Science.gov

Sample records for clinical optical coherence

  1. Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience

    PubMed Central

    Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.

    2015-01-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824

  2. Concise Review of Optical Coherence Tomography in Clinical Practice

    PubMed Central

    Su, Min-I; Chen, Chun-Yen; Yeh, Hung-I; Wang, Kuang-Te

    2016-01-01

    Optical coherence tomography (OCT) is a novel image modality with higher resolution in the catheterization laboratory. It can differentiate tissue characteristics and provide detailed information, including dissection, tissue prolapse, thrombi, and stent apposition. In this study, we comprehensively reviewed the current pros and cons of OCT clinical applications and presented our clinical experiences associated with the advantages and limitations of this new imaging modality. PMID:27471350

  3. Optical coherence tomography: potentialities in clinical practice

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena; Gladkova, Natalia D.; Shakhov, Andrey; Terentjeva, Anna; Snopova, Ludmila B.; Kuznetzova, Irina A.; Streltzova, Olga; Shakhova, Natalia M.; Kamensky, Vladislav A.; Gelikonov, Grigory V.; Gelikonov, Valentin M.; Kuranov, Roman V.; Myakov, Alex

    2004-08-01

    Clinical studies using OCT involved 2000 patients in various fields of medicine such as gastroenterology, urology, laryngology, gynecology, dermatology, stomatology, etc. Layered high-contrast images were typical for benign epithelial conditions. OCT distinguish in mucosae: epithelium, connective tissue layer, and smooth-muscle layer. Various benign processes occurring in mucosa manifest in OCT images as changes in the epithelial height, scattering properties and the course of the basement membrane. Lack of the layered structural pattern is the main criterion for dysplastic / malignant images. In clinic: OCT data may be critical for choosing a tissue site for excisional biopsy, OCT can detect tumor borders and their linear dimensions, OCT can be used to plan a resection line in operations and to control adequacy of resection, to monitor whether reparative processes are timely and adequate. OCT sensitivity of the uterine cervix, urinary bladder and larynx is 82, 98, 77%, respectively, specificity - 78, 71, 96%, diagnostic accuracy - 81, 85, 87% with significantly good agreement index of clinicians kappa - 0.65, 0.79, 0.83 (confidence intervals: 0.57-0.73; 0.71-0.88; 0.74-0.91). Error in detection of high grade dysplasia and microinvasive cancer is 21.4% in average. Additional modification of OCT (cross-polarisation OCT, OCM), development of the procedure (biotissue compression, application of chemical agents) can improve the specificity and sensitivity of traditional modality.

  4. Clinical Utility of Optical Coherence Tomography in Glaucoma

    PubMed Central

    Dong, Zachary M.; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Optical coherence tomography (OCT) has established itself as the dominant imaging modality in the management of glaucoma and retinal diseases, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change. This article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the clinical utility of OCT with respect to diagnosis and progression monitoring, with additional emphasis on advances in OCT technology that continue to facilitate glaucoma research and inform clinical management strategies. PMID:27537415

  5. Clinical applications of optical coherence tomography in urology

    PubMed Central

    Wang, Hsing-Wen; Chen, Yu

    2014-01-01

    Since optical coherence tomography (OCT) was first demonstrated in 1991, it has advanced significantly in technical aspects such as imaging speed and resolution, and has been clinically demonstrated in a diverse set of medical and surgical applications, including ophthalmology, cardiology, gastroenterology, dermatology, oncology, among others. This work reviews current clinical applications in urology, particularly in bladder, urether, and kidney. Clinical applications in bladder and urether mainly focus on cancer detection and staging based on tissue morphology, image contrast, and OCT backscattering. The application in kidney includes kidney cancer detection based on OCT backscattering attenuation and non-destructive evaluation of transplant kidney viability or acute tubular necrosis based on both tissue morphology from OCT images and function from Doppler OCT (DOCT) images. OCT holds the promise to positively impact the future clinical practices in urology. PMID:28243507

  6. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  7. Clinical study of bladder diseases using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zagainova, Elena; Gladkova, Natalia D.; Strelzova, O.; Sumin, A.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Iksanov, Rashid R.

    2000-11-01

    Optical Coherence Tomography (OCT), a new optical bioimaging technique was used to evaluate the state of mucosa in the urinary bladder. The state of mucosa of the bladder was evaluated in patients with prostatic adenoma (11 male patients) during the course of prostatectomy operation via a resection cytoscope. An OCT probe was inserted into the biopsy channel of a cystoscope. The sites to be imaged by OCT were determined visually and, after OCT study, underwent excisional biopsy and subsequent histological examination. Children (9 girls) were examined during diagnostic cystoscopy. Our analysis of diagnostic capabilities of OCT in urology relies on the comparison of OCT information on normal and morphologically altered tissues. OCT is able to provide objective data concerning the structure of mucosa of the bladder due to the difference in optical properties of different layers in tissue. The epithelium and the layers of connective tissue, both in norm and pathology, are clearly visualized in the tomograms. Our OCT study of healthy mucosa of the urinary bladder has demonstrated that the epithelium appears in the tomograms as an upper highly backscattering layer. An underlying optically less transparent layer, much greater in size than the previous one, corresponds to the connective tissue of the mucosa. Inside this layer, elongated poorly backscattering formations with clear contours are seen; they do not alter the longitudinal structure of the submucosal layer. These formations are blood vessels. Optical patterns characteristic of chronic inflammation are obtained. They correspond, as confirmed histologically, to liquid accumulation, cellular infiltration of mucosal layers, hypervascularization, and fibrosis. OCT information on proliferative processes, such as papillomatosis of the urinary bladder and squamous cell carcinoma, is analyzed. It is shown that OCT can reliably reveal edema of the mucous membrane of the bladder and identify the character of appearing

  8. Dental Optical Coherence Tomography

    PubMed Central

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Tsai, Jui-che; Lin, Kun-Feng; Sun, Chia-Wei

    2013-01-01

    This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed. PMID:23857261

  9. Clinical Usefulness of Spectral-Domain Optical Coherence Tomography in Glaucoma and NAION

    PubMed Central

    Lee, Tae Hee; Heo, Hwan

    2016-01-01

    The development of optical coherence tomography (OCT) has changed the clinical management of ophthalmic diseases by furthering the understanding of pathogenesis, as well as improving the monitoring of their progression and assisting in quantifying the response to treatment modalities in ophthalmic diseases. Initially, the two-dimensional configuration of the optic nerve head (ONH) and the thickness of the retinal nerve fiber layer (RNFL) were the main OCT structural parameters used in clinical management of optic nerve diseases. Now, with higher resolution power and faster acquisition times, the details of ONH and the retina including the macular area can be measured using spectral domain OCT (SD-OCT) with high reproducibility and increased diagnostic ability. OCT can provide structural information to improve the understanding and management of optic nerve diseases. In this review, we will briefly summarize the clinical applications of SD-OCT in glaucoma and nonarteritic anterior ischemic optic neuropathy, which are two representative optic nerve diseases. PMID:27689029

  10. Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.; Nguyen, Freddy T.; Zysk, Adam M.; Chaney, Eric J.; Kotynek, Jan G.; Oliphant, Uretz J.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.

    2008-04-01

    Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumor mass. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor during surgery, and the presence of cancer cells in involved lymph nodes. Hence, developing means to more accurately resect tumor cells, along with the tumor mass, and ensure negative surgical margins, offers the potential to impact outcomes of breast cancer. The use of diffuse optical tomography has been applied for screening optical mammography applications as an alternative to standard x-ray mammography. The use of coherence ranging and coherent optical imaging in breast tissue has also found numerous applications, including intra-operative assessment of tumor margin status during lumpectomy procedures, assessment of lymph node changes for staging metastatic spread, and for guiding needle-biopsy procedures. The development, pre-clinical testing, and translation of techniques such as low-coherence interferometry (LCI) and optical coherence tomography (OCT) into clinical applications in breast cancer is demonstrated in these feasibility studies.

  11. Optical Coherence Tomography Angiography

    PubMed Central

    Gao, Simon S.; Jia, Yali; Zhang, Miao; Su, Johnny P.; Liu, Gangjun; Hwang, Thomas S.; Bailey, Steven T.; Huang, David

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a noninvasive approach that can visualize blood vessels down to the capillary level. With the advent of high-speed OCT and efficient algorithms, practical OCTA of ocular circulation is now available to ophthalmologists. Clinical investigations that used OCTA have increased exponentially in the past few years. This review will cover the history of OCTA and survey its most important clinical applications. The salient problems in the interpretation and analysis of OCTA are described, and recent advances are highlighted. PMID:27409483

  12. Dynamic single gold nanoparticle visualization by clinical intracoronary optical coherence tomography.

    PubMed

    Hu, Jie; Rivero, Fernando; Torres, Rio Aguilar; Loro Ramírez, Héctor; Rodríguez, Emma Martín; Alfonso, Fernando; García Solé, José; Jaque, Daniel

    2016-06-08

    The potential use of Gold Nanoparticles (GNPs) as contrast agents for clinical intracoronary frequency domain Optical Coherence Tomography (OCT) is here explored. The OCT contrast enhancement caused by GNPs of different sizes and morphologies has been systematically investigated and correlated with their optical properties. Among the different GNPs commercially available with plasmon resonances close to the operating wavelength of intracoronary OCT (1.3 µm), Gold Nanoshells (GNSs) have provided the best OCT contrast due to their largest scattering cross section at this wavelength. Clinical intracoronary OCT catheters are here demonstrated to be capable of three dimensional visualization and real-time tracking of individual GNSs. Results here included open an avenue to novel application of intravascular clinical OCT in combination with GNPs, such as real time evaluation of intravascular obstructions or pressure gradients.

  13. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma

    PubMed Central

    Angmo, Dewang; Nongpiur, Monisha E.; Sharma, Reetika; Sidhu, Talvir; Sihota, Ramanjit; Dada, Tanuj

    2016-01-01

    Optical coherence tomography (OCT), a noninvasive imaging modality that uses low-coherence light to obtain a high-resolution cross-section of biological structures, has evolved dramatically over the years. The Swept-source OCT (SS-OCT) makes use of a single detector with a rapidly tunable laser as a light source. The Casia SS-1000 OCT is a Fourier-domain, SS-OCT designed specifically for imaging the anterior segment. This system achieves high resolution imaging of 10΅m (Axial) and 30΅m (Transverse) and high speed scanning of 30,000 A-scans per second. With a substantial improvement in scan speed, the anterior chamber angles can be imaged 360 degrees in 128 cross sections (each with 512 A-scans) in about 2.4 seconds. We summarize the clinical applications of anterior segment SS-OCT in Glaucoma. Literature search: We searched PubMed and included Medline using the phrases anterior segment optical coherence tomography in ophthalmology, swept-source OCT, use of AS-OCT in glaucoma, use of swept-source AS-OCT in glaucoma, quantitative assessment of angle, filtering bleb in AS-OCT, comparison of AS-OCT with gonioscopy and comparison of AS-OCT with UBM. Search was made for articles dating 1990 to August 2015. PMID:27013821

  14. Intracoronary optical coherence tomography: Clinical and research applications and intravascular imaging software overview.

    PubMed

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei; Zeng, Yaping; Suwannasom, Pannipa; Tateishi, Hiroki; Cavalcante, Rafael; Ishibashi, Yuki; Nakatani, Shimpei; Abdelghani, Mohammad; Dijkstra, Jouke; Bourantas, Christos; Collet, Carlos; Karanasos, Antonios; Radu, Maria; Wang, Ancong; Muramatsu, Takashi; Landmesser, Ulf; Okamura, Takayuki; Regar, Evelyn; Räber, Lorenz; Guagliumi, Giulio; Pyo, Robert T; Onuma, Yoshinobu; Serruys, Patrick W

    2017-01-21

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT) is a light-based technology with a tissue penetration of approximately 1 to 3 mm and provides near histological resolution. It has emerged as a technological breakthrough in intravascular imaging with multiple clinical and research applications. OCT provides detailed visualization of the vessel following PCI and provides accurate assessment of post-procedural stent performance including detection of edge dissection, stent struts apposition, tissue prolapse, and healing parameters. Additionally, it can provide accurate characterization of plaque morphology and provides key information to optimize post-procedural outcomes. This manuscript aims to review the current clinical and research applications of intracoronary OCT and summarize the analytic OCT imaging software packages currently available. © 2017 Wiley Periodicals, Inc.

  15. Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Huang, David

    Optical coherence tomography (OCT) is a new method for noninvasive cross-sectional imaging in biological systems. In OCT, the longitudinal locations of tissue structures are determined by measuring the time-of-flight delays of light backscattered from these structures. The optical delays are measured by low coherence interferometry. Information on lateral position is provided by transverse scanning of the probe beam. The two dimensional map of optical scattering from internal tissue microstructures is then represented in a false-color or grayscale image. OCT is the optical analog of ultrasonic pulse-echo imaging, but with greatly improved spatial resolutions (a few microns). This thesis describes the development of this new high resolution tomographic imaging technology and the demonstration of its use in a variety of tissues under both in vitro and in vivo conditions. In vitro OCT ranging and imaging studies were performed using human ocular and arterial tissues, two clinically relevant examples of transparent and turbid media, respectively. In the anterior eye, precise measurements of cornea and anterior chamber dimensions were made. In the arterial specimens, the differentiation between fatty -calcified and fibromuscular tissues was demonstrated. In vivo OCT imaging in the retina and optic nerve head in human subjects was also performed. The delineation of retinal layers, which has not been possible with other noninvasive imaging techniques, is demonstrated in these OCT images. OCT has high spatial resolution but limited penetration into turbid tissue. It has potential for diagnostic applications where high resolution is needed and optical access is available, such as in the eye, skin, surgically exposed tissues, and surfaces that can be reached by various catheters and endoscopic probes. In particular, the measurement of fine retinal structures promises improvements in the diagnosis and management of glaucoma, macular edema and other vitreo-retinal diseases

  16. Neuro-endovascular optical coherence tomography imaging: clinical feasibility and applications

    NASA Astrophysics Data System (ADS)

    Mathews, Marlon S.; Su, Jianping; Heidari, Esmaeil; Linskey, Mark E.; Chen, Zhongping

    2011-03-01

    The authors report on the feasibility of clinical neuroendovascular optical coherence tomography (OCT) imaging as well as its efficacy and safety by comparing findings with histology in animal, cadaveric and clinical studies. Catheter-based in vivo endovascular OCT imaging was carried out intracranially in four patients, three in the anterior circulation and one in the posterior circulation (vertebral artery). The neuroendovascular OCT device was delivered to the desired location using groin access and standard endovascular procedures. In vivo findings were reproduced using ex vivo OCT imaging in corresponding animal and human (cadaveric) harvested tissue segments with findings matched by histology. OCT images correlated well with the images obtained after histologic sectioning, and visualized in vivo the laminar vascular structure. Satisfactory imaging findings were obtained with no complications. Neuroendovascular OCT imaging is thus feasible for clinical use and can detect with high resolution the structure of arterial segments. Understanding OCT imaging in non-diseased arteries is important in establishing baseline findings necessary for interpreting pathologic processes. This allows neuroendovascular optical biopsies of vascular tissue to be obtained without the need for excision and processing, and potentially allows prophylactic interventions against stroke and other cerebrovascular disease before they become symptomatic.

  17. Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.

    2007-12-01

    Non-invasive optical biopsy techniques, which interrogate tissue in situ, offer a potential method to improve the detection of dysplasia, a pre-cancerous tissue state. Specifically, monitoring of Barrett's esophagus (BE) patients for dysplasia, currently done through systematic biopsy, can be improved by increasing the proportion of at-risk tissue examined. Angle-resolved low coherence interferometry (a/LCI) is an optical spectroscopic technique which measures the depth resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. Using an animal carcinogenesis model, it was shown that a/LCI can detect dysplasia with great sensitivity and specificity. However, for the clinical application of a/LCI, numerous hurdles must be overcome. This dissertation presents the development of three new a/LCI systems which incrementally address the three main obstacles preventing the clinical application of a/LCI. First, data acquisition time is reduced by implementing a frequency-domain detection scheme using an imaging spectrograph that collects the complete depth resolved angular scattering distribution in parallel. This advance reduces data collection time to a clinically acceptable 40 ms. Second, a fiber probe is developed to enable the endoscopic application of a/LCI. The probe incorporates a single fiber for delivering light and a coherent fiber bundle for collecting the angular distribution of scattered light. Third, a portable device is created through miniaturization of the optical design, and a flexible fiber probe is created using polarization maintaining fiber to deliver the light. These advances allow for the clinical application of the system to ex vivo human tissue samples. The performance of each described system is evaluated through a number of validation studies, including the sizing of polystyrene microspheres, a typical model used in light scattering studies, and the measurement of in vitro cell nuclear diameters, accomplished with sub

  18. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    NASA Astrophysics Data System (ADS)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  19. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin

    2009-07-01

    We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.

  20. Cardiovascular Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Yonetsu, Taishi; Villiger, Martin; Bouma, Brett E.; Jang, Ik-Kyung

    The potential of optical coherence tomography (OCT) for intravascular imaging and assessing the microstructure of atherosclerosis was suggested already by Huang et al. at the very beginning of OCT [1]. For ophthalmology, the eye provides a natural window for OCT to image the retinal microstructure, and OCT has rapidly become the standard imaging modality to diagnose retinal disease and assess disease progression and response to therapy [1, 2]. Intravascular imaging is more invasive by nature and requires imaging through a catheter probe. This has triggered the development of advanced fiber-optic OCT systems with compact, rotating fiber probes, to image the vessel by circumferentially scanning the luminal wall [3, 4]. In 1998, we established the first cardiac OCT research group at the Massachusetts General Hospital to explore the clinical applications of OCT. The first imaging of rabbit aorta was reported by Fujimoto et al. [5], followed by the first swine measurements in vivo by Tearney et al. [6], and finally the first assessment of coronary arteries in patients by Jang et al. [7]. The scope of this chapter is to highlight the steps taken to bring intravascular OCT from bench to bedside over the last 15 years. We will give a general description of atherosclerosis and its pathophysiology and the specific technical implementation of OCT for intravascular imaging through a fiber-optic probe. The motivation is to provide sufficient medical details to provide a basic introduction to the terminology, principles, and challenges of intracoronary imaging.

  1. Standard resolution spectral domain optical coherence tomography in clinical ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Szkulmowska, Anna; Cyganek, Marta; Targowski, Piotr; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Wojtkowski, Maciej; Fujimoto, James G.

    2005-04-01

    In this study we show clinical application of Spectral Optical Coherence Tomography (SOCT), which enables operation with 40 times higher speed than commercial Stratus OCT instrument. Using high speed SOCT instrument it is possible to collect more information and increase the quality of reconstructed cross-sectional retinal images. Two generations of compact and portable clinical SOCT instruments were constructed in Medical Physics Group at Nicolaus Copernicus University in Poland. The first SOCT instrument is a low-cost system operating with standard, 12 micrometer axial resolution and the second is high resolution system using combined superluminescent diodes light source, which enables imaging with 4.8 micrometer axial resolution. Both instruments have worked in Ophthalmology Clinic of Collegium Medicum in Bydgoszcz. During the study we have examined 44 patients with different pathologies of the retina including: Central Serous Chorioretinopathy (CSC), Choroidal Neovascularization (CNV), Pigment Epithelial Detachment (PED), Macular Hole, Epiretinal Membrane, Outer Retinal Infarction etc. All these pathologies were first diagnosed by classical methods (like fundus camera imaging and angiography) and then examined with the aid of SOCT system. In this contribution we present examples of SOCT cross-sectional retinal imaging of pathologic eyes measured with standard resolution. We also compare cross-sectional images of pathology obtained by standard and high resolution systems.

  2. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  3. Coherent Fiber Optic Links

    DTIC Science & Technology

    1990-12-01

    local oscillator to achieve a receiver penalty of 1dB at a BER of 10- 9. REFERENCES [1] G Jacobsen and I Garrett: "Theory for heterodyne optical ASK...34Costas loop analysis for coherent optical receivers", Electronics Letters, 1986, Vol. 22, pp.394-396. [3] I Garrett and G Jacobsen : "Theoretical...DC block must be inserted and threshold on the BER set adjusted to zero volts. -5.21- Data [nj] POW Coherent Modulationcircuit op~ arn Diectn,, anua Rx

  4. Clinical cross-polarization optical coherence tomography assessment of subsurface enamel below dental resin composite restorations

    PubMed Central

    Lenton, Patricia; Rudney, Joel; Fok, Alex; Jones, Robert S.

    2014-01-01

    Abstract. A newly designed intraoral swept source cross-polarization optical coherence tomography (CP-OCT) imaging system was used to examine the integrity of the subsurface enamel below resin composite restorations placed in primary teeth. CP-OCT analysis was performed using images obtained from resin composite restoration in 62 (n=62) pediatric subjects. Clinical examination was performed by a single examiner prior to CP-OCT imaging and analysis. CP-OCT images are presented using a unique combined intensity image, where a false color scale is overlaid on the grayscale intensity image. There was a clear difference in the distribution of the mean-backscattered intensity (mR) between restorations recently placed and those possessing frank cavitation (Student’s t-test, P<0.0001). For mR above 15.49 dB, the sensitivity was 80% and specificity 86%. The Youden index J was 0.8 above 12.3 dB where sensitivity was 100% and specificity was 80%. CP-OCT imaging may be used to confirm the subsurface marginal integrity below resin composite restorations but with careful consideration of limitations of the imaging modality. CP-OCT imaging may be a useful adjunct to clinical visual investigation to confirm that a composite margin has a sound and well-adapted interface. PMID:26158031

  5. High-definition optical coherence tomography - an aid to clinical practice and research in dermatology.

    PubMed

    Cao, Taige; Tey, Hong Liang

    2015-09-01

    At present, beyond clinical assessment, the diagnosis of skin diseases is primarily made histologically. However, skin biopsies have many disadvantages, including pain, scarring, risk of infection, and sampling error. With recent advances in skin imaging technology, the clinical use of imaging methods for the practical management of skin diseases has become an option. The in vivo high-definition optical coherence tomography (HD-OCT) has recently been developed and commercialized (Skintell; Agfa, Belgium). Compared with conventional OCT, it has a higher resolution; compared with reflectance confocal microscopy, it has a shorter time for image acquisition as well as a greater penetration depth and a larger field of view. HD-OCT is promising but much work is still required to develop it from a research tool to a valuable adjunct for the noninvasive diagnosis of skin lesions. Substantial work has been done to identify HD-OCT features in various diseases but interpretation can be time-consuming and tedious. Projects aimed at automating these processes and improving image quality are currently under way.

  6. Optical Coherence Elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  7. Articulated dual modality photoacoustic and optical coherence tomography probe for preclinical and clinical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Zabihian, Behrooz; Weingast, Jessika; Hermann, Boris; Chen, Zhe; Zhang, Edward Z.; Beard, Paul C.; Pehamberger, Hubert; Drexler, Wolfgang

    2016-03-01

    The combination of photoacoustic tomography (PAT) with optical coherence tomography (OCT) has seen steady progress over the past few years. With the benchtop and semi-benchtop configurations, preclinical and clinical results have been demonstrated, paving the way for wider applications using dual modality PAT/OCT systems. However, as for the most updated semi-benchtop PAT/OCT system which employs a Fabry-Perot polymer film sensor, it is restricted to only human palm imaging due to the limited flexibility of the probe. The passband limit of the polymer film sensor further restricts the OCT source selection and reduces the sensitivity of the combined OCT system. To tackle these issues, we developed an articulated PAT/OCT probe for both preclinical and clinical applications. In the probe design, the sample arm of OCT sub-system and the interrogation part of the PAT sub-system are integrated into one compact unit. The polymer film sensor has a quick release function so that before each OCT scan, the sensor can be taken off to avoid the sensitivity drop and artefacts in OCT. The holding mechanism of the sensor is also more compact compared to previous designs, permitting access to uneven surfaces of the subjects. With the help of the articulated probe and a patient chair, we are able to perform co-registered imaging on human subjects on both upper and lower extremities while they are at rest positions. An increase in performance characteristics is also achieved. Patients with skin diseases are currently being recruited to test its clinical feasibility.

  8. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

    PubMed Central

    Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S.; Wollstein, Gadi; Hammer, Daniel X.

    2016-01-01

    Purpose Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. Results The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. Conclusions The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH. PMID:27409500

  9. Future aspects of cellular and molecular research in clinical voice treatment aspects of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pedersen, Mette; Mahmood, Sanila

    2015-02-01

    Focus is upon our clinical experience in a prospective cohort study on cure of dystonia where the mode of treatment was fexofenadine tablets and local budesonide inhaler in the larynx, and in a randomized controlled trial of lifestyle change related to acid provocation of food and habits in laryngopharyngeal reflux (LPR). The advanced high-speed films is one new tool, another being optical coherence tomography (OCT), which should be used in the future in randomized controlled trials. We are focusing on OCT of the swallowing process in the oesophagaus and larynx as well as the vocal fold function. It can be shown on OCT how the layer of the vocal folds develop, possibly corresponding to hormonal and paediatric development. The arytenoid area in the larynx should also be focused upon with OCT in pathology. The thyroid function is related to voice and the swallowing function, both hormonally and pathoanatomically. We know too little about voice and thyroid hormones in an updated way as well as the outer anatomic supporting muscular structure of the larynx, related to thyroid immune degeneration and cysts. Also, here OCT analyses might be of value.

  10. Automated registration and enhanced processing of clinical optical coherence tomography angiography

    PubMed Central

    Camino, Acner; Zhang, Miao; Dongye, Changlei; Pechauer, Alex D.; Hwang, Thomas S.; Bailey, Steven T.; Lujan, Brandon; Wilson, David J.; Huang, David

    2016-01-01

    Background Motion artifacts degrade the quality of optical coherence tomography angiography (OCTA). Orthogonal registration can eliminate the majority of these artifacts, but some artifacts persist in most clinical images. We evaluate an automated registration algorithm with selective merging and filtering to remove remaining artifacts and improve the quality of images. Methods A 70 kHz commercial spectral domain OCT was used to obtain 3 mm × 3 mm OCTA in 10 healthy, 5 age-related macular degeneration (AMD), and 31 diabetic retinopathy (DR) participants. Projection artifacts were removed and images were segmented into 3 inner retinal plexuses. Amplitude thresholding identified lines containing a residual artifact and correlation between neighboring lines identified distorted stripes. Then the angiograms were registered and the lines selectively merged. A vesselness filter was applied to the resulting images. The images were evaluated for signal-to-noise ratio (SNR), image entropy, vessel connectivity and vessel density. Results Registration and selective merging (RSM) algorithm improved the SNR (P<0.02) compared to orthogonal registration alone. RSM with vesselness filter increased the image entropy (P<10−8) and reduced inter-subject variability (standard error ≤3%, n=10) in healthy eyes. The method improved vessel details and connectivity in OCTA of healthy, DR and neovascular AMD eyes. Conclusions This automated registration method eliminates residual motion artifacts and enhances the visualization of vessels in OCTA. PMID:27709075

  11. Clinical monitoring of early caries lesions using cross polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia L.; Chan, Kenneth H.; Pelzner, Roger B.

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization and to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role, since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm. It is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results from two clinical studies underway to measure the effect of fluoride intervention on early lesions. CP-OCT was used to monitor early lesions on enamel and root surfaces before and after intervention with fluoride varnish. The lesion depth and internal structure were resolved for all the lesions examined and some lesions had well defined surface zones of lower reflectivity that may be indicative of arrested lesions. Changes were also noted in the structure of some of the lesions after fluoride intervention.

