess the accuracy of instrumentation and, if necessary, the extent of decompression. All patients were clinically evaluated by Odom-criteria after surgery and after 3 months. RESULTS.: Computed accuracy of the navigation system reached <2 mm (0.95 +/- 0.3 mm) in all cases. Additional time necessary for the preoperative image acquisition including data transfer was 14 +/- 5 minutes. The duration of interrupting the surgical process for iCT until resumption of surgery was 9 +/- 2.5 minutes. Control-iCT revealed incorrect screw position >/=2 mm without persistent neurologic or vascular damage in 20/414 screws (4.8%) leading to immediate correction of 10 screws (2.4%). Control-iCT changed the course of surgery in 8 cases (8.5% of all patients). The overall revision rate was 8.5% (4 wound revisions, 2 CSF fistulas, and 2 epidural hematomas). There was no reoperation due to implant malposition. According to Odom-criteria all patients experienced a clinical improvement. A retrospective analysis of 182 patients with navigated thoracolumbar transpedicular stabilizations in the preiCT era revealed an overall revision rate of 10.4% with 4.4% of patients requiring screw revision. CONCLUSION.: Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization. Reoperations due to implant malpositions could be completely avoided. The system can be installed into a pre-existing operating environment without need for special surgical instruments. The procedure is rapid and easy to perform without restricted access to the patient and-by replacing pre- and postoperative imaging-is not associated with an additional exposure to radiation. Multidisciplinary use increases utilization of the system and thus improves cost-efficiency relation.

  10. Measurement and Evaluation of Quantitative Performance of PET/CT Images before a Multicenter Clinical Trial.

    PubMed

    Zhu, Yanjia; Geng, Caizheng; Huang, Jia; Liu, Juzhen; Wu, Ning; Xin, Jun; Xu, Hao; Yu, Lijuan; Geng, Jianhua

    2018-06-13

    To ensure the reliability of the planned multi-center clinical trial, we assessed the consistence and comparability of the quantitative parameters of the eight PET/CT units that will be used in this trial. PET/CT images were scanned using a PET NEMA image quality phantom (Biodex) on the eight units of Discovery PET/CT 690 from GE Healthcare. The scanning parameters were the same with the ones to be used in the planned trial. The 18 F-NaF concentration in the background was 5.3 kBq/ml, while the ones in the spheres of diameter 37 mm, 22 mm, 17 mm and 10 mm were 8:1 as to that of the background and the ones in the spheres of diameter 28 mm and 13 mm were 0 kBq/ml. The consistency of hot sphere recovery coefficient (HRC), cold sphere recovery coefficient (CRC), hot sphere contrast (Q H ) and cold sphere contrast (Q c ) among these 8 PET/CTs was analyzed. The variation of the main quantitative parameters of the eight PET/CT systems was within 10%, which is acceptable for the clinical trial.

  11. SU-F-303-12: Implementation of MR-Only Simulation for Brain Cancer: A Virtual Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, C; Zheng, W; Kim, J

    2015-06-15

    Purpose: To perform a retrospective virtual clinical trial using an MR-only workflow for a variety of brain cancer cases by incorporating novel imaging sequences, tissue segmentation using phase images, and an innovative synthetic CT (synCT) solution. Methods: Ten patients (16 lesions) were evaluated using a 1.0T MR-SIM including UTE-DIXON imaging (TE = 0.144/3.4/6.9ms). Bone-enhanced images were generated from DIXON-water/fat and inverted UTE. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating intersection and Dice similarity coefficients (DSC) using CT-SIM as ground truth. SynCTs were generated using voxel-based weighted summation incorporating T2, FLAIR, UTE1,more » and bone-enhanced images. Mean absolute error (MAE) characterized HU differences between synCT and CT-SIM. Dose was recalculated on synCTs; differences were quantified using planar gamma analysis (2%/2 mm dose difference/distance to agreement) at isocenter. Digitally reconstructed radiographs (DRRs) were compared. Results: On average, air maps intersected 80.8 ±5.5% (range: 71.8–88.8%) between MR-SIM and CT-SIM yielding DSCs of 0.78 ± 0.04 (range: 0.70–0.83). Whole-brain MAE between synCT and CT-SIM was 160.7±8.8 HU, with the largest uncertainty arising from bone (MAE = 423.3±33.2 HU). Gamma analysis revealed pass rates of 99.4 ± 0.04% between synCT and CT-SIM for the cohort. Dose volume histogram analysis revealed that synCT tended to yield slightly higher doses. Organs at risk such as the chiasm and optic nerves were most sensitive due to their proximities to air/bone interfaces. DRRs generated via synCT and CT-SIM were within clinical tolerances. Conclusion: Our approach for MR-only simulation for brain cancer treatment planning yielded clinically acceptable results relative to the CT-based benchmark. While slight dose differences were observed, reoptimization of treatment plans and improved image registration can address this limitation. Future work will incorporate automated registration between setup images (cone-beam CT and kilovoltage images) for synCT and CT-SIM. Submitting institution holds research agreements with Philips HealthCare, Best, Netherlands and Varian Medical Systems, Palo Alto, CA. Research partially sponsored via an Internal Mentored Research Grant.« less

  12. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  13. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  14. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  15. PET/CT: underlying physics, instrumentation, and advances.

    PubMed

    Torres Espallardo, I

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important advances in this hybrid imaging modality. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Medipix-based Spectral Micro-CT.

    PubMed

    Yu, Hengyong; Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2012-12-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT.

  17. Performance tests for ray-scan 64 PET/CT based on NEMA NU-2 2007

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhou, Kun; Zhang, Qiushi; Zhang, Jinming; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2015-03-01

    This paper focuses on evaluating the performance of the Ray-Scan 64 PET/CT system, a newly developed PET/CT in China. It combines a 64 slice helical CT scanner with a high resolution PET scanner based on BGO crystals assembled in 36 rings. The energy window is 350~ 650 keV, and the coincidence window is set at 12 ns in both 2D and 3D mode. The transaxial field of view (FOV) is 600 mm in diameter, and the axial FOV is 163 mm. Method: Performance measurements were conducted focusing on PET scanners based on NEMA NU-2 2007 standard. We reported the full characterization (spatial resolution, sensitivity, count rate performance, scatter fraction, accuracy of correction, and image quality) in both 2D and 3D mode. In addition, the clinical images from two patients of different types of tumor were presented to further demonstrate this PET/CT system performance in clinical application. Results: using the NEMA NU-2 2007 standard, the main results: (1) the transaxial resolution at 1cm from the gantry center for 2D and 3D was both 4.5mm (FWHM), and at 10cm from the gantry center, the radial (tangential) resolution were 5.6mm (5.3mm) and 5.4mm (5.2mm) in 2D and 3D mode respectively. The axial resolution at 1cm and 10cm off axis was 3.4mm (4.8mm) and 5.5mm (5.8mm) in 2D (3D) mode respectively; (2) the sensitivity for the radial position R0(r=0mm) and R100(r=100mm) were 1.741 kcps/MBq and 1.767 kcps/MBq respectively in 2D mode and 7.157 kcps/MBq and 7.513 kcps/MBq in 3D mode; (3) the scatter fraction was calculated as 18.36% and 42.92% in 2D and 3D mode, respectively; (4) contrast of hot spheres in the image quality phantom in 2D mode was 50.33% (52.87%), 33.34% (40.86%), 20.64% (26.36%), and 10.99% (15.82%), respectively, in N=4 (N=8). Besides, in clinical study, the diameter of lymph tumor was about 2.4 cm, and the diameter of lung cancer was 4.2 cm. This PET/CT system can distinguish the position of cancer easily. Conclusion: The results show that the performance of the newly developed PET/CT system is of high resolution, and low scatter characteristics, and is suitable for clinical applications.

  18. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    PubMed

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  19. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    PubMed Central

    Mhlanga, Joyce C.; Carrino, John A.; Lodge, Martin; Wang, Hao

    2015-01-01

    Purpose The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18F-FDG. Methods Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Results Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73±7.7 years). Six patients served as the control group (53.7±9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r=0.86. p =0.007; r=0.94, p=0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7±6.6 vs. 32.2±0.4, p=0.02; 37.5±5.4 vs. 32.2±0.4, p=0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8±4.2 vs. 18±1.8, p= 0.13; 22.8±5.38 vs. 20.1±1.54, p=0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9±31.3 vs. 0, p=0.03). Conclusion Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. PMID:25134669

  20. Initial results from a prototype whole-body photon-counting computed tomography system.

    PubMed

    Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .

  1. Initial results from a prototype whole-body photon-counting computed tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Leng, S.; Jorgensen, S. M.; Li, Z.; Gutjahr, R.; Chen, B.; Duan, X.; Halaweish, A. F.; Yu, L.; Ritman, E. L.; McCollough, C. H.

    2015-03-01

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×1011 photons per cm2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo.

  2. Comprehensible knowledge model creation for cancer treatment decision making.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Ali Khan, Wajahat; Ali, Taqdir; Lee, Sungyoung; Huh, Eui-Nam; Farooq Ahmad, Hafiz; Jamshed, Arif; Iqbal, Hassan; Irfan, Muhammad; Abbas Hydari, Manzar

    2017-03-01

    A wealth of clinical data exists in clinical documents in the form of electronic health records (EHRs). This data can be used for developing knowledge-based recommendation systems that can assist clinicians in clinical decision making and education. One of the big hurdles in developing such systems is the lack of automated mechanisms for knowledge acquisition to enable and educate clinicians in informed decision making. An automated knowledge acquisition methodology with a comprehensible knowledge model for cancer treatment (CKM-CT) is proposed. With the CKM-CT, clinical data are acquired automatically from documents. Quality of data is ensured by correcting errors and transforming various formats into a standard data format. Data preprocessing involves dimensionality reduction and missing value imputation. Predictive algorithm selection is performed on the basis of the ranking score of the weighted sum model. The knowledge builder prepares knowledge for knowledge-based services: clinical decisions and education support. Data is acquired from 13,788 head and neck cancer (HNC) documents for 3447 patients, including 1526 patients of the oral cavity site. In the data quality task, 160 staging values are corrected. In the preprocessing task, 20 attributes and 106 records are eliminated from the dataset. The Classification and Regression Trees (CRT) algorithm is selected and provides 69.0% classification accuracy in predicting HNC treatment plans, consisting of 11 decision paths that yield 11 decision rules. Our proposed methodology, CKM-CT, is helpful to find hidden knowledge in clinical documents. In CKM-CT, the prediction models are developed to assist and educate clinicians for informed decision making. The proposed methodology is generalizable to apply to data of other domains such as breast cancer with a similar objective to assist clinicians in decision making and education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quality control of CT systems by automated monitoring of key performance indicators: a two-year study.

    PubMed

    Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-07-08

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Shuai; Yu, Lifeng; Wang, Jia

    Purpose: Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Methods: Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i)more » numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. Results: The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Conclusions: Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.« less

  5. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review.

    PubMed

    Merker, Jason D; Oxnard, Geoffrey R; Compton, Carolyn; Diehn, Maximilian; Hurley, Patricia; Lazar, Alexander J; Lindeman, Neal; Lockwood, Christina M; Rai, Alex J; Schilsky, Richard L; Tsimberidou, Apostolia M; Vasalos, Patricia; Billman, Brooke L; Oliver, Thomas K; Bruinooge, Suanna S; Hayes, Daniel F; Turner, Nicholas C

    2018-06-01

    Purpose Clinical use of analytical tests to assess genomic variants in circulating tumor DNA (ctDNA) is increasing. This joint review from ASCO and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research. Methods An Expert Panel conducted a literature review on the use of ctDNA assays for solid tumors, including pre-analytical variables, analytical validity, interpretation and reporting, and clinical validity and utility. Results The literature search identified 1,338 references. Of those, 390, plus 31 references supplied by the Expert Panel, were selected for full-text review. There were 77 articles selected for inclusion. Conclusion The evidence indicates that testing for ctDNA is optimally performed on plasma collected in cell stabilization or EDTA tubes, with EDTA tubes processed within 6 hours of collection. Some ctDNA assays have demonstrated clinical validity and utility with certain types of advanced cancer; however, there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer. Evidence shows discordance between the results of ctDNA assays and genotyping tumor specimens and supports tumor tissue genotyping to confirm undetected results from ctDNA tests. There is no evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, treatment monitoring, or residual disease detection. There is no evidence of clinical validity and clinical utility to suggest that ctDNA assays are useful for cancer screening, outside of a clinical trial. Given the rapid pace of research, re-evaluation of the literature will shortly be required, along with the development of tools and guidance for clinical practice.

  6. Software platform for simulation of a prototype proton CT scanner.

    PubMed

    Giacometti, Valentina; Bashkirov, Vladimir A; Piersimoni, Pierluigi; Guatelli, Susanna; Plautz, Tia E; Sadrozinski, Hartmut F-W; Johnson, Robert P; Zatserklyaniy, Andriy; Tessonnier, Thomas; Parodi, Katia; Rosenfeld, Anatoly B; Schulte, Reinhard W

    2017-03-01

    Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT. The modular pCT software platform consists of (1) a Geant4-based simulation modeling the Loma Linda proton therapy beam line and the prototype proton CT scanner, (2) water equivalent path length (WEPL) calibration of the scintillating energy detector, and (3) image reconstruction algorithm for the reconstruction of the relative stopping power (RSP) of the scanned object. In this work, each component of the modular pCT software platform is described and validated with respect to experimental data and benchmarked against theoretical predictions. In particular, the RSP reconstruction was validated with both experimental scans, water column measurements, and theoretical calculations. The results show that the pCT software platform accurately reproduces the performance of the existing prototype pCT scanner with a RSP agreement between experimental and simulated values to better than 1.5%. The validated platform is a versatile tool for clinical proton CT performance and application studies in a virtual setting. The platform is flexible and can be modified to simulate not yet existing versions of pCT scanners and higher proton energies than those currently clinically available. © 2017 American Association of Physicists in Medicine.

  7. Analysis of appropriateness of outpatient CT and MRI referred from primary care clinics at an academic medical center: how critical is the need for improved decision support?

    PubMed

    Lehnert, Bruce E; Bree, Robert L

    2010-03-01

    The aim of this study was to retrospectively analyze a large group of CT and MRI examinations for appropriateness using evidence-based guidelines. The authors reviewed medical records from 459 elective outpatient CT and MR examinations from primary care physicians. Evidence-based appropriateness criteria from a radiology benefit management company were used to determine if the examination would have met criteria for approval. Submitted clinical history at the time of interpretation and clinic notes and laboratory results preceding the date of the imaging study were examined to simulate a real-time consultation with the referring provider. The radiology reports and subsequent clinic visits were analyzed for outcomes. Of the 459 examinations reviewed, 284 (62%) were CT and 175 (38%) were MRI. Three hundred forty-one (74%) were considered appropriate, and 118 (26%) were not considered appropriate. Examples of inappropriate examinations included brain CT for chronic headache, lumbar spine MR for acute back pain, knee or shoulder MRI in patients with osteoarthritis, and CT for hematuria during a urinary tract infection. Fifty-eight percent of the appropriate studies had positive results and affected subsequent management, whereas only thirteen percent [corrected] of inappropriate studies had positive results and affected management. A high percentage of examinations not meeting appropriateness criteria and subsequently yielding negative results suggests a need for tools to help primary care physicians improve the quality of their imaging decision requests. In the current environment, which stresses cost containment and comparative effectiveness, traditional radiology benefit management tools are being challenged by clinical decision support, with an emphasis on provider education coupled with electronic order entry systems.

  8. Needle and catheter navigation using electromagnetic tracking for computer-assisted C-arm CT interventions

    NASA Astrophysics Data System (ADS)

    Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.

    2007-03-01

    Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.

  9. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Campbell, J

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0more » mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal tissue for SBRT lung/liver patients.« less

  10. Oral salmon calcitonin protects against impaired fasting glycemia, glucose intolerance, and obesity induced by high-fat diet and ovariectomy in rats.

    PubMed

    Feigh, Michael; Andreassen, Kim V; Hjuler, Sara T; Nielsen, Rasmus H; Christiansen, Claus; Henriksen, Kim; Karsdal, Morten A

    2013-07-01

    Oral salmon calcitonin (sCT) has demonstrated clinical efficacy in treating osteoporosis in postmenopausal women. The postmenopausal state is also associated with obesity-related insulin resistance (IR) and type 2 diabetes. The aim of this study was to investigate the preventive effects of oral sCT on energy and glucose homeostasis in high-fat diet (HFD)- and ovariectomy (OVX)-induced obese rats. Furthermore, the weight-regulatory and gluco-regulatory effects of short-term oral sCT intervention on HFD-induced obese rats were explored. For prevention, female rats exposed to HFD with or without OVX were treated with oral sCT for 5 weeks. As intervention, HFD-induced obese male rats were treated with oral sCT for 4 days. Body weight, food intake, and plasma glucose, insulin, and leptin levels were measured, and the clinical homeostasis model assessment for insulin resistance (HOMA-IR) index was calculated. In addition, oral glucose tolerance was evaluated in the systemic and portal circulations. For prevention, oral sCT reduced body weight by ∼16% to 19% (P < 0.001), reduced plasma insulin and leptin by ∼50%, and improved impaired fasting glycemia (P < 0.05) concomitantly with amelioration of IR (HOMA-IR; P < 0.01) in HFD- and OVX-induced obesity. Furthermore, oral sCT significantly reduced the incremental area under the curve for plasma glucose and insulin by ∼40% and ∼70%, respectively, during glucose tolerance testing. As intervention in HFD-induced obese rats, oral sCT reduced body weight, fasting glycemia, and insulinemia in conjunction with HOMA-IR (P < 0.001). Finally, oral sCT alleviated glucose intolerance predominantly in the portal circulation. Oral sCT treatment displays weight-regulatory and glucoregulatory efficacy in HFD- and OVX-induced obese rats, indicating the clinical usefulness of oral sCT in postmenopausal obesity-related IR and type 2 diabetes.

  11. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality.

    PubMed

    Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg

    2015-01-01

    The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.

  12. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  13. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  14. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.

    PubMed

    Karçaaltıncaba, Muşturay; Aktaş, Aykut

    2011-09-01

    Although dual-energy CT (DECT) was first conceived in the 1970s, it was not widely used for CT indications. Recently, the simultaneous acquisition of volumetric dual-energy data has been introduced using multidetector CT (MDCT) with two X-ray tubes and rapid kVp switching (gemstone spectral imaging). Two major advantages of DECT are material decomposition by acquiring two image series with different kVp and the elimination of misregistration artifacts. Hounsfield unit measurements by DECT are not absolute and can change depending on the kVp used for an acquisition. Typically, a combination of 80/140 kVp is used for DECT, but for some applications, 100/140 kVp is preferred. In this study, we summarized the clinical applications of DECT and included images that were acquired using the dual-source CT and rapid kVp switching. In general, unenhanced images can be avoided by using DECT for body and neurological applications; iodine can be removed from the image, and a virtual, non-contrast (water) image can be obtained. Neuroradiological applications allow for the removal of bone and calcium from the carotid and brain CT angiography. Thorax applications include perfusion imaging in patients with pulmonary thromboemboli and other chest diseases, xenon ventilation-perfusion imaging and solitary nodule characterization. Cardiac applications include dual-energy cardiac perfusion, viability and cardiac iron detection. The removal of calcific plaques from arteries, bone removal and aortic stent graft evaluation may be achieved in the vascular system. Abdominal applications include the detection and characterization of liver and pancreas masses, the diagnosis of steatosis and iron overload, DECT colonoscopy and CT cholangiography. Urinary system applications are urinary calculi characterization (uric acid vs. non-uric acid), renal cyst characterization and mass characterization. Musculoskeletal applications permit the differentiation of gout from pseudogout and a reduction of metal artifacts. Recent introduction of iterative reconstruction techniques can increase the use of DECT techniques; the use of dual energy in patients with a high BMI is limited due to noise and the radiation dose. DECT may be a good alternative to PET-CT. Iodine map images can quantify iodine uptake, and this approach may be more effective than obtaining non-contrast and post-contrast images for the diagnosis of a solid mass. Thus, computer-aided detection may be used more effectively in CT applications. DECT is a promising technique with potential clinical applications.

  15. An alternative database approach for management of SNOMED CT and improved patient data queries.

    PubMed

    Campbell, W Scott; Pedersen, Jay; McClay, James C; Rao, Praveen; Bastola, Dhundy; Campbell, James R

    2015-10-01

    SNOMED CT is the international lingua franca of terminologies for human health. Based in Description Logics (DL), the terminology enables data queries that incorporate inferences between data elements, as well as, those relationships that are explicitly stated. However, the ontologic and polyhierarchical nature of the SNOMED CT concept model make it difficult to implement in its entirety within electronic health record systems that largely employ object oriented or relational database architectures. The result is a reduction of data richness, limitations of query capability and increased systems overhead. The hypothesis of this research was that a graph database (graph DB) architecture using SNOMED CT as the basis for the data model and subsequently modeling patient data upon the semantic core of SNOMED CT could exploit the full value of the terminology to enrich and support advanced data querying capability of patient data sets. The hypothesis was tested by instantiating a graph DB with the fully classified SNOMED CT concept model. The graph DB instance was tested for integrity by calculating the transitive closure table for the SNOMED CT hierarchy and comparing the results with transitive closure tables created using current, validated methods. The graph DB was then populated with 461,171 anonymized patient record fragments and over 2.1 million associated SNOMED CT clinical findings. Queries, including concept negation and disjunction, were then run against the graph database and an enterprise Oracle relational database (RDBMS) of the same patient data sets. The graph DB was then populated with laboratory data encoded using LOINC, as well as, medication data encoded with RxNorm and complex queries performed using LOINC, RxNorm and SNOMED CT to identify uniquely described patient populations. A graph database instance was successfully created for two international releases of SNOMED CT and two US SNOMED CT editions. Transitive closure tables and descriptive statistics generated using the graph database were identical to those using validated methods. Patient queries produced identical patient count results to the Oracle RDBMS with comparable times. Database queries involving defining attributes of SNOMED CT concepts were possible with the graph DB. The same queries could not be directly performed with the Oracle RDBMS representation of the patient data and required the creation and use of external terminology services. Further, queries of undefined depth were successful in identifying unknown relationships between patient cohorts. The results of this study supported the hypothesis that a patient database built upon and around the semantic model of SNOMED CT was possible. The model supported queries that leveraged all aspects of the SNOMED CT logical model to produce clinically relevant query results. Logical disjunction and negation queries were possible using the data model, as well as, queries that extended beyond the structural IS_A hierarchy of SNOMED CT to include queries that employed defining attribute-values of SNOMED CT concepts as search parameters. As medical terminologies, such as SNOMED CT, continue to expand, they will become more complex and model consistency will be more difficult to assure. Simultaneously, consumers of data will increasingly demand improvements to query functionality to accommodate additional granularity of clinical concepts without sacrificing speed. This new line of research provides an alternative approach to instantiating and querying patient data represented using advanced computable clinical terminologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dual-Energy CT: New Horizon in Medical Imaging

    PubMed Central

    Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151

  17. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  18. Can CT imaging of the chest, abdomen, and pelvis identify all vertebral injuries of the thoracolumbar spine without dedicated reformatting?

    PubMed

    Imran, Jonathan B; Madni, Tarik D; Pruitt, Jeffrey H; Cornelius, Canon; Subramanian, Madhu; Clark, Audra T; Mokdad, Ali A; Rizk, Paul; Minei, Joseph P; Cripps, Michael W; Eastman, Alexander L

    2018-07-01

    The main objective of this study was to compare detection rates of clinically significant thoracolumbar spine (TLS) fracture between computed tomography (CT) imaging of the chest, abdomen, and spine (CT CAP) and CT for the thoracolumbar spine (CT TL). We retrospectively identified patients at our institution with a TLS fracture over a two-year period that had both CT CAP and reformatted CT TL imaging. The sensitivity of CT CAP to identify fracture was calculated for each fracture type. A total of 516 TLS fractures were identified in 125 patients using reformatted CT TL spine imaging. Overall, 69 of 512 fractures (13%) were missed on CT CAP that were identified on CT TL. Of those, there were no clinically significant missed fractures. CT CAP could potentially be used as a screening tool for clinically significant TLS injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98.

    PubMed

    Loi, Sherene; Sirtaine, Nicolas; Piette, Fanny; Salgado, Roberto; Viale, Giuseppe; Van Eenoo, Françoise; Rouas, Ghizlane; Francis, Prudence; Crown, John P A; Hitre, Erika; de Azambuja, Evandro; Quinaux, Emmanuel; Di Leo, Angelo; Michiels, Stefan; Piccart, Martine J; Sotiriou, Christos

    2013-03-01

    Previous preclinical and clinical data suggest that the immune system influences prognosis and response to chemotherapy (CT); however, clinical relevance has yet to be established in breast cancer (BC). We hypothesized that increased lymphocytic infiltration would be associated with good prognosis and benefit from immunogenic CT-in this case, anthracycline-only CT-in selected BC subtypes. We investigated the relationship between quantity and location of lymphocytic infiltrate at diagnosis with clinical outcome in 2009 node-positive BC samples from the BIG 02-98 adjuvant phase III trial comparing anthracycline-only CT (doxorubicin followed by cyclophosphamide, methotrexate, and fluorouracil [CMF] or doxorubicin plus cyclophosphamide followed by CMF) versus CT combining doxorubicin and docetaxel (doxorubicin plus docetaxel followed by CMF or doxorubicin followed by docetaxel followed by CMF). Readings were independently performed by two pathologists. Disease-free survival (DFS), overall survival (OS), and interaction with type of CT associations were studied. Median follow-up was 8 years. There was no significant prognostic association in the global nor estrogen receptor (ER) -positive/human epidermal growth factor receptor 2 (HER2) -negative population. However, each 10% increase in intratumoral and stromal lymphocytic infiltrations was associated with 17% and 15% reduced risk of relapse (adjusted P = .1 and P = .025), respectively, and 27% and 17% reduced risk of death in ER-negative/HER2-negative BC regardless of CT type (adjusted P = .035 and P = .023), respectively. In HER2-positive BC, there was a significant interaction between increasing stromal lymphocytic infiltration (10% increments) and benefit with anthracycline-only CT (DFS, interaction P = .042; OS, P = .018). In node-positive, ER-negative/HER2-negative BC, increasing lymphocytic infiltration was associated with excellent prognosis. Further validation of the clinical utility of tumor-infiltrating lymphocytes in this context is warranted. Our data also support the evaluation of immunotherapeutic approaches in selected BC subtypes.

  20. Comparison of Intraoperative Portable CT Scanners in Skull Base and Endoscopic Sinus Surgery: Single Center Case Series

    PubMed Central

    Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.

    2011-01-01

    Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270

  1. Vertebral Uptake of Tc-99m Macroaggregated Albumin (MAA) with SPECT/CT Occurring in Superior Vena Cava Obstruction.

    PubMed

    Karls, Shawn; Hassoun, Hani; Derbekyan, Vilma

    2016-09-01

    A 67-year-old male presented with dyspnea for which lung scintigraphy was ordered to rule out pulmonary embolus. Planar images demonstrated abnormal midline uptake of Tc-99m macroaggregated albumin, which SPECT/CT localized to several thoracic vertebrae. Thoracic vertebral uptake on perfusion lung scintigraphy was previously described on planar imaging. Radionuclide venography and contrast-enhanced CT subsequently demonstrated superior vena cava (SVC) obstruction with collateralization through the azygous/hemiazygous system and vertebral venous plexus. SPECT/CT differentiated residual esophageal/tracheal ventilation activity, a clinically insignificant finding, from vertebral uptake indicative of SVC obstruction, a potentially life-threatening condition.

  2. Application of CT-PSF-based computer-simulated lung nodules for evaluating the accuracy of computer-aided volumetry.

    PubMed

    Funaki, Ayumu; Ohkubo, Masaki; Wada, Shinichi; Murao, Kohei; Matsumoto, Toru; Niizuma, Shinji

    2012-07-01

    With the wide dissemination of computed tomography (CT) screening for lung cancer, measuring the nodule volume accurately with computer-aided volumetry software is increasingly important. Many studies for determining the accuracy of volumetry software have been performed using a phantom with artificial nodules. These phantom studies are limited, however, in their ability to reproduce the nodules both accurately and in the variety of sizes and densities required. Therefore, we propose a new approach of using computer-simulated nodules based on the point spread function measured in a CT system. The validity of the proposed method was confirmed by the excellent agreement obtained between computer-simulated nodules and phantom nodules regarding the volume measurements. A practical clinical evaluation of the accuracy of volumetry software was achieved by adding simulated nodules onto clinical lung images, including noise and artifacts. The tested volumetry software was revealed to be accurate within an error of 20 % for nodules >5 mm and with the difference between nodule density and background (lung) (CT value) being 400-600 HU. Such a detailed analysis can provide clinically useful information on the use of volumetry software in CT screening for lung cancer. We concluded that the proposed method is effective for evaluating the performance of computer-aided volumetry software.

  3. A new coding system for metabolic disorders demonstrates gaps in the international disease classifications ICD-10 and SNOMED-CT, which can be barriers to genotype-phenotype data sharing.

    PubMed

    Sollie, Annet; Sijmons, Rolf H; Lindhout, Dick; van der Ploeg, Ans T; Rubio Gozalbo, M Estela; Smit, G Peter A; Verheijen, Frans; Waterham, Hans R; van Weely, Sonja; Wijburg, Frits A; Wijburg, Rudolph; Visser, Gepke

    2013-07-01

    Data sharing is essential for a better understanding of genetic disorders. Good phenotype coding plays a key role in this process. Unfortunately, the two most widely used coding systems in medicine, ICD-10 and SNOMED-CT, lack information necessary for the detailed classification and annotation of rare and genetic disorders. This prevents the optimal registration of such patients in databases and thus data-sharing efforts. To improve care and to facilitate research for patients with metabolic disorders, we developed a new coding system for metabolic diseases with a dedicated group of clinical specialists. Next, we compared the resulting codes with those in ICD and SNOMED-CT. No matches were found in 76% of cases in ICD-10 and in 54% in SNOMED-CT. We conclude that there are sizable gaps in the SNOMED-CT and ICD coding systems for metabolic disorders. There may be similar gaps for other classes of rare and genetic disorders. We have demonstrated that expert groups can help in addressing such coding issues. Our coding system has been made available to the ICD and SNOMED-CT organizations as well as to the Orphanet and HPO organizations for further public application and updates will be published online (www.ddrmd.nl and www.cineas.org). © 2013 WILEY PERIODICALS, INC.

  4. Optimizing spectral CT parameters for material classification tasks

    NASA Astrophysics Data System (ADS)

    Rigie, D. S.; La Rivière, P. J.

    2016-06-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.

  5. Optimizing Spectral CT Parameters for Material Classification Tasks

    PubMed Central

    Rigie, D. S.; La Rivière, P. J.

    2017-01-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430

  6. Disseminated Multi-system Sarcoidosis Mimicking Metastases on 18F-FDG PET/CT.

    PubMed

    Makis, William; Palayew, Mark; Rush, Christopher; Probst, Stephan

    2018-06-07

    A 60-year-old female with no significant medical history presented with hematuria. A computed tomography (CT) scan revealed extensive lymphadenopathy with hypodensities in the liver and spleen, and she was referred for an 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/CT (PET/CT) study to assess for malignancy of unknown primary. PET/CT revealed extensive 18 F-FDG avid lymphadenopathy as well as innumerable intensely 18 F-FDG avid lung, liver and splenic nodules, highly concerning for malignancy. A PET-guided bone marrow biopsy of the posterior superior iliac spine revealed several non-necrotizing, well-formed granulomas, consistent with sarcoidosis. The patient was managed conservatively and remained clinically well over the subsequent 9 years of follow-up.

  7. Stone-Mode Ultrasound for Determining Renal Stone Size.

    PubMed

    May, Philip C; Haider, Yasser; Dunmire, Barbrina; Cunitz, Bryan W; Thiel, Jeff; Liu, Ziyue; Bruce, Matthew; Bailey, Michael R; Sorensen, Mathew D; Harper, Jonathan D

    2016-09-01

    The purpose of this study was to measure the accuracy of stone-specific algorithms (S-mode) and the posterior acoustic shadow for determining kidney stone size with ultrasound (US) in vivo. Thirty-four subjects with 115 renal stones were prospectively recruited and scanned with S-mode on a research US system. S-mode is gray-scale US adjusted to enhanced stone contrast and resolution by minimizing compression and averaging, and increasing line density and frequency. Stone and shadow width were compared with a recent CT scan and, in 5 subjects with 18 stones, S-mode was compared with a clinical US system. Overall, 84% of stones identified on CT were detected on S-mode and 66% of these shadowed. Seventy-three percent of the stone measurements and 85% of the shadow measurements were within 2 mm of the size on CT. A posterior acoustic shadow was present in 89% of stones over 5 mm versus 53% of stones under 5 mm. S-mode visualized 78% of stones, versus 61% for the clinical system. S-mode stone and shadow measurements differed from CT by 1.6 ± 1.0 mm and 0.8 ± 0.6 mm, respectively, compared with 2.0 ± 1.5 mm and 1.6 ± 1.0 mm for the clinical system. S-mode offers improved visualization and sizing of renal stones. With S-mode, sizing of the stone itself and the posterior acoustic shadow were similarly accurate. Stones that do not shadow are most likely <5 mm and small enough to pass spontaneously.

  8. SU-G-TeP2-11: Initial Evaluation of a Novel Split-Filter Dual-Energy CT for Use in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J; Huang, J; Szczykutowicz, T

    2016-06-15

    Purpose: To perform an initial evaluation of a novel split-filter dual-energy CT (DECT) system with the goal of understanding the clinical utility and limitations of the system for radiation therapy. Methods: Several phantoms were imaged using the split-filter DECT technique on the Siemens Edge CT scanner using a range of clinically-relevant doses. The optimum-contrast reconstruction, the mixed reconstruction, and the monoenergetic reconstructions (ranging from 40 keV to 190 keV) were evaluated. Each image was analyzed for CT number accuracy, uniformity, noise, low-contrast visibility (LCV), spatial resolution and geometric distortion. For comparison purposes, all parameters were evaluated on 120 kVp single-energymore » CT (SECT) scans used for treatment planning, as well as, a sequential-scan DECT technique for corresponding doses. Results: For all DECT reconstructions no observable geometric distortion was found. Both the optimal-contrast and mixed images demonstrated slight improvements in LCV and noise when compared to the SECT, and slight reductions in CT number accuracy and spatial resolution. The CT numbers trended as expected for the monoenergetic reconstructions, with CT number accuracy within 50 HU for materials of density <2 g/cm3. Spatial resolution increased with energy, and for monoenergetic reconstructions >70 keV the spatial resolution exceeded that of the SECT. The noise in the monoenergetic reconstructions increased with decreasing energy. Thus, the image uniformity, signal-to-noise ratio and LCV were diminished at lower energies (70 keV). Applying iterative reconstruction techniques to the low-energy images reduced noise and improved LCV. The signal-to-noise ratio was stable for energies >100 keV. Conclusion: The initial commissioning of the novel split-filter DECT technology demonstrated favorable results for clinical implementation. The mixed reconstruction showed potential as a replacement for the treatment planning SECT. The image parameters for the monoenergetic reconstructions varied appropriately with energy. This work provides an initial understanding of the limitations and potential applications for monoenergetic imaging.« less

  9. Clinical Evaluation of Spatial Accuracy of a Fusion Imaging Technique Combining Previously Acquired Computed Tomography and Real-Time Ultrasound for Imaging of Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Garcia Marques de Carvalho, Enio

    2011-04-15

    Purpose: This study was designed to evaluate the spatial accuracy of matching volumetric computed tomography (CT) data of hepatic metastases with real-time ultrasound (US) using a fusion imaging system (VNav) according to different clinical settings. Methods: Twenty-four patients with one hepatic tumor identified on enhanced CT and US were prospectively enrolled. A set of three landmarks markers was chosen on CT and US for image registration. US and CT images were then superimposed using the fusion imaging display mode. The difference in spatial location between the tumor visible on the CT and the US on the overlay images (reviewer no.more » 1, comment no. 2) was measured in the lateral, anterior-posterior, and vertical axis. The maximum difference (Dmax) was evaluated for different predictive factors.CT performed 1-30 days before registration versus immediately before. Use of general anesthesia for CT and US versus no anesthesia.Anatomic landmarks versus landmarks that include at least one nonanatomic structure, such as a cyst or a calcificationResultsOverall, Dmax was 11.53 {+-} 8.38 mm. Dmax was 6.55 {+-} 7.31 mm with CT performed immediately before VNav versus 17.4 {+-} 5.18 with CT performed 1-30 days before (p < 0.0001). Dmax was 7.05 {+-} 6.95 under general anesthesia and 16.81 {+-} 6.77 without anesthesia (p < 0.0015). Landmarks including at least one nonanatomic structure increase Dmax of 5.2 mm (p < 0.0001). The lowest Dmax (1.9 {+-} 1.4 mm) was obtained when CT and VNav were performed under general anesthesia, one immediately after the other. Conclusions: VNav is accurate when adequate clinical setup is carefully selected. Only under these conditions (reviewer no. 2), liver tumors not identified on US can be accurately targeted for biopsy or radiofrequency ablation using fusion imaging.« less

  10. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    PubMed

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  11. Positioning accuracy in a registration-free CT-based navigation system

    NASA Astrophysics Data System (ADS)

    Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.

    2007-12-01

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.

  12. A new methodological approach for PET implementation in radiotherapy treatment planning.

    PubMed

    Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello

    2012-05-01

    In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.

  13. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection.

    PubMed

    Leng, Shuai; Yu, Lifeng; Wang, Jia; Fletcher, Joel G; Mistretta, Charles A; McCollough, Cynthia H

    2011-09-01

    Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i) numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.

  14. Hard x-ray micro-tomography of a human head post-mortem as a gold standard to compare x-ray modalities

    NASA Astrophysics Data System (ADS)

    Dalstra, M.; Schulz, G.; Dagassan-Berndt, D.; Verna, C.; Müller-Gerbl, M.; Müller, B.

    2016-10-01

    An entire human head obtained at autopsy was micro-CT scanned in a nano/micro-CT scanner in a 6-hour long session. Despite the size of the head, it could still be scanned with a pixel size of 70 μm. The aim of this study was to obtain an optimal quality 3D data-set to be used as baseline control in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features in the jaws, like the trabecular architecture and the thin wall of the alveolar bone were clearly visible. Therefore, the 3D micro-CT data-set can be used as the gold standard for linear, angular, and volumetric measurements of anatomical features in and around the oral cavity when comparing clinical imaging modalities.

  15. A new fiducial marker for Image-guided radiotherapy of prostate cancer: clinical experience.

    PubMed

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Højkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V

    2008-01-01

    A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs.

  16. A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization.

    PubMed

    Zbijewski, W; De Jean, P; Prakash, P; Ding, Y; Stayman, J W; Packard, N; Senn, R; Yang, D; Yorkston, J; Machado, A; Carrino, J A; Siewerdsen, J H

    2011-08-01

    This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a -55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm3 field of view); total acquisition arc of -240 degrees. The system MTF declines to 50% at -1.3 mm(-1) and to 10% at -2.7 mm(-1), consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from -500 projections at less than -0.5 kW power, implying -6.4 mGy (0.064 mSv) for low-dose protocols and -15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.

  17. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    PubMed Central

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.

    2011-01-01

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a ∼55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 × 20 × 20 cm3 field of view); total acquisition arc of ∼240°. The system MTF declines to 50% at ∼1.3 mm−1 and to 10% at ∼2.7 mm−1, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from ∼500 projections at less than ∼0.5 kW power, implying ∼6.4 mGy (0.064 mSv) for low-dose protocols and ∼15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10–20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography. PMID:21928644

  18. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zbijewski, W.; De Jean, P.; Prakash, P.

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified themore » following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm{sup 3} field of view); total acquisition arc of {approx}240 deg. The system MTF declines to 50% at {approx}1.3 mm{sup -1} and to 10% at {approx}2.7 mm{sup -1}, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from {approx}500 projections at less than {approx}0.5 kW power, implying {approx}6.4 mGy (0.064 mSv) for low-dose protocols and {approx}15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.« less

  19. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT.

    PubMed

    Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji

    2002-06-01

    Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The effectiveness of the scatter and attenuation correction process was similar to that observed in the phantom study. Because the total time required for computer processing was less than 10 minutes, this method of attenuation correction and image fusion for SPECT images is expected to become popular in clinical practice.

  20. Progress in SPECT/CT imaging of prostate cancer.

    PubMed

    Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H

    2006-08-01

    Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of images obtained using the standard reconstruction technique. The experimental reconstruction algorithm improved spatial resolution, reduced streak artifacts, and yielded a better correlation with anatomic details of CT in comparison to conventional reconstruction methods (e.g., filtered back-projection or OSEM with attenuation correction only). Images produced with the experimental algorithm produced a subjective improvement in the confidence of interpretation for 11 of 12 studies. There were also changes in interpretations for 4 of 12 studies although the changes were not sufficient to alter prognosis or the patient treatment plan.

  1. WE-FG-207A-02: Why We Need Breast CT? - Clinical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connell, A.

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less

  2. WE-FG-207A-05: Dedicated Breast CT as a Diagnostic Imaging Tool: Physics and Clinical Feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less

  3. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas

    2016-01-01

    To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  4. Young women's perspective of the pros and cons to seeking screening for chlamydia and gonorrhea: an exploratory study.

    PubMed

    Chacko, Mariam R; von Sternberg, Kirk; Velasquez, Mary M; Wiemann, Constance M; Smith, Peggy B; DiClemente, Ralph

    2008-08-01

    To identify young women's pros and cons (decisional balance) to seeking chlamydia (CT) and gonorrhea (NGC) screening. Prospective, cross sectional study Community-based reproductive health clinic 192 young women (66% African American; mean age 18.9 years). Content analysis of responses obtained during a decisional balance exercise (pros and cons) promoting CT and NGC screening was conducted. Thematic categories were developed through a coding process, and each response was assigned to one thematic category. The frequency of pros and cons responses for each category and the frequency of participants endorsing each category were calculated. Ten thematic categories in relation to pros and cons of seeking CT and NGC screening were: being healthy; awareness of the body; systemic factors around the clinic visit and testing procedures; benefits and aversions around treatment; partner trust issues; confidentiality; prevention of long term adverse effects, protection of the body; concern for others; fear of results/aversion to testing; and logistical barriers. The three most often cited pros were awareness of the body, being healthy and treatment issues; and the three most often cited cons were logistical barriers (time/transportation), fear/aversion to testing, and systemic factors. A variety of pros and cons to seeking CT and NGC screening were identified at a community-based clinic. Providers in clinical settings can utilize this information when encouraging patients to seek regular STI screening by elucidating and emphasizing those pros and cons that have the most influence on a young woman's decision-making to seek screening.

  5. YOUNG WOMEN’S PERSPECTIVE OF THE PROS AND CONS TO SEEKING SCREENING FOR CHLAMYDIA AND GONORRHEA: AN EXPLORATORY STUDY

    PubMed Central

    Chacko, Mariam R.; von Sternberg, Kirk; Velasquez, Mary M.; Wiemann, Constance M.; Smith, Peggy B.; DiClemente, Ralph

    2008-01-01

    Study Objective To identify young women’s pros and cons (decisional balance) to seeking chlamydia (CT) and gonorrhea (NGC) screening. Design Prospective, cross sectional study Setting Community-based reproductive health clinic Participants 192 young women (66% African American; mean age 18.9 years). Main Outcome Measure(s) Content analysis of responses obtained during a decisional balance exercise (pros and cons) promoting CT and NGC screening was conducted. Thematic categories were developed through a coding process, and each response was assigned to one thematic category. The frequency of pros and cons responses for each category and the frequency of participants endorsing each category were calculated. Results Ten thematic categories in relation to pros and cons of seeking CT and NGC screening were: being healthy; awareness of knowing the body; systemic factors around the clinic visit and testing procedures; benefits and aversions around treatment; partner relationship issues; confidentiality; prevention of long term adverse effects, protection of the body; concern for others; fear of results/aversion to testing; and logistical barriers. The three most often cited pros were awareness, healthy and treatment issues; and the three most often cited cons were logistical barriers (time/transportation), fear/aversion to testing, and systemic issues. Conclusions A variety of pros and cons to seeking CT and NGC screening were identified at a community-based clinic. Providers in clinical settings can utilize this information when encouraging patients to seek regular STI screening by elucidating and emphasizing those pros and cons that have the most influence on a young woman’s decision-making to seek screening. PMID:18656072

  6. Validation of a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial HDR brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, Eric; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca; Gardi, Lori

    Purpose: In current clinical practice, there is no integrated 3D ultrasound (3DUS) guidance system clinically available for breast brachytherapy. In this study, the authors present a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial high dose rate (HDR) brachytherapy treatment. Methods: For this work, a new computer controlled robotic 3DUS system was built to perform a hybrid motion scan, which is a combination of a 6 cm linear translation with a 30° rotation at both ends. The new 3DUS scanner was designed to fit on a modified Kuske assembly, keeping the current template grid configuration butmore » modifying the frame to allow the mounting of the 3DUS system at several positions. A finer grid was also tested. A user interface was developed to perform image reconstruction, semiautomatic segmentation of the surgical bed as well as catheter reconstruction and tracking. A 3D string phantom was used to validate the geometric accuracy of the reconstruction. The volumetric accuracy of the system was validated with phantoms using magnetic resonance imaging (MRI) and computed tomography (CT) images. In order to accurately determine whether 3DUS can effectively replace CT for treatment planning, the authors have compared the 3DUS catheter reconstruction to the one obtained from CT images. In addition, in agarose-based phantoms, an end-to-end procedure was performed by executing six independent complete procedures with both 14 and 16 catheters, and for both standard and finer Kuske grids. Finally, in phantoms, five end-to-end procedures were performed with the final CT planning for the validation of 3DUS preplanning. Results: The 3DUS acquisition time is approximately 10 s. A paired Student t-test showed that there was no statistical significant difference between known and measured values of string separations in each direction. Both MRI and CT volume measurements were not statistically different from 3DUS volume (Student t-test: p > 0.05) and they were significantly correlated to 3DUS measurement (Pearson test: MRI p < 0.05 and CT p < 0.001). The mean angular separation distance between catheter trajectories segmented from 3DUS and CT images was 0.42° ± 0.24°, while the maximum and mean trajectory separations were 0.51 ± 0.19 and 0.37 ± 0.17 mm, respectively. Overall, the new finer grid has performed significantly better in terms of dosimetric indices. The planning target volume dosimetric indices were not found statistically different between 3DUS and CT planning (Student t-test, p > 0.05). Both the skin and the pectoral muscle dosimetric indices were within ABS guidelines. Conclusions: A novel robot-assisted 3DUS system was designed and validated. To their knowledge, this is the first system capable of performing real-time guidance and planning of breast multicatheter HDR brachytherapy treatments. Future investigation will test the feasibility of using the system in the clinic and for permanent breast brachytherapy.« less

  7. Diagnostic Yield of Recommendations for Chest CT Examination Prompted by Outpatient Chest Radiographic Findings

    PubMed Central

    Harvey, H. Benjamin; Gilman, Matthew D.; Wu, Carol C.; Cushing, Matthew S.; Halpern, Elkan F.; Zhao, Jing; Pandharipande, Pari V.; Shepard, Jo-Anne O.

    2015-01-01

    Purpose To evaluate the diagnostic yield of recommended chest computed tomography (CT) prompted by abnormalities detected on outpatient chest radiographic images. Materials and Methods This HIPAA-compliant study had institutional review board approval; informed consent was waived. Reports of all outpatient chest radiographic examinations performed at a large academic center during 2008 (n = 29 138) were queried to identify studies that included a recommendation for a chest CT imaging. The radiology information system was queried for these patients to determine if a chest CT examination was obtained within 1 year of the index radiographic examination that contained the recommendation. For chest CT examinations obtained within 1 year of the index chest radiographic examination and that met inclusion criteria, chest CT images were reviewed to determine if there was an abnormality that corresponded to the chest radiographic finding that prompted the recommendation. All corresponding abnormalities were categorized as clinically relevant or not clinically relevant, based on whether further work-up or treatment was warranted. Groups were compared by using t test and Fisher exact test with a Bonferroni correction applied for multiple comparisons. Results There were 4.5% (1316 of 29138 [95% confidence interval {CI}: 4.3%, 4.8%]) of outpatient chest radiographic examinations that contained a recommendation for chest CT examination, and increasing patient age (P < .001) and positive smoking history (P = .001) were associated with increased likelihood of a recommendation for chest CT examination. Of patients within this subset who met inclusion criteria, 65.4% (691 of 1057 [95% CI: 62.4%, 68.2%) underwent a chest CT examination within the year after the index chest radiographic examination. Clinically relevant corresponding abnormalities were present on chest CT images in 41.4% (286 of 691 [95% CI: 37.7%, 45.2%]) of cases, nonclinically relevant corresponding abnormalities in 20.6% (142 of 691 [95% CI: 17.6%, 23.8%]) of cases, and no corresponding abnormalities in 38.1% (263 of 691 [95% CI: 34.4%, 41.8%]) of cases. Newly diagnosed, biopsy-proven malignancies were detected in 8.1% (56 of 691 [95% CI: 6.2%, 10.4%]) of cases. Conclusion A radiologist recommendation for chest CT to evaluate an abnormal finding on an outpatient chest radiographic examination has a high yield of clinically relevant findings. © RSNA, 2014 PMID:25531242

  8. Comparison of the accuracy of cone beam computed tomography and medical computed tomography: implications for clinical diagnostics with guided surgery.