  12. Phenotypic characterization of X-linked retinoschisis: Clinical, electroretinography, and optical coherence tomography variables

    PubMed Central

    Neriyanuri, Srividya; Dhandayuthapani, Sudha; Arunachalam, Jayamuruga Pandian; Raman, Rajiv

    2016-01-01

    Aims: To study the phenotypic characteristics of X-linked retinoschisis (XLRS) and report the clinical, electroretinogram (ERG), and optical coherence tomography (OCT) variables in Indian eyes. Design: A retrospective study. Materials and Methods: Medical records of 21 patients with retinoschisis who were genetically confirmed to have RS1 mutation were reviewed. The phenotype characterization included the age of onset, best-corrected visual acuity, refractive error, fundus findings, OCT, and ERG. Statistical Analysis Used: Data from both the eyes were used for analysis. A P < 0.05 was set as statistical significance. Data were not normally distributed (P < 0.05, Shapiro wilk); hence, nonparametric tests were used for statistical analysis. Results: All were males whose mean age of presentation was 9 years. Visual acuity was moderately impaired (median 0.6 logMAR, interquartile range: 0.47, 1) in these eyes with a hyperopic refractive error of median +1.75 Ds (interquartile range: +0.50 Ds, +4.25 Ds). About 54.7% of the eyes had both foveal and peripheral schisis, isolated foveal schisis was seen in 28.5% of the eyes, and schisis with retinal detachment was seen in 16.6% of the eyes. The inner nuclear layer was found to be commonly involved in the schisis, followed by outer nuclear and plexiform layers as evident on OCT. On ERG, a- and b-wave amplitudes were significantly reduced in eyes with foveal and peripheral schisis when compared to the eyes with only foveal schisis (P < 0.05). Conclusions: XLRS has phenotypic heterogeneity as evident on OCT, ERG, and clinical findings. PMID:27609164

  13. Clinical, optical coherence tomography, and fundus autofluorescence findings in patients with intraocular tumors

    PubMed Central

    Samuelsson, Daniel; Sznage, Monika; Engelsberg, Karl; Wittström, Elisabeth

    2016-01-01

    Purpose To describe clinical, optical coherence tomography (OCT) and fundus autofluorescence (FAF) findings in patients with intraocular tumors and determine if OCT and FAF could be helpful in the differential diagnosis and management of different choroidal tumors. Methods Forty-nine patients with untreated, macular, midperipheral, and extrapapillary intraocular tumors were included. All patients underwent ophthalmic examination: best-corrected visual acuity, slit-lamp biomicroscopy, funduscopy, and standardized B mode, and if possible A mode, ultrasonography, and OCT and FAF imaging of the surface of the intraocular tumors. Results Of the 49 patients studied, 19 had choroidal nevi, ten had indeterminate choroidal melanocytic lesions (IMLs), ten had malignant melanomas, and ten had other choroidal tumors. The choroidal nevi revealed subretinal fluid (SRF) on OCT in only 11%. FAF detected isoauto-fluorescence in 42%, hypoautofluorescence in 37%, patchy FAF pattern in 16%, and a diffuse FAF pattern in 5%. Seventy percent of patients with IML showed SRF on OCT and 20% showed tumor growth on follow-up, detected only by OCT and FAF imaging. FAF revealed a patchy pattern in 50% and a diffuse pattern in 40% of cases with IML. Ninety percent of the patients with choroidal melanoma had SRF on OCT and FAF revealed a patchy pattern in 60% and a diffuse pattern in 40%. Patients with other choroidal tumors had SRF on OCT in 30% of cases and no characteristic pattern on FAF. Conclusion Both OCT and FAF were helpful in the differential diagnosis of choroidal nevi versus IMLs, choroidal melanomas, and other choroidal tumors. Also, detailed and periodical clinical evaluation of patients with intraocular tumors using OCT and FAF imaging for the detection of both SRF and FAF patterns overlying the tumor can be useful for detection of tumor growth. PMID:27784984

  14. Prevalence of vitreomacular adhesion: an optical coherence tomography analysis in the retina clinic setting

    PubMed Central

    Reichel, Elias; Jaffe, Glenn J; Sadda, Srinivas R; Schuman, Stefanie; Hariri, Amir H; Skidmore, Keegan; Duker, Jake

    2016-01-01

    Purpose The aims of this study were to determine the prevalence of vitreomacular adhesion (VMA) in a random sample of clinical patients at three US retina clinics and to assess comorbid retinal conditions, ocular diseases, prior treatment history, and other medical histories. Patients and methods This observational, retrospective cohort study was based on patients from the Doheny Eye Centers, Duke Eye Center, and Tufts Medical Center who received a bilateral spectral domain optical coherence tomography (SD-OCT) scan (one scan/eye) for clinical evaluation with available medical records. The study had three phases: 1) collection of retrospective patient data; 2) review of OCT scans at a reading center to assess VMA and associated conditions; and 3) analyses and reporting of data on the prevalence of VMA, patient demographics, and comorbid conditions. Data were obtained from electronic health records and OCT grading forms. Outcome measures from bilateral SD-OCT scans and medical records included OCT evaluation of VMA and retinal comorbid conditions. Results In 719 patients with 1,483 reviewable OCT scans, the prevalence of VMA was estimated at 14.74% (90% CI, 12.58%–16.92%). The prevalence of unilateral VMA was estimated at 12.39%, while bilateral VMA was 2.36%. In patients with VMA, 34 out of 123 eyes with VMA (27.64%) also had fovea deformed by vitreomacular traction. Macular hole (MH) was significantly more prevalent in VMA-diagnosed eyes versus non-VMA-diagnosed eyes (6.5% versus 1.9%; P=0.02). There was a significantly higher incidence of full-thickness MH (P=0.008), operculum/flaps (P<0.0001), and lamellar or pseudo-holes (P=0.048) in VMA-diagnosed versus non-VMA-diagnosed eyes. Age, MH as a comorbid condition, full-thickness MH, lamellar or pseudo-holes, and operculum were predictive of a VMA diagnosis. Conclusion The prevalence of VMA was estimated at 14.74% in a random sample of patients from three retina clinics. VMA diagnosis can be predicted by factors

  15. Optical computing for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Huo, Tiancheng; Wang, Chengming; Liao, Wenchao; Chen, Tianyuan; Ai, Shengnan; Zhang, Wenxin; Hsieh, Jui-Cheng; Xue, Ping

    2016-11-01

    We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application.

  16. Optical computing for optical coherence tomography

    PubMed Central

    Zhang, Xiao; Huo, Tiancheng; Wang, Chengming; Liao, Wenchao; Chen, Tianyuan; Ai, Shengnan; Zhang, Wenxin; Hsieh, Jui-Cheng; Xue, Ping

    2016-01-01

    We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application. PMID:27869131

  17. Optical coherence angiography

    PubMed Central

    Wylęgała, Adam; Teper, Sławomir; Dobrowolski, Dariusz; Wylęgała, Edward

    2016-01-01

    Abstract Background: Retinal vascular diseases are one of the most common causes of blindness in the developed world. Optical Coherence Tomography Angiography (OCT-A) is a new noninvasive method that uses several algorithms to detect blood movement. This enables the creation of high-resolution vascular images with contrast depicting motionless tissue. Methods: This review presents the results of articles relevant to age-related macular degeneration (AMD), diabetic retinopathy (DR), and OCT-A. The OCT-A technique can successfully be used in the diagnosis of neovascularization, retinal vein occlusion (RVO) and retinal artery occlusion (RAO), vessel abnormalities and even anterior segment neovascularization. OCT-A can also be applied to compute data such as vessel density, and flow index in both superficial and deep plexuses. Results: Many studies have compared fluorescein angiography with OCT-A. Other studies have reported differences in vascular density in AMD patients and have compared them with people having healthy eyes. Although OCT-A offers rapid picture acquisition, high repeatability and resolution, it also has many drawbacks. The most common are: motion artifacts, projections from overlying vessels and limited field of view. An interesting new application is the possibility to assess changes during antivascular endothelial growth factor (anti-VEGF) therapy. Another function of OCT-A is the possible application in the study of choriocapillaries in many fields of ocular pathology. Conclusion: OCT-A is a new promising method that allows the visualization of the retinal vascular network and the counting of blood flow parameters. This technique provides reliable images useful in clinical routines. PMID:27741104

  18. Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; van Leeuwen, Ton G.

    Seventy percent of our body is made up of water. For that reason, radiation based medical imaging techniques operate in spectral regions where water absorption is low (Fig. 18.1, panel). Well known modalities are MRI that operates at radio frequencies, and PET/SPECT which work in the high frequency range. Water absorption is also low around the part of the spectrum that is visible to the human eye. In this spectral region, scattering of the light by tissue structures roughly decreases with wavelength. Therefore, most optical imaging techniques such as (confocal) microscopy, optical tomography and Optical Coherence Tomography (OCT) use wavelengths between 650 and 1300 nm to allow reasonable imaging depths.

  19. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-06

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response.

  20. Recent advances in clinical application of optical coherence tomography of human skin

    PubMed Central

    Gambichler, Thilo; Pljakic, Azem; Schmitz, Lutz

    2015-01-01

    Optical coherence tomography (OCT) is an emerging noninvasive imaging method that uses infrared light and interferometric techniques. The method has become increasingly popular in skin research as well as daily dermatology practice. In the present brief review, we focused on recent (2009–2014) OCT studies on the human skin, which included a reasonable sample size and statistics. Twenty-five papers were selected and briefly described OCT of epidermal thickness, skin appendages, wound healing, extracellular matrix and skin fibrosis, vascular malformations, and skin tumors such as basal cell carcinoma, actinic keratoses, and malignant melanoma. PMID:26185462

  1. Avoiding Clinical Misinterpretation and Artifacts of Optical Coherence Tomography Analysis of the Optic Nerve, Retinal Nerve Fiber Layer, and Ganglion Cell Layer

    PubMed Central

    Chen, John J.

    2016-01-01

    Background: Optical coherence tomography (OCT) has become an important tool for diagnosing optic nerve disease. The structural details and reproducibility of OCT continues to improve with further advances in technology. However, artifacts and misinterpretation of OCT can lead to clinical misdiagnosis of diseases if they go unrecognized. Evidence Acquisition: A literature review using PubMed combined with clinical and research experience. Results: We describe the most common artifacts and errors in interpretation seen on OCT in both optic nerve and ganglion cell analyses. We provide examples of the artifacts, discuss the causes, and provide methods of detecting them. In addition, we discuss a systematic approach to OCT analysis to facilitate the recognition of artifacts and to avoid clinical misinterpretation. Conclusions: While OCT is invaluable in diagnosing optic nerve disease, we need to be cognizant of the artifacts that can occur with OCT. Failure to recognize some of these artifacts can lead to misdiagnoses and inappropriate investigations. PMID:27636747

  2. Holographic Optical Coherence Imaging

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; Jeong, Kwan; Turek, John; French, Paul M. W.

    This chapter gives an overview of the principles of holographic OCI. It begins with a description of off-axis holography as spatial heterodyne detection and continues with the origin and role of speckle in multichannel illumination of tissue. Image-domain holography (IDH) and Fourier-domain holography (FDH) are described. Holography in the Fourier domain has the capability for phase-contrast imaging that can acquire small sub-wavelength displacements despite long coherence length. The trade-offs between photorefractive and digital holography are discussed. The chief biological target is multicellular spheroids, specifically rat osteogenic sarcomas that are grown in vitro. After describing the physiological and optical properties of these spheroids, results from holographic OCI are presented using both photorefractive and digital holography.

  3. Endoscopic Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Fujimoto, James G.; Tsai, Tsung-Han; Mashimo, Hiroshi

    New gastrointestinal (GI) cancers are expected to affect more than 290,200 new patients and will cause more than 144,570 deaths in the United States in 2013 [1]. When detected and treated early, the 5-year survival rate for colorectal cancer increases by a factor of 1.4 [1]. For esophageal cancer, the rate increases by a factor of 2 [1]. The majority of GI cancers begin as small lesions that are difficult to identify with conventional endoscopy. With resolutions approaching that of histopathology, optical coherence tomography (OCT) is well suited for detecting the changes in tissue microstructure associated with early GI cancers. Since the lesions are not endoscopically apparent, however, it is necessary to survey a relatively large area of the GI tract. Tissue motion is another limiting factor in the GI tract; therefore, in vivo imaging must be performed at extremely high speeds. OCT imaging can be performed using fiber optics and miniaturized lens systems, enabling endoscopic OCT inside the human body in conjunction with conventional video endoscopy. An OCT probe can be inserted through the working channel of a standard endoscope, thus enabling depth-resolved imaging of tissue microstructure in the GI tract with micron-scale resolution simultaneously with the endoscopic view (Fig. 68.1).

  4. Coherent signal processing in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manish Dinkarrao

    1999-09-01

    Optical coherence tomography (OCT) is a novel method for non-invasive sub-surface imaging of biological tissue micro-structures. OCT achieves high spatial resolution ( ~ 15 m m in three dimensions) using a fiber-optically integrated system which is suitable for application in minimally invasive diagnostics, including endoscopy. OCT uses an optical heterodyne detection technique based on white light interferometry. Therefore extremely faint reflections ( ~ 10 fW) are routinely detected with high spatial localization. The goal of this thesis is twofold. The first is to present a theoretical model for describing image formation in OCT, and attempt to enhance the current level of understanding of this new modality. The second objective is to present signal processing methods for improving OCT image quality. We present deconvolution algorithms to obtain improved longitudinal resolution in OCT. This technique may be implemented without increasing system complexity as compared to current clinical OCT systems. Since the spectrum of the light backscattered from bio-scatterers is closely associated with ultrastructural variations in tissue, we propose a new technique for measuring spectra as a function of depth. This advance may assist OCT in differentiating various tissue types and detecting abnormalities within a tissue. In addition to depth resolved spectroscopy, Doppler processing of OCT signals can also improve OCT image contrast. We present a new technique, termed color Doppler OCT (CDOCT). It is an innovative extension of OCT for performing spatially localized optical Doppler velocimetry. Micron-resolution imaging of blood flow in sub-surface vessels in living tissue using CDOCT is demonstrated. The fundamental issues regarding the trade- off between the velocity estimation precision and image acquisition rate are presented. We also present novel algorithms for high accuracy velocity estimation. In many blood vessels velocities tend to be on the order of a few cm

  5. Doppler Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhongping; Zhang, Jun

    Noninvasive techniques for imaging in vivo blood flow are of great value to biomedical research and clinical diagnostics where many diseases have a vascular etiology or component. In ophthalmology, many diseases involve disturbances in ocular blood flow, including diabetic retinopathy, low tension glaucoma, anterior ischemic optic neuritis, and macular degeneration. Simultaneous imaging of tissue structure and blood flow could provide critical information for early diagnosis of ocular diseases.

  6. Catheters for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Atif, M.; Ullah, H.; Hamza, M. Y.; Ikram, M.

    2011-09-01

    The objective of this review article is to overview technology, clinical evidence, and future applications to date optical coherence tomography (OCT) probes to yield the diagnostic purpose. We have reviewed the designing, construction and working of different categories of OCT probes developed for optical diagnostics having a potential for non invasive and improved detection of different types of cancer as well as other neoplasm. Rotational and balloon catheters, imaging needles and hand-held, linear scanning, multichannel, micro electro mechanical systems (MEMS) technology based, dynamic focusing, forward view imaging, and common path interferometer based probes have been discussed in details. The fiber probes have shown excellent performance for two dimensional and three dimensional higher resolution, cross-sectional imaging of interior and exterior body tissues that can be compared with histopathology to provide the information about the angiogenesis and other lesions in the tissue. The MEMS-technology based probes are found to be more suitable for three dimensional morphological imaging.

  7. Coherent communication with linear optics

    SciTech Connect

    Wilde, Mark M.; Brun, Todd A.; Dowling, Jonathan P.; Lee, Hwang

    2008-02-15

    We show how to implement several continuous-variable coherent protocols with linear optics. Noise can accumulate when implementing each coherent protocol with realistic optical devices. Our analysis bounds the level of noise accumulation. We highlight the connection between a coherent channel and a nonlocal quantum nondemolition interaction and give two new protocols that implement a coherent channel. One protocol is superior to a previous method for a nonlocal quantum nondemolition interaction because it requires fewer communication resources. We then show how continuous-variable coherent superdense coding implements two nonlocal quantum nondemolition interactions with a quantum channel and bipartite entanglement. We finally show how to implement continuous-variable coherent teleportation experimentally and provide a way to verify the correctness of its operation.

  8. Optical Coherence Tomography: Technical Aspects

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.

    Optical coherence tomography (OCT) is a high-resolution, noninvasive, 3D imaging technique with great potential in both clinical and fundamental research applications in many areas. Owing to its exceptionally high spatial resolution and velocity sensitivity, the functional extension of OCT techniques can simultaneously provide tissue structure, blood perfusion, birefringence, and other physiological information and it has great potential for basic biomedical research and clinical medicine. OCT has the far-reaching potential to be a quantitative imaging technique that could impact many, as yet unexplored, areas and should therefore be considered a vital measurement tool. In this chapter, we will first discuss the principle of operation and then the practical aspects of the OCT system; we will also provide detailed discussion on different OCT schemes and its functional extensions.

  9. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  10. Clinical cancer diagnosis using optical fiber-delivered coherent anti-stokes ramon scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    This thesis describes the development of a combined label-free imaging and analytical strategy for intraoperative characterization of cancer lesions using the coherent anti-Stokes Raman scattering imaging (CARS) technique. A cell morphology-based analytical platform is developed to characterize CARS images and, hence, provide diagnostic information using disease-related pathology features. This strategy is validated for three different applications, including margin detection for radical prostatectomy, differential diagnosis of lung cancer, as well as detection and differentiation of breast cancer subtypes for in situ analysis of margin status during lumpectomy. As the major contribution of this thesis, the developed analytical strategy shows high accuracy and specificity for all three diseases and thus has introduced the CARS imaging technique into the field of human cancer diagnosis, which holds substantial potential for clinical translations. In addition, I have contributed a project aimed at miniaturizing the CARS imaging device into a microendoscope setup through a fiber-delivery strategy. A four-wave-mixing (FWM) background signal, which is caused by simultaneous delivery of the two CARS-generating excitation laser beams, is initially identified. A polarization-based strategy is then introduced and tested for suppression of this FWM noise. The approach shows effective suppression of the FWM signal, both on microscopic and prototype endoscopic setups, indicating the potential of developing a novel microendoscope with a compatible size for clinical use. These positive results show promise for the development of an all-fiber-based, label-free imaging and analytical platform for minimally invasive detection and diagnosis of cancers during surgery or surgical-biopsy, thus improving surgical outcomes and reducing patients' suffering.

  11. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting.

    PubMed

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-05-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases.

  12. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting

    PubMed Central

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-01-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases. PMID:27231621

  13. Gabor domain optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Murali, Supraja

    to this technology all of which have been demonstrated in full functional hardware conceived and built during the course of this research. First, it has been demonstrated that the coherence gate created by the femtosecond laser can be coupled into a scanning optical microscope using optical design methods to include liquid lens technology that enables scanning below the surface of skin with no moving parts and at high resolution throughout a 2x2x2 mm imaging cube. Second, the integration the variable-focus liquid lens technology within a fixed-optics microscope custom optical design helped increase the working NA by an order of magnitude over the limitation imposed by the liquid lens alone. Thus, this design has enabled homogenous axial and lateral resolution at the micron-level (i.e., 2 mum) while imaging in the spectral domain, and still maintaining in vivo speeds. The latest images in biological specimens clearly demonstrate sub-cellular resolution in all dimensions throughout the imaging volume. Third, this new modality for data collection has been integrated with an automated Gabor domain image registration and fusion algorithm to provide full resolution images across the data cube in real-time. We refer to this overall OCM method as Gabor domain OCM (GD-OCM). These advantages place GD-OCM in a unique position with respect to the diagnosis of cancer, because when fully developed, it promises to enable fast and accurate screening for early symptoms that could lead to prevention. The next step for this technology is to apply it directly, in a clinical environment. This step is underway and is expected to be reported by the next generation of researchers within this group.

  14. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography

    NASA Astrophysics Data System (ADS)

    Weinigel, M.; Breunig, H. G.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Klemp, M.; Lademann, J.; König, K.

    2014-05-01

    The majority of existing coherent anti-Stokes Raman scattering (CARS) imaging systems are still huge and complicated laboratory systems and neither compact nor user-friendly nor mobile medically certified CARS systems. We have developed a new flexible multiphoton/CARS tomograph for imaging in a clinical environment. The system offers exceptional 360° flexibility with a very stable setup and enables label free ‘in vivo histology’ with chemical contrast within seconds. It can be completely operated by briefly trained non-laser experts. The imaging capability and flexibility of the novel in vivo tomograph are shown on optical biopsies with subcellular resolution and chemical contrast of patients suffering from psoriasis and squamous cell carcinoma.

  15. Optical coherence tomography in dermatology

    NASA Astrophysics Data System (ADS)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  16. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  17. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical

  18. Adaptive optics optical coherence tomography in glaucoma.

    PubMed

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.

  19. Interferometer for optical coherence tomography.

    PubMed

    Hauger, Christoph; Wörz, Marco; Hellmuth, Thomas

    2003-07-01

    We describe a new interferometer setup for optical coherence tomography (OCT). The interferometer is based on a fiber arrangement similar to Young's two-pinhole interference experiment with spatial coherent and temporal incoherent light. Depth gating is achieved detection of the interference signal on a linear CCD array. Therefore no reference optical delay scanning is needed. The interference signal, the modulation of the signal, the axial resolution, and the depth range are derived theoretically and compared with experiments. The dynamic range of the setup is compared with OCT sensors in the time domain. To our knowledge, the first images of porcine brain and heart tissue and human skin are presented.

  20. Structured interference optical coherence tomography.

    PubMed

    Yi, Ji; Wei, Qing; Zhang, Hao F; Backman, Vadim

    2012-08-01

    We developed a structured interference optical coherence tomography (SIOCT) to enhance the lateral resolution beyond the diffraction limit. A sinusoidal pattern is created on the interferometric beam with the reference intensity temporally modulated. In the Fourier domain, the high spatial frequencies are shifted into the detectable range, which enhances the lateral resolution beyond the diffraction limit by a factor of 2. The lateral resolution of SIOCT was characterized in our study as ~5.5 μm, surpassing the diffraction limit ~9.6 μm as in conventional Fourier-domain optical coherence tomography. SIOCT was demonstrated on phantoms and ex vivo adipose tissues.

  1. COHERENT OPTICAL SURVEILLANCE DEVICES

    DTIC Science & Technology

    AERIAL RECONNAISSANCE, *INFRARED DETECTORS, *LASERS, *OPTICAL EQUIPMENT, *PHASE SHIFT CIRCUITS, DESIGN, HELIUM, INTERFEROMETERS , MATHEMATICAL ANALYSIS, NEON, PHASE DETECTORS, PHOTOMULTIPLIER TUBES, POWER DIVIDERS

  2. Spectral-domain optical coherence tomography in subjects over 60 years of age, and its implications for designing clinical trials

    PubMed Central

    Caramoy, Albert; Foerster, Jonathan; Allakhiarova, Elvira; Hoyng, Carel B; Dröge, Katharina; Kirchhof, Bernd; Fauser, Sascha

    2012-01-01

    Aims To study the variability of central retinal thickness (CRT), its concordance to the fellow eye, and the implications for designing future clinical trials using spectral-domain optical coherence tomography (SD-OCT). Methods Cross-sectional retrospective analysis of European Genetic Database. 632 eyes of 316 subjects over 60 years of age without macular pathology were examined using SD-OCT. Results Mean CRT was 280.22 µm and 281.02 µm for the right and left eyes, respectively. There was a strong concordance for all measured values between right and left eyes. Men had significantly thicker CRT than women. Variation up to 23 µm difference between both eyes was seen. To detect a change of at least 30 µm in CRT, a sample size of 90 or 176 per group is needed for a single-arm or double-arm study, respectively (α=0.05, power=0.80, no loss to follow up, assuming SD in future studies=100 µm). Conclusions Clinical trials using CRT as an endpoint are feasible in terms of sample size needed. PMID:22863948

  3. Crawling wave optical coherence elastography.

    PubMed

    Meemon, Panomsak; Yao, Jianing; Chu, Ying-Ju; Zvietcovich, Fernando; Parker, Kevin J; Rolland, Jannick P

    2016-03-01

    Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compared with its parent imaging resolution, the detection sensitivity and accuracy, and the cost of the overall system. Here we report for the first time, we believe, on an elastography technique-crawling wave optical coherence elastography (CRW-OCE)-which significantly lowers the requirements on the imaging speed and opens the path to high-resolution and high-sensitivity OCE at relatively low cost. Methods of crawling wave excitation, data acquisition, and crawling wave tracking are presented.

  4. Polarization Sensitive Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Park, B. Hyle; de Boer, Johannes F.

    Optical coherence tomography (OCT) is an interferometric technique capable of noninvasive high-resolution cross-sectional imaging by measuring the intensity of light reflected from within tissue [1]. This results in a noncontact imaging modality that provides images similar in scale and geometry to histology. Just as different stains can be used to enhance the contrast in histology, various extensions of OCT allow for visualization of features not readily apparent in traditional OCT. For example, optical Doppler tomography [2] can enable depth-resolved imaging of flow by observing differences in phase between successive depth scans [3-5]. This chapter will focus on polarization-sensitive OCT (PS-OCT), which utilizes depth-dependent changes in the polarization state of detected light to determine the light-polarization changing properties of a sample [6-11]. These properties, including birefringence, dichroism, and optic axis orientation, can be determined directly by studying the depth evolution of Stokes parameters [7-10, 12-16] or indirectly by using the changing reflected polarization states to first determine Jones or Mueller matrices [11, 17-21]. PS-OCT has been used in a wide variety of applications, including correlating burn depth with a decrease in birefringence [14], measuring the birefringence of the retinal nerve fiber layer [22, 23], and monitoring the onset and progression of caries lesions [24]. In this chapter, a discussion of polarization theory and its application to PS-OCTwill be followed by clinical uses of the technology and will conclude with mentionof more recent work and future directions of PS-OCT.

  5. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.

    PubMed

    Jørgensen, Thomas Martini; Thomadsen, Jakob; Christensen, Ulrik; Soliman, Wael; Sander, Birgit

    2007-01-01

    Optical coherence tomography (OCT) has already proven an important clinical tool for imaging and diagnosing retinal diseases. Concerning the standard commercial ophthalmic OCT systems, speckle noise is a limiting factor with respect to resolving relevant retinal features. We demonstrate successful suppression of speckle noise from mutually aligning a series of in vivo OCT recordings obtained from the same retinal target using the Stratus system from Humphrey-Zeiss. Our registration technique is able to account for the axial movements experienced during recording as well as small transverse movements of the scan line from one scan to the next. The algorithm is based on a regularized shortest path formulation for a directed graph on a map formed by interimage (B-scan) correlations. The resulting image enhancement typically increases the contrast-to-noise ratio (CNR) with a factor of three or more and facilitates segmentation and quantitative characterization of pathologies. The method is currently successfully being applied by medical doctors in a number of specific retinal case studies.

  6. Molecularly sensitive optical coherence tomography.

    PubMed

    Bredfeldt, Jeremy S; Vinegoni, Claudio; Marks, Daniel L; Boppart, Stephen A

    2005-03-01

    Molecular contrast in optical coherence tomography (OCT) is demonstrated by use of coherent anti-Stokes Raman scattering (CARS) for molecular sensitivity. Femtosecond laser pulses are focused into a sample by use of a low-numerical-aperture lens to generate CARS photons, and the backreflected CARS signal is interferometrically measured. With the chemical selectivity provided by CARS and the advanced imaging capabilities of OCT, this technique may be useful for molecular contrast imaging in biological tissues. CARS can be generated and interferometrically measured over at least 600 microm of the depth of field of a low-numerical-aperture objective.

  7. Diagnostic potential of optical coherence tomography in non-melanoma skin cancer: a clinical study

    NASA Astrophysics Data System (ADS)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini; Jemec, Gregor B. E.

    2007-07-01

    Introduction: Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the Western World. OCT has proved potential in assisting clinical diagnosis and perhaps reducing the need for biopsies in NMSC. As non-invasive treatment is increasingly used for NMSC patients with superficial lesions, the development of non-invasive diagnostic technologies is highly relevant. Methods: The aim of this cross-sectional clinical study, enrolling 100 NMSC patients and 20 healthy volunteers, is to investigate the diagnostic accuracy and applicability of OCT in NMSC diagnosis. Our OCT-system has been developed at Risoe National Laboratory, Denmark and offers ppolarization sensitive-OCT (PS-OCT) that may have additional advantaged as NMSC differ in content of birefringent collagens from normal skin. Results: Basal cell carcinomas (BCC) can in some cases be distinguished from normal skin in OCT-images, as normal skin exhibits a layered structure this layering is not present in BCC and sometimes not in actinic keratosis (AK). BCC lesions seem to be clearly less reflective than normal tissue. The predictive value of OCT in NMSC will be presented from a clinical point of view. Discussion: The earlier a skin cancer is diagnosed, the better the prognosis. Estimation of diagnostic accuracy and abilities of OCT in clinical studies of skin cancer patients is essential to establish the role and future set-ups for diagnostic OCT-systems.

  8. Clinical outcomes with toric intraocular lenses planned using an optical low coherence reflectometry ocular biometer with a new toric calculator

    PubMed Central

    Gundersen, Kjell G; Potvin, Richard

    2016-01-01

    Purpose To prospectively evaluate postoperative clinical outcomes with implantation of toric intraocular lenses (IOLs) using preoperative keratometry from an optical low coherence reflectometry (OLCR) ocular biometer (Lenstar® LS900) and the built-in Barrett toric calculator. Patients and methods A prospective observational study recruited one or both eyes of subjects who underwent uncomplicated cataract surgery with toric IOL implantation using OLCR biometery data and the Barrett toric IOL calculator for toric IOL planning. Data were collected at the preoperative, operative, 1-day and 2-month postoperative visits. The primary outcome measure was the manifest refractive astigmatism magnitude at 2 months. The secondary outcome measures included the manifest refraction, corneal keratometry, and distance visual acuity (corrected and uncorrected). The results obtained with the Barrett toric calculator were compared with simulated results based on the toric calculators designed for the IOLs being used. Results Data from 98 eyes of 54 subjects were available for analysis. In the 74 eyes with postoperative lens orientation as planned, and sufficient IOL cylinder power to correct subjects’ measured astigmatism, 77% of eyes (57/74) had 0.5 diopter (D) or less refractive cylinder 2 months postoperatively, while 89% (66/74) had 0.75 D or less. Simulated results after adjusting actual IOL orientation to the planned orientation suggested that the Barrett calculator would result in postoperative residual astigmatism about 0.2 D lower than that expected with standard calculators. Conclusion Use of the Barrett toric calculator with biometry data from the Lenstar LS900 biometer for toric IOL planning in a clinical setting resulted in significantly lower levels of residual refractive cylinder than might be expected with standard calculators. Postoperative lens orientation and variability in the measurement of corneal astigmatism pre- and postoperatively appear to be important

  9. First clinical pilot study with intravascular polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Karanasos, Antonios; Ren, Jian; Lippok, Norman; Shishkov, Milen; Daemen, Joost; Van Mieghem, Nicolas; Diletti, Roberto; Valgimigli, Marco; van Geuns, Robert-Jan; de Jaegere, Peter; Zijlstra, Felix; van Soest, Gijs; Nadkarni, Seemantini; Regar, Evelyn; Bouma, Brett E.