    PubMed

    Abboud, Marcus; Calvo-Guirado, Jose Luis; Orentlicher, Gary; Wahl, Gerhard

    2013-01-01

    This study compared the accuracy of cone beam computed tomography (CBCT) and medical-grade CT in the context of evaluating the diagnostic value and accuracy of fiducial marker localization for reference marker-based guided surgery systems. Cadaver mandibles with attached radiopaque gutta-percha markers, as well as glass balls and composite cylinders of known dimensions, were measured manually with a highly accurate digital caliper. The objects were then scanned using a medical-grade CT scanner (Philips Brilliance 64) and five different CBCT scanners (Sirona Galileos, Morita 3D Accuitomo 80, Vatech PaX-Reve3D, 3M Imtech Iluma, and Planmeca ProMax 3D). The data were then imported into commercially available software, and measurements were made of the scanned markers and objects. CT and CBCT measurements were compared to each other and to the caliper measurements. The difference between the CBCT measurements and the caliper measurements was larger than the difference between the CT measurements and the caliper measurements. Measurements of the cadaver mandible and the geometric reference markers were highly accurate with CT. The average absolute errors of the human mandible measurements were 0.03 mm for CT and 0.23 mm for CBCT. The measurement errors of the geometric objects based on CT ranged between 0.00 and 0.12 mm, compared to an error range between 0.00 and 2.17 mm with the CBCT scanners. CT provided the most accurate images in this study, closely followed by one CBCT of the five tested. Although there were differences in the distance measurements of the hard tissue of the human mandible between CT and CBCT, these differences may not be of clinical significance for most diagnostic purposes. The fiducial marker localization error caused by some CBCT scanners may be a problem for guided surgery systems.

  9. Accuracy and feasibility of three different methods for software-based image fusion in whole-body PET and CT.

    PubMed

    Putzer, Daniel; Henninger, Benjamin; Kovacs, Peter; Uprimny, Christian; Kendler, Dorota; Jaschke, Werner; Bale, Reto J

    2016-06-01

    Even as PET/CT provides valuable diagnostic information in a great number of clinical indications, availability of hybrid PET/CT scanners is mainly limited to clinical centers. A software-based image fusion would facilitate combined image reading of CT and PET data sets if hardware image fusion is not available. To analyze the relevance of retrospective image fusion of separately acquired PET and CT data sets, we studied the accuracy, practicability and reproducibility of three different image registration techniques. We evaluated whole-body 18F-FDG-PET and CT data sets of 71 oncologic patients. Images were fused retrospectively using Stealth Station System, Treon (Medtronic Inc., Louisville, CO, USA) equipped with Cranial4 Software. External markers fixed to a vacuum mattress were used as reference for exact repositioning. Registration was repeated using internal anatomic landmarks and Automerge software, assessing accuracy for all three methods, measuring distances of liver representation in CT and PET with reference to a common coordinate system. On first measurement of image fusions with external markers, 53 were successful, 16 feasible and 2 not successful. Using anatomic landmarks, 42 were successful, 26 feasible and 3 not successful. Using Automerge Software only 13 were successful. The mean distance between center points in PET and CT was 7.69±4.96 mm on first, and 7.65±4.2 mm on second measurement. Results with external markers correlate very well and inaccuracies are significantly lower (P<0.001) than results using anatomical landmarks (10.38±6.13 mm and 10.83±6.23 mm). Analysis revealed a significantly faster alignment using external markers (P<0.001). External fiducials in combination with immobilization devices and breathing protocols allow for highly accurate image fusion cost-effectively and significantly less time, posing an attractive alternative for PET/CT interpretation when a hybrid scanner is not available.

  10. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    PubMed

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  11. Development of a computed tomography-based scoring system for necrotizing soft-tissue infections.

    PubMed

    McGillicuddy, Edward A; Lischuk, Andrew W; Schuster, Kevin M; Kaplan, Lewis J; Maung, Adrian; Lui, Felix Y; Bokhari, S A Jamal; Davis, Kimberly A

    2011-04-01

    Necrotizing soft-tissue infections (NSTIs) are associated with significant morbidity and mortality, but a definitive nonsurgical diagnostic test remains elusive. Despite the widespread use of computed tomography (CT) as a diagnostic adjunct, there is little data that definitively correlate CT findings with the presence of NSTI. Our goal was the development of a CT-based scoring system to discriminate non-NSTI from NSTI. Patients older than 17 years undergoing CT for evaluation of soft-tissue infection at a tertiary care medical center over a 10-year period (2000-2009) were included. Abstracted data included comorbidities and social history, physical examination, laboratory findings, and operative and pathologic findings. NSTI was defined as soft-tissue necrosis in the dictated operative note or the accompanying pathology report. CT scans were reviewed by a radiologist blinded to clinical and laboratory data. A scoring system was developed and the area under the receiver operating characteristic curve was calculated. During the study period, 305 patients underwent CT scanning (57% men; mean age, 47.4 years). Forty-four patients (14.4%) evaluated had an NSTI. A scoring system was retrospectively developed (table). A score >6 points was 86.3% sensitive and 91.5% specific for the diagnosis of NSTI (positive predictive value, 63.3%; negative predictive value, 85.5%). The area under the receiver operating characteristic curve was 0.928 (95% confidence interval, 0.893-0.964). The mean score of the non-NSTI group was 2.74. We have developed a CT scoring system that is both sensitive and specific for the diagnosis of NSTIs. This system may allow clinicians to more accurately diagnose NSTIs. Prospective validation of this scoring system is planned.

  12. A 30-Min Nucleic Acid Amplification Point-of-Care Test for Genital Chlamydia trachomatis Infection in Women: A Prospective, Multi-center Study of Diagnostic Accuracy.

    PubMed

    Harding-Esch, E M; Cousins, E C; Chow, S-L C; Phillips, L T; Hall, C L; Cooper, N; Fuller, S S; Nori, A V; Patel, R; Thomas-William, S; Whitlock, G; Edwards, S J E; Green, M; Clarkson, J; Arlett, B; Dunbar, J K; Lowndes, C M; Sadiq, S T

    2018-02-01

    Rapid Point-Of-Care Tests for Chlamydia trachomatis (CT) may reduce onward transmission and reproductive sexual health (RSH) sequelae by reducing turnaround times between diagnosis and treatment. The io® single module system (Atlas Genetics Ltd.) runs clinical samples through a nucleic acid amplification test (NAAT)-based CT cartridge, delivering results in 30min. Prospective diagnostic accuracy study of the io® CT-assay in four UK Genito-Urinary Medicine (GUM)/RSH clinics on additional-to-routine self-collected vulvovaginal swabs. Samples were tested "fresh" within 10days of collection, or "frozen" at -80°C for later testing. Participant characteristics were collected to assess risk factors associated with CT infection. CT prevalence was 7.2% (51/709) overall. Sensitivity, specificity, positive and negative predictive values of the io® CT assay were, respectively, 96.1% (95% Confidence Interval (CI): 86.5-99.5), 97.7% (95%CI: 96.3-98.7), 76.6% (95%CI: 64.3-86.2) and 99.7% (95%CI: 98.9-100). The only risk factor associated with CT infection was being a sexual contact of an individual with CT. The io® CT-assay is a 30-min, fully automated, high-performing NAAT currently CE-marked for CT diagnosis in women, making it a highly promising diagnostic to enable specific treatment, initiation of partner notification and appropriately intensive health promotion at the point of care. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance andmore » diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand-alone imaging system showed contrast discrimination of 47%, while the CT imaging system showed a discrimination of only 1.5%. The structural similarity index measure showed a drop of 24% with EIT imaging compared to CT imaging. The average detectability measure for CT imaging was found to be 2.375 ± 0.19 before fusion. After complementing with EIT information, the detectability measure increased to 11.06 ± 2.04. Based on the feature metrics, the functional imaging quality of CT and EIT were found to be 2.29% and 86%, respectively, before fusion. Structural imaging quality was found to be 66% for CT and 16% for EIT. After fusion, functional imaging quality improved in CT imaging from 2.29% to 42% and the structural imaging quality of EIT imaging changed from 16% to 66%. The improvement in image quality was also observed in detecting objects of different sizes. Conclusions: The authors found a significant improvement in the contrast detectability performance of CT imaging when complemented with functional imaging information from EIT. Along with the feature assessment metrics, the concept of complementing CT with EIT imaging can lead to an EIT/CT imaging modality which might fully utilize the functional imaging abilities of EIT imaging, thereby enhancing the quality of care in the areas of cancer diagnosis and radiotherapy treatment planning.« less

  14. Renal excretion of ingested gastrografin: clinical relevance in early postoperative treatment of patients who have undergone gastric surgery.

    PubMed

    Sohn, Kyung-Myung; Lee, Sung-Yong; Kwon, Oh-Han

    2002-05-01

    We performed this study to evaluate the clinical relevance of renal excretion of ingested Gastrografin (methylglucamine diatrizoate) revealed on CT in the early treatment of patients who have undergone gastric surgery. Unenhanced abdominal CT was performed before and then 1 hr to 1 hr 30 min after Gastrografin ingestion in 30 patients 7 days after gastric surgery and in 19 healthy adults who served as the control group. CT scans were reviewed for the opacification of the renal collecting system or urinary bladder after Gastrografin ingestion, a finding that represents renal excretion of the ingested contrast medium. In the control group, four (21 %) of the 19 healthy adults showed renal excretion of ingested Gastrografin visualized as opacification of the urinary tract on CT scans obtained 1 hr to 1 hr 30 min after ingestion of the substance. Renal excretion of the ingested Gastrografin was seen in 19 (63%) of the 30 patients, a significantly larger percentage than in the control group (z score, p < 0.01). No patient showed either radiologic or clinical evidence of leakage from the anastomotic site. Renal excretion of ingested Gastrografin is frequently visualized on CT in patients without anastomotic leakage during the early postoperative period after gastric surgery, and this phenomenon is not rare, even in healthy adults. Therefore, renal excretion seen on CT should not be regarded as a sign of anastomotic leakage in early postoperative patients.

  15. The Primary Care Electronic Library: RSS feeds using SNOMED-CT indexing for dynamic content delivery.

    PubMed

    Robinson, Judas; de Lusignan, Simon; Kostkova, Patty; Madge, Bruce; Marsh, A; Biniaris, C

    2006-01-01

    Rich Site Summary (RSS) feeds are a method for disseminating and syndicating the contents of a website using extensible mark-up language (XML). The Primary Care Electronic Library (PCEL) distributes recent additions to the site in the form of an RSS feed. When new resources are added to PCEL, they are manually assigned medical subject headings (MeSH terms), which are then automatically mapped to SNOMED-CT terms using the Unified Medical Language System (UMLS) Metathesaurus. The library is thus searchable using MeSH or SNOMED-CT. Our syndicate partner wished to have remote access to PCEL coronary heart disease (CHD) information resources based on SNOMED-CT search terms. To pilot the supply of relevant information resources in response to clinically coded requests, using RSS syndication for transmission between web servers. Our syndicate partner provided a list of CHD SNOMED-CT terms to its end-users, a list which was coded according to UMLS specifications. When the end-user requested relevant information resources, this request was relayed from our syndicate partner's web server to the PCEL web server. The relevant resources were retrieved from the PCEL MySQL database. This database is accessed using a server side scripting language (PHP), which enables the production of dynamic RSS feeds on the basis of Source Asserted Identifiers (CODEs) contained in UMLS. Retrieving resources using SNOMED-CT terms using syndication can be used to build a functioning application. The process from request to display of syndicated resources took less than one second. The results of the pilot illustrate that it is possible to exchange data between servers using RSS syndication. This method could be utilised dynamically to supply digital library resources to a clinical system with SNOMED-CT data used as the standard of reference.

  16. Fracture risk assessment: improved evaluation of vertebral integrity among metastatic cancer patients to aid in surgical decision-making

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Camp, Jon J.; Holmes, David R.; Huddleston, Paul M.; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2012-03-01

    Failure of the spine's structural integrity from metastatic disease can lead to both pain and neurologic deficit. Fractures that require treatment occur in over 30% of bony metastases. Our objective is to use computed tomography (CT) in conjunction with analytic techniques that have been previously developed to predict fracture risk in cancer patients with metastatic disease to the spine. Current clinical practice for cancer patients with spine metastasis often requires an empirical decision regarding spinal reconstructive surgery. Early image-based software systems used for CT analysis are time consuming and poorly suited for clinical application. The Biomedical Image Resource (BIR) at Mayo Clinic, Rochester has developed an image analysis computer program that calculates from CT scans, the residual load-bearing capacity in a vertebra with metastatic cancer. The Spine Cancer Assessment (SCA) program is built on a platform designed for clinical practice, with a workflow format that allows for rapid selection of patient CT exams, followed by guided image analysis tasks, resulting in a fracture risk report. The analysis features allow the surgeon to quickly isolate a single vertebra and obtain an immediate pre-surgical multiple parallel section composite beam fracture risk analysis based on algorithms developed at Mayo Clinic. The analysis software is undergoing clinical validation studies. We expect this approach will facilitate patient management and utilization of reliable guidelines for selecting among various treatment option based on fracture risk.

  17. Shunting normal pressure hydrocephalus: the predictive value of combined clinical and CT data.

    PubMed

    Vanneste, J; Augustijn, P; Tan, W F; Dirven, C

    1993-03-01

    The value of an ordinal global scale derived from combined clinical and CT data (clin/CT scale) to predict the clinical outcome in 112 patients shunted for presumed normal pressure hydrocephalus (NPH) was analysed. The clinical data were retrospectively collected, all CT scans were re-evaluated, and the clin/CT scale was determined blind to the results of further ancillary tests and to the post-surgical outcome. The scale ranked three classes of prediction: on the basis of clinical and CT characteristics, improvement after shunting was probable, possible, or improbable. The predictive value of the clin/CT scale for the subgroup of communicating NPH was established for two different strategies, depending on the strictness of selection criteria for shunting. In the subgroup of patients with presumed communicating NPH, the prevalence of shunt responsiveness was 29%; the best strategy was to shunt only patients with probable shunt-responsive NPH: the sensitivity was 0.54, the specificity 0.84, and the predictive accuracy 0.75, with a limited number of ineffective shunts (11%) and missed improvements (13%). The study illustrates its need to assess the pre-test probability of NPH based on combined clinical and CT data, before establishing the clinical usefulness of an ancillary test.

  18. Shunting normal pressure hydrocephalus: the predictive value of combined clinical and CT data.

    PubMed Central

    Vanneste, J; Augustijn, P; Tan, W F; Dirven, C

    1993-01-01

    The value of an ordinal global scale derived from combined clinical and CT data (clin/CT scale) to predict the clinical outcome in 112 patients shunted for presumed normal pressure hydrocephalus (NPH) was analysed. The clinical data were retrospectively collected, all CT scans were re-evaluated, and the clin/CT scale was determined blind to the results of further ancillary tests and to the post-surgical outcome. The scale ranked three classes of prediction: on the basis of clinical and CT characteristics, improvement after shunting was probable, possible, or improbable. The predictive value of the clin/CT scale for the subgroup of communicating NPH was established for two different strategies, depending on the strictness of selection criteria for shunting. In the subgroup of patients with presumed communicating NPH, the prevalence of shunt responsiveness was 29%; the best strategy was to shunt only patients with probable shunt-responsive NPH: the sensitivity was 0.54, the specificity 0.84, and the predictive accuracy 0.75, with a limited number of ineffective shunts (11%) and missed improvements (13%). The study illustrates its need to assess the pre-test probability of NPH based on combined clinical and CT data, before establishing the clinical usefulness of an ancillary test. PMID:8459240

  19. Quality control of CT systems by automated monitoring of key performance indicators: a two‐year study

    PubMed Central

    Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-01-01

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two‐year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service PACS numbers: 87.57.C‐, 87.57.N‐, 87.57.Q‐ PMID:26219012

  20. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer.

    PubMed

    Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Schlemmer, Heinz Peter; Petralia, Giuseppe; Vargas, H Alberto; Fanti, Stefano; Tombal, H Bertrand; de Bono, Johann

    2017-01-01

    Comparative reviews of whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography/computed tomography (CT; with different radiotracers) have shown that metastasis detection in advanced cancers is more accurate than with currently used CT and bone scans. However, the ability of WB-MRI and positron emission tomography/CT to assess therapeutic benefits has not been comprehensively evaluated. There is also considerable variability in the availability and quality of WB-MRI, which is an impediment to clinical development. Expert recommendations for standardising WB-MRI scans are needed, in order to assess its performance in advanced prostate cancer (APC) clinical trials. To design recommendations that promote standardisation and diminish variations in the acquisition, interpretation, and reporting of WB-MRI scans for use in APC. An international expert panel of oncologic imagers and oncologists with clinical and research interests in APC management assessed biomarker requirements for clinical care and clinical trials. Key requirements for a workable WB-MRI protocol, achievable quality standards, and interpretation criteria were identified and synthesised in a white paper. The METastasis Reporting and Data System for Prostate Cancer guidelines were formulated for use in all oncologic manifestations of APC. Uniformity in imaging data acquisition, quality, and interpretation of WB-MRI are essential for assessing the test performance of WB-MRI. The METastasis Reporting and Data System for Prostate Cancer standard requires validation in clinical trials of treatment approaches in APC. METastasis Reporting and Data System for Prostate Cancer represents the consensus recommendations on the performance, quality standards, and reporting of whole-body magnetic resonance imaging, for use in all oncologic manifestations of advanced prostate cancer. These new criteria require validation in clinical trials of established and new treatment approaches in advanced prostate cancer. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. The use of DRG for identifying clinical trials centers with high recruitment potential: a feasability study.

    PubMed

    Aegerter, Philippe; Bendersky, Noelle; Tran, Thi-Chien; Ropers, Jacques; Taright, Namik; Chatellier, Gilles

    2014-01-01

    Recruitment of large samples of patients is crucial for evidence level and efficacy of clinical trials (CT). Clinical Trial Recruitment Support Systems (CTRSS) used to estimate patient recruitment are generally specific to Hospital Information Systems and few were evaluated on a large number of trials. Our aim was to assess, on a large number of CT, the usefulness of commonly available data as Diagnosis Related Groups (DRG) databases in order to estimate potential recruitment. We used the DRG database of a large French multicenter medical institution (1.2 million inpatient stays and 400 new trials each year). Eligibility criteria of protocols were broken down into in atomic entities (diagnosis, procedures, treatments...) then translated into codes and operators recorded in a standardized form. A program parsed the forms and generated requests on the DRG database. A large majority of selection criteria could be coded and final estimations of number of eligible patients were close to observed ones (median difference = 25). Such a system could be part of the feasability evaluation and center selection process before the start of the clinical trial.

  2. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  3. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  4. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  5. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  6. CT with monochromatic synchrotron x rays and its potential in clinical research

    NASA Astrophysics Data System (ADS)

    Dilmanian, F. Avraham; Wu, Xiaoye; Ren, Baorui; Button, Terry M.; Chapman, L. D.; Dobbs, John M.; Huang, Xiaoling; Nickoloff, Edward L.; Parsons, Edward C., Jr.; Petersen, Michael J.; Thomlinson, William C.; Zhong, Zhong

    1997-10-01

    A monochromatic CT for imaging the human head and neck is being developed at the National Synchrotron Light Source. We compared the performance of this system, multiple energy computed tomography (MECT), with that of a conventional CT (CCT) using phantoms. The advantage in image contrast of MECT, with its beam energy tuned just above the K-edge of contrast element, over CCT carried out at 120 kVp, was approximately equal to 3.2-fold for iodine and approximately equal to 2.2 fold for gadolinium. Image noise was compared by simulations because this comparison requires matching the spatial resolutions of the two systems. Simulations at a 3- rad dose and 3-mm slice height on an 18-cm-diameter acrylic phantom, with MECT operating at 60.5 keV, showed that image noise for MECT was 1.4 HU vs. 1.8 HU for CCT. Simulations in the dual-energy quantitative CT mode showed a two-fold advantage for MECT in image noise, as well as its superior quantification. MECT operated in the planar mode revealed fatty tissue in the body of a rat using xenon K-edge subtraction. Our initial pan for clinical application of the system is to image the composition of carotid artery plaques non-invasively, separating the plaques' main constituents: the fatty, fibrous, and calcified tissues.

  7. Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.

    PubMed

    Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G

    2013-11-04

    Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.

  8. [Clinical application of positron-emission tomography for the identification of cervical nodal metastases of head and neck cancer compared with CT or MRI and clinical palpation].

    PubMed

    Chen, Zhong-Wei; Zhu, Li-Jun; Hou, Qing-Yi; Wang, Qi-Peng; Jiang, Sui; Feng, Hang

    2008-12-01

    To evaluate the value of positron-emission tomography (PET) for the identification of cervical nodal metastases of head and neck cancer compared with CT/MRI and clinical palpation. Forty patients of head and neck cancer underwent PET and CT/MRI examination 2 weeks before surgery. PET, CT/MRI and clinical palpation were interpreted separately to assess regional lymph node status. Histopathologic analysis was used as the gold standard for assessment of the lymph node involvement. Differences in sensitivity, specificity and accuracy among the imaging modalities and clinical palpation were analyzed. The sensitivity of PET for the identification of nodal metastases was 14.3% higher than that of CT/MRI (P = 0.648) and 14.3% higher than that of clinical palpation (P = 0.648), whereas the specificity of PET was 15.4% higher than that of CT/MRI (P = 0.188) and 7.7% higher than that of clinical palpation (P = 0.482). The accuracy of 18F-FDG PET, CT/MRI, and clinical palpation for the identification of cervical nodal metastases was 85.0%, 70.0% and 75.0% respectively. The sensitivity, specificity and accuracy of PET for the detection of cervical nodal metastases was higher than that of CT/MRI and clinical palpation. Although the results did not show a statistically significant difference, PET can still serve as a supplementary method for the identification of nodal metastases of head and neck cancer.

  9. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    PubMed

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  10. Septic thrombophlebitis of the portal venous system: clinical and imaging findings in thirty-three patients.

    PubMed

    Ames, Jennifer T; Federle, Michael P

    2011-07-01

    Our purpose was to review the clinical and imaging findings in a series of patients with septic thrombophlebitis of the portal venous system in order to define criteria that might allow more confident and timely diagnosis. This is a retrospective case series. The clinical and imaging features were analyzed in 33 subjects with septic thrombophlebitis of the portal venous system. All 33 patients with septic thrombophlebitis of the portal venous system had pre-disposing infectious or inflammatory processes. Contrast-enhanced CT studies of patients with septic thrombophlebitis typically demonstrate an infectious gastrointestinal source (82%), thrombosis (70%), and/or gas (21%) of the portal system or its branches, and intrahepatic abnormalities such as a transient hepatic attenuation difference (THAD) (42%) or abscess (61%). Septic thrombophlebitis of the portal system is often associated with an infectious source in the gastrointestinal tract and sepsis. Contrast-enhanced CT demonstrates an infectious gastrointestinal source, thrombosis or gas within the portal system or its branches, and intrahepatic abnormalities such as abscess in most cases. We report a THAD in several of our patients, an observation that was not made in prior reports of septic thrombophlebitis.

  11. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, E; Racine, E; Beaulieu, L

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantomsmore » were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.« less

  12. The Reliability of a Standardized Reporting System for the Diagnosis of Appendicitis.

    PubMed

    Simianu, Vlad V; Shamitoff, Anna; Hippe, Daniel S; Godwin, Benjamin D; Shriki, Jabi E; Drake, Frederick T; O'Malley, Ryan B; Maximin, Suresh; Bastawrous, Sarah; Moshiri, Mariam; Lee, Jean H; Cuevas, Carlos; Dighe, Manjiri; Flum, David; Bhargava, Puneet

    Computed tomography (CT) is a fast and ubiquitous tool to evaluate intra-abdominal organs and diagnose appendicitis. However, traditional CT reporting does not necessarily capture the degree of uncertainty and indeterminate findings are still common. The purpose of this study was to evaluate the reproducibility of a standardized CT reporting system for appendicitis across a large population and the system's impact on radiologists' certainty in diagnosing appendicitis. Using a previously described standardized reporting system, eight radiologists retrospectively evaluated CT scans, blinded to all clinical information, in a stratified random sample of 237 patients from a larger cohort of patients imaged for possible appendicitis (2010-2014). Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to evaluate the diagnostic performance of readers for identifying appendicitis. Two-thirds of these scans were randomly selected to be independently read by a second reader, using the original CT reports to balance the number of positive, negative and indeterminate exams across all readers. Inter-reader agreement was evaluated. There were 113 patients with appendicitis (mean age 38, 67% male). Using the standardized report, radiologists were highly accurate at identifying appendicitis (AUC=0.968, 95%CI confidence interval: 0.95, 0.99. Inter-reader agreement was >80% for most objective findings, and certainty in diagnosing appendicitis was high and reproducible (AUC=0.955 and AUC=0.936 for the first and second readers, respectively). Using a standardized reporting system resulted in high reproducibility of objective CT findings for appendicitis and achieved high diagnostic accuracy in an at-risk population. Predictive tools based on this reporting system may further improve communication about certainty in diagnosis and guide patient management, especially when CT findings are indeterminate. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Clinical utility of FDG PET/CT in acute complicated pyelonephritis-results from an observational study.

    PubMed

    Wan, Chih-Hsing; Tseng, Jing-Ren; Lee, Ming-Hsun; Yang, Lan-Yan; Yen, Tzu-Chen

    2018-03-01

    Acute complicated pyelonephritis (ACP) is an upper urinary tract infection associated with coexisting urinary tract abnormalities or medical conditions that could predispose to serious outcomes or treatment failures. Although CT and magnetic resonance imaging (MRI) are frequently used in patients with ACP, the clinical value of 18 F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG PET/CT) has not been systematically investigated. This single-center retrospective study was designed to evaluate the potential usefulness of FDG PET/CT in patients with ACP. Thirty-one adult patients with ACP who underwent FDG PET/CT were examined. FDG PET/CT imaging characteristics, including tracer uptake patterns, kidney volumes, and extrarenal imaging findings, were reviewed in combination with clinical data and conventional imaging results. Of the 31 patients, 19 (61%) showed focal FDG uptake. The remaining 12 study participants showed a diffuse FDG uptake pattern. After volumetric approximation, the affected kidneys were found to be significantly enlarged. Patients who showed a focal uptake pattern had a higher frequency of abscess formation requiring drainage. ACP patients showing diffuse tracer uptake patterns had a more benign clinical course. Seven patients had suspected extrarenal coinfections, and FDG PET/CT successfully confirmed the clinical suspicion in five cases. FDG PET/CT was as sensitive as CT in identifying the six patients (19%) who developed abscesses. Notably, FDG PET/CT findings caused a modification to the initial antibiotic regimen in nine patients (29%). FDG PET/CT may be clinically useful in the assessment of patients with ACP who have a progressive disease course.

  14. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  15. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit.

    PubMed

    Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Biopsy of CT-Occult Bone Lesions Using Anatomic Landmarks for CT Guidance.

    PubMed

    Hillen, Travis J; Talbert, Robert J; Friedman, Michael V; Long, Jeremiah R; Jennings, Jack W; Wessell, Daniel E; Baker, Jonathan C

    2017-07-01

    The purpose of this study is to evaluate the histopathologic diagnostic yield, sample size, procedural time, and dose-length product (DLP) for the biopsy of CT-occult lesions found at MRI or PET or both. A retrospective review of our radiology information system for biopsies of CT-occult lesions using CT guidance from January 1, 2010, through December 31, 2014, was performed and compared with a selection of CT-guided biopsies of CT-evident bone lesions during the same period. The data were then evaluated for diagnostic yield of histopathologic diagnosis, procedural time, use of sedation medication, DLP, and size of specimens obtained. A total of 30 CT-occult biopsies met the inclusion criteria. Twenty-seven of those biopsies had results that were concordant with the patient's primary histopathologic diagnosis, imaging findings, and clinical course. In the CT-evident lesion group, concordant histopathologic abnormalities were identified in 27 of 30 patients. There was a statistically significant increase in number of samples obtained for the CT-evident lesions compared with CT-occult lesions. There was no statistically significant difference in total specimen length, DLP, number of CT scans, procedural time, or use of sedation medication between the CT-occult and CT-evident biopsy groups. Biopsy of CT-occult lesions using anatomic landmarks achieves diagnostic yields similar to those for CT-guided biopsy of CT-evident lesions.

  17. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Hoffman, J; McNitt-Gray, M

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  18. Chest tomosynthesis: technical principles and clinical update.

    PubMed

    Dobbins, James T; McAdams, H Page

    2009-11-01

    Digital tomosynthesis is a radiographic technique that can produce an arbitrary number of section images of a patient from a single pass of the X-ray tube. It utilizes a conventional X-ray tube, a flat-panel detector, a computer-controlled tube mover, and special reconstruction algorithms to produce section images. While it does not have the depth resolution of computed tomography (CT), tomosynthesis provides some of the tomographic benefits of CT but at lower cost and radiation dose than CT. Compared to conventional chest radiography, chest tomosynthesis results in improved visibility of normal structures such as vessels, airway and spine. By reducing visual clutter from overlying normal anatomy, it also enhances detection of small lung nodules. This review article outlines the components of a tomosynthesis system, discusses results regarding improved lung nodule detection from the recent literature, and presents examples of nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in clinical chest imaging are discussed.

  19. Performance of FDG PET/CT in the clinical management of breast cancer.

    PubMed

    Groheux, David; Espié, Marc; Giacchetti, Sylvie; Hindié, Elif

    2013-02-01

    In this analysis, the role of metabolic imaging with fluorine 18 fluorodeoxyglucose (FDG) in breast cancer is reviewed. The analysis was limited to recent works by using state-of-the-art positron emission tomography (PET)/computed tomography (CT) technology. The strengths and limitations of FDG PET/CT are examined in various clinical settings, and the following questions are answered: Is FDG PET/CT useful to differentiate malignant from benign breast lesions? Can FDG PET/CT replace sentinel node biopsy for axillary staging? What is the role of FDG PET/CT in initial staging of inflammatory or locally advanced breast cancer? What is the role of FDG PET/CT in initial staging of clinical stage IIA and IIB and primary operable stage IIIA breast cancer? How does FDG PET/CT compare with conventional techniques in the restaging of cancer in patients who are suspected of having disease recurrence? What is the role of FDG PET/CT in the assessment of early response to neoadjuvant therapy and of response to therapy for metastatic disease? Some recommendations for clinical practice are given.

  20. WE-FG-207A-01: Introduction to Dedicated Breast CT - Early Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, S.

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less

  1. WE-FG-207A-04: Performance Characteristics of Photon-Counting Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalender, W.

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less

  2. WE-FG-207A-00: Advances in Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less

  3. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, J.

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less

  4. Using PACS and wavelet-based image compression in a wide-area network to support radiation therapy imaging applications for satellite hospitals

    NASA Astrophysics Data System (ADS)

    Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles

    1999-07-01

    An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.

  5. Computed tomography-magnetic resonance image fusion: a clinical evaluation of an innovative approach for improved tumor localization in primary central nervous system lesions.

    PubMed

    Lattanzi, J P; Fein, D A; McNeeley, S W; Shaer, A H; Movsas, B; Hanks, G E

    1997-01-01

    We describe our initial experience with the AcQSim (Picker International, St. David, PA) computed tomography-magnetic resonance imaging (CT-MRI) fusion software in eight patients with intracranial lesions. MRI data are electronically integrated into the CT-based treatment planning system. Since MRI is superior to CT in identifying intracranial abnormalities, we evaluated the precision and feasibility of this new localization method. Patients initially underwent CT simulation from C2 to the most superior portion of the scalp. T2 and post-contrast T1-weighted MRI of this area was then performed. Patient positioning was duplicated utilizing a head cup and bridge of nose to forehead angle measurements. First, a gross tumor volume (GTV) was identified utilizing the CT (CT/GTV). The CT and MRI scans were subsequently fused utilizing a point pair matching method and a second GTV (CT-MRI/GTV) was contoured with the aid of both studies. The fusion process was uncomplicated and completed in a timely manner. Volumetric analysis revealed the CT-MRI/GTV to be larger than the CT/GTV in all eight cases. The mean CT-MRI/GTV was 28.7 cm3 compared to 16.7 cm3 by CT alone. This translated into a 72% increase in the radiographic tumor volume by CT-MRI. A simulated dose-volume histogram in two patients revealed that marginal portions of the lesion, as identified by CT and MRI, were not included in the high dose treatment volume as contoured with the use of CT alone. Our initial experience with the fusion software demonstrated an improvement in tumor localization with this technique. Based on these patients the use of CT alone for treatment planning purposes in central nervous system (CNS) lesions is inadequate and would result in an unacceptable rate of marginal misses. The importation of MRI data into three-dimensional treatment planning is therefore crucial to accurate tumor localization. The fusion process simplifies and improves precision of this task.

  6. CT imaging with a mobile C-arm prototype

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco

    2008-03-01

    Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.

  7. Musculoskeletal Imaging Findings of Hematologic Malignancies.

    PubMed

    Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J

    2017-01-01

    Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.

  8. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-03-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.

  9. Femoral head avascular necrosis: a frequently missed incidental finding on multidetector CT.

    PubMed

    Barille, M F; Wu, Jim S; McMahon, Colm J

    2014-03-01

    To determine the incidence of missed femoral head avascular necrosis (AVN) on pelvic computed tomography (CT) performed for clinical indications other than assessment for AVN. The study was a Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study. The picture archiving and communication system (PACS) database was queried for patients with diagnosis of femoral head AVN on magnetic resonance imaging (MRI), who also underwent pelvic multidetector CT after or <30 days before the MRI examination. The MRI and CT images of 144 hips of 72 patients (39 patients with reported AVN on MRI and 33 age-matched controls; mean age = 60 years, 28 male, 44 female), were reviewed in consensus by two readers in a randomized, blinded manner. Using MRI-proven CT-visible AVN as a reference standard, the incidence of missed AVN on initial CT interpretation was determined. Readers confirmed AVN in 33 patients on the MRI images. Nine hips with AVN underwent joint replacement of the affected joint(s) prior to subsequent CT and were excluded. Forty-three MRI-proven AVN cases in 28 patients (15 bilateral, 13 unilateral) were available for analysis. The study readers diagnosed 35/43 (81%) MRI-proven AVN cases in 22/28 (79%) patients. Four of the 35 (11%) cases of MRI-proven, CT-visible AVN were prospectively reported in 3/22 (14%) patients at initial clinical interpretation, with a miss rate of 89% per hip and 86% per patient. Multidetector CT has high accuracy for detection of AVN; however, this is frequently missed as an incidental finding (89% missed in the present study). Assessment for signs of femoral AVN should be part of routine search pattern in interpretation of pelvic CT. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Clinical Utility of Chest Computed Tomography in Patients with Rib Fractures CT Chest and Rib Fractures.

    PubMed

    Chapman, Brandon C; Overbey, Douglas M; Tesfalidet, Feven; Schramm, Kristofer; Stovall, Robert T; French, Andrew; Johnson, Jeffrey L; Burlew, Clay C; Barnett, Carlton; Moore, Ernest E; Pieracci, Fredric M

    2016-12-01

    Chest CT is more sensitive than a chest X-ray (CXR) in diagnosing rib fractures; however, the clinical significance of these fractures remains unclear. The purpose of this study was to determine the added diagnostic use of chest CT performed after CXR in patients with either known or suspected rib fractures secondary to blunt trauma. Retrospective cohort study of blunt trauma patients with rib fractures at a level I trauma center that had both a CXR and a CT chest. The CT finding of ≥ 3 additional fractures in patients with ≤ 3 rib fractures on CXR was considered clinically meaningful. Student's t-test and chi-square analysis were used for comparison. We identified 499 patients with rib fractures: 93 (18.6%) had CXR only, 7 (1.4%) had chest CT only, and 399 (79.9%) had both CXR and chest CT. Among these 399 patients, a total of 1,969 rib fractures were identified: 1,467 (74.5%) were missed by CXR. The median number of additional fractures identified by CT was 3 (range, 4 - 15). Of 212 (53.1%) patients with a clinically meaningful increase in the number of fractures, 68 patients underwent one or more clinical interventions: 36 SICU admissions, 20 pain catheter placements, 23 epidural placements, and 3 SSRF. Additionally, 70 patients had a chest tube placed for retained hemothorax or occult pneumothorax. Overall, 138 patients (34.5%) had a change in clinical management based upon CT chest. The chest X-ray missed ~75% of rib fractures seen on chest CT. Although patients with a clinical meaningful increase in the number of rib fractures were more likely to be admitted to the intensive care unit, there was no associated improvement in pulmonary outcomes.

  11. Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images.

    PubMed

    Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak

    2015-11-01

    Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.

  12. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  13. TU-AB-207A-03: Image Quality, Dose, and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.

    Practicing medical physicists are often time charged with the tasks of evaluating and troubleshooting complex image quality issues related to CT scanners. This course will equip them with a solid and practical understanding of common CT imaging chain and its major components with emphasis on acquisition physics and hardware, reconstruction, artifacts, image quality, dose, and advanced clinical applications. The core objective is to explain the effects of these major system components on the image quality. This course will not focus on the rapid-changing advanced technologies given the two-hour time limit, but the fundamental principles discussed in this course may facilitatemore » better understanding of those more complicated technologies. The course will begin with an overview of CT acquisition physics and geometry. X-ray tube and CT detector are important acquisition hardware critical to the overall image quality. Each of these two subsystems consists of several major components. An in-depth description of the function and failure modes of these components will be provided. Examples of artifacts related to these failure modes will be presented: off-focal radiation, tube arcing, heel effect, oil bubble, offset drift effect, cross-talk effect, and bad pixels. The fundamentals of CT image reconstruction will first be discussed on an intuitive level. Approaches that do not require rigorous derivation of mathematical formulations will be presented. This is followed by a detailed derivation of the Fourier slice theorem: the foundation of the FBP algorithm. FBP for parallel-beam, fan-beam, and cone-beam geometries will be discussed. To address the issue of radiation dose related to x-ray CT, recent advances in iterative reconstruction, their advantages, and clinical applications will also be described. Because of the nature of fundamental physics and mathematics, limitations in data acquisition, and non-ideal conditions of major system components, image artifact often arise in the reconstructed images. Because of the limited scope of this course, only major imaging artifacts, their appearance, and possible mitigation and corrections will be discussed. Assessment of the performance of a CT scanner is a complicated subject. Procedures to measure common image quality metrics such as high contrast spatial resolution, low contrast detectability, and slice profile will be described. The reason why these metrics used for FBP may not be sufficient for statistical iterative reconstruction will be explained. Optimizing radiation dose requires comprehension of CT dose metrics. This course will briefly describe various dose metrics, and interaction with acquisition parameters and patient habitus. CT is among the most frequently used imaging tools due to its superior image quality, easy to operate, and a broad range of applications. This course will present several interesting CT applications such as a mobile CT unit on an ambulance for stroke patients, low dose lung cancer screening, and single heartbeat cardiac CT. Learning Objectives: Understand the function and impact of major components of X-ray tube on the image quality. Understand the function and impact of major components of CT detector on the image quality. Be familiar with the basic procedure of CT image reconstruction. Understand the effect of image reconstruction on CT image quality and artifacts. Understand the root causes of common CT image artifacts. Be familiar with image quality metrics especially high and low contrast resolution, noise power spectrum, slice sensitivity profile, etc. Understand why basic image quality metrics used for FBP may not be sufficient to characterize the performance of advanced iterative reconstruction. Be familiar with various CT dose metrics and their interaction with acquisition parameters. New development in advanced CT clinical applications. JH: Employee of GE Healthcare. FD: No disclosure.; J. Hsieh, Jiang Hsieh is an employee of GE Healthcare.« less

  14. TU-G-201-01: What Therapy Physicists Need to Know About CT and PET/CT: Terminology and Latest Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, C.

    This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less

  15. Multimodal imaging of the human knee down to the cellular level

    NASA Astrophysics Data System (ADS)

    Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.

  16. Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases

    PubMed Central

    Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo

    2017-01-01

    Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216

  17. The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques.

    PubMed

    Aukema, T S; Rutgers, E J Th; Vogel, W V; Teertstra, H J; Oldenburg, H S; Vrancken Peeters, M T F D; Wesseling, J; Russell, N S; Valdés Olmos, R A

    2010-04-01

    The aim of this study was to evaluate the impact of (18)F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) on clinical management in patients with locoregional breast cancer recurrence amenable for locoregional treatment and to compare the PET/CT results with the conventional imaging data. From January 2006 to August 2008, all patients with locoregional breast cancer recurrence underwent whole-body PET/CT. PET/CT findings were compared with results of the conventional imaging techniques and final pathology. The impact of PET/CT results on clinical management was evaluated based on clinical decisions obtained from patient files. 56 patients were included. In 32 patients (57%) PET/CT revealed additional tumour localisations. Distant metastases were detected in 11 patients on conventional imaging and in 23 patients on PET/CT images (p < 0.01). In 25 patients (45%), PET/CT detected additional lesions not visible on conventional imaging. PET/CT had an impact on clinical management in 27 patients (48%) by detecting more extensive locoregional disease or distant metastases. In 20 patients (36%) extensive surgery was prevented and treatment was changed to palliative treatment. The sensitivity, specificity, accuracy, positive and negative predictive values of FDG PET/CT were respectively 97%, 92%, 95%, 94% and 96%. PET/CT, in addition to conventional imaging techniques, plays an important role in staging patients with locoregional breast cancer recurrence since its result changed the clinical management in almost half of the patients. PET/CT could potentially replace conventional staging imaging in patients with a locoregional breast cancer recurrence. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. New scoring system for intra-abdominal injury diagnosis after blunt trauma.

    PubMed

    Shojaee, Majid; Faridaalaee, Gholamreza; Yousefifard, Mahmoud; Yaseri, Mehdi; Arhami Dolatabadi, Ali; Sabzghabaei, Anita; Malekirastekenari, Ali

    2014-01-01

    An accurate scoring system for intra-abdominal injury (IAI) based on clinical manifestation and examination may decrease unnecessary CT scans, save time, and reduce healthcare cost. This study is designed to provide a new scoring system for a better diagnosis of IAI after blunt trauma. This prospective observational study was performed from April 2011 to October 2012 on patients aged above 18 years and suspected with blunt abdominal trauma (BAT) admitted to the emergency department (ED) of Imam Hussein Hospital and Shohadaye Hafte Tir Hospital. All patients were assessed and treated based on Advanced Trauma Life Support and ED protocol. Diagnosis was done according to CT scan findings, which was considered as the gold standard. Data were gathered based on patient's history, physical exam, ultrasound and CT scan findings by a general practitioner who was not blind to this study. Chi-square test and logistic regression were done. Factors with significant relationship with CT scan were imported in multivariate regression models, where a coefficient (β) was given based on the contribution of each of them. Scoring system was developed based on the obtained total β of each factor. Altogether 261 patients (80.1% male) were enrolled (48 cases of IAI). A 24-point blunt abdominal trauma scoring system (BATSS) was developed. Patients were divided into three groups including low (score<8), moderate (8≤score<12) and high risk (score≥12). In high risk group immediate laparotomy should be done, moderate group needs further assessments, and low risk group should be kept under observation. Low risk patients did not show positive CT-scans (specificity 100%). Conversely, all high risk patients had positive CT-scan findings (sensitivity 100%). The receiver operating characteristic curve indicated a close relationship between the results of CT scan and BATSS (sensitivity=99.3%). The present scoring system furnishes a high precision and reproducible diagnostic tool for BAT detection and has the potential to reduce unnecessary CT scan and cut unnecessary costs.

  19. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.

    PubMed

    Madero Orozco, Hiram; Vergara Villegas, Osslan Osiris; Cruz Sánchez, Vianey Guadalupe; Ochoa Domínguez, Humberto de Jesús; Nandayapa Alfaro, Manuel de Jesús

    2015-02-12

    Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. The possibility to obtain a manually accurate interpretation from CT scans demands a big effort by the radiologist and might be a fatiguing process. Therefore, the design of a computer-aided diagnosis (CADx) system would be helpful as a second opinion tool. The stages of the proposed CADx are: a supervised extraction of the region of interest to eliminate the shape differences among CT images. The Daubechies db1, db2, and db4 wavelet transforms are computed with one and two levels of decomposition. After that, 19 features are computed from each wavelet sub-band. Then, the sub-band and attribute selection is performed. As a result, 11 features are selected and combined in pairs as inputs to the support vector machine (SVM), which is used to distinguish CT images containing cancerous nodules from those not containing nodules. The clinical data set used for experiments consists of 45 CT scans from ELCAP and LIDC. For the training stage 61 CT images were used (36 with cancerous lung nodules and 25 without lung nodules). The system performance was tested with 45 CT scans (23 CT scans with lung nodules and 22 without nodules), different from that used for training. The results obtained show that the methodology successfully classifies cancerous nodules with a diameter from 2 mm to 30 mm. The total preciseness obtained was 82%; the sensitivity was 90.90%, whereas the specificity was 73.91%. The CADx system presented is competitive with other literature systems in terms of sensitivity. The system reduces the complexity of classification by not performing the typical segmentation stage of most CADx systems. Additionally, the novelty of the algorithm is the use of a wavelet feature descriptor.

  20. A quick behavioral dichotic word test is prognostic for clinical response to cognitive therapy for depression: A replication study.

    PubMed

    Bruder, Gerard E; Haggerty, Agnes; Siegle, Greg J

    2017-02-01

    There are no commonly used clinical indicators of whether an individual will benefit from cognitive therapy (CT) for depression. A prior study found right ear (left hemisphere) advantage for perceiving dichotic words predicted CT response. This study replicates this finding at a different research center in clinical trials that included clinically representative samples and community therapists. Right-handed individuals with unipolar major depressive disorder who subsequently received 12-14 weeks of CT at the University of Pittsburgh were tested on dichotic fused words and complex tones tests. Responders to CT showed twice the mean right ear advantage in dichotic fused words performance than non-responders. Patients with a right ear advantage greater than the mean for healthy controls had an 81% response rate to CT, whereas those with performance lower than the mean for controls had a 46% response rate. Individuals with a right ear advantage, indicative of strong left hemisphere language dominance, may be better at utilizing cognitive processes and left frontotemporal cortical regions critical for success of CT for depression. Findings at two clinical research centers suggest that verbal dichotic listening may be a clinically disseminative brief, inexpensive and easily automated test prognostic for response to CT across diverse clinical settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. CTRI – Clicking to greater transparency and accountability

    PubMed Central

    George, Bobby

    2012-01-01

    A clinical trial registry (CTR) is an official platform for registering a clinical trial (CT) with an objective of providing increased transparency and access to CTs to the public at large. Clinical Trials Registry - India (CTRI) is a free online public record system for registration of CTs being conducted in India. The vision of the CTRI is to ensure that every CT conducted in the region is prospectively registered with full disclosure of the trial data set items. With more number of CTs being conducted in the country, with a large number being global multicentre trials, it is binding on the industry/investigators/sponsor to comply with the requirements laid down. While there are pros and cons, there is enough scope for improvement of CTRI. PMID:23293758

  2. SU-E-J-141: Comparison of Dose Calculation On Automatically Generated MRBased ED Maps and Corresponding Patient CT for Clinical Prostate EBRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadewaldt, N; Schulz, H; Helle, M

    2014-06-01

    Purpose: To analyze the effect of computing radiation dose on automatically generated MR-based simulated CT images compared to true patient CTs. Methods: Six prostate cancer patients received a regular planning CT for RT planning as well as a conventional 3D fast-field dual-echo scan on a Philips 3.0T Achieva, adding approximately 2 min of scan time to the clinical protocol. Simulated CTs (simCT) where synthesized by assigning known average CT values to the tissue classes air, water, fat, cortical and cancellous bone. For this, Dixon reconstruction of the nearly out-of-phase (echo 1) and in-phase images (echo 2) allowed for water andmore » fat classification. Model based bone segmentation was performed on a combination of the DIXON images. A subsequent automatic threshold divides into cortical and cancellous bone. For validation, the simCT was registered to the true CT and clinical treatment plans were re-computed on the simCT in pinnacle{sup 3}. To differentiate effects related to the 5 tissue classes and changes in the patient anatomy not compensated by rigid registration, we also calculate the dose on a stratified CT, where HU values are sorted in to the same 5 tissue classes as the simCT. Results: Dose and volume parameters on PTV and risk organs as used for the clinical approval were compared. All deviations are below 1.1%, except the anal sphincter mean dose, which is at most 2.2%, but well below clinical acceptance threshold. Average deviations are below 0.4% for PTV and risk organs and 1.3% for the anal sphincter. The deviations of the stratifiedCT are in the same range as for the simCT. All plans would have passed clinical acceptance thresholds on the simulated CT images. Conclusion: This study demonstrated the clinical usability of MR based dose calculation with the presented Dixon acquisition and subsequent fully automatic image processing. N. Schadewaldt, H. Schulz, M. Helle and S. Renisch are employed by Phlips Technologie Innovative Techonologies, a subsidiary of Royal Philips NV.« less

  3. Circulating tumor DNA as a liquid biopsy for cancer.

    PubMed

    Heitzer, Ellen; Ulz, Peter; Geigl, Jochen B

    2015-01-01

    Targeted therapies have markedly changed the treatment of cancer over the past 10 years. However, almost all tumors acquire resistance to systemic treatment as a result of tumor heterogeneity, clonal evolution, and selection. Although genotyping is the most currently used method for categorizing tumors for clinical decisions, tumor tissues provide only a snapshot, or are often difficult to obtain. To overcome these issues, methods are needed for a rapid, cost-effective, and noninvasive identification of biomarkers at various time points during the course of disease. Because cell-free circulating tumor DNA (ctDNA) is a potential surrogate for the entire tumor genome, the use of ctDNA as a liquid biopsy may help to obtain the genetic follow-up data that are urgently needed. This review includes recent studies exploring the diagnostic, prognostic, and predictive potential of ctDNA as a liquid biopsy in cancer. In addition, it covers biological and technical aspects, including recent advances in the analytical sensitivity and accuracy of DNA analysis as well as hurdles that have to be overcome before implementation into clinical routine. Although the analysis of ctDNA is a promising area, and despite all efforts to develop suitable tools for a comprehensive analysis of tumor genomes from plasma DNA, the liquid biopsy is not yet routinely used as a clinical application. Harmonization of preanalytical and analytical procedures is needed to provide clinical standards to validate the liquid biopsy as a clinical biomarker in well-designed and sufficiently powered multicenter studies. © 2014 American Association for Clinical Chemistry.

  4. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  5. Managing care pathways combining SNOMED CT, archetypes and an electronic guideline system.

    PubMed

    Bernstein, Knut; Andersen, Ulrich

    2008-01-01

    Today electronic clinical guideline systems exist, but they are not well integrated with electronic health records. This paper thus proposes that the patient's "position" in the pathway during the patient journey should be made visible to all involved healthcare parties and the patient. This requires that the generic knowledge, which is represented in the guidelines, is combined with the patient specific information - and then made accessible for all relevant parties. In addition to the decision support provided by the guideline system documentation support can be provided by templates based on archetypes. This paper provides a proposal for how the guideline system and the EHR can be integrated by the use of archetypes and SNOMED CT. SNOMED CT provides the common reference terminology and the semantic links between the systems. The proposal also includes the use of a National Patient Index for storing data about the patient's position in the pathway and for sharing this information by all involved parties.

  6. Fundamentals of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  7. A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study

    PubMed Central

    Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav

    2017-01-01

    Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758

  8. TH-EF-207A-03: Photon Counting Implementation Challenges Using An Electron Multiplying Charged-Coupled Device Based Micro-CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podgorsak, A; Bednarek, D; Rudin, S

    2016-06-15

    Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less

  9. State of the art: dual-energy CT of the abdomen.

    PubMed

    Marin, Daniele; Boll, Daniel T; Mileto, Achille; Nelson, Rendon C

    2014-05-01

    Recent technologic advances in computed tomography (CT)--enabling the nearly simultaneous acquisition of clinical images using two different x-ray energy spectra--have sparked renewed interest in dual-energy CT. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT can be used to provide quantitative information about tissue composition, overcoming the limitations of attenuation-based conventional single-energy CT imaging. In the past few years, intensive research efforts have been devoted to exploiting the unique and powerful opportunities of dual-energy CT for a variety of clinical applications. This has led to CT protocol modifications for radiation dose reduction, improved diagnostic performance for detection and characterization of diseases, as well as image quality optimization. In this review, the authors discuss the basic principles, instrumentation and design, examples of current clinical applications in the abdomen and pelvis, and future opportunities of dual-energy CT.

  10. The Swedish new variant of Chlamydia trachomatis: genome sequence, morphology, cell tropism and phenotypic characterization

    PubMed Central

    Unemo, Magnus; Seth-Smith, Helena M. B.; Cutcliffe, Lesley T.; Skilton, Rachel J.; Barlow, David; Goulding, David; Persson, Kenneth; Harris, Simon R.; Kelly, Anne; Bjartling, Carina; Fredlund, Hans; Olcén, Per; Thomson, Nicholas R.; Clarke, Ian N.

    2010-01-01

    Chlamydia trachomatis is a major cause of bacterial sexually transmitted infections worldwide. In 2006, a new variant of C. trachomatis (nvCT), carrying a 377 bp deletion within the plasmid, was reported in Sweden. This deletion included the targets used by the commercial diagnostic systems from Roche and Abbott. The nvCT is clonal (serovar/genovar E) and it spread rapidly in Sweden, undiagnosed by these systems. The degree of spread may also indicate an increased biological fitness of nvCT. The aims of this study were to describe the genome of nvCT, to compare the nvCT genome to all available C. trachomatis genome sequences and to investigate the biological properties of nvCT. An early nvCT isolate (Sweden2) was analysed by genome sequencing, growth kinetics, microscopy, cell tropism assay and antimicrobial susceptibility testing. It was compared with relevant C. trachomatis isolates, including a similar serovar E C. trachomatis wild-type strain that circulated in Sweden prior to the initially undetected expansion of nvCT. The nvCT genome does not contain any major genetic polymorphisms – the genes for central metabolism, development cycle and virulence are conserved – or phenotypic characteristics that indicate any altered biological fitness. This is supported by the observations that the nvCT and wild-type C. trachomatis infections are very similar in terms of epidemiological distribution, and that differences in clinical signs are only described, in one study, in women. In conclusion, the nvCT does not appear to have any altered biological fitness. Therefore, the rapid transmission of nvCT in Sweden was due to the strong diagnostic selective advantage and its introduction into a high-frequency transmitting population. PMID:20093289

  11. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT

    PubMed Central

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-01-01

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772

  12. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    PubMed

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  13. A practical three-dimensional dosimetry system for radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.« less

  14. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.

    PubMed

    Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B

    2014-11-01

    The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.

  15. Computed tomography and clinical outcome in patients with severe traumatic brain injury.

    PubMed

    Stenberg, Maud; Koskinen, Lars-Owe D; Jonasson, Per; Levi, Richard; Stålnacke, Britt-Marie

    2017-01-01

    To study: (i) acute computed tomography (CT) characteristics and clinical outcome; (ii) clinical course and (iii) Corticosteroid Randomisation after Significant Head Injury acute calculator protocol (CRASH) model and clinical outcome in patients with severe traumatic brain injury (sTBI). Initial CT (CT i ) and CT 24 hours post-trauma (CT 24 ) were evaluated according to Marshall and Rotterdam classifications. Rancho Los Amigos Cognitive Scale-Revised (RLAS-R) and Glasgow Outcome Scale Extended (GOSE) were assessed at three months and one year post-trauma. The prognostic value of the CRASH model was evaluated. Thirty-seven patients were included. Marshall CT i and CT 24 were significantly correlated with RLAS-R at three months. Rotterdam CT 24 was significantly correlated with GOSE at three months. RLAS-R and the GOSE improved significantly from three months to one year. CRASH predicted unfavourable outcome at six months for 81% of patients with bad outcome and for 85% of patients with favourable outcome according to GOSE at one year. Neither CT nor CRASH yielded clinically useful predictions of outcome at one year post-injury. The study showed encouragingly many instances of significant recovery in this population of sTBI. The combination of lack of reliable prognostic indicators and favourable outcomes supports the case for intensive acute management and rehabilitation as the default protocol in the cases of sTBI.

  16. Prospective evaluation of the ability of clinical scoring systems and physician-determined likelihood of appendicitis to obviate the need for CT.

    PubMed

    Golden, Sean K; Harringa, John B; Pickhardt, Perry J; Ebinger, Alexander; Svenson, James E; Zhao, Ying-Qi; Li, Zhanhai; Westergaard, Ryan P; Ehlenbach, William J; Repplinger, Michael D

    2016-07-01

    To determine whether clinical scoring systems or physician gestalt can obviate the need for computed tomography (CT) in patients with possible appendicitis. Prospective, observational study of patients with abdominal pain at an academic emergency department (ED) from February 2012 to February 2014. Patients over 11 years old who had a CT ordered for possible appendicitis were eligible. All parameters needed to calculate the scores were recorded on standardised forms prior to CT. Physicians also estimated the likelihood of appendicitis. Test characteristics were calculated using clinical follow-up as the reference standard. Receiver operating characteristic curves were drawn. Of the 287 patients (mean age (range), 31 (12-88) years; 60% women), the prevalence of appendicitis was 33%. The Alvarado score had a positive likelihood ratio (LR(+)) (95% CI) of 2.2 (1.7 to 3) and a negative likelihood ratio (LR(-)) of 0.6 (0.4 to 0.7). The modified Alvarado score (MAS) had LR(+) 2.4 (1.6 to 3.4) and LR(-) 0.7 (0.6 to 0.8). The Raja Isteri Pengiran Anak Saleha Appendicitis (RIPASA) score had LR(+) 1.3 (1.1 to 1.5) and LR(-) 0.5 (0.4 to 0.8). Physician-determined likelihood of appendicitis had LR(+) 1.3 (1.2 to 1.5) and LR(-) 0.3 (0.2 to 0.6). When combined with physician likelihoods, LR(+) and LR(-) was 3.67 and 0.48 (Alvarado), 2.33 and 0.45 (RIPASA), and 3.87 and 0.47 (MAS). The area under the curve was highest for physician-determined likelihood (0.72), but was not statistically significantly different from the clinical scores (RIPASA 0.67, Alvarado 0.72, MAS 0.7). Clinical scoring systems performed equally well as physician gestalt in predicting appendicitis. These scores do not obviate the need for imaging for possible appendicitis when a physician deems it necessary. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the joint working group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

    PubMed

    Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael F; Townsend, David W; Berland, Lincoln L

    2005-07-01

    Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

  18. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the Joint Working Group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

    PubMed

    Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael P; Townsend, David W; Berland, Lincoln L

    2005-07-01

    Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.

  19. SU-G-206-01: A Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Lo, P; Kim, H

    Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less

  20. Admission Chest CT Complements Fiberoptic Bronchoscopy in Prediction of Adverse Outcomes in Thermally Injured Patients

    DTIC Science & Technology

    2012-08-01

    other CT scoring systems exist for conditions including cystic fibrosis and ARDS, these are not in widespread clinical use and have not been... diagnosis of inhalation injury.10,11 However, degree and depth of damage to main airway mucosa cannot at present be accurately distinguished by eye...injury can result in progressive pulmonary dysfunction, infection, and death. Although bronchoscopy is the standard for diagnosis , it only assesses

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polan, D; Kamp, J; Lee, JY

    Purpose: To perform validation and commissioning of a commercial deformable image registration (DIR) algorithm (Velocity, Varian Medical Systems) for numerous clinical sites using single and multi-modality images. Methods: In this retrospective study, the DIR algorithm was evaluated for 10 patients in each of the following body sites: head and neck (HN), prostate, liver, and gynecological (GYN). HN DIRs were evaluated from planning (p)CT to re-pCT and pCTs to daily CBCTs using dice similarity coefficients (DSC) of corresponding anatomical structures. Prostate DIRs were evaluated from pCT to CBCTs using DSC and target registration error (TRE) of implanted RF beacons within themore » prostate. Liver DIRs were evaluated from pMR to pCT using DSC and TRE of vessel bifurcations. GYN DIRs were evaluated between fractionated brachytherapy MRIs using DSC of corresponding anatomical structures. Results: Analysis to date has given average DSCs for HN pCT-to-(re)pCT DIR for the brainstem, cochleas, constrictors, spinal canal, cord, esophagus, larynx, parotids, and submandibular glands as 0.88, 0.65, 0.67, 0.91, 0.77, 0.69, 0.77, 0.87, and 0.71, respectively. Average DSCs for HN pCT-to-CBCT DIR for the constrictors, spinal canal, esophagus, larynx, parotids, and submandibular glands were 0.64, 0.90, 0.62, 0.82, 0.75, and 0.69, respectively. For prostate pCT-to-CBCT DIR the DSC for the bladder, femoral heads, prostate, and rectum were 0.71, 0.82, 0.69, and 0.61, respectively. Average TRE using implanted beacons was 3.35 mm. For liver pCT-to-pMR, the average liver DSC was 0.94 and TRE was 5.26 mm. For GYN MR-to-MR DIR the DSC for the bladder, sigmoid colon, GTV, and rectum were 0.79, 0.58, 0.67, and 0.76, respectively. Conclusion: The Velocity DIR algorithm has been evaluated over a number of anatomical sites. This work functions to document the uncertainties in the DIR in the commissioning process so that these can be accounted for in the development of downstream clinical processes. This work was supported in part by a co-development agreement with Varian Medical Systems.« less

  2. SU-F-T-199: A New Strategy for Integrating Photon with Proton and Carbon Ion in the Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z; Wang, J; Hu, W

    2016-06-15

    Purpose: The aim of this study was to develop a viable strategy to integrate photon plan and proton/carbon ion plan based on deformable registration. Methods: Two prostate cancer patients were enrolled in this study. Each patient has 2 CTs, which were input in the Raystation radiotherapy treatment planning system (TPS). CT1 was deformed to the second CT2 using the Hybrid deformation method. The dice similarity coefficient (DSC) parameter was used to evaluate the difference between the actual structures (bladder, rectum and CTV) and the corresponding deformed structures on CT2. The prescription dose was 63.02GyE to CTV, which included 49.32GyE formore » CTV1 with carbon and boost 13.7Gy for CTV2 with photon. The carbon plan was made first in Syngo TPS (Syngo PT Planning system, version VB10. Siemens, Germany) on CT1 and transferred to Raystation TPS. Selected Isodoses (23.5Gy, 36.8Gy, 39.1Gy, 47.0Gy and 49.3Gy) of carbon plan were converted to contours and then deformed to CT2, which was used as normal tissues for photon plan optimization on CT2. The final plan was the combination of photon plan and the carbon deformation plan on the CT2. The plan from this strategy was compared with direct optimization of the photon plan on CT2 added some clinical endpoints from carbon plan on CT1. Results: The new strategy with deformable registration is tested and combined plans were successfully obtained for the 2 patients. This strategy obtained both integrated DVH and dose distribution information. For patient 1, the rectum V30, V60 and bladder V63 were 45.8, 10.3 and 9.7 for the combined plan with deformation and 48.1, 11.0 and 12.0 for the direct photon plan. Conclusion: The new strategy for combining photon and carbon/proton is feasible. However, the clinical accuracy is still need more evaluation.« less

  3. Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation.

    PubMed

    Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George

    2013-01-08

    We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a 'false-negative' result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death.

  4. Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation

    PubMed Central

    Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George

    2013-01-01

    We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a ‘false-negative’ result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death. PMID:23302550

  5. Computer-Aided Clinical Trial Recruitment Based on Domain-Specific Language Translation: A Case Study of Retinopathy of Prematurity

    PubMed Central

    2017-01-01

    Reusing the data from healthcare information systems can effectively facilitate clinical trials (CTs). How to select candidate patients eligible for CT recruitment criteria is a central task. Related work either depends on DBA (database administrator) to convert the recruitment criteria to native SQL queries or involves the data mapping between a standard ontology/information model and individual data source schema. This paper proposes an alternative computer-aided CT recruitment paradigm, based on syntax translation between different DSLs (domain-specific languages). In this paradigm, the CT recruitment criteria are first formally represented as production rules. The referenced rule variables are all from the underlying database schema. Then the production rule is translated to an intermediate query-oriented DSL (e.g., LINQ). Finally, the intermediate DSL is directly mapped to native database queries (e.g., SQL) automated by ORM (object-relational mapping). PMID:29065644

  6. Computer-Aided Clinical Trial Recruitment Based on Domain-Specific Language Translation: A Case Study of Retinopathy of Prematurity.

    PubMed

    Zhang, Yinsheng; Zhang, Guoming; Shang, Qian

    2017-01-01

    Reusing the data from healthcare information systems can effectively facilitate clinical trials (CTs). How to select candidate patients eligible for CT recruitment criteria is a central task. Related work either depends on DBA (database administrator) to convert the recruitment criteria to native SQL queries or involves the data mapping between a standard ontology/information model and individual data source schema. This paper proposes an alternative computer-aided CT recruitment paradigm, based on syntax translation between different DSLs (domain-specific languages). In this paradigm, the CT recruitment criteria are first formally represented as production rules. The referenced rule variables are all from the underlying database schema. Then the production rule is translated to an intermediate query-oriented DSL (e.g., LINQ). Finally, the intermediate DSL is directly mapped to native database queries (e.g., SQL) automated by ORM (object-relational mapping).

  7. Image reconstruction for PET/CT scanners: past achievements and future challenges

    PubMed Central

    Tong, Shan; Alessio, Adam M; Kinahan, Paul E

    2011-01-01

    PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831

  8. Diagnostic value of thallium-201 myocardial perfusion IQ-SPECT without and with computed tomography-based attenuation correction to predict clinically significant and insignificant fractional flow reserve

    PubMed Central

    Tanaka, Haruki; Takahashi, Teruyuki; Ohashi, Norihiko; Tanaka, Koichi; Okada, Takenori; Kihara, Yasuki

    2017-01-01

    Abstract The aim of this study was to clarify the predictive value of fractional flow reserve (FFR) determined by myocardial perfusion imaging (MPI) using thallium (Tl)-201 IQ-SPECT without and with computed tomography-based attenuation correction (CT-AC) for patients with stable coronary artery disease (CAD). We assessed 212 angiographically identified diseased vessels using adenosine-stress Tl-201 MPI-IQ-SPECT/CT in 84 consecutive, prospectively identified patients with stable CAD. We compared the FFR in 136 of the 212 diseased vessels using visual semiquantitative interpretations of corresponding territories on MPI-IQ-SPECT images without and with CT-AC. FFR inversely correlated most accurately with regional summed difference scores (rSDS) in images without and with CT-AC (r = −0.584 and r = −0.568, respectively, both P < .001). Receiver-operating characteristics analyses using rSDS revealed an optimal FFR cut-off of <0.80 without and with CT-AC. Although the diagnostic accuracy of FFR <0.80 did not significantly differ, FFR ≥0.82 was significantly more accurate with, than without CT-AC. Regions with rSDS ≥2 without or with CT-AC predicted FFR <0.80, and those with rSDS ≤1 without and with CT-AC predicted FFR ≥0.81, with 73% and 83% sensitivity, 84% and 67% specificity, and 79% and 75% accuracy, respectively. Although limited by the sample size and the single-center design, these findings showed that the IQ-SPECT system can predict FFR at an optimal cut-off of <0.80, and we propose a novel application of CT-AC to MPI-IQ-SPECT for predicting clinically significant and insignificant FFR even in nonobese patients. PMID:29390486

  9. C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.

    PubMed

    Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo

    2013-11-01

    C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.

  10. Lesion detection performance: comparative analysis of low-dose CT data of the chest on two hybrid imaging systems.

    PubMed

    Jessop, Maryam; Thompson, John D; Coward, Joanne; Sanderud, Audun; Jorge, José; de Groot, Martijn; Lança, Luís; Hogg, Peter

    2015-03-01

    Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.

    PubMed

    Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S

    2017-09-01

    This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high quality of the Discovery MI. Comparisons between the Discovery MI and SIGNA showed a similar spatial resolution and overall imaging performance. Lastly, the results indicated significantly enhanced image quality and contrast-to-noise performance for Q.Clear, compared with ordered-subset expectation maximization. Conclusion: Excellent performance was achieved with the Discovery MI, including 375 ps FWHM coincidence time resolution and sensitivity of 14 cps/kBq. Comparisons between reconstruction algorithms and other multimodal silicon photomultiplier and non-silicon photomultiplier PET detector system designs indicated that performance can be substantially enhanced with this next-generation system. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Bladder cancer treatment response assessment with radiomic, clinical, and radiologist semantic features

    NASA Astrophysics Data System (ADS)

    Gordon, Marshall N.; Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Cohan, Richard H.; Caoili, Elaine M.; Paramagul, Chintana; Alva, Ajjai; Weizer, Alon Z.

    2018-02-01

    We are developing a decision support system for assisting clinicians in assessment of response to neoadjuvant chemotherapy for bladder cancer. Accurate treatment response assessment is crucial for identifying responders and improving quality of life for non-responders. An objective machine learning decision support system may help reduce variability and inaccuracy in treatment response assessment. We developed a predictive model to assess the likelihood that a patient will respond based on image and clinical features. With IRB approval, we retrospectively collected a data set of pre- and post- treatment CT scans along with clinical information from surgical pathology from 98 patients. A linear discriminant analysis (LDA) classifier was used to predict the likelihood that a patient would respond to treatment based on radiomic features extracted from CT urography (CTU), a radiologist's semantic feature, and a clinical feature extracted from surgical and pathology reports. The classification accuracy was evaluated using the area under the ROC curve (AUC) with a leave-one-case-out cross validation. The classification accuracy was compared for the systems based on radiomic features, clinical feature, and radiologist's semantic feature. For the system based on only radiomic features the AUC was 0.75. With the addition of clinical information from examination under anesthesia (EUA) the AUC was improved to 0.78. Our study demonstrated the potential of designing a decision support system to assist in treatment response assessment. The combination of clinical features, radiologist semantic features and CTU radiomic features improved the performance of the classifier and the accuracy of treatment response assessment.

  13. CT diagnosis of a clinically unsuspected acute appendicitis complicating infectious mononucleosis.

    PubMed

    Zissin, R; Brautbar, O; Shapiro-Feinberg, M

    2001-01-01

    Acute appendicitis is a rare complication of infectious mononucleosis (IM). We describe a patient with IM and splenic rupture with a computerized tomography (CT) diagnosis of acute appendicitis during the acute phase of the infectious disease. Diagnostic imaging features of acute appendicitis were found on an abdominal CT performed for the evaluation of postoperative fever. Histologic examination confirmed the CT diagnosis of the clinically unsuspected acute appendicitis. Our case is unique both for the rarity of this complication and the lack of clinical symptoms.

  14. The BRICS (Bronchiectasis Radiologically Indexed CT Score): A Multicenter Study Score for Use in Idiopathic and Postinfective Bronchiectasis.

    PubMed

    Bedi, Pallavi; Chalmers, James D; Goeminne, Pieter C; Mai, Cindy; Saravanamuthu, Pira; Velu, Prasad Palani; Cartlidge, Manjit K; Loebinger, Michael R; Jacob, Joe; Kamal, Faisal; Schembri, Nicola; Aliberti, Stefano; Hill, Uta; Harrison, Mike; Johnson, Christopher; Screaton, Nicholas; Haworth, Charles; Polverino, Eva; Rosales, Edmundo; Torres, Antoni; Benegas, Michael N; Rossi, Adriano G; Patel, Dilip; Hill, Adam T

    2018-05-01

    The goal of this study was to develop a simplified radiological score that could assess clinical disease severity in bronchiectasis. The Bronchiectasis Radiologically Indexed CT Score (BRICS) was devised based on a multivariable analysis of the Bhalla score and its ability in predicting clinical parameters of severity. The score was then externally validated in six centers in 302 patients. A total of 184 high-resolution CT scans were scored for the validation cohort. In a multiple logistic regression model, disease severity markers significantly associated with the Bhalla score were percent predicted FEV 1 , sputum purulence, and exacerbations requiring hospital admission. Components of the Bhalla score that were significantly associated with the disease severity markers were bronchial dilatation and number of bronchopulmonary segments with emphysema. The BRICS was developed with these two parameters. The receiver operating-characteristic curve values for BRICS in the derivation cohort were 0.79 for percent predicted FEV 1 , 0.71 for sputum purulence, and 0.75 for hospital admissions per year; these values were 0.81, 0.70, and 0.70, respectively, in the validation cohort. Sputum free neutrophil elastase activity was significantly elevated in the group with emphysema on CT imaging. A simplified CT scoring system can be used as an adjunct to clinical parameters to predict disease severity in patients with idiopathic and postinfective bronchiectasis. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. SU-F-J-188: Clinical Implementation of in Room Mobile CT for Image Guided Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H; Wu, R; Poenisch, F

    Purpose: To implement soft-tissue image-guided proton therapy using inroom mobile CT. Methods: Anthropomorphic phantom was first used to determine the setup accuracy using in- room mobile CT. Laser and bbs were used for the initial setup (marked isocenter). CT data was then acquired with in-room mobile CT (daily CT). The shift between the marked isocenter and the planned isocenter (final isocenter) was determined from the daily CT using in-house Computer Assisted Targeting (CAT) software. Orthogonal DRRs of the day was also generated from the daily CT. The phantom was then transferred on the treatment couch top to the treatment machinemore » using a transportation system, and again aligned to the marked isocenter. Couch shifts were made to align the phantom to the final isocenter using the shifts as determined using the CAT software, and verified using orthogonal X-ray images with the daily DRRs. Results: Phantom data suggests that following the setup procedure as described above, targeting accuracy could be within 1 mm. Patient data are being acquired and analyzed. Conclusion: In-room mobile CT is capable of providing soft-tissue image-guided proton therapy.« less

  16. Artefacts of PET/CT images

    PubMed Central

    Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C

    2006-01-01

    Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340

  17. A tale of Persian cupping therapy: 1001 potential applications and avenues for research.

    PubMed

    Bamfarahnak, Hossein; Azizi, Amir; Noorafshan, Ali; Mohagheghzadeh, Abdolali

    2014-01-01

    Cupping therapy (CT) is one of the oldest medical techniques available, and is still used in several cultures instead of or as an adjunct or complement to 'western academic' medicine. Moreover, CT (wet or dry) is claimed to have therapeutic effects in many types of disorders which do not fully respond to conventional medicine or for which no effective treatment is available. However, no recent reviews of the clinical practice of cupping are available to the best of our knowledge. We describe the applications of CT as used in Traditional Iranian Medicine (TIM). Several databases were searched for relevant literature. In addition, we studied the main traditional treatises on TIM regarding the history and practice of CT. Information about current practices was obtained from a systematic survey among practitioners. Our results suggest that CT is currently prescribed for up to 120 diseases and disorders that are difficult to treat, including cutaneous (21.7%), musculoskeletal (15%), and central nervous system (13.3%) disorders. Moreover, TIM treatises note 25 specific sites on the body surface which correspond to certain diseases, and on which wet-cupping therapy has therapeutic effects. Additional clinical studies of CT may lead to findings on new therapeutic methods and may shed light on mechanisms of disease and illness that are not fully understood in conventional medicine. © 2014 S. Karger GmbH, Freiburg.

  18. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V

    2015-07-01

    This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.

  19. Extragenital gonorrhea and chlamydia testing and infection among men who have sex with men--STD Surveillance Network, United States, 2010-2012.

    PubMed

    Patton, Monica E; Kidd, Sarah; Llata, Eloisa; Stenger, Mark; Braxton, Jim; Asbel, Lenore; Bernstein, Kyle; Gratzer, Beau; Jespersen, Megan; Kerani, Roxanne; Mettenbrink, Christie; Mohamed, Mukhtar; Pathela, Preeti; Schumacher, Christina; Stirland, Ali; Stover, Jeff; Tabidze, Irina; Kirkcaldy, Robert D; Weinstock, Hillard

    2014-06-01

    Gonorrhea (GC) and chlamydia (CT) are the most commonly reported notifiable diseases in the United States. The Centers for Disease Control and Prevention recommends that men who have sex with men (MSM) be screened for urogenital GC/CT, rectal GC/CT, and pharyngeal GC. We describe extragenital GC/CT testing and infections among MSM attending sexually transmitted disease (STD) clinics. The STD Surveillance Network collects patient data from 42 STD clinics. We assessed the proportion of MSM attending these clinics during July 2011-June 2012 who were tested and positive for extragenital GC/CT at their most recent visit or in the preceding 12 months and the number of extragenital infections that would have remained undetected with urethral screening alone. Of 21 994 MSM, 83.9% were tested for urogenital GC, 65.9% for pharyngeal GC, 50.4% for rectal GC, 81.4% for urogenital CT, 31.7% for pharyngeal CT, and 45.9% for rectal CT. Of MSM tested, 11.1% tested positive for urogenital GC, 7.9% for pharyngeal GC, 10.2% for rectal GC, 8.4% for urogenital CT, 2.9% for pharyngeal CT, and 14.1% for rectal CT. More than 70% of extragenital GC infections and 85% of extragenital CT infections were associated with negative urethral tests at the same visit and would not have been detected with urethral screening alone. Extragenital GC/CT was common among MSM attending STD clinics, but many MSM were not tested. Most extragenital infections would not have been identified, and likely would have remained untreated, with urethral screening alone. Efforts are needed to facilitate implementation of extragenital GC/CT screening recommendations for MSM.

  20. Extragenital Gonorrhea and Chlamydia Testing and Infection Among Men Who Have Sex With Men—STD Surveillance Network, United States, 2010–2012

    PubMed Central

    Patton, Monica E.; Kidd, Sarah; Llata, Eloisa; Stenger, Mark; Braxton, Jim; Asbel, Lenore; Bernstein, Kyle; Gratzer, Beau; Jespersen, Megan; Kerani, Roxanne; Mettenbrink, Christie; Mohamed, Mukhtar; Pathela, Preeti; Schumacher, Christina; Stirland, Ali; Stover, Jeff; Tabidze, Irina; Kirkcaldy, Robert D.; Weinstock, Hillard

    2015-01-01

    Background Gonorrhea (GC) and chlamydia (CT) are the most commonly reported notifiable diseases in the United States. The Centers for Disease Control and Prevention recommends that men who have sex with men (MSM) be screened for urogenital GC/CT, rectal GC/CT, and pharyngeal GC. We describe extragenital GC/CT testing and infections among MSM attending sexually transmitted disease (STD) clinics. Methods The STD Surveillance Network collects patient data from 42 STD clinics. We assessed the proportion of MSM attending these clinics during July 2011–June 2012 who were tested and positive for extragenital GC/CT at their most recent visit or in the preceding 12 months and the number of extragenital infections that would have remained undetected with urethral screening alone. Results Of 21 994 MSM, 83.9% were tested for urogenital GC, 65.9% for pharyngeal GC, 50.4% for rectal GC, 81.4% for urogenital CT, 31.7% for pharyngeal CT, and 45.9% for rectal CT. Of MSM tested, 11.1% tested positive for urogenital GC, 7.9% for pharyngeal GC, 10.2% for rectal GC, 8.4% for urogenital CT, 2.9% for pharyngeal CT, and 14.1% for rectal CT. More than 70% of extragenital GC infections and 85% of extragenital CT infections were associated with negative urethral tests at the same visit and would not have been detected with urethral screening alone. Conclusions Extragenital GC/CT was common among MSM attending STD clinics, but many MSM were not tested. Most extragenital infections would not have been identified, and likely would have remained untreated, with urethral screening alone. Efforts are needed to facilitate implementation of extragenital GC/CT screening recommendations for MSM. PMID:24647015

  1. What is the clinical significance of chest CT when the chest x-ray result is normal in patients with blunt trauma?

    PubMed

    Kea, Bory; Gamarallage, Ruwan; Vairamuthu, Hemamalini; Fortman, Jonathan; Lunney, Kevin; Hendey, Gregory W; Rodriguez, Robert M

    2013-08-01

    Computed tomography (CT) has been shown to detect more injuries than plain radiography in patients with blunt trauma, but it is unclear whether these injuries are clinically significant. This study aimed to determine the proportion of patients with normal chest x-ray (CXR) result and injury seen on CT and abnormal initial CXR result and no injury on CT and to characterize the clinical significance of injuries seen on CT as determined by a trauma expert panel. Patients with blunt trauma older than 14 years who received emergency department chest imaging as part of their evaluation at 2 urban level I trauma centers were enrolled. An expert trauma panel a priori classified thoracic injuries and subsequent interventions as major, minor, or no clinical significance. Of 3639 participants, 2848 (78.3%) had CXR alone and 791 (21.7%) had CXR and chest CT. Of 589 patients who had chest CT after a normal CXR result, 483 (82.0% [95% confidence interval [CI], 78.7-84.9%]) had normal CT results, and 106 (18.0% [95% CI, 15.1%-21.3%]) had CTs diagnosing injuries-primarily rib fractures, pulmonary contusion, and incidental pneumothorax. Twelve patients had injuries classified as clinically major (2.0% [95% CI, 1.2%-3.5%]), 78 were clinically minor (13.2% [95% CI, 10.7%-16.2%]), and 16 were clinically insignificant (2.7% (95% CI, 1.7%-4.4%]). Of 202 patients with CXRs suggesting injury, 177 (87.6% [95% CI, 82.4%-91.5%]) had chest CTs confirming injury and 25 (12.4% [95% CI, 8.5%-17.6%]) had no injury on CT. Chest CT after a normal CXR result in patients with blunt trauma detects injuries, but most do not lead to changes in patient management. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Reliability of SNOMED-CT Coding by Three Physicians using Two Terminology Browsers

    PubMed Central

    Chiang, Michael F.; Hwang, John C.; Yu, Alexander C.; Casper, Daniel S.; Cimino, James J.; Starren, Justin

    2006-01-01

    SNOMED-CT has been promoted as a reference terminology for electronic health record (EHR) systems. Many important EHR functions are based on the assumption that medical concepts will be coded consistently by different users. This study is designed to measure agreement among three physicians using two SNOMED-CT terminology browsers to encode 242 concepts from five ophthalmology case presentations in a publicly-available clinical journal. Inter-coder reliability, based on exact coding match by each physician, was 44% using one browser and 53% using the other. Intra-coder reliability testing revealed that a different SNOMED-CT code was obtained up to 55% of the time when the two browsers were used by one user to encode the same concept. These results suggest that the reliability of SNOMED-CT coding is imperfect, and may be a function of browsing methodology. A combination of physician training, terminology refinement, and browser improvement may help increase the reproducibility of SNOMED-CT coding. PMID:17238317

  3. Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images.

    PubMed

    Dai, Jessica C; Dunmire, Barbrina; Sternberg, Kevan M; Liu, Ziyue; Larson, Troy; Thiel, Jeff; Chang, Helena C; Harper, Jonathan D; Bailey, Michael R; Sorensen, Mathew D

    2018-05-01

    Posterior acoustic shadow width has been proposed as a more accurate measure of kidney stone size compared to direct measurement of stone width on ultrasound (US). Published data in humans to date have been based on a research using US system. Herein, we compared these two measurements in clinical US images. Thirty patient image sets where computed tomography (CT) and US images were captured less than 1 day apart were retrospectively reviewed. Five blinded reviewers independently assessed the largest stone in each image set for shadow presence and size. Shadow size was compared to US and CT stone sizes. Eighty percent of included stones demonstrated an acoustic shadow; 83% of stones without a shadow were ≤ 5 mm on CT. Average stone size was 6.5 ± 4.0 mm on CT, 10.3 ± 4.1 mm on US, and 7.5 ± 4.2 mm by shadow width. On average, US overestimated stone size by 3.8 ± 2.4 mm based on stone width (p < 0.001) and 1.0 ± 1.4 mm based on shadow width (p < 0.0098). Shadow measurements decreased misclassification of stones by 25% among three clinically relevant size categories (≤ 5, 5.1-10, > 10 mm), and by 50% for stones ≤ 5 mm. US overestimates stone size compared to CT. Retrospective measurement of the acoustic shadow from the same clinical US images is a more accurate reflection of true stone size than direct stone measurement. Most stones without a posterior shadow are ≤ 5 mm.

  4. The clinical significance of perivalvular pannus in prosthetic mitral valves: Can cardiac CT be helpful?

    PubMed

    Chang, Suyon; Suh, Young Joo; Han, Kyunghwa; Kim, Jin Young; Kim, Young Jin; Chang, Byung-Chul; Choi, Byoung Wook

    2017-12-15

    The clinical significance of pannus in the prosthetic mitral valve (MV) is not well documented. To investigate the clinical significance of pannus on cardiac computed tomography (CT) in patients with a prosthetic MV. A total of 130 patients with previous MV replacement who underwent cardiac CT were retrospectively included in this study. The presence of pannus, paravalvular leak (PVL) around the prosthetic MV and limitation of motion (LOM) of the MV were analyzed using CT. Between patients with MV pannus and those without pannus, CT, echocardiographic, and redo-surgery findings were compared. The diagnostic performance of CT and transesophageal echocardiography (TEE) for the detection of MV pannus was also compared, using surgical findings as a standard reference. MV pannus was observed on cardiac CT in 32.3% of the study population. Patients with MV pannus detected on CT more commonly had LOM (28.2% vs. 15.2%) and less frequently had PVL of the prosthetic MV (16.7% vs. 25%) than patients without MV pannus (P>0.05). Prosthetic valve obstruction (PVO) due prosthetic MV pannus requiring redo-surgery was present in only five patients (11.9%). Cardiac CT detected MV pannus with sensitivity of 65.2% and specificity of 80.9% and showed better diagnostic performance than TEE (P<0.05). Prosthetic MV pannus can frequently be seen on cardiac CT. However, its clinical significance should be assessed with careful consideration, because PVO due to MV pannus is relatively uncommon, and pannus can be seen in patients without any clinical problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A prototype piecewise-linear dynamic attenuator

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Peng, Mark V.; May, Christopher A.; Shunhavanich, Picha; Fleischmann, Dominik; Pelc, Norbert J.

    2016-07-01

    The piecewise-linear dynamic attenuator has been proposed as a mechanism in CT scanning for personalizing the x-ray illumination on a patient- and application-specific basis. Previous simulations have shown benefits in image quality, scatter, and dose objectives. We report on the first prototype implementation. This prototype is reduced in scale and speed and is integrated into a tabletop CT system with a smaller field of view (25 cm) and longer scan time (42 s) compared to a clinical system. Stainless steel wedges were machined and affixed to linear actuators, which were in turn held secure by a frame built using rapid prototyping technologies. The actuators were computer-controlled, with characteristic noise of about 100 microns. Simulations suggest that in a clinical setting, the impact of actuator noise could lead to artifacts of only 1 HU. Ring artifacts were minimized by careful design of the wedges. A water beam hardening correction was applied and the scan was collimated to reduce scatter. We scanned a 16 cm water cylinder phantom as well as an anthropomorphic pediatric phantom. The artifacts present in reconstructed images are comparable to artifacts normally seen with this tabletop system. Compared to a flat-field reference scan, increased detectability at reduced dose is shown and streaking is reduced. Artifacts are modest in our images and further refinement is possible. Issues of mechanical speed and stability in the challenging clinical CT environment will be addressed in a future design.

  6. SU-E-I-48: The Behavior of AEC in Scan Regions Outside the Localizer Radiograph FOV: An In Phantom Study of CT Systems From Four Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Bevins, N

    Purpose: This review of scanners from 4 major manufacturers examines the clinical impact of performing CT scans that extend into areas of the body that were not acquired in the CT localizer radiograph. Methods: Anthropomorphic chest and abdomen phantoms were positioned together on the tables of CT scanners from 4 different vendors. All of the scanners offered an Automatic Exposure Control (AEC) option with both lateral and axial tube current modulation. A localizer radiograph was taken covering the entire extent of both phantoms and then the scanner's Chest-Abdomen-Pelvis (CAP) study was performed with the clinical AEC settings employed and themore » scan and reconstruction range extending from the superior portion of the chest phantom through the inferior portion of the abdomen phantom. A new study was then initiated with a localizer radiograph extending the length of the chest phantom (not covering the abdomen phantom). The same CAP protocol and AEC settings were then used to scan and reconstruct the entire length of both phantoms. Scan parameters at specific locations in the abdomen phantom from both studies were investigated using the information contained in the DICOM metadata of the reconstructed images. Results: The AEC systems on all scanners utilized different tube current settings in the abdomen phantom for the scan completed without the full localizer radiograph. The AEC system behavior was also scanner dependent with the default manual tube current, the maximum tube current and the tube current at the last known position observed as outcomes. Conclusion: The behavior of the AEC systems of CT scanners in regions not covered by the localizer radiograph is vendor dependent. To ensure optimal image quality and radiation exposure it is important to include the entire planned scan region in the localizer radiograph.« less

  7. EDI OCT evaluation of choroidal thickness in Stargardt disease

    PubMed Central

    Sodi, Andrea; Bacherini, Daniela; Caporossi, Orsola; Murro, Vittoria; Mucciolo, Dario Pasquale; Cipollini, Francesca; Passerini, Ilaria; Virgili, Gianni; Rizzo, Stanislao

    2018-01-01

    Purpose Choroidal thickness (CT) evaluation with EDI-OCT in Stargardt Disease (STGD), considering its possible association with some clinical features of the disease. Methods CT was evaluated in 41 STGD patients and in 70 controls. Measurements were performed in the subfoveal position and at 1000 μm nasally and temporally. CT average values in STGD and in the control group were first compared by means of Student’s T test. Then, the possible association between CT and some clinical features was evaluated by means of linear regression analysis. Considered clinical parameters were: age, age on onset, duration of the disease, visual acuity, foveal thickness, Fishman clinical phenotype, visual field loss and ERG response. Results Average CT was not significantly different between controls and STGD patients. In the STGD group the correlation between CT and age (r = 0.22, p = 0.033) and age of onset (r = 0.05, p = 0.424) was modest, while that of CT with disease duration (r = 0.30, p<0.001) was moderate. CT and foveal thickness were also significantly but modestly correlated (r = 0.15, p = 0.033). Conclusion In our series average CT is not significantly changed in STGD in comparison with the controls. Nevertheless a choroidal thinning may be identified in the more advanced stages of the disease. PMID:29304098

  8. Utility of CT after sonography for suspected appendicitis in children: integration of a clinical scoring system with a staged imaging protocol.

    PubMed

    Srinivasan, Abhay; Servaes, Sabah; Peña, Andrès; Darge, Kassa

    2015-02-01

    To improve diagnosis of pediatric appendicitis, many institutions have implemented a staged imaging protocol utilizing ultrasonography (US) first and then computed tomography (CT). A substantial number of children with suspected appendicitis undergo CT after US, and the efficient and accurate diagnosis of pediatric appendicitis continues to be challenging. The objective of the study is to characterize the utility of CT following US for diagnosis of pediatric appendicitis, in conjunction with a clinical appendicitis score (AS). Imaging studies of children with suspected appendicitis who underwent CT after US in an imaging protocol were retrospectively reviewed by three radiologists in consensus. Chart review derived the AS (range 0-10) and obtained the patient diagnosis and disposition, and an AS was applied to each patient. Clinical and radiologic data were analyzed to assess the yield of CT after US. Studies of 211 children (mean age 11.3 years) were included. The positive threshold for AS was determined to be 6 out of 10. When AS and US were concordant (N = 140), the sensitivity and specificity of US were similar to CT. When AS and US were discordant (N = 71) and also when AS ≥ 6 (N = 84), subsequent CT showed superior sensitivity and specificity to US alone. In the subset where US showed neither the appendix nor inflammatory change in the right lower quadrant (126/211, 60 % of scans), when AS < 6 (N = 83), the negative predictive value (NPV) of US was 0.98. However, when AS ≥ 6 (N = 43), NPV of US was 0.58, and the positive predictive value of subsequent CT was 1. There was a significant decrease in depiction of the appendix on US with patient weight-to-age ratio of >6 (kg/year, P < 0.001) and after-hours (1700 -0730 hours) performance of US (P < 0.001). Results suggest that the appendicitis score has utility in guiding an imaging protocol and support the contention that non-visualization of the appendix on US is not intrinsically non-diagnostic. There was little benefit to additional CT when AS < 6 and US did not show the appendix or evidence of inflammation; this would have avoided CT in 140/211 (66 %) patients. CT demonstrated benefit when AS ≥ 6, suggesting that cases with AS ≥ 6 and features that limit depiction of the appendix on US may be triaged to CT.

  9. Quantitative CT scans of lung parenchymal pathology in premature infants ages 0-6 years.

    PubMed

    Spielberg, David R; Walkup, Laura L; Stein, Jill M; Crotty, Eric J; Rattan, Mantosh S; Hossain, Md Monir; Brody, Alan S; Woods, Jason C

    2018-03-01

    Bronchopulmonary dysplasia (BPD) is a common, heterogeneous disease in premature infants. We hypothesized that quantitative CT techniques could assess lung parenchymal heterogeneity in BPD patients across a broad age range and demonstrate how pathologies change over time. A cross-sectional, retrospective study of children age 0-6 years with non-contrast chest CT scans was conducted. BPD subjects met NICHD/NHLBI diagnostic criteria for BPD and were excluded for congenital lung/airway abnormalities or other known/suspected pulmonary diagnoses; control subjects were not premature and had normal CT scan findings. Radiologic opacities, lucencies, and spatial heterogeneity were quantified via: 1) thresholding using CT-attenuation (HU); 2) manual segmentation; and 3) Ochiai reader-scoring system. Clinical outcomes included BPD severity by NICHD/NHLBI criteria, respiratory support at NICU discharge, wheezing, and respiratory exacerbations. Heterogeneity (standard deviation) of lung attenuation in BPD was significantly greater than in controls (difference 36.4 HU [26.1-46.7 HU], P < 0.001); the difference between the groups decreased 0.58 HU per month of age (0.08-1.07 HU per month, P = 0.02). BPD patients had greater amounts of opacities and lucencies than controls except with automated quantification of lucencies. Cross-sectionally, lucencies per Ochiai score and opacities per manual segmentation decreased with time. No approach measured a statistically significant relationship to BPD clinical severity. Opacities, lucencies, and overall heterogeneity of lungs via quantitative CT can distinguish BPD patients from healthy controls, and these abnormalities decrease with age across BPD patients. Defining BPD severity by clinical outcomes such as respiratory support at several time points (vs a single time point, per current guidelines) may be meaningful. © 2017 Wiley Periodicals, Inc.

  10. Bronchoscopy in the investigation of outpatients with hemoptysis at a lung cancer clinic.

    PubMed

    Arooj, Parniya; Bredin, Emily; Henry, Michael T; Khan, Kashif A; Plant, Barry J; Murphy, Desmond M; Kennedy, Marcus P

    2018-06-01

    In the investigation of lung cancer, current practice in many healthcare systems would support bronchoscopy regardless of CT findings in patients with hemoptysis. We sought to identify the cause, the diagnostic yield of CT and bronchoscopy and the requirement for bronchoscopy in at risk patients with hemoptysis with a normal CT scan through our rapid access lung cancer clinic (RALC). Initially, a chart review was performed on all patients with hemoptysis (2011-2012) and thereafter a prospective analysis was performed (2013-2016). Our analysis represents the largest study to date in outpatients with hemoptysis. In our retrospective study, 155 patients reported hemoptysis. Causes were lower respiratory tract infections (RTIs) (47%) and lung cancer (16%). Our prospective study included 182 patients. The causes of hemoptysis were RTIs (50%) and lung cancer (18%). There were no false negative CT-scans for lung cancer. 47/57 present with lung cancer underwent bronchoscopy and 43/47 were positive for lung cancer (92%). Patients with hemoptysis and lung cancer have a higher stage of malignancy with a predominance of squamous cell lung carcinoma. Smoking status, the duration of hemoptysis or description of hemoptysis were not predictive of lung cancer however lung cancer was not identified in patients age <50. One sixth of patients presenting with hemoptysis to our lung cancer clinic had lung cancer. No patient identified with cancer related haemoptysis had a CT negative for lung cancer and a combination of bronchoscopy plus endobronchial ultrasound trans-bronchial needle aspiration (EBUS-TBNA) in those patients with a CT suspicious of lung cancer is 92% sensitive for lung cancer causing hemoptysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Is chest CT useful in newborn screened infants with cystic fibrosis at 1 year of age?

    PubMed Central

    Thia, Lena P; Calder, Alistair; Stocks, Janet; Bush, Andrew; Owens, Catherine M; Wallis, Colin; Young, Carolyn; Sullivan, Yvonne; Wade, Angie; McEwan, Angus; Brody, Alan S

    2014-01-01

    Rationale Sensitive outcome measures applicable in different centres to quantify and track early pulmonary abnormalities in infants with cystic fibrosis (CF) are needed both for clinical care and interventional trials. Chest CT has been advocated as such a measure yet there is no validated scoring system in infants. Objectives The objectives of this study were to standardise CT data collection across multiple sites; ascertain the incidence of bronchial dilatation and air trapping in newborn screened (NBS) infants with CF at 1 year; and assess the reproducibility of Brody-II, the most widely used scoring system in children with CF, during infancy. Methods A multicentre observational study of early pulmonary lung disease in NBS infants with CF at age 1 year using volume-controlled chest CT performed under general anaesthetic. Main results 65 infants with NBS-diagnosed CF had chest CT in three centres. Small insignificant variations in lung recruitment manoeuvres but significant centre differences in radiation exposures were found. Despite experienced scorers and prior training, with the exception of air trapping, inter- and intraobserver agreement on Brody-II score was poor to fair (eg, interobserver total score mean (95% CI) κ coefficient: 0.34 (0.20 to 0.49)). Only 7 (11%) infants had a total CT score ≥12 (ie, ≥5% maximum possible) by either scorer. Conclusions In NBS infants with CF, CT changes were very mild at 1 year, and assessment of air trapping was the only reproducible outcome. CT is thus of questionable value in infants of this age, unless an improved scoring system for use in mild CF disease can be developed. PMID:24132911

  12. PET/CT image registration: preliminary tests for its application to clinical dosimetry in radiotherapy.

    PubMed

    Baños-Capilla, M C; García, M A; Bea, J; Pla, C; Larrea, L; López, E

    2007-06-01

    The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: deltax/ +/-sigma = 3.3 mm +/- 1.0 mm and /deltax/ +/-sigma = 3.6 mm +/- 1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: /deltax/ +/-sigma = 0.7 mm +/- 0.8 mm and /deltax/ +/-sigma = 0.3 mm 1.7 mm. We also noted that differences found for each of the fusion methods were similar for both the axial and helical CT image acquisition protocols.

  13. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    PubMed

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT images (p < 0.0001). 3D SPECT/CT fusion offers comparable diagnostic accuracy to 2D SPECT/CT fusion. The visual effect of 3D SPECT/CT fusion facilitates reduction of reading time compared to 2D SPECT/CT fusion.

  14. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty.

    PubMed

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-03-18

    To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.

  15. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  16. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty

    PubMed Central

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-01-01

    AIM: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. METHODS: The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). RESULTS: Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. CONCLUSION: Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery. PMID:25793170

  17. TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less

  18. TU-G-201-02: An MRI Simulator From Proposal to Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.

    2015-06-15

    This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less

  19. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    NASA Astrophysics Data System (ADS)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute ischemic stroke patients more efficiently compared with the current clinical work-flow. The animal and patient cases presented in this thesis are focused towards but not limited to neurointerventional applications.

  20. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  1. Design of CT reconstruction kernel specifically for clinical lung imaging

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.

    2005-04-01

    In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.