    2016-02-01

    Polarization sensitive (PS) OCT measures the polarization states of the light backscattered by tissue and provides measures of tissue birefringence and depolarization in addition to the structural OCT signal. Ex vivo studies have demonstrated that birefringence is increased in tissue rich in collagen and with elevated smooth muscle cell content. Preliminary data further suggests that depolarization can identify regions of macrophage infiltration, lipid, and irregularly arranged collagen fibers. These are important aspects of the mechanical integrity and vulnerability of atherosclerotic plaques. To evaluate the potential of PS-OCT in the clinical setting, we combined our custom PS-OCT system with commercially available OCT catheters (Fastview, Terumo Corporation) and performed a pilot study in 30 patients, scheduled to undergo percutaneous coronary intervention (PCI) on the grounds of stable or unstable angina. A total of 82 pullbacks in 39 vessels were performed, either in the native coronary arteries or post procedure. Comparing consecutive pullbacks of the same coronary artery, we found excellent agreement between the polarization features in the repeat pullbacks, validating the repeatability and robustness of PS-OCT in the clinical in vivo setting. In addition we observed that the birefringence and depolarization features vary significantly across lesions with identical structural OCT appearance, suggesting morphological subtypes. This first human pilot study proved the feasibility and robustness of intravascular PS-OCT. PS-OCT achieves improved tissue characterization and may help in identifying high-risk plaques, with the potential to ultimately improve risk stratification and help guiding PCI.

  10. Optical coherence domain reflectometry guidewire

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis

    2001-01-01

    A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.

  11. Differentiating Early Stage Cystic Keratoacanthoma, Nodular Basal Cell Carcinoma, and Excoriated Acne Vulgaris by Clinical Exam, Dermoscopy, and Optical Coherence Tomography: A Report of 3 Cases.

    PubMed

    Markowitz, Orit; Utz, Sarah

    2015-04-01

    Making accurate diagnoses when certain lesions are in a relatively young stage can prove challenging, as their "textbook descriptions" are often not fully apparent, and may in fact be markedly different. The authors present three interesting cases of early lesions that were clinically difficult to differentiate from one another: a cystic variation of a keratoacanthoma squamous cell carcinoma, a basal cell carcinoma, and an excoriated facial acne vulgaris. The subtle clinical nuances found in each of these cases demonstrated the importance of a careful clinical evaluation; however, this was not sufficient for adequate assessment of whether or not to biopsy. With early lesions such as these, the use of the noninvasive imaging modalities of dermoscopy and optical coherence tomography becomes critical in order to avoid unnecessary biopsy. The discussion of the clinically and dermoscopically challenging features is both instructive and enlightening. Oftentimes, "textbook descriptions" of lesions focus on the description of an already mature stage of growth, despite the fact that we continue to strive toward earlier detection of potential malignancies. With this in mind, the features found with optical coherence tomography proved essential to the elucidation of these difficult lesions. These three interesting cases illustrated the challenges encountered when dealing with early lesions specifically. The authors bring to light features in each of these cases that are often not thought of as being the "typical" presentation in each lesion category and demonstrate the clinical utility of noninvasive devices in difficult-to-diagnose cases such as these.

  12. Differentiating Early Stage Cystic Keratoacanthoma, Nodular Basal Cell Carcinoma, and Excoriated Acne Vulgaris by Clinical Exam, Dermoscopy, and Optical Coherence Tomography: A Report of 3 Cases

    PubMed Central

    Utz, Sarah

    2015-01-01

    Making accurate diagnoses when certain lesions are in a relatively young stage can prove challenging, as their “textbook descriptions” are often not fully apparent, and may in fact be markedly different. The authors present three interesting cases of early lesions that were clinically difficult to differentiate from one another: a cystic variation of a keratoacanthoma squamous cell carcinoma, a basal cell carcinoma, and an excoriated facial acne vulgaris. The subtle clinical nuances found in each of these cases demonstrated the importance of a careful clinical evaluation; however, this was not sufficient for adequate assessment of whether or not to biopsy. With early lesions such as these, the use of the noninvasive imaging modalities of dermoscopy and optical coherence tomography becomes critical in order to avoid unnecessary biopsy. The discussion of the clinically and dermoscopically challenging features is both instructive and enlightening. Oftentimes, “textbook descriptions” of lesions focus on the description of an already mature stage of growth, despite the fact that we continue to strive toward earlier detection of potential malignancies. With this in mind, the features found with optical coherence tomography proved essential to the elucidation of these difficult lesions. These three interesting cases illustrated the challenges encountered when dealing with early lesions specifically. The authors bring to light features in each of these cases that are often not thought of as being the “typical” presentation in each lesion category and demonstrate the clinical utility of noninvasive devices in difficult-to-diagnose cases such as these. PMID:26060518

  13. Developments in optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Rolland, J. P.; Meemon, P.; Thompson, K. P.; Murali, S.; Lee, K. S.

    2010-11-01

    Optical Coherence Microscopy (OCM) utilizes a high NA microscope objective in the sample arm to achieve an axially and laterally high resolution OCT image. An increase in NA, however, leads to a dramatically decreased depth of focus (DOF), and hence shortens the imaging depth range so that high lateral resolution is maintained only within a small depth region around the focal plane. One solution to increase the depth of imaging while keeping a high lateral resolution is dynamic-focusing. Utilizing the voltage controlled refocus capability of a liquid lens, we have recently presented a solution for invariant high resolution imaging using the liquid lens embedded within a fixed optics hand-held custom microscope designed specifically for optical imaging systems using a broadband light source centered at 800 nm with a 120 nm bandwidth. Subsequently, we have developed a Gabor-Domain Optical Coherence Microscopy (GD-OCM) that utilizes the high speed imaging of spectral domain OCT, the high lateral resolution of OCM, and the ability of real time refocusing of our custom design variable focus objective. Finally, key developments in Phase-Resolved Doppler OCT (PR-DOCT) are key enablers to combine high-resolution structural imaging with functional imaging. In this paper we review achievements in GD-OCM and detail how portions of in-focus cross-sectional images can be extracted and fused to form an invariant lateral resolution image with multiple cross-sectional images acquired corresponding to a discrete refocusing step along depth enabled by the varifocal device. We demonstrate sub-cellular resolution imaging of an African frog tadpole (Xenopus Laevis) taken from a 500 μm × 500 μm cross-section as well as cellular imaging in in vivo skin. Finally, A novel dual-detection full-range Fourier-domain optical coherence tomography system was developed that provides 7 μm axial resolution (in air) at about 90 kHz axial scan rate for mirror-image phase resolved Doppler imaging

  14. Coherent optical modulation for antenna remoting

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.

    1991-01-01

    A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.

  15. Optical Microangiography Based on Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  16. Electromagnetic theory of optical coherence [Invited].

    PubMed

    Friberg, Ari T; Setälä, Tero

    2016-12-01

    The coherence theory of random, vector-valued optical fields has been of great research interest in recent years. In this work we formulate the foundations of electromagnetic coherence theory both in the space-time and space-frequency domains, with particular emphasis on various types of optical interferometry. Analyzing statistically stationary, two-component (paraxial) electric fields in the classical and quantum-optical contexts we show fundamental connections between the conventional (polarization) Stokes parameters and the associated two-point (coherence) Stokes parameters. Measurement of the coherence and polarization properties of random vector beams by nanoparticle scattering and two-photon absorption is also addressed.

  17. Optical coherence tomography investigations of ceramic lumineers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana O.; Graça, Natalia D. R. L.; Melo, Luciana S. A.; Silva, Claudio H. V.; Gomes, Anderson S. L.

    2016-02-01

    Lumineers are veneer laminates used as an alternative for aesthetic dental solutions of the highest quality, but the only current means of its performance assessment is visual inspection. The objective of this study was to use the Optical Coherence Tomography (OCT) technique working in spectral domain to analyze in vivo in a single patient, 14 lumineers 180 days after cementation. It was possible to observe images in various kinds of changes in the cementing line and the laminate. It was concluded that the OCT is an effective and promising method to clinical evaluation of the cementing line in lumineers.

  18. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  19. Lorentz force optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Singh, Manmohan; Han, Zhaolong; Raghunathan, Raksha; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Larin, Kirill V.

    2016-09-01

    Quantifying tissue biomechanical properties can assist in detection of abnormalities and monitoring disease progression and/or response to a therapy. Optical coherence elastography (OCE) has emerged as a promising technique for noninvasively characterizing tissue biomechanical properties. Several mechanical loading techniques have been proposed to induce static or transient deformations in tissues, but each has its own areas of applications and limitations. This study demonstrates the combination of Lorentz force excitation and phase-sensitive OCE at ˜1.5 million A-lines per second to quantify the elasticity of tissue by directly imaging Lorentz force-induced elastic waves. This method of tissue excitation opens the possibility of a wide range of investigations using tissue biocurrents and conductivity for biomechanical analysis.

  20. Functional Optical Coherence Tomography: Principles and Progress

    PubMed Central

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  1. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    PubMed

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  2. The Development, Commercialization, and Impact of Optical Coherence Tomography

    PubMed Central

    Fujimoto, James; Swanson, Eric

    2016-01-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  3. Second-harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping

    2004-05-01

    Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.

  4. Dental optical coherence domain reflectometry explorer

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  5. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    PubMed Central

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  6. Optical coherence tomography of the eye

    NASA Astrophysics Data System (ADS)

    Hee, Michael Richard

    1997-10-01

    Optical Coherence Tomography (OCT) is a new technique for high-resolution, cross-sectional imaging of tissue in which the time-of-flight delay of light reflected from internal tissue structures is resolved with high precision using interferometry. Tomographic images are obtained which are analogous to those provided by ultrasound except that image contrast relies on differences in optical rather than acoustic properties of tissue. The use of light rather than sound enables higher resolution (10 μm) and non-contact imaging. A clinically viable high-sensitivity, fiber-optic based OCT instrument has been constructed based on engineering principles derived from optical communication theory. Computer algorithms have also been developed for quantitative image analysis and restoration. OCT has been used to image patients with a variety of ocular diseases. In patients with macular pathology, OCT images have been correlated with conventional clinical examination and fluorescein angiography. Optical coherence tomograms are effective in staging macular holes, evaluating the vitreoretinal interface in eyes at risk for a macular hole, and providing a structural assessment of macular hole surgery. In eyes with central serous chorioretinopathy, OCT can evaluate sensory retinal separations undetected at the slit-lamp. Serial OCT images of macular edema are able to track both the progression of macular thickening and the resolution of macular edema following laser photocoagulation. In patients with diabetic retinopathy, measurements of macular thickness correlate with visual acuity and OCT is more sensitive to small changes in retinal thickness than slit-lamp biomicroscopy. OCT may provide a novel method of defining occult choroidal neovascular membranes in patients with age-related macular degeneration. OCT can also profile the thickness of the retinal nerve fiber layer with high resolution which is potentially important for the objective assessment of early glaucoma progression

  7. Sequential quantum teleportation of optical coherent states

    SciTech Connect

    Yonezawa, Hidehiro; Furusawa, Akira; Loock, Peter van

    2007-09-15

    We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F{sub 1}=0.70{+-}0.02 and F{sub 2}=0.75{+-}0.02, while the fidelity between the input and the sequentially teleported states is determined as F{sup (2)}=0.57{+-}0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.

  8. Geodesic denoising for optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Shahrian Varnousfaderani, Ehsan; Vogl, Wolf-Dieter; Wu, Jing; Gerendas, Bianca S.; Simader, Christian; Langs, Georg; Waldstein, Sebastian M.; Schmidt-Erfurth, Ursula

    2016-03-01

    Optical coherence tomography (OCT) is an optical signal acquisition method capturing micrometer resolution, cross-sectional three-dimensional images. OCT images are used widely in ophthalmology to diagnose and monitor retinal diseases such as age-related macular degeneration (AMD) and Glaucoma. While OCT allows the visualization of retinal structures such as vessels and retinal layers, image quality and contrast is reduced by speckle noise, obfuscating small, low intensity structures and structural boundaries. Existing denoising methods for OCT images may remove clinically significant image features such as texture and boundaries of anomalies. In this paper, we propose a novel patch based denoising method, Geodesic Denoising. The method reduces noise in OCT images while preserving clinically significant, although small, pathological structures, such as fluid-filled cysts in diseased retinas. Our method selects optimal image patch distribution representations based on geodesic patch similarity to noisy samples. Patch distributions are then randomly sampled to build a set of best matching candidates for every noisy sample, and the denoised value is computed based on a geodesic weighted average of the best candidate samples. Our method is evaluated qualitatively on real pathological OCT scans and quantitatively on a proposed set of ground truth, noise free synthetic OCT scans with artificially added noise and pathologies. Experimental results show that performance of our method is comparable with state of the art denoising methods while outperforming them in preserving the critical clinically relevant structures.

  9. Overlapped optics induced perfect coherent effects

    NASA Astrophysics Data System (ADS)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  10. Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography

    PubMed Central

    Omodaka, Kazuko; Takahashi, Seri; Matsumoto, Akiko; Maekawa, Shigeto; Kikawa, Tsutomu; Himori, Noriko; Takahashi, Hidetoshi; Maruyama, Kazuichi; Kunikata, Hiroshi; Akiba, Masahiro; Nakazawa, Toru

    2016-01-01

    Purpose To investigate the influence of various risk factors on thinning of the lamina cribrosa (LC), as measured with swept-source optical coherence tomography (SS-OCT; Topcon). Methods This retrospective study comprised 150 eyes of 150 patients: 22 normal subjects, 28 preperimetric glaucoma (PPG) patients, and 100 open-angle glaucoma patients. Average LC thickness was determined in a 3 x 3 mm cube scan of the optic disc, over which a 4 x 4 grid of 16 points was superimposed (interpoint distance: 175 μm), centered on the circular Bruch’s membrane opening. The borders of the LC were defined as the visible limits of the LC pores. The correlation of LC thickness with Humphrey field analyzer-measured mean deviation (MD; SITA standard 24–2), circumpapillary retinal nerve fiber layer thickness (cpRNFLT), the vertical cup-to-disc (C/D) ratio, and tissue mean blur rate (MBR) was determined with Spearman's rank correlation coefficient. The relationship of LC thickness with age, axial length, intraocular pressure (IOP), MD, the vertical C/D ratio, central corneal thickness (CCT), and tissue MBR was determined with multiple regression analysis. Average LC thickness and the correlation between LC thickness and MD were compared in patients with the glaucomatous enlargement (GE) optic disc type and those with non-GE disc types, as classified with Nicolela’s method. Results We found that average LC thickness in the 16 grid points was significantly associated with overall LC thickness (r = 0.77, P < 0.001). The measurement time for this area was 12.4 ± 2.4 minutes. Average LC thickness in this area had a correlation coefficient of 0.57 with cpRNFLT (P < 0.001) and 0.46 (P < 0.001) with MD. Average LC thickness differed significantly between the groups (normal: 268 ± 23 μm, PPG: 248 ± 13 μm, OAG: 233 ± 20 μm). Multiple regression analysis showed that MD (β = 0.29, P = 0.013), vertical C/D ratio (β = -0.25, P = 0.020) and tissue MBR (β = 0.20, P = 0.034) were

  11. Optical coherence tomography based angiography [Invited

    PubMed Central

    Chen, Chieh-Li; Wang, Ruikang K.

    2017-01-01

    Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography. PMID:28271003

  12. Lorentz force megahertz optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Singh, Manmohan; Han, Zhaolong; Raghunathan, Raksha; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Larin, Kirill V.

    2016-03-01

    Optical Coherence Elastography (OCE) is a rapidly developing technique for assessing tissue biomechanical properties. This study demonstrates the first use of the Lorentz force to induce elastic waves within tissue to quantify the elasticity of tissue in combination with a phase-sensitive OCE system at ~1.5 million A-scans per second. The feasibility of this technique was tested on tissue-mimicking agar phantoms of various concentrations. The results as assessed by OCE were in good agreement with standard mechanical testing of the samples. After the preliminary experiments, the stiffness of porcine liver was examined. The results demonstrate that Lorentz force MHz OCE can be applied to study the elasticity of biological tissue effectively and has the potential for clinical applications due to rapid excitation and imaging.

  13. Molecular Imaging in Optical Coherence Tomography

    PubMed Central

    Mattison, Scott P.; Kim, Wihan; Park, Jesung; Applegate, Brian E.

    2015-01-01

    Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT’s impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT. PMID:25821718

  14. Optical Coherence Tomography Angiography of the Optic Disc; an Overview

    PubMed Central

    Akil, Handan; Falavarjani, Khalil Ghasemi; Sadda, Srinivas R.; Sadun, Alfredo A.

    2017-01-01

    Different diseases of the optic disc may be caused by or lead to abnormal vasculature at the optic nerve head. Optical coherence tomography angiography (OCTA) is a novel technology that provides high resolution mapping of the retinal and optic disc vessels. Recent studies have shown the ability of OCTA to visualize vascular abnormalities in different optic neuropathies. In addition, quantified OCTA measurements were found promising for differentiating optic neuropathies from healthy eyes. PMID:28299012

  15. Optical coherence tomography for endodontic imaging

    NASA Astrophysics Data System (ADS)

    van Soest, G.; Shemesh, H.; Wu, M.-K.; van der Sluis, L. W. M.; Wesselink, P. R.

    2008-02-01

    In root canal therapy, complications frequently arise as a result of root fracture or imperfect cleaning of fins and invaginations. To date, there is no imaging method for nondestructive in vivo evaluation of the condition of the root canal, during or after treatment. There is a clinical need for a technique to detect defects before they give rise to complications. In this study we evaluate the ability of optical coherence tomography (OCT) to image root canal walls, and its capacity to identify complicating factors in root canal treatment. While the potential of OCT to identify caries has been explored before, endodontic imaging has not been reported. We imaged extracted lower front teeth after endodontic preparation and correlated these images to histological sections. A 3D OCT pullback scan was made with an endoscopic rotating optical fiber probe inside the root canal. All oval canals, uncleaned fins, risk zones, and one perforation that were detected by histology were also imaged by OCT. As an example of an area where OCT has clinical potential, we present a study of vertical root fracture identification with OCT.

  16. Ultrahigh-resolution endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  17. Coherent optical generation of Hartley transform of real images

    NASA Astrophysics Data System (ADS)

    Li, Y.; Eichmann, G.

    1985-12-01

    A new method to generate optical Hartley transform (OHT) for 2D real images is proposed. The method is based on polarization encoding of the coherent optical beam. Different coherent optical image processing techniques are discussed.

  18. Medical imaging with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fujimoto, James G.

    2010-03-01

    Optical coherence tomography (OCT) is an emerging imaging modality which can generate high resolution, cross-sectional and three dimensional images of microstructure in biological systems. OCT is analogous to ultrasound B mode imaging, except that it uses light instead of sound. Imaging is performed by measuring the echo time delay of optical backscattering in the tissue as a function of transverse position. The penetration depth of OCT imaging is limited by attenuation from optical scattering to ˜ 2 to 3 mm in most tissues, however image resolutions of 1-10 um may be achieved. OCT functions as a type of ``optical biopsy" enabling in situ visualization of tissue microstructure with resolutions approaching that of conventional histopathology. Imaging can be performed in real time without the need to remove and process a specimen as in conventional biopsy. OCT technology utilizes advances in photonics and fiber optics such as femtosecond broadband lasers, high speed wavelength swept lasers and line scan camera technologies. Recent developments using Fourier domain detection achieve dramatic improvements in resolution and imaging speed. Three dimensional, volumetric imaging with extremely high voxel density is now possible, enabling microstructure and pathology to be visualized and rendered in a manner analogous to MR imaging. OCT is now widely accepted as a standard diagnostic in clinical ophthalmology, where it can image retinal pathology with unprecedented resolution improving the sensitivity of diagnosis and monitoring response to treatment. OCT is also being developed for other applications ranging from intravascular imaging in cardiology to endoscopic imaging for cancer detection. This presentation will discuss OCT technology and its applications.

  19. Optical coherence tomography findings of bilateral foveal leukemic infiltration

    PubMed Central

    Le, John Q; Braich, Puneet S; Brar, Vikram S

    2016-01-01

    We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec®), he was treated with omacetaxine (Synribo®) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture. PMID:27540313

  20. Optical Coherence Tomography in Glaucoma

    NASA Astrophysics Data System (ADS)

    Berisha, Fatmire; Hoffmann, Esther M.; Pfeiffer, Norbert

    Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.

  1. Capabilities of optical coherence tomography in laryngology

    NASA Astrophysics Data System (ADS)

    Shakhov, Andrei; Terentjeva, Anna; Gladkova, Natalia D.; Snopova, Ludmila; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Sergeev, Alexander M.

    1999-06-01

    We present first result of using the optical coherence tomography (OCT) in complex clinical studies in laryngology. Mucosa of the upper and middle portions of larynx is of special interest for OCT applications: it is clinically important, easily accessed by an endoscopic OCT probe, and possesses a well defined and rich tomographic structure. We have examined several tens of patients with abnormalities in vocal folds. The diagnosis was made based on clinical data including laryngoscopy and finally confirmed morphologically. When examining larynx mucosa, an endoscopic OCT probe has been introduced through a standard laryngoscope lumen, so that OCT imaging has been performed in parallel with visual observation. The OCT studies have demonstrated that in comparison with stratified healthy mucosa, carcinomatous regions have no tomographically differentiated structure, thus allowing one to exactly define the border of a tumor. Vocal nodules are imaged as poorly scattering regions without clear boundaries under preserved epithelium. Cysts of gland mucosa are seen with OCT as sharply delineated shadows at the depth of several hundred micrometers. We have also examined several patients with carcinoma after a course of radiation therapy and observed different changes in OCT images of adjoining epithelium corresponding to metaplasia, hyperplasia, and sclerosis.

  2. Adaptive optics optical coherence tomography at 1 MHz

    PubMed Central

    Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Miller, Donald T.

    2014-01-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (−0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  3. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  4. Transmission optical coherence tomography sensing

    NASA Astrophysics Data System (ADS)

    Trull, A. K.; van der Horst, J.; Bijster, J. G.; Kalkman, J.

    2016-04-01

    We demonstrate that Fourier-domain transmission OCT is a versatile tool to measure optical material properties of turbid media. We develop an analytical expression for the transmission OCT signal. Based on this analysis we determine the group refractive index, group velocity dispersion, absorption coefficient, and scattering coefficient. The optical dispersion is accurately measured for glasses, liquids, and water/glucose mixtures. The optical attenuation is measured in the spatial domain and compared to Mie calculations combined with concentration dependent scattering effects. In the wave vector domain the spectral dependence of the optical attenuation is measured and compared to literature values. The developed technique can be used for optical sensing of attenuation and dispersion.

  5. Macular thickness measured by stratus optical coherence tomography in patients with diabetes type 2 and mild nonproliferative retinopathy without clinical evidence of macular edema.

    PubMed

    Pires, Isabel; Santos, Ana Rita; Nunes, Sandrina; Lobo, Conceição

    2013-01-01

    To evaluate macular thickness in eyes with mild nonproliferative diabetic retinopathy (NPDR), patients with diabetes type 2, NPDR level 20 or 35, and without evidence of clinical macular edema underwent best-corrected visual acuity assessment, color fundus photography and Stratus optical coherence tomography. Mean center point thickness (CPT) and mean central subfield (CSF) thickness were compared with those of a healthy control population. 410 eyes/patients aged 61.2 ± 8.3 years, and with glycosylated hemoglobin of 7.9 ± 1.5% were included. Mean CPT and CSF were 186.6 ± 28.4 and 215.2 ± 25 µm, respectively, significantly increased compared to healthy subjects (p < 0.001). CSF thickness was abnormally increased in 17.6% of the patients, with values within the normal range in 79.5%, and abnormally decreased in 2.9%. CPT and CSF thickness were significantly thicker in men. No systemic factors showed a significant association. A significant increase in the macular thickness was found in eyes/patients with mild NPDR without clinical macular edema; however, only 17.6% of the eyes/patients had abnormally increased values and less than 3% abnormally decreased values.

  6. Combined optical coherence tomography and optical coherence elastography for glomerulonephritis classification

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.

    2016-03-01

    Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.

  7. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  8. Clinical application of optical coherence tomography for the imaging of non–melanocytic cutaneous tumors: a pilot multi–modal study

    PubMed Central

    Carstea, EM; Ghervase, L; Giurcaneanu, C; Pavelescu, G

    2010-01-01

    Context: Optical coherence tomography (OCT) is an emergent imaging technique, based on the interference of infrared radiation and living tissues, that allows the in vivo visualisation of the skin structures, at high resolution and up to 1.6 mm depth. As such, there is mounting evidence that OCT may be an interesting technique for the diagnossis of skin diseases, including the non–invasive early detection of cutaneous tumors. Objective: We aimed to investigate the utility of OCT for the diagnosis of non–melanocytic, non–pigmented cutaneous tumors. Methods: Preliminary results are presented from an initiated study. Fifteen consecutive patients with clinical suspicion of epithelial cancers and precancers registered over one week in an university dermatologic department were included. As control were selected 7 patients with inflammatory skin diseases (psoriasis, lichen planus, cutaneous lupus erythematosus). In all study and control patients the lesions and samples of normal, perilesional skin were documented by clinical digital photography, contact dermoscopy with digital image capture and OCT with central wavelength of 930 nm. Final diagnosis was certified by histopathological analysis. Results: We could identify morphological features in OCT examination that distinguished between normal and lesional skin, and between neoplastic vs. inflamatory lesions. In the same time, combining OCT and dermatoscopical evaluation of a lesion improved the performance of diagnosis when compared to clinical diagnosis alone and with either OCT or dermoscopy imaging used alone. Conclusions: OCT appears as a promising method of in vivo diagnosis of early neoplastic cutaneous lesions with equivocal clinical and/or dermoscopic aspect. Continuation of our study as well as other larger investigation will be able to contribute with new insights in the role of OCT in the non–invasive diagnosis of skin disease. PMID:21254735

  9. Optimal interferometer designs for optical coherence tomography.

    PubMed

    Rollins, A M; Izatt, J A

    1999-11-01

    We introduce a family of power-conserving fiber-optic interferometer designs for low-coherence reflectometry that use optical circulators, unbalanced couplers, and (or) balanced heterodyne detection. Simple design equations for optimization of the signal-to-noise ratio of the interferometers are expressed in terms of relevant signal and noise sources and measurable system parameters. We use the equations to evaluate the expected performance of the new configurations compared with that of the standard Michelson interferometer that is commonly used in optical coherence tomography (OCT) systems. The analysis indicates that improved sensitivity is expected for all the new interferometer designs, compared with the sensitivity of the standard OCT interferometer, under high-speed imaging conditions.

  10. In Vivo Assessment of Pulmonary Arterial Wall Fibrosis by Intravascular Optical Coherence Tomography in Pulmonary Arterial Hypertension: A New Prognostic Marker of Adverse Clinical Follow-Up§

    PubMed Central

    Domingo, Enric; Grignola, Juan C; Aguilar, Rio; Montero, María Angeles; Arredondo, Christian; Vázquez, Manuel; López-Messeguer, Manuel; Bravo, Carlos; Bouteldja, Nadia; Hidalgo, Cristina; Roman, Antonio

    2013-01-01

    Background: The aim is to correlate pulmonary arterial (PA) remodeling estimated by PA fibrosis in PA hypertension (PAH) with clinical follow-up. Histology of PA specimens is also performed. Methods: 19 patients, aged 54±16 (4 men), functional class II-III were studied with right heart catheterization, PA Intravascular Ultrasound and optical coherence tomography (OCT) in inferior lobe segment. PA wall fibrosis was obtained by OCT ( area of fibrosis/PA cross sectional area × 100). Patients follow-up was blind to OCT. Events were defined as mortality, lung transplantation, need of intravenous prostaglandins or onset of right ventricular failure. Results: OCT measurements showed high intra- and interobserver agreement. There was a good correlation between OCT and histology in PA fibrosis from explanted lungs. Area of fibrosis was 1.4±0.8 mm2, % fibrosis was 22.3±8. Follow-up was 3.5 years (2.5-4.5). OCT %Fib was significantly correlated with PA capacitance (r=-0.536) and with pulmonary vascular rsistance (r=0.55). Patients were divided according to the median value of PA fibrosis. There were 10 patients with a high (≥ 22%) and 9 with a low fibrosis (<22%). Events occurred in 6 (1 death, 1 lung transplantation, 2 intravenous prostaglandins, 2 right heart failure) out of 10 patients with high and in 0 out of 9 patients with low fibrosis (p<0.01). Conclusions: In PAH, the severity of PA remodeling assessed by OCT wall fibrosis was significantly predictive of severely unfavorable clinical outcome. In vivo assessment of pulmonary arterial wall fibrosis by intravascular OCT in PAH is a promising new prognostic marker of adverse clinical outcome. PMID:23730366

  11. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography.

    PubMed

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V

    2016-08-01

    Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys.