  2. Prevalence and Diagnostic Performance of Isolated and Combined NEXUS Chest CT Decision Criteria.

    PubMed

    Raja, Ali S; Mower, William R; Nishijima, Daniel K; Hendey, Gregory W; Baumann, Brigitte M; Medak, Anthony J; Rodriguez, Robert M

    2016-08-01

    The use of chest computed tomography (CT) to evaluate emergency department patients with adult blunt trauma is rising. The NEXUS Chest CT decision instruments are highly sensitive identifiers of adult blunt trauma patients with thoracic injuries. However, many patients without injury exhibit one of more of the criteria so cannot be classified "low risk." We sought to determine screening performance of both individual and combined NEXUS Chest CT criteria as predictors of thoracic injury to inform chest CT imaging decisions in "non-low-risk" patients. This was a secondary analysis of data on patients in the derivation and validation cohorts of the prospective, observational NEXUS Chest CT study, performed September 2011 to May 2014 in 11 Level I trauma centers. Institutional review board approval was obtained at all study sites. Adult blunt trauma patients receiving chest CT were included. The primary outcome was injury and major clinical injury prevalence and screening performance in patients with combinations of one, two, or three of seven individual NEXUS Chest CT criteria. Across the 11 study sites, rates of chest CT performance ranged from 15.5% to 77.2% (median = 43.6%). We found injuries in 1,493/5,169 patients (28.9%) who had chest CT; 269 patients (5.2%) had major clinical injury (e.g., pneumothorax requiring chest tube). With sensitivity of 73.7 (95% confidence interval [CI] = 68.1 to 78.6) and specificity of 83.9 (95% CI = 83.6 to 84.2) for major clinical injury, abnormal chest-x-ray (CXR) was the single most important screening criterion. When patients had only abnormal CXR, injury and major clinical injury prevalences were 60.7% (95% CI = 52.2% to 68.6%) and 12.9% (95% CI = 8.3% to 19.4%), respectively. Injury and major clinical injury prevalences when any other single criterion alone (other than abnormal CXR) was present were 16.8% (95% CI = 15.2% to 18.6%) and 1.1% (95% CI = 0.1% to 1.8%), respectively. Injury and major clinical injury prevalences among patients when two and three criteria (not abnormal CXR) were present were 25.5% (95% CI = 23.1% to 28.0%) and 3.2% (95% CI = 2.3% to 4.4%) and 34.9% (95% CI = 31.0% to 39.0%) and 2.7% (95% CI = 1.6% to 4.5%), respectively. We recommend that clinicians check for the six clinical NEXUS Chest CT criteria and review the CXR (if obtained). If patients have one clinical criterion (other than abnormal CXR), they will have a very low risk of clinically major injury. We recommend that clinicians discuss the potential risks and benefit of chest CT in these cases. The risks of injury and major clinical injury rise incrementally with more criteria, rendering the risk/benefit ratio toward performing CT in most cases. If the patient has an abnormal CXR, the risks of major clinical injury and minor injury are considerably higher than with the other criteria-chest CT may be indicated in cases requiring greater anatomic detail and injury characterization. © 2016 by the Society for Academic Emergency Medicine.

  3. Ultrashort Echo-Time Magnetic Resonance Imaging Is a Sensitive Method for the Evaluation of Early Cystic Fibrosis Lung Disease

    PubMed Central

    Roach, David J.; Crémillieux, Yannick; Fleck, Robert J.; Brody, Alan S.; Serai, Suraj D.; Szczesniak, Rhonda D.; Kerlakian, Stephanie; Clancy, John P.

    2016-01-01

    Rationale: Recent advancements that have been made in magnetic resonance imaging (MRI) improve our ability to assess pulmonary structure and function in patients with cystic fibrosis (CF). A nonionizing imaging modality that can be used as a serial monitoring tool throughout life can positively affect patient care and outcomes. Objectives: To compare an ultrashort echo-time MRI method with computed tomography (CT) as a biomarker of lung structure abnormalities in young children with early CF lung disease. Methods: Eleven patients with CF (mean age, 31.8 ± 5.7 mo; median age, 33 mo; 7 male and 4 female) were imaged via CT and ultrashort echo-time MRI. Eleven healthy age-matched patients (mean age, 22.5 ± 10.2 mo; median age, 23 mo; 5 male and 6 female) were imaged via ultrashort echo-time MRI. CT scans of 13 additional patients obtained for clinical indications not affecting the heart or lungs and interpreted as normal provided a CT control group (mean age, 24.1 ± 11.7 mo; median age, 24 mo; 6 male and 7 female). Studies were scored by two experienced radiologists using a well-validated CF-specific scoring system for CF lung disease. Measurements and Main Results: Correlations between CT and ultrashort echo-time MRI scores of patients with CF were very strong, with P values ≤0.001 for bronchiectasis (r = 0.96) and overall score (r = 0.90), and moderately strong for bronchial wall thickening (r = 0.62, P = 0.043). MRI easily differentiated CF and control groups via a reader CF-specific scoring system. Conclusions: Ultrashort echo-time MRI detected structural lung disease in very young patients with CF and provided imaging data that correlated well with CT. By quantifying early CF lung disease without using ionizing radiation, ultrashort echo-time MRI appears well suited for pediatric patients requiring longitudinal imaging for clinical care or research studies. Clinical Trial registered with www.clinicaltrials.gov (NCT01832519). PMID:27551814

  4. Lung Ultrasonography: A Viable Alternative to Chest Radiography in Children with Suspected Pneumonia?

    PubMed

    Ambroggio, Lilliam; Sucharew, Heidi; Rattan, Mantosh S; O'Hara, Sara M; Babcock, Diane S; Clohessy, Caitlin; Steinhoff, Mark C; Macaluso, Maurizio; Shah, Samir S; Coley, Brian D

    2016-09-01

    To determine the interrater reliability (IRR) of lung ultrasonography (LUS) and chest radiography (CXR) and evaluate the accuracy of LUS compared with CXR for detecting pediatric pneumonia compared with chest computed tomography (CT) scan. This was a prospective cohort study of children aged 3 months to 18 years with a CXR and LUS performed between May 1, 2012, and January 31, 2014 with or without a clinical diagnosis of pneumonia. Four pediatric radiologists blinded to clinical information reported findings for the CXR and LUS images. IRR was estimated for 50 LUS and CXR images. The main outcome was the finding from CT ordered clinically or the probability of the CT finding for patients clinically requiring CT. Two radiologists reviewed CT scans to determine an overall finding. Latent class analysis was used to evaluate the sensitivity and specificity for findings (eg, consolidation) for LUS and CXR compared with CT. Of the 132 patients in the cohort, 36 (27%) had CT performed for a clinical reason. Pneumonia was clinically documented in 47 patients (36%). The IRR for lung consolidation was 0.55 (95% CI, 0.40-0.70) for LUS and 0.36 (95% CI, 0.21-0.51) for CXR. The sensitivity for detecting consolidation, interstitial disease, and pleural effusion was statistically similar for LUS and CXR compared with CT; however, specificity was higher for CXR. The negative predictive value was similar for CXR and LUS. LUS has a sufficiently high IRR for detection of consolidation. Compared with CT, LUS and CXR have similar sensitivity, but CXR is more specific for findings indicating pneumonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings. PMID:26147919

  6. A proposal of microtomography evaluation for restoration interface gaps.

    PubMed

    Meleo, Deborah; Manzon, Licia; Pecci, Raffaella; Zuppante, Francesca; Bedini, Rossella

    2012-01-01

    Nowadays, several adhesive systems are used in dental restoration and they are evaluated by clinical research. In vitro evaluations are often made by means of traditional observation techniques (for example scanning electron microscope (SEM), while 3D cone-beam microtomography technique (3D micro-CT), that can be able to generate 3D sample images without any sample treatment during acquisition data, is going to be used a lot in the next few years. In dental cavity restored with composite, it is possible to predict the presence of gaps due to polymerization shrinkage; that is the reason this work purpose is to reveal by 3D images and measure by micro-CT analysis the voids generated applying the most used adhesive systems at the moment. By means of microtomographic analysis is proposed an aid to overcome bidimensional SEM investigation limits like random observation of sample surface, sample sectioning (to see inside it with the relative possible structural alterations induced on the same sample) and the gold sputtering treatment. For this experimental work, human crown teeth have been selected, all restored with the same composite material, using five adhesive systems. After about 48 hours each tooth has been acquired by means of Skyscan 1072 micro-CT instrument and then processed by 3D reconstruction and micro-CT analyser software. Three adhesive systems have showed 3D micro-CT images with not as much voids as expected, with a very little extent. This kind of micro-CT in vitro evaluation proposal suggests a method to observe and quantify the voids generated after polymerization shrinkage during tooth restoration.

  7. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, E; Nelson, J; Hangiandreou, N

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidencebased medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. CT 2.0: CT has been undergoing a dramatic transition in themore » last few decades. While the changes in the technology merits discussions of their own, an important question is how clinical medical physicists are expected to effectively engage with the new realities of CT technology and practice. Consistent with the upcoming paradigm of Medical Physics 2.0, this CT presentation aims to provide definitions and demonstration of the components of the new clinical medical physics practice pertaining CT. The topics covered include physics metrics and analytics that aim to provide higher order clinicallyrelevant quantification of system performance as pertains to new (and not so new) technologies. That will include the new radiation and dose metrics (SSDE, organ dose, risk indices), image quality metrology (MTF/NPS/d’), task-based phantoms, and the effect of patient size. That will follow with a discussion of the testing implication of new CT hardware (detectors, tubes), acquisition methods (innovative helical geometries, AEC, wide beam CT, dual energy, inverse geometry, application specialties), and image processing and analysis (iterative reconstructions, quantitative CT, advanced renditions). The presentation will conclude with a discussion of clinical and operational aspects of Medical Physics 2.0 including training and communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications. Identify approaches for implementing comprehensive medical physics services in future imaging practices.« less

  8. SU-F-J-156: The Feasibility of MR-Only IMRT Planning for Prostate Anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaitheeswaran, R; Sivaramakrishnan, KR; Kumar, Prashant

    Purpose: For prostate anatomy, previous investigations have shown that simulated CT (sCT) generated from MR images can be used for accurate dose computation. In this study, we demonstrate the feasibility of MR-only IMRT planning for prostate case. Methods: Regular CT (rCT) and MR images of the same patient were acquired for prostate anatomy. Regions-of-interest (ROIs) i.e. target and risk structures are delineated on the rCT. A simulated CT (sCT) is generated from the MR image using the method described by Schadewaldt N et al. Their work establishes the clinical acceptability of dose calculation results on the sCT when compared tomore » rCT. rCT and sCT are rigidly registered to ensure proper alignment between the two images. rCT and sCT are overlaid on each other and slice-wise visual inspection confirms excellent agreement between the two images. ROIs on the rCT are copied over to sCT. Philips AutoPlanning solution is used for generating treatment plans. The same treatment technique protocol (plan parameters and clinical goals) is used to generate AutoPlan-rCT and AutoPlan-sCT respectively for rCT and and sCT. DVH comparison on ROIs and slice-wise evaluation of dose is performed between AutoPlan-rCT and AutoPlan-sCT. Delivery parameters i.e. beam and corresponding segments from the AutoPlan-sCT are copied over to rCT and dose is computed to get AutoPlan-sCT-on-rCT. Results: Plan evaluation is done based on Dose Volume Histogram (DVH) of ROIs and manual slice-wise inspection of dose distribution. Both AutoPlan-rCT and AutoPlan-sCT provide a clinically acceptable plan. Also, AutoPlan-sCT-on-rCT shows excellent agreement with AutoPlan-sCT. Conclusion: The study demonstrates that it is feasible to do IMRT planning on the simulated CT image obtained from MR image for prostate anatomy. The research is supported by Philips India Ltd.« less

  9. A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance.

    PubMed

    Hua, Chiaho; Yao, Weiguang; Kidani, Takao; Tomida, Kazuo; Ozawa, Saori; Nishimura, Takenori; Fujisawa, Tatsuya; Shinagawa, Ryousuke; Merchant, Thomas E

    2017-11-01

    A ceiling-mounted robotic C-arm cone beam CT (CBCT) system was developed for use with a 190° proton gantry system and a 6-degree-of-freedom robotic patient positioner. We report on the mechanical design, system accuracy, image quality, image guidance accuracy, imaging dose, workflow, safety and collision-avoidance. The robotic CBCT system couples a rotating C-ring to the C-arm concentrically with a kV X-ray tube and a flat-panel imager mounted to the C-ring. CBCT images are acquired with flex correction and maximally 360° rotation for a 53 cm field of view. The system was designed for clinical use with three imaging locations. Anthropomorphic phantoms were imaged to evaluate the image guidance accuracy. The position accuracy and repeatability of the robotic C-arm was high (<0.5 mm), as measured with a high-accuracy laser tracker. The isocentric accuracy of the C-ring rotation was within 0.7 mm. The coincidence of CBCT imaging and radiation isocentre was better than 1 mm. The average image guidance accuracy was within 1 mm and 1° for the anthropomorphic phantoms tested. Daily volumetric imaging for proton patient positioning was specified for routine clinical practice. Our novel gantry-independent robotic CBCT system provides high-accuracy volumetric image guidance for proton therapy. Advances in knowledge: Ceiling-mounted robotic CBCT provides a viable option than CT on-rails for partial gantry and fixed-beam proton systems with the added advantage of acquiring images at the treatment isocentre.

  10. [Computer tomography in the diagnosis of persistent hyperplastic primary vitreous body].

    PubMed

    Prokes, B; Rehůrek, J

    1989-10-01

    The authors described and evaluated clinical and CT pictures of five children with persistence of hyperplastic primary vitreous body originating due to regression of embryonal hyaloid vascular system. It becomes clinically manifest especially in leucocoria, reduced globe of the eye, prolonged ciliary processi and the formation of fibrovascular changes behind the lens. CT picture is characterized by a) increased density of vitreous body, b) dense stripes going in retrolental direction and in the course of the Cloquet canal, c) microphthalmus, d) absence of calcifications and e) facultative changes on the lens and anterior chamber. These signs represent an important criterium for differentiating persistence of hyperplastic primary vitreous body from retinoblastoma.

  11. WE-G-209-02: CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofler, J.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  12. Circulating tumor DNA evaluated by Next-Generation Sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer.

    PubMed

    Giroux Leprieur, Etienne; Herbretau, Guillaume; Dumenil, Coraline; Julie, Catherine; Giraud, Violaine; Labrune, Sylvie; Dumoulin, Jennifer; Tisserand, Julie; Emile, Jean-François; Blons, Hélène; Chinet, Thierry

    2018-01-01

    Nivolumab is an anti-PD1 antibody, given in second-line or later treatment in advanced non-small cell lung cancer (NSCLC). The objective of this study was to describe the predictive value of circulating tumor DNA (ctDNA) on the efficacy of nivolumab in advanced NSCLC. We prospectively included all consecutive patients with advanced NSCLC treated with nivolumab in our Department between June 2015 and October 2016. Plasma samples were obtained before the first injection of nivolumab and at the first tumor evaluation with nivolumab. ctDNA was analyzed by Next-Generation Sequencing (NGS), and the predominant somatic mutation was followed for each patient and correlated with tumor response, clinical benefit (administration of nivolumab for more than 6 months), and progression-free survival (PFS). Of 23 patients, 15 had evaluable NGS results at both times of analysis. ctDNA concentration at the first tumor evaluation and ctDNA change correlated with tumor response, clinical benefit and PFS. ROC curve analyses showed good diagnostic performances for tumor response and clinical benefit, both for ctDNA concentration at the first tumor evaluation (tumor response: positive predictive value (PPV) at 100.0% and negative predictive value (NPV) at 71.0%; clinical benefit: PPV at 83.3% and NPV 77.8%) and the ctDNA change (tumor response: PPV 100.0% and NPV 62.5%; clinical benefit: PPV 100.0% and NPV 80.0%). Patients without ctDNA concentration increase >9% at 2 months had a long-term benefit of nivolumab. In conclusion, NGS analysis of ctDNA allows the early detection of tumor response and long-term clinical benefit with nivolumab in NSCLC.

  13. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling

    2016-05-01

    Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less

  14. Detailed description of the Mayo/IBM PACS

    NASA Astrophysics Data System (ADS)

    Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Salutz, James R.; Morin, Richard L.

    1991-07-01

    The Mayo Clinic and IBM/Rochester have jointly developed a picture archiving system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. The system was developed to replace the imaging system's vendor-supplied magnetic tape archiving capability. The system consists of seven MR imagers and nine CT scanners, each interfaced to the PACS via IBM Personal System/2(tm) (PS/2) computers, which act as gateways from the imaging modality to the PACS network. The PAC system operates on the token-ring component of Mayo's city-wide local area network. Also on the PACS network are four optical storage subsystems used for image archival, three optical subsystems used for image retrieval, an IBM Application System/400(tm) (AS/400) computer used for database management and multiple PS/2-based image display systems and their image servers.

  15. Community-Acquired Pneumonia Visualized on CT Scans but Not Chest Radiographs: Pathogens, Severity, and Clinical Outcomes.

    PubMed

    Upchurch, Cameron P; Grijalva, Carlos G; Wunderink, Richard G; Williams, Derek J; Waterer, Grant W; Anderson, Evan J; Zhu, Yuwei; Hart, Eric M; Carroll, Frank; Bramley, Anna M; Jain, Seema; Edwards, Kathryn M; Self, Wesley H

    2018-03-01

    The clinical significance of pneumonia visualized on CT scan in the setting of a normal chest radiograph is uncertain. In a multicenter prospective surveillance study of adults hospitalized with community-acquired pneumonia (CAP), we compared the presenting clinical features, pathogens present, and outcomes of patients with pneumonia visualized on a CT scan but not on a concurrent chest radiograph (CT-only pneumonia) and those with pneumonia visualized on a chest radiograph. All patients underwent chest radiography; the decision to obtain CT imaging was determined by the treating clinicians. Chest radiographs and CT images were interpreted by study-dedicated thoracic radiologists blinded to the clinical data. The study population included 2,251 adults with CAP; 2,185 patients (97%) had pneumonia visualized on chest radiography, whereas 66 patients (3%) had pneumonia visualized on CT scan but not on concurrent chest radiography. Overall, these patients with CT-only pneumonia had a clinical profile similar to those with pneumonia visualized on chest radiography, including comorbidities, vital signs, hospital length of stay, prevalence of viral (30% vs 26%) and bacterial (12% vs 14%) pathogens, ICU admission (23% vs 21%), use of mechanical ventilation (6% vs 5%), septic shock (5% vs 4%), and inhospital mortality (0 vs 2%). Adults hospitalized with CAP who had radiological evidence of pneumonia on CT scan but not on concurrent chest radiograph had pathogens, disease severity, and outcomes similar to patients who had signs of pneumonia on chest radiography. These findings support using the same management principles for patients with CT-only pneumonia and those with pneumonia seen on chest radiography. Copyright © 2017 American College of Chest Physicians. All rights reserved.

  16. Brain Imaging Using Mobile CT: Current Status and Future Prospects.

    PubMed

    John, Seby; Stock, Sarah; Cerejo, Russell; Uchino, Ken; Winners, Stacey; Russman, Andrew; Masaryk, Thomas; Rasmussen, Peter; Hussain, Muhammad S

    2016-01-01

    Computed tomography (CT) is an invaluable tool in the diagnosis of many clinical conditions. Several advancements in biomedical engineering have achieved increase in speed, improvements in low-contrast detectability and image quality, and lower radiation. Portable or mobile CT constituted one such important advancement. It is especially useful in evaluating critically ill, intensive care unit patients by scanning them at bedside. A paradigm shift in utilization of mobile CT was its installation in ambulances for the management of acute stroke. Given the time sensitive nature of acute ischemic stroke, Mobile stroke units (MSU) were developed in Germany consisting of an ambulance equipped with a CT scanner, point of care laboratory system, along with teleradiological support. In a radical reconfiguration of stroke care, the MSU would bring the CT scanner to the stroke patient, without waiting for the patient at the emergency room. Two separate MSU projects in Saarland and Berlin demonstrated the safety and feasibility of this concept for prehospital stroke care, showing increased rate of intravenous thrombolysis and significant reduction in time to treatment compared to conventional care. MSU also improved the triage of patients to appropriate and specialized hospitals. Although multiple issues remain yet unanswered with the MSU concept including clinical outcome and cost-effectiveness, the MSU venture is visionary and enables delivery of life-saving and enhancing treatment for ischemic and hemorrhagic stroke. In this review, we discuss the development of mobile CT and its applications, with specific focus on its use in MSUs along with our institution's MSU experience. Copyright © 2015 by the American Society of Neuroimaging.

  17. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study.

    PubMed

    De Bondt, Timo; Mulkens, Tom; Zanca, Federica; Pyfferoen, Lotte; Casselman, Jan W; Parizel, Paul M

    2017-02-01

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value < 0.001) dose differences among hospitals were observed. The hospital with lowest dose levels showed smallest dose variability and used age-stratified protocols for standardizing paediatric head exams. Erroneous selection of adult protocols for children still occurred, mostly in the oldest age-group. Even though all hospitals complied with national and international DRLs, dose tracking and benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. • Significant differences were observed in the delivered dose between age-groups and hospitals. • Using age-adapted scanning protocols gives a nearly linear dose increase. • Sharing dose-data can be a trigger for hospitals to reduce dose levels.

  18. Clinicians’ Perspectives on Cognitive Therapy in Community Mental Health Settings: Implications for Training and Implementation

    PubMed Central

    Gutiérrez-Colina, Ana; Toder, Katherine; Esposito, Gregory; Barg, Frances; Castro, Frank; Beck, Aaron T.; Crits-Christoph, Paul

    2012-01-01

    Policymakers are investing significant resources in large-scale training and implementation programs for evidence-based psychological treatments (EBPTs) in public mental health systems. However, relatively little research has been conducted to understand factors that may influence the success of efforts to implement EBPTs for adult consumers of mental health services. In a formative investigation during the development of a program to implement cognitive therapy (CT) in a community mental health system, we surveyed and interviewed clinicians and clinical administrators to identify potential influences on CT implementation within their agencies. Four primary themes were identified. Two related to attitudes towards CT: (1) ability to address client needs and issues that are perceived as most central to their presenting problems, and (2) reluctance to fully implement CT. Two themes were relevant to context: (1) agency-level barriers, specifically workload and productivity concerns and reactions to change, and (2) agency-level facilitators, specifically, treatment planning requirements and openness to training. These findings provide information that can be used to develop strategies to facilitate the implementation of CT interventions for clients being treated in public-sector settings. PMID:22426739

  19. WE-E-18C-01: Multi-Energy CT: Current Status and Recent Innovations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelc, N; McCollough, C; Yu, L

    2014-06-15

    Conventional computed tomography (CT) uses a single polychromatic x-ray spectrum and energy integrating detectors, and produces images whose contrast depends on the effective attenuation coefficient of the broad spectrum beam. This can introduce errors from beam hardening and does not produce the optimal contrast-to-noise ratio. In addition, multiple materials can have the same effective attenuation coefficient, causing different materials to be indistinguishable in conventional CT images. If transmission measurements at two or more energies are obtained, even with polychromatic beams, more specific information about the object can be obtained. If the object does not contain materials with k-edges in themore » spectrum, the x-ray attenuation can be well-approximated by a linear combination of two processes (photoelectric absorption and Compton scattering) or, equivalently, two basis materials. For such cases, two spectral measurements suffice, although additional measurements can provide higher precision. If K-edge materials are present, additional spectral measurements can allow these materials to be isolated. Current commercial implementations use varied approaches, including two sources operating a different kVp, one source whose kVp is rapidly switched in a single scan, and a dual layer detector that can provide spectral information in every reading. Processing of the spectral information can be performed in the raw data domain or in the image domain. The process of calculating the amount of the two basis functions implicitly corrects for beam hardening and therefore can lead to improvements in quantitative accuracy. Information can be extracted to provide material specific information beyond that of conventional CT. This additional information has been shown to be important in several clinical applications, and can also lead to more efficient clinical protocols. Recent innovations in x-ray sources, detectors, and systems have made multi-energy CT much more practical and improved its performance. In addition, this is a very active area of research and further improvements are expected through further technological improvements. Learning Objectives: Basic principles of multi-energy CT Current implementations of mutli-energy CT Data and image analysis methods in multi-energy CT Current clinical applications of dual energy CT5. recent innovations and anticipated advances in multi-energy CT.« less

  20. Demand for CT scans increases during transition from paediatric to adult care: an observational study from 2009 to 2015.

    PubMed

    Thurley, Pete; Crookdake, Jonathan; Norwood, Mark; Sturrock, Nigel; Fogarty, Andrew W

    2018-02-01

    Avoiding unnecessary radiation exposure is a clinical priority in children and young adults. We aimed to explore demand for CT scans in a busy general hospital with particular interest in the period of transition from paediatric to adult medical care. We used an observational epidemiological study based in a teaching hospital. Data were obtained on numbers and rates of CT scans from 2009 to 2015. The main outcome was age-stratified rates of receiving a CT scan. There were a total of 262,221 CT scans. There was a large step change in the rate of CT scans over the period of transition from paediatric to adult medical care. Individuals aged 10-15 years experienced 6.7 CT scans per 1000 clinical episodes, while those aged 19-24 years experienced 19.8 CT scans per 1000 clinical episodes (p < 0.001). This difference remained significant for all sensitivity analyses. There is almost a threefold increase in rates of CT scans in the two populations before and after the period of transition from paediatric to adult medical care. While we were unable to adjust for case mix or quantify radiation exposure, paediatricians' diagnostic strategies to minimize radiation exposure may have clinical relevance for adult physicians, and hence enable reductions in ionizing radiation to patients. Advances in knowledge: A large increase in rates of CT scans occurs during adolescence, and considering paediatricians' strategies to minimize radiation exposure may enable reductions to all patients.

  1. Journal Club: Head CT scans in the emergency department for syncope and dizziness.

    PubMed

    Mitsunaga, Myles M; Yoon, Hyo-Chun

    2015-01-01

    The purpose of this study was to determine the yield of acutely abnormal findings on head CT scans in patients presenting to the emergency department with dizziness, near-syncope, or syncope and to determine the clinical factors that potentially predicted acutely abnormal head CT findings and hospital admission. We retrospectively reviewed the electronic medical records of all patients presenting to an HMO emergency department between July 1, 2012, and December 31, 2012, who underwent head CT for a primary complaint of dizziness, syncope, or near-syncope. The primary outcomes were head CT scans with acutely abnormal findings and hospital admission. Binary logistic regression was used to assess the association between clinical variables and acute head CT findings and between clinical variables and hospital admission. Of the 253 patients who presented with dizziness, 7.1% had head CT scans with acutely abnormal findings, and 18.6% were admitted. Of the 236 patients who presented with syncope or near-syncope, 6.4% had head CT scans with acutely abnormal findings, and 39.8% were admitted. The following three clinical factors were found to be significantly correlated with acutely abnormal head CT findings: a focal neurologic deficit (p = 0.003), age greater than 60 years (p = 0.011), and acute head trauma (p = 0.026). Our results suggest that most patients presenting with syncope or dizziness to the emergency department may not benefit from head CT unless they are older, have a focal neurologic deficit, or have a history of recent head trauma.

  2. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer.

    PubMed

    Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping

    2014-04-01

    18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a potential impact on tumor staging and treatment planning. Implementing matched PET/CT results reduced observer variation in delineating tumor volumes significantly with respect to CT only.

  3. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT).

    PubMed

    Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J

    2017-07-01

    Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.

  4. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol.

    PubMed

    Hofman, Michael S; Murphy, Declan G; Williams, Scott G; Nzenza, Tatenda; Herschtal, Alan; Lourenco, Richard De Abreu; Bailey, Dale L; Budd, Ray; Hicks, Rodney J; Francis, Roslyn J; Lawrentschuk, Nathan

    2018-05-03

    Accurate staging of patients with prostate cancer (PCa) is important for therapeutic decision-making. Relapse after surgery or radiotherapy of curative intent is not uncommon and, in part, represents a failure of staging with current diagnostic imaging techniques to detect disease spread. Prostate-specific membrane antigen (PSMA) positron-emission tomography (PET)/computed tomography (CT) is a new whole-body scanning technique that enables visualization of PCa with high contrast. The hypotheses of this study are that: (i) PSMA-PET/CT has improved diagnostic performance compared with conventional imaging; (ii) PSMA-PET/CT should be used as a first-line diagnostic test for staging; (iii) the improved diagnostic performance of PSMA-PET/CT will result in significant management impact; and (iv) there are economic benefits if PSMA-PET/CT is incorporated into the management algorithm. The proPSMA trial is a prospective, multicentre study in which patients with untreated high-risk PCa will be randomized to gallium-68-PSMA-11 PET/CT or conventional imaging, consisting of CT of the abdomen/pelvis and bone scintigraphy with single-photon emission CT/CT. Patients eligible for inclusion are those with newly diagnosed PCa with select high-risk features, defined as International Society of Urological Pathology grade group ≥3 (primary Gleason grade 4, or any Gleason grade 5), prostate-specific antigen level ≥20 ng/mL or clinical stage ≥T3. Patients with negative, equivocal or oligometastatic disease on first line-imaging will cross over to receive the other imaging arm. The primary objective is to compare the accuracy of PSMA-PET/CT with that of conventional imaging for detecting nodal or distant metastatic disease. Histopathological, imaging and clinical follow-up at 6 months will define the primary endpoint according to a predefined scoring system. Secondary objectives include comparing management impact, the number of equivocal studies, the incremental value of second-line imaging in patients who cross over, the cost of each imaging strategy, radiation exposure, inter-observer agreement and safety of PSMA-PET/CT. Longer-term follow-up will also assess the prognostic value of a negative PSMA-PET/CT. This trial will provide data to establish whether PSMA-PET/CT should replace conventional imaging in the primary staging of select high-risk localized PCa, or whether it should be used to provide incremental diagnostic information in selected cases. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  5. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, Ludovic, E-mail: ludohumberto@gmail.com; Hazrati Marangalou, Javad; Rietbergen, Bert van

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was usedmore » as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the cortical thickness and density estimation errors to increase with voxel size was observed and was more pronounced for thin cortices. Using clinical CT data for 19 of the 23 samples, mean errors of 0.18 ± 0.24 mm for the cortical thickness and 15 ± 106 mg/cm{sup 3} for the density were found. The case-control study showed that osteoporotic patients had a thinner cortex and a lower cortical density, with average differences of −0.8 mm and −58.6 mg/cm{sup 3} at the proximal femur in comparison with age-matched controls (p-value < 0.001). Conclusions: This method might be a promising approach for the quantification of cortical bone thickness and density using clinical routine imaging techniques. Future work will concentrate on investigating how this approach can improve the estimation of mechanical strength of bony structures, the prevention of fracture, and the management of osteoporosis.« less

  6. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Northern Illinois University

    2015-07-15

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less

  7. Cost-effectiveness of home visits in the outpatient treatment of patients with alcohol dependence.

    PubMed

    Moraes, Edilaine; Campos, Geraldo M; Figlie, Neliana B; Laranjeira, Ronaldo; Ferraz, Marcos B

    2010-01-01

    The purpose of this study was to compare the cost-effectiveness of conventional outpatient treatment for alcoholic patients (CT) with this same conventional treatment plus home visits (HV), a new proposal for intervention within the Brazilian outpatient treatment system. A cost-effectiveness evaluation alongside a 12-week randomized clinical trial was performed. We identified the resources utilized by each intervention, as well as the cost according to National Health System (SUS), Brazilian Medical Association (AMB) tables of fees, and others based on 2005 data. The incremental cost-effectiveness ratio (ICER) was estimated as the main outcome measure - abstinent cases at the end of treatment. There were 51.8% abstinent cases for HV and 43.1% for CT, a clinically relevant finding. Other outcome measures, such as quality of life, also showed significant improvements that favored HV. The baseline scenario presented an ICER of USD 1,852. Sensitivity analysis showed an ICER of USD 689 (scenario favoring HV) and USD 2,334 (scenario favoring CT). The HV treatment was found to be cost-effective according to the WHO Commission on Macroeconomics and Health. 2009 S. Karger AG, Basel.

  8. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001

  9. Systems for lung volume standardization during static and dynamic MDCT-based quantitative assessment of pulmonary structure and function.

    PubMed

    Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A

    2012-08-01

    Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  10. Performance of the Mayo-IBM PAC system

    NASA Astrophysics Data System (ADS)

    Persons, Kenneth R.; Reardon, Frank J.; Gehring, Dale G.; Hangiandreou, Nicholas J.

    1994-05-01

    The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archived system for use with Mayo's MRI and CT imaging modalities. This PACS is made up of over 50 computers that work cooperatively to provide archival, retrieval and image distribution services for Mayo's Department of Radiology. This paper will examine the performance characteristics of the system.

  11. Incremental Role of Mammography in the Evaluation of Gynecomastia in Men Who Have Undergone Chest CT.

    PubMed

    Sonnenblick, Emily B; Salvatore, Mary; Szabo, Janet; Lee, Karen A; Margolies, Laurie R

    2016-08-01

    The purpose of this study was to determine whether additional breast imaging is clinically valuable in the evaluation of patients with gynecomastia incidentally observed on CT of the chest. In a retrospective analysis, 62 men were identified who had a mammographic diagnosis of gynecomastia and had also undergone CT within 8 months (median, 2 months). We compared the imaging findings of both modalities and correlated them with the clinical outcome. Gynecomastia was statistically significantly larger on mammograms than on CT images; however, there was a high level of concordance in morphologic features and distribution of gynecomastia between mammography and CT. In only one case was gynecomastia evident on mammographic but not CT images, owing to cachexia. Two of the 62 men had ductal carcinoma, which was obscured by gynecomastia. Both of these patients had symptoms suggesting malignancy. The appearance of gynecomastia on CT scans and mammograms was highly correlated. Mammography performed within 8 months of CT is unlikely to reveal cancer unless there is a suspicious clinical finding or a breast mass eccentric to the nipple. Men with clinical symptoms of gynecomastia do not need additional imaging with mammography to confirm the diagnosis if they have undergone recent cross-sectional imaging.

  12. [Complications due to contrast agent administration: what has been confirmed in prevention?].

    PubMed

    Schönenberger, E; Mühler, M; Dewey, M

    2010-12-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) have been evaluated by internists to be the most important medical innovations. Often, intravenous contrast agent administration is required for answering the clinical questions to CT and MRI. In this review we present an overview of the most common and most important aspects that need to be considered prior to intravenous contrast agent administration. We discuss aspects of renal impairment (contrast-induced nephropathy, nephrogenic systemic fibrosis), allergy-like reactions, hyperthyroidism, and pregnancy and breast-feeding.

  13. PET Index of Bone Glucose Metabolism (PIBGM) Classification of PET/CT Data for Fever of Unknown Origin Diagnosis

    PubMed Central

    Yang, Jian; Liu, Xinxin; Ai, Danni; Fan, Jingfan; Zheng, Youjing; Li, Fang; Huo, Li; Wang, Yongtian

    2015-01-01

    Objectives Fever of unknown origin (FUO) remains a challenge in clinical practice. Fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is helpful in diagnosing the etiology of FUO. This paper aims to develop a completely automatic classification method based on PET/CT data for the computer-assisted diagnosis of FUO. Methods We retrospectively analyzed the FDG PET/CT scan of 175 FUO patients, 79 males and 96 females. The final diagnosis of all FUO patients was achieved through pathology or clinical evaluation, including 108 normal patients and 67 FUO patients. CT anatomic information was used to acquire bone functional information from PET images. The skeletal system of FUO patients was classified by analyzing the standardized uptake value (SUV) and the PET index of bone glucose metabolism (PIBGM). The SUV distributions in the bone marrow and the bone cortex were also studied in detail. Results The SUV and PIBGM of the bone marrow only slightly differed between the FUO patients and normal people, whereas the SUV of whole bone structures and the PIBGM of the bone cortex significantly differed between the normal people and FUO patients. The method detected 43 patients from 67 FUO patients, with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 64.18%, 95%, 93.48%, 72.73%, and 83.33%, respectively. Conclusion The experimental results demonstrate that the study can achieve automatic classification of FUO patients by the proposed novel biomarker of PIBGM, which has the potential to be utilized in clinical practice. PMID:26076139

  14. Adrenocortical tumours: high CT attenuation value correlates with eosinophilia but does not discriminate lipid-poor adenomas from malignancy.

    PubMed

    Pennanen, Mirkka; Raade, Merja; Louhimo, Johanna; Sane, Timo; Heiskanen, Ilkka; Arola, Johanna; Haglund, Caj

    2013-12-01

    Characterisation of adrenal tumours is an important clinical problem. Unenhanced CT is the primary imaging modality to assess the nature of these lesions. To study the correlation between unenhanced CT attenuation value and the specific histopathology, as well as the proportion of lipid-poor eosinophilic cells in adrenocortical tumours. We studied retrospectively primary adrenocortical tumours that had been operated on at Helsinki University Central Hospital between 2002 and 2008. Of 171 tumours, 79 had appropriate preoperative CT scans and were included in the study. We evaluated the unenhanced CT attenuation values (Hounsfield units, HU) of these tumours and determined their histopathological diagnosis by the Weiss scoring system. We also assessed the proportion of lipid-poor eosinophilic cells for each tumour. Unenhanced CT attenuation value (HU) in adrenocortical tumours correlated well with the proportion of lipid-poor eosinophilic cells (rs=0.750, p<0.001). HU and Weiss score also had a correlation (rs=0.582, p<0.001). Unenhanced CT attenuation value correlates well with the percentage of lipid-poor eosinophilic cells, but unenhanced CT attenuation value fails to differentiate between benign lipid-poor adenomas and malignant adrenocortical tumours. All adrenocortical tumours with unenhanced CT attenuation value ≤10 HU are histologically benign lipid-rich tumours.

  15. [Dynamic observation of clinical course in patients with subacute 1, 2-dichloroethane poisoning].

    PubMed

    Liu, Weiwei; Chen, Yuquan; Pan, Jing; Yang, Zhiqian; Liu, Yimin

    2015-03-01

    To observe the clinical characteristics and regular patterns of subacute 1, 2-dichloroethane poisoning patients for providing evidences to it's diagnosis, treatment and prognosis. 51 cases of subacute 1, 2-dichloroethane poisoning analyzed. They were divided into 3 groups according to their main clinical manifestation: group A mainly with intracranial hypertension (n = 25), group B with limbs tremor (n = 18), group C with mental and behavior disorder (n = 8). All cases' clinical symptoms, cranial computer tomography, cerebrospinal pressure (Group A) were observed, the durations of the onset, deterioration, improvement, recovery and whole course of the disease were compared between groups and in each group. In all of 51 cases, only the differences between the deterioration duration of cranial CT and symptom was significantly (t = 2.555, P<0.05), which indicate the deterioration of symptom was earlier than radiological change. The symptom deterioration of group C was the fastest than group A and group B (P<0.00). As to the change of symptom duration, group B's improvement, recovery and whole course was the longest comparing with group A and group C (P<0.05). As to the change of cranial CT duration, group B's recovery duration was the shortest and group A's recovery duration was the longest (P<0.01); group B's whole course was also the shortest and group A's whole course was the longest (P<0.05). The clinical course of symptoms, cranial computer tomography, cerebrospinal pressure (Group A) was compared in each group, in group A, the duration of improvement and whole course of the cranial CT and cerebrospinal pressure change was longer than that of the symptom change (P<0.01), this indicated that group A has longer asymptomatic intracranial hypertension and their cranial radiography recover slowly. In group B, their symptoms (3.94 ± 4.31 days) deteriorated is earlier than cranial CT changes (P<0.05), the recovery (92.39 ± 55.04 days) and whole course of symptom was longer than cranial CT change (all P<0.01). In group C, symptom deterioration was earlier than CT deterioration (P< 0.05). The clinical characteristic of subacute 1, 2- dichloroethane poisoning is central nervous system damage, it differs according to the different stage of course, the regions and severity of pathology lesions.

  16. Association study of interleukin-4 polymorphisms with paranoid schizophrenia in the Polish population: a critical approach.

    PubMed

    Fila-Danilow, Anna; Kucia, Krzysztof; Kowalczyk, Malgorzata; Owczarek, Aleksander; Paul-Samojedny, Monika; Borkowska, Paulina; Suchanek, Renata; Kowalski, Jan

    2012-08-01

    Changes in immunological system are one of dysfunctions reported in schizophrenia. Some changes based on an imbalance between Th1 and Th2 cytokines results from cytokine gene polymorphisms. Interleukin-4 gene (IL4) is considered as a potential candidate gene in schizophrenia association studies. The aim of the current case-control study was to examine whether the -590C/T (rs2243250) and -33C/T (rs2070874) IL4 gene polymorphisms are implicated in paranoid schizophrenia development in the Polish population. Genotyping of polymorphisms was performed by using PCR-RFLP technique. The genotypes and alleles distribution of both SNPs were analysed in patients (n = 182) and healthy individuals constituted the control group (n = 215). The connection between some clinical variables and studied polymorphisms has been examined as well. We did not revealed any association between the -590C/T and -33C/T polymorphisms and paranoid schizophrenia. In case of both SNPs the homozygous TT genotype was extremely rare. Both polymorphic sites of the IL4 gene were found to be in a very strong linkage disequilibrium. However we did not identify a haplotype predispose to paranoid schizophrenia. No associations were also observed between the clinical course and psychopathology of the disease and the genotypes of both analysed polymorphisms. Our results suggest that the polymorphisms -590C/T in IL4 gene promoter region and -33C/T in the 5'-UTR are not involved in the pathophysiology of paranoid schizophrenia in Polish residents.

  17. SU-E-J-154: Image Quality Assessment of Contrast-Enhanced 4D-CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Xue, M; Patel, K

    2015-06-15

    Purpose: This study presents quantitative and qualitative assessment of the image qualities in contrast-enhanced (CE) 3D-CT, 4D-CT and CE 4D-CT to identify feasibility for replacing the clinical standard simulation with a single CE 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. Methods: Ten PDA patients were enrolled and underwent three CT scans: a clinical standard pair of CE 3D-CT immediately followed by a 4D-CT, and a CE 4D-CT one week later. Physicians qualitatively evaluated the general image quality and regional vessel definitions and gave a score from 1 to 5. Next, physicians delineated the contours of the tumor (T) andmore » the normal pancreatic parenchyma (P) on the three CTs (CE 3D-CT, 50% phase for 4D-CT and CE 4D-CT), then high density areas were automatically removed by thresholding at 500 HU and morphological operations. The pancreatic tumor contrast-to-noise ratio (CNR), signal-tonoise ratio (SNR) and conspicuity (C, absolute difference of mean enhancement levels in P and T) were computed to quantitatively assess image quality. The Wilcoxon rank sum test was used to compare these quantities. Results: In qualitative evaluations, CE 3D-CT and CE 4D-CT scored equivalently (4.4±0.4 and 4.3±0.4) and both were significantly better than 4D-CT (3.1±0.6). In quantitative evaluations, the C values were higher in CE 4D-CT (28±19 HU, p=0.19 and 0.17) than the clinical standard pair of CE 3D-CT and 4D-CT (17±12 and 16±17 HU, p=0.65). In CE 3D-CT and CE 4D-CT, mean CNR (1.8±1.4 and 1.8±1.7, p=0.94) and mean SNR (5.8±2.6 and 5.5±3.2, p=0.71) both were higher than 4D-CT (CNR: 1.1±1.3, p<0.3; SNR: 3.3±2.1, p<0.1). The absolute enhancement levels for T and P were higher in CE 4D-CT (87, 82 HU) than in CE 3D-CT (60, 56) and 4DCT (53, 70). Conclusions: The individually optimized CE 4D-CT is feasible and achieved comparable image qualities to the clinical standard simulation. This study was supported in part by Philips Healthcare.« less

  18. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  19. Development of a SNOMED CT based national medication decision support system.

    PubMed

    Greibe, Kell

    2013-01-01

    Physicians often lack the time to familiarize themselves with the details of particular allergies or other drug restrictions. Clinical Decision Support (CDS), based on a structured terminology as SNOMED CT (SCT), can help physicians get an overview, by automatically alerting allergy, interactions and other important information. The centralized CDS platform based on SCT, controls Allergy, Interactions, Risk Situation Drugs and Max Dose restrictions by the help of databases developed for these specific purposes. The CDS will respond to automatic web service requests from the hospital or GP electronic medication system (EMS) during prescription, and return alerts and information. The CDS also contains a Physicians Preference Database where the physicians individually can set which kind of alerts they want to see. The result is clinically useful information physicians can use as a base for a more effective and safer treatment, without developing alert fatigue.

  20. Low-Dose CT for Evaluation of Suspected Urolithiasis: Diagnostic Yield for Assessment of Alternative Diagnoses.

    PubMed

    Weinrich, Julius Matthias; Bannas, Peter; Regier, Marc; Keller, Sarah; Kluth, Luis; Adam, Gerhard; Henes, Frank Oliver

    2018-03-01

    The purpose of this study is to assess the diagnostic yield of low-dose (LD) CT for alternative diagnoses in patients with suspected urolithiasis. In this retrospective study, we included 776 consecutive patients who underwent unenhanced abdominal CT for evaluation of suspected urolithiasis. All examinations were performed with an LD CT protocol; images were reconstructed using iterative reconstruction. The leading LD CT diagnosis was recorded for each patient and compared with the final clinical diagnosis, which served as the reference standard. The mean (± SD) effective dose of CT was 1.9 ± 0.6 mSv. The frequency of urolithiasis was 82.5% (640/776). LD CT reached a sensitivity of 94.1% (602/640), a specificity of 100.0% (136/136), and an accuracy of 95.1% (738/776) for the detection of urolithiasis. In 93 of 136 patients (68.4%) without urolithiasis, alternative diagnoses were established as the final clinical diagnoses. Alternative diagnoses were most commonly located in the genitourinary (n = 53) and gastrointestinal (n = 18) tracts. LD CT correctly provided alternative diagnoses for 57 patients (61.3%) and was false-negative for five patients (5.4%). The most common clinical alternative diagnoses were urinary tract infections (n = 22). Seven diagnoses missed at LD CT were located outside the FOV. For 43 of all 776 patients (5.5%), neither LD CT nor clinical workup could establish a final diagnosis. The sensitivity, specificity, and accuracy of LD CT for the detection of alternative diagnoses were 91.9% (57/62), 95.6% (43/45), and 93.5% (100/107), respectively. LD CT enables the diagnosis of most alternative diagnoses in the setting of suspected urolithiasis. The most frequent alternative diagnoses missed by LD CT are urinary tract infections or diagnoses located outside the FOV of the abdominopelvic CT scan.

  1. Xenon-enhanced CT using subtraction CT: Basic and preliminary clinical studies for comparison of its efficacy with that of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and pulmonary functional loss in smokers.

    PubMed

    Ohno, Yoshiharu; Yoshikawa, Takeshi; Takenaka, Daisuke; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Sugimura, Kazuro

    2017-01-01

    To prospectively and directly compare the capability for assessments of regional ventilation and pulmonary functional loss in smokers of xenon-ventilation CT obtained with the dual-energy CT (DE-CT) and subtraction CT (Sub-CT) MATERIALS AND METHODS: Twenty-three consecutive smokers (15 men and 8 women, mean age: 69.7±8.7years) underwent prospective unenhanced and xenon-enhanced CTs, the latter by Sub-CT and DE-CT methods, ventilation SPECT and pulmonary function tests. Sub-CT was generated from unenhanced and xenon-enhanced CT, and all co-registered SPECT/CT data were produced from SPECT and unenhanced CT data. For each method, regional ventilation was assessed by using a 11-point scoring system on a per-lobe basis. To determine the functional lung volume by each method, it was also calculated for individual sublets with a previously reported method. To determine inter-observer agreement for each method, ventilation defect assessment was evaluated by using the χ2 test with weighted kappa statistics. For evaluation of the efficacy of each method for pulmonary functional loss assessment, functional lung volume was correlated with%FEV 1 . Each inter-observer agreement was rated as substantial (Sub-CT: κ=0.69, p<0.0001; DE-CT: κ=0.64, p<0.0001; SPECT/CT: κ=0.64, p<0.0001). Functional lung volume for each method showed significant to good correlation with%FEV 1 (Sub-CT: r=0.72, p=0.0001; DE-CT: r=0.74, p<0.0001; SPECT/CT: r=0.66, p=0.0006). Xenon-enhanced CT obtained by Sub-CT can be considered at least as efficacious as that obtained by DE-CT and SPECT/CT for assessment of ventilation abnormality and pulmonary functional loss in smokers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding.

    PubMed

    Ciarmatori, Alberto; Nocetti, L; Mistretta, G; Zambelli, G; Costi, T

    2016-06-01

    The eye lens is considered to be among the most radiosensitive human tissues. Brain CT scans may unnecessarily expose it to radiation even if the area of clinical interest is far from the eyes. The aim of this study is to implement a bismuth eye lens shielding system for Head-CT acquisitions in these cases. The study is focused on the assessment of the dosimetric characteristics of the shielding system as well as on its effect on image quality. The shielding system was tested in two set-ups which differ for distance ("contact" and "4 cm" Set up respectively). Scans were performed on a CTDI phantom and an anthropomorphic phantom. A reference set up without shielding system was acquired to establish a baseline. Image quality was assessed by signal (not HU converted), noise and contrast-to-noise ratio (CNR) evaluation. The overall dose reduction was evaluated by measuring the CTDIvol while the eye lens dose reduction was assessed by placing thermoluminescent dosimeters (TLDs) on an anthropomorphic phantom. The image quality analysis exhibits the presence of an artefact that mildly increases the CT number up to 3 cm below the shielding system. Below the artefact, the difference of the Signal and the CNR are negligible between the three different set-ups. Regarding the CTDI, the analysis demonstrates a decrease by almost 12 % (in the "contact" set-up) and 9 % (in the "4 cm" set-up). TLD measurements exhibit an eye lens dose reduction by 28.5 ± 5 and 21.1 ± 5 % respectively at the "contact" and the "4 cm" distance. No relevant artefact was found and image quality was not affected by the shielding system. Significant dose reductions were measured. These features make the shielding set-up useful for clinical implementation in both studied positions.

  3. A variable resolution x-ray detector for computed tomography: II. Imaging theory and performance.

    PubMed

    DiBianca, F A; Zou, P; Jordan, L M; Laughter, J S; Zeman, H D; Sebes, J

    2000-08-01

    A computed tomography (CT) imaging technique called variable resolution x-ray (VRX) detection provides variable image resolution ranging from that of clinical body scanning (1 cy/mm) to that of microscopy (100 cy/mm). In this paper, an experimental VRX CT scanner based on a rotating subject table and an angulated storage phosphor screen detector is described and tested. The measured projection resolution of the scanner is > or = 20 lp/mm. Using this scanner, 4.8-s CT scans are made of specimens of human extremities and of in vivo hamsters. In addition, the system's projected spatial resolution is calculated to exceed 100 cy/mm for a future on-line CT scanner incorporating smaller focal spots (0.1 mm) than those currently used and a 1008-channel VRX detector with 0.6-mm cell spacing.

  4. F-18 FDG PET/CT findings of a case of sacral nerve root neurolymphomatosis that occurred during chemotherapy.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Matsunaga, Naofumi; Yujiri, Toshiaki; Nakazora, Tatsuki; Ariyoshi, Kouichi

    2011-01-01

    Neurolymphomatosis (NL) is a rare, unique subtype of lymphomatous infiltration of peripheral nerves. Clinical/radiologic diagnosis of NL is challenging. We report F-18 FDG PET/CT findings of a case of breast diffuse large B-cell lymphoma, in which NL developed regardless of regression of systemic lesions during induction chemotherapy. FDG PET/CT showed characteristic findings of well-demarcated, linear abnormal FDG uptake along a sacral vertebral foramen, leading to diagnosis of NL, with the finding of thickened nerve roots on magnetic resonance imaging. Altered chemotherapeutic regimen resulted in disappearance of these abnormal FDG uptake, with recovery of neurologic symptoms. Peripheral nerve NL may occur during chemotherapy, and FDG PET/CT can be a useful imaging modality in diagnosis and monitoring of therapeutic response of this disease.

  5. Patient participation in cancer clinical trials: A pilot test of lay navigation.

    PubMed

    Cartmell, Kathleen B; Bonilha, Heather S; Matson, Terri; Bryant, Debbie C; Zapka, Jane G; Bentz, Tricia A; Ford, Marvella E; Hughes-Halbert, Chanita; Simpson, Kit N; Alberg, Anthony J

    2016-08-15

    Clinical trials (CT) represent an important treatment option for cancer patients. Unfortunately, patients face challenges to enrolling in CTs, such as logistical barriers, poor CT understanding and complex clinical regimens. Patient navigation is a strategy that may help to improve the delivery of CT education and support services. We examined the feasibility and initial effect of one navigation strategy, use of lay navigators. A lay CT navigation intervention was evaluated in a prospective cohort study among 40 lung and esophageal cancer patients. The intervention was delivered by a trained lay navigator who viewed a 17-minute CT educational video with each patient, assessed and answered their questions about CT participation and addressed reported barriers to care and trial participation. During this 12-month pilot project, 85% (95% CI: 72%-93%) of patients eligible for a therapeutic CT consented to participate in the CT navigation intervention. Among navigated patients, CT understanding improved between pre- and post-test (means 3.54 and 4.40, respectively; p-value 0.004), and 95% (95% CI: 82%-98%) of navigated patients consented to participate in a CT. Navigated patients reported being satisfied with patient navigation services and CT participation. In this formative single-arm pilot project, initial evidence was found for the potential effect of a lay navigation intervention on CT understanding and enrollment. A randomized controlled trial is needed to examine the efficacy of the intervention for improving CT education and enrollment.

  6. Image quality assessment of automatic three-segment MR attenuation correction vs. CT attenuation correction.

    PubMed

    Partovi, Sasan; Kohan, Andres; Gaeta, Chiara; Rubbert, Christian; Vercher-Conejero, Jose L; Jones, Robert S; O'Donnell, James K; Wojtylak, Patrick; Faulhaber, Peter

    2013-01-01

    The purpose of this study is to systematically evaluate the usefulness of Positron emission tomography/Magnetic resonance imaging (PET/MRI) images in a clinical setting by assessing the image quality of Positron emission tomography (PET) images using a three-segment MR attenuation correction (MRAC) versus the standard CT attenuation correction (CTAC). We prospectively studied 48 patients who had their clinically scheduled FDG-PET/CT followed by an FDG-PET/MRI. Three nuclear radiologists evaluated the image quality of CTAC vs. MRAC using a Likert scale (five-point scale). A two-sided, paired t-test was performed for comparison purposes. The image quality was further assessed by categorizing it as acceptable (equal to 4 and 5 on the five-point Likert scale) or unacceptable (equal to 1, 2, and 3 on the five-point Likert scale) quality using the McNemar test. When assessing the image quality using the Likert scale, one reader observed a significant difference between CTAC and MRAC (p=0.0015), whereas the other readers did not observe a difference (p=0.8924 and p=0.1880, respectively). When performing the grouping analysis, no significant difference was found between CTAC vs. MRAC for any of the readers (p=0.6137 for reader 1, p=1 for reader 2, and p=0.8137 for reader 3). All three readers more often reported artifacts on the MRAC images than on the CTAC images. There was no clinically significant difference in quality between PET images generated on a PET/MRI system and those from a Positron emission tomography/Computed tomography (PET/CT) system. PET images using the automatic three-segmented MR attenuation method provided diagnostic image quality. However, future research regarding the image quality obtained using different MR attenuation based methods is warranted before PET/MRI can be used clinically.

  7. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system.

    PubMed

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo; Li, Ke; Budde, Adam; Hsieh, Jiang; Chen, Guang-Hong

    2016-08-01

    Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of its NPS was found to be different from that of a peripheral ROI in the centered object, even when the physical positions of the two ROIs relative to the isocenter were the same. (3) The potential clinical impact of the highly anisotropic NPS, caused by the interplay of the bowtie filter and position of the image object, was highlighted in images of specific bar patterns oriented at different angles. The visual perception of the bar patterns was found to be strongly dependent on their orientation. The NPS of CT depends strongly on the bowtie filter and object position. Even if the location of the ROI with respect to the isocenter is fixed, there can be different symmetries in the NPS, which depend on the object position and the size of the bowtie filter. For an isolated off-centered object, the NPS of its CT images cannot be represented by the NPS measured from a centered object.

  8. Evaluation of the impact of metal artifacts in CT-based attenuation correction of positron emission tomography scans

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Chang, Shu-Jun; Huang, Tzung-Chi; Chen, Chuan-Lin; Wu, Tung Hsin

    2011-08-01

    The quantitative ability of PET/CT allows the widespread use in clinical research and cancer staging. However, metal artifacts induced by high-density metal objects degrade the quality of CT images. These artifacts also propagate to the corresponding PET image and cause a false increase of 18F-FDG uptake near the metal implants when the CT-based attenuation correction (AC) is performed. In this study, we applied a model-based metal artifact reduction (MAR) algorithm to reduce the dark and bright streaks in the CT image and compared the differences between PET images with the general CT-based AC (G-AC) and the MAR-corrected-CT AC (MAR-AC). Results showed that the MAR algorithm effectively reduced the metal artifacts in the CT images of the ACR flangeless phantom and two clinical cases. The MAR-AC also removed the false-positive hot spot near the metal implants of the PET images. We conclude that the MAR-AC could be applied in clinical practice to improve the quantitative accuracy of PET images. Additionally, further use of PET/CT fusion images with metal artifact correction could be more valuable for diagnosis.

  9. Automatic cable artifact removal for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-03-01

    Cardiac C-arm computed tomography (CT) imaging using interventional C-arm systems can be applied in various areas of interventional cardiology ranging from structural heart disease and electrophysiology interventions to valve procedures in hybrid operating rooms. In contrast to conventional CT systems, the reconstruction field of view (FOV) of C-arm systems is limited to a region of interest in cone-beam (along the patient axis) and fan-beam (in the transaxial plane) direction. Hence, highly X-ray opaque objects (e.g. cables from the interventional setup) outside the reconstruction field of view, yield streak artifacts in the reconstruction volume. To decrease the impact of these streaks a cable tracking approach on the 2D projection sequences with subsequent interpolation is applied. The proposed approach uses the fact that the projected position of objects outside the reconstruction volume depends strongly on the projection perspective. By tracking candidate points over multiple projections only objects outside the reconstruction volume are segmented in the projections. The method is quantitatively evaluated based on 30 simulated CT data sets. The 3D root mean square deviation to a reference image could be reduced for all cases by an average of 50 % (min 16 %, max 76 %). Image quality improvement is shown for clinical whole heart data sets acquired on an interventional C-arm system.

  10. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boellaard, Ronald, E-mail: r.boellaard@vumc.nl; European Association of Nuclear Medicine Research Ltd., Vienna 1060; European Association of Nuclear Medicine Physics Committee, Vienna 1060

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5more » min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for attenuation correction.« less

  11. Image-guided decision support system for pulmonary nodule classification in 3D thoracic CT images

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kakinuma, Ryutaro; Mori, Kiyoshi; Yamada, Kozo; Nishiyama, Hiroyuki; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2004-05-01

    The purpose of this study is to develop an image-guided decision support system that assists decision-making in clinical differential diagnosis of pulmonary nodules. This approach retrieves and displays nodules that exhibit morphological and internal profiles consistent to the nodule in question. It uses a three-dimensional (3-D) CT image database of pulmonary nodules for which diagnosis is known. In order to build the system, there are following issues that should be solved: 1) to categorize the nodule database with respect to morphological and internal features, 2) to quickly search nodule images similar to an indeterminate nodule from a large database, and 3) to reveal malignancy likelihood computed by using similar nodule images. Especially, the first problem influences the design of other issues. The successful categorization of nodule pattern might lead physicians to find important cues that characterize benign and malignant nodules. This paper focuses on an approach to categorize the nodule database with respect to nodule shape and CT density patterns inside nodule.

  12. Development of a web-based CT dose calculator: WAZA-ARI.

    PubMed

    Ban, N; Takahashi, F; Sato, K; Endo, A; Ono, K; Hasegawa, T; Yoshitake, T; Katsunuma, Y; Kai, M

    2011-09-01

    A web-based computed tomography (CT) dose calculation system (WAZA-ARI) is being developed based on the modern techniques for the radiation transport simulation and for software implementation. Dose coefficients were calculated in a voxel-type Japanese adult male phantom (JM phantom), using the Particle and Heavy Ion Transport code System. In the Monte Carlo simulation, the phantom was irradiated with a 5-mm-thick, fan-shaped photon beam rotating in a plane normal to the body axis. The dose coefficients were integrated into the system, which runs as Java servlets within Apache Tomcat. Output of WAZA-ARI for GE LightSpeed 16 was compared with the dose values calculated similarly using MIRD and ICRP Adult Male phantoms. There are some differences due to the phantom configuration, demonstrating the significance of the dose calculation with appropriate phantoms. While the dose coefficients are currently available only for limited CT scanner models and scanning options, WAZA-ARI will be a useful tool in clinical practice when development is finalised.

  13. Recommendations for clinical staging (cTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals.

    PubMed

    Rice, Thomas W; Ishwaran, Hemant; Blackstone, Eugene H; Hofstetter, Wayne L; Kelsen, David P; Apperson-Hansen, Carolyn

    2016-11-01

    We report analytic and consensus processes that produced recommendations for clinical stage groups (cTNM) of esophageal and esophagogastric junction cancer for the AJCC/UICC cancer staging manuals, 8th edition. The Worldwide Esophageal Cancer Collaboration (WECC) provided data on 22,123 clinically staged patients with epithelial esophageal cancers. Risk-adjusted survival for each patient was developed using random survival forest analysis from which (1) data-driven clinical stage groups were identified wherein survival decreased monotonically and was distinctive between and homogeneous within groups and (2) data-driven anatomic clinical stage groups based only on cTNM. The AJCC Upper GI Task Force, by smoothing, simplifying, expanding, and assessing clinical applicability, produced (3) consensus clinical stage groups. Compared with pTNM, cTNM survival was "pinched," with poorer survival for early cStage groups and better survival for advanced ones. Histologic grade was distinctive for data-driven grouping of cT2N0M0 squamous cell carcinoma (SCC) and cT1-2N0M0 adenocarcinoma, but consensus removed it. Grouping was different by histopathologic cell type. For SCC, cN0-1 was distinctive for cT3 but not cT1-2, and consensus removed cT4 subclassification and added subgroups 0, IVA, and IVB. For adenocarcinoma, N0-1 was distinctive for cT1-2 but not cT3-4a, cStage II subgrouping was necessary (T1N1M0 [IIA] and T2N0M0 [IIB]), advanced cancers cT3-4aN0-1M0 plus cT2N1M0 comprised cStage III, and consensus added subgroups 0, IVA, and IVB. Treatment decisions require accurate cStage, which differs from pStage. Understaging and overstaging are problematic, and additional factors, such as grade, may facilitate treatment decisions and prognostication until clinical staging techniques are uniformly applied and improved. © 2016 International Society for Diseases of the Esophagus.

  14. Recommendations for clinical staging (cTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals

    PubMed Central

    Rice, Thomas W.; Ishwaran, Hemant; Blackstone, Eugene H.; Hofstetter, Wayne L.; Kelsen, David P.; Apperson-Hansen, Carolyn

    2017-01-01

    SUMMARY We report analytic and consensus processes that produced recommendations for clinical stage groups (cTNM) of esophageal and esophagogastric junction cancer for the AJCC/UICC cancer staging manuals, 8th edition. The Worldwide Esophageal Cancer Collaboration (WECC) provided data on 22,123 clinically staged patients with epithelial esophageal cancers. Risk-adjusted survival for each patient was developed using random survival forest analysis from which (1) data-driven clinical stage groups were identified wherein survival decreased monotonically and was distinctive between and homogeneous within groups and (2) data-driven anatomic clinical stage groups based only on cTNM. The AJCC Upper GI Task Force, by smoothing, simplifying, expanding, and assessing clinical applicability, produced (3) consensus clinical stage groups. Compared with pTNM, cTNM survival was “pinched,” with poorer survival for early cStage groups and better survival for advanced ones. Histologic grade was distinctive for data-driven grouping of cT2N0M0 squamous cell carcinoma (SCC) and cT1-2N0M0 adenocarcinoma, but consensus removed it. Grouping was different by histopathologic cell type. For SCC, cN0-1 was distinctive for cT3 but not cT1-2, and consensus removed cT4 subclassification and added subgroups 0, IVA, and IVB. For adenocarcinoma, N0-1 was distinctive for cT1-2 but not cT3-4a, cStage II subgrouping was necessary (T1N1M0 [IIA] and T2N0M0 [IIB]), advanced cancers cT3-4aN0-1M0 plus cT2N1M0 comprised cStage III, and consensus added subgroups 0, IVA, and IVB. Treatment decisions require accurate cStage, which differs from pStage. Understaging and overstaging are problematic, and additional factors, such as grade, may facilitate treatment decisions and prognostication until clinical staging techniques are uniformly applied and improved. PMID:27905171

  15. North American Multicenter Volumetric CT Study for Clinical Staging of Malignant Pleural Mesothelioma: Feasibility and Logistics of Setting Up a Quantitative Imaging Study.

    PubMed

    Gill, Ritu R; Naidich, David P; Mitchell, Alan; Ginsberg, Michelle; Erasmus, Jeremy; Armato, Samuel G; Straus, Christopher; Katz, Sharyn; Patios, Demetrois; Richards, William G; Rusch, Valerie W

    2016-08-01

    Clinical tumor (T), node, and metastasis staging is based on a qualitative assessment of features defining T descriptors and has been found to be suboptimal for predicting the prognosis of patients with malignant pleural mesothelioma (MPM). Previous work suggests that volumetric computed tomography (VolCT) is prognostic and, if found practical and reproducible, could improve clinical MPM classification. Six North American institutions electronically submitted clinical, pathologic, and imaging data on patients with stages I to IV MPM to an established multicenter database and biostatistical center. Two reference radiologists blinded to clinical data independently reviewed the scans; calculated clinical T, node, and metastasis stage by standard criteria; performed semiautomated tumor volume calculations using commercially available software; and submitted the findings to the biostatistical center. Study end points included the feasibility of a multi-institutional VolCT network, concordance of independent VolCT assessments, and association of VolCT with pathological T classification. Of 164 submitted cases, 129 were evaluated by both reference radiologists. Discordant clinical staging of most cases confirmed the inadequacy of current criteria. The overall correlation between VolCT estimates was good (Spearman correlation 0.822), but some were significantly discordant. Root cause analysis of the most discordant estimates identified four common sources of variability. Despite these limitations, median tumor volume estimates were similar within subgroups of cases representing each pathological T descriptor and increased monotonically for each reference radiologist with increasing pathological T status. The good correlation between VolCT estimates obtained for most cases reviewed by two independent radiologists and qualitative association of VolCT with pathological T status combine to encourage further study. The identified sources of user error will inform design of a follow-up prospective trial to more formally assess interobserver variability of VolCT and its potential contribution to clinical MPM staging. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. Physical analysis of breast cancer using dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Cho, J. H.

    2014-12-01

    This study was aimed to analyze various physical characteristics of breast cancer using dual-source computed tomography (CT). A phantom study and a clinical trial were performed in order and a 64-multidetector CT device was used for the examinations. In the phantom study, single-source (SS) CT was set up with a conventional scanning condition that is usually applied for breast CT examination and implementation was done at tube voltage of 120 kVp. Dual-source CT acquired images by irradiating X-ray sources with fast switching between two kilovoltage settings (80 and 140 kVp). After scanning, Hounsfield Unit (HU) values and radiation doses in a region of interest were measured and analyzed. In the clinical trial, the HU values were measured and analyzed after single-source computed tomography (SSCT) and dual-source CT in patients diagnosed with breast cancer. Also, the tumor size measured by dual-source CT was compared with the actual tumor size. The phantom study determined that the tumor region was especially measured by dual-source CT, while nylon fiber and specks region were especially measured by SSCT. The radiation dose was high with dual-source CT. The clinical trial showed a higher HU value of cancerous regions when scanned by dual-source CT compared with SSCT.

  17. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?

    PubMed

    de Galiza Barbosa, F; Delso, G; Ter Voert, E E G W; Huellner, M W; Herrmann, K; Veit-Haibach, P

    2016-07-01

    Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. 18F-FDG PET/CT in Detecting Metastatic Infection in Children.

    PubMed

    Kouijzer, Ilse J E; Blokhuis, Gijsbert J; Draaisma, Jos M T; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Bleeker-Rovers, Chantal P

    2016-04-01

    Metastatic infection is a severe complication of bacteremia with high morbidity and mortality. The aim of this study was to investigate the diagnostic value of 18F-FDG PET combined with CT (FDG PET/CT) in children suspected of having metastatic infection. The results of FDG PET/CT scans performed in children because of suspected metastatic infection from September 2003 to June 2013 were analyzed retrospectively. The results were compared with the final clinical diagnosis. FDG PET/CT was performed in 13 children with suspected metastatic infection. Of the total number of FDG PET/CT scans, 38% were clinically helpful. Positive predictive value of FDG PET/CT was 71%, and negative predictive value was 100%. FDG PET/CT appears to be a valuable diagnostic technique in children with suspected metastatic infection. Prospective studies of FDG PET/CT as part of a structured diagnostic protocol are needed to assess the exact additional diagnostic value.

  19. [The clinical advantage of using three dimensional visualization technology in hepatic surgery].

    PubMed

    Lau, Y Y; Lau, X X

    2016-09-01

    The three-dimensional body visible system is a further development of the three-dimensional CT reconstruction system. It has a lot of merits over the latter system. Clinical application of the three-dimensional body visible system in liver surgery showed the system to have the following merits: (1) The system can support the Couinaud classification of liver anatomy into two hemilivers, four sectors and eight segments. As the system can rotate the liver to any angle and it has the ability to make part or whole of the liver transparent thus making the internal blood vessels and bile ducts visible. Learning liver anatomy and liver surgery becomes easier. (2)The system can clearly localize liver tumors within the liver segment(s). (3)It can help clinicians to decide and to plan different operations on an individual. (4)By carrying out simulation partial hepatectomy using this system, it can help clinicians to estimate the difficulty and the risks involved in different options of liver resection and finally.(5)The system helps clinicians to identify anomalies in hepatic artery, portal vein, hepatic vein and bile duct, thus making the operation safer. In conclusion, this system significantly improves on the conventional three-dimensional CT reconstruction system. It is especially useful for inexperienced liver surgeons.

  20. A rigid motion correction method for helical computed tomography (CT)

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  1. Poster — Thur Eve — 11: Validation of the orthopedic metallic artifact reduction tool for CT simulations at the Ottawa Hospital Cancer Centre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J; Foottit, C

    Metallic implants in patients can produce image artifacts in kilovoltage CT simulation images which can introduce noise and inaccuracies in CT number, affecting anatomical segmentation and dose distributions. The commercial orthopedic metal artifact reduction algorithm (O-MAR) (Philips Healthcare System) was recently made available on CT simulation scanners at our institution. This study validated the clinical use of O-MAR by investigating its effects on CT number and dose distributions. O-MAR corrected and uncorrected images were acquired with a Philips Brilliance Big Bore CT simulator of a cylindrical solid water phantom that contained various plugs (including metal) of known density. CT numbermore » accuracy was investigated by determining the mean and standard deviation in regions of interest (ROI) within each plug for uncorrected and O-MAR corrected images and comparing with no-metal image values. Dose distributions were calculated using the Monaco treatment planning system. Seven open fields were equally spaced about the phantom around a ROI near the center of the phantom. These were compared to a “correct” dose distribution calculated by overriding electron densities a no-metal phantom image to produce an image containing metal but no artifacts. An overall improvement in CT number and dose distribution accuracy was achieved by applying the O-MAR correction. Mean CT numbers and standard deviations were found to be generally improved. Exceptions included lung equivalent media, which is consistent with vendor specified contraindications. Dose profiles were found to vary by ±4% between uncorrected or O-MAR corrected images with O-MAR producing doses closer to ground truth.« less

  2. Interactive CT-Video Registration for the Continuous Guidance of Bronchoscopy

    PubMed Central

    Merritt, Scott A.; Khare, Rahul; Bascom, Rebecca

    2014-01-01

    Bronchoscopy is a major step in lung cancer staging. To perform bronchoscopy, the physician uses a procedure plan, derived from a patient’s 3D computed-tomography (CT) chest scan, to navigate the bronchoscope through the lung airways. Unfortunately, physicians vary greatly in their ability to perform bronchoscopy. As a result, image-guided bronchoscopy systems, drawing upon the concept of CT-based virtual bronchoscopy (VB), have been proposed. These systems attempt to register the bronchoscope’s live position within the chest to a CT-based virtual chest space. Recent methods, which register the bronchoscopic video to CT-based endoluminal airway renderings, show promise but do not enable continuous real-time guidance. We present a CT-video registration method inspired by computer-vision innovations in the fields of image alignment and image-based rendering. In particular, motivated by the Lucas–Kanade algorithm, we propose an inverse-compositional framework built around a gradient-based optimization procedure. We next propose an implementation of the framework suitable for image-guided bronchoscopy. Laboratory tests, involving both single frames and continuous video sequences, demonstrate the robustness and accuracy of the method. Benchmark timing tests indicate that the method can run continuously at 300 frames/s, well beyond the real-time bronchoscopic video rate of 30 frames/s. This compares extremely favorably to the ≥1 s/frame speeds of other methods and indicates the method’s potential for real-time continuous registration. A human phantom study confirms the method’s efficacy for real-time guidance in a controlled setting, and, hence, points the way toward the first interactive CT-video registration approach for image-guided bronchoscopy. Along this line, we demonstrate the method’s efficacy in a complete guidance system by presenting a clinical study involving lung cancer patients. PMID:23508260

  3. Computed Tomography of the Abdomen in Eight Clinically Normal Common Marmosets (Callithrix jacchus).

    PubMed

    du Plessis, W M; Groenewald, H B; Elliott, D

    2017-08-01

    The aim of this study was to provide a detailed anatomical description of the abdomen in the clinically normal common marmoset by means of computed tomography (CT). Eight clinically healthy mature common marmosets ranging from 12 to 48 months and 235 to 365 g bodyweight were anesthetized and pre- and post-contrast CT examinations were performed using different CT settings in dorsal recumbency. Abdominal organs were identified and visibility noted. Diagnostic quality abdominal images could be obtained of the common marmoset despite its small size using a dual-slice CT scanner. Representative cross-sectional images were chosen from different animals illustrating the abdominal CT anatomy of clinically normal common marmosets. Identification or delineation of abdominal organs greatly improved with i.v. contrast. A modified high-frequency algorithm with edge enhancement added valuable information for identification of small structures such as the ureters. The Hounsfield unit (HU) of major abdominal organs differed from that of small animals (domestic dogs and cats). Due to their size and different anatomy, standard small animal CT protocols need to be critically assessed and adapted for exotics, such as the common marmoset. The established normal reference range of HU of major abdominal organs and adapted settings for a CT protocol will aid clinical assessment of the common marmoset. © 2017 Blackwell Verlag GmbH.

  4. New diagnostic pathways urgently needed. Protocol of PET Guidance I pilot study: positron emission tomography in suspected cardiac implantable electronic device-related infection.

    PubMed

    Marciniak-Emmons, Marta Barbara; Sterliński, Maciej; Syska, Paweł; Maciąg, Aleksander; Farkowski, Michał Mirosław; Firek, Bohdan; Dziuk, Mirosław; Zając, Dariusz; Pytkowski, Mariusz; Szwed, Hanna

    2016-01-01

    Cardiovascular implantable electronic device (CIED) infection is a complication of increasing incidence. We present a protocol of an observational case control clinical trial "Positron Emission Tomography Combined With Computed Tomography (PET CT) in Suspected Cardiac Implantable Electronic Device Infection, a Pilot Study - PET Guidance I" (NCT02196753). The aim of this observational clinical trial is to assess and standardise diagnostic algorithms for CIED infections (lead-dependent infective endocarditis, generator pocket infection, fever of unknown origin) with PET CT in Poland. Study group will consist of 20 patients with initial diagnosis of CIED-related infection paired with a control group of 20 patients with implanted CIEDs, who underwent PET CT due to other non-infectious indications and have no data for infectious process in follow-up. All patients included in the study will undergo standard diagnostic pro-cess. Conventional/standard diagnostic and therapeutic process will consist of: medical interview, physical examination, laboratory tests, blood cultures; imaging studies: echocardiography: transthoracic (TTE), and, if there are no contraindications transoesophageal, computed tomography scan for pulmonary embolism if indicated; if there are abnormalities in other systems, decisions concerning further diagnostics will be made at the physician's discretion. As well as standard diagnostic procedures, patients will undergo whole body PET CT scan to localise infection or inflammation. Diagnosis and therapeutic decision will be obtained from the Study Committee. Follow-up will be held within six months with control visits at three and six months. During each follow-up visit, all patients will undergo laboratory tests, two blood cultures collected 1 h apart, and TTE. In case of actual clinical suspicion of infective endocarditis or local generator pocket infection, patients will be referred for further diagnostics. Endpoints for the results assessment - primary endpoints are to standardise PET CT in the diagnostic process: sensitivity, specificity, positive predictive value, and negative predictive value of the diagnosis made by PET CT; secondary endpoints are: assessment of usefulness of PET CT for detection of remote infective complications (metastatic abscesses, infected pulmonary emboli), incidence of particular localisations of infection, influence of PET CT on therapeutic decision: confirmation or change of decision based on PET CT, safety and complications of diagnostic process of CIED-related infections with PET CT. Evaluation of PET CT use for device-related infections in a case control study may be conclusive and improve diagnostic pathway.

  5. A comparative analysis of the density of the SNOMED CT conceptual content for semantic harmonization

    PubMed Central

    He, Zhe; Geller, James; Chen, Yan

    2015-01-01

    Objectives Medical terminologies vary in the amount of concept information (the “density”) represented, even in the same sub-domains. This causes problems in terminology mapping, semantic harmonization and terminology integration. Moreover, complex clinical scenarios need to be encoded by a medical terminology with comprehensive content. SNOMED Clinical Terms (SNOMED CT), a leading clinical terminology, was reported to lack concepts and synonyms, problems that cannot be fully alleviated by using post-coordination. Therefore, a scalable solution is needed to enrich the conceptual content of SNOMED CT. We are developing a structure-based, algorithmic method to identify potential concepts for enriching the conceptual content of SNOMED CT and to support semantic harmonization of SNOMED CT with selected other Unified Medical Language System (UMLS) terminologies. Methods We first identified a subset of English terminologies in the UMLS that have ‘PAR’ relationship labeled with ‘IS_A’ and over 10% overlap with one or more of the 19 hierarchies of SNOMED CT. We call these “reference terminologies” and we note that our use of this name is different from the standard use. Next, we defined a set of topological patterns across pairs of terminologies, with SNOMED CT being one terminology in each pair and the other being one of the reference terminologies. We then explored how often these topological patterns appear between SNOMED CT and each reference terminology, and how to interpret them. Results Four viable reference terminologies were identified. Large density differences between terminologies were found. Expected interpretations of these differences were indeed observed, as follows. A random sample of 299 instances of special topological patterns (“2:3 and 3:2 trapezoids”) showed that 39.1% and 59.5% of analyzed concepts in SNOMED CT and in a reference terminology, respectively, were deemed to be alternative classifications of the same conceptual content. In 30.5% and 17.6% of the cases, it was found that intermediate concepts could be imported into SNOMED CT or into the reference terminology, respectively, to enhance their conceptual content, if approved by a human curator. Other cases included synonymy and errors in one of the terminologies. Conclusion These results show that structure-based algorithmic methods can be used to identify potential concepts to enrich SNOMED CT and the four reference terminologies. The comparative analysis has the future potential of supporting terminology authoring by suggesting new content to improve content coverage and semantic harmonization between terminologies. PMID:25890688

  6. Computed tomographic features of apical infection of equine maxillary cheek teeth: a retrospective study of 49 horses.

    PubMed

    Bühler, M; Fürst, A; Lewis, F I; Kummer, M; Ohlerth, S

    2014-07-01

    Computed tomographic (CT) studies evaluating the relevance of individual CT features of apical infection in maxillary cheek teeth are lacking. To study the prevalence and relationship of single CT features in horses with and without clinical evidence of apical infection in maxillary cheek teeth. Retrospective case-control study. Multislice CT scans of the head of 49 horses were evaluated retrospectively. Changes of the infundibulum, pulp, root, lamina dura, periodontal space and alveolar bone in maxillary cheek teeth were recorded. Single CT changes were much more prevalent in the 28 horses with clinical signs. However, infundibular changes and a nondetectable lamina dura were also common in the 21 horses without clinical evidence of apical infection. Computed tomographic abnormalities of the pulp, root, periapical bone and periodontal space and the presence of a tooth fracture were significantly related. Infundibular changes were not associated with other CT signs of apical infection. Although nondetectable lamina dura was the most frequent CT change in all teeth in both studied groups, it was most commonly a solitary feature in otherwise normal teeth. Apical infections, defined as ≥3 CT changes, occurred mainly in the 108/208, 109/209 and 110/210 (Triadan numbers) and were found only in horses with clinical evidence of apical infection, except in one horse without clinical signs that had one affected root. Combined CT changes of the pulp, root, lamina dura, periapical bone and periodontal space and the presence of a tooth fracture appear to be reliable features to diagnose apical infection in maxillary cheek teeth. As a solitary feature, a nondetectable lamina dura should be interpreted cautiously and may even be considered normal due to its minor thickness and/or too low resolution of the imaging modality. © 2013 EVJ Ltd.

  7. Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia K; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-06-05

    Immunotherapy has raised the issue of appropriate treatment response evaluation, due to the unique mechanism of action of the immunotherapeutic agents. Aim of this analysis is to evaluate the potential role of quantitative analysis of 2-deoxy-2-( 18 F)fluoro-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) data in monitoring of patients with metastatic melanoma undergoing ipilimumab therapy. 25 patients with unresectable metastatic melanoma underwent dynamic PET/CT (dPET/CT) of the thorax and upper abdomen as well as static, whole body PET/CT with 18 F-FDG before the start of ipilimumab treatment (baseline PET/CT), after two cycles of treatment (interim PET/CT) and at the end of treatment after four cycles (late PET/CT). The evaluation of dPET/CT studies was based on semi-quantitative (standardized uptake value, SUV) calculation as well as quantitative analysis, based on two-tissue compartment modeling and a fractal approach. Patients' best clinical response, assessed at a mean of 59 weeks, was used as reference. According to their best clinical response, patients were dichotomized in those demonstrating clinical benefit (CB, n = 16 patients) and those demonstrating no clinical benefit (no-CB, n = 9 patients). No statistically significant differences were observed between CB and no-CB regarding either semi-quantitative or quantitative parameters in all scans. On contrary, the application of the recently introduced PET response evaluation criteria for immunotherapy (PERCIMT) led to a correct classification rate of 84% (21/25 patients). Quantitative analysis of 18 F-FDG PET data does not provide additional information in treatment response evaluation of metastatic melanoma patients receiving ipilimumab. PERCIMT criteria correlated better with clinical response.

  8. Diagnostic importance of contrast enhanced 18F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience

    PubMed Central

    Jain, Avani S.; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    Aims and Objectives: To assess the diagnostic utility of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Materials and Methods: Eight patients (five male and three female) aged 24–60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. Results: All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent 68Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. Conclusion: The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management. PMID:26917888

  9. Diagnostic importance of contrast enhanced (18)F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience.

    PubMed

    Jain, Avani S; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    To assess the diagnostic utility of contrast-enhanced (18)F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Eight patients (five male and three female) aged 24-60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent (68)Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management.

  10. Using UMLS to map from a library to a clinical classification: Improving the functionality of a digital library.

    PubMed

    Robinson, Judas; de Lusignan, Simon; Kostkova, Patty; Madge, Bruce

    2006-01-01

    The Metathesaurus of the Unified Medical Language System (UMLS) offers the possibility of mapping between various medical vocabularies. The Primary Care Electronic Library (PCEL) contains a database of over six thousand Medical Subject Headings (MeSH terms) describing the resources of the electronic library. We were interested to know if it was possible to map from MeSH to the Systemized Nomenclature of Medicine Clinical Terms (SNOMED CT). Such a mapping would aid healthcare professionals to retrieve relevant data from our digital library as it would enable links between clinical systems and indexed material.

  11. Dental flat panel conebeam CT in the evaluation of patients with inflammatory sinonasal disease: Diagnostic efficacy and radiation dose savings.

    PubMed

    Leiva-Salinas, C; Flors, L; Gras, P; Más-Estellés, F; Lemercier, P; Patrie, J T; Wintermark, M; Martí-Bonmatí, L

    2014-01-01

    CT is the imaging modality of choice to study the paranasal sinuses; unfortunately, it involves significant radiation dose. Our aim was to assess the diagnostic validity, image quality, and radiation-dose savings of dental conebeam CT in the evaluation of patients with suspected inflammatory disorders of the paranasal sinuses. We prospectively studied 40 patients with suspected inflammatory disorders of the sinuses with dental conebeam CT and standard CT. Two radiologists analyzed the images independently, blinded to clinical information. The image quality of both techniques and the diagnostic validity of dental conebeam CT compared with the reference standard CT were assessed by using 3 different scoring systems. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were calculated for both techniques. The absorbed radiation dose to the lenses and thyroid and parotid glands was measured by using a phantom and dosimeter chips. The effective radiation dose for CT was calculated. All dental conebeam CT scans were judged of diagnostic quality. Compared with CT, the conebeam CT image noise was 37.3% higher (P < .001) and the SNR of the bone was 75% lower (P < .001). The effective dose of our conebeam CT protocol was 23 μSv. Compared with CT, the absorbed radiation dose to the lenses and parotid and thyroid glands with conebeam CT was 4%, 7.8%, and 7.3% of the dose delivered to the same organs by conventional CT (P < .001). Dental conebeam CT is a valid imaging procedure for the evaluation of patients with inflammatory sinonasal disorders. © 2014 by American Journal of Neuroradiology.

  12. Volumetric CT-images improve testing of radiological image interpretation skills.

    PubMed

    Ravesloot, Cécile J; van der Schaaf, Marieke F; van Schaik, Jan P J; ten Cate, Olle Th J; van der Gijp, Anouk; Mol, Christian P; Vincken, Koen L

    2015-05-01

    Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Two groups of medical students (n=139; n=143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students' test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p<.001). The volumetric CT-image testing program was considered user-friendly. This study shows that volumetric image questions can be successfully integrated in students' radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. An integrated teaching method of gross anatomy and computed tomography radiology.

    PubMed

    Murakami, Tohru; Tajika, Yuki; Ueno, Hitoshi; Awata, Sachiko; Hirasawa, Satoshi; Sugimoto, Maki; Kominato, Yoshihiko; Tsushima, Yoshito; Endo, Keigo; Yorifuji, Hiroshi

    2014-01-01

    It is essential for medical students to learn and comprehend human anatomy in three dimensions (3D). With this in mind, a new system was designed in order to integrate anatomical dissections with diagnostic computed tomography (CT) radiology. Cadavers were scanned by CT scanners, and students then consulted the postmortem CT images during cadaver dissection to gain a better understanding of 3D human anatomy and diagnostic radiology. Students used handheld digital imaging and communications in medicine viewers at the bench-side (OsiriX on iPod touch or iPad), which enabled "pixel-to-tissue" direct comparisons of CT images and cadavers. Students had lectures and workshops on diagnostic radiology, and they completed study assignments where they discussed findings in the anatomy laboratory compared with CT radiology findings. This teaching method for gross and radiological anatomy was used beginning in 2009, and it yielded strongly positive student perspectives and significant improvements in radiology skills in later clinical courses. © 2014 American Association of Anatomists.

  14. Dual-energy micro-CT imaging for differentiation of iodine- and gold-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Johnston, S. M.; Qi, Y.; Ghaghada, K.; Johnson, G. A.

    2011-03-01

    Spectral CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. One fascinating possibility is the ability to discriminate multiple contrast agents targeting different biological sites. We investigate the feasibility of dual energy micro-CT for discrimination of iodine (I) and gold (Au) contrast agents when simultaneously present in the body. Simulations and experiments were performed to measure the CT enhancement for I and Au over a range of voltages from 40-to-150 kVp using a dual source micro-CT system. The selected voltages for dual energy micro-CT imaging of Au and I were 40 kVp and 80 kVp. On a massconcentration basis, the relative average enhancement of Au to I was 2.75 at 40 kVp and 1.58 at 80 kVp. We have demonstrated the method in a preclinical model of colon cancer to differentiate vascular architecture and extravasation. The concentration maps of Au and I allow quantitative measure of the bio-distribution of both agents. In conclusion, dual energy micro-CT can be used to discriminate probes containing I and Au with immediate impact in pre-clinical research.

  15. [Manufacture method and clinical application of minimally invasive dental implant guide template based on registration technology].

    PubMed

    Lin, Zeming; He, Bingwei; Chen, Jiang; D u, Zhibin; Zheng, Jingyi; Li, Yanqin

    2012-08-01

    To guide doctors in precisely positioning surgical operation, a new production method of minimally invasive implant guide template was presented. The mandible of patient was scanned by CT scanner, and three-dimensional jaw bone model was constructed based on CT images data The professional dental implant software Simplant was used to simulate the plant based on the three-dimensional CT model to determine the location and depth of implants. In the same time, the dental plaster models were scanned by stereo vision system to build the oral mucosa model. Next, curvature registration technology was used to fuse the oral mucosa model and the CT model, then the designed position of implant in the oral mucosa could be determined. The minimally invasive implant guide template was designed in 3-Matic software according to the design position of implant and the oral mucosa model. Finally, the template was produced by rapid prototyping. The three-dimensional registration technology was useful to fuse the CT data and the dental plaster data, and the template was accurate that could provide the doctors a guidance in the actual planting without cut-off mucosa. The guide template which fabricated by comprehensive utilization of three-dimensional registration, Simplant simulation and rapid prototyping positioning are accurate and can achieve the minimally invasive and accuracy implant surgery, this technique is worthy of clinical use.

  16. Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters

    NASA Astrophysics Data System (ADS)

    Cho, K. H.; Cho, S. J.; Lee, S.; Lee, S. H.; Min, C. K.; Kim, Y. H.; Moon, S. K.; Kim, E. S.; Chang, A. R.; Kwon, S. I.

    2012-05-01

    The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41±0.04 HGy-1. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the γ-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.

  17. Congenital absence of the portal vein: clinical and radiologic findings.

    PubMed

    Niwa, Tetsu; Aida, Noriko; Tachibana, Katsuhiko; Shinkai, Masato; Ohhama, Youkatsu; Fujita, Kazutoshi; Abe, Aya; Lee, Jin; Ozawa, Yukihiko; Inoue, Tomio

    2002-01-01

    Congenital absence of the portal vein (CAPV) is a rare anomaly in which the intestinal and splenic venous drainage bypasses the liver and drains into the systemic veins through various venous shunts. In patients with CAPV, the portosystemic shunting causes disruption of the enterohepatic circulation and leads to various clinical manifestations. CAPV can be diagnosed without invasive techniques. This article illustrates the clinical and radiologic findings (including ultrasound, CT, and MRI) of CAPV.

  18. Knowledge translation of the American College of Emergency Physicians' clinical policy on syncope using computerized clinical decision support.

    PubMed

    Melnick, Edward R; Genes, Nicholas G; Chawla, Neal K; Akerman, Meredith; Baumlin, Kevin M; Jagoda, Andy

    2010-06-01

    To influence physician practice behavior after implementation of a computerized clinical decision support system (CDSS) based upon the recommendations from the 2007 ACEP Clinical Policy on Syncope. This was a pre-post intervention with a prospective cohort and retrospective controls. We conducted a medical chart review of consecutive adult patients with syncope. A computerized CDSS prompting physicians to explain their decision-making regarding imaging and admission in syncope patients based upon ACEP Clinical Policy recommendations was embedded into the emergency department information system (EDIS). The medical records of 410 consecutive adult patients presenting with syncope were reviewed prior to implementation, and 301 records were reviewed after implementation. Primary outcomes were physician practice behavior demonstrated by admission rate and rate of head computed tomography (CT) imaging before and after implementation. There was a significant difference in admission rate pre- and post-intervention (68.1% vs. 60.5% respectively, p = 0.036). There was no significant difference in the head CT imaging rate pre- and post-intervention (39.8% vs. 43.2%, p = 0.358). There were seven physicians who saw ten or more patients during the pre- and post-intervention. Subset analysis of these seven physicians' practice behavior revealed a slight significant difference in the admission rate pre- and post-intervention (74.3% vs. 63.9%, p = 0.0495) and no significant difference in the head CT scan rate pre- and post-intervention (42.9% vs. 45.4%, p = 0.660). The introduction of an evidence-based CDSS based upon ACEP Clinical Policy recommendations on syncope correlated with a change in physician practice behavior in an urban academic emergency department. This change suggests emergency medicine clinical practice guideline recommendations can be incorporated into the physician workflow of an EDIS to enhance the quality of practice.

  19. Computed tomography for occult fractures of the proximal femur, pelvis, and sacrum in clinical practice: single institution, dual-site experience.

    PubMed

    Mandell, Jacob C; Weaver, Michael J; Khurana, Bharti

    2018-06-01

    The purpose of this study was to evaluate the diagnostic performance of CT for assessment of occult fractures of the proximal femur, pelvis, and sacrum. A retrospective review was performed on patients who received a CT of the hip or pelvis for suspected occult fracture after negative or equivocal radiographs performed within 24 h. The official radiology report was utilized for the determination of CT findings and calculation of sensitivity and specificity. Surgical reports, MRI reports, and clinical follow-up were used as the standard of reference. Sensitivity and specificity were calculated with 95% confidence intervals. Seventy-four patients received CT of the hip or pelvis for clinical concern for occult fracture after negative or equivocal radiographs. By the reference standard, a total of 40 fractures were present in 25/74 (33.8%) patients, including 35 conservatively treated fractures of the greater trochanter, pelvis, and sacrum, and 5 operatively treated proximal femoral fractures. A total of 14/74 (18.9%) of patients had an MRI within 1 day of CT. MRI identified an operatively treated femoral neck fracture not seen on CT and an operatively treated intertrochanteric fracture, which CT described as a greater trochanteric fracture. There were two false negative conservatively treated pelvic fractures not seen on CT but diagnosed on MRI. On a per-patient basis, CT had an overall sensitivity of 88% (22/25; 95% confidence intervals 69-97%), specificity of 98% (48/49; 95% confidence intervals 89-100%), and negative predictive value of 94%. For the five operative proximal femoral fractures, the sensitivity of CT was 60% (3/5; 95% confidence intervals 15-95%), specificity was 99% (68/69; 95% confidence intervals 92-100%), and negative predictive value was 97%. In the clinical setting of suspected occult fracture, the sensitivity of clinical CT reports for detection of any type of fracture of the proximal femur, pelvis, or sacrum was 88%. For the small number of operatively treated proximal femoral fractures seen in the study, sensitivity of CT was 60% (3/5) and negative predictive value was 97%, although the relatively few patients needing fixation precludes statistical analysis.

  20. Current state of medical device nomenclature and taxonomy systems in the UK: spotlight on GMDN and SNOMED CT

    PubMed Central

    White, Judith; Carolan-Rees, Grace

    2013-01-01

    A standardised terminology for describing medical devices can enable safe and unambiguous exchange of information. Proposed changes to EU-wide medical devices regulations mandate the use of such a system. This article reviews two important classification systems for medical devices in the UK. The Global Medical Device Nomenclature (GMDN) provides a classification system specifically for medical devices and diagnostics, and facilitates data exchange between manufacturers and regulators. SNOMED CT is the terminology of choice in the NHS for communicating, sharing and storing information about patients’ healthcare episodes. Harmonisation of GMDN and SNOMED CT will encourage use of single terminology throughout the lifetime of a device; from regulatory approval through clinical use and post-marketing surveillance. Manufacturers will be required to register medical devices with a European device database (Eudamed) and to fit certain devices with a Unique Device Identifier; both are efforts to improve transparency and traceability of medical devices. Successful implementation of these elements depends on having a consistent nomenclature for medical devices. PMID:23885299

  1. Personalized Guideline-Based Treatment Recommendations Using Natural Language Processing Techniques.

    PubMed

    Becker, Matthias; Böckmann, Britta

    2017-01-01

    Clinical guidelines and clinical pathways are accepted and proven instruments for quality assurance and process optimization. Today, electronic representation of clinical guidelines exists as unstructured text, but is not well-integrated with patient-specific information from electronic health records. Consequently, generic content of the clinical guidelines is accessible, but it is not possible to visualize the position of the patient on the clinical pathway, decision support cannot be provided by personalized guidelines for the next treatment step. The Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) provides common reference terminology as well as the semantic link for combining the pathways and the patient-specific information. This paper proposes a model-based approach to support the development of guideline-compliant pathways combined with patient-specific structured and unstructured information using SNOMED CT. To identify SNOMED CT concepts, a software was developed to extract SNOMED CT codes out of structured and unstructured German data to map these with clinical pathways annotated in accordance with the systematized nomenclature.

  2. How to create a cardiac CT clinic.

    PubMed

    Dowe, David A

    2007-02-01

    Coronary computed tomography (CT) angiography is taking an exponentially increasing role in the diagnostic algorithm of suspected coronary artery disease. It has the immediate potential of replacing stress tests as the first study a patient receives if suspected of having coronary artery disease. In the near future, it will likely precede all elective, diagnostic cardiac catheterizations secondary to its extraordinary negative predictive value. This paper discusses the 3 building blocks of a successful cardiac CT clinic, image quality, service, and marketing. It then discusses the significant differences in establishing a cardiac CT clinic depending on if the radiologist is hospital based or private office based.

  3. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.

    PubMed

    Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre

    2016-11-01

    To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target may be possible in 85% of the cases while using treatment plans currently deployed in the clinic. With beam replanning to account for the presence of robotic US guidance, intrafractional US may be an option for 95% of the liver SABR cases.

  4. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    PubMed

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  5. Risk-related 18F-FDG PET/CT and new diagnostic strategies in patients with solitary pulmonary nodule: the ITALIAN multicenter trial.

    PubMed

    Spadafora, Marco; Pace, Leonardo; Evangelista, Laura; Mansi, Luigi; Del Prete, Francesco; Saladini, Giorgio; Miletto, Paolo; Fanti, Stefano; Del Vecchio, Silvana; Guerra, Luca; Pepe, Giovanna; Peluso, Giuseppina; Nicolai, Emanuele; Storto, Giovanni; Ferdeghini, Marco; Giordano, Alessandro; Farsad, Mohsen; Schillaci, Orazio; Gridelli, Cesare; Cuocolo, Alberto

    2018-05-05

    Diagnosis of solitary pulmonary nodule (SPN) is an important public health issue and 18 F-FDG PET/CT has proven to be more effective than CT alone. Pre-test risk stratification and clinical presentation of SPN could affect the diagnostic strategy. A relevant issue is whether thoracic segmental (s)-PET/CT could be implemented in patients with SPN. This retrospective multicenter study compared the results of FDG whole-body (wb)-PET/CT to those of s-PET/CT. 18 F-FDG PET/CT of 502 patients, stratified for pre-test cancer risk, were retrospectively analyzed. The thoracic part of wb-PET/CT, considered s-PET/CT, was compared to wb-PET/CT. Clinical and PET/CT variables were investigated for SPN characterization as well as for identification of patients in whom s-PET/CT could be performed. Histopathology or follow-up data were used as a reference. In the study population, 36% had malignant, 35% benign, and 29% indeterminate SPN. 18 F-FDG uptake indicative of thoracic and extra-thoracic lesions was detectable in 13% and 3% of the patients. All patients with extra-thoracic metastases (n = 13) had thoracic lymph node involvement and highest 18 F-FDG uptake at level of SPN (negative predictive value 100%). Compared to wb-PET/CT, s-PET/CT could save about 2/3 of 18 F-FDG dose, radiation exposure or scan-time, without affecting the clinical impact of PET/CT. Pre-test probability of malignancy can guide the diagnostic strategy of 18 FDG-PET/CT in patients with SPN. In subjects with low-intermediate pretest probability s-PET/CT imaging might be planned in advance, while in those at high risk and with thoracic lymph node involvement a wb-PET/CT is necessary.