  12. Photodynamic therapy monitoring with optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Sirotkina, M. A.; Matveev, L. A.; Shirmanova, M. V.; Zaitsev, V. Y.; Buyanova, N. L.; Elagin, V. V.; Gelikonov, G. V.; Kuznetsov, S. S.; Kiseleva, E. B.; Moiseev, A. A.; Gamayunov, S. V.; Zagaynova, E. V.; Feldchtein, F. I.; Vitkin, A.; Gladkova, N. D.

    2017-02-01

    Photodynamic therapy (PDT) is a promising modern approach for cancer therapy with low normal tissue toxicity. This study was focused on a vascular-targeting Chlorine E6 mediated PDT. A new angiographic imaging approach known as M-mode-like optical coherence angiography (MML-OCA) was able to sensitively detect PDT-induced microvascular alterations in the mouse ear tumour model CT26. Histological analysis showed that the main mechanisms of vascular PDT was thrombosis of blood vessels and hemorrhage, which agrees with angiographic imaging by MML-OCA. Relationship between MML-OCA-detected early microvascular damage post PDT (within 24 hours) and tumour regression/regrowth was confirmed by histology. The advantages of MML-OCA such as direct image acquisition, fast processing, robust and affordable system opto-electronics, and label-free high contrast 3D visualization of the microvasculature suggest attractive possibilities of this method in practical clinical monitoring of cancer therapies with microvascular involvement.

  13. Photodynamic therapy monitoring with optical coherence angiography

    PubMed Central

    Sirotkina, M. A.; Matveev, L. A.; Shirmanova, M. V.; Zaitsev, V. Y.; Buyanova, N. L.; Elagin, V. V.; Gelikonov, G. V.; Kuznetsov, S. S.; Kiseleva, E. B.; Moiseev, A. A.; Gamayunov, S. V.; Zagaynova, E. V.; Feldchtein, F. I.; Vitkin, A.; Gladkova, N. D.

    2017-01-01

    Photodynamic therapy (PDT) is a promising modern approach for cancer therapy with low normal tissue toxicity. This study was focused on a vascular-targeting Chlorine E6 mediated PDT. A new angiographic imaging approach known as M-mode-like optical coherence angiography (MML-OCA) was able to sensitively detect PDT-induced microvascular alterations in the mouse ear tumour model CT26. Histological analysis showed that the main mechanisms of vascular PDT was thrombosis of blood vessels and hemorrhage, which agrees with angiographic imaging by MML-OCA. Relationship between MML-OCA-detected early microvascular damage post PDT (within 24 hours) and tumour regression/regrowth was confirmed by histology. The advantages of MML-OCA such as direct image acquisition, fast processing, robust and affordable system opto-electronics, and label-free high contrast 3D visualization of the microvasculature suggest attractive possibilities of this method in practical clinical monitoring of cancer therapies with microvascular involvement. PMID:28148963

  14. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  15. Nanoparticle contrast agents for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gabriele, Michelle Lynn

    Optical coherence tomography (OCT) provides real-time, objective, in-vivo, optical cross-sectional representations of the retina and optic nerve. Recent innovations in image acquisition, including the incorporation of Fourier/spectral-domain detection, have improved imaging speed, sensitivity and resolution. Still, there remain specific structures within ocular OCT images, such as retinal ganglion cells (RGCs), which are of clinical interest but consistently have low contrast. This makes it difficult to differentiate between surrounding layers and structures. The objectives of this project were: (1) To establish a reliable method for OCT imaging of the healthy and diseased mouse eye in order to provide a platform for testing the utility of OCT contrast agents for ocular imaging, (2) To develop antibody-conjugated gold nanoparticles suitable for targeting specific structures and enhancing OCT image contrast in the mouse eye, and (3) To examine the localized contrast-enhancing ability and biocompatibility of gold nanoparticle contrast agents in-vivo. Our organizing hypotheses were that nanoparticles could improve contrast by modulating the intensity of backscattered light detected by OCT and that they could be directed to ocular structures of interest using antibodies specific to cellular markers. A reproducible method for imaging the mouse retina and quantifying retinal thickness was developed and this technique was then applied to a mouse model for retinal ganglion cell loss, optic nerve crush. Gold nanorods were designed specifically to augment the backscattering OCT signal at the same wavelengths of light used in current ophthalmic OCT imaging schemes (resonant wavelength lambda = 840 nm). Anti-CD90.1 (Thy1.1) antibodies were conjugated to the gold nanorods and a protocol for characterization of the success of antibody conjugation was developed. Upon injection, the gold nanorods were found to remain in the vitreous post-injection, with many consumed by an early

  16. Automatic three-dimensional registration of intra-vascular optical coherence tomography images for the clinical evaluation of stent implantation over time

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter; Coosemans, Mark; Desmet, Walter; D'hooghe, Jan

    2012-01-01

    In the last decade a large number of new intracoronary devices (i.e. drug-eluting stents, DES) have been developed to reduce the risks related to bare metal stent (BMS) implantation. The use of this new generation of DES has been shown to substantially reduce, compared with BMS, the occurrence of restenosis and recurrent ischemia that would necessitate a second revascularization procedure. Nevertheless, safety issues on the use of DES persist and full understanding of mechanisms of adverse clinical events is still a matter of concern and debate. Intravascular Optical Coherence Tomography (IV-OCT) is an imaging technique able to visualize the microstructure of blood vessels with an axial resolution <20 μm. Due to its very high spatial resolution, it enables detailed in-vivo assessment of implanted devices and vessel wall. Currently, the aim of several major clinical trials is to observe and quantify the vessel response to DES implantation over time. However, image analysis is currently performed manually and corresponding images, belonging to different IV-OCT acquisitions, can only be matched through a very labor intensive and subjective procedure. The aim of this study is to develop and validate a new methodology for the automatic registration of IV-OCT datasets on an image level. Hereto, we propose a landmark based rigid registration method exploiting the metallic stent framework as a feature. Such a tool would provide a better understanding of the behavior of different intracoronary devices in-vivo, giving unique insights about vessel pathophysiology and performance of new generation of intracoronary devices and different drugs.

  17. Ultrahigh Resolution Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Chen, Yu; Aguirre, Aaron D.; Považay, Boris; Unterhuber, Angelika; Fujimoto, James G.

    Since its invention in the late 1980s [1-4] and early 1990s [5-7], the original idea of OCT was to enable noninvasive optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology, but without the need for tissue excision and post-processing. An important advance toward this goal was the introduction of ultrahigh-resolution OCT (UHR OCT). By improving axial OCT resolution by one order of magnitude from the 10 to 15 μm to the sub-μm region [8-11], UHR OCT enables superior visualization of tissue microstructure, including all major intraretinal layers in ophthalmic applications as well as cellular resolution OCT imaging in nontransparent tissue. This chapter reviews state-of-the-art technology that enables ultrahigh-resolution OCT covering the entire wavelength region from 500 to 1,600 nm and discusses fundamental limitations of OCT image resolution.

  18. Optical Coherence Tomography Velocimetry with Complex Fluids

    NASA Astrophysics Data System (ADS)

    Malm, A.; Waigh, T. A.; Jaradat, S.; Tomlin, R.

    2015-04-01

    We present recent results obtained with an Optical Coherence Tomography Velocimetry technique. An optical interferometer measures the velocity of a sheared fluid at specific depths of the sample using the coherence length of the light source. The technique allows the dynamics of 3 pico liter volumes to be probed inside opaque complex fluids. In a study of opaque starch suspensions, classical bulk rheology experiments show non-linear shear thickening, whereas observations of the velocity profiles as a function of distance across the gap show Newtonian behavior. The ability of the technique to measure velocity fluctuations is also discussed for the case of polyacrylamide samples which were observed to display shear banding behavior. A relationship between the viscoelasticity of the sample and the size of the apparent fluctuations is observed.

  19. Visible light optical coherence correlation spectroscopy.

    PubMed

    Broillet, Stephane; Szlag, Daniel; Bouwens, Arno; Maurizi, Lionel; Hofmann, Heinrich; Lasser, Theo; Leutenegger, Marcel

    2014-09-08

    Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

  20. Removing autocorrelation in spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ai, Jun; Wang, Lihong V.

    2006-02-01

    We have developed a new algorithm and configuration for removing the autocorrelation of the object wave in spectral optical coherence tomography. The self-interferogram of the object wave is acquired synchronously with the standard interferogram of the recombined object and reference waves. The former is then subtracted from the latter after Fourier transformation. The algorithm is validated by numerical simulation and by experimental measurement of a USAF target and a feline eye.

  1. Optical coherence tomography guided dental drill

    DOEpatents

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  2. Optical coherence tomography used for jade industry

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Chang, Guangming; Flueraru, Costel

    2010-11-01

    As an expensive natural stone, jade has a worldwide market. In the jade industry, the inspection and analysis basically rely on the human eye and/or experience, which cause unavoidable waste and damage of these expensive materials. Optical Coherence Tomography (OCT) is a fundamentally new type of optical sensing technology, which can perform high resolution, cross-sectional sensing of the internal structure of materials. As jade is almost translucent to infra red light, OCT becomes an ideal tool to change the traditional procedure to volume data based machine vision system. OCT can also be used for anti-counterfeit of the expensive jade ware.

  3. Coherent optical OFDM: theory and design.

    PubMed

    Shieh, W; Bao, H; Tang, Y

    2008-01-21

    Coherent optical OFDM (CO-OFDM) has recently been proposed and the proof-of-concept transmission experiments have shown its extreme robustness against chromatic dispersion and polarization mode dispersion. In this paper, we first review the theoretical fundamentals for CO-OFDM and its channel model in a 2x2 MIMO-OFDM representation. We then present various design choices for CO-OFDM systems and perform the nonlinearity analysis for RF-to-optical up-converter. We also show the receiver-based digital signal processing to mitigate self-phase-modulation (SPM) and Gordon-Mollenauer phase noise, which is equivalent to the midspan phase conjugation.

  4. Optical coherence tomography imaging of optic disc cavernous haemangioma.

    PubMed

    Katta, Mohamed; Mehta, Hemal; Ho, Ivan; Garrick, Ray; Chong, Robert

    2016-11-01

    Optic disc cavernous haemangiomas are either found incidentally or after presentation with vitreous haemorrhage. They are characterised by a cluster of grapes appearance to the multiple vascular saccules that make up the tumour. They are more often found in the retinal periphery but rarely occur at the optic disc. Optical coherence tomography (OCT) imaging may be a useful non-invasive imaging modality to follow-up these lesions. We present the case of an asymptomatic 60-year-old lady referred from her optometrist with a lesion overlying the optic disc and the ensuing diagnosis of cavernous haemangioma using fundus fluorescein angiography and OCT.

  5. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  6. Optical coherence tomography: on the way to decipher the 'Rosetta stone'.

    PubMed

    Karjalainen, Pasi P; Nammas, Wail

    2012-08-23

    Optical coherence tomography is an exciting light-based imaging modality with a much higher axial resolution as compared with intravascular ultrasound. The diagnostic value of optical coherence tomography resides in its ability to provide information on the stent interaction with the vessel wall at the level of individual struts. Chief clinical implications include evaluating strut neointimal coverage and strut malapposition following coronary stenting. This Editorial covers the basics of optical coherence tomography, its established and potential clinical implications, probable caveats and downsides, in addition to a future perspective, all in view of the late-breaking peer-reviewed literature.

  7. Modeling propagation of coherent optical pulses through molecular vapor

    SciTech Connect

    Shore, B.W.; Eberly, J.H.

    1982-01-01

    Results of modeling the mutual coupling of coherent molecular response and coherent optical pulses during propagation are described. The propagation is treated numerically, with particular emphasis on both continuum and discrete behavior associated with the quasicontinuum model.

  8. Homodyne en face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yaqoob, Zahid; Fingler, Jeff; Heng, Xin; Yang, Changhuei

    2006-06-01

    We demonstrate, for what we believe to be the first time, the use of a 3×3 fiber-optic coupler to realize a homodyne optical coherence tomography (OCT) system for en face imaging of highly scattering tissues and turbid media. The homodyne OCT setup exploits the inherent phase shifts between different output ports of a 3×3 fiber-optic coupler to extract amplitude information of a sample. Our homodyne en face OCT system features a measured resolution of 14 μm axially and 9.4 μm laterally with a 90 dB signal-to-noise ratio at 10 μs integration time. En face OCT imaging of a stage 52 Xenopus laevis was successfully demonstrated at a depth of 600 μm within the sample.

  9. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  10. Cubic meter volume optical coherence tomography.

    PubMed

    Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E; Swanson, Eric; Fujimoto, James G

    2016-12-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.

  11. Cubic meter volume optical coherence tomography

    PubMed Central

    WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.

    2017-01-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628

  12. Ultrahigh-Resolution Optical Coherence Tomography Using Femtosecond Lasers

    NASA Astrophysics Data System (ADS)

    Fujimoto, J. G.; Aguirre, A. D.; Chen, Y.; Herz, P. R.; Hsiung, P.-L.; Ko, T. H.; Nishizawa, N.; Kärtner, F. X.

    Optical coherence tomography (OCT) is an emerging optical imaging modality for biomedical research and clinical medicine. OCT can perform high resolution, cross-sectional tomographic imaging in materials and biological systems by measuring the echo time delay and magnitude of backreflected or backscattered light [1]. In medical applications, OCT has the advantage that imaging can be performed in situ and in real time, without the need to remove and process specimens as in conventional excisional biopsy and histopathology. OCT can achieve axial image resolutions of 1 to 15 μm; one to two orders of magnitude higher than standard ultrasound imaging. The image resolution in OCT is determined by the coherence length of the light source and is inversely proportional to its bandwidth. Femtosecond lasers can generate extremely broad bandwidths and have enabled major advances in ultrahigh-resolution OCT imaging. This chapter provides an overview of OCT technology and ultrahigh-resolution OCT imaging using femtosecond lasers.

  13. Dynamic spectral-domain optical coherence elastography for tissue characterization.

    PubMed

    Liang, Xing; Adie, Steven G; John, Renu; Boppart, Stephen A

    2010-06-21

    A dynamic spectral-domain optical coherence elastography (OCE) imaging technique is reported. In this technique, audio-frequency compressive vibrations are generated by a piezoelectric stack as external excitation, and strain rates in the sample are calculated and mapped quantitatively using phase-sensitive spectral-domain optical coherence tomography. At different driving frequencies, this technique provides contrast between sample regions with different mechanical properties, and thus is used to mechanically characterize tissue. We present images of a three-layer silicone tissue phantom and rat tumor tissue ex vivo, based on quantitative strain rate. Both acquisition speed and processing speed are improved dramatically compared with previous OCE imaging techniques. With high resolution, high acquisition speed, and the ability to characterize the mechanical properties of tissue, this OCE technique has potential use in non-destructive volumetric imaging and clinical applications.

  14. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  15. Concept of coherence of learning physical optics

    NASA Astrophysics Data System (ADS)

    Colombo, Elisa M.; Jaen, Mirta; de Cudmani, Leonor C.

    1995-10-01

    The aim of the actual paper is to enhance achievements of the text 'Optica Fisica Basica: estructurada alrededor del concepto de coherencia luminosa' (in English 'Basic Physical Optics centered in the concept of coherence'). We consider that this book is a very worth tool when one has to learn or to teach some fundamental concepts of physical optics. It is well known that the topics of physical optics present not easy understanding for students. Even more they also present some difficulties for the teachers when they have to introduce them to the class. First, we think that different phenomena like diffraction and polarization could be well understood if the starting point is a deep comprehension of the concept of interference of light and, associated with this, the fundamental and nothing intuitive concept of coherence of the light. In the reference text the authors propose the use of expression 'stable interference pattern of no uniform intensity' instead of 'pattern of interference' and 'average pattern of uniform untested' instead of 'lack of interference' to make reference that light always interfere but just under restrictive conditions it can be got temporal and spatial stability of the pattern. Another idea we want to stand out is that the ability to observe a 'stable interference pattern of no uniform intensity' is associated not only with the coherence of the source but also with the dimensions of the experimental system and with the temporal and spatial characteristics of the detector used - human eye, photographic film, etc. The proposal is well support by quantitative relations. With an alternate model: a train of waves with a finite length of coherence, it is possible to get range of validity of models, to decide when a source could be considered a 'point' or 'monochromatic' or 'remote', an 'infinite' wave or a train of waves, etc. Using this concept it is possible to achieve a better understanding of phenomena like the polarization of light. Here, it

  16. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  17. Spectral fusing Gabor domain optical coherence microscopy.

    PubMed

    Meemon, Panomsak; Widjaja, Joewono; Rolland, Jannick P

    2016-02-01

    Gabor domain optical coherence microscopy (GD-OCM) is one of many variations of optical coherence tomography (OCT) techniques that aims for invariant high resolution across a 3D field of view by utilizing the ability to dynamically refocus the imaging optics in the sample arm. GD-OCM acquires multiple cross-sectional images at different focus positions of the objective lens, and then fuses them to obtain an invariant high-resolution 3D image of the sample, which comes with the intrinsic drawback of a longer processing time as compared to conventional Fourier domain OCT. Here, we report on an alternative Gabor fusing algorithm, the spectral-fusion technique, which directly processes each acquired spectrum and combines them prior to the Fourier transformation to obtain a depth profile. The implementation of the spectral-fusion algorithm is presented and its performance is compared to that of the prior GD-OCM spatial-fusion approach. The spectral-fusion approach shows twice the speed of the spatial-fusion approach for a spectrum size of less than 2000 point sampling, which is a commonly used spectrum size in OCT imaging, including GD-OCM.

  18. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  19. Optical coherence tomography findings in ocular argyrosis.

    PubMed

    Rahimy, Ehsan; Beardsley, Robert; Ferrucci, Steven; Ilsen, Pauline; Sarraf, David

    2013-11-25

    A 68-year-old Caucasian man with a remote history of daily colloidal silver ingestion presented for ophthalmic examination in which he was noted to have a distinct slate gray skin discoloration. Funduscopy revealed confluent perimacular drusenoid deposits bilaterally, most of which localized at the level of or anterior to the inner segment ellipsoid band by optical coherence tomography (OCT) imaging. Enhanced depth imaging OCT demonstrated marked choroidal thinning. Fluorescein angiogram displayed a dark or silent choroid. Confirmatory serum silver levels were found to be markedly elevated. This report describes a unique geographic maculopathy with large drusenoid deposits anterior to the ellipsoid layer and severe choroidal thinning in association with ocular argyrosis.

  20. Multi-Scale Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Oliveira, Michael Christopher

    An optical modality capable of quantitative, label-free, high-speed and high-resolution imaging across spatiotemporal scales coupled with sophisticated software for image reconstruction and quantitative analyses would be of great utility to scientists and engineers in the medical and life sciences fields. Currently, a combination of optical imaging techniques and software packages are needed to address the list of capabilities described previously. Optical coherence tomography is an optical imaging technique based on low coherence interferometry capable of measuring light backscattered from the sample at micrometer-level resolutions over millimeter-level penetration depths in biological tissue. Phase-sensitive extensions of OCT enable the functional assessment of biological tissue samples as well as the structural examination of samples down to the single-cell level. This dissertation describes the development and application of high-speed real-time multi-functional spectral-domain OCT (MF-SD-OCT) for structural and functional examination of biological samples across spatiotemporal scales. A discussion of the development of a GPU-accelerated high-speed MF-SD-OCT imaging system accompanied by demonstrations of the performance enhancements due to the GPU are presented initially. Next, the development of MF-SD-OCT-based quantitative methods for the structural and functional assessment and characterization and classification of biological tissue samples is discussed. The utility of these methods is demonstrated through structural, functional and optical characterization and classification of peripheral nerve and muscle tissue. The dissertation concludes with a discussion of the improvements made to spectral-domain optical coherence phase microscopy (SD-OCPM) to enable dynamic live cell imaging and the application of dynamic live cell SD-OCPM for morphological visualization of cheek epithelial cells and examination of functionally stimulated morphological changes in

  1. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  2. Optical coherence tomography findings in commotio retina.

    PubMed

    Sony, Parul; Venkatesh, Pradeep; Gadaginamath, Shailesh; Garg, Sat Pal

    2006-08-01

    A 16-year-old boy presented with diminished visual acuity of 6/60 following blunt trauma to his right eye with a cricket ball. Fundus examination showed commotio retinae. Optical coherence tomography (OCT) demonstrated increased reflectivity with small optically clear spaces in the area corresponding to the photoreceptor outer segment. At 2-month follow up the visual acuity improved to 6/6. A small area of retinal opacification persisted nasally, and OCT of the corresponding area continued to show increased reflectivity in the area of photoreceptor outer segment. Increased reflectivity on OCT in eyes with commotio retinae probably denotes photoreceptor outer segment disruption and seems to be reversible to a variable extent.

  3. Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    PubMed Central

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; Xie, X. Sunney

    2012-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy, including stimulated Raman scattering and two photon absorption, and pump-probe microscopy, including stimulated emission, excited state absorption and ground state depletion, provide distinct and powerful image contrasts for non-fluorescent species. Thanks to high-frequency modulation transfer scheme, they exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles, excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  4. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  5. Physical basis of holographic optical coherence imaging of living tissue

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; Jeong, Kwan; Yu, Ping; Turek, John J.

    2004-07-01

    This paper reviews the physical basis of holographic optical coherence imaging (OCI) applied in image-domain holography (IDH) and Fourier-domain holography (FDH). Holographic OCI is a multi-spatial-channel direct imaging approach that is closely related to short-coherence speckle interferometry and speckle holography, drawing in addition from laser-ranging concepts and techniques of optical coherence tomography (OCT). It produces a series of en face images at successive depths that can be presented in a so-called video "fly-through". Interchannel cross-talk is described as multichannel spatial heterodyne that produces image-bearing speckle. The speckle holograms are proposed to relate to specific structure in the tissue and may be useful as a clinical diagnostic. For instance, sub-cellular motility (a metric of the vitality of a cell and a means to quantify the response to inter-cellular signaling) can be detected with wide field of view without the need for cellular-scale optical resolution. This can be applied across biologically significant areas of tissue with potential for intraoperative applications to asses the state of health beneath the surface of broad areas of excised tissue.

  6. Snapshot Spectral Domain Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Valdez, Ashley

    Optical coherence tomography systems are used to image the retina in 3D to allow ophthalmologists diagnose ocular disease. These systems yield large data sets that are often labor-intensive to analyze and require significant expertise in order to draw conclusions, especially when used over time to monitor disease progression. Spectral Domain Optical Coherence Tomography (SD-OCT) instantly acquires depth profiles at a single location with a broadband source. These systems require mechanical scanning to generate two- or three-dimensional images. Instead of mechanically scanning, a beamlet array was used to permit multiple depth measurements on the retina with a single snapshot using a 3x 3 beamlet array. This multi-channel system was designed, assembled, and tested using a 1 x 2 beamlet lens array instead of a 3 x 3 beamlet array as a proof of concept prototype. The source was a superluminescent diode centered at 840nm with a 45nm bandwidth. Theoretical axial resolution was 6.92um and depth of focus was 3.45mm. Glass samples of varying thickness ranging from 0.18mm to 1.14mm were measured with the system to validate that correct depth profiles can be acquired for each channel. The results demonstrated the prototype system performed as expected, and is ready to be modified for in vivo applicability.

  7. Optical Coherence Tomography in a Needle Format

    NASA Astrophysics Data System (ADS)

    Lorenser, Dirk; McLaughlin, Robert A.; Sampson, David D.

    In this chapter, we review the technology and applications of needle probes for optical coherence tomography (OCT). Needle probes are miniaturized fiber-optic probes that can be mounted inside hypodermic needles, allowing them to be inserted deep into the body during OCT imaging. This overcomes the very limited imaging depth of OCT of only 2-3 mm in biological tissue, enabling access to deep-tissue locations that are beyond the reach of free-space optical scan heads or catheters. This chapter provides an in-depth review of the current state-of-the art in needle probe technology, including optical design and fabrication, scan mechanisms (including three-dimensional scanning), and integration into OCT systems. It also provides an overview of emerging applications of this fascinating new imaging tool in areas such as cancer diagnosis, pulmonary imaging, imaging of the eye and imaging of the brain. Finally, two case studies are presented, illustrating needle-based OCT imaging in breast cancer and lungs.

  8. Doppler optical coherence tomography in cardiovascular applications

    NASA Astrophysics Data System (ADS)

    Bonesi, M.; Matcher, S.; Meglinski, I.

    2010-06-01

    The study of flow dynamics in complex geometry vessels is highly important in various biomedical applications where the knowledge of the mechanic interactions between the moving fluid and the housing media plays a key role for the determination of the parameters of interest, including the effect of blood flow on the possible rupture of atherosclerotic plaques. Doppler Optical Coherence Tomography (DOCT), as a functional extension of Optical Coherence Tomography (OCT), is an optic, non-contact, noninvasive technique able to achieve detailed analysis of the flow/vessel interactions. It allows simultaneous high resolution imaging (˜10 µm typical) of the morphology and composition of the vessel and determination of the flow velocity distribution along the measured cross-section. We applied DOCT system to image high-resolution one-dimensional and multi-dimensional velocity distribution profiles of Newtonian and non-Newtonian fluids flowing in vessels with complex geometry, including Y-shaped and T-shaped vessels, vessels with aneurism, bifurcated vessels with deployed stent and scaffolds. The phantoms were built to mimic typical shapes of human blood vessels, enabling preliminary analysis of the interaction between flow dynamics and the (complex) geometry of the vessels and also to map the related velocity profiles at several inlet volume flow rates. Feasibility studies for quantitative observation of the turbulence of flows arising within the complex geometry vessels are discussed. In addition, DOCT technique was also applied for monitoring cerebral mouse blood flow in vivo. Two-dimensional DOCT images of complex flow velocity profiles in blood vessel phantoms and in vivo sub-cranial mouse blood flow velocities distributions are presented.

  9. Doppler optical coherence tomography in cardiovascular physiology

    NASA Astrophysics Data System (ADS)

    Bonesi, M.; Meglinski, I.; Matcher, S.

    2008-09-01

    The study of flow dynamics in complex geometry vessels is highly important in many biomedical applications where the knowledge of the mechanic interactions between the moving fluid and the housing media plays a key role for the determination of the parameters of interest, including the effect of blood flow on the possible rupture of atherosclerotic plaques. Doppler Optical Coherence Tomography (DOCT), as a functional extension of Optical Coherence Tomography (OCT), is an optic, non-contact, non-invasive technique able to achieve detailed analysis of the flow/vessel interactions. It allows simultaneous high resolution imaging (10 μm typical) of the morphology and composition of the vessel and determination of the flow velocity distribution along the measured cross-section. We applied DOCT system to image high-resolution one-dimensional and multi-dimensional velocity distribution profiles of Newtonian and non-Newtonian fluids flowing in vessels with complex geometry, including Y-shaped and T-shaped vessels, vessels with aneurism, bifurcated vessels with deployed stent and scaffolds. The phantoms were built to mimic typical shapes of human blood vessels, enabling preliminary analysis of the interaction between flow dynamics and the (complex) geometry of the vessels and also to map the related velocity profiles at several inlet volume flow rates. Feasibility studies for quantitative observation of the turbulence of flows arising within the complex geometry vessels are discussed. In addition, DOCT technique was also applied for monitoring cerebral mouse blood flow in vivo. Two-dimensional DOCT images of complex flow velocity profiles in blood vessel phantoms and in vivo sub-cranial mouse blood flow velocities distributions are presented.

  10. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a

  11. Metrology of Coherence and Polarization in Sight of Singular Optics

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Polyanskii, Peter V.; Maksimyak, Peter P.; Mokhun, Igor I.

    This chapter considers new feasibilities for metrology of coherence and polarization of light fields and reviews novel approaches to singular optics from the point of view of researchers. New possible techniques are discussed that can be involved in the study and implementation of completely and partially coherent/polarized complex fields and that can be of use in optical correlation diagnostics. These considerations were inspired by revived attempts to develop generalized classical theory of partial coherence and partial polarization (Emil Wolf), as well as by achievements in quantum theory of optical coherence (for which Roy Jay Glauber was awarded the Nobel Prize in 2005).

  12. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  13. Epiretinal membrane: optical coherence tomography-based diagnosis and classification

    PubMed Central

    Stevenson, William; Prospero Ponce, Claudia M; Agarwal, Daniel R; Gelman, Rachel; Christoforidis, John B

    2016-01-01

    Epiretinal membrane (ERM) is a disorder of the vitreomacular interface characterized by symptoms of decreased visual acuity and metamorphopsia. The diagnosis and classification of ERM has traditionally been based on clinical examination findings. However, modern optical coherence tomography (OCT) has proven to be more sensitive than clinical examination for the diagnosis of ERM. Furthermore, OCT-derived findings, such as central foveal thickness and inner segment ellipsoid band integrity, have shown clinical relevance in the setting of ERM. To date, no OCT-based ERM classification scheme has been widely accepted for use in clinical practice and investigation. Herein, we review the pathogenesis, diagnosis, and classification of ERMs and propose an OCT-based ERM classification system. PMID:27099458

  14. Epiretinal membrane: optical coherence tomography-based diagnosis and classification.

    PubMed

    Stevenson, William; Prospero Ponce, Claudia M; Agarwal, Daniel R; Gelman, Rachel; Christoforidis, John B

    2016-01-01

    Epiretinal membrane (ERM) is a disorder of the vitreomacular interface characterized by symptoms of decreased visual acuity and metamorphopsia. The diagnosis and classification of ERM has traditionally been based on clinical examination findings. However, modern optical coherence tomography (OCT) has proven to be more sensitive than clinical examination for the diagnosis of ERM. Furthermore, OCT-derived findings, such as central foveal thickness and inner segment ellipsoid band integrity, have shown clinical relevance in the setting of ERM. To date, no OCT-based ERM classification scheme has been widely accepted for use in clinical practice and investigation. Herein, we review the pathogenesis, diagnosis, and classification of ERMs and propose an OCT-based ERM classification system.