  6. Multi-national findings on radiation protection of children.

    PubMed

    Rehani, Madan M

    2014-10-01

    This article reviews issues of radiation protection in children in 52 low-resource countries. Extensive information was obtained through a survey by the International Atomic Energy Agency (IAEA); wide-ranging information was available from 40 countries and data from the other countries pertained to frequency of pediatric CT examinations. Of note is that multi-detector CT (MDCT) was available in 77% of responses to the survey, typically nodal centers in these countries. Nearly 75% of these scanners were reported to have dose displays. The pediatric CT usage was lower in European facilities as compared to Asian and African facilities, where usage was twice as high. The most frequently scanned body part was the head. Frequent use of 120 kVp was reported in children. The ratio of maximum to minimum CT dose index volume (CTDIvol) values varied between 15 for abdomen CT in the age group 5-10 years and 100 for chest CT in the age group <1 year. In 8% of the CT systems, CTDI values for pediatric patients were higher than those for adults in at least one age group and for one type of examination. Use of adult protocols for children was associated with CTDIw or CTDIvol values in children that were double those of adults for head and chest examination and 50% higher for abdomen examination. Patient dose records were kept in nearly half of the facilities, with the highest frequency in Europe (55% of participating facilities), and in 49% of Asian, 36% of Latin American and 14% of African facilities. The analysis of the first-choice examinations in seven clinical conditions showed that practice was in accordance with guidelines for only three of seven specified clinical conditions.

  7. Evaluating standard terminologies for encoding allergy information.

    PubMed

    Goss, Foster R; Zhou, Li; Plasek, Joseph M; Broverman, Carol; Robinson, George; Middleton, Blackford; Rocha, Roberto A

    2013-01-01

    Allergy documentation and exchange are vital to ensuring patient safety. This study aims to analyze and compare various existing standard terminologies for representing allergy information. Five terminologies were identified, including the Systemized Nomenclature of Medical Clinical Terms (SNOMED CT), National Drug File-Reference Terminology (NDF-RT), Medication Dictionary for Regulatory Activities (MedDRA), Unique Ingredient Identifier (UNII), and RxNorm. A qualitative analysis was conducted to compare desirable characteristics of each terminology, including content coverage, concept orientation, formal definitions, multiple granularities, vocabulary structure, subset capability, and maintainability. A quantitative analysis was also performed to compare the content coverage of each terminology for (1) common food, drug, and environmental allergens and (2) descriptive concepts for common drug allergies, adverse reactions (AR), and no known allergies. Our qualitative results show that SNOMED CT fulfilled the greatest number of desirable characteristics, followed by NDF-RT, RxNorm, UNII, and MedDRA. Our quantitative results demonstrate that RxNorm had the highest concept coverage for representing drug allergens, followed by UNII, SNOMED CT, NDF-RT, and MedDRA. For food and environmental allergens, UNII demonstrated the highest concept coverage, followed by SNOMED CT. For representing descriptive allergy concepts and adverse reactions, SNOMED CT and NDF-RT showed the highest coverage. Only SNOMED CT was capable of representing unique concepts for encoding no known allergies. The proper terminology for encoding a patient's allergy is complex, as multiple elements need to be captured to form a fully structured clinical finding. Our results suggest that while gaps still exist, a combination of SNOMED CT and RxNorm can satisfy most criteria for encoding common allergies and provide sufficient content coverage.

  8. Dissecting Costs of CT Study: Application of TDABC (Time-driven Activity-based Costing) in a Tertiary Academic Center.

    PubMed

    Anzai, Yoshimi; Heilbrun, Marta E; Haas, Derek; Boi, Luca; Moshre, Kirk; Minoshima, Satoshi; Kaplan, Robert; Lee, Vivian S

    2017-02-01

    The lack of understanding of the real costs (not charge) of delivering healthcare services poses tremendous challenges in the containment of healthcare costs. In this study, we applied an established cost accounting method, the time-driven activity-based costing (TDABC), to assess the costs of performing an abdomen and pelvis computed tomography (AP CT) in an academic radiology department and identified opportunities for improved efficiency in the delivery of this service. The study was exempt from an institutional review board approval. TDABC utilizes process mapping tools from industrial engineering and activity-based costing. The process map outlines every step of discrete activity and duration of use of clinical resources, personnel, and equipment. By multiplying the cost per unit of capacity by the required task time for each step, and summing each component cost, the overall costs of AP CT is determined for patients in three settings, inpatient (IP), outpatient (OP), and emergency departments (ED). The component costs to deliver an AP CT study were as follows: radiologist interpretation: 40.1%; other personnel (scheduler, technologist, nurse, pharmacist, and transporter): 39.6%; materials: 13.9%; and space and equipment: 6.4%. The cost of performing CT was 13% higher for ED patients and 31% higher for inpatients (IP), as compared to that for OP. The difference in cost was mostly due to non-radiologist personnel costs. Approximately 80% of the direct costs of AP CT to the academic medical center are related to labor. Potential opportunities to reduce the costs include increasing the efficiency of utilization of CT, substituting lower cost resources when appropriate, and streamlining the ordering system to clarify medical necessity and clinical indications. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Evaluating standard terminologies for encoding allergy information

    PubMed Central

    Goss, Foster R; Zhou, Li; Plasek, Joseph M; Broverman, Carol; Robinson, George; Middleton, Blackford; Rocha, Roberto A

    2013-01-01

    Objective Allergy documentation and exchange are vital to ensuring patient safety. This study aims to analyze and compare various existing standard terminologies for representing allergy information. Methods Five terminologies were identified, including the Systemized Nomenclature of Medical Clinical Terms (SNOMED CT), National Drug File–Reference Terminology (NDF-RT), Medication Dictionary for Regulatory Activities (MedDRA), Unique Ingredient Identifier (UNII), and RxNorm. A qualitative analysis was conducted to compare desirable characteristics of each terminology, including content coverage, concept orientation, formal definitions, multiple granularities, vocabulary structure, subset capability, and maintainability. A quantitative analysis was also performed to compare the content coverage of each terminology for (1) common food, drug, and environmental allergens and (2) descriptive concepts for common drug allergies, adverse reactions (AR), and no known allergies. Results Our qualitative results show that SNOMED CT fulfilled the greatest number of desirable characteristics, followed by NDF-RT, RxNorm, UNII, and MedDRA. Our quantitative results demonstrate that RxNorm had the highest concept coverage for representing drug allergens, followed by UNII, SNOMED CT, NDF-RT, and MedDRA. For food and environmental allergens, UNII demonstrated the highest concept coverage, followed by SNOMED CT. For representing descriptive allergy concepts and adverse reactions, SNOMED CT and NDF-RT showed the highest coverage. Only SNOMED CT was capable of representing unique concepts for encoding no known allergies. Conclusions The proper terminology for encoding a patient's allergy is complex, as multiple elements need to be captured to form a fully structured clinical finding. Our results suggest that while gaps still exist, a combination of SNOMED CT and RxNorm can satisfy most criteria for encoding common allergies and provide sufficient content coverage. PMID:23396542

  10. Computer aided segmentation of kidneys using locally shape constrained deformable models on CT images

    NASA Astrophysics Data System (ADS)

    Erdt, Marius; Sakas, Georgios

    2010-03-01

    This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.

  11. Chlamydia and gonorrhoea contamination of clinic surfaces.

    PubMed

    Lewis, Natasha; Dube, Gail; Carter, Christine; Pitt, Rachel; Alexander, Sarah; Ison, Catherine A; Harding, Jan; Brown, Louise; Fryer, John; Hodson, James; Ross, Jonathan

    2012-10-01

    Nucleic acid amplification tests, with their ability to detect very small amounts of nucleic acid, have become the principle diagnostic tests for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC) in many sexual health clinics. The aim of this study was to investigate the extent of surface contamination with CT and GC within a city centre sexual health clinic and to evaluate the potential for contamination of containers used for the collection of self-taken swabs. Surface contamination with CT and GC was assessed by systematically sampling 154 different sites within one clinic using transcription-mediated amplification (TMA), quantitative PCR and culture. The caps of containers used by patients to collect self-taken samples were also tested for CT and GC using TMA. Of the 154 sites sampled, 20 (13.0%) tested positive on TMA. Of these, five (3.2%) were positive for CT alone, 11 (7.1%) for GC alone and four (2.6%) for both CT and GC. The proportion of GC TMA-positive test results differed by gender, with 11 (18.3%) positive results from the male patient clinic area compared with one (1.6%) from the female area (p=0.002). Positive samples were obtained from a variety of locations in the clinic, but the patient toilets were more likely to be contaminated than examination rooms (p=0.015). Quantitative PCR and culture assays were negative for all samples. 46 caps of the containers used for self-taken swabs were negative for both CT and GC on TMA testing. Surface contamination with chlamydial and gonococcal rRNA can occur within sexual health clinics, but the quantity of nucleic acid detected is low and infection risk to patients and staff is small. There remains a potential risk of contamination of patient samples leading to false-positive results.

  12. Multi-site evaluation of a computer aided detection (CAD) algorithm for small acute intra-cranial hemorrhage and development of a stand-alone CAD system ready for deployment in a clinical environment

    NASA Astrophysics Data System (ADS)

    Deshpande, Ruchi R.; Fernandez, James; Lee, Joon K.; Chan, Tao; Liu, Brent J.; Huang, H. K.

    2010-03-01

    Timely detection of Acute Intra-cranial Hemorrhage (AIH) in an emergency environment is essential for the triage of patients suffering from Traumatic Brain Injury. Moreover, the small size of lesions and lack of experience on the reader's part could lead to difficulties in the detection of AIH. A CT based CAD algorithm for the detection of AIH has been developed in order to improve upon the current standard of identification and treatment of AIH. A retrospective analysis of the algorithm has already been carried out with 135 AIH CT studies with 135 matched normal head CT studies from the Los Angeles County General Hospital/ University of Southern California Hospital System (LAC/USC). In the next step, AIH studies have been collected from Walter Reed Army Medical Center, and are currently being processed using the AIH CAD system as part of implementing a multi-site assessment and evaluation of the performance of the algorithm. The sensitivity and specificity numbers from the Walter Reed study will be compared with the numbers from the LAC/USC study to determine if there are differences in the presentation and detection due to the difference in the nature of trauma between the two sites. Simultaneously, a stand-alone system with a user friendly GUI has been developed to facilitate implementation in a clinical setting.

  13. SU-E-J-204: Can a Commercial System for MR-IGRT Be Used to Treat Patients Without Acquiring a CT Scan?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H; Yaddanapudi, S; Santanam, L

    2015-06-15

    Patients treated using a magnetic-resonance image guided radiation therapy (MR-IGRT) system received both CT and MR simulations. During planning, the CT is used to determine relative electron density (RED) using a calibration table. This study aims to investigate the feasibility of MR-only treatments by comparing CT-computed dose distributions to those computed with combinations of water (1.0), lung (0.26), tissue (1.02), and bone (1.12) bulk RED overrides, and to identify the effects of the magnetic field on the RED-overridden doses. Methods: Four patients who received treatment using a commercial MR-IGRT system were analyzed (1 lung, 2 abdomen, and 1 pelvis). Themore » clinical plans were computed using the first fraction MRI as primary, and the simulation CT as secondary for REDs. Plans were reoptimized using default bulk RED overrides (water/lung and tissue/lung for the lung patient, water/bone, tissue/bone, water only, and tissue only for the abdomen and pelvis patients). Additionally, each plan was re-optimized to include the static magnetic field. All plans were normalized to the same PTV coverage as the clinical plan. Dose-difference volumes and DVHs were computed for bulk density override plans, and 3D gamma analyses between each plan and its accompanying magnetic field plan were performed using 3%/3 mm dose difference and distance-to-agreement criteria using the PTV and Skin as masking structures. Results: The average differences in PTV and organs-at-risk mean dose for all RED combinations tested were −0.19 Gy (−0.62 – 0.06 Gy) and −0.34 Gy (−1.76 – 0.33 Gy), respectively. The average PTV and Skin gamma pass rates for all RED combinations tested were 99.88% (99.5% – 100%) and 98. 35% (96.3% – 99.6%). No systematic differences in DVHs or isodoses were observed. Conclusions: It is likely that that a commercial MR-IGRT system may produce high quality treatment plans without the need for CT scans. Authors of this abstract are members of the Washington University Radiation Oncology department, which has a research agreement with ViewRay, Inc.« less

  14. Planning the Breast Boost: Comparison of Three Techniques and Evolution of Tumor Bed During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepel, Jaroslaw T.; Department of Radiation Oncology, Brown University, Rhode Island Hospital, Providence, RI; Evans, Suzanne B.

    2009-06-01

    Purpose: To evaluate the accuracy of two clinical techniques for electron boost planning compared with computed tomography (CT)-based planning. Additionally, we evaluated the tumor bed characteristics at whole breast planning and boost planning. Methods and Materials: A total of 30 women underwent tumor bed boost planning within 2 weeks of completing whole breast radiotherapy using three planning techniques: scar-based planning, palpation/clinical-based planning, and CT-based planning. The plans were analyzed for dosimetric coverage of the CT-delineated tumor bed. The cavity visualization score was used to define the CT-delineated tumor bed as well or poorly defined. Results: Scar-based planning resulted in inferiormore » tumor bed coverage compared with CT-based planning, with the minimal dose received by 90% of the target volume >90% in 53% and a geographic miss in 53%. The results of palpation/clinical-based planning were significantly better: 87% and 10% for the minimal dose received by 90% of the target volume >90% and geographic miss, respectively. Of the 30 tumor beds, 16 were poorly defined by the cavity visualization score. Of these 16, 8 were well demarcated by the surgical clips. The evaluation of the 22 well-defined tumor beds revealed similar results. A comparison of the tumor bed volume from the initial planning CT scan to the boost planning CT scan revealed a decrease in size in 77% of cases. The mean decrease in volume was 52%. Conclusion: The results of our study have shown that CT-based planning allows for optimal tumor bed coverage compared with clinical and scar-based approaches. However, in the setting of a poorly visualized cavity on CT without surgical clips, palpation/clinical-based planning can help delineate the appropriate target volumes and is superior to scar-based planning. CT simulation at boost planning could allow for a reduction in the boost volumes.« less

  15. Prevalence of upper airway obstruction in patients with apparently asymptomatic euthyroid multi nodular goitre

    PubMed Central

    Menon, Sunil K.; Jagtap, Varsha S.; Sarathi, Vijaya; Lila, Anurag R.; Bandgar, Tushar R.; Menon, Padmavathy S; Shah, Nalini S.

    2011-01-01

    Aims: To study the prevalence of upper airway obstruction (UAO) in “apparently asymptomatic” patients with euthyroid multinodular goitre (MNG) and find correlation between clinical features, UAO on pulmonary function test (PFT) and tracheal narrowing on computerised tomography (CT). Materials and Methods: Consecutive patients with apparently asymptomatic euthyroid MNG attending thyroid clinic in a tertiary centre underwent clinical examination to elicit features of UAO, PFT, and CT of neck and chest. Statistical Analysis Used: Statistical analysis was done with SPSS version 11.5 using paired t-test, Chi square test, and Fisher's exact test. P value of <0.05 was considered to be significant. Results: Fifty-six patients (52 females and four males) were studied. The prevalence of UAO (PFT) and significant tracheal narrowing (CT) was 14.3%. and 9.3%, respectively. Clinical features failed to predict UAO or significant tracheal narrowing. Tracheal narrowing (CT) did not correlate with UAO (PFT). Volume of goitre significantly correlated with degree of tracheal narrowing. Conclusions: Clinical features do not predict UAO on PFT or tracheal narrowing on CT in apparently asymptomatic patients with euthyroid MNG. PMID:21966649

  16. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    PubMed

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbique, G; Anderson, J; Guild, J

    Purpose: The National Lung Screening Trial mandated manual low dose CT technique factors, where up to a doubling of radiation output could be used over a regular to large patient size range. Recent guidance from the AAPM and ACR for lung cancer CT screening recommends radiation output adjustment for patient size either through AEC or a manual technique chart. This study evaluated the use of AEC for output control and dose reduction. Methods: The study was performed on a multidetector helical CT scanner (Aquillion ONE, Toshiba Medical) equipped with iterative reconstruction (ADIR-3D), AEC was adjusted with a standard deviation (SD)more » image quality noise index. The protocol SD parameter was incrementally increased to reduce patient population dose while image quality was evaluated by radiologist readers scoring the clinical utility of images on a Likert scale. Results: Plots of effective dose vs. body size (water cylinder diameter reported by the scanner) demonstrate monotonic increase in patient dose with increasing patient size. At the initial SD setting of 19 the average CTDIvol for a standard size patient was ∼ 2.0 mGy (1.2 mSv effective dose). This was reduced to ∼1.0 mGy (0.5 mSv) at an SD of 25 with no noticeable reduction in clinical utility of images as demonstrated by Likert scoring. Plots of effective patient diameter and BMI vs body size indicate that these metrics could also be used for manual technique charts. Conclusion: AEC offered consistent and reliable control of radiation output in this study. Dose for a standard size patient was reduced to one-third of the 3 mGy CTDIvol limit required for ACR accreditation of lung cancer CT screening. Gary Arbique: Research Grant, Toshiba America Medical Systems; Cecelia Brewington: Research Grant, Toshiba America Medical Systems; Di Zhang: Employee, Toshiba America Medical Systems.« less

  18. Low Prevalence of Ocular Chlamydia trachomatis Infection and Active Trachoma in the Western Division of Fiji

    PubMed Central

    Mudaliar, Umesh; Natutusau, Kinisimere; Pavluck, Alexandre L.; Willis, Rebecca; Alexander, Neal; Mabey, David C. W.; Cikamatana, Luisa; Kama, Mike; Rafai, Eric; Roberts, Chrissy H.; Solomon, Anthony W.

    2016-01-01

    Background Trachoma is the leading infectious cause of blindness and is caused by ocular infection with the bacterium Chlamydia trachomatis (Ct). While the majority of the global disease burden is found in sub-Saharan Africa, the Western Pacific Region has been identified as trachoma endemic. Population surveys carried out throughout Fiji have shown an abundance of both clinically active trachoma and trachomatous trichiasis in all divisions. This finding is at odds with the clinical experience of local healthcare workers who do not consider trachoma to be highly prevalent. We aimed to determine whether conjunctival infection with Ct could be detected in one administrative division of Fiji. Methods A population-based survey of 2306 individuals was conducted using the Global Trachoma Mapping Project methodology. Population prevalence of active trachoma in children and trichiasis in adults was estimated using the World Health Organization simplified grading system. Conjunctival swabs were collected from 1009 children aged 1–9 years. DNA from swabs was tested for the presence of the Ct plasmid and human endogenous control. Results The prevalence of active trachoma in 1–9 year olds was 3.4%. The age-adjusted prevalence was 2.8% (95% CI: 1.4–4.3%). The unadjusted prevalence of ocular Ct infection in 1–9 year-olds was 1.9% (19/1009), and the age-adjusted infection prevalence was 2.3% (95% CI: 0.4–2.5%). The median DNA load was 41 Ct plasmid copies per swab (min 20, first quartile 32, mean 6665, third quartile 161, max 86354). There was no association between current infection and follicular trachoma. No cases of trachomatous trichiasis were identified. Discussion The Western Division of Fiji has a low prevalence of clinical trachoma. Ocular Ct infections were observed, but they were predominantly low load infections and were not correlated with clinical signs. Our study data suggest that trachoma does not meet the WHO definition of a public health problem in this Division of Fiji, but the inconsistency with previous studies warrants further investigation. PMID:27404379

  19. Low Prevalence of Ocular Chlamydia trachomatis Infection and Active Trachoma in the Western Division of Fiji.

    PubMed

    Macleod, Colin K; Butcher, Robert; Mudaliar, Umesh; Natutusau, Kinisimere; Pavluck, Alexandre L; Willis, Rebecca; Alexander, Neal; Mabey, David C W; Cikamatana, Luisa; Kama, Mike; Rafai, Eric; Roberts, Chrissy H; Solomon, Anthony W

    2016-07-01

    Trachoma is the leading infectious cause of blindness and is caused by ocular infection with the bacterium Chlamydia trachomatis (Ct). While the majority of the global disease burden is found in sub-Saharan Africa, the Western Pacific Region has been identified as trachoma endemic. Population surveys carried out throughout Fiji have shown an abundance of both clinically active trachoma and trachomatous trichiasis in all divisions. This finding is at odds with the clinical experience of local healthcare workers who do not consider trachoma to be highly prevalent. We aimed to determine whether conjunctival infection with Ct could be detected in one administrative division of Fiji. A population-based survey of 2306 individuals was conducted using the Global Trachoma Mapping Project methodology. Population prevalence of active trachoma in children and trichiasis in adults was estimated using the World Health Organization simplified grading system. Conjunctival swabs were collected from 1009 children aged 1-9 years. DNA from swabs was tested for the presence of the Ct plasmid and human endogenous control. The prevalence of active trachoma in 1-9 year olds was 3.4%. The age-adjusted prevalence was 2.8% (95% CI: 1.4-4.3%). The unadjusted prevalence of ocular Ct infection in 1-9 year-olds was 1.9% (19/1009), and the age-adjusted infection prevalence was 2.3% (95% CI: 0.4-2.5%). The median DNA load was 41 Ct plasmid copies per swab (min 20, first quartile 32, mean 6665, third quartile 161, max 86354). There was no association between current infection and follicular trachoma. No cases of trachomatous trichiasis were identified. The Western Division of Fiji has a low prevalence of clinical trachoma. Ocular Ct infections were observed, but they were predominantly low load infections and were not correlated with clinical signs. Our study data suggest that trachoma does not meet the WHO definition of a public health problem in this Division of Fiji, but the inconsistency with previous studies warrants further investigation.

  20. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system.

    PubMed

    Poulin, Eric; Racine, Emmanuel; Binnekamp, Dirk; Beaulieu, Luc

    2015-03-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora(®) Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  1. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position andmore » orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.« less

  2. Diagnostic accuracy of the clinical and CT findings for differentiating Kikuchi's disease and tuberculous lymphadenitis presenting with cervical lymphadenopathy.

    PubMed

    Baek, Hye Jin; Lee, Jeong Hyun; Lim, Hyun Kyung; Lee, Ha Young; Baek, Jung Hwan

    2014-11-01

    To determine the optimal clinical and CT findings for differentiating Kikuchi's disease (KD) and tuberculous lymphadenitis (TB) in patients presenting with cervical lymphadenopathy. From 2006 to 2010, 87 consecutive patients who were finally diagnosed with KD or TB were enrolled. Two radiologists performed independent analysis of contrast-enhanced neck CT images with regard to the involvement pattern, nodal or perinodal changes, and evidence of the previous infection. Significant clinical and CT findings of KD were determined by statistical analyses. Of the 87 patients, 27 (31%) were classified as having KD and 60 (69%) as having TB. Statistically significant findings of KD patients were younger age, presence of fever, involvement of ≥5 nodal levels or the bilateral neck, no or minimal nodal necrosis, marked perinodal infiltration, and no evidence of upper lung lesion or mediastinal lymphadenopathy. The presence of four or more statistically significant clinical and CT findings of KD had the largest area under the receiver-operating characteristic curve (A z = 0.861; 95% confidence intervals 0.801, 0.909), with a sensitivity of 89% and specificity of 83%. CT can be a helpful tool for differentiating KD from TB, especially when it is combined with the clinical findings.

  3. Sodium 18F-Fluoride PET/CT of Bone, Joint and Other Disorders

    PubMed Central

    Jadvar, Hossein; Desai, Bhushan; Conti, Peter S.

    2014-01-01

    The use of 18F-sodium fluoride (18F-NaF) with positron emission tomography-computed tomography (PET/CT) is increasing. This resurgence of an old tracer has been fueled by several factors including superior diagnostic performance over standard 99mTc-based bone scintigraphy, growth in the availability of PET/CT imaging systems, increase in the number of regional commercial distribution centers for PET radiotracers, the recent concerns about potential chronic shortages with 99mTc based radiotracers, and the recent decision by the Centers for Medicare and Medicaid Services to reimburse for 18F-NaF PET/CT for evaluation of patients with known or suspected bone metastases through the National Oncologic PET Registry. The major goal of this article is to review the current evidence on the diagnostic utility of 18F-NaF in the imaging assessment of bone and joint in a variety of clinical conditions. PMID:25475379

  4. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  5. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Clinical development of CT-P10 and other biosimilar cancer therapeutics.

    PubMed

    Kim, Won Seog; Coiffier, Bertrand; Kwon, Hyuk-Chan; Kim, SuYeon

    2017-05-01

    Biosimilars are highly similar versions of approved biologic drugs that may confer equivalent efficacy at a reduced cost. Patents for several biological cancer therapeutics are past or approaching expiry, presenting an opportunity to increase affordability and global accessibility of key drugs through the development of biosimilars. To receive approval, a biosimilar must show no clinically meaningful differences from the reference product in terms of efficacy or safety. The first monoclonal antibody biosimilar cancer therapeutic to gain approval was CT-P10, a biosimilar of rituximab. Here, we review the oncology clinical development program for CT-P10, providing insights into the rationale for, and design of, CT-P10 clinical trials in patients with cancer. Trials of biosimilar cancer therapeutics in development are also discussed.

  7. Mild brain injury and anticoagulants: Less is enough.

    PubMed

    Campiglio, Laura; Bianchi, Francesca; Cattalini, Claudio; Belvedere, Daniela; Rosci, Chiara Emilia; Casellato, Chiara Livia; Secchi, Manuela; Saetti, Maria Cristina; Baratelli, Elena; Innocenti, Alessandro; Cova, Ilaria; Gambini, Chiara; Romano, Luca; Oggioni, Gaia; Pagani, Rossella; Gardinali, Marco; Priori, Alberto

    2017-08-01

    Despite the higher theoretical risk of traumatic intracranial hemorrhage (ICH) in anticoagulated patients with mild head injury, the value of sequential head CT scans to identify bleeding remains controversial. This study evaluated the utility of 2 sequential CT scans at a 48-hour interval (CT1 and CT2) in patients with mild head trauma (Glasgow Coma Scale 13-15) taking oral anticoagulants. We retrospectively evaluated the clinical records of all patients on chronic anticoagulation treatment admitted to the emergency department for mild head injury. A total of 344 patients were included, and 337 (97.9%) had a negative CT1. CT2 was performed on 284 of the 337 patients with a negative CT1 and was positive in 4 patients (1.4%), but none of the patients developed concomitant neurologic worsening or required neurosurgery. Systematic routine use of a second CT scan in mild head trauma in patients taking anticoagulants is expensive and clinically unnecessary.

  8. Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns.

    PubMed

    Rungruanganunt, Patchanee; Kelly, J Robert; Adams, Douglas J

    2010-12-01

    Internal three-dimensional (3D) "fit" of prostheses to prepared teeth is likely more important clinically than "fit" judged only at the level of the margin (i.e. marginal "opening"). This work evaluates two techniques for quantitatively defining 3D "fit", both using pre-cementation space impressions: X-ray microcomputed tomography (micro-CT) and quantitative optical analysis. Both techniques are of interest for comparison of CAD/CAM system capabilities and for documenting "fit" as part of clinical studies. Pre-cementation space impressions were taken of a single zirconia coping on its die using a low viscosity poly(vinyl siloxane) impression material. Calibration specimens of this material were fabricated between the measuring platens of a micrometre. Both calibration curves and pre-cementation space impression data sets were obtained by examination using micro-CT and quantitative optical analysis. Regression analysis was used to compare calibration curves with calibration sets. Micro-CT calibration data showed tighter 95% confidence intervals and was able to measure over a wider thickness range than for the optical technique. Regions of interest (e.g., lingual, cervical) were more easily analysed with optical image analysis and this technique was more suitable for extremely thin impression walls (<10-15μm). Specimen preparation is easier for micro-CT and segmentation parameters appeared to capture dimensions accurately. Both micro-CT and the optical method can be used to quantify the thickness of pre-cementation space impressions. Each has advantages and limitations but either technique has the potential for use as part of clinical studies or CAD/CAM protocol optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Adherence to Radiology Recommendations in a Clinical CT Lung Screening Program.

    PubMed

    Alshora, Sama; McKee, Brady J; Regis, Shawn M; Borondy Kitts, Andrea K; Bolus, Christopher C; McKee, Andrea B; French, Robert J; Flacke, Sebastian; Wald, Christoph

    2018-02-01

    Assess patient adherence to radiologist recommendations in a clinical CT lung cancer screening program. Patients undergoing CT lung cancer screening between January 12, 2012, and June 12, 2013, were included in this institutional review board-approved retrospective review. Patients referred from outside our institution were excluded. All patients met National Comprehensive Cancer Network Guidelines Lung Cancer Screening high-risk criteria. Full-time program navigators used a CT lung screening program management system to schedule patient appointments, generate patient result notification letters detailing the radiologist follow-up recommendation, and track patient and referring physician notification of missed appointments at 30, 60, and 90 days. To be considered adherent, patients could be no more than 90 days past due for their next recommended examination as of September 12, 2014. Patients who died, were diagnosed with cancer, or otherwise became ineligible for screening were considered adherent. Adherence rates were assessed across multiple variables. During the study interval, 1,162 high-risk patients were screened, and 261 of 1,162 (22.5%) outside referrals were excluded. Of the remaining 901 patients, 503 (55.8%) were male, 414 (45.9%) were active smokers, 377 (41.8%) were aged 65 to 73, and >95% were white. Of the 901 patients, 772 (85.7%) were adherent. Most common reasons for nonadherence were patient refusal of follow-up exam (66.7%), inability to successfully contact the patient (20.9%), and inability to obtain the follow-up order from the referring provider (7.8%); 23 of 901 (2.6%) were discharged for other reasons. High rates of adherence to radiologist recommendations are achievable for in-network patients enrolled in a clinical CT lung screening program. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies: Application to the Tyrolean Iceman.

    PubMed

    Panzer, Stephanie; Pernter, Patrizia; Piombino-Mascali, Dario; Jankauskas, Rimantas; Zesch, Stephanie; Rosendahl, Wilfried; Hotz, Gerhard; Zink, Albert R

    2017-12-01

    Purpose  Soft tissues make a skeleton into a mummy and they allow for a diagnosis beyond osteology. Following the approach of structured reporting in clinical radiology, a recently developed checklist was used to evaluate the soft tissue preservation status of the Tyrolean Iceman using computed tomography (CT). The purpose of this study was to apply the "Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies" to the Tyrolean Iceman, and to compare the Iceman's soft tissue preservation score to the scores calculated for other mummies. Materials and Methods  A whole-body (CT) (SOMATOM Definition Flash, Siemens, Forchheim, Germany) consisting of five scans, performed in January 2013 in the Department of Radiodiagnostics, Central Hospital, Bolzano, was used (slice thickness 0.6 mm; kilovolt ranging from 80 to 140). For standardized evaluation the "CT Checklist and Scoring System for the Assessment of Soft Tissue Preservation in Human Mummies" was used. Results  All checkpoints under category "A. Soft Tissues of Head and Musculoskeletal System" and more than half in category "B. Organs and Organ Systems" were observed. The scoring system accounted for a total score of 153 (out of 200). The comparison of the scores between the Iceman and three mummy collections from Vilnius, Lithuania, and Palermo, Sicily, as well as one Egyptian mummy resulted in overall higher soft tissue preservation scores for the Iceman. Conclusion  Application of the checklist allowed for standardized assessment and documentation of the Iceman's soft tissue preservation status. The scoring system allowed for a quantitative comparison between the Iceman and other mummies. The Iceman showed remarkable soft tissue preservation. Key Points   · The approach of structured reporting can be transferred to paleoradiology.. · The checklist allowed for standardized soft tissue assessment and documentation.. · The scoring system facilitated a quantitative comparison among mummies.. · Based on CT, the Tyrolean Iceman demonstrated remarkable soft tissue preservation.. Citation Format · Panzer S, Pernter P, Piombino-Mascali D et al. Checklist and Scoring System for the Assessment of Soft Tissue Preservation in CT Examinations of Human Mummies: Application to the Tyrolean Iceman. Fortschr Röntgenstr 2017; 189: 1152 - 1160. © Georg Thieme Verlag KG Stuttgart · New York.

  11. The impact of the introduction of PECARN head CT rules on the utilisation of head CT scans in a private tertiary hospital in Sub-Saharan Africa.

    PubMed

    Kobe, Isaac O; Qureshi, Mahmoud M; Hassan, Saidi; Oluoch-Olunya, David L

    2017-12-01

    The decision to order head CT scans to rule out clinically significant traumatic brain injury in mild head injury in children is made on the basis of clinical decision rules of which the Paediatric Emergency Care Applied Research Network (PECARN) CT head rules have been found to be most sensitive. The purpose of this study is to determine the proportion of head CT scans done for children with mild head injury and to determine disposition of patients from casualty after the introduction of PECARN head CT rules compared to the period before. The research question is "will introduction of the PECARN CT head rules reduce the proportion of head CT scans requested for children under 18 years with mild head injury at the AKUHN?" A before and after quasi experimental study with a study population including all children under 18 years presenting to the AKUHN with mild head injury and a Glasgow coma scale of 14 and above on presentation. Sample size was 85. A total of 42 patients files were analysed in the before study while 43 patients were selected for the after study. The median age was 5 years. The proportion of head CT scans reduced from 56% in the before group to 33% in the after group with no missed clinically significant traumatic brain injury. More patients were discharged home after evaluation in the after group (81%) than in the before group (58%). The number of head CT scans ordered reduced without missing any clinically significant traumatic brain injury.

  12. Locoregional outcomes in clinical stage IIB breast cancer after neoadjuvant therapy and mastectomy with or without radiation.

    PubMed

    Diaz, Dayssy A; Hurley, Judith; Reis, Isildinha; Takita, Cristiane; Zhao, Wei; Wright, Jean

    2014-12-01

    Low rates of locoregional recurrence (LRR) in patients with clinical stage IIB breast cancer (cT2N1 or cT3N0) who undergo neoadjuvant therapy (NAT) and mastectomy have been reported. We aimed to quantify the risk of LRR and the relationship between LRR and potential risk factors in this subset of patients. We conducted a retrospective review of 116 patients with clinical IIB breast cancer who underwent NAT followed by mastectomy +/- postmastectomy radiotherapy (PMRT) between 2000 and 2009. We estimated the rate of LRR by cumulative incidence. The effect of prognostic factors was examined by Gray's test and Fine and Gray's test. Median follow-up: 63 months. Median age: 49. 28.4% cT2N1 and 71.6% cT3N0. 62.1% of tumors were ER+, 22.6% HER2+, 19% triple negative (TN). All patients underwent NAT and mastectomy. The majority of patients (87%) received PMRT; 32.3% were treated to chest wall (CW) only, and 67.7% to CW plus supraclavicular (SCV) field. Compared to cT2N1, patients with cT3N0 disease were more likely to be pN0 (60% vs 27%, P = 0.005). There was no significant relationship between risk of LRR and pathologic complete response (pCR), use of PMRT, RT to SCV field, or TN status, but there was higher risk of LRR in cT2N1 than cT3N0 (HR 6.03, P = 0.015). LRR was more common in cT2N1 than in cT3N0 disease, emphasizing the negative prognostic implication of clinically node-positive presentation.

  13. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage. Micro-CT can also be used as a test bed for exploring the utility of several modes of X-ray image formation, such as the use of dual-energy X-ray subtraction, X-ray scatter, phase delay and refraction-based imaging for increasing the contrast amongst soft tissue components. With the recent commercial availability of high speed, multi-slice CT scanners which can be operated in dual-energy mode, some of these micro-CT scanner capabilities and insights are becoming implementable in those CT scanners. As a result, the potential diagnostic spectrum that can be addressed with those scanners is broadened considerably.

  14. PET/MRI in cancer patients: first experiences and vision from Copenhagen.

    PubMed

    Kjær, Andreas; Loft, Annika; Law, Ian; Berthelsen, Anne Kiil; Borgwardt, Lise; Löfgren, Johan; Johnbeck, Camilla Bardram; Hansen, Adam Espe; Keller, Sune; Holm, Søren; Højgaard, Liselotte

    2013-02-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear Medicine & PET at Rigshospitalet in Copenhagen we installed an integrated PET/MRI in December 2011. Here, we describe our first clinical PET/MR cases and discuss some of the areas within oncology where we envision promising future application of integrated PET/MR imaging in clinical routine. Cases described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations.

  15. WE-G-209-03: PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  16. WE-G-209-04: MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  17. CT abdominal imaging findings in patients with sickle cell disease: acute vaso-occlusive crisis, complications, and chronic sequelae.

    PubMed

    Gardner, Carly S; Boll, Daniel T; Bhosale, Priya; Jaffe, Tracy A

    2016-12-01

    Sickle cell disease (SCD) is the most prevalent hemoglobinopathy. Survival in patients with SCD has improved over the past few decades. These patients experience a lifetime of repeated acute pain crises, which are thought to result from sickling and microvascular occlusions; acute abdominal pain is common. Moreover, repeated crises often lead to organ dysfunction, such as asplenia, hepatic failure, and renal failure. The spleen, liver, biliary system, kidneys, and gastrointestinal tract can all be affected. Patients may undergo CT to further direct clinical management. We review the spectrum of CT imaging findings of abdominal manifestations in patients with SCD, from the acute microvascular occlusive pain crisis to the potential complications and chronic sequelae.

  18. Intravenous volume tomographic pulmonary angiography imaging

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-05-01

    This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.

  19. Hierarchical imaging of the human knee

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert

    2016-10-01

    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  20. A noble technique a using force-sensing resistor for immobilization-device quality assurance: A feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, Min-Seok; Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Kim, Kyeong-Hyeon; Shin, Dong-Seok; Noh, Yu-Yun; Koo, Hyun-Jae; Cheon, Geum Seong; Suh, Tae Suk; Kim, Siyong

    2016-03-01

    Many studies have reported that a patient can move even when an immobilization device is used. Researchers have developed an immobilization-device quality-assurance (QA) system that evaluates the validity of immobilization devices. The QA system consists of force-sensing-resistor (FSR) sensor units, an electric circuit, a signal conditioning device, and a control personal computer (PC) with in-house software. The QA system is designed to measure the force between an immobilization device and a patient's skin by using the FSR sensor unit. This preliminary study aimed to evaluate the feasibility of using the QA system in radiation-exposure situations. When the FSR sensor unit was irradiated with a computed tomography (CT) beam and a treatment beam from a linear accelerator (LINAC), the stability of the output signal, the image artifact on the CT image, and changing the variation on the patient's dose were tested. The results of this study demonstrate that this system is promising in that it performed within the error range (signal variation on CT beam < 0.30 kPa, root-mean-square error (RMSE) of the two CT images according to presence or absence of the FSR sensor unit < 15 HU, signal variation on the treatment beam < 0.15 kPa, and dose difference between the presence and the absence of the FSR sensor unit < 0.02%). Based on the obtained results, we will volunteer tests to investigate the clinical feasibility of the QA system.

  1. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment 18F-FDG PET/CT Imaging.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan B; van Dijk, Lisanne V; Muijs, Christina T; Burgerhof, Johannes G M; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Slump, Cornelis H; Mul, Véronique E M; Plukker, John Th M

    2017-05-01

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUV max in 18 F-FDG PET/CT imaging. To improve the prediction of response, we constructed a model to predict complete response to nCRT in EC based on pretreatment clinical parameters and 18 F-FDG PET/CT-derived textural features. Methods: From a prospectively maintained single-institution database, we reviewed 97 consecutive patients with locally advanced EC and a pretreatment 18 F-FDG PET/CT scan between 2009 and 2015. All patients were treated with nCRT (carboplatin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed clinical, geometric, and pretreatment textural features extracted from both 18 F-FDG PET and CT. The current most accurate prediction model with SUV max as a predictor variable was compared with 6 different response prediction models constructed using least absolute shrinkage and selection operator regularized logistic regression. Internal validation was performed to estimate the model's performances. Pathologic response was defined as complete versus incomplete response (Mandard tumor regression grade system 1 vs. 2-5). Results: Pathologic examination revealed 19 (19.6%) complete and 78 (80.4%) incomplete responders. Least absolute shrinkage and selection operator regularization selected the clinical parameters: histologic type and clinical T stage, the 18 F-FDG PET-derived textural feature long run low gray level emphasis, and the CT-derived textural feature run percentage. Introducing these variables to a logistic regression analysis showed areas under the receiver-operating-characteristic curve (AUCs) of 0.78 compared with 0.58 in the SUV max model. The discrimination slopes were 0.17 compared with 0.01, respectively. After internal validation, the AUCs decreased to 0.74 and 0.54, respectively. Conclusion: The predictive values of the constructed models were superior to the standard method (SUV max ). These results can be considered as an initial step in predicting tumor response to nCRT in locally advanced EC. Further research in refining the predictive value of these models is needed to justify omission of surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. A Novel Reporting System to Improve Accuracy in Appendicitis Imaging

    PubMed Central

    Godwin, Benjamin D.; Drake, Frederick T.; Simianu, Vlad V.; Shriki, Jabi E.; Hippe, Daniel S.; Dighe, Manjiri; Bastawrous, Sarah; Cuevas, Carlos; Flum, David; Bhargava, Puneet

    2015-01-01

    OBJECTIVE The purpose of this study was to ascertain if standardized radiologic reporting for appendicitis imaging increases diagnostic accuracy. MATERIALS AND METHODS We developed a standardized appendicitis reporting system that includes objective imaging findings common in appendicitis and a certainty score ranging from 1 (definitely not appendicitis) through 5 (definitely appendicitis). Four radiologists retrospectively reviewed the preoperative CT scans of 96 appendectomy patients using our reporting system. The presence of appendicitis-specific imaging findings and certainty scores were compared with final pathology. These comparisons were summarized using odds ratios (ORs) and the AUC. RESULTS The appendix was visualized on CT in 89 patients, of whom 71 (80%) had pathologically proven appendicitis. Imaging findings associated with appendicitis included appendiceal diameter (odds ratio [OR] = 14 [> 10 vs < 6 mm]; p = 0.002), periappendiceal fat stranding (OR = 8.9; p < 0.001), and appendiceal mucosal hyperenhancement (OR = 8.7; p < 0.001). Of 35 patients whose initial clinical findings were reported as indeterminate, 28 (80%) had appendicitis. In this initially indeterminate group, using the standardized reporting system, radiologists assigned higher certainty scores (4 or 5) in 21 of the 28 patients with appendicitis (75%) and lower scores (1 or 2) in five of the seven patients without appendicitis (71%) (AUC = 0.90; p = 0.001). CONCLUSION Standardized reporting and grading of objective imaging findings correlated well with postoperative pathology and may decrease the number of CT findings reported as indeterminate for appendicitis. Prospective evaluation of this reporting system on a cohort of patients with clinically suspected appendicitis is currently under way. PMID:26001230

  3. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.

    PubMed

    Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R

    2012-01-01

    (18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.

  4. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    PubMed

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  5. Development and first validation of a simplified CT-based classification system of soft tissue changes in large-head metal-on-metal total hip replacement: intra- and interrater reliability and association with revision rates in a uniform cohort of 664 arthroplasties.

    PubMed

    Boomsma, Martijn F; Edens, Mireille A; Van Lingen, Christiaan P; Warringa, Niek; Ettema, Harmen B; Verheyen, Cees C P M; Maas, Mario

    2015-08-01

    After implantation of a metal-on-metal total hip arthroplasty (MoM THA), a large incidence of pseudotumor formation has been described recently. Several centers have invited patients for follow-up in order to screen for pseudotumor formation. The spectrum of abnormalities found by CT in MoM THA patients can be unfamiliar to radiologists and orthopedic surgeons. Previously, a CT five-point grading scale has been published. In this paper, a simplification into a three-point classification system gives insight in the morphological distinction of abnormalities of the postoperative hip capsule in MoM implants in relation to the decision for revision. The reliability of this simplified classification regarding intra- and interrater reliability and its association with revision rate is investigated and discussed. All patients who underwent MoM THA in our hospital were invited for screening. Various clinical measures and CT scan were obtained in a cross-sectional fashion. A decision on revision surgery was made shortly after screening. CT scans were read in 582 patients, of which 82 patients were treated bilaterally. CT scans were independently single read by two board-certified radiologists and classified into categories I-V. In a second meeting, consensus was obtained. Categories were subsequently rubricated in class A (categories I and II), B (category III), and C (categories IV and V). Intra- and inter-radiologist agreement on MoM pathology was assessed by means of the weighted Cohen's kappa. Categorical data were presented as n (%), and tested by means of Fisher's exact test. Continuous data were presented as median (min-max) and tested by means of Mann-Whitney U test (two group comparison) or Kruskal-Wallis test (three group comparison). Logistic regression analysis was performed in order to study independence of CT class for association with revision surgery. Univariate statistically significant variables were entered in a multiple model. All statistical analysis was performed two-tailed using alpha 5% as the significance level. In total, 664 scores from 664 MoM hips obtained by two observers were available for analyses. Interobserver reliability for the non-simplified version (I-V) was κw = 0.71 (95% CI: 0.62-0.79), which indicates good agreement between the two musculoskeletal radiologists. Intra- and interobserver reliability for the simplified version (A-C) were respectively κw 0.78 (95% CI: 0.68-0.87), and κw = 0.71 (95% CI: 0.65-0.76). This indicates good agreement within and between the two observers. The simplified A-C version is significantly associated with revision exclusively due to MoM pathology, in both patients with unilateral MoM THA (p < 0.001) and patients with bilateral MoM THA (p < 0.044). The simplified A-C version is associated with several clinical measures. In patients with unilateral MoM THA, with or without contralateral THA, in situ time (p < 0.008), cobalt and chromium (p < 0.001) were statistically significant. In patients with bilateral MoM, cobalt (p < 0.001) and chromium (p < 0.027) were statistically significant. Revision is significantly associated with cup size (p < 0.001), anteversion of the cup (p < 0.004), serum ion levels of cobalt and chromium (p < 0.001) and the adapted classification system (p < 0.001). In univariate logistic regression analysis on revision, cup, anteversion of the cup, cobalt-chromium ion serum levels, and the simplified (A-C) CT category system were statistically significant. The simplified (A-C) CT category system was an independent associate of revision, in several multiple logistic regression models. The presented simplified CT grading system (A-C) in its first clinical validation on 48- and 64-multislice systems is reliable, showing good intra- and interrater reliability and is independently associated with revision surgery.

  6. Dedicated breast CT: geometric design considerations to maximize posterior breast coverage

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Karellas, Andrew; Emmons, Margaret M.; Moss, Lawrence J.; Hussain, Sarwat; Baker, Stephen P.

    2013-06-01

    An Institutional Review Board-approved protocol was used to quantify breast tissue inclusion in 52 women, under conditions simulating both craniocaudal (CC) and mediolateral oblique (MLO) views in mammography, dedicated breast CT in the upright subject position, and dedicated breast CT in the prone subject position. Using skin as a surrogate for the underlying breast tissue, the posterior aspect of the breast that is aligned with the chest-wall edge of the breast support in a screen-film mammography system was marked with the study participants positioned for CC and MLO views. The union of skin marks with the study participants positioned for CC and MLO views was considered to represent chest-wall tissue available for imaging with mammography and served as the reference standard. For breast CT, a prone stereotactic breast biopsy unit and a custom-fabricated barrier were used to simulate conditions during prone and upright breast CT, respectively. For the same breast marked on the mammography system, skin marks were made along the breast periphery that was just anterior to the apertures of the prone biopsy unit and the upright barrier. The differences in skin marks between subject positioning simulating breast CT (prone, upright) and mammography were quantified at six anatomic locations. For each location, at least one study participant had a skin mark from breast CT (prone, upright) posterior to mammography. However for all study participants, there was at least one anatomic location where the skin mark from mammography was posterior to that from breast CT (prone, upright) positioning. The maximum amount by which the skin mark from mammography was posterior to breast CT (prone and upright) over all six locations was quantified for each study participant and pair-wise comparison did not exhibit statistically significant difference between prone and upright breast CT (paired t- test, p = 0.4). Quantitatively, for 95% of the study participants the skin mark from mammography was posterior to breast CT (prone or upright) by at the most 9 mm over all six locations. Based on the study observations, geometric design considerations targeting chest-wall coverage with breast CT equivalent to mammography, wherein part of the x-ray beam images through the swale during breast CT are provided. Assuming subjects can extend their chest in to a swale, the optimal swale-depth required to achieve equivalent coverage with breast CT images as mammograms for 95% of the subjects varies in the range of ˜30-50 mm for clinical prototypes and was dependent on the system geometry.

  7. 3D dosimetry by optical-CT scanning

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2006-12-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.

  8. Is FDG PET/CT cost-effective for pre-operation staging of potentially operative non-small cell lung cancer? - From Chinese healthcare system perspective.

    PubMed

    Wang, Yu-ting; Huang, Gang

    2012-08-01

    The remarkable morbidity and mortality of lung cancer in the large population address major economic challenges to Chinese healthcare system. This study aims to assess the cost-effectiveness of fluorodeoxyglucose positron emission tomography (FDG PET)/CT for staging patients with non-small cell lung cancer (NSCLC) in China. Management of potentially operative NSCLC was modeled on decision analysis employing data in China. The strategies compared were conventional CT staging (strategy A), additional PET/CT in all patients (strategy B) or only in patients with normal-sized lymph nodes on CT (strategy C). Published medical data for Chinese patients was extracted. The costs corresponded to reimbursement by Chinese public health provider in 2010. Uncertainly of employed parameters was calculated in sensitivity analysis. Taking strategy A as baseline, the incremental cost-effectiveness ratio (ICER) of strategy B was 23,800RMB ($3500) per life year saved, which was acceptable in views of a developing country as China; while strategy C exhibited some loss of life years. Sensitivity analysis suggested the ICER (B-A) was raised more remarkably by a deterioration of PET specificity than by that of its sensitivity. The ICER was turned negative by PET specificity lower than 0.79. Economically, PET cost was proportional to the ICER (B-A), and decrease of palliative therapy cost could reduce both the ICER and overall cost. The PET/CT strategy is potentially cost-effective for management of NSCLC in China. Patients with nodal-positive CT results are not suggested to be excluded from further PET/CT. Furthermore, maintaining high specificity of PET in clinical scenarios is crucial. Prospective trials are warranted to transfer these results into policy making. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Multi-modal anatomical optical coherence tomography and CT for in vivo dynamic upper airway imaging

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Santosh; Bu, Ruofei; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-02-01

    We describe a novel, multi-modal imaging protocol for validating quantitative dynamic airway imaging performed using anatomical Optical Coherence Tomography (aOCT). The aOCT system consists of a catheter-based aOCT probe that is deployed via a bronchoscope, while a programmable ventilator is used to control airway pressure. This setup is employed on the bed of a Siemens Biograph CT system capable of performing respiratory-gated acquisitions. In this arrangement the position of the aOCT catheter may be visualized with CT to aid in co-registration. Utilizing this setup we investigate multiple respiratory pressure parameters with aOCT, and respiratory-gated CT, on both ex vivo porcine trachea and live, anesthetized pigs. This acquisition protocol has enabled real-time measurement of airway deformation with simultaneous measurement of pressure under physiologically relevant static and dynamic conditions- inspiratory peak or peak positive airway pressures of 10-40 cm H2O, and 20-30 breaths per minute for dynamic studies. We subsequently compare the airway cross sectional areas (CSA) obtained from aOCT and CT, including the change in CSA at different stages of the breathing cycle for dynamic studies, and the CSA at different peak positive airway pressures for static studies. This approach has allowed us to improve our acquisition methodology and to validate aOCT measurements of the dynamic airway for the first time. We believe that this protocol will prove invaluable for aOCT system development and greatly facilitate translation of OCT systems for airway imaging into the clinical setting.

  10. Transarterial Embolization of Anomalous Systemic Arterial Supply to Normal Basal Segments of the Lung.

    PubMed

    Jiang, Sen; Yu, Dong; Jie, Bing

    2016-09-01

    To evaluate transarterial embolization (TAE) for the management of anomalous systemic arterial (ASA) supply to normal basal segments of the lung. Thirteen patients with ASA supply to normal basal segments of the lung underwent TAE. All patients presented with hemoptysis and had complete-type anomalies on pre-TAE or post-TAE computed tomography (CT). The anomaly was unilateral in all patients; 11 lesions were located in the left lung and 2 in the right. All patients underwent embolization with coils (n = 10) or a vascular plug (n = 3). Procedural success, clinical efficacy, and complications were assessed. Mean post-TAE CT and clinical follow-up was 25.4 and 42.1 months, respectively. Technical success was achieved in 100 % of cases. Several changes were noted on follow-up CT: complete obstruction of the ASA in all cases, normal (n = 11) or decreased (n = 2) density of the affected lung parenchyma, reduction of the primary enlarged inferior pulmonary vein in all cases, and pulmonary infarction and thickening of the corresponding bronchial artery (n = 4). The main complication was pulmonary infarction in four cases. TAE is a safe, effective, and minimally invasive therapeutic option for patients with ASA supply to normal basal segments of the lung.

  11. Review of medical radiography and tomography with proton beams

    NASA Astrophysics Data System (ADS)

    Johnson, Robert P.

    2018-01-01

    The use of hadron beams, especially proton beams, in cancer radiotherapy has expanded rapidly in the past two decades. To fully realize the advantages of hadron therapy over traditional x-ray and gamma-ray therapy requires accurate positioning of the Bragg peak throughout the tumor being treated. A half century ago, suggestions had already been made to use protons themselves to develop images of tumors and surrounding tissue, to be used for treatment planning. The recent global expansion of hadron therapy, coupled with modern advances in computation and particle detection, has led several collaborations around the world to develop prototype detector systems and associated reconstruction codes for proton computed tomography (pCT), as well as more simple proton radiography, with the ultimate intent to use such systems in clinical treatment planning and verification. Recent imaging results of phantoms in hospital proton beams are encouraging, but many technical and programmatic challenges remain to be overcome before pCT scanners will be introduced into clinics. This review introduces hadron therapy and the perceived advantages of pCT and proton radiography for treatment planning, reviews its historical development, and discusses the physics related to proton imaging, the associated experimental and computation issues, the technologies used to attack the problem, contemporary efforts in detector and computational development, and the current status and outlook.

  12. Fractional flow reserve by computerized tomography and subsequent coronary revascularization

    PubMed Central

    Packard, René R. Sevag; Li, Dong; Budoff, Matthew J.; Karlsberg, Ronald P.

    2017-01-01

    Aims Fractional flow reserve by computerized tomography (FFR-CT) provides non-invasive functional assessment of the hemodynamic significance of coronary artery stenosis. We determined the FFR-CT values, receiver operator characteristic (ROC) curves, and predictive ability of FFR-CT for actual standard of care guided coronary revascularization. Methods and results Consecutive outpatients who underwent coronary CT angiography (coronary CTA) followed by invasive angiography over a 24-month period from 2012 to 2014 were identified. Studies that fit inclusion criteria (n = 75 patients, mean age 66, 75% males) were sent for FFR-CT analysis, and results stratified by coronary artery calcium (CAC) scores. Coronary CTA studies were re-interpreted in a blinded manner, and baseline FFR-CT values were obtained retrospectively. Therefore, results did not interfere with clinical decision-making. Median FFR-CT values were 0.70 in revascularized (n = 69) and 0.86 in not revascularized (n = 138) coronary arteries (P < 0.001). Using clinically established significance cut-offs of FFR-CT ≤0.80 and coronary CTA ≥70% stenosis for the prediction of clinical decision-making and subsequent coronary revascularization, the positive predictive values were 74 and 88% and negative predictive values were 96 and 84%, respectively. The area under the curve (AUC) for all studied territories was 0.904 for coronary CTA, 0.920 for FFR-CT, and 0.941 for coronary CTA combined with FFR-CT (P = 0.001). With increasing CAC scores, the AUC decreased for coronary CTA but remained higher for FFR-CT (P < 0.05). Conclusion The addition of FFR-CT provides a complementary role to coronary CTA and increases the ability of a CT-based approach to identify subsequent standard of care guided coronary revascularization. PMID:27469588

  13. Characterizing Clinical Genetic Counselors' Countertransference Experiences: an Exploratory Study.

    PubMed

    Reeder, Rebecca; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S

    2017-10-01

    Countertransference (CT) refers to conscious and unconscious emotions, fantasies, behaviors, perceptions, and psychological defenses genetic counselors experience in response to any aspect of genetic counseling situations (Weil 2010). Some authors theorize about the importance of recognizing and managing CT, but no studies solely aim to explore genetic counselors' experiences of the phenomenon. This study examined the extent to which clinical genetic counselors' perceive themselves as inclined to experience CT, gathered examples of CT encountered in clinical situations, and assessed their CT management strategies. An anonymous online survey, sent to NSGC members, yielded 127 usable responses. Participants completed Likert-type items rating their CT propensities; 57 of these individuals also provided examples of CT they experienced in their practice. Factor analysis of CT propensities tentatively suggested four factors: Control, Conflict Avoidance, Directiveness, and Self-Regulation, accounting for 38.5% of response variance. Thematic analysis of CT examples yielded five common triggers: general similarity to patient, medical/genetic similarity, angry patients, patient behaves differently from counselor expectations, and disclosing bad news; six common manifestations: being self-focused, projecting feelings onto the patient, intense emotional reaction to patient, being overly invested, disengagement, and physical reaction; five CT effects: disruption in rapport building, repaired empathy, over-identification, conversation does not reach fullest potential, and counselor is drained emotionally; and three management strategies: recognizing CT as it occurs, self-reflection, and consultation. Results suggest CT is a common experience, occurring in both "routine" and emotionally complex cases. Training programs, continuing education, and peer supervision might include discussion of CT, informed by examples from the present study, to increase genetic counselor awareness and skills for managing the phenomenon.

  14. Role of fluorine-18 fluorodeoxyglucose PET/CT in head and neck oncology: the point of view of the radiation oncologist

    PubMed Central

    Navarro, Arturo; del Hoyo, Olga; Gomez-Iturriaga, Alfonso; Alongi, Filippo; Medina, Jose A; Elicin, Olgun; Skanjeti, Andrea; Giammarile, Francesco; Bilbao, Pedro; Casquero, Francisco; de Bari, Berardino; Dal Pra, Alan

    2016-01-01

    Squamous cell carcinoma is the most common malignant tumour of the head and neck. The initial TNM staging, the evaluation of the tumour response during treatment, and the long-term surveillance are crucial moments in the approach to head and neck squamous cell carcinoma (HNSCC). Thus, at each of these moments, the choice of the best diagnostic tool providing the more precise and larger information is crucial. Positron emission tomography with fluorine-18 fludeoxyglucose integrated with CT (18F-FDG-PET/CT) rapidly gained clinical acceptance, and it has become an important imaging tool in routine clinical oncology. However, controversial data are currently available, for example, on the role of 18F-FDG-PET/CT imaging during radiotherapy planning, the prognostic value or its real clinical impact on treatment decisions. In this article, the role of 18F-FDG-PET/CT imaging in HNSCC during pre-treatment staging, radiotherapy planning, treatment response assessment, prognosis and follow-up is reviewed focusing on current evidence and controversial issues. A proposal on how to integrate 18F-FDG-PET/CT in daily clinical practice is also described. PMID:27416996

  15. SU-F-I-51: CT/MR Image Deformation: The Clinical Assessment QA in Target Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C; Chen, Y

    Purpose: To study the deformation effects in CT/MR image registration of head and neck (HN) cancers. We present a clinical indication in guiding and simplifying registration procedures of this process while CT images possessed artifacts. Methods: CT/MR image fusion provides better soft tissue contrast in intracranial GTV definition with artifacts. However, whether the fusion process should include the deformation process is questionable and not recommended. We performed CT/MR image registration of a HN patient with tonsil GTV and nodes delineation on Varian Velocity™ system. Both rigid transformation and deformable registration of the same CT/MR imaging data were processed separately. Physician’smore » selection of target delineation was implemented to identify the variations. Transformation matrix was shown with visual identification, as well as the deformation QA numbers and figures were assessed. Results: The deformable CT/MR images were traced with the calculated matrix, both translation and rotational parameters were summarized. In deformable quality QA, the calculated Jacobian matrix was analyzed, which the min/mean/max of 0.73/0/99/1.37, respectively. Jacobian matrix of right neck node was 0.84/1.13/1.41, which present dis-similarity of the nodal area. If Jacobian = 1, the deformation is at the optimum situation. In this case, the deformation results have shown better target delineation for CT/MR deformation than rigid transformation. Though the root-mean-square vector difference is 1.48 mm, with similar rotational components, the cord and vertebrae position were aligned much better in the deformable MR images than the rigid transformation. Conclusion: CT/MR with/without image deformation presents similar image registration matrix; there were significant differentiate the anatomical structures in the region of interest by deformable process. Though vendor suggested only rigid transformation between CT/MR assuming the geometry remain similar, our findings indicated with patient positional variations, deformation registration is needed to generate proper GTV coverage, which will be irradiated more accurately in the following boost phase.« less

  16. Prevalence and treatment outcomes of routine Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis testing during antenatal care, Gaborone, Botswana.

    PubMed

    Wynn, Adriane; Ramogola-Masire, Doreen; Gaolebale, Ponatshego; Moshashane, Neo; Sickboy, Ontiretse; Duque, Sofia; Williams, Elizabeth; Doherty, Klara; Klausner, Jeffrey D; Morroni, Chelsea

    2018-05-01

    Chlamydia trachomatis (CT) , Neisseria gonorrhoeae (NG) and Trichomonas vaginalis (TV) are curable, mostly asymptomatic, STIs that cause adverse maternal and perinatal outcomes. Most countries do not test for those infections during antenatal care. We implemented a CT, NG and TV testing and treatment programme in an antenatal clinic in Gaborone, Botswana. We conducted a prospective study in the antenatal clinic at Princess Marina Hospital in Gaborone, Botswana. We offered pregnant women who were 18 years or older and less than 35 weeks of gestation, CT, NG and TV testing using self-collected vaginal swabs. Testing was conducted using a GeneXpert® CT/NG and TV system. Those who tested positive were given directly observed antibiotic therapy and asked to return for a test of cure. We determined the prevalence of infections, uptake of treatment and proportion cured. The relationships between positive STI test and participant characteristics were assessed. We enrolled 400 pregnant women. Fifty-four (13.5%) tested positive for CT, NG and/or TV: 31 (8%) for CT, 5 (1.3%) for NG and 21 (5%) for TV. Among those who tested positive, 74% (40) received same-day, in person results and treatment. Among those who received delayed results (6), 67% (4) were treated. Statistical comparisons showed that being unmarried and HIV infected were positively association CT, NG and/or TV infection. Self-reported STI symptoms were not associated with CT, NG and/or TV infection. The prevalence of CT, NG and/or TV was high, particularly among women with HIV infection. Among women with CT, NG and/or TV infection, those who received same-day results were more likely to be treated than those who received delayed results. More research is needed on the costs and benefits of integrating highly sensitive and specific STI testing into antenatal care in Southern Africa. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    PubMed

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  18. A dedicated breast-PET/CT scanner: Evaluation of basic performance characteristics.

    PubMed

    Raylman, Raymond R; Van Kampen, Will; Stolin, Alexander V; Gong, Wenbo; Jaliparthi, Gangadhar; Martone, Peter F; Smith, Mark F; Sarment, David; Clinthorne, Neal H; Perna, Mark

    2018-04-01

    Application of advanced imaging techniques, such as PET and x ray CT, can potentially improve detection of breast cancer. Unfortunately, both modalities have challenges in the detection of some lesions. The combination of the two techniques, however, could potentially lead to an overall improvement in diagnostic breast imaging. The purpose of this investigation is to test the basic performance of a new dedicated breast-PET/CT. The PET component consists of a rotating pair of detectors. Its performance was evaluated using the NEMA NU4-2008 protocols. The CT component utilizes a pulsed x ray source and flat panel detector mounted on the same gantry as the PET scanner. Its performance was assessed using specialized phantoms. The radiation dose to a breast during CT imaging was explored by the measurement of free-in-air kerma and air kerma measured at the center of a 16 cm-diameter PMMA cylinder. Finally, the combined capabilities of the system were demonstrated by imaging of a micro-hot-rod phantom. Overall, performance of the PET component is comparable to many pre-clinical and other dedicated breast-PET scanners. Its spatial resolution is 2.2 mm, 5 mm from the center of the scanner using images created with the single-sliced-filtered-backprojection algorithm. Peak NECR is 24.6 kcps; peak sensitivity is 1.36%; the scatter fraction is 27%. Spatial resolution of the CT scanner is 1.1 lp/mm at 10% MTF. The free-in-air kerma is 2.33 mGy, while the PMMA-air kerma is 1.24 mGy. Finally, combined imaging of a micro-hot-rod phantom illustrated the potential utility of the dual-modality images produced by the system. The basic performance characteristics of a new dedicated breast-PET/CT scanner are good, demonstrating that its performance is similar to current dedicated PET and CT scanners. The potential value of this system is the capability to produce combined duality-modality images that could improve detection of breast disease. The next stage in development of this system is testing with more advanced phantoms and human subjects. © 2018 American Association of Physicists in Medicine.

  19. Significant Suppression of CT Radiation-Induced DNA Damage in Normal Human Cells by the PrC-210 Radioprotector.

    PubMed

    Jermusek, Frank; Benedict, Chelsea; Dreischmeier, Emma; Brand, Michael; Uder, Michael; Jeffery, Justin J; Ranallo, Frank N; Fahl, William E

    2018-05-21

    While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an • OH pulse reduced to background the • OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.

  20. TH-C-18A-08: A Management Tool for CT Dose Monitoring, Analysis, and Protocol Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chan, F; Newman, B

    2014-06-15

    Purpose: To develop a customizable tool for enterprise-wide managing of CT protocols and analyzing radiation dose information of CT exams for a variety of quality control applications Methods: All clinical CT protocols implemented on the 11 CT scanners at our institution were extracted in digital format. The original protocols had been preset by our CT management team. A commercial CT dose tracking software (DoseWatch,GE healthcare,WI) was used to collect exam information (exam date, patient age etc.), scanning parameters, and radiation doses for all CT exams. We developed a Matlab-based program (MathWorks,MA) with graphic user interface which allows to analyze themore » scanning protocols with the actual dose estimates, and compare the data to national (ACR,AAPM) and internal reference values for CT quality control. Results: The CT protocol review portion of our tool allows the user to look up the scanning and image reconstruction parameters of any protocol on any of the installed CT systems among about 120 protocols per scanner. In the dose analysis tool, dose information of all CT exams (from 05/2013 to 02/2014) was stratified on a protocol level, and within a protocol down to series level, i.e. each individual exposure event. This allows numerical and graphical review of dose information of any combination of scanner models, protocols and series. The key functions of the tool include: statistics of CTDI, DLP and SSDE, dose monitoring using user-set CTDI/DLP/SSDE thresholds, look-up of any CT exam dose data, and CT protocol review. Conclusion: our inhouse CT management tool provides radiologists, technologists and administration a first-hand near real-time enterprise-wide knowledge on CT dose levels of different exam types. Medical physicists use this tool to manage CT protocols, compare and optimize dose levels across different scanner models. It provides technologists feedback on CT scanning operation, and knowledge on important dose baselines and thresholds.« less

  1. Can computed tomography volumetry of the renal cortex replace MAG3-scintigraphy in all patients for determining split renal function?

    PubMed

    Houbois, Christian; Haneder, Stefan; Merkt, Martin; Morelli, John N; Schmidt, Matthias; Hellmich, Martin; Mueller, Roman-Ulrich; Wahba, Roger; Maintz, David; Puesken, Michael

    2018-06-01

    The current gold standard for determination of split renal function (SRF) is Tc-99m-mercapto-acetyltriglycin (MAG3) scintigraphy. Initial studies comparing MAG3-scintigraphy and CT-based renal cortex volumetry (RCV) for calculation of SRF have shown similar results in highly selected patient collectives with normal renal function (i.e. living kidney donors). This study aims to compare MAG3-scintigraphy and CT-RCV within a large unselected patient collective including patients with impaired renal function. For this assessment, 279 datasets (131 men, 148 women; mean age: 54.2 ± 12.9 years, range: 24-84 years) of patients who underwent MAG3-scintigraphy and contrast-enhanced abdominal CT within two weeks were retrospectively analyzed. Two independent readers assessed the CT-RCV in all CT datasets using a semi-automated volumetry tool. The MAG3-scintigraphy and CT-RCV methods were compared, stratified for the eGFR. Statistical analysis included descriptive statistics as well as inter- observer agreement. The absolute mean difference between the percentage contribution of the left and the right kidneys in total MAG3-clearance was 8.6%. Independent of eGFR, an overall sufficient agreement between both methods was established in all patients. A relatively small, tolerable systemic error resulted in an underestimation (max. 2%) of the left renal contribution to overall RCV. The results demonstrate that CT-RCV is a potential clinical replacement for MAG3-scintigraphy for calculation of SRF: CT-RCV demonstrates clinically tolerable differences with MAG3-scintigraphy, independent of patient eGFR. The relative complexity of the RCV method utilized is a potential limitation and may have contributed to the acceptable but only fair to moderate level of intra-reader reliability. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Dose uniformity analysis among ten 16-slice same-model CT scanners.

    PubMed

    Erdi, Yusuf Emre

    2012-01-01

    With the introduction of multislice scanners, computed tomographic (CT) dose optimization has become important. The patient-absorbed dose may differ among the scanners although they are the same type and model. To investigate the dose output variation of the CT scanners, we designed the study to analyze dose outputs of 10 same-model CT scanners using 3 clinical protocols. Ten GE Lightspeed (GE Healthcare, Waukesha, Wis) 16-slice scanners located at main campus and various satellite locations of our institution have been included in this study. All dose measurements were performed using poly (methyl methacrylate) (PMMA) head (diameter, 16 cm) and body (diameter, 32 cm) phantoms manufactured by Radcal (RadCal Corp, Monrovia, Calif) using a 9095 multipurpose analyzer with 10 × 9-3CT ion chamber both from the same manufacturer. Ion chamber is inserted into the peripheral and central axis locations and volume CT dose index (CTDIvol) is calculated as weighted average of doses at those locations. Three clinical protocol settings for adult head, high-resolution chest, and adult abdomen are used for dose measurements. We have observed up to 9.4% CTDIvol variation for the adult head protocol in which the largest variation occurred among the protocols. However, head protocol uses higher milliampere second values than the other 2 protocols. Most of the measured values were less than the system-stored CTDIvol values. It is important to note that reduction in dose output from tubes as they age is expected in addition to the intrinsic radiation output fluctuations of the same scanner. Although the same model CT scanners were used in this study, it is possible to see CTDIvol variation in standard patient scanning protocols of head, chest, and abdomen. The compound effect of the dose variation may be larger with higher milliampere and multiphase and multilocation CT scans.

  3. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    PubMed

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  4. Stationary digital chest tomosynthesis for coronary artery calcium scoring

    NASA Astrophysics Data System (ADS)

    Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.

  5. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model.

    PubMed

    Rössig, Christina; Angrisani, Nina; Helmecke, Patrick; Besdo, Silke; Seitz, Jan-Marten; Welke, Bastian; Fedchenko, Nickolay; Kock, Heiko; Reifenrath, Janin

    2015-10-01

    The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (μCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. μCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (μ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Clinical manifestations that predict abnormal brain computed tomography (CT) in children with minor head injury.

    PubMed

    Alharthy, Nesrin; Al Queflie, Sulaiman; Alyousef, Khalid; Yunus, Faisel

    2015-01-01

    Computed tomography (CT) used in pediatric pediatrics brain injury (TBI) to ascertain neurological manifestations. Nevertheless, this practice is associated with adverse effects. Reports in the literature suggest incidents of morbidity and mortality in children due to exposure to radiation. Hence, it is found imperative to search for a reliable alternative. The aim of this study is to find a reliable clinical alternative to detect an intracranial injury without resorting to the CT. Retrospective cross-sectional study was undertaken in patients (1-14 years) with blunt head injury and having a Glasgow Coma Scale (GCS) of 13-15 who had CT performed on them. Using statistical analysis, the correlation between clinical examination and positive CT manifestation is analyzed for different age-groups and various mechanisms of injury. No statistically significant association between parameteres such as Loss of Consciousness, 'fall' as mechanism of injury, motor vehicle accidents (MVA), more than two discrete episodes of vomiting and the CT finding of intracranial injury could be noted. Analyzed data have led to believe that GCS of 13 at presentation is the only important clinical predictor of intracranial injury. Retrospective data, small sample size and limited number of factors for assessing clinical manifestation might present constraints on the predictive rule that was derived from this review. Such limitations notwithstanding, the decision to determine which patients should undergo neuroimaging is encouraged to be based on clinical judgments. Further analysis with higher sample sizes may be required to authenticate and validate findings.

  7. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system

    PubMed Central

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo; Li, Ke; Budde, Adam; Hsieh, Jiang; Chen, Guang-Hong

    2016-01-01

    Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of its NPS was found to be different from that of a peripheral ROI in the centered object, even when the physical positions of the two ROIs relative to the isocenter were the same. (3) The potential clinical impact of the highly anisotropic NPS, caused by the interplay of the bowtie filter and position of the image object, was highlighted in images of specific bar patterns oriented at different angles. The visual perception of the bar patterns was found to be strongly dependent on their orientation. Conclusions: The NPS of CT depends strongly on the bowtie filter and object position. Even if the location of the ROI with respect to the isocenter is fixed, there can be different symmetries in the NPS, which depend on the object position and the size of the bowtie filter. For an isolated off-centered object, the NPS of its CT images cannot be represented by the NPS measured from a centered object. PMID:27487866

  8. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo

    2016-08-15

    Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object locationmore » in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of its NPS was found to be different from that of a peripheral ROI in the centered object, even when the physical positions of the two ROIs relative to the isocenter were the same. (3) The potential clinical impact of the highly anisotropic NPS, caused by the interplay of the bowtie filter and position of the image object, was highlighted in images of specific bar patterns oriented at different angles. The visual perception of the bar patterns was found to be strongly dependent on their orientation. Conclusions: The NPS of CT depends strongly on the bowtie filter and object position. Even if the location of the ROI with respect to the isocenter is fixed, there can be different symmetries in the NPS, which depend on the object position and the size of the bowtie filter. For an isolated off-centered object, the NPS of its CT images cannot be represented by the NPS measured from a centered object.« less

  9. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2)

    PubMed Central

    2012-01-01

    Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247

  10. Value of PET/CT and MR Lymphography in Treatment of Prostate Cancer Patients With Lymph Node Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortuin, Ansje S., E-mail: A.Fortuin@rad.umcn.nl; Deserno, Willem M.L.L.G.; Meijer, Hanneke J.M.

    2012-11-01

    Purpose: To determine the clinical value of two novel molecular imaging techniques: {sup 11}C-choline positron emission tomography (PET)/computed tomography (CT) and ferumoxtran-10 enhanced magnetic resonance imaging (magnetic resonance lymphography [MRL]) for lymph node (LN) treatment in prostate cancer (PCa) patients. Therefore, we evaluated the ability of PET/CT and MRL to assess the number, size, and location of LN metastases in patients with primary or recurrent PCa. Methods and Materials: A total of 29 patients underwent MRL and PET/CT for LN evaluation. The MRL and PET/CT data were analyzed independently. The number, size, and location of the LN metastases were determined.more » The location was described as within or outside the standard clinical target volume for elective pelvic irradiation as defined by the Radiation Therapy Oncology Group. Subsequently, the results from MRL and PET/CT were compared. Results: Of the 738 LNs visible on MRL, 151 were positive in 23 of 29 patients. Of the 132 LNs visible on PET/CT, 34 were positive in 13 of 29 patients. MRL detected significantly more positive LNs (p < 0.001) in more patients than PET/CT (p = 0.002). The mean diameter of the detected suspicious LNs on MRL was significantly smaller than those detected by PET/CT, 4.9 mm and 8.4 mm, respectively (p < 0.0001). In 14 (61%) of 23 patients, suspicious LNs were found outside the clinical target volume with MRL and in 4 (31%) of 13 patients with PET/CT. Conclusion: In patients with PCa, both molecular imaging techniques, MRL and {sup 11}C-choline PET/CT, can detect LNs suspicious for metastasis, irrespective of the existing size and shape criteria for CT and conventional magnetic resonance imaging. On MRL and PET/CT, 61% and 31% of the suspicious LNs were located outside the conventional clinical target volume. Therefore, these techniques could help to individualize treatment selection and enable image-guided radiotherapy for patients with PCa LN metastases.« less

  11. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer.

    PubMed

    Canters, Richard A; Lips, Irene M; Wendling, Markus; Kusters, Martijn; van Zeeland, Marianne; Gerritsen, Rianne M; Poortmans, Philip; Verhoef, Cornelia G

    2016-10-01

    Creating an individualized tissue equivalent material build-up (i.e. bolus) for electron beam radiation therapy is complex and highly labour-intensive. We implemented a new clinical workflow in which 3D printing technology is used to create the bolus. A patient-specific bolus is designed in the treatment planning system (TPS) and a shell around it is created in the TPS. The shell is printed and subsequently filled with silicone rubber to make the bolus. Before clinical implementation we performed a planning study with 11 patients to evaluate the difference in tumour coverage between the designed 3D-print bolus and the clinically delivered plan with manually created bolus. For the first 15 clinical patients a second CT scan with the 3D-print bolus was performed to verify the geometrical accuracy. The planning study showed that the V85% of the CTV was on average 97% (3D-print) vs 88% (conventional). Geometric comparison of the 3D-print bolus to the originally contoured bolus showed a high similarity (DSC=0.89). The dose distributions on the second CT scan with the 3D print bolus in position showed only small differences in comparison to the original planning CT scan. The implemented workflow is feasible, patient friendly, safe, and results in high quality dose distributions. This new technique increases time efficiency. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Evaluation of the BreastSimulator software platform for breast tomography

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Bliznakova, K.; Sechopoulos, I.; Boone, J. M.; Di Lillo, F.; Sarno, A.; Castriconi, R.; Russo, P.

    2017-08-01

    The aim of this work was the evaluation of the software BreastSimulator, a breast x-ray imaging simulation software, as a tool for the creation of 3D uncompressed breast digital models and for the simulation and the optimization of computed tomography (CT) scanners dedicated to the breast. Eight 3D digital breast phantoms were created with glandular fractions in the range 10%-35%. The models are characterised by different sizes and modelled realistic anatomical features. X-ray CT projections were simulated for a dedicated cone-beam CT scanner and reconstructed with the FDK algorithm. X-ray projection images were simulated for 5 mono-energetic (27, 32, 35, 43 and 51 keV) and 3 poly-energetic x-ray spectra typically employed in current CT scanners dedicated to the breast (49, 60, or 80 kVp). Clinical CT images acquired from two different clinical breast CT scanners were used for comparison purposes. The quantitative evaluation included calculation of the power-law exponent, β, from simulated and real breast tomograms, based on the power spectrum fitted with a function of the spatial frequency, f, of the form S(f)  =  α/f   β . The breast models were validated by comparison against clinical breast CT and published data. We found that the calculated β coefficients were close to that of clinical CT data from a dedicated breast CT scanner and reported data in the literature. In evaluating the software package BreastSimulator to generate breast models suitable for use with breast CT imaging, we found that the breast phantoms produced with the software tool can reproduce the anatomical structure of real breasts, as evaluated by calculating the β exponent from the power spectral analysis of simulated images. As such, this research tool might contribute considerably to the further development, testing and optimisation of breast CT imaging techniques.

  13. Sci-Thur PM – Brachytherapy 03: Identifying the impact of seroma visualization on permanent breast seed implant brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Daniel; Batchelar, Deidre; Hilts, Michelle

    Purpose: Uncertainties in target identification can reduce treatment accuracy in permanent breast seed implant (PBSI) brachytherapy. This study evaluates the relationship between seroma visualization and seed placement accuracy. Methods: Spatially co-registered CT and 3D ultrasound (US) images were acquired for 10 patients receiving PBSI. Seromas were retrospectively contoured independently by 3 radiation oncologists on both CT and US and respective consensus volumes were defined, CTV{sub CT} and CTV{sub US}. The seroma clarity and inter-user conformity index (CI), as well as inter-modality CI, volume, and positional differences were evaluated. Correlations with seed placement accuracy were then assessed. CTVs were expanded bymore » 1.25cm to create PTV{sub CT} and PTV{sub US} and evaluate the conformity with PTV{sub Clinical} (CTV{sub Clinical}+1.25cm) used in treatment planning. The change in PTV coincidence by expanding PTV{sub Clinical} by 0.25cm was determined. Results: CTV{sub US} were a mean 68 ± 12% smaller than CTV{sub CT} and generally had improved clarity and inter-user conformity. No correlations between seed displacement and CTV{sub US}-CTV{sub CT} positional difference or CI were observed. Greater seed displacements were associated with larger CTV{sub US}-CTV{sub CT} volume differences (r=−0.65) and inter-user CT CI (r=−0.74). A median (range) 88% (71–99%) of PTV{sub CT} and 83% (69–100%) of PTV{sub US} were contained within PTV{sub Clinical}. Expanding treatment margins to 1.5cm increased coincidence to 98% (86–100%) and 94% (82–100%), respectively. Conclusions: Differences in seroma visualization impacts seed displacement in PBSI. Reducing dependence on CT by incorporating 3DUS into target identification, or expanding CT-based treatment margins to 1.5cm may reduce or mitigate uncertainties related to seroma visualization.« less

  14. Morphological evaluation of clefts of the lip, palate, or both in dogs.

    PubMed

    Peralta, Santiago; Fiani, Nadine; Kan-Rohrer, Kimi H; Verstraete, Frank J M

    2017-08-01

    OBJECTIVE To systematically characterize the morphology of cleft lip, cleft palate, and cleft lip and palate in dogs. ANIMALS 32 client-owned dogs with clefts of the lip (n = 5), palate (23), or both (4) that had undergone a CT or cone-beam CT scan of the head prior to any surgical procedures involving the oral cavity or face. PROCEDURES Dog signalment and skull type were recorded. The anatomic form of each defect was characterized by use of a widely used human oral-cleft classification system on the basis of CT findings and clinical images. Other defect morphological features, including shape, relative size, facial symmetry, and vomer involvement, were also recorded. RESULTS 9 anatomic forms of cleft were identified. Two anatomic forms were identified in the 23 dogs with cleft palate, in which differences in defect shape and size as well as vomer abnormalities were also evident. Seven anatomic forms were observed in 9 dogs with cleft lip or cleft lip and palate, and most of these dogs had incisive bone abnormalities and facial asymmetry. CONCLUSIONS AND CLINICAL RELEVANCE The morphological features of congenitally acquired cleft lip, cleft palate, and cleft lip and palate were complex and varied among dogs. The features identified here may be useful for surgical planning, developing of clinical coding schemes, or informing genetic, embryological, or clinical research into birth defects in dogs and other species.

  15. Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.

    PubMed

    Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.

  16. BrachyView: multiple seed position reconstruction and comparison with CT post-implant dosimetry

    NASA Astrophysics Data System (ADS)

    Alnaghy, S.; Loo, K. J.; Cutajar, D. L.; Jalayer, M.; Tenconi, C.; Favoino, M.; Rietti, R.; Tartaglia, M.; Carriero, F.; Safavi-Naeini, M.; Bucci, J.; Jakubek, J.; Pospisil, S.; Zaider, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Petasecca, M.

    2016-05-01

    BrachyView is a novel in-body imaging system utilising high-resolution pixelated silicon detectors (Timepix) and a pinhole collimator for brachytherapy source localisation. Recent studies have investigated various options for real-time intraoperative dynamic dose treatment planning to increase the quality of implants. In a previous proof-of-concept study, the justification of the pinhole concept was shown, allowing for the next step whereby multiple active seeds are implanted into a PMMA phantom to simulate a more realistic clinical scenario. In this study, 20 seeds were implanted and imaged using a lead pinhole of 400 μ m diameter. BrachyView was able to resolve the seed positions within 1-2 mm of expected positions, which was verified by co-registering with a full clinical post-implant CT scan.

  17. Diagnostic performance and impact on patient management of 68Ga-DOTA-TOC PET/CT for detecting osteomalacia-associated tumours.

    PubMed

    Paquet, Marie; Gauthé, Mathieu; Zhang Yin, Jules; Nataf, Valérie; Bélissant, Ophélie; Orcel, Philippe; Roux, Christian; Talbot, Jean-Noël; Montravers, Françoise

    2018-03-12

    Oncogenic osteomalacia is an endocrine disorder induced by small benign tumours (TIO) producing excessive fibroblast growth factor-23 (FGF23). The only way of curing oncogenic osteomalacia is surgical resection of the culprit TIO, which is extremely difficult to detect using conventional imaging modalities due to its small size and variable location in the body. Since TIO frequently overexpress somatostatin receptors, a clinical utility of SPECT or PET with radiolabelled somatostatin analogues has been reported. Among them, 68 Ga-DOTA-TOC has recently been granted a marketing authorization, facilitating its routine application. We report here the results of the first series evaluating the diagnostic performance of 68 Ga-DOTA-TOC PET/CT in detecting TIO and its impact on patient management. 68 Ga-DOTA-TOC PET/CT and clinical and imaging data from 15 patients with clinical and biochemical signs of oncogenic osteomalacia were retrospectively reviewed. The 68 Ga-DOTA-TOC PET/CT findings were compared with the results of post-surgical pathology and clinical and biochemical follow-up. 68 Ga-DOTA-TOC PET/CT resulted in the detection of one focus suspicious for TIO in nine of 15 patients (60%), and a tumour was surgically removed in eight. Post-operative pathology confirmed a TIO in those eight patients whose symptoms diminished promptly and biochemical anomalies resolved. 68 Ga-DOTA-TOC PET/CT sensitivity, specificity and accuracy were 73%, 67% and 71%, respectively. 68 Ga-DOTA-TOC PET/CT findings affected patient management in 67% of cases. In particular, 68 Ga-DOTA-TOC PET/CT was able to detect the TIO with a negative or a false-positive result of a previous 111 In-pentetreotide SPECT/CT in 5/8 patients (63%) or a previous FDG PET/CT in 7/11 patients (64%). No close relationship was found between the positivity of 68 Ga-DOTA-TOC PET/CT and the serum level of a biochemical marker. However, a true-positive result of 68 Ga-DOTA-TOC PET/CT was obtained in only one patient with a non-elevated serum level of FGF23. 68 Ga-DOTA-TOC PET/CT is an accurate imaging modality in the detection of TIO; in particular, it is worthwhile after failure of somatostatin receptor SPECT(/CT) or FDG PET/CT.

  18. Clinical utility of computed tomographic lung volumes in patients with chronic obstructive pulmonary disease.

    PubMed

    Lee, Jae Seung; Lee, Sang-Min; Seo, Joon Beom; Lee, Sei Won; Huh, Jin Won; Oh, Yeon-Mok; Lee, Sang-Do

    2014-01-01

    Published data concerning the utility of computed tomography (CT)-based lung volumes are limited to correlation with lung function. The aim of this study was to evaluate the clinical utility of the CT expiratory-to-inspiratory lung volume ratio (CT Vratio) by assessing the relationship with clinically relevant outcomes. A total of 75 stable chronic obstructive pulmonary disease (COPD) patients having pulmonary function testing and volumetric CT at full inspiration and expiration were retrospectively evaluated. Inspiratory and expiratory CT lung volumes were measured using in-house software. Correlation of the CT Vratio with patient-centered outcomes, including the modified Medical Research Council (MMRC) dyspnea score, the 6-min walk distance (6MWD), the St. George's Respiratory Questionnaire (SGRQ) score, and multidimensional COPD severity indices, such as the BMI, airflow obstruction, dyspnea, and exercise capacity index (BODE) and age, dyspnea, and airflow obstruction (ADO), were analyzed. The CT Vratio correlated significantly with BMI (r = -0.528, p < 0.001). The CT Vratio was also significantly associated with MMRC dyspnea (r = 0.387, p = 0.001), 6MWD (r = -0.459, p < 0.001), and SGRQ (r = 0.369, p = 0.001) scores. Finally, the CT Vratio had significant correlations with the BODE and ADO multidimensional COPD severity indices (r = 0.605, p < 0.001; r = 0.411, p < 0.001). The CT Vratio had significant correlations with patient-centered outcomes and multidimensional COPD severity indices. © 2013 S. Karger AG, Basel.

  19. Physical and clinical performance of the mCT time-of-flight PET/CT scanner.

    PubMed

    Jakoby, B W; Bercier, Y; Conti, M; Casey, M E; Bendriem, B; Townsend, D W

    2011-04-21

    Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.

  20. Physical and clinical performance of the mCT time-of-flight PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Jakoby, B. W.; Bercier, Y.; Conti, M.; Casey, M. E.; Bendriem, B.; Townsend, D. W.

    2011-04-01

    Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.

  1. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  2. Clinical Utility of Preoperative Computed Tomography in Patients With Endometrial Cancer.

    PubMed

    Bogani, Giorgio; Gostout, Bobbie S; Dowdy, Sean C; Multinu, Francesco; Casarin, Jvan; Cliby, William A; Frigerio, Luigi; Kim, Bohyun; Weaver, Amy L; Glaser, Gretchen E; Mariani, Andrea

    2017-10-01

    The aim of this study was to determine the clinical utility of routine preoperative pelvic and abdominal computed tomography (CT) examinations in patients with endometrial cancer (EC). We retrospectively reviewed records from patients with EC who underwent a preoperative endometrial biopsy and had surgery at our institution from January 1999 through December 2008. In the subset with an abdominal CT scan obtained within 3 months before surgery, we evaluated the clinical utility of the CT scan. Overall, 224 patients (18%) had a preoperative endometrial biopsy and an available CT scan. Gross intra-abdominal disease was observed in 10% and 20% of patients with preoperative diagnosis of endometrioid G3 and type II EC, respectively, whereas less than 5% of patients had a preoperative diagnosis of hyperplasia or low-grade EC. When examining retroperitoneal findings, we observed that a negative CT scan of the pelvis did not exclude the presence of pelvic node metastasis. Alternately, a negative CT scan in the para-aortic area generally reduced the probability of finding para-aortic dissemination but with an overall low sensitivity (42%). However, the sensitivity for para-aortic dissemination was as high as 67% in patients with G3 endometrioid cancer. In the case of negative para-aortic nodes in the CT scan, the risk of para-aortic node metastases decreased from 18.8% to 7.5% in patients with endometrioid G3 EC. Up to 15% of patients with endometrioid G3 cancer had clinically relevant incidental findings that necessitated medical or surgical intervention. In patients with endometrioid G3 and type II EC diagnosed by the preoperative biopsy, CT scans may help guide the operative plan by facilitating preoperative identification of gross intra-abdominal disease and enlarged positive para-aortic nodes that are not detectable during physical examinations. In addition, CT may reveal other clinically relevant incidental findings.

  3. Low-dose CT in clinical diagnostics.

    PubMed

    Fuentes-Orrego, Jorge M; Sahani, Dushyant V

    2013-09-01

    Computed tomography (CT) has become key for patient management due to its outstanding capabilities for detecting disease processes and assessing treatment response, which has led to expansion in CT imaging for diagnostic and image-guided therapeutic interventions. Despite these benefits, the growing use of CT has raised concerns as radiation risks associated with radiation exposure. The purpose of this article is to familiarize the reader with fundamental concepts of dose metrics for assessing radiation exposure and weighting radiation-associated risks. The article also discusses general approaches for reducing radiation dose while preserving diagnostic quality. The authors provide additional insight for undertaking protocol optimization, customizing scanning techniques based on the patients' clinical scenario and demographics. Supplemental strategies are postulated using more advanced post-processing techniques for achieving further dose improvements. The technologic offerings of CT are integral to modern medicine and its role will continue to evolve. Although, the estimated risks from low levels of radiation of a single CT exam are uncertain, it is prudent to minimize the dose from CT by applying common sense solutions and using other simple strategies as well as exploiting technologic innovations. These efforts will enable us to take advantage of all the clinical benefits of CT while minimizing the likelihood of harm to patients.

  4. Variation of SNOMED CT coding of clinical research concepts among coding experts.

    PubMed

    Andrews, James E; Richesson, Rachel L; Krischer, Jeffrey

    2007-01-01

    To compare consistency of coding among professional SNOMED CT coders representing three commercial providers of coding services when coding clinical research concepts with SNOMED CT. A sample of clinical research questions from case report forms (CRFs) generated by the NIH-funded Rare Disease Clinical Research Network (RDCRN) were sent to three coding companies with instructions to code the core concepts using SNOMED CT. The sample consisted of 319 question/answer pairs from 15 separate studies. The companies were asked to select SNOMED CT concepts (in any form, including post-coordinated) that capture the core concept(s) reflected in the question. Also, they were asked to state their level of certainty, as well as how precise they felt their coding was. Basic frequencies were calculated to determine raw level agreement among the companies and other descriptive information. Krippendorff's alpha was used to determine a statistical measure of agreement among the coding companies for several measures (semantic, certainty, and precision). No significant level of agreement among the experts was found. There is little semantic agreement in coding of clinical research data items across coders from 3 professional coding services, even using a very liberal definition of agreement.

  5. A digital model individual template and CT-guided 125I seed implants for malignant tumors of the head and neck.

    PubMed

    Huang, Ming-Wei; Liu, Shu-Ming; Zheng, Lei; Shi, Yan; Zhang, Jie; Li, Yan-Sheng; Yu, Guang-Yan; Zhang, Jian-Guo

    2012-11-01

    To enhance the accuracy of radioactive seed implants in the head and neck, a digital model individual template, containing information simultaneously on needle pathway and facial features, was designed to guide implantation with CT imaging. Thirty-one patients with recurrent and local advanced malignant tumors of head and neck after prior surgery and radiotherapy were involved in this study. Before (125)I implants, patients received CT scans based on 0.75mm thickness. And the brachytherapy treatment planning system (BTPS) software was used to make the implantation plan based on the CT images. Mimics software and Geomagic software were used to read the data containing CT images and implantation plan, and to design the individual template. Then the individual template containing the information of needle pathway and face features simultaneously was made through rapid prototyping (RP) technique. All patients received (125)I seeds interstitial implantation under the guide of the individual template and CT. The individual templates were positioned easily and accurately, and were stable. After implants, treatment quality evaluation was made by CT and TPS. The seeds and dosages distribution (D(90),V(100),V(150)) were well meet the treatment requirement. Clinical practice confirms that this approach can facilitate easier and more accurate implantation.

  6. Dose assessment of digital tomosynthesis in pediatric imaging

    NASA Astrophysics Data System (ADS)

    Gislason, Amber; Elbakri, Idris A.; Reed, Martin

    2009-02-01

    We investigated the potential for digital tomosynthesis (DT) to reduce pediatric x-ray dose while maintaining image quality. We utilized the DT feature (VolumeRadTM) on the GE DefiniumTM 8000 flat panel system installed in the Winnipeg Children's Hospital. Facial bones, cervical spine, thoracic spine, and knee of children aged 5, 10, and 15 years were represented by acrylic phantoms for DT dose measurements. Effective dose was estimated for DT and for corresponding digital radiography (DR) and computed tomography (CT) patient image sets. Anthropomorphic phantoms of selected body parts were imaged by DR, DT, and CT. Pediatric radiologists rated visualization of selected anatomic features in these images. Dose and image quality comparisons between DR, DT, and CT determined the usefulness of tomosynthesis for pediatric imaging. CT effective dose was highest; total DR effective dose was not always lowest - depending how many projections were in the DR image set. For the cervical spine, DT dose was close to and occasionally lower than DR dose. Expert radiologists rated visibility of the central facial complex in a skull phantom as better than DR and comparable to CT. Digital tomosynthesis has a significantly lower dose than CT. This study has demonstrated DT shows promise to replace CT for some facial bones and spinal diagnoses. Other clinical applications will be evaluated in the future.

  7. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    NASA Astrophysics Data System (ADS)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  8. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): Initial clinical experience on an MRI-guided radiotherapy system.

    PubMed

    Han, Fei; Zhou, Ziwu; Du, Dongsu; Gao, Yu; Rashid, Shams; Cao, Minsong; Shaverdian, Narek; Hegde, John V; Steinberg, Michael; Lee, Percy; Raldow, Ann; Low, Daniel A; Sheng, Ke; Yang, Yingli; Hu, Peng

    2018-06-01

    To optimize and evaluate the respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK-4D-MRI) method in a 0.35 T MRI-guided radiotherapy (MRgRT) system. The study included seven patients with abdominal tumors treated on the MRgRT system. ROCK-4D-MRI and 2D-CINE, was performed immediately after one of the treatment fractions. Motion quantification based on 4D-MRI was compared with those based on 2D-CINE. The image quality of 4D-MRI was evaluated against 4D-CT. The gross tumor volumes (GTV) were defined based on individual respiratory phases of both 4D-MRI and 4D-CT and compared for their variability over the respiratory cycle. The motion measurements based on 4D-MRI matched well with 2D-CINE, with differences of 1.04 ± 0.52 mm in the superior-inferior and 0.54 ± 0.21 mm in the anterior-posterior directions. The image quality scores of 4D-MRI were significantly higher than 4D-CT, with better tumor contrast (3.29 ± 0.76 vs. 1.86 ± 0.90) and less motion artifacts (3.57 ± 0.53 vs. 2.29 ± 0.95). The GTVs were more consistent in 4D-MRI than in 4D-CT, with significantly smaller GTV variability (9.31 ± 4.58% vs. 34.27 ± 23.33%). Our study demonstrated the clinical feasibility of using the ROCK-4D-MRI to acquire high quality, respiratory motion-resolved 4D-MRI in a low-field MRgRT system. The 4D-MRI image could provide accurate dynamic information for radiotherapy treatment planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT

    PubMed Central

    Puri, Tanuj; Siddique, Musib; Frost, Michelle L.; Moore, Amelia E. B.; Fogelman, Ignac

    2018-01-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer. PMID:29541623

  10. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.

    PubMed

    Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac

    2018-02-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

  11. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Use of a frameless computed tomography-guided stereotactic biopsy system for nasal biopsy in five dogs.

    PubMed

    Kuhlman, Gregory M; Taylor, Amanda R; Thieman-Mankin, Kelley M; Griffin, Jay; Cook, Audrey K; Levine, Jonathan M

    2016-04-15

    5 dogs (median age, 9 years; median body weight, 31 kg [68.2 lb]) with undefined nasal masses were examined after undergoing CT of the head and nasal biopsy via a rostral rhinoscopic or unaided (blind) approach because histologic results for collected biopsy specimens (inflammatory, necrotic, or hemorrhagic disease) suggested the specimens were nonrepresentative of the underlying disease process identified via CT (aggressive or malignant disease). Clinical signs at the time dogs were evaluated included open-mouth breathing, sneezing, or unilateral epistaxis. Histologic findings pertaining to the original biopsy specimens were suggestive of benign processes such as inflammation. In an attempt to obtain better representative specimens, a frameless CT-guided stereotactic biopsy system (CTSBS) was used to collect additional biopsy specimens from masses within the nasal and sinus passages of the dogs. The second set of biopsy specimens was histologically evaluated. Histologic evaluation of biopsy specimens collected via the CTSBS revealed results suggestive of malignant neoplasia (specifically, chondrosarcoma, hemangiopericytoma, or undifferentiated sarcoma) for 3 dogs, mild mixed-cell inflammation for 1 dog, and hamartoma for 1 dog. No complications were reported. These findings resulted in a change in treatment recommendations for 3 dogs and confirmed that no additional treatment was required for 1 dog (with hamartoma). For the remaining dog, in which CT findings and clinical history were strongly suggestive of neoplasia, the final diagnosis was rhinitis. Biopsy specimens were safely collected from masses within the nasal and sinus passages of dogs by use of a frameless CTSBS, allowing a definitive diagnosis that was unachievable with other biopsy approaches.