  15. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  16. Automated detection of dilated capillaries on optical coherence tomography angiography

    PubMed Central

    Dongye, Changlei; Zhang, Miao; Hwang, Thomas S.; Wang, Jie; Gao, Simon S.; Liu, Liang; Huang, David; Wilson, David J.; Jia, Yali

    2017-01-01

    Automated detection and grading of angiographic high-risk features in diabetic retinopathy can potentially enhance screening and clinical care. We have previously identified capillary dilation in angiograms of the deep plexus in optical coherence tomography angiography as a feature associated with severe diabetic retinopathy. In this study, we present an automated algorithm that uses hybrid contrast to distinguish angiograms with dilated capillaries from healthy controls and then applies saliency measurement to map the extent of the dilated capillary networks. The proposed algorithm agreed well with human grading. PMID:28271005

  17. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  18. Quantitative contrast-enhanced optical coherence tomography

    PubMed Central

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects. PMID:26869724

  19. Quantitative contrast-enhanced optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  20. Quantitative contrast-enhanced optical coherence tomography

    SciTech Connect

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; Zerda, Adam de la

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  1. Angle-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Desjardins, Adrien Emmanuel

    Optical coherence tomography (OCT) has emerged as a powerful tool for probing the microstructure of biological tissue non-invasively at high-speed. OCT measures depth-resolved reflectance of infrared light, generating cross-sectional images non-invasively with micron-scale resolution. As with other imaging modalities that employ coherent detection, OCT images are confounded by speckle noise. Speckle imposes a grainy texture on images that reduces the signal-to-noise ratio to near unity values. As a result, it conceals subtle differences in scattering properties known to be crucial for differentiating normal from diseased tissue states. In this thesis, we developed a novel OCT modality called "Angle-Resolved OCT" in which depth scans (A-lines) are obtained simultaneously from a broad range of backscattering angles. We demonstrated that high levels of speckle reduction can be achieved by averaging the magnitudes of A-lines corresponding to the same transverse locations. With both experimental and analytic approaches, we demonstrated that this averaging method does not lead to a substantial loss in spatial resolution. We developed two different imaging systems for performing Angle-Resolved OCT. With the first system, angular data was acquired simultaneously; with the second, it was acquired sequentially. The first system had superior speckle-reduction capabilities but image quality degraded significantly with small sample movements. The second system allowed for in vivo imaging, as demonstrated with Resolved OCT systems, the speckle-reduced images showed hitherto unprecedented delineation of tissue microstructure.

  2. Optical coherence tomography for diagnosing periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard

    1997-05-01

    We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.

  3. Optical coherence tomography of the rat cochlea

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; de Boer, Johannes F.; Park, Boris H.; Chen, Zhongping; Nelson, J. Stuart

    2000-10-01

    Optical coherence tomography (OCT) was used to image the internal structure of a rat cochlea (ex vivo). Immediately following sacrifice, the temporal bone of a Sprague-Dawley rat was harvested. Axial OCT cross sectional images (over regions of interest, 1 X 1 mm-2 X 8 mm) were obtained with a spatial resolution of 10 - 15 micrometers . The osseous borders of the lateral membranous labyrinth overlying the cochlea and the scala vestibuli, media, and tympani, which were well demarcated by the modiolus, Reissner's and the basilar membranes, were clearly identified. OCT can be used to image internal structures in the cochlea without violating the osseous labyrinth using simple surgical exposure of the promontory, and may potentially be used to diagnose inner ear pathology in vivo in both animal and human subjects labyrinth.

  4. Vascular interventions with optical coherence reflectometry

    NASA Astrophysics Data System (ADS)

    Neet, John M.

    2003-07-01

    There have been many innovations and technological advancements in balloon angioplasty since its introduction in the late 1970's, but percutaneous intervention on a totally occluded artery is still a challenge to the vascular interventionalist. Catheter-based intervention that avoids an invasive surgical procedure is a clear and desired advantage for the patient. A total occlusion challenges the interventionalist because the path of the artery can not be seen in the occluded vessel since the flow of the radiopaque contrast media is blocked. Optical coherence reflectometry techniques have been shown to be able to differentiate between artery wall and occlusive materials allowing the lumen of the blocked artery to be seen inside the occlusion. Light emitting diodes are a critical component of these systems making them technologically possible and economically feasible.

  5. Intraoperative Optical Coherence Tomography Guided Bleb Needling.

    PubMed

    Dada, Tanuj; Angmo, Dewang; Midha, Neha; Sidhu, Talvir

    2016-01-01

    Two patients with history of trabeculectomy presented with uncontrolled intraocular pressure (IOP) postoperatively. The first patient had a flat and vasularized bleb 10 weeks after the surgery, and the second subject developed encapsulated bleb 3 months postoperatively. Both patients were taken to the operating room and intraoperative optical coherence tomography (OCT) guided bleb needling was performed to restore aqueous egress into the subconjunctival space. Postoperatively, IOP of the operated eyes ranged 14-18 mmHg at week 6 and month 3. None of the eyes had any intraoperative or postoperative complications. This novel application of the intraoperative OCT for bleb needling facilitates precision surgery under direct visualization and reduces the risk of complications.

  6. Intraoperative Optical Coherence Tomography Guided Bleb Needling

    PubMed Central

    Dada, Tanuj; Angmo, Dewang; Midha, Neha; Sidhu, Talvir

    2016-01-01

    Two patients with history of trabeculectomy presented with uncontrolled intraocular pressure (IOP) postoperatively. The first patient had a flat and vasularized bleb 10 weeks after the surgery, and the second subject developed encapsulated bleb 3 months postoperatively. Both patients were taken to the operating room and intraoperative optical coherence tomography (OCT) guided bleb needling was performed to restore aqueous egress into the subconjunctival space. Postoperatively, IOP of the operated eyes ranged 14-18 mmHg at week 6 and month 3. None of the eyes had any intraoperative or postoperative complications. This novel application of the intraoperative OCT for bleb needling facilitates precision surgery under direct visualization and reduces the risk of complications. PMID:27994819

  7. Optical coherence tomography examination of hair

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Huang, Zheng; Xu, Jianshu; Yang, Hongqin; Li, Hui; Xie, Shusen

    2014-09-01

    Human hair is a keratinous tissue composed mostly of flexible keratin, which can form a complex architecture consisting of distinct compartments or units (e.g. hair bulb, inner root sheath, shaft). Variations in hair shaft morphology can reflect ethnical diversity, but may also indicate internal diseases, nutritional deficiency, or hair and scalp disorders. Hair shaft abnormalities in cross section and diameter, as well as ultramorphological characterization and follicle shapes, might be visualized non-invasively by high-speed 2D and 3D optical coherence tomography (OCT). In this study, swept source OCT (ThorLabs) was used to examine human hair. Preliminary results showed that the high-speed OCT was a suitable and promising tool for non-invasive analysis of hair conditions.

  8. Optical coherence tractography using intrinsic contrast

    PubMed Central

    Goergen, Craig J.; Radhakrishnan, Harsha; Sakadžić, Sava; Mandeville, Emiri T.; Lo, Eng H.; Sosnovik, David E.; Srinivasan, Vivek J.

    2013-01-01

    Organs such as the heart and brain possess intricate fiber structures that are best characterized with threedimensional imaging. For instance, diffusion-based, magnetic resonance tractography (MRT) enables studies of connectivity and remodeling during development and disease macroscopically on the millimeter scale. Here we present complementary, high-resolution microscopic optical coherence imaging and analysis methods that, when used in conjunction with clearing techniques, can characterize fiber architecture in intact organs at tissue depths exceeding 1 mm. We anticipate that these techniques can be used to study fiber architecture in situ at microscopic scales not currently accessible to diffusion magentic resonance (MR), and thus, to validate and complement macroscopic structural imaging techniques. Moreover, as these techniques use intrinsic signals and do not require tissue slicing and staining, they can be used for high-throughput, nondestructive evaluation of fiber architecture across large tissue volumes. PMID:23041891

  9. The Choroid and Optical Coherence Tomography

    PubMed Central

    Sezer, Taha; Altınışık, Muhammet; Koytak, İbrahim Arif; Özdemir, Mehmet Hakan

    2016-01-01

    The choroid is the most vascular tissue in the eye and it plays an important role in the pathophysiology of various common chorioretinal diseases such as central serous retinopathy, age-related macular degeneration and degenerative myopia. Quantitative assessment of the choroid has been quite challenging with traditional imaging modalities such as indocyanine green angiography and ultrasonography due to limited resolution and repeatability. With the advent of optical coherence tomography (OCT) technology, detailed visualization of the choroid in vivo is now possible. Measurements of choroidal thickness have also enabled new directions in research to study normal and pathological processes within the choroid. The aim of the present study is to review the current literature on choroidal imaging using OCT. PMID:27800255

  10. Optical Coherence Tomography in Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Yang, Ying; Wang, Ruikang K.; Boppart, Stephen A.

    Tissue engineering holds the promise for a therapeutic solution in regenerative medicine. The primary goal of tissue engineering is the development of physiologically functional and biocompatible tissues/organs being implanted for the repair and replacement of damaged or diseased ones. Given the complexity in the developing processes of engineered tissues, which involves multi-dimensional interactions among cells of different types, three-dimensionally constructed scaffolds, and actively intervening bioreactors, a capable real-time imaging tool is critically required for expanding our knowledge about the developing process of desired tissues or organs. It has been recognized that optical coherence tomography (OCT), an emerging noninvasive imaging technique that provides high spatial resolution (up to the cellular level) and three-dimensional imaging capability, is a promising investigative tool for tissue engineering. This chapter discusses the existing and potential applications of OCT in tissue engineering. Example OCT investigations of the three major components of tissue engineering, i.e., cells, scaffolds, and bioreactors are overviewed. Imaging examples of OCT and its enabling functions and variants, e.g., Doppler OCT, polarization-sensitive OCT, optical coherence microscopy are emphasized. Remaining challenges in the application of OCT to tissue engineering are discussed, and the prospective solutions including the combination of OCT with other high-contrast and high-resolution modalities such as two-photon fluorescence microscopy are suggested as well. It is expected that OCT, along with its functional variants, will make important contributions toward revealing the complex cellular dynamics in engineered tissues as well as help us culture demanding tissue/organ implants that will advance regenerative medicine.

  11. Optical Coherence Tomography and Optical Coherence Tomography Angiography in Monitoring Coats' Disease

    PubMed Central

    Hautz, Wojciech; Kocyła-Karczmarewicz, Beata

    2017-01-01

    Purpose. The aim of this study was to evaluate the usefulness of optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) in monitoring pediatric patients with Coats' disease. Material and Methods. This retrospective study included 9 Caucasian patients receiving treatment for Coats' disease at the Children's Memorial Health Institute Ophthalmology Department between December 2014 and May 2016. The course of the disease was monitored with OCTA in combination with OCT and fluorescein angiography (FA). Results. OCT B-scans obtained in all patients correlated with FA findings. Reliable OCTA images were obtained in 8 patients. In one patient, numerous artifacts due to poor visual acuity and retinal detachment confounded the interpretation of findings. Conclusions. OCTA and OCT, in combination with FA, are useful in Coats' disease diagnostics and treatment monitoring. As noninvasive methods, OCT and OCTA may be performed more often than FA, which enable precise monitoring of the disease and making decisions as to its further treatment. PMID:28377823

  12. Optical coherence tomography of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving a man's ability to have spontaneous erections following surgery. These microscopic nerves course along the surface of the prostate within a few millimeters of the prostate capsule, and they vary in size and location from one patient to another, making preservation of the nerves difficult during dissection and removal of a cancerous prostate gland. These observations may explain in part the wide variability in reported sexual potency rates (9--86%) following prostate cancer surgery. Any technology capable of providing improved identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery would be of great assistance in improving sexual function after surgery, and result in direct patient benefit. Optical coherence tomography (OCT) is a noninvasive optical imaging technique capable of performing high-resolution cross-sectional in vivo and in situ imaging of microstructures in biological tissues. OCT imaging of the cavernous nerves in the rat and human prostate has recently been demonstrated. However, improvements in the OCT system and the quality of the images for identification of the cavernous nerves is necessary before clinical use. The following chapters describe complementary approaches to improving identification and imaging of the cavernous nerves during OCT of the prostate gland. After the introduction to OCT imaging of the prostate gland, the optimal wavelength for deep imaging of the prostate is studied in Chapter 2. An oblique-incidence single point measurement technique using a normal-detector scanning system was implemented to determine the absorption and reduced scattering coefficients, mua and m's , of fresh canine prostate tissue, ex vivo, from the diffuse reflectance profile of near-IR light as a function of source-detector distance. The effective attenuation coefficient, mueff, and the Optical Penetration Depth (OPD) were

  13. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography.

    PubMed

    Bouma, B E; Tearney, G J

    1999-04-15

    A nonreciprocal fiber-optic interferometer is demonstrated in an optical coherence tomography (OCT) system. The increased power efficiency of this system provides a 4.1-dB advantage over standard Michelson implementations. In addition, a new linear-scanning fiber-optic catheter is demonstrated that avoids the rotary optical junction that is required in circumferential scanning systems. These advancements have permitted the clinical implementation of OCT imaging in the human gastrointestinal tract.

  14. Optical Coherence Tomographic Comparison of Cuban Epidemic and Leber’s Hereditary Optic Neuropathy

    PubMed Central

    Santiesteban-Freixas, Rosaralis; Pola-Alvarado, Lester; Columbie-Garbey, Yannara; Gonzalez-Quevedo, Alina; Juvier-Riesgo, Tamara; Hernandez-Echevarria, Odelaisys; Hedges, Thomas R.; Mendoza-Santiesteban, Carlos

    2015-01-01

    Abstract Following the epidemic of optic and peripheral neuropathy, which occurred in Cuba between 1991 and 1993, a number of patients have been re-evaluated, including testing with optical coherence tomography (OCT) and electrophysiology. At the same time, a number of patients with Leber’s hereditary optic neuropathy have also been evaluated. The purpose of this study was to detect residual loss of retinal nerve fibre layer (RNFL) in patients who suffered Cuban epidemic optic neuropathy (CEON), and to compare these findings with those in patients with Leber’s hereditary optic neuropathy (LHON). Optical coherence tomography as well as clinical examinations were performed on 11 patients diagnosed with CEON 15 years following the epidemic and 14 patients with LHON. OCT in CEON patients showed thinning of the RNFL in the temporal sector and normal thickness in other quadrants. However, patients with chronic LHON had more diffuse RNFL loss throughout the retina. OCT findings corresponded with clinical findings in CEON and LHON. There was drop out of the papillomacular bundle in both diseases. Two patients in the acute stages of LHON and three LHON carriers showed thinning of the temporal RNFL only. This is the first report of OCT in CEON that shows residual damage in the papillomacular bundle compared with chronic LHON where there is more diffuse and progressive loss of the RNFL. The importance of OCT for the diagnosis and evaluation of similar optic neuropathies is emphasised. PMID:27928368

  15. Measuring the optical characteristics of medulloblastoma with optical coherence tomography

    PubMed Central

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X.D.

    2015-01-01

    Medulloblastoma is the most common malignant pediatric brain tumor. Standard treatment consists of surgical resection, followed by radiation and high-dose chemotherapy. Despite these efforts, recurrence is common, leading to reduced patient survival. Even with successful treatment, there are often severe long-term neurologic impacts on the developing nervous system. We present two quantitative techniques that use a high-resolution optical imaging modality: optical coherence tomography (OCT) to measure refractive index, and the optical attenuation coefficient. To the best of our knowledge, this study is the first to demonstrate OCT analysis of medulloblastoma. Refractive index and optical attenuation coefficient were able to differentiate between normal brain tissue and medulloblastoma in mouse models. More specifically, optical attenuation coefficient imaging of normal cerebellum displayed layers of grey matter and white matter, which were indistinguishable in the structural OCT image. The morphology of the tumor was distinct in the optical attenuation coefficient imaging. These inherent properties may be useful during neurosurgical intervention to better delineate tumor boundaries and minimize resection of normal tissue. PMID:25909030

  16. Optical identification based on time domain optical coherence tomography.

    PubMed

    Gandhi, Vishal; Semenov, Dmitry; Honkanen, Seppo; Hauta-Kasari, Markku

    2015-09-01

    We present a novel method for optical identification, i.e., authenticating valuable documents such as a passport, credit cards, and bank notes, using optical coherence tomography (OCT). An OCT system can capture three-dimensional (3D) images and visualize the internal structure of an object. In our work, as an object, we consider a multilayered optical identification tag composed of a limited number of thin layers (10-100 μm thick). The thickness, width, and location of the layers in the tag encode a unique identification information. Reading of the tag is done using a time domain OCT (TD-OCT) system. Typically, a TD-OCT system requires continuous mechanical scanning in one or more directions to get a 3D volume image of an object. The continuous scanning implies a complicated optical setup, which makes an OCT system fragile and expensive. We propose to avoid the conventional scanning by (1) not requiring 3D imaging, and (2) utilizing the motion of the optical tag itself. The motion is introduced to the tag reader, for example, by a user, which replaces the need for conventional scanning. The absence of a conventional scanning mechanism makes the proposed OCT method very simple and suited for identification purposes; however, it also puts some constraints to the construction of the optical tag, which we discuss in this paper in detail.

  17. Optical coherence-gated imaging in biological tissues

    NASA Astrophysics Data System (ADS)

    Pan, Yingtian; Birngruber, Reginald; Engelhardt, Ralf

    1996-05-01

    Optical coherent-domain tomography (OCT) uses low-coherence light interference to achieve on-axis optical sectioning and lateral scan for 3D optical imaging in scattering media. Owing to its exceptional resolution of approximately 10 micrometers and high dynamic range in excess of 100 dB, this technique is potential for the detection of the microstructures in biological tissues. Although not being able to resolve to the cell extent in most biological tissues because of multiple light scattering, it can still provide important diagnostic information for either low- scattering or superficial, high-scattering biological tissues according to our preliminary clinical experiments. In this paper, after showing the influences of multiple scattering effects on imaging contrast, we will present some 2D OCT images for evaluating the effects of laser thermal keratoplasty, then show the images of in vitro porcine bladder and human tongue. These results show that OCT can be developed into a promising means of noninvasive evaluation of laser-tissue effects, e.g. laser coagulation and ablation, in vivo location of superficial lesion and cancerous regions to aid minimum invasive surgery.

  18. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-01-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 μm axial resolution (OCT and OCM), and 14 μm (OCT) and <2 μm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  19. Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-Chieh; Zhou, Chao; Wang, Yihong; Aquirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-02-01

    Excisional biopsy is the current gold standard for disease diagnosis; however, it requires a relatively long processing time and it may also suffer from unacceptable false negative rates due to sampling errors. Optical coherence tomography (OCT) is a promising imaging technique that provide real-time, high resolution and three-dimensional (3D) images of tissue morphology. Optical coherence microscopy (OCM) is an extension of OCT, combining both the coherence gating and the confocal gating techniques. OCM imaging achieves cellular resolution with deeper imaging depth compared to confocal microscopy. An integrated OCT/OCM imaging system can provide co-registered multiscale imaging of tissue morphology. 3D-OCT provides architectural information with a large field of view and can be used to find regions of interest; while OCM provides high magnification to enable cellular imaging. The integrated OCT/OCM system has an axial resolution of <4um and transverse resolutions of 14um and <2um for OCT and OCM, respectively. In this study, a wide range of human pathologic specimens, including colon (58), thyroid (43), breast (34), and kidney (19), were imaged with OCT and OCM within 2 to 6 hours after excision. The images were compared with H & E histology to identify characteristic features useful for disease diagnosis. The feasibility of visualizing human pathology using integrated OCT/OCM was demonstrated in the pathology laboratory settings.

  20. Ultrathin lensed fiber-optic probe for optical coherence tomography.

    PubMed

    Qiu, Y; Wang, Y; Belfield, K D; Liu, X

    2016-06-01

    We investigated and validated a novel method to develop ultrathin lensed fiber-optic (LFO) probes for optical coherence tomography (OCT) imaging. We made the LFO probe by attaching a segment of no core fiber (NCF) to the distal end of a single mode fiber (SMF) and generating a curved surface at the tip of the NCF using the electric arc of a fusion splicer. The novel fabrication approach enabled us to control the length of the NCF and the radius of the fiber lens independently. By strategically choosing these two parameters, the LFO probe could achieve a broad range of working distance and depth of focus for different OCT applications. A probe with 125μm diameter and lateral resolution up to 10μm was demonstrated. The low-cost, disposable and robust LFO probe is expected to have great potential for interstitial OCT imaging.

  1. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  2. Clinical Manifestations, Complications and Treatment of Ocular Sarcoidosis: Correlation between Visual Efficiency and Macular Edema as Seen on Optical Coherence Tomography.

    PubMed

    Paovic, Jelena; Paovic, Predrag; Sredovic, Vojislav; Jovanovic, Svetlana

    2016-09-14

    Sarcoidosis is a chronic systemic autoimmune disease which belongs to a group of systemic granulomatous diseases. It can be confirmed through characteristic systemic and ocular manifestations and histological findings. Biopsy is the golden standard for diagnosing sarcoidosis. Ocular sarcoidosis can be confirmed, probable, or possible. Over a two-year period, ocular manifestations were studied on a sample of 52 patients, each followed for four months and diagnosed with some form of systemic sarcoidosis. Most frequent systemic manifestations in patients with ocular sarcoidosis were pulmonary, skin, glandular, and systemic generalized sarcoidosis. The disease was diagnosed four times more frequently in females than males (42:10, respectively; p < 0.05). Most frequent, and statistically significant, manifestation of ocular sarcoidosis is anterior uveitis (64.61%; p < 0.01). Macular edema and periphlebitis associated with periarteritis were frequent, and statistically significant (43.90% and 29.26%, respectively; p < 0.05). Overall, with regards to gender and location (right eye; left eye), visual acuity was >0.5 and of statistical significance (76.92%; p < 0.01). The most common therapy consisted of systemic corticosteroids (26.67%) and/or a combination of corticosteroids and immunosuppressive drugs (23.33%). In 16 eyes treated with repeated doses of sub-Tenon's injections, both initial and control visual acuity correlated with average thickness. There was positive correlation between several optical coherence tomography findings before and after treatment.

  3. Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment.

    PubMed

    Assayag, Osnath; Antoine, Martine; Sigal-Zafrani, Brigitte; Riben, Michael; Harms, Fabrice; Burcheri, Adriano; Grieve, Kate; Dalimier, Eugénie; Le Conte de Poly, Bertrand; Boccara, Claude

    2014-10-01

    We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist's management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 mm3 resolution and 200 mm imaging depth, and a 2.25 cm2 specimen is scanned in about 7 minutes. 75 breast specimens were imaged from 22 patients (21 women, 1 man) with a mean age of 58 (range: 25-83). Pathologists blind diagnosed normal/benign or malignant tissue based on FF-OCT images alone, diagnosis from histopathology followed for comparison. The contrast in the FF-OCT images is generated by intrinsic tissue scattering properties, meaning that no tissue staining or preparation is required. Major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts were characterized. Subsequently, features resulting from pathological modification were characterized and a diagnosis decision tree was developed. Using FF-OCT images, two breast pathologists were able to distinguish normal/benign tissue from lesional with a sensitivity of 94% and 90%, and specificity of 75% and 79% respectively.

  4. Motion contrast using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fingler, Jeffrey Paul

    Diagnosis of ophthalmic diseases like age-related macular degeneration is very important for treatment of the disease as well as the development of future treatments. Optical coherence tomography (OCT) is an optical interference technique which can measure the three-dimensional structural information of the reflecting layers within a sample. In retinal imaging, OCT is used as the primary diagnostic tool for structural abnormalities such as retinal holes and detachments. The contrast within the images of this technique is based upon reflectivity changes from different regions of the retina. This thesis demonstrates the developments of methods used to produce additional contrast to the structural OCT images based on the tiny fluctuations of motion experienced by the mobile scatterers within a sample. Motion contrast was observed for motions smaller than 50 nm in images of a variety of samples. Initial contrast method demonstrations used Brownian motion differences to separate regions of a mobile Intralipid solution from a static agarose gel, chosen in concentration to minimize reflectivity contrast. Zebrafish embryos in the range of 3-4 days post fertilization were imaged using several motion contrast methods to determine the capabilities of identifying regions of vascular flow. Vasculature identification was demonstrated in zebrafish for blood vessels of all orientations as small as 10 microns in diameter. Mouse retinal imaging utilized the same motion contrast methods to determine the contrast capabilities for motions associated with vasculature within the retina. Improved contrast imaging techniques demonstrated comparable images to fluorescein angiography, the gold standard of retinal vascular imaging. Future studies can improve the demonstrated contrast analysis techniques and apply them towards human retinal motion contrast imaging for ophthalmic diagnostic purposes.

  5. Nonlinear optics with coherent free electron lasers

    NASA Astrophysics Data System (ADS)

    Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.

    2016-12-01

    We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.

  6. The Application of Optical Coherence Tomography in Musculoskeletal Disease

    PubMed Central

    Rashidifard, Christopher; Vercollone, Christopher; Martin, Scott; Liu, Bin; Brezinski, Mark E.

    2013-01-01

    Many musculoskeletal disorders (MDs) are associated with irreversible bone and cartilage damage; this is particularly true for osteoarthritis (OA). Therefore, a clinical need exists for modalities which can detect OA and other MDs at early stages. Optical coherence tomography (OCT) is an infrared-based imaging, currently FDA approved in cardiology and ophthalmology, which has a resolution greater than 10 microns and acquisition rate of 120 frames/second. It has shown feasibility for imaging early OA, identifying changes prior to cartilage thinning both in vitro and in vivo in patients and in OA animal models. In addition, OCT has shown an ability to identify early rheumatoid arthritis (RA) and guide tendon repair, but has the potential for an even greater impact. Clinical trials in OA are currently underway, as well as in several other MDs. PMID:23424683

  7. MEMS-based endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xie, Huikai; Fedder, Gary K.; Pan, Yingtain

    2005-01-01

    Optical coherence tomography (OCT) is an emerging imaging technique that can provide high-resolution cross-sectional images of biological tissues. OCT has been used to detect various cancers including those in gastrointestinal tracts, bladder, and respiratory pathways. For in vivo imaging in visceral organs, small size and fast speed are essential, which can be achieved by using MEMS (Microelectromechanical systems) technology. In this paper, design and experimental results of a miniature endoscopic OCT imaging probe based on unique single-crystal silicon (SCS) MEMS micromirrors are reported. Several generations of one-dimensional (1D) micromirrors with a size of 1 mm by 1 mm have been fabricated. The resonant frequencies and radii of curvature of the micromirrors are about 0.5 kHz and 0.25 m, respectively. The packaged MEMS-OCT probe is 5 mm in diameter. About 15-μm axial resolutions, 20-μm transverse resolutions and 5-frames/s image rates are obtained.

  8. Optical coherence tomography in vulvar intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Wessels, Ronni; de Bruin, Daniel M.; Faber, Dirk J.; van Boven, Hester H.; Vincent, Andrew D.; van Leeuwen, Ton G.; van Beurden, Marc; Ruers, Theo J. M.

    2012-11-01

    Vulvar squamous cell carcinoma (VSCC) is a gynecological cancer with an incidence of two to three per 100,000 women. VSCC arises from vulvar intraepithelial neoplasia (VIN), which is diagnosed through painful punch biopsy. In this study, optical coherence tomography (OCT) is used to differentiate between normal and VIN tissue. We hypothesize that (a) epidermal layer thickness measured in OCT images is different in normal tissue and VIN, and (b) quantitative analysis of the attenuation coefficient (μoct) extracted from OCT data differentiates VIN from normal vulvar tissue. Twenty lesions from 16 patients are imaged with OCT. Directly after data acquisition, a biopsy is performed. Epidermal thickness is measured and values of μoct are extracted from 200 OCT scans of normal and VIN tissue. For both methods, statistical analysis is performed using Paired Mann-Whitney-test. Correlation between the two methods is tested using a Spearman-correlation test. Both epidermal layer thickness as well as the μoct are different between normal vulvar tissue and VIN lesions (p<0.0001). Moreover, no correlation is found between the epidermal layer thickness and μoct. This study demonstrates that both the epidermal thickness and the attenuation coefficient of vulvar epithelial tissue containing VIN are different from that of normal vulvar tissue.

  9. Anterior Eye Imaging with Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  10. Image quality metrics for optical coherence angiography

    PubMed Central

    Lozzi, Andrea; Agrawal, Anant; Boretsky, Adam; Welle, Cristin G.; Hammer, Daniel X.

    2015-01-01

    We characterized image quality in optical coherence angiography (OCA) en face planes of mouse cortical capillary network in terms of signal-to-noise ratio (SNR) and Weber contrast (Wc) through a novel mask-based segmentation method. The method was used to compare two adjacent B-scan processing algorithms, (1) average absolute difference (AAD) and (2) standard deviation (SD), while varying the number of lateral cross-sections acquired (also known as the gate length, N). AAD and SD are identical at N = 2 and exhibited similar image quality for N<10. However, AAD is relatively less susceptible to bulk tissue motion artifact than SD. SNR and Wc were 15% and 35% higher for AAD from N = 25 to 100. In addition data sets were acquired with two objective lenses with different magnifications to quantify the effect of lateral resolution on fine capillary detection. The lower power objective yielded a significant mean broadening of 17% in Full Width Half Maximum (FWHM) diameter. These results may guide study and device designs for OCA capillary and blood flow quantification. PMID:26203372

  11. Polarization sensitive optical coherence tomography detection method

    SciTech Connect

    Everett, M J; Sathyam, U S; Colston, B W; DaSilva, L B; Fried, D; Ragadio, J N; Featherstone, J D B

    1999-05-12

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattereing coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  12. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  13. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  14. Physical-layer network coding in coherent optical OFDM systems.

    PubMed

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  15. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Burns, Stephen A.

    2007-02-01

    Adaptive optics (AO) is used to correct ocular aberrations primarily in the cornea, lens, and tear film of every eye. Among other applications, AO allows high lateral resolution images to be acquired with scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). Spectral domain optical coherence tomography (SDOCT) is a high-speed imaging technique that can acquire cross-sectional scans with micron-scale axial resolution at tens to hundreds of kHz line rates. We present a compact clinical AO-SDOCT system that achieves micron-scale axial and lateral resolution of retinal structures. The system includes a line scanning laser ophthalmscope (LSLO) for simultaneous wide-field retinal viewing and selection of regions-of-interest. OCT and LSLO imaging and AO correction performance are characterized. We present a case study of a single subject with hyper-reflective lesions associated with stable, resolved central serous retinopathy to compare and contrast AO as applied to scanning laser ophthalmoscopy and optical coherence tomography. The two imaging modes are found to be complementary in terms of information on structure morphology. Both provide additional information lacking in the other. This preliminary finding points to the power of combining SLO and SDOCT in a single research instrument for exploration of disease mechanisms, retinal cellular architecture, and visual psychophysics.

  16. High-resolution imaging of neoplastic lesions using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pitris, Constantinos; Goodman, Annekathryn; Boppart, Stephen A.; Drexler, Wolfgang; Jesser, Christine; Stamper, Debra L.; Brezinski, Mark E.; Fujimoto, James G.

    1999-04-01

    A technology capable of imaging tissue, at or near the cellular level, could lead to the detection of neoplasias at earlier stages than currently possible. This could significantly improve patient outcomes, since once cancer becomes metastatic, cure is difficult. Optical coherence tomography (OCT), a recently developed imaging technology, has ben shown to achieve resolution in the cellular and subcellular range, and it could improve the diagnostic range of clinical imaging procedures. To assess the clinical applicability of OCT, neoplastic specimens from the urinary, gastrointestinal and female reproductive tract were imaged. Sharp differentiation of structures included the mucosa/submucosal/muscularis boundaries, epithelium, glands, supportive tissue, and intramural cysts. The ability of optical coherence tomography to image tissue microstructure at or near the cellular level make it a potentially powerful technology for minimally invasive assessment of tissue microstructure. The resolution of optical coherence tomography, which is greater than any current clinical imaging modality, make it particularly attractive for the assessment of early neoplastic changes.

  17. COHERENCE: On the ability of cells to distinguish the coherence of optical radiation

    NASA Astrophysics Data System (ADS)

    Budagovsky, A. V.

    2005-04-01

    The role of coherent optical radiation in photoregulatory processes caused by chemiluminescence of living cells is discussed. The effect of low and highly coherent quasi-monochromatic light on a dynamic 'host—parasite' system is studied. It is shown that plant organisms can distinguish the statistical order of irradiation. A significant increase in the functional activity was observed only for cells that were completely located within the coherence volume of the electromagnetic field. It is concluded that the cell size in living organisms is the discrimination threshold of the statistical properties of radiation and may serve as a specific biological measure of coherence.

  18. Optical Coherence Tomography in Pulmonary Medicine

    NASA Astrophysics Data System (ADS)

    Murgu, Septimiu Dan; Brenner, Matthew; Chen, Zhongping; Suter, Melissa J.

    Advances in pulmonary diagnostics and therapeutics offer a major potential for optical imaging applications both in clinical practice and research settings. Complexities of pulmonary structures and function have restricted widespread OCT investigations and clinical applications, but these will likely be overcome by developments in OCT technology [1]. Some factors that have limited adaptation of OCT into the pulmonary setting in the past have been the shallow depth of penetration, resolution limitations, relatively slow access times, need to examine large surface areas with numerous branching airways, motion artifacts, as well as a need for development of practical imaging probes to reach the relevant locations in a minimally invasive way. Considerable recent engineering and analytical advances in OCT technology [2-8] have already overcome several of these obstacles and will enable much more extensive investigations into the role for structural and functional pulmonary OCT imaging [1].

  19. All-optical processing in coherent nonlinear spectroscopy

    SciTech Connect

    Oron, Dan; Dudovich, Nirit; Silberberg, Yaron

    2004-08-01

    In spectroscopy, the fingerprint of a substance is usually comprised of a sequence of spectral lines with characteristic frequencies and strengths. Identification of substances often involves postprocessing, where the measured spectrum is compared with tabulated fingerprint spectra. Here we suggest a scheme for nonlinear spectroscopy, where, through coherent control of the nonlinear process, the information from the entire spectrum can be practically collected into a single coherent entity. We apply this for all-optical analysis of coherent Raman spectra and demonstrate enhanced detection and effective background suppression using coherent processing.

  20. A Simple Novel Technique of Infrared Meibography by Means of Spectral-Domain Optical Coherence Tomography: A Cross-Sectional Clinical Study

    PubMed Central

    Napoli, Pietro Emanuele; Coronella, Franco; Satta, Giovanni Maria; Iovino, Claudio; Sanna, Raffaele; Fossarello, Maurizio

    2016-01-01

    Purpose To compare a novel spectral-domain optical coherence tomography (SD-OCT) technique with traditional lid transillumination for evaluation of meibomian glands (MGs) and to assess the relation of MG morphologic changes to the glandular atrophy. Design Evaluation of diagnostic technology. Participants Sixty-one patients with obstructive MGD (30 men, 31 women; age [mean ± standard deviation] 45.1 ± 12.1 years), and 75 control subjects (32 men, 43 women; 44.1 ± 12.5 years) were recruited in order to have a balanced distribution of glandular features. Methods Agreement between SD-OCT and lid transillumination examination for the detection of drop-out (partial or complete loss of MGs) and microscopic changes (i.e. shortening, distortion, segmentation and entanglement), as well as the relationship between morphological features and MG atrophy were evaluated. Main Outcome Measures Agreement between the two meibographic techniques, bias in symmetry of classification, and association analysis between microscopic changes and MG dropout. Results Overall agreement for all morphological features was substantial (Cohen kappa coefficient = 0.77; p<0.001), even if, the majority of disagreement occurred for cases with segmentation, where agreement was present in only 108 (81.82%) of 132 eyes with adequate images for interpretation, and where SD-OCT tended to diagnose more cases not detected by traditional lid transillumination (McNemar test, p<0.001). Moreover, segmentation and distortion pattern negatively correlated with the degree of drop-out, whereas shortening and entanglement pattern demonstrated only a weak correlation (Spearman’s ρ was -0.691, -0.491, -0.359, -0.385, respectively). Conclusions Each method has its advantages but in general there was close agreement between these meibographic techniques, particularly for MG dropout, which supports the reliability of our novel, simple and patient-friendly SD-OCT approach. PMID:27798696

  1. Optical probe using eccentric optics for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshiyuki; Iwaya, Mitsuharu; Watanabe, Yuuki; Sato, Manabu

    2007-03-01

    We propose and demonstrate an OCT optical probe using eccentric optics. This probe enabled both forward imaging and side imaging by dividing a circular scanning area into two semicircular scanning areas using an external motor to rotate the flexible tube. The outer diameter of the probe was 2.6 mm, and its rigid portion length was 10 mm. The lateral resolution was 23 μm, and the eccentric radius was 1.1 mm. The circumferential length in scanning was 6.9 mm, and the working distance was 5 mm. OCT images of 1.5 mm × 6.9 mm (in tissue, axial × circumference), including forward image and side image, were measured with the axial resolution of 19 μm in air and a frame rate of one frame per second. The epidermis, dermis, and sweat gland of in vivo human ventral finger tips were observed.

  2. Nano-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergey A.; Subhash, Hrebesh M.; Zam, Azhar; Leahy, Martin

    2014-03-01

    Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale structural changes in the depth direction is visualized in just a single OCT scan. This label free approach provides new possibilities for depth resolved study of pathogenic and physiologically relevant molecules in the body with high sensitivity and specificity. It offers a powerful opportunity for early diagnosis and treatment of diseases. Experimental results show the ability of the approach to differentiate structural changes of 30 nm in nanosphere aggregates, located at different depths, from a single OCT scan, and structural changes less than 30 nm in time from two OCT scans. Application for visualization of the structure of human skin in vivo is also demonstrated.Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale

  3. Optical coherence tomography in differential diagnosis of skin pathology

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Petrova, Galina P.; Derpaluk, Elena; Nikulin, Nikolai K.; Snopova, Ludmila; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kuranov, Roman V.

    2000-05-01

    The capabilities of optical coherence tomography (OCT) for imaging in vivo of optical patterns of pathomorphological processes in the skin and use of their optical patterns in clinical practice for differential diagnosis of dermatoses are presented. Images of skin tissue 0.8 - 1.5 mm deep were acquired with a resolution of 5, 12 and 20 micrometer using three compact fiber OCT devices developed at the Institute of Applied Physics RAS. The acquisition time of images of skin regions 2 - 6 mm in length was 2 - 4 s. The OCT capabilities were analyzed based on the study of 50 patients with different dermatoses. OCT images were interpreted by comparing with parallel histology. It is shown that OCT can detect in vivo optical patterns of morphological alterations in such general papulous dermatoses as lichen ruber planus and psoriasis, a capability that can be used in differential diagnosis of these diseases. Most informative are OCT images obtained with a resolution of 5 micrometer. The results of our study demonstrate the practical importance of OCT imaging for diagnosis of different dermatoses. OCT is noninvasive and, therefore, makes it possible to perform frequent multifocal examination of skin without any adverse effects.

  4. Gabor fusion master slave optical coherence tomography

    PubMed Central

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller; Bang, Ole; Rivet, Sylvain; Keane, Pearse A.; Heath, David-Garway; Rajendram, Ranjan; Podoleanu, Adrian

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright parts of A-scans for each focus position, to be placed in a final B-scan image (or in a final volume), and discarding the rest, the MS principle can be employed to advantageously deliver signal from the depths within each focus range only. The MS procedure is illustrated on creating volumes of data of constant transversal resolution from a cucumber and from an insect by repeating data acquisition for 4 different focus positions. In addition, advantage is taken from the tolerance to dispersion of the MS principle that allows automatic compensation for dispersion created by layers above the object of interest. By combining the two techniques, Gabor filtering and Master/Slave, a powerful imaging instrument is demonstrated. The master/slave technique allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two cross-sectional OCT images and a confocal like image obtained by averaging the en-face ones. We also demonstrate the superiority of MS-OCT over its FFT based counterpart when used with a Gabor filtering OCT instrument in terms of the speed of assembling the fused volume. For our case, we show that when more than 4 focus positions are required to produce the final volume, MS is faster than the conventional FFT based procedure. PMID:28270987

  5. Spatial-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Langevin, L.; Gay, D.; Piché, M.

    2008-06-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique invented in 1991 and allowing the observation of biological tissues with millimeter depth of penetration and a few micrometer resolution. In the standard time-domain OCT setup (TD-OCT), a broadband light source is used with a Michelson interferometer where one of the mirrors is replaced by the sample (which is mechanically moved transversally during data acquisition) while the other is axially vibrating. By analyzing the temporal signal at the exit of the interferometer, a high resolution tomographic cut of the sample can be obtained. A number of new OCT setups have been proposed since 1991 in order to improve the data acquisition speed. In particular, Fourier-domain OCT (FD-OCT) has allowed in vivo observation of samples by eliminating the necessity of the axial motion of the reference mirror in the setup. We propose in this paper new OCT setups having the same potential without requiring numerical treatment of the signal (as it is the case in FD-OCT). Because those setups are such that the axial information of the sample becomes linearly distributed at different points of space in an interference pattern, we call them spatial-domain OCT setups (SD-OCT). SD-OCT setups use a tilted mirror in a Michelson interferometer to produce an interference pattern which is imaged on a CCD detector. The pattern contains all the information on the sample and is obtained without mechanical motion or numerical treatment of the recorded signal. In order to validate the proposed scheme, prototypes of the setups have been made in the laboratories of COPL at Laval University; biological samples such as onion peels and phloem of trees have been tested in order to produce their tomographic images. Comparisons of some of our results with those from a commercial setup with the same samples had notably confirmed the capacity of ours prototypes to effectively image biological samples.

  6. Gabor fusion master slave optical coherence tomography.

    PubMed

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller; Bang, Ole; Rivet, Sylvain; Keane, Pearse A; Heath, David-Garway; Rajendram, Ranjan; Podoleanu, Adrian

    2017-02-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright parts of A-scans for each focus position, to be placed in a final B-scan image (or in a final volume), and discarding the rest, the MS principle can be employed to advantageously deliver signal from the depths within each focus range only. The MS procedure is illustrated on creating volumes of data of constant transversal resolution from a cucumber and from an insect by repeating data acquisition for 4 different focus positions. In addition, advantage is taken from the tolerance to dispersion of the MS principle that allows automatic compensation for dispersion created by layers above the object of interest. By combining the two techniques, Gabor filtering and Master/Slave, a powerful imaging instrument is demonstrated. The master/slave technique allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two cross-sectional OCT images and a confocal like image obtained by averaging the en-face ones. We also demonstrate the superiority of MS-OCT over its FFT based counterpart when used with a Gabor filtering OCT instrument in terms of the speed of assembling the fused volume. For our case, we show that when more than 4 focus positions are required to produce the final volume, MS is faster than the conventional FFT based procedure.

  7. En-face optical coherence tomography revival

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian Gh.

    2016-03-01

    Quite recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), especially to deliver en-face images. MS-OCT operates like a time domain OCT, selecting signal from a selected depth only while scanning the laser beam across the sample. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. MS-OCT is an OCT method that does not require resampling of data and can be used to deliver en-face images from several depths simultaneously. However, as the MS-OCT method requires important computational resources, the number of multiple depth en-face images produced in real-time is limited. Here, we demonstrate that taking advantage of the parallel processing feature of the MS-OCT technology by harnessing the capabilities of graphics processing units (GPU)s, information from 384 depth positions is acquired in one raster with real time display of 40 en-face OCT images. These exhibit comparable resolution and sensitivity to the images produced using the traditional Fourier domain based method. The GPU facilitates versatile real time selection of parameters, such as the depth positions of the 40 images out of a set of 384 depth locations, as well as their axial resolution. Here, we present in parallel with the 40 en-face OCT images of a human tooth, a confocal microscopy lookalike image, together with two B-scan OCT images along rectangular directions.

  8. Carious growth monitoring with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Freitas, A. Z.; Zezell, D. M.; Mayer, M. P. A.; Ribeiro, A. C.; Gomes, A. S. L.; Vieira, N. D., Jr.

    2006-02-01

    Optical Coherence Tomography was used to monitor subsurface caries evolution process in vitro. Human tooth was used and bacteria were employed to induce caries lesions. Twenty-five human third molars, were used in this study. The teeth were cut longitudinally at mesio-distal direction; the surfaces were coated with nail varnish except for two squared windows (2x4 mm); at the cement-enamel junction. Artificial lesions were induced by a S. Mutans microbiological culture. The samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9 and 11 days. The culture medium, was changed each 48 hours. After the demineralization process the samples were rinsed with double-deionized water and stored in a humid environment. The OCT system was implemented with average power of 96 μW in the sample arm, providing a 23 μm of axial resolution. The images were produced with lateral scans step of 10 μm. The detection system was composed by a detector, a demodulator and a computer. With the images generated by OCT it was possible to determine the lesion depth as function of sample exposition time to microbiological culture. We observed that the depth of the lesion in the root dentine increased from 70 μm to 230 μm, depending of exposure time, and follows the bacterial population growth law. This OCT system accurately depicts hard dental tissue and it was able to detect early caries in its structure, providing a powerful contactless high resolution image of lesions.

  9. Wave optics simulation approach for partial spatially coherent beams.

    PubMed

    Xiao, Xifeng; Voelz, David

    2006-08-07

    A numerical wave optics approach for simulating a partial spatially coherent beam is presented. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model beam. The approach can be used for modeling applications such as free space optical laser links that utilize partially coherent beams.

  10. Applications of Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    A major development in biomedical imaging in the last decade has been optical coherence tomography (OCT). This technique enables microscale resolution, depth resolved imaging of the detailed morphology of transparent and nontransparent biological tissue in a noncontact and quasi-noninvasive way. In the first part of this dissertation, we will describe the development and the performance of our home-made OCT systems working with different wavelength regions based on free-space and optical fiber Michelson interferometers. The second part will focus on Doppler OCT (DOCT), an important extension of OCT, which enables the simultaneous evaluation of the structural information and of the fluid flow distribution at a localized position beneath the sample surface. Much effort has been spent during the past few years in our laboratory aimed at providing more accurate velocity measurements with an extended dynamic range. We also applied our technique in different research areas such as microfluidics and hemodynamics. Investigations on the optical properties of the biological tissues (such as absorption and scattering) corresponding to different center wavelengths, have been performed in our laboratory. We used a 10 femtosecond Ti:sapphire laser centered at about 810 nm associated with a free-space Michelson interferometer. The infrared sources were centered at about 1310 and 1560 nm with all-fiber interferometers. Comparative studies using three different sources for several in vitro biological tissues based on a graphical method illustrated how the optical properties affect the quality of the OCT images in terms of the penetration depth and backscattering intensity. We have shown the advantage of working with 810-nm emission wavelength for good backscattering amplitude and contrast, while sources emitting at 1570 nm give good penetration depth. The 1330-nm sources provide a good compromise between the two. Therefore, the choice of the source will ultimately determine the

  11. Multiscale imaging of human thyroid pathologies using integrated optical coherence tomography (OCT) and optical coherence microscopy (OCM)

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-02-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. Thirty four thyroid gland specimens were imaged from 17 patients, covering a spectrum of pathology, ranging from normal thyroid to neoplasia and benign disease. The integrated OCT and OCM imaging system allows seamlessly switching between low and high magnifications, in a way similar to traditional microscopy. Good correspondence was observed between optical images and histological sections. The results provide a basis for interpretation of future OCT and OCM images of the thyroid tissues and suggest the possibility of future in vivo evaluation of thyroid pathology.

  12. Single cardiac cycle three-dimensional intracoronary optical coherence tomography

    PubMed Central

    Kim, Tae Shik; Park, Hyun-Sang; Jang, Sun-Joo; Song, Joon Woo; Cho, Han Saem; Kim, Sunwon; Bouma, Brett E.; Kim, Jin Won; Oh, Wang-Yuhl

    2016-01-01

    While high-speed intracoronary optical coherence tomography (OCT) provides three-dimensional (3D) visualization of coronary arteries in vivo, imaging speeds remain insufficient to avoid motion artifacts induced by heartbeat, limiting the clinical utility of OCT. In this paper, we demonstrate development of a high-speed intracoronary OCT system (frame rate: 500 frames/s, pullback speed: 100 mm/s) along with prospective electrocardiogram (ECG) triggering technology, which enabled volumetric imaging of long coronary segments within a single cardiac cycle (70 mm pullback in 0.7 s) with minimal cardiac motion artifact. This technology permitted detailed visualization of 3D architecture of the coronary arterial wall of a swine in vivo and fine structure of the implanted stent. PMID:28018710

  13. Molecular Contrast Optical Coherence Tomography: A Review¶

    PubMed Central

    Yang, Changhuei

    2005-01-01

    This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development. PMID:15588122

  14. Epidermal segmentation in high-definition optical coherence tomography.

    PubMed

    Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang

    2015-01-01

    Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.

  15. Triggered optical coherence tomography for capturing rapid periodic motion

    NASA Astrophysics Data System (ADS)

    Chang, Ernest W.; Kobler, James B.; Yun, Seok H.

    2011-07-01

    Quantitative cross-sectional imaging of vocal folds during phonation is potentially useful for diagnosis and treatments of laryngeal disorders. Optical coherence tomography (OCT) is a powerful technique, but its relatively low frame rates makes it challenging to visualize rapidly vibrating tissues. Here, we demonstrate a novel method based on triggered laser scanning to capture 4-dimensional (4D) images of samples in motu at audio frequencies over 100 Hz. As proof-of-concept experiments, we applied this technique to imaging the oscillations of biopolymer gels on acoustic vibrators and aerodynamically driven vibrations of the vocal fold in an ex vivo calf larynx model. Our results suggest that triggered 4D OCT may be useful in understanding and assessing the function of vocal folds and developing novel treatments in research and clinical settings.

  16. Optical Coherence Tomography and Raman Spectroscopy of the retina

    SciTech Connect

    Evans, J W; Zawadzki, R J; Liu, R; Chan, J; Lane, S; Werner, J S

    2009-01-16

    Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combining these imaging modalities. We present an ex vivo OCT microscope combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. The combined instrument will be used to investigate remaining technical challenges to combine these imaging modalities, such as the laser power levels needed to achieve a Raman signal above the noise level without damaging the sample.

  17. Sparsity based denoising of spectral domain optical coherence tomography images

    PubMed Central

    Fang, Leyuan; Li, Shutao; Nie, Qing; Izatt, Joseph A.; Toth, Cynthia A.; Farsiu, Sina

    2012-01-01

    In this paper, we make contact with the field of compressive sensing and present a development and generalization of tools and results for reconstructing irregularly sampled tomographic data. In particular, we focus on denoising Spectral-Domain Optical Coherence Tomography (SDOCT) volumetric data. We take advantage of customized scanning patterns, in which, a selected number of B-scans are imaged at higher signal-to-noise ratio (SNR). We learn a sparse representation dictionary for each of these high-SNR images, and utilize such dictionaries to denoise the low-SNR B-scans. We name this method multiscale sparsity based tomographic denoising (MSBTD). We show the qualitative and quantitative superiority of the MSBTD algorithm compared to popular denoising algorithms on images from normal and age-related macular degeneration eyes of a multi-center clinical trial. We have made the corresponding data set and software freely available online. PMID:22567586

  18. The Use of Optical Coherence Tomography in Intraoperative Ophthalmic Imaging

    PubMed Central

    Hahn, Paul; Migacz, Justin; O’Connell, Rachelle; Maldonado, Ramiro S.; Izatt, Joseph A.; Toth, Cynthia A.

    2012-01-01

    Optical coherence tomography (OCT) has transformed diagnostic ophthalmic imaging but until recently has been limited to the clinic setting. The development of spectral-domain OCT (SD-OCT), with its improved speed and resolution, along with the development of a handheld OCT scanner, enabled portable imaging of patients unable to sit in a conventional tabletop scanner. This handheld SD-OCT unit has proven useful in examinations under anesthesia and, more recently, in intraoperative imaging of preoperative and postoperative manipulations. Recently, several groups have pioneered the development of novel OCT modalities, such as microscope-mounted OCT systems. Although still immature, the development of these systems is directed toward real-time imaging of surgical maneuvers in the intraoperative setting. This article reviews intraoperative imaging of the posterior and anterior segment using the handheld SD-OCT and recent advances toward real-time microscope-mounted intrasurgical imaging. PMID:21790116

  19. Single shot line-field optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Schill, Alexander; Singh, Manmohan; Wu, Chen; Li, Jiasong; Han, Zhaolong; Raghunathan, Raksha; Kazemi, Tina; Nair, Achuth; Hsu, Thomas; Larin, Kirill V.

    2016-03-01

    Elastic wave imaging optical coherence elastography (EWI-OCE) is an emerging technique that can quantify local biomechanical properties of tissues. However, long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate a noncontact single shot line-field OCE technique using a line-field interferometer and an air-pulse delivery system. The spatial-temporal elastic wave propagation profile was acquired in a single shot and used to quantify the elastic wave group velocity in tissue. Results on tissue-mimicking phantoms and chicken breast muscle agreed well with mechanical compression testing, demonstrating that the presented method can effectively reduce the OCE acquisition time to a few milliseconds in biological application.

  20. Single cardiac cycle three-dimensional intracoronary optical coherence tomography.

    PubMed

    Kim, Tae Shik; Park, Hyun-Sang; Jang, Sun-Joo; Song, Joon Woo; Cho, Han Saem; Kim, Sunwon; Bouma, Brett E; Kim, Jin Won; Oh, Wang-Yuhl

    2016-12-01

    While high-speed intracoronary optical coherence tomography (OCT) provides three-dimensional (3D) visualization of coronary arteries in vivo, imaging speeds remain insufficient to avoid motion artifacts induced by heartbeat, limiting the clinical utility of OCT. In this paper, we demonstrate development of a high-speed intracoronary OCT system (frame rate: 500 frames/s, pullback speed: 100 mm/s) along with prospective electrocardiogram (ECG) triggering technology, which enabled volumetric imaging of long coronary segments within a single cardiac cycle (70 mm pullback in 0.7 s) with minimal cardiac motion artifact. This technology permitted detailed visualization of 3D architecture of the coronary arterial wall of a swine in vivo and fine structure of the implanted stent.

  1. Spontaneous Coronary Dissection: "Live Flash" Optical Coherence Tomography Guided Angioplasty.

    PubMed

    Bento, Angela Pimenta; Fernandes, Renato Gil Dos Santos Pinto; Neves, David Cintra Henriques Silva; Patrício, Lino Manuel Ribeiro; de Aguiar, José Eduardo Chambel

    2016-01-01

    Optical Coherence tomography (OCT) is a light-based imaging modality which shows tremendous potential in the setting of coronary imaging. Spontaneous coronary artery dissection (SCAD) is an infrequent cause of acute coronary syndrome (ACS). The diagnosis of SCAD is made mainly with invasive coronary angiography, although adjunctive imaging modalities such as computed tomography angiography, IVUS, and OCT may increase the diagnostic yield. The authors describe a clinical case of a young woman admitted with the diagnosis of ACS. The ACS was caused by SCAD detected in the coronary angiography and the angioplasty was guided by OCT. OCT use in the setting of SCAD has been already described and the true innovation in this case was this unique use of OCT. The guidance of angioplasty with live and short images was very useful as it allowed clearly identifying the position of the guidewires at any given moment without the use of prohibitive amounts of contrast.

  2. Statistical analysis of motion contrast in optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxuan; Guo, Li; Pan, Cong; Lu, Tongtong; Hong, Tianyu; Ding, Zhihua; Li, Peng

    2015-11-01

    Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific research. Based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential and complex differential Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms.

  3. High performance fiber-based optical coherent detection

    NASA Astrophysics Data System (ADS)

    Chen, Youming

    The sensitivity of signal detection is of major interest for optical high speed communication systems and LIght Detection And Ranging (lidar) systems. Sensitive receivers in fiber-optical networks can reduce transmitter power or amplifier amplification requirements and extend link spans. High receiver sensitivity allows links to be established over long distances in deep space satellite communication systems and large atmospheric attenuation to be overcome in terrestrial free space communications. For lidar systems, the sensitivity of signal detection determines how far and how accurately the lidar can detect the remote objects. Optical receivers employ either coherent or direct detection. In addition to amplitude, coherent detection extracts frequency and phase information from received signals, whereas direct detection extracts the received pulse amplitude only. In theory, coherent detection should yield the highest receiver sensitivity. Another possible technique to improve detection sensitivity is to employ a fiber preamplifier. This technique has been successfully demonstrated in direct detection systems but not in the coherent detection systems. Due to the existence of amplified spontaneous emission (ASE) inside the amplifier, the sensitivity of coherent detection varies with the data rate or pulse rate. For this reason, optically preamplified coherent detection is not used in applications as commonly as optically preamplified direct detection. We investigate the performance of coherent detection employing a fiber amplifier and time-domain-filter. The fiber amplifier is used as the optical preamplifier of the coherent detection system. To reduce the noise induced by the preamplifier to a maximum extent, we investigate the noise properties for both a single pass amplifier and a double pass amplifier. The relative intensity noise and linewidth broadening caused by ASE have been experimentally characterized. The results show that the double pass amplifier has

  4. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  5. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  6. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.

  7. Low coherence full field interference microscopy or optical coherence tomography: recent advances, limitations and future trends

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    2013-04-01

    Although low coherence microscopy (LCM) has been known for long time in the context of interference microscopy, coherence radar and white light interferometry, the whole subject has attracted a wide interest in the last two decades particularly accelerated by the entrance of OCT, as a noninvasive powerful technique for biomedical imaging. Today LCM can be classified into two types, both acts as three-dimensional imaging tool. The first is low temporal coherence microscopy; also known as optical coherence tomography (OCT), which is being used for medical diagnostics. The second is full field OCT in various modes and applied to various applications. FF-OCT uses low spatial and temporal coherence similar to the well-known coherence probe microscope (CPM) that have been in use for long time in optical metrology. The CPM has many advantages over conventional microscopy in its ability to discriminate between different transparent layers in a scattering medium thus allowing for precise noninvasive optical probing of dense tissue and other turbid media. In this paper the status of this technology in optical metrology applications will be discussed, on which we have been working to improve its performance, as well as its limitations and future prospective.