  13. Intraoperative positioning of mobile C-arms using artificial fluoroscopy

    NASA Astrophysics Data System (ADS)

    Dressel, Philipp; Wang, Lejing; Kutter, Oliver; Traub, Joerg; Heining, Sandro-Michael; Navab, Nassir

    2010-02-01

    In trauma and orthopedic surgery, imaging through X-ray fluoroscopy with C-arms is ubiquitous. This leads to an increase in ionizing radiation applied to patient and clinical staff. Placing these devices in the desired position to visualize a region of interest is a challenging task, requiring both skill of the operator and numerous X-rays for guidance. We propose an extension to C-arms for which position data is available that provides the surgeon with so called artificial fluoroscopy. This is achieved by computing digitally reconstructed radiographs (DRRs) from pre- or intraoperative CT data. The approach is based on C-arm motion estimation, for which we employ a Camera Augmented Mobile C-arm (CAMC) system, and a rigid registration of the patient to the CT data. Using this information we are able to generate DRRs and simulate fluoroscopic images. For positioning tasks, this system appears almost exactly like conventional fluoroscopy, however simulating the images from the CT data in realtime as the C-arm is moved without the application of ionizing radiation. Furthermore, preoperative planning can be done on the CT data and then visualized during positioning, e.g. defining drilling axes for pedicle approach techniques. Since our method does not require external tracking it is suitable for deployment in clinical environments and day-to-day routine. An experiment with six drillings into a lumbar spine phantom showed reproducible accuracy in positioning the C-arm, ranging from 1.1 mm to 4.1 mm deviation of marker points on the phantom compared in real and virtual images.

  14. The Abernethy malformation-myriad imaging manifestations of a single entity.

    PubMed

    Ghuman, Samarjit S; Gupta, Saumya; Buxi, T B S; Rawat, Kishan S; Yadav, Anurag; Mehta, Naimish; Sud, Seema

    2016-01-01

    Abernethy malformation, also known as congenital extrahepatic portosystemic shunts (CEPS) is a rare clinical entity and manifests with different clinical symptoms. CEPS are abnormalities of vascular development where there is shunting of portal blood into the systemic venous system. Multidetector computed tomography (MDCT) is a fast and effective modality for evaluation of CEPS. CT displays all the information desired by the surgeon as well as the clinician including the anatomy of the splenic and superior mesenteric veins, size and site of the shunt, presence or absence of the portal vein radicles, and helps to plan the therapy and even the follow-up of these patients. Contrast-enhanced magnetic resonance imaging (MRI) has also emerged as a promising tool for the evaluation of liver lesions associated with the malformation. The Radiologist should be aware of the various imaging appearances of this entity including its complications. In this article, we describe the imaging appearances of CEPS, their complications, and their imaging appearances on CT and MRI. We have also described various associated anomalies.

  15. The Abernethy malformation—myriad imaging manifestations of a single entity

    PubMed Central

    Ghuman, Samarjit S; Gupta, Saumya; Buxi, T B S; Rawat, Kishan S; Yadav, Anurag; Mehta, Naimish; Sud, Seema

    2016-01-01

    Abernethy malformation, also known as congenital extrahepatic portosystemic shunts (CEPS) is a rare clinical entity and manifests with different clinical symptoms. CEPS are abnormalities of vascular development where there is shunting of portal blood into the systemic venous system. Multidetector computed tomography (MDCT) is a fast and effective modality for evaluation of CEPS. CT displays all the information desired by the surgeon as well as the clinician including the anatomy of the splenic and superior mesenteric veins, size and site of the shunt, presence or absence of the portal vein radicles, and helps to plan the therapy and even the follow-up of these patients. Contrast-enhanced magnetic resonance imaging (MRI) has also emerged as a promising tool for the evaluation of liver lesions associated with the malformation. The Radiologist should be aware of the various imaging appearances of this entity including its complications. In this article, we describe the imaging appearances of CEPS, their complications, and their imaging appearances on CT and MRI. We have also described various associated anomalies. PMID:27857464

  16. Generalisation and extension of a web-based data collection system for clinical studies using Java and CORBA.

    PubMed

    Eich, H P; Ohmann, C

    1999-01-01

    Inadequate informatical support of multi-centre clinical trials lead to pure quality. In order to support a multi-centre clinical trial a data collection via WWW and Internet based on Java has been developed. In this study a generalization and extension of this prototype has been performed. The prototype has been applied to another clinical trial and a knowledge server based on C+t has been integrated via CORBA. The investigation and implementation of security aspects of web-based data collection is now under evaluation.

  17. A new SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases.

    PubMed

    Delcroix, Olivier; Robin, Philippe; Gouillou, Maelenn; Le Duc-Pennec, Alexandra; Alavi, Zarrin; Le Roux, Pierre-Yves; Abgral, Ronan; Salaun, Pierre-Yves; Bourhis, David; Querellou, Solène

    2018-02-12

    xSPECT Bone® (xB) is a new reconstruction algorithm developed by Siemens® in bone hybrid imaging (SPECT/CT). A CT-based tissue segmentation is incorporated into SPECT reconstruction to provide SPECT images with bone anatomy appearance. The objectives of this study were to assess xB/CT reconstruction diagnostic reliability and accuracy in comparison with Flash 3D® (F3D)/CT in clinical routine. Two hundred thirteen consecutive patients referred to the Brest Nuclear Medicine Department for non-oncological bone diseases were evaluated retrospectively. Two hundred seven SPECT/CT were included. All SPECT/CT were independently interpreted by two nuclear medicine physicians (a junior and a senior expert) with xB/CT then with F3D/CT three months later. Inter-observer agreement (IOA) and diagnostic confidence were determined using McNemar test, and unweighted Kappa coefficient. The study objectives were then re-assessed for validation through > 18 months of clinical and paraclinical follow-up. No statistically significant differences between IOA xB and IOA F3D were found (p = 0.532). Agreement for xB after categorical classification of the diagnoses was high (κ xB = 0.89 [95% CI 0.84 -0.93]) but without statistically significant difference F3D (κ F3D = 0.90 [95% CI 0.86 - 0.94]). Thirty-one (14.9%) inter-reconstruction diagnostic discrepancies were observed of which 21 (10.1%) were classified as major. The follow-up confirmed the diagnosis of F3D in 10 cases, xB in 6 cases and was non-contributory in 5 cases. xB reconstruction algorithm was found reliable, providing high interobserver agreement and similar diagnostic confidence to F3D reconstruction in clinical routine.

  18. How to use PET/CT in the evaluation of response to radiotherapy.

    PubMed

    Decazes, Pierre; Thureau, Sébastien; Dubray, Bernard; Vera, Pierre

    2018-06-01

    Radiotherapy is a major treatment modality for many cancers. Tumor response after radiotherapy determines the subsequent steps of the patient's management (surveillance, adjuvant or salvage treatment and palliative care). Tumor response assessed during radiotherapy offers a promising opportunity to adapt the treatment plan to reduced or increased target volume, to specifically target sub-volumes with relevant biological characteristics (metabolism, hypoxia, proliferation, etc.) and to further spare the organs at risk. In addition to its role in the diagnosis and the initial staging, Positron Emission Tomography combined with a Computed Tomography (PET/CT) provides functional information and is therefore attractive to evaluate tumor response. The aim of this paper is to review the published data addressing PET/CT as an evaluation tool in irradiated tumors. Reports on PET/CT acquired at various times (during radiotherapy, after initial (chemo-) radiotherapy, after definitive radiotherapy and during posttreatment follow-up) in solid tumors (lung, head-and-neck, cervix, esophagus, prostate and rectum) were collected and reviewed. Various tracers and technical aspects are also discussed. 18F-FDG PET/CT has a well-established role in clinical routine after definitive chemo-radiotherapy for locally advanced head-and-neck cancers. 18F-choline PET/CT is indicated in prostate cancer patients with biochemical failure. 18F-FDG PET/CT is optional in many other circumstances and the clinical benefits of assessing tumor response with PET/CT remain a field of very active research. The combination of PET with Magnetic Resonance Imaging (PET/MRI) may prove to be valuable in irradiated rectal and cervix cancers. Tumor response can be evaluated by PET/CT with clinical consequences in multiple situations, notably in head and neck and prostate cancers, after radiotherapy. Further clinical evaluation for most cancers is still needed, possibly in association to MRI.

  19. Fluorodeoxyglucose positron emission tomography–computed tomography in evaluation of pelvic and para-aortic nodal involvement in early stage and operable cervical cancer: Comparison with surgicopathological findings

    PubMed Central

    Bansal, Vandana; Damania, Kaizad; Sharma, Anshu Rajnish

    2011-01-01

    Introduction: Nodal metastases in cervical cancer have prognostic implications. Imaging is used as an adjunct to clinical staging for evaluation of nodal metastases. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has an advantage of superior resolution of its CT component and detecting nodal disease based on increased glycolytic activity rather than node size. But there are limited studies describing its limitations in early stage cervical cancers. Objective: We have done meta-analysis with an objective to evaluate the efficacy of FDG PET/CT and its current clinical role in early stage and operable cervical cancer. Materials and Methods: Studies in which FDG PET/CT was performed before surgery in patients with early stage cervical cancers were included for analysis. PET findings were confirmed with histopathological diagnosis rather than clinical follow-up. FDG PET/CT showed lower sensitivity and clinically unacceptable negative predictive value in detecting nodal metastases in early stage cervical cancer and therefore, can not replace surgicopathological staging. False negative results in presence of microscopic disease and sub-centimeter diseased nodes are still the area of concern for metabolic imaging. However, these studies are single institutional and performed in a small group of patients. There is enough available evidence of clinical utility of FDG PET/CT in locally advanced cervical cancer. But these results can not be extrapolated for early stage disease. Conclusion: The current data suggest that FDG PET/CT is suboptimal in nodal staging in early stage cervical cancer. PMID:23559711

  20. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT

    PubMed Central

    Ripa, Rasmus S; Knudsen, Andreas; Hag, Anne Mette F; Lebech, Anne-Mette; Loft, Annika; Keller, Sune H; Hansen, Adam E; von Benzon, Eric; Højgaard, Liselotte; Kjær, Andreas

    2013-01-01

    The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of 18F-FDG. PET/MR was performed a median of 131 min after injection. Subsequently,PET/CT was performed. Regions of interest (ROI) were drawn slice by slice to include the carotid arteries and standardized uptake values (SUV) were calculated from both datasets independently. Quantitative comparison of 18F-FDG uptake revealed a high congruence between PET data acquired using the PET/MR system compared to the PET/CT system. The mean difference for SUVmean was -0.18 (p < 0.001) and -0.14 for SUVmax (p < 0.001) indicating a small but significant bias towards lower values using the PET/MR system. The 95% limits of agreement were -0.55 to 0.20 for SUVmean and -0.93 to 0.65 for SUVmax. The image quality of the PET/MR allowed for delineation of the carotid vessel wall. The correlations between 18F-FDG uptake from ROI including both vessel wall and vessel lumen to ROI including only the wall were strong (r = 0.98 for SUVmean and r = 1.00 for SUVmax) indicating that the luminal 18F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of 18F-FDG uptake correlated well between PET/MR and PET/CT despite difference in method of PET attenuation correction, reconstruction algorithm, and detector technology. PMID:23900769

  1. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.

    PubMed

    van Der Wel, Antoinet; Nijsten, Sebastiaan; Hochstenbag, Monique; Lamers, Rob; Boersma, Liesbeth; Wanders, Rinus; Lutgens, Ludy; Zimny, Michael; Bentzen, Søren M; Wouters, Brad; Lambin, Philippe; De Ruysscher, Dirk

    2005-03-01

    With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients. Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions. The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2% +/- 4.9% to 34.0% +/- 5.8% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6% +/- 3.2% to 21.9% +/- 3.8% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9% +/- 2.3% to 22.3% +/- 2.2% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2% +/- 5.6% for CT and 22.8% +/- 7.1% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5% and 18.3% (p = 0.009) for CT and PET-CT planning, respectively. In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13% to 18%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning.

  2. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance.

    PubMed

    Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong

    2014-07-01

    Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo(®), GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d'. (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.

  3. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Arterial phase CT for the detection of splenic injuries in blunt trauma: would it improve clinical outcomes?

    PubMed

    Corwin, Michael T; Fananapazir, Ghaneh; Lamba, Ramit; Salcedo, Edgardo S; Holmes, James F

    2016-01-01

    To determine if the addition of an arterial phase abdominal computed tomography (CT) improves clinical outcomes in patients with blunt splenic injuries. Retrospective review of patients who underwent CT of the abdomen revealing splenic injuries. Clinical management in these patients was determined. Fifty-one of three thousand five hundred twenty-five patients had splenic injuries. Twenty-five patients underwent nonsurgical management, and 3 failed. The theoretical additional arterial phase resulted in a 62% increase in mean effective dose compared to the portal venous phase alone. Routine use of arterial phase CT in blunt trauma patients may not be warranted as there is minimal improvement in outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Minimally invasive evacuation of parenchymal and ventricular hemorrhage using the Apollo system with simultaneous neuronavigation, neuroendoscopy and active monitoring with cone beam CT.

    PubMed

    Fiorella, David; Gutman, Fredrick; Woo, Henry; Arthur, Adam; Aranguren, Ricardo; Davis, Raphael

    2015-10-01

    The Apollo system is a low profile irrigation-aspiration system which can be used for the evacuation of intracranial hemorrhage. We demonstrate the feasibility of using Apollo to evacuate intracranial hemorrhage in a series of three patients with combined neuronavigation, neuroendoscopy, and cone beam CT (CB-CT). Access to the hematoma was planned using neuronavigation software. Parietal (n=2) or frontal (1) burr holes were created and a 19 F endoscopic sheath was placed under neuronavigation guidance into the distal aspect of the hematoma along its longest accessible axis. The 2.6 mm Apollo wand was then directed through the working channel of a neuroendoscope and used to aspirate the blood products under direct visualization, working from distal to proximal. After a pass through the hematoma, the sheath, neuroendoscope, and Apollo system were removed. CB-CT was then used to evaluate for residual hematoma. When required, the CB-CT data could then be directly uploaded into the neuronavigation system and a new trajectory planned to approach the residual hematoma. Three patients with parenchymal (n=2) and mixed parenchymal-intraventricular (n=1) hematomas underwent minimally invasive evacuation with the Apollo system. The isolated parenchymal hematomas measured 93.4 and 15.6 mL and were reduced to 11.2 (two passes) and 0.9 mL (single pass), respectively. The entire parenchymal component of the mixed hemorrhage was evacuated, as was the intraventricular component within the right frontal horn (single pass). No complications were experienced. All patients showed clinical improvement after the procedure. The average presenting National Institutes of Health Stroke Scale was 19.0, which had improved to 5.7 within an average of 4.7 days after the procedure. The Apollo system can be used within the neuroangiography suite for the minimally invasive evacuation of intracranial hemorrhage using simultaneous neuronavigation for planning and intraprocedural guidance, direct visualization with neuroendoscopy, and real time monitoring of progress with CB-CT. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Computed tomography of the lacrimal drainage system: retrospective study of 107 cases of dacryostenosis.

    PubMed

    Francis, I C; Kappagoda, M B; Cole, I E; Bank, L; Dunn, G D

    1999-05-01

    To evaluate the role of computed tomography in patients with dacryostenosis. One hundred seven cases of dacryostenosis (94 patients) were assessed by thorough clinical and lacrimal history and examination, and lacrimal region computerized tomography (CT). The lacrimal drainage system examination included the state and position of the puncta; Jones testing; lacrimal syringing; and, in the latter half of the study, telescopic nasal endoscopy. The patients were drawn from the hospital outpatients and private office of the operating lacrimal surgeon in this series (I.C.F.). Of the 107 cases, 79 either underwent dacryocystorhinostomy surgery or had this planned. In 14 of the 107 cases (12 patients), preoperative CT led to an alteration of patient management, usually referral to an otolaryngologist for further evaluation or treatment. In addition to the detection of two tumors extrinsic to the sac, conditions such as ethmoiditis, lacrimal sac mucoceles, soft tissue opacity in the nasolacrimal duct, gross nasal polyposis, fungal sinusitis, and a dacryolith were observed by CT. Similar to the role of functional endoscopic sinus surgery in otolaryngology, CT imaging will become increasingly important in the assessment of many patients with symptoms of lacrimal drainage obstruction.

  7. Multi-mounted X-ray cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng

    2018-04-01

    As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.

  8. Gorlin-Goltz syndrome: incidental finding on routine ct scan following car accident.

    PubMed

    Kalogeropoulou, Christina; Zampakis, Petros; Kazantzi, Santra; Kraniotis, Pantelis; Mastronikolis, Nicholas S

    2009-11-25

    Gorlin-Goltz syndrome is a rare hereditary disease. Pathogenesis of the syndrome is attributed to abnormalities in the long arm of chromosome 9 (q22.3-q31) and loss or mutations of human patched gene (PTCH1 gene). Multiple basal cell carcinomas (BCCs), odontogenic keratocysts, skeletal abnormalities, hyperkeratosis of palms and soles, intracranial ectopic calcifications of the falx cerebri and facial dysmorphism are considered the main clinical features. Diagnosis is based upon established major and minor clinical and radiological criteria and ideally confirmed by DNA analysis. Because of the different systems affected, a multidisciplinary approach team of various experts is required for a successful management. We report the case of a 19 year-old female who was involved in a car accident and found to present imaging findings of Gorlin-Goltz syndrome during a routine whole body computed tomography (CT) scan in order to exclude traumatic injuries. Radiologic findings of the syndrome are easily identifiable on CT scans and may prompt to early verification of the disease, which is very important for regular follow-up and better survival rates from the co-existent diseases.

  9. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  10. Computed tomography scan diagnosis of occult groin hernia.

    PubMed

    Garvey, J F W

    2012-06-01

    The value of computed tomography (CT) for the diagnosis of clinically occult (hidden) groin hernia was assessed in a series of patients presenting with undiagnosed groin pain. A total of 158 consecutive patients presenting over a period of 5 years with undiagnosed groin pain or lower abdominal pain and negative or equivocal clinical findings were radiologically assessed with non-contrast CT. The decision to manage operatively or conservatively was then based on a combination of the clinical and CT findings. Outcomes were assessed at 10 years follow-up. The study cohort comprised 158 patients presenting with groin or lower abdominal pain and/or swelling, and was studied prospectively. Seven of these patients were re-investigated at a later date after developing new pain on either the ipsilateral or contralateral side, giving a total of 165 CT examinations. One-third of cases (54) had clinically occult groin hernias and most of the remaining cases had diagnoses that could be managed non-operatively. Of those who came to surgery, the pre-operative CT diagnosis of hernia had a positive predictive value (PPV) of 92% and a negative predictive value (NPV) of 96% (overall accuracy 94%). Lipoma of the spermatic cord was responsible for three of five false-positive CT results. The concept of sports hernia/groin disruption injury (GDI) was encountered, and this entity is discussed in this paper. In the group of patients without hernia findings on CT, the most common diagnoses were rectus abdominis and/or pyramidalis muscle injury which could be treated by physiotherapy (22%), GDI (16%), post-surgical problems (14%), miscellaneous (20%) and 'no abnormality' was identified in 15%. Overall, there were 111 patients with a 'non-hernia' CT diagnosis, of which urological, gynaecological, gastrointestinal and neuralgia contributed to the non-musculoskeletal diagnosis. This prospective non-contrast CT study of patients with undiagnosed chronic groin pain detected the majority of occult hernias requiring surgical intervention. These results suggest that CT can be a useful adjunct to the evaluation of patients presenting with chronic undiagnosed groin pain, but that experienced clinical judgment remains a critical element in the diagnostic pathway.

  11. Who tests whom? A comprehensive overview of Chlamydia trachomatis test practices in a Dutch region among different STI care providers for urogenital, anorectal and oropharyngeal sites in young people: a cross-sectional study.

    PubMed

    den Heijer, Casper D J; van Liere, G A F S; Hoebe, C J P A; van Bergen, J E A M; Cals, J W L; Stals, F S; Dukers-Muijrers, N H T M

    2016-05-01

    To evaluate and compare Chlamydia trachomatis (CT) diagnostic test practices of different sexually transmitted infection (STI) care providers in 16-29 year olds from one defined geographic Dutch region (280,000 inhabitants). Both number and proportion of positive CT tests (ie, test positivity) were assessed, and factors associated with these outcomes. Data on laboratory testing and diagnosis of urogenital, anorectal and oropharyngeal CT between 2006 and 2010 were retrieved from general practitioners (GPs), gynaecologists, an STI clinic and a population-based chlamydia screening programme. Multivariable regression analyses explored associations between age, sex, test year, socio-economic status (SES) and STI care provider and the outcomes being the number of tests and test positivity. Overall, 22,831 tests were performed (1868 positive; 8.2%). Extragenital (ie, anorectal and oropharyngeal) tests accounted for 4% of all tests (7.5% positive) and were almost exclusively (99%) performed by the STI clinic. STI clinics tested most men (37.2% of all tested men), whereas GPs tested most women (29.9% of all tested women). GPs and STI clinics accounted for 73.3% (1326/1808) of urogenital CT diagnoses. In women, the number of tests increased with age, whereas test positivity decreased for all STI care providers. Lower SES was associated with higher test positivity in GP and gynaecology patients. STI clinics performed most CT tests in men, whereas GPs performed most CT tests in women. GPs and STI clinics accounted for the majority of positives. Extragenital CT testing is rarely performed outside the STI clinic and needs to be promoted, especially in men who have sex with men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. WE-G-209-00: Identifying Image Artifacts, Their Causes, and How to Fix Them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  13. Acetabular fractures: anatomic and clinical considerations.

    PubMed

    Lawrence, David A; Menn, Kirsten; Baumgaertner, Michael; Haims, Andrew H

    2013-09-01

    Classifying acetabular fractures can be an intimidating topic. However, it is helpful to remember that there are only three basic types of acetabular fractures: column fractures, transverse fractures, and wall fractures. Within this framework, acetabular fractures are classified into two broad categories: elementary or associated fractures. We will review the osseous anatomy of the pelvis and provide systematic approaches for reviewing both radiographs and CT scans to effectively evaluate the acetabulum. Although acetabular fracture classification may seem intimidating, the descriptions and distinctions discussed and shown in this article hopefully make the topic simpler to understand. Approach the task by recalling that there are only three basic types of acetabular fractures: column fractures (coronally oriented on CT images), transverse fractures (sagittally oriented on CT images), and wall fractures (obliquely oriented on CT images). We have provided systematic approaches for reviewing both conventional radiographs and CT scans to effectively assess the acetabulum. The clinical implications of the different fracture patterns have also been reviewed because it is critically important to include pertinent information for our clinical colleagues to provide the most efficient and timely clinical care.

  14. WE-G-209-01: Digital Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, B.

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  15. Usability of HL7 and SNOMED CT standards in Java Persistence API environment.

    PubMed

    Antal, Gábor; Végh, Ádám Zoltán; Bilicki, Vilmos

    2014-01-01

    Due to the need for an efficient way of communication between the different stakeholders of healthcare (e.g. doctors, pharmacists, hospitals, patients etc.), the possibility of integrating different healthcare systems occurs. However, during the integration process several problems of heterogeneity might come up, which can turn integration into a difficult task. These problems motivated the development of healthcare information standards. The main goal of the HL7 family of standards is the standardization of communication between clinical systems and the unification of clinical document formats on the structural level. The SNOMED CT standard aims the unification of the healthcare terminology, thus the development of a standard on lexical level. The goal of this article is to introduce the usability of these two standards in Java Persistence API (JPA) environment, and to examine how standard-based system components can be efficiently generated. First, we shortly introduce the structure of the standards, their advantages and disadvantages. Then, we present an architecture design method, which can help to eliminate the possible structural drawbacks of the standards, and makes code generating tools applicable for the automatic production of certain system components.

  16. Integration of tools for binding archetypes to SNOMED CT.

    PubMed

    Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Ahlfeldt, Hans; Rector, Alan

    2008-10-27

    The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail.

  17. Integration of tools for binding archetypes to SNOMED CT

    PubMed Central

    Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Åhlfeldt, Hans; Rector, Alan

    2008-01-01

    Background The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Methods Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. Results An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Conclusion Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail. PMID:19007444

  18. Representation of cerebral bridging veins in infants by postmortem computed tomography.

    PubMed

    Stein, Kirsten Marion; Ruf, Katharina; Ganten, Maria Katharina; Mattern, Rainer

    2006-11-10

    The postmortem diagnosis of shaken baby syndrome, a severe form of child abuse, may be difficult, especially when no other visible signs of significant trauma are obvious. An important finding in shaken baby syndrome is subdural haemorrhage, typically originating from ruptured cerebral bridging veins. Since these are difficult to detect at autopsy, we have developed a special postmortem computed tomographic (PMCT) method to demonstrate the intracranial vein system in infants. This method is minimally invasive and can be carried out conveniently and quickly on clinical computed tomography (CT) systems. Firstly, a precontrast CT is made of the infant's head, to document the original state. Secondly, contrast fluid is injected manually via fontanel puncture into the superior sagittal sinus, followed by a repeat CT scan. This allows the depiction of even very small vessels of the deep and superficial cerebral veins, especially the bridging veins, without damaging them. Ruptures appear as extravasation of contrast medium, which helps to locate them at autopsy and examine them histologically, whenever necessary.

  19. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  20. Dedicated dental volumetric and total body multislice computed tomography: a comparison of image quality and radiation dose

    NASA Astrophysics Data System (ADS)

    Strocchi, Sabina; Colli, Vittoria; Novario, Raffaele; Carrafiello, Gianpaolo; Giorgianni, Andrea; Macchi, Aldo; Fugazzola, Carlo; Conte, Leopoldo

    2007-03-01

    Aim of this work is to compare the performances of a Xoran Technologies i-CAT Cone Beam CT for dental applications with those of a standard total body multislice CT (Toshiba Aquilion 64 multislice) used for dental examinations. Image quality and doses to patients have been compared for the three main i-CAT protocols, the Toshiba standard protocol and a Toshiba modified protocol. Images of two phantoms have been acquired: a standard CT quality control phantom and an Alderson Rando ® anthropomorphic phantom. Image noise, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and geometric accuracy have been considered. Clinical image quality was assessed. Effective dose and doses to main head and neck organs were evaluated by means of thermo-luminescent dosimeters (TLD-100) placed in the anthropomorphic phantom. A Quality Index (QI), defined as the ratio of squared CNR to effective dose, has been evaluated. The evaluated effective doses range from 0.06 mSv (i-CAT 10 s protocol) to 2.37 mSv (Toshiba standard protocol). The Toshiba modified protocol (halved tube current, higher pitch value) imparts lower effective dose (0.99 mSv). The conventional CT device provides lower image noise and better SNR, but clinical effectiveness similar to that of dedicated dental CT (comparable CNR and clinical judgment). Consequently, QI values are much higher for this second CT scanner. No geometric distortion has been observed with both devices. As a conclusion, dental volumetric CT supplies adequate image quality to clinical purposes, at doses that are really lower than those imparted by a conventional CT device.

  1. 7. Survey of Results of Whole Body Imaging Using the PET/CT at the University of Pittsburgh Medical Center PET Facility.

    PubMed

    Martinelli; Townsend; Meltzer; Villemagne

    2000-07-01

    Purpose: At the University Of Pittsburgh Medical Center, over 100 oncology studies have been performed using a combined PET/CT scanner. The scanner is a prototype, which combines clinical PET and clinical CT imaging in a single unit. The sensitivity achieved using three-dimensional PET imaging as well as the use of the CT for attenuation correction and image fusion make the device ideal for clinical oncology. Clinical indications imaged on the PET/CT scanner include, but are not limited to, tumor staging, solitary pulmonary nodule evaluation, and evaluation of tumor reoccurrence in melanoma, lymphoma, colorectal cancer, lung cancer, pancreatic cancer, head and neck cancer, and renal cancer.Methods: For all studies, seven millicuries of F(18)-fluorodeoxyglucose is injected and a forty-five minute uptake period is allowed prior to positioning the patient in the scanner. A helical CT scan is acquired over the region, or regions of interest followed by a multi-bed whole body PET scan for the same axial extent. The CT scan is used to correct the PET data for attenuation. The entire imaging session lasts 1-1.5 hours depending on the number of beds acquired, and is generally well tolerated by the patient.Results and Conclusion: Based on our experience in over 100 studies, combined PET/CT imaging offers significant advantages, including more accurate localization of focal uptake, distinction of pathology from normal physiological uptake, and improvements in evaluating therapy. These benefits will be illustrated with a number of representative, fully documented studies.

  2. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  3. Evaluation of non-rigid registration parameters for atlas-based segmentation of CT images of human cochlea

    NASA Astrophysics Data System (ADS)

    Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.

    2017-02-01

    Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.

  4. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer.

    PubMed

    Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A

    2014-11-01

    The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Indeterminate lung nodules in cancer patients: pretest probability of malignancy and the role of 18F-FDG PET/CT.

    PubMed

    Evangelista, Laura; Panunzio, Annalori; Polverosi, Roberta; Pomerri, Fabio; Rubello, Domenico

    2014-03-01

    The purpose of this study was to determine likelihood of malignancy for indeterminate lung nodules identified on CT comparing two standardized models with (18)F-FDG PET/CT. Fifty-nine cancer patients with indeterminate lung nodules (solid tumors; diameter, ≥5 mm) on CT had FDG PET/CT for lesion characterization. Mayo Clinic and Veterans Affairs Cooperative Study models of likelihood of malignancy were applied to solitary pulmonary nodules. High probability of malignancy was assigned a priori for multiple nodules. Low (<5%), intermediate (5-60%), and high (>60%) pretest malignancy probabilities were analyzed separately. Patients were reclassified with PET/CT. Histopathology or 2-year imaging follow-up established diagnosis. Outcome-based reclassification differences were defined as net reclassification improvement. A null hypothesis of asymptotic test was applied. Thirty-one patients had histology-proven malignancy. PET/CT was true-positive in 24 and true-negative in 25 cases. Negative predictive value was 78% and positive predictive value was 89%. On the basis of the Mayo Clinic model (n=31), 18 patients had low, 12 had intermediate, and one had high pretest likelihood; on the basis of the Veterans Affairs model (n=26), 5 patients had low, 20 had intermediate, and one had high pretest likelihood. Because of multiple lung nodules, 28 patients were classified as having high malignancy risk. PET/CT showed 32 negative and 27 positive scans. Net reclassification improvements respectively were 0.95 and 1.6 for Mayo Clinic and Veterans Affairs models (both p<0.0001). Fourteen of 31 (45.2%) and 12 of 26 (46.2%) patients with low and intermediate pretest likelihood, respectively, had positive findings on PET/CT for the Mayo Clinic and Veterans Affairs models, respectively. Of 15 patients with high pretest likelihood and negative findings on PET/CT, 13 (86.7%) did not have lung malignancy. PET/CT improves stratification of cancer patients with indeterminate pulmonary nodules. A substantial number of patients considered at low and intermediate pretest likelihood of malignancy with histology-proven lung malignancy showed abnormal PET/CT findings.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pötter, Richard; Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna; Federico, Mario

    Purpose: To define, in the setting of cervical cancer, to what extent information from additional pretreatment magnetic resonance imaging (MRI) without the brachytherapy applicator improves conformity of CT-based high-risk clinical target volume (CTV{sub HR}) contours, compared with the MRI for various tumor stages (International Federation of Gynecology and Obstetrics [FIGO] stages I-IVA). Methods and Materials: The CTV{sub HR} was contoured in 39 patients with cervical cancer (FIGO stages I-IVA) (1) on CT images based on clinical information (CTV{sub HR}-CT{sub Clinical}) alone; and (2) using an additional MRI before brachytherapy, without the applicator (CTV{sub HR}-CT{sub pre-BT} {sub MRI}). The CT contours were compared withmore » reference contours on MRI with the applicator in place (CTV{sub HR}-MRI{sub ref}). Width, height, thickness, volumes, and topography were analyzed. Results: The CT-MRI{sub ref} differences hardly varied in stage I tumors (n=8). In limited-volume stage IIB and IIIB tumors (n=19), CTV{sub HR}-CT{sub pre-BT} {sub MRI}–MRI{sub ref} volume differences (2.6 cm{sup 3} [IIB], 7.3 cm{sup 3} [IIIB]) were superior to CTV{sub HR}-CT{sub Clinical}–MRI{sub ref} (11.8 cm{sup 3} [IIB], 22.9 cm{sup 3} [IIIB]), owing to significant improvement of height and width (P<.05). In advanced disease (n=12), improved agreement with MR volume, width, and height was achieved for CTV{sub HR}-CT{sub pre-BT} {sub MRI}. In 5 of 12 cases, MRI{sub ref} contours were partly missed on CT. Conclusions: Pre-BT MRI helps to define CTV{sub HR} before BT implantation appropriately, if only CT images with the applicator in place are available for BT planning. Significant improvement is achievable in limited-volume stage IIB and IIIB tumors. In more advanced disease (extensive IIB to IVA), improvement of conformity is possible but may be associated with geographic misses. Limited impact on precision of CTV{sub HR}-CT is expected in stage IB tumors.« less

  7. [Structural elements of critical thinking of nurses in emergency care].

    PubMed

    Crossetti, Maria da Graça Oliveira; Bittencourt, Greicy Kelly Gouveia Dias; Lima, Ana Amélia Antunes; de Góes, Marta Georgina Oliveira; Saurin, Gislaine

    2014-09-01

    The objective of this study was to analyze the structural elements of critical thinking (CT) of nurses in the clinical decision-making process. This exploratory, qualitative study was conducted with 20 emergency care nurses in three hospitals in southern Brazil. Data were collected from April to June 2009, and a validated clinical case was applied from which nurses listed health problems, prescribed care and listed the structural elements of CT. Content analysis resulted in categories used to determine priority structural elements of CT, namely theoretical foundations and practical relationship to clinical decision making; technical and scientific knowledge and clinical experience, thought processes and clinical decision making: clinical reasoning and basis for clinical judgments of nurses: patient assessment and ethics. It was concluded that thinking critically is a skill that enables implementation of a secure and effective nursing care process.

  8. Evaluation of the Hologic gen-probe PANTHER, APTIMA Combo 2 assay in a tertiary care teaching hospital.

    PubMed

    Cheng, Annie; Kirby, James E

    2014-03-01

    To evaluate the performance of the Hologic Gen-Probe (San Diego, CA) PANTHER system. The performance of PANTHER was compared with the Hologic Gen-Probe TIGRIS and/or Roche (Indianapolis, IN) COBAS AMPLICOR systems through testing of patient specimens and the spiked-urine matrix. After discrepant resolution, PANTHER demonstrated a 99.3% (95% confidence interval [CI], 96.0%-99.9%) positive and 100% (98.5%-100.0%) negative agreement for Chlamydia trachomatis (CT) and 100% (96.6%-100.0%) positive and 100% (98.6%-100.0%) negative agreement for Neisseria gonorrhoeae (NG) for all male, female, unsexed, and NG-spiked female urine specimens combined. For other specimen types collectively, the PANTHER demonstrated 100% (95% CI, 90.6%-100.0%) positive and 100% (88.3%-100.0%) negative agreement for CT and 90.9% (62.8%-98.4%) positive and 100% (93.5%-100.0%) negative agreement for NG. Analytical sensitivity of the PANTHER in urine matrix was similar to the TIGRIS system. The PANTHER system provides an excellent new addition to options for detecting CT and NG, is appropriate for testing urine samples, and will facilitate high-throughput testing in the clinical laboratory.

  9. Remote CT reading using an ultramobile PC and web-based remote viewing over a wireless network.

    PubMed

    Choi, Hyuk Joong; Lee, Jeong Hun; Kang, Bo Seung

    2012-01-01

    We developed a new type of mobile teleradiology system using an ultramobile PC (UMPC) for web-based remote viewing over a wireless network. We assessed the diagnostic performance of this system for abdominal CT interpretation. Performance was compared with an emergency department clinical monitor using a DICOM viewer. A total of 100 abdominal CT examinations were presented to four observers. There were 56 examinations showing appendicitis and 44 which were normal. The observers viewed the images using a UMPC display and an LCD monitor and rated each examination on a five-point scale. Receiver operating characteristics (ROC) analysis was used to test for differences. The sensitivity and specificities of all observers were similarly high. The average area under the ROC curve for readings performed on the UMPC and the LCD monitor was 0.959 and 0.976, respectively. There were no significant differences between the two display systems for interpreting abdominal CTs. The web-based mobile teleradiology system appears to be feasible for reading abdominal CTs for diagnosing appendicitis and may be valuable in emergency teleconsultation. Copyright © 2012 by the Royal Society of Medicine Press Ltd

  10. A new method for assessing the accuracy of full arch impressions in patients.

    PubMed

    Kuhr, F; Schmidt, A; Rehmann, P; Wöstmann, B

    2016-12-01

    To evaluate a new method of measuring the real deviation (trueness) of full arch impressions intraorally and to investigate the trueness of digital full arch impressions in comparison to a conventional impression procedure in clinical use. Four metal spheres were fixed with composite using a metal application aid to the lower teeth of 50 test subjects as reference structures. One conventional impression (Impregum Penta Soft) with subsequent type-IV gypsum model casting (CI) and three different digital impressions were performed in the lower jaw of each test person with the following intraoral scanners: Sirona CEREC Omnicam (OC), 3M True Definition (TD), Heraeus Cara TRIOS (cT). The digital and conventional (gypsum) models were analyzed relative to the spheres. Linear distance and angle measurements between the spheres, as well as digital superimpositions of the spheres with the reference data set were executed. With regard to the distance measurements, CI showed the smallest deviations followed by intraoral scanners TD, cT and OC. A digital superimposition procedure yielded the same order for the outcomes: CI (15±4μm), TD (23±9μm), cT (37±14μm), OC (214±38μm). Angle measurements revealed the smallest deviation for TD (0.06°±0,07°) followed by CI (0.07°±0.07°), cT (0.13°±0.15°) and OC (0.28°±0.21°). The new measuring method is suitable for measuring the dimensional accuracy of full arch impressions intraorally. CI is still significantly more accurate than full arch scans with intraoral scanners in clinical use. Conventional full arch impressions with polyether impression materials are still more accurate than full arch digital impressions. Digital impression systems using powder application and active wavefront sampling technology achieve the most accurate results in comparison to other intraoral scanning systems (DRKS-ID: DRKS00009360, German Clinical Trials Register). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witek, Matthew; Blomain, Erik S.; Magee, Michael S.

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responsesmore » were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance of modality sequence optimization before the initiation of clinical trials of RT and IT to maximize immune and antitumor responses.« less

  12. [Chronic pancreatitis: which is the role of 320-row CT for the staging?].

    PubMed

    Stabile Ianora, Amato Antonio; Rubini, Giuseppe; Lorusso, Filomenamila; Ambriola, Angela; Rella, Leonarda; Di Crescenzo, Vincenzo; Moschetta, Marco

    2013-01-01

    The purpose of this study was to evaluate the diagnostic potential of multi-planar and volumetric reconstructions obtained from isotropic data by using 16-slice computed tomography (CT) in the diagnosis and staging of chronic pancreatitis. In a group of 42 patients CT images were evaluated searching for alterations in morphology and structure of the pancreas, alterations of the Wirsung duct, dilatation of the bile ducts, fluid collections, and vascular involvement of the digestive tract. The disease was then staged in mild, moderate and severe and correlated with the clinical staging. CT allowed the recognition of chronic pancreatitis in all cases. The staging was correct in 25/42 patients, with an accuracy rate of 59.5%. In the staging of moderate and severe forms, CT correlation with clinical and laboratory data was valid, but in mild forms it appeared less significant. Multi-detector CT is accurate in the recognition of moderate, advanced forms of chronic pancreatitis and in the identification of its complications, while it is poorly correlated with the clinical staging in mild forms of the disease.

  13. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    PubMed Central

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections Results The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Conclusion Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery. PMID:27584018

  14. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer.

    PubMed

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-Pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections. The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery.

  15. Sci—Thur AM: YIS - 01: Dosimetric Analysis of Respiratory Induced Cardiac Intrafraction Motion in Left-sided Breast Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sherif, O; Xhaferllari, I; Patrick, J

    2014-08-15

    Introduction: Long-term cardiac side effects in left-sided breast cancer patients (BREL) after post-operative radiotherapy has become one of the most debated issues in radiation oncology. Through breathing-adapted radiotherapy the volume of the heart exposed to radiation can be significantly reduced by delivering the radiation only at the end of inspiration phase of the respiratory cycle, this is referred to as inspiration gating (IG). The purpose of this study is to quantify the potential reduction in cardiac exposure during IG compared to conventional BREL radiotherapy and to assess the dosimetric impact of cardiac motion due to natural breathing. Methods: 24 BRELmore » patients treated with tangential parallel opposed photon beams were included in this study. All patients received a standard fast helical planning CT (FH-CT) and a 4D-CT. Treatment plans were created on the FH-CT using a clinical treatment planning system. The original treatment plan was then superimposed onto the end of inspiration CT and all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion and IG through 4D dose accumulation. Results: Through IG the mean dose to the heart, left ventricle, and left anterior descending artery (LAD) can be reduced in comparison to the clinical standard BREL treatment by as much as 8.39%, 10.11%, and 13.71% respectively (p < 0.05). Conclusion: Failure to account for respiratory motion can lead to under or overestimation in the calculated DVH for the heart, and it's sub-structures. IG can reduce cardiac exposure especially to the LAD during BREL radiotherapy.« less

  16. Rituximab in the Treatment of Interstitial Lung Disease Associated with Antisynthetase Syndrome: A Multicenter Retrospective Case Review.

    PubMed

    Doyle, Tracy J; Dhillon, Namrata; Madan, Rachna; Cabral, Fernanda; Fletcher, Elaine A; Koontz, Diane C; Aggarwal, Rohit; Osorio, Juan C; Rosas, Ivan O; Oddis, Chester V; Dellaripa, Paul F

    2018-06-01

    To assess clinical outcomes including imaging findings on computed tomography (CT), pulmonary function testing (PFT), and glucocorticoid (GC) use in patients with the antisynthetase syndrome (AS) and interstitial lung disease (ILD) treated with rituximab (RTX). We retrospectively identified all patients at 2 institutions with AS-ILD who were treated with RTX. Baseline demographics, PFT, and chest CT were assessed before and after RTX. Two radiologists independently evaluated CT using a standardized scoring system. Twenty-five subjects at the Brigham and Women's Hospital (n = 13) and University of Pittsburgh Medical Center (n = 12) were included. Antisynthetase antibodies were identified in all patients (16 Jo1, 6 PL-12, 3 PL-7). In 21 cases (84%), the principal indication for RTX use was recurrent or progressive ILD, owing to failure of other agents. Comparing pre- and post-RTX pulmonary variables at 12 months, CT score and forced vital capacity were stable or improved in 88% and 79% of subjects, respectively. Total lung capacity (%) increased from 56 ± 13 to 64 ± 13 and GC dose decreased from 18 ± 9 to 12 ± 12 mg/day. Although DLCO (%) declined slightly at 1 year, it increased from 42 ± 17 to 70 ± 20 at 3 years. The most common imaging patterns on CT were nonspecific interstitial pneumonia (NSIP; n = 13) and usual interstitial pneumonia/fibrotic NSIP (n = 5), of which 5 had concurrent elements of cryptogenic organizing pneumonia. Stability or improvement in pulmonary function or severity of ILD on CT was seen in most patients. Use of RTX was well tolerated in the majority of patients. RTX may play a therapeutic role in patients with AS-ILD, and further clinical investigation is warranted.

  17. Computed tomographic findings in dogs with head trauma and development of a novel prognostic computed tomography-based scoring system.

    PubMed

    Chai, Orit; Peery, Dana; Bdolah-Abram, Tali; Moscovich, Efrat; Kelmer, Efrat; Klainbart, Sigal; Milgram, Joshua; Shamir, Merav H

    2017-09-01

    OBJECTIVE To characterize CT findings and outcomes in dogs with head trauma and design a prognostic scale. ANIMALS 27 dogs admitted to the Koret School Veterinary Teaching Hospital within 72 hours after traumatic head injury that underwent CT imaging of the head. PROCEDURES Data were extracted from medical records regarding dog signalment, history, physical and neurologic examination findings, and modified Glasgow coma scale scores. All CT images were retrospectively evaluated by a radiologist unaware of dog status. Short-term (10 days after trauma) and long-term (≥ 6 months after trauma) outcomes were determined, and CT findings and other variables were analyzed for associations with outcome. A prognostic CT-based scale was developed on the basis of the results. RESULTS Cranial vault fractures, parenchymal abnormalities, or both were identified via CT in 24 of 27 (89%) dogs. Three (11%) dogs had only facial bone fractures. Intracranial hemorrhage was identified in 16 (59%) dogs, cranial vault fractures in 15 (56%), midline shift in 14 (52%), lateral ventricle asymmetry in 12 (44%), and hydrocephalus in 7 (26%). Hemorrhage and ventricular asymmetry were significantly and negatively associated with short- and long-term survival, respectively. The developed 7-point prognostic scale included points for hemorrhage, midline shift or lateral ventricle asymmetry, cranial vault fracture, and depressed fracture (1 point each) and infratentorial lesion (3 points). CONCLUSIONS AND CLINICAL RELEVANCE The findings reported here may assist in determining prognoses for other dogs with head trauma. The developed scale may be useful for outcome assessment of dogs with head trauma; however, it must be validated before clinical application.

  18. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma.

    PubMed

    Finocchiaro, Liliana M E; Fondello, Chiara; Gil-Cardeza, María L; Rossi, Úrsula A; Villaverde, Marcela S; Riveros, María D; Glikin, Gerardo C

    2015-06-01

    We present here a nonviral immunogene therapy trial for canine malignant melanoma, an aggressive disease displaying significant clinical and histopathological overlapping with human melanoma. As a surgery adjuvant approach, it comprised the co-injection of lipoplexes bearing herpes simplex virus thymidine kinase and canine interferon-β genes at the time of surgery, combined with the periodic administration of a subcutaneous genetic vaccine composed of tumor extracts and lipoplexes carrying the genes of human interleukin-2 and human granulocyte-macrophage colony-stimulating factor. Following complete surgery (CS), the combined treatment (CT) significantly raised the portion of local disease-free canine patients from 11% to 83% and distant metastases-free (M0) from 44% to 89%, as compared with surgery-only-treated controls (ST). Even after partial surgery (PS), CT better controlled the systemic disease (M0: 82%) than ST (M0: 48%). Moreover, compared with ST, CT caused a significant 7-fold (CS) and 4-fold (PS) rise of overall survival, and >17-fold (CS) and >13-fold (PS) rise of metastasis-free survival. The dramatic increase of PS metastasis-free survival (>1321 days) and CS recurrence- and metastasis-free survival (both >2251 days) demonstrated that CT was shifting a rapidly lethal disease into a chronic one. In conclusion, this surgery adjuvant CT was able of significantly delaying or preventing postsurgical recurrence and distant metastasis, increasing disease-free and overall survival, and maintaining the quality of life. The high number of canine patients involved in CT (301) and the extensive follow-up (>6 years) with minimal or absent toxicity warrant the long-term safety and efficacy of this treatment. This successful clinical outcome justifies attempting a similar scheme for human melanoma.

  19. Prostate seed implant quality assessment using MR and CT image fusion.

    PubMed

    Amdur, R J; Gladstone, D; Leopold, K A; Harris, R D

    1999-01-01

    After a seed implant of the prostate, computerized tomography (CT) is ideal for determining seed distribution but soft tissue anatomy is frequently not well visualized. Magnetic resonance (MR) images soft tissue anatomy well but seed visualization is problematic. We describe a method of fusing CT and MR images to exploit the advantages of both of these modalities when assessing the quality of a prostate seed implant. Eleven consecutive prostate seed implant patients were imaged with axial MR and CT scans. MR and CT images were fused in three dimensions using the Pinnacle 3.0 version of the ADAC treatment planning system. The urethra and bladder base were used to "line up" MR and CT image sets during image fusion. Alignment was accomplished using translation and rotation in the three ortho-normal planes. Accuracy of image fusion was evaluated by calculating the maximum deviation in millimeters between the center of the urethra on axial MR versus CT images. Implant quality was determined by comparing dosimetric results to previously set parameters. Image fusion was performed with a high degree of accuracy. When lining up the urethra and base of bladder, the maximum difference in axial position of the urethra between MR and CT averaged 2.5 mm (range 1.3-4.0 mm, SD 0.9 mm). By projecting CT-derived dose distributions over MR images of soft tissue structures, qualitative and quantitative evaluation of implant quality is straightforward. The image-fusion process we describe provides a sophisticated way of assessing the quality of a prostate seed implant. Commercial software makes the process time-efficient and available to any clinical practice with a high-quality treatment planning system. While we use MR to image soft tissue structures, the process could be used with any imaging modality that is able to visualize the prostatic urethra (e.g., ultrasound).

  20. Ga-68-DOTATOC: Feasibility of high throughput screening by small animal PET using a clinical high-resolution PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hofmann, Michael; Weitzel, Thilo; Krause, Thomas

    2006-12-01

    As radio peptide tracers have been developed in recent years for the high sensitive detection of neuroendocrine tumors, still the broad application of other peptides to breast and prostate cancer is missing. A rapid screening of new peptides can, in theory, be based on in vivo screening in animals by PET/CT. To test this hypothesis and to asses the minimum screening time needed per animal, we used the application of Ga-68-DOTATOC PET/CT in rats as test system. The Ga-68-DOTATOC yields in a hot spot imaging with minimal background. To delineate liver and spleen, we performed PET/CT of 10 animals on a SIEMENS Biograph 16 LSO HIGHREZ after intravenous injection of 1.5 MBq Ga-68-DOTATOC per animal. Animals were mounted in an '18 slot' holding device and scanned for a single-bed position. The emission times for the PET scan was varied from 1 to 20 min. The images were assessed first for "PET only" and afterwards in PET/CT fusion mode. The detection of the two organs was good at emission times down to 1 min in PET/CT fusion mode. In the "PET only" scans, the liver was clearly to be identified down to 1 min emission in all animals. But the spleen could only be delineated only by 1 min of emission in the PET/CT-fusion mode. In conclusion the screening of "hot spot" enriching peptides is feasible. "PET only" is in terms of delineation of small organs by far inferior to PET/CT fusion. If animal tumors are above a diameter of 10 mm small, animal PET/CT using clinical high resolution scanners will enable rapid screening. Even the determination of bio-distributions becomes feasible by using list mode tools. The time for the whole survey of 18 animals including anesthesia, preparation and mounting was approximately 20 min. By use of several holding devices mounted simultaneously, a survey time of less than 1 h for 180 animals can be expected.

Top