  8. Signal Coherence Recovery Using Acousto-Optic Fourier Transform Architectures

    DTIC Science & Technology

    1990-06-14

    processing of data in ground- and space-based applications. We have implemented a prototype one-dimensional time-integrating acousto - optic (AO) Fourier...theory of optimum coherence recovery (CR) applicable in computation-limited environments. We have demonstrated direct acousto - optic implementation of CR

  9. A Method of Assembling Compact Coherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James

    2007-01-01

    A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.

  10. Master/slave interferometry – ideal tool for coherence revival swept source optical coherence tomography

    PubMed Central

    Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian

    2016-01-01

    In this paper, we demonstrate that the master slave (MS) interferometry method can significantly simplify the practice of coherence revival swept source optical coherence tomography (OCT) technique. Previous implementations of the coherence revival technique required considerable resources on dispersion compensation and data resampling. The total tolerance of the MS method to nonlinear tuning, to dispersion in the interferometer and to dispersion due to the laser cavity, makes the MS ideally suited to the practice of coherence revival. In addition, enhanced versatility is allowed by the MS method in displaying shorter axial range images than that determined by the digital sampling of the data. This brings an immediate improvement in the speed of displaying cross-sectional images at high rates without the need of extra hardware such as graphics processing units or field programmable gate arrays. The long axial range of the coherence revival regime is proven with images of the anterior segment of healthy human volunteers. PMID:27446682

  11. Amplifier Noise Based Optical Steganography with Coherent Detection

    NASA Astrophysics Data System (ADS)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  12. Coherent control of optical polarization effects in metamaterials

    PubMed Central

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  13. Metrological reliability of optical coherence tomography in biomedical applications

    NASA Astrophysics Data System (ADS)

    Goloni, C. M.; Temporão, G. P.; Monteiro, E. C.

    2013-09-01

    Optical coherence tomography (OCT) has been proving to be an efficient diagnostics technique for imaging in vivo tissues, an optical biopsy with important perspectives as a diagnostic tool for quantitative characterization of tissue structures. Despite its established clinical use, there is no international standard to address the specific requirements for basic safety and essential performance of OCT devices for biomedical imaging. The present work studies the parameters necessary for conformity assessment of optoelectronics equipment used in biomedical applications like Laser, Intense Pulsed Light (IPL), and OCT, targeting to identify the potential requirements to be considered in the case of a future development of a particular standard for OCT equipment. In addition to some of the particular requirements standards for laser and IPL, also applicable for metrological reliability analysis of OCT equipment, specific parameters for OCT's evaluation have been identified, considering its biomedical application. For each parameter identified, its information on the accompanying documents and/or its measurement has been recommended. Among the parameters for which the measurement requirement was recommended, including the uncertainty evaluation, the following are highlighted: optical radiation output, axial and transverse resolution, pulse duration and interval, and beam divergence.

  14. Handheld probes and galvanometer scanning for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duma, V.-F.; Dobre, G.; Demian, D.; Cernat, R.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Hutiu, Gh.; Bradu, A.; Rolland, J. P.; Podoleanu, A. G.

    2015-09-01

    As part of the ongoing effort of the biomedical imaging community to move Optical Coherence Tomography (OCT) systems from the lab to the clinical environment and produce OCT systems appropriate for multiple types of investigations in a medical department, handheld probes equipped with different types of scanners need to be developed. These allow different areas of a patient's body to be investigated using OCT with the same system and even without changing the patient's position. This paper reviews first the state of the art regarding OCT handheld probes. Novel probes with a uni-dimensional (1D) galvanometer-based scanner (GS) developed in our groups are presented. Their advantages and limitations are discussed. Aspects regarding the use of galvoscanners with regard to Micro-Electro- Mechanical Systems (MEMS) are pointed out, in relationship with our studies on optimal scanning functions of galvanometer devices in OCT. These scanning functions are briefly discussed with regard to their main parameters: profile, theoretical duty cycle, scan frequency, and scan amplitude. The optical design of the galvoscanner and refractive optics combination in the probe head, optimized for various applications, is considered. Perspectives of the field are pointed out in the final part of the paper.

  15. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  16. Application of anterior segment optical coherence tomography in glaucoma.

    PubMed

    Sharma, Reetika; Sharma, Ajay; Arora, Tarun; Sharma, Sourabh; Sobti, Amit; Jha, Bhaskar; Chaturvedi, Neha; Dada, Tanuj

    2014-01-01

    Optical coherence tomography (OCT) is a cross-sectional, three-dimensional, high-resolution imaging modality that uses low coherence interferometry to achieve axial resolution in the range of 3-20 μm. Two OCT platforms have been developed: time domain (TD-OCT) and spectral (or Fourier) domain (SD/FD-OCT). Visante anterior segment OCT (Carl Zeiss Meditec) is a TD-OCT widely used for anterior segment imaging. The SD-OCT systems with both posterior and anterior segment imaging capabilities include the RTVue, iVue (Optovue), the Cirrus (Carl Zeiss Meditec), and the Spectralis (Heidelberg Engineering, Inc.). Each of the SD-OCTs has a wavelength in the range of 820-879 nm. Anterior segment OCT is a non-contact method providing high resolution tomographic cross-sectional imaging of anterior segment structures. Anterior segment OCT provides qualitative and quantitative assessment of the anterior segment structures important to the pathogenesis and the anatomical variations of glaucoma, and the approach to and success of treatment. We summarize the clinical applications of anterior segment OCT in glaucoma.

  17. Retina-simulating phantom for optical coherence tomography.

    PubMed

    Baxi, Jigesh; Calhoun, William; Sepah, Yasir Jamal; Hammer, Daniel X; Ilev, Ilko; Pfefer, T Joshua; Nguyen, Quan Dong; Agrawal, Anant

    2014-02-01

    Optical coherence tomography (OCT) is a rapidly growing imaging modality, particularly in the field of ophthalmology. Accurate early diagnosis of diseases requires consistent and validated imaging performance. In contrast to more well-established medical imaging modalities, no standardized test methods currently exist for OCT quality assurance. We developed a retinal phantom which mimics the thickness and near-infrared optical properties of each anatomical retinal layer as well as the surface topography of the foveal pit. The fabrication process involves layer-by-layer spin coating of nanoparticle-embedded silicone films followed by laser micro-etching to modify the surface topography. The thickness of each layer and dimensions of the foveal pit are measured with high precision. The phantom is embedded into a commercially available, water-filled model eye to simulate ocular dispersion and emmetropic refraction, and for ease of use with clinical OCT systems. The phantom was imaged with research and clinical OCT systems to assess image quality and software accuracy. Our results indicate that this phantom may serve as a useful tool to evaluate and standardize OCT performance.

  18. Spectral domain optical coherence tomography imaging of subretinal bands associated with chronic retinal detachments

    PubMed Central

    Kothari, Nikisha; Kuriyan, Ajay E; Flynn, Harry W

    2016-01-01

    We report three patients with subretinal bands associated with retinal detachment in chronic retinal detachments who underwent successful retinal reattachment. Subretinal bands before and after surgery can be identified on clinical examination and spectral domain optical coherence tomography. Removal of subretinal bands is not mandatory to achieve retinal reattachment. PMID:27099457

  19. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  20. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  1. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  2. Optical injection enables coherence resonance in quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Ziemann, D.; Aust, R.; Lingnau, B.; Schöll, E.; Lüdge, K.

    2013-07-01

    We demonstrate that optically injected semiconductor quantum-dot lasers operated in the frequency-locked regime exhibit the counterintuitive effect of coherence resonance, i.e., the regularity of noise-induced spiking is a non-monotonic function of the spontaneous emission noise, and it is optimally correlated at a non-zero value of the noise intensity. We uncover the mechanism of coherence resonance from a microscopically based model of the quantum-dot laser structure, and show that it is related to excitability under optical injection and to a saddle-node infinite period (SNIPER) bifurcation occurring for small injection strength at the border of the frequency locking regime. By a model reduction we argue that the phenomenon of coherence resonance is generic for a wide class of optically injected lasers.

  3. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  4. Propagation-induced polarization changes in partially coherent optical beams.

    PubMed

    Agrawal, G P; Wolf, E

    2000-11-01

    Propagation of a partially coherent optical beam inside a linear, nondispersive, dielectric medium is studied, taking into account the vector nature of the electromagnetic field. Propagation-induced polarization changes are studied by using the Gaussian-Schell model for the cross-spectral-density tensor. The degree of polarization changes with propagation and also becomes nonuniform across the beam cross section. The extent of these changes depends on the coherence radius associated with the cross-correlation function. For optical beams with symmetric spectra, the bandwidth of the source spectra is found to play a relatively minor role.

  5. High-resolution second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  6. Optical coherent technologies in next generation access networks

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  7. Spectral domain optical coherence tomography finding in posterior microphthalmos.

    PubMed

    Kumar, Mukesh; Das, Taraprasad; Kesarwani, Siddharth

    2012-11-01

    An eight-year-old boy presented with decreased vision in both eyes. At presentation, the visual acuity was 6/60 in both eyes with high plus spheres. Anterior segment examination was normal. Fundus examination and spectral domain optical coherence tomography were consistent with posterior microphthalmos and showed an elevated foveal contour and fold in the outer plexiform layer. External limiting membrane, photoreceptor and retinal pigment epithelium were not involved in the fold. To the best of our knowledge this is the first such case report with optical coherence tomography imaging of the retinal layer involved in a case of posterior microphthalmos.

  8. Optical coherence tomography: imaging architect for dermal microdialysis in psoriasis

    NASA Astrophysics Data System (ADS)

    O'Connell, M.-L.; O'Connor, W.; Ramsay, B.; Guihen, E.; Ho, W. L.; Leahy, M. J.

    2011-03-01

    Optical coherence tomography (OCT) has been used as part of a ground breaking translational study to shed some light on one of the worlds most prevalent autoimmune diseases; psoriasis. The work successfully integrates the fields of optical imaging, biochemistry and dermatology in conducting a dermal microdialysis (DMD) trial for quantitative histamine assessment amongst a group of psoriasis sufferers. The DMD process involves temporary insertion of microscopic hollow tubes into a layer of skin to measure the levels of histamine and other important biological molecules in psoriasis. For comparison purposes, DMD catheters were implanted into healthy, peri-lesional and lesional skin regions. The catheters' entry and exit points and their precise locations in the epidermal layer of the skin were confirmed using OCT thus obtaining high resolution, wide-field images of the affected skin as well as catheter placement whilst local microdialysis enabled a tissue chemistry profile to be obtained from these three skin regions including histamine, a local immune system activator known to contribute towards itch and inflammation. Together these tools offer a synergistic approach in the clinical assessment of the disease. In addition, OCT delivered a non-invasive and rapid method for analyzing the affected skin architecture.

  9. [Applications of optical coherence tomography (OCT) in neuro-ophthalmology].

    PubMed

    Kernstock, C; Friebe, K; Tonagel, F

    2013-11-01

    Optical coherence tomography (OCT) has revolutionised ophthalmology. Due to modern instruments with extremely high resolution there are more and more applications also in neuro-ophthalmological disorders. This review gives an overview on typical changes in OCT for the following diseases: autosomal dominant optic atrophy, Leber hereditary optic neuropathy, toxic, traumatic and compressive optic neuropathy, optic nerve drusen, anterior ischaemic optic neuropathy, optic disc pit, papilledema, optic neuritis (isolated or associated with multiple sclerosis or neuromyelitis optica), neurodegenerative diseases and hereditary retinal diseases. A diagnosis exclusively based on an OCT examination is not always possible, but in several diseases there are pathognomonic changes that directly lead to the correct diagnosis. Particularly with the often complex settings in neuro-ophtalmology the OCT should be seen as a supplementary modality and not as a replacement for other techniques.

  10. Control of coherent backscattering by breaking optical reciprocity

    NASA Astrophysics Data System (ADS)

    Bromberg, Y.; Redding, B.; Popoff, S. M.; Cao, H.

    2016-02-01

    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics, and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we experimentally show that by tuning a nonreciprocal phase we can coherently control complex coherent phenomena, rather than simply suppress them. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, observe the optical analog of weak antilocalization, and realize a continuous transition from weak localization to weak antilocalization. Our results may open new possibilities for coherent control of waves in complex systems.

  11. Optical coherence tomography for imaging the vulnerable plaque

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Jang, Ik-Kyung; Bouma, Brett E.

    2006-03-01

    While our understanding of vulnerable coronary plaque is still at an early stage, the concept that certain types of plaques predispose patients to developing an acute myocardial infarction continues to be at the forefront of cardiology research. Intracoronary optical coherence tomography (OCT) has been developed to both identify and study these lesions due to its distinct resolution advantage over other imaging modalities. We review clinical research conducted at the Massachusetts General Hospital over the past five years to develop, validate, and utilize this technology to improve our understanding of vulnerable plaque. Our results show that intracoronary OCT may be safely conducted in patients and that it provides abundant information regarding plaque microscopic morphology, which is essential to the identification and study of high-risk lesions. Even though many basic biological, clinical, and technological challenges must be addressed prior to widespread use of this technology, the unique capabilities of OCT ensure that it will have a prominent role in shaping the future of cardiology.

  12. Application of Anterior Segment Optical Coherence Tomography in Pediatric Ophthalmology

    PubMed Central

    Cauduro, Ricardo Salles; Ferraz, Caroline do Amaral; Morales, Maira Saad Ávila; Garcia, Patricia Novita; Lopes, Yara Cristina; Souza, Paulo Henrique; Allemann, Norma

    2012-01-01

    Purpose. Application of anterior segment optical coherence (AS-OCT) in pediatric ophthalmology. Methods. Retrospective clinical study case series of 26 eyes of 19 pediatric patients throughout a 21-month period, presenting anterior segment pathologies, were submitted to AS-OCT examination (OCT Visante, 1310 nm, Zeiss), noncontact technique, no sedation requirement. Results. AS-OCT images were obtained from 19 patients (range: 2 months to 12 years). Clinical diagnosis of anterior segment abnormalities included cornea disease (n = 7), congenital anterior segment conditions (n = 10), ocular trauma (n = 1), anterior segment surgeries (n = 2), iridocorneal angle abnormalities (n = 4), intermediate uveitis (n = 2). The most common OCT findings were corneal hyperreflectivity and thickening (n = 15), shallow anterior chamber with iris-lens diaphragm anterior displacement (n = 4), atypical corneal curvature (n = 4), corneal thinning (n = 4), peripheral synechiae with angle closure (n = 3), increased anterior chamber depth (n = 2), and proximal portion of glaucoma drainage tube (n = 2). Conclusion. In the present study, noncontact AS-OCT demonstrated to be a feasible technique to evaluate the anterior segment providing anatomic details and useful to clarify diagnosis in the pediatric population. PMID:22934156

  13. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas

    NASA Astrophysics Data System (ADS)

    Wang, Benquan; Lu, Yiming; Yao, Xincheng

    2016-09-01

    Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of in vivo IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor's outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.

  14. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1

    PubMed Central

    Fujimoto, James G; Pitris, Costas; Boppart, Stephen A; Brezinski, Mark E

    2000-01-01

    Abstract Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures. In this paper, we review OCT technology and describe its potential biomedical and clinical applications. PMID:10933065

  15. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  16. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  17. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  18. CHRONICLE: First International School on Coherent Optics and Holography (Prague, September 1-12, 1980)

    NASA Astrophysics Data System (ADS)

    Bukhenskiĭ, M. F.; Semenov, A. S.

    1981-07-01

    A brief review is given of papers presented at the First International School on Coherent Optics and Holography (Prague, 1980) and at the Second Czechoslovak Conference on Integrated Optics. The School was organized in sessions on coherence of light, fiber optics, integrated optics, holography, optical diagnostic methods, and adaptive optics.

  19. Optical coherence tomography based microangiography: A tool good for dermatology applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Baran, Utku; Choi, Woo J.

    2016-02-01

    Optical coherence tomography (OCT) based microangiography (OMAG) is a new imaging technique enabling the visualization of blood flow within microcirculatory tissue beds in vivo with high resolution. In this talk, the concept and advantages of OMAG will be discussed and its potential clinical applications in the dermatology will be shown, demonstrating its usefulness in the clinical monitoring and therapeutic treatment of various skin pathologies, e.g. acne, port wine stain and wound healing.

  20. Precision spectral manipulation: A demonstration using a coherent optical memory

    SciTech Connect

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C.

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  1. Optical Coherence Tomography: History, Current Status, and Laboratory Work

    PubMed Central

    Gabriele, Michelle L.; Wollstein, Gadi; Ishikawa, Hiroshi; Kagemann, Larry; Xu, Juan; Folio, Lindsey S.

    2011-01-01

    Optical coherence tomography (OCT) imaging has become widespread in ophthalmology over the past 15 years, because of its ability to visualize ocular structures at high resolution. This article reviews the history of OCT imaging of the eye, its current status, and the laboratory work that is driving the future of the technology. PMID:21493951

  2. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Saarakkala, Simo; Wang, Shu-Zhe; Huang, Yan-Ping; Zheng, Yong-Ping

    2009-11-01

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  3. Design and testing of prototype handheld scanning probes for optical coherence tomography

    PubMed Central

    Demian, Dorin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-01-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  4. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    PubMed

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated.

  5. The potential of optical coherence tomography in meniscal tear characterization

    NASA Astrophysics Data System (ADS)

    Ling, Hang-yin; Guo, Shuguang; Thieman, Kelley M.; Wise, Brent T.; Pozzi, Antonio; Xie, Huikai; Horodyski, MaryBeth

    2009-02-01

    Meniscal tear is one of the most common knee injuries leading to pain and discomfort. Partial and total meniscectomies have been widely used to treat the avascular meniscal injuries in which tears do not heal spontaneously. However, the meniscectomies would cause an alteration of the tibiofemoral contact mechanics resulting in progressive osteoarthritis (OA). To mitigate the progression of OA, maximal preservation of meniscal tissue is recommended. The clinical challenge is deciding which meniscal tears are amenable to repair and which part of damaged tissues should be removed. Current diagnosis techniques such as arthroscopy and magnetic resonance imaging can provide macrostructural information of menisci, but the microstructural changes that occur prior to the observable meniscal tears cannot be identified by these techniques. Serving as a nondestructive optical biopsy, optical coherence tomography (OCT), a newly developed imaging modality, can provide high resolution, cross-sectional images of tissues and has been shown its capabilty in arthroscopic evaulation of articular cartilage. Our research was to demonstrate the potential of using OCT for nondestructive characterization of the histopathology of different types of meniscal tears from clinical cases in dogs, providing a fundamental understanding of the failure mechanism of meniscal tears. First, cross-sectional images of torn canine menisci obtained from the OCT and scanning electronic microscopy (SEM) were be compared. By studying the organization of collegan fibrils in torn menisci from the SEM images, the feasibility of using OCT to characterize the organization of collegan fibrils was elucidated. Moreover, the crack size of meniscal tears was quantatitively measured from the OCT images. Changes in the crack size of the tear may be useful for understanding the failure mechanism of meniscal tears.

  6. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography.

    PubMed

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3 x 3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  7. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    PubMed

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  8. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  9. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.

    PubMed

    Pires, Layla; Demidov, Valentin; Vitkin, I Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ∼ 90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ∼ 300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ∼ 750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  10. Coherent DWDM technology for high speed optical communications

    NASA Astrophysics Data System (ADS)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  11. Characterization of the dental pulp using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.

    2006-02-01

    The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.

  12. Fourier phase in Fourier-domain optical coherence tomography.

    PubMed

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  13. Fourier phase in Fourier-domain optical coherence tomography

    PubMed Central

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  14. Coherent optical non-reciprocity in axisymmetric resonators.

    PubMed

    Lenferink, Erik J; Wei, Guohua; Stern, Nathaniel P

    2014-06-30

    We describe an approach to optical non-reciprocity that exploits the local helicity of evanescent electric fields in axisymmetric resonators. By interfacing an optical cavity to helicity-sensitive transitions, such as Zeeman levels in a quantum dot, light transmission through a waveguide becomes direction-dependent when the state degeneracy is lifted. Using a linearized quantum master equation, we analyze the configurations that exhibit non-reciprocity, and we show that reasonable parameters from existing cavity QED experiments are sufficient to demonstrate a coherent non-reciprocal optical isolator operating at the level of a single photon.

  15. Visible-light optical coherence tomography for retinal oximetry.

    PubMed

    Yi, Ji; Wei, Qing; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2013-06-01

    We applied a visible-light spectroscopic optical coherence tomography (vis-OCT) for in vivo retinal oximetry. To extract hemoglobin oxygen saturation (sO(2)) in individual retinal vessels, we established a comprehensive analytical model to describe optical absorption, optical scattering, and blood cell packing factor in the whole blood and fit the acquired vis-OCT signals from the bottom of each imaged vessel. We found that averaged sO(2) values in arterial and venous bloods were 95% and 72%, respectively.

  16. Time-domain optical coherence tomography with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Massatsch, Pia; Charrière, Florian; Cuche, Etienne; Marquet, Pierre; Depeursinge, Christian D.

    2005-04-01

    We show that digital holography can be combined easily with optical coherence tomography approach. Varying the reference path length is the means used to acquire a series of holograms at different depths, providing after reconstruction images of slices at different depths in the specimen thanks to the short-coherence length of light source. A metallic object, covered by a 150-µm-thick onion cell, is imaged with high resolution. Applications in ophthalmology are shown: structures of the anterior eye, the cornea, and the iris, are studied on enucleated porcine eyes. Tomographic images of the iris border close to the pupil were obtained 165 µm underneath the eye surface.

  17. Polarization Effects in Optical Coherence Tomography of Various Biological Tissues

    PubMed Central

    de Boer, Johannes F.; Srinivas, Shyam M.; Park, B. Hyle; Pham, Tuan H.; Chen, Zhongping; Milner, Thomas E.; Nelson, J. Stuart

    2015-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) was used to obtain spatially resolved ex vivo images of polarization changes in skeletal muscle, bone, skin and brain. Through coherent detection of two orthogonal polarization states of the signal formed by interference of light reflected from the biological sample and a mirror in the reference arm of a Michelson interferometer, the depth resolved change in polarization was measured. Inasmuch as any fibrous structure will influence the polarization of light, PS-OCT is a potentially powerful technique investigating tissue structural properties. In addition, the effects of single polarization state detection on OCT image formation is demonstrated. PMID:25774083

  18. Three-dimensional calibration targets for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gabriele Sandrian, Michelle; Tomlins, Pete; Woolliams, Peter; Rasakanthan, Janarthanan; Lee, Graham C.; Yang, Anna; Považay, Boris; Alex, Aneesh; Sugden, Kate; Drexler, Wolfgang

    2012-03-01

    The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system (λ=800nm, ▵λ~180nm, and λ=1325nm, ▵λ~100nm) and point-spread function of nanoparticles within the target was measured.

  19. Calibration of optical coherence tomography angiography with a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Su, Johnny P.; Chandwani, Rahul; Gao, Simon S.; Pechauer, Alex D.; Zhang, Miao; Wang, Jie; Jia, Yali; Huang, David; Liu, Gangjun

    2016-08-01

    A microfluidic chip with microchannels ranging from 8 to 96 μm was used to mimic blood vessels down to the capillary level. Blood flow within the microfluidic channels was analyzed with split-spectrum amplitude-decorrelation angiography (SSADA)-based optical coherence tomography (OCT) angiography. It was found that the SSADA decorrelation value was related to both blood flow speed and channel width. SSADA could differentiate nonflowing blood inside the microfluidic channels from static paper. The SSADA decorrelation value was approximately linear with blood flow velocity up to a threshold Vsat of 5.83±1.33 mm/s (mean±standard deviation over the range of channel widths). Beyond this threshold, it approached a saturation value Dsat. Dsat was higher for wider channels, and approached a maximum value Dsm as the channel width became much larger than the beam focal spot diameter. These results indicate that decorrelation values (flow signal) in capillary networks would be proportional to both flow velocity and vessel caliber but would be capped at a saturation value in larger blood vessels. These findings are useful for interpretation and quantification of clinical OCT angiography results.

  20. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography.

    PubMed

    Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F W; Huber, Robert; van Soest, Gijs

    2015-12-01

    Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called "Heartbeat OCT", combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology.

  1. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    PubMed Central

    Vinekar, Anand; Mangalesh, Shwetha; Jayadev, Chaitra; Maldonado, Ramiro S.; Bauer, Noel; Toth, Cynthia A.

    2015-01-01

    Spectral domain coherence tomography (SD OCT) has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research. PMID:26221606

  2. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

    PubMed Central

    Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T.; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F.W.; Huber, Robert; van Soest, Gijs

    2015-01-01

    Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. PMID:26713214

  3. Diagnosis of oral submucous fibrosis with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Kuang; Tsai, Meng-Tsan; Lee, Hsiang-Chieh; Chen, Hsin-Ming; Chiang, Chun-Pin; Wang, Yih-Ming; Yang, C. C.

    2009-09-01

    The epithelium (EP) thickness and the standard deviation (SD) of A-mode scan intensity in the laminar propria (LP) layer are used as effective indicators for the diagnosis of oral submucous fibrosis (OSF) based on the noninvasive clinical scanning of a swept-source optical coherence tomography (OCT) system of ~6 μm in axial resolution (in tissue) and 103 dB in sensitivity. Compared with the corresponding parameters in healthy oral mucosal mucosa, in OSF mucosa, the EP thickness becomes smaller and the SD of A-mode scan intensity in the LP layer (LP SD) also becomes smaller. The LP SD can also be used for effectively differentiating OSF (small LP SD) from lesion (large LP SD). This application is particularly useful in the case of a lesion without a clear surface feature. Meanwhile, the use of the SD of A-mode scan intensity in the EP layer (EP SD) can further help in differentiating OSF (medium EP SD) from healthy oral mucosal (small EP SD) and lesion (large EP SD) conditions. Compared with the conventional method of maximum mouth opening measurement, the use of the proposed OCT scanning results can be a more effective technique for OSF diagnosis.

  4. Marginal integrity evaluation of dental composite using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Stan, Adrian-Tudor; Cojocariu, Andreea-Codruta; Antal, Anca Adriana; Topala, Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian Gh.

    2016-03-01

    In clinical dental practice it is often difficult or even impossible to distinguish and control interfacial adhesive defects from adhesive restorations using visual inspection or other traditional diagnostic methods. Nonetheless, non-invasive biomedical imaging methods like Optical Coherence Tomography (OCT) may provide a better view in this diagnostic outline. The aim of this study is to explore evaluations of the marginal adaptation of class I resin composites restorations using Time Domain (TD) OCT. Posterior human teeth have been chosen for this study. The teeth were stored in 0.9% physiological saline solution prior to use. A classical round-shaped class I cavity was prepared and cavities were restored with Charisma Diamond composite by Heraeus Kulzer and using a system of etch and rinse boding. The specimens were subjected to water storage and then to thermo-cycling. Three dimensional (3-D) scans of the restoration were obtained using a TD-OCT system centered at a 1300 nm wavelength. Open marginal adaptation at the interfaces and gaps inside the composite resins materials were identified using the proposed method. In conclusion, OCT has numerous advantages which justify its use for in vitro, as well as for in vivo studies. It can therefore be considered for non-invasive and fast detection of gaps at the restoration interface.

  5. Analysis of mechanical contrast in optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Kelsey M.; Ford, Chris; Kennedy, Brendan F.; Bush, Mark B.; Sampson, David D.

    2013-12-01

    Optical coherence elastography (OCE) maps the mechanical properties of tissue microstructure and has potential applications in both fundamental investigations of biomechanics and clinical medicine. We report the first analysis of contrast in OCE, including evaluation of the accuracy with which OCE images (elastograms) represent mechanical properties and the sensitivity of OCE to mechanical contrast within a sample. Using phase-sensitive compression OCE, we generate elastograms of tissue-mimicking phantoms with known mechanical properties and identify limitations on contrast imposed by sample mechanics and the imaging system, including signal-processing parameters. We also generate simulated elastograms using finite element models to perform mechanical analysis in the absence of imaging system noise. In both experiments and simulations, we illustrate artifacts that degrade elastogram accuracy, depending on sample geometry, elasticity contrast between features, and surface conditions. We experimentally demonstrate sensitivity to features with elasticity contrast as small as 1.1∶1 and calculate, based on our imaging system parameters, a theoretical maximum sensitivity to elasticity contrast of 1.002∶1. The results highlight the microstrain sensitivity of compression OCE, at a spatial resolution of tens of micrometers, suggesting its potential for the detection of minute changes in elasticity within heterogeneous tissue.

  6. Optical coherence tomography use in the diagnosis of enamel defects

    NASA Astrophysics Data System (ADS)

    Al-Azri, Khalifa; Melita, Lucia N.; Strange, Adam P.; Festy, Frederic; Al-Jawad, Maisoon; Cook, Richard; Parekh, Susan; Bozec, Laurent

    2016-03-01

    Molar incisor hypomineralization (MIH) affects the permanent incisors and molars, whose undermineralized matrix is evidenced by lesions ranging from white to yellow/brown opacities to crumbling enamel lesions incapable of withstanding normal occlusal forces and function. Diagnosing the condition involves clinical and radiographic examination of these teeth, with known limitations in determining the depth extent of the enamel defects in particular. Optical coherence tomography (OCT) is an emerging hard and soft tissue imaging technique, which was investigated as a new potential diagnostic method in dentistry. A comparison between the diagnostic potential of the conventional methods and OCT was conducted. Compared to conventional imaging methods, OCT gave more information on the structure of the enamel defects as well as the depth extent of the defects into the enamel structure. Different types of enamel defects were compared, each type presenting a unique identifiable pattern when imaged using OCT. Additionally, advanced methods of OCT image analysis including backscattered light intensity profile analysis and enface reconstruction were performed. Both methods confirmed the potential of OCT in enamel defects diagnosis. In conclusion, OCT imaging enabled the identification of the type of enamel defect and the determination of the extent of the enamel defects in MIH with the advantage of being a radiation free diagnostic technique.

  7. Tissue thickness calculation in ocular optical coherence tomography

    PubMed Central

    Alonso-Caneiro, David; Read, Scott A.; Vincent, Stephen J.; Collins, Michael J.; Wojtkowski, Maciej

    2016-01-01

    Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature. PMID:26977367

  8. GPU-based computational adaptive optics for volumetric optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Tang, Han; Mulligan, Jeffrey A.; Untracht, Gavrielle R.; Zhang, Xihao; Adie, Steven G.

    2016-03-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique that measures reflectance from within biological tissues. Current higher-NA optical coherence microscopy (OCM) technologies with near cellular resolution have limitations on volumetric imaging capabilities due to the trade-offs between resolution vs. depth-of-field and sensitivity to aberrations. Such trade-offs can be addressed using computational adaptive optics (CAO), which corrects aberration computationally for all depths based on the complex optical field measured by OCT. However, due to the large size of datasets plus the computational complexity of CAO and OCT algorithms, it is a challenge to achieve high-resolution 3D-OCM reconstructions at speeds suitable for clinical and research OCM imaging. In recent years, real-time OCT reconstruction incorporating both dispersion and defocus correction has been achieved through parallel computing on graphics processing units (GPUs). We add to these methods by implementing depth-dependent aberration correction for volumetric OCM using plane-by-plane phase deconvolution. Following both defocus and aberration correction, our reconstruction algorithm achieved depth-independent transverse resolution of 2.8 um, equal to the diffraction-limited focal plane resolution. We have translated the CAO algorithm to a CUDA code implementation and tested the speed of the software in real-time using two GPUs - NVIDIA Quadro K600 and Geforce TITAN Z. For a data volume containing 4096×256×256 voxels, our system's processing speed can keep up with the 60 kHz acquisition rate of the line-scan camera, and takes 1.09 seconds to simultaneously update the CAO correction for 3 en face planes at user-selectable depths.

  9. Applications of coherent Raman scattering microscopies to clinical and biological studies.

    PubMed

    Schie, Iwan W; Krafft, Christoph; Popp, Jürgen

    2015-06-21

    Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.

  10. A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.

    2016-01-01

    Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507

  11. CHRONICLE: Fifth International School on Coherent Optics, Jena, East Germany, September 10-15, 1984

    NASA Astrophysics Data System (ADS)

    Bukhenskiĭ, M. F.; Semenov, A. S.

    1985-04-01

    A brief review is given of lectures and papers presented at the Fifth International School on Coherent Optics (Jena, East Germany, 1984). The program was divided into three sections: fiber optics, integrated optics, fiber-optic sensors.

  12. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties.

    PubMed

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J; Liu, Xuan

    2016-02-01

    We developed a miniature quantitative optical coherence elastography (qOCE) instrument with an integrated Fabry-Perot force sensor, for in situ elasticity measurement of biological tissue. The technique has great potential for biomechanics modeling and clinical diagnosis. We designed the fiber-optic qOCE probe that was used to exert a compressive force to deform tissue at the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation corresponding to the external stimulus. Simultaneous measurement of force and displacement allowed us to extract Young's modulus of biological tissue. We experimentally calibrated our qOCE instrument, and validated its effectiveness on tissue mimicking phantoms and biological tissues.

  13. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties

    PubMed Central

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J.; Liu, Xuan

    2016-01-01

    We developed a miniature quantitative optical coherence elastography (qOCE) instrument with an integrated Fabry-Perot force sensor, for in situ elasticity measurement of biological tissue. The technique has great potential for biomechanics modeling and clinical diagnosis. We designed the fiber-optic qOCE probe that was used to exert a compressive force to deform tissue at the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation corresponding to the external stimulus. Simultaneous measurement of force and displacement allowed us to extract Young’s modulus of biological tissue. We experimentally calibrated our qOCE instrument, and validated its effectiveness on tissue mimicking phantoms and biological tissues. PMID:26977372

  14. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Bojikian, Karine D.; Xin, Chen; Wen, Joanne C.; Gupta, Divakar; Zhang, Qinqin; Mudumbai, Raghu C.; Johnstone, Murray A.; Chen, Philip P.; Wang, Ruikang K.

    2016-06-01

    Optical coherence tomography angiography (OCTA) has increasingly become a clinically useful technique in ophthalmic imaging. We evaluate the repeatability and reproducibility of blood perfusion in the optic nerve head (ONH) measured using optical microangiography (OMAG)-based OCTA. Ten eyes from 10 healthy volunteers are recruited and scanned three times with a 68-kHz Cirrus HD-OCT 5000-based OMAG prototype system (Carl Zeiss Meditec Inc., Dublin, California) centered at the ONH involving two separate visits within six weeks. Vascular images are generated with OMAG processing by detecting the differences in OCT signals between consecutive B-scans acquired at the same retina location. ONH perfusion is quantified as flux, vessel area density, and normalized flux within the ONH for the prelaminar, lamina cribrosa, and the full ONH. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) are used to evaluate intravisit and intervisit repeatability, and interobserver reproducibility. ONH perfusion measurements show high repeatability [CV≤3.7% (intravisit) and ≤5.2% (intervisit)] and interobserver reproducibility (ICC≤0.966) in all three layers by three metrics. OCTA provides a noninvasive method to visualize and quantify ONH perfusion in human eyes with excellent repeatability and reproducibility, which may add additional insight into ONH perfusion in clinical practice.

  15. Differentiating Mild Papilledema and Buried Optic Nerve Head Drusen Using Spectral Domain Optical Coherence Tomography

    PubMed Central

    Kulkarni, Kaushal M.; Pasol, Joshua; Rosa, Potyra R.; Lam, Byron L.

    2013-01-01

    Purpose To evaluate the clinical utility of spectral domain optical coherence tomography (SD-OCT) in differentiating mild papilledema from buried optic nerve head drusen (ONHD). Design Comparative case series. Participants 16 eyes of 9 patients with ultrasound-proven buried ONHD, 12 eyes of 6 patients with less than or equal to Frisén grade 2 papilledema due to idiopathic intracranial hypertension. 2 normal fellow eyes of patients with buried ONHD were included. Methods A raster scan on the optic nerve and retinal nerve fiber layer (RNFL) thickness analysis was performed on each eye using SD-OCT. Eight eyes underwent enhanced depth imaging SD-OCT. Images were assessed qualitatively and quantitatively to identify differentiating features between buried ONHD and papilledema. Five clinicians trained with a tutorial and masked to the underlying diagnosis reviewed the SD-OCT images of each eye independently to determine the diagnosis. Main outcome measures Differences in RNFL thickness in each quadrant between the two groups, and diagnostic accuracy of five independent clinicians based on the SD-OCT images alone. Results We found no statistically significant difference in RNFL thickness between buried ONHD and papilledema in any of the four quadrants. Diagnostic accuracy among the readers was low and ranged from 50–64%. The kappa coefficient of agreement among the readers was 0.35 (95% Confidence interval: 0.19, 0.54). Conclusions SD-OCT is not clinically reliable in differentiating buried ONHD and mild papilledema. PMID:24321144

  16. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography.

    PubMed

    Bennett, J L; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, K H; Kim, H J; Asgari, N; Sato, D K; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P; Paul, F

    2015-05-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients' RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies.

  17. High bandwidth optical coherent transient true-time delay

    NASA Astrophysics Data System (ADS)

    Reibel, Randy Ray

    An approach to reaching high bandwidth optical coherent transient (OCT) true-time delay (TTD) is described and demonstrated in this thesis. Utilizing the stimulated photon echo process in rare-earth ion doped crystals, such as Tm3+:YAG, TTD of optical signals with bandwidths >20 GHz and high time bandwidth products >104 are possible. TTD regenerators using OCT's have been demonstrated at low bandwidths (<40 MHz) showing picosecond delay resolutions with microsecond delays. With the advent of high bandwidth chirped lasers and high bandwidth electro-optic phase modulators, OCT TTD of broadband optical signals is now possible in the multi-gigahertz regime. To achieve this goal, several theoretical and technical aspects had to be explored. Theoretical discussions and numerical simulations are given using the Maxwell-Bloch equations with arbitrary phase. These simulations show good signal fidelity and high (60%) power efficiencies on echoes produced from gratings programmed with linear frequency chirps. New approaches for programming spectral gratings were also examined that utilized high bandwidth electro-optic modulators. In this technique, the phase modulation sidebands on an optical carrier are linearly chirped, creating an analog to the common linear frequency chirp. This approach allows multi-gigahertz true-time delay spectral grating programming. These new programming approaches are examined and characterized, both through simulation and experiment. A high bandwidth injection locked amplifier, based on semiconductor diode lasers, had to be developed and characterized to boost optical powers from both electro-optic phase modulators as well as chirped lasers. The injection locking system in conjunction with acousto-optic modulators were used in high bandwidth TTD demonstrations in Tm3+:YAG. Ultimately, high bandwidth binary phase shift keyed probe pulses were used in a demonstration of broadband true-time delay at a data rate of 1 GBit/s. The techniques, theory

  18. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  19. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  20. Optical coherence tomography in ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Wei, Jay; Zhao, Yonghua; Kulkarni, Manish D.; Kirschbaum, Alan R.; Everett, Matthew J.; Harman, Jonathan W.; Pedersen, Per

    2003-07-01

    Image resolution, tissue penetration, and scan speed are among the most important parameters when designing an OCT system for ophthalmic use. Human retinal tissue is highly reflective in the near infrared spectrum range. A SLD at 820nm with 25nm FWHM spectral bandwidth provides 10μm coherence length in retinal tissue. Its appropriate power level, simplicity of use, high resolution, and relatively low cost, make the 820nm SLD the best choice light source for retinal OCT. A 1300nm SLD can penetrate deeper into the sclera tissue and since the 1300nm wavelength is highly absorbed in the vitreous, the ANSI laser safety standard allows higher maximum permissible power to the human eye. Higher scan speed can also be achieved. In this paper, we report two OCT systems that are designed specifically for retinal and anterior segment imaging of the human eye. Retinal OCT scans 400 A-scans per second, 2mm depth in tissue, and 10 μm image resolution with an 820nm SLD. Anterior segment OCT (AC-OCT) scans 2000 A-scans per second, 6mm depth in tissue, and 16μm image resolution with a 1300nm SLD. Benefits of suitable wavelength selection in scanning different tissue are clearly seen in the OCT images. Retinal OCT (OCT3) demonstrates significant improvement over the previous generation (OCT1/OCT2) from both a technical and cost point of view. AC-OCT performs 8 frames of 256 A-scans per second and is capable of imaging the human eye in vivo with minimum eye motion artifacts. It has potential use in refractive surgery, angle-closure glaucoma, and cataract surgery.

  1. Coherent Atom Optics with fast metastable rare gas atoms

    SciTech Connect

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Vassilev, G.; Ducloy, M.; Bocvarski, V.

    2006-12-01

    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 {mu}m for He*, 1.2 {mu}m for Ne*, 0.87 {mu}m for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2{mu}m-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to ''vdW-Zeeman'' transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  2. Probing myocardium biomechanics using quantitative optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.

  3. Nonlinear characterization of elasticity using quantitative optical coherence elastography

    PubMed Central

    Qiu, Yi; Zaki, Farzana R.; Chandra, Namas; Chester, Shawn A.; Liu, Xuan

    2016-01-01

    Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear. PMID:27896009

  4. Digital signal processing techniques for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Goldfarb, Gilad

    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge

  5. Gabor-based fusion technique for Optical Coherence Microscopy.

    PubMed

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  6. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

  7. Optical Coherence Angiographic Demonstration of Retinal Changes From Chronic Optic Neuropathies.

    PubMed

    Chen, John J; AbouChehade, Jackson E; Iezzi, Raymond; Leavitt, Jacqueline A; Kardon, Randy H

    2017-04-01

    Glaucoma causes a decrease in peripapillary perfused capillary density on optical coherence tomography (OCT) angiography. However, other chronic optic neuropathies have not been explored with OCT angiography to see if these changes were specific to glaucoma. The authors evaluated OCT angiography in 10 patients who suffered various kinds of chronic optic neuropathies, including optic neuritis and ischaemic optic neuropathy, and found that all optic neuropathies showed a decrease in peripapillary vessel density on OCT angiography, regardless of the aetiology of the optic neuropathy. The peripapillary vessel loss on OCT angiography correlated well with the areas of retinal nerve fibre layer thinning seen on OCT.

  8. Molecular species-sensitive optical coherence tomography using coherent anti-stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Bredfeldt, Jeremy; Hambir, Selezion; Dlott, Dana D.; Kitchell, Barbara; Gruebele, Martin; Boppart, Stephen A.

    2003-07-01

    We present our progress in developing a novel technique and instrument that images specific molecular species in biological tissues using Optical Coherence Tomography (OCT). Standard OCT instruments measure only the scattering from structural features, such as refractive index changes. We utilize Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy, a nonlinear optics technique that can selectively stimulate molecular groups, to gather compositional information from the sample. Being a coherent process, our instrument will produce interference between the nonlinear anti-Stokes signal produced in the sample and a reference molecular sample to both exclude background and nonresonant signals and range features in the tissue. Because of this, we will also gain the benefits of sensitivity that interferometry can provide. By utilizing the tunability of an optical parametric oscillator, we can address a range of molecular resonances from 1500 cm-1 to 3500 cm-1. This frequency range offers the possibility of measuring the distributions and densities of proteins, lipids, and nuclear material that we believe will be useful for determining the early presence of epithelial carcinomas. We demonstrate the principle of this imaging method by producing interference between two separately produced CARS signals from the same probe and Stokes beams.

  9. Automatic segmentation of choroidal thickness in optical coherence tomography

    PubMed Central

    Alonso-Caneiro, David; Read, Scott A.; Collins, Michael J.

    2013-01-01

    The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data. PMID:24409381

  10. Automatic segmentation of choroidal thickness in optical coherence tomography.

    PubMed

    Alonso-Caneiro, David; Read, Scott A; Collins, Michael J

    2013-01-01

    The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye's normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

  11. Imaging systems based on the encoding of optical coherence functions.

    PubMed

    James, J Christopher; Bennett, Gisele Welch; Rhodes, William T

    2005-09-01

    An imaging scheme is described that is based on the transmission of image-forming information encoded within optical coherence functions. The scheme makes use of dynamic random-valued encoding-decoding masks placed in the input-output planes of any linear optical system. The mask transmittance functions are complex conjugates of each other, as opposed to a similar coherence encoding scheme proposed earlier by two of this paper's authors that used identical masks. [Rhodes and Welch, in Euro-American Workshop on Optoelectronic Information Processing, SPIE Critical Review Series (SPIE, 1999), Vol. CR74, p. 1]. General analyses of the two coherence encoding schemes are performed by using the more general mutual coherence function as opposed to the mutual intensity function used in the earlier scheme. The capabilities and limitations of both encoding schemes are discussed by using simple examples that combine the encoding-decoding masks with free-space propagation, passage through a four-f system, and a single-lens imaging system.

  12. Endoscopic Optical Coherence Tomography in Urology

    NASA Astrophysics Data System (ADS)

    Pan, Yingtian; Waltzer, Wayne; Ye, Zhangqun

    Clinical statistics has shown a stable prevalence of bladder cancer in recent years, which by far remains among the most common types of malignancy in the USA. With smoking as the most well-established risk factor, bladder cancer is the fourth most common cancer occurrences in male population [1]. In the year of 2014, an estimated 74,690 new cases are expected to occur with estimated 15,580 deaths. Bladder cancer often refers to transitional cell carcinoma (TCC) as it originates primarily from the epithelial cell layer (i.e., urothelium) of the bladder. Unlike prostate-specific antigen (PSA) for prostate cancer screening, there is currently no effective screening technique approved or recommended for the population at average risk [2-5]. As a result, hematuria (i.e., blood in the urine) is often the first clinical symptom of bladder cancer. Fortunately, urinary bladder is more accessible than prostate glands endoscopically; thus cytology following white-light cystoscopy has been the gold standard for current clinical detection of bladder cancer. This is important because bladder cancer if diagnosed prior to muscle invasion (e.g., superficial or at

  13. Coherent control of plasmonic nanoantennas using optical eigenmodes

    PubMed Central

    Kosmeier, Sebastian; De Luca, Anna Chiara; Zolotovskaya, Svetlana; Di Falco, Andrea; Dholakia, Kishan; Mazilu, Michael

    2013-01-01

    The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light. PMID:23657743

  14. Parametric imaging of viscoelasticity using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  15. Speckle reduction in optical coherence tomography images using digital filtering

    PubMed Central

    Ozcan, Aydogan; Bilenca, Alberto; Desjardins, Adrien E.; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased. PMID:17728812

  16. Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tumlinson, Alexandre R.; Utzinger, Urs

    Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light, whereas LIF detects fluorescence emission of endogenous biochemicals, such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complementary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complementary capability is described. Example published combined OCT-LIF systems are reviewed, one successful commercial instrument is discussed, and example applications are provided.

  17. Optical Field Shaping with Broadband Coherent Raman Generation

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei; Wang, Kai; Zhi, Miaochan; Bahari, Aysan; Shutova, Mariia; Zhdanova, Alexandra

    2016-05-01

    We work toward developing a novel light source capable of producing sub-cycle optical waveforms with prescribed temporal and spatial shapes. Our Raman-based technique utilizes highly coherent molecular motion to modulate light and produce a broadband spectrum of mutually coherent sidebands. The total bandwidth of our source spans infrared, visible, and ultraviolet spectral regions, generating bursts of light synchronized with respect to molecular oscillations. Controlled spectral and temporal shaping of the resultant waveform allows arbitrary ultrafast, potentially non-sinusoidal, field synthesis. Our use of spatial light modulators to shape the transverse beam profiles adds another dimension to the laser field engineering. These are steps toward production of space- and time-tailored sub-cycle optical fields. This work is supported by the National Science Foundation (Grant No. PHY-1307153) and the Welch Foundation (Grant No. A-1547).

  18. Optical coherence elastography: current status and future applications

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Standish, Beau; Yang, Victor X. D.

    2011-04-01

    Optical coherence tomography (OCT) has several advantages over other imaging modalities, such as angiography and ultrasound, due to its inherently high in vivo resolution, which allows for the identification of morphological tissue structures. Optical coherence elastography (OCE) benefits from the superior spatial resolution of OCT and has promising applications, including cancer diagnosis and the detailed characterization of arterial wall biomechanics, both of which are based on the elastic properties of the tissue under investigation. We present OCE principles based on techniques associated with static and dynamic tissue excitation, and their corresponding elastogram image-reconstruction algorithms are reviewed. OCE techniques, including the development of intravascular- or catheter-based OCE, are in their early stages of development but show great promise for surgical oncology or intravascular cardiology applications.

  19. The use of optical coherence tomography in maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Al-Obaidi, Mohammed; Tandon, Rahul; Tiwana, Paul

    2015-02-01

    The ever-evolving medical field continues to trend toward less invasive approaches to the diagnosis and treatment of pathological conditions. Basic sciences research has allowed for improved technologies that are translated to the clinical sciences. Similarly, advancements in imaging modalities continue to improve and their applications become more varied. As such, surgeons and pathologists are able to depend on smaller samples for tissue diagnosis of pathological disease, where once large sections of tissue were needed. Optical coherence tomography (OCT), a high-resolution imaging technique, has been used extensively in different medical fields to improve diagnostic yield. Its use in dental fields, particularly in oral and maxillofacial surgery, remains limited. Our goal is to assess the use of OCT for improving soft tissue analysis and diagnosis, particularly for its applications in the field of oral and maxillofacial surgery. Optical coherence tomography is a modality that uses an optical signal using safe near-infrared light which is reflected off the sub-surface structures. This allows for high-resolution cross-sectional images of the tissue morphology to be obtained. Ophthalmologists have been using OCT to obtain images of the retina to assess for age-related macular degeneration. More recently, OCT has been used by Interventional Cardiology to image coronary arteries, and assess plaque thickness and morphology. This technology is now being investigated in several medical fields as a form of optical biopsy, providing in situ images with high-resolution morphology of tissues. We are particularly interested in its use on epithelial tissues, and therefore performed a literature review on the use of OCT for assessing epithelium. Evaluation of histologically-diagnosed actinic keratosis, for example, was found to correlate well with the imaging discrepancies found on OCT; and the in vivo assessment of atypical keratinocytes was firmly established. Additionally

  20. The study of plant tissue by optical coherent microscopy method

    NASA Astrophysics Data System (ADS)

    Chirskaya, V. V.; Margaryants, N. B.; Zhukova, E. V.

    2016-08-01

    The article presents the results of application of the optical coherent microscopy technique using a high-resolution automatic Linnik interference microscope to study the structure of plant tissues exemplified by surface periderm layers of a tuberous nightshade (solánum tuberosum) bulb. The results of 3D visualization of the structure of the sample under examination are provided. Scanning depth was 32 µm, with axial and lateral resolution of the device 1 µm.

  1. Optical coherence tomography based microangiography findings in hydroxychloroquine toxicity

    PubMed Central

    Kam, Jason; Zhang, Qinqin; Lin, Jason; Liu, Jin; Rezaei, Kasra

    2016-01-01

    Optical coherence tomography based microangiography (OMAG) is a new, non-invasive imaging modality capable of providing three dimentional (3D) retinal and choroidal microvascular maps without a need for exogenous dye. In this study, we evaluated the retinal and choroidal microvascular architecture of the macula in a patient with hydroxychloroquine (HCQ) toxicity using OMAG. Detailed microvascular information of the retina and the underlying choroid showed loss of parafoveal outer retinal vasculature with sparing of the central fovea vasculature. PMID:27190770

  2. Coherent optical determination of the leaf angle distribution of corn

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Pihlman, M.

    1981-01-01

    A coherent optical technique for the diffraction analysis of an image is presented. Developments in radar remote sensing shows a need to understand plant geometry and its relationship to plant moisture, soil moisture, and the radar backscattering coefficient. A corn plant changes its leaf angle distribution, as a function of time, from a uniform distribution to one that is strongly vertical. It is shown that plant and soil moisture may have an effect on plant geometry.

  3. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.

    PubMed

    Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E

    2011-05-12

    We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.

  4. High-resolution parallel optical coherence tomography in scattering samples

    NASA Astrophysics Data System (ADS)

    Laubscher, M.; Ducros, Mathieu G.; Karamata, Boris; Bourquin, Stephane; Lasser, Theo

    2001-11-01

    Parallel optical coherence tomography in scattering samples is demonstrated using a 58 by 58 smart-pixel detector array. A femtosecond mode-locked Ti:Sapphire laser in combination with a free space Michelson interferometer was employed to achieve 4micrometers longitudinal resolution and 9mm transverse resolution on a 260x260 micrometers 2 field of view. We imaged a resolution target covered by an intralipid solution with different scattering coefficients as well as onion cells.

  5. Towards using spectral domain optical coherence tomography for dental wear monitoring

    NASA Astrophysics Data System (ADS)

    Mǎrcǎuteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topalǎ, Florin I.; Negrutiu, Meda Lavinia; Podoleanu, Adrian G.

    2014-03-01

    In this paper we demonstrate that fast spectral domain optical coherence tomography imaging systems have the potential to monitor the evolution of pathological dental wear. On 10 caries free teeth, four levels of artificially defects similar to those observed in the clinic were created. After every level of induced defect, OCT scanning was performed. B-scans were acquired and 3D reconstructions were generated.

  6. Office based multi-functional anterior eye segment optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yamanari, Masahiro; Hong, Young-Joo; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2012-03-01

    An office based Doppler and polarization sensitive swept-source optical coherence tomography (Doppler-PS-SS-OCT) was developed for diagnosis and evaluation of abnormalities of anterior eye segment in clinic. A healthy eye was measured in vivo by the Doppler PS-OCT. The results showed that the Doppler PS-OCT may have potential to identify blood vessels and discriminate fibrous tissues in abnormalities, such as scarring in bleb, and scleral inflammation.

  7. All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2016-10-01

    We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

  8. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  9. Design of a handheld optical coherence microscopy endoscope

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali R.; Liebmann, Erica; Barton, Jennifer K.

    2009-02-01

    Optical Coherence Microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope with a 6 mm diameter tip, 1 mm scan width, and 1 mm imaging depth. This probe will allow noninvasive imaging of fine structural detail in vivo. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. Two scanning doublet lenses relay the stop from the galvonometers to the afocal relay stop. The endoscope optical design consists of an afocal Hopkins relay lens system and a 0.4 NA objective. To allow focusing at various depths in the tissue, the endoscope housing is designed in two pieces screwed together with a fine pitch threads. A small rotation of the outer housing moves the lenses proximal and distal relative to the window, causing the focal location in the tissue to change. The space between the final objective lens and the window is filled with distilled water to avoid misalignment of the focus and coherence gate. A knife edge test was performed and the line spread function FWHM was measured to be 2.25 μm. The MTF has at least 0.3 contrast at a 5 μm line pair. This rigid handheld OCM endoscope will be useful for application ranging from minimally invasive surgical imaging to assessing dysplasia and sun damage in skin.

  10. Optical Coherence Tomography as a Tool for Ocular Dynamics Estimation

    PubMed Central

    Siedlecki, Damian; Kowalik, Waldemar; Kasprzak, Henryk

    2015-01-01

    Purpose. The aim of the study is to demonstrate that the ocular dynamics of the anterior chamber of the eye can be estimated quantitatively by means of optical coherence tomography (OCT). Methods. A commercial high speed, high resolution optical coherence tomographer was used. The sequences of tomographic images of the iridocorneal angle of three subjects were captured and each image from the sequence was processed in MATLAB environment in order to detect and identify the contours of the cornea and iris. The data on pulsatile displacements of the cornea and iris and the changes of the depth of the gap between them were retrieved from the sequences. Finally, the spectral analysis of the changes of these parameters was performed. Results. The results of the temporal and spectral analysis manifest the ocular microfluctuation that might be associated with breathing (manifested by 0.25 Hz peak in the power spectra), heart rate (1–1.5 Hz peak), and ocular hemodynamics (3.75–4.5 Hz peak). Conclusions. This paper shows that the optical coherence tomography can be used as a tool for noninvasive estimation of the ocular dynamics of the anterior segment of the eye, but its usability in diagnostics of the ocular hemodynamics needs further investigations. PMID:26557659

  11. Evaluation of whole blood coagulation process by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Lin, Jia

    2010-11-01

    This study was to investigate the feasibility of using optical coherence tomography (OCT) to evaluate whole blood coagulation process. Attenuation coefficients and 1/e light penetration depth (D1/e) against time of human whole blood during in vitro clot formation under static were measured from the OCT profiles of reflectance vs depth. The results obtained clearly showed that the optical parameters are able to identify three stages during the in vitro blood clotting process. It is concluded that D1/e measured by OCT is a potential parameter to quantify and follow the liquid-gel transition of blood during clotting.

  12. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  13. Dynamically focused optical coherence tomography for endoscopic applications

    NASA Astrophysics Data System (ADS)

    Divetia, Asheesh; Hsieh, Tsung-Hsi; Zhang, Jun; Chen, Zhongping; Bachman, Mark; Li, Guann-Pyng

    2005-03-01

    We report a demonstration of a small liquid-filled polymer lens that may be used to dynamically provide scanning depth focus for endoscopic optical coherence tomography (OCT) applications. The focal depth of the lens is controlled by changing the hydraulic pressure within the lens, enabling dynamic focal depth control without the need for articulated parts. The 1 mm diameter lens is shown to have resolving power of 5 μm, and can enable depth scans of 2.5 mm, making it suitable for use with OCT-enabled optical biopsy applications.

  14. The diagnosis of nasopharyngeal carcinoma by optical coherence tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Du, Y.

    2016-06-01

    We have attempted to explore the intrinsic differences in the optical properties of the nasopharyngeal carcinoma (NPC) and normal tissue by optical coherence tomography (OCT). OCT imaging of normal tissue provided three layers of epithelium, lamina propria, and the brighter interface of basement membrane; while carcinomas disrupted the layered construction embedded in signal-poor images. The morphologies were consistent with histological findings. Sensitivity and specificity were 90% and 100%, respectively. This pilot study demonstrates that NPC could be diagnosed by visualization, which implies that OCT might be potentially used to differentiate normal from NPC tissue in the early stage as an invasive biopsy.

  15. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  16. Optical Coherence Tomography for Brain Imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  17. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication.

    PubMed

    Jian, Huang; Ke, Deng; Chao, Liu; Peng, Zhang; Dagang, Jiang; Zhoushi, Yao

    2014-06-30

    Adaptive optics (AO) systems can suppress the signal fade induced by atmospheric turbulence in satellite-to-ground coherent optical communication. The lower bound of the signal fade under AO compensation was investigated by analyzing the pattern of aberration modes for a one-stage imaging AO system. The distribution of the root mean square of the residual aberration is discussed on the basis of the spatial and temporal characteristics of the residual aberration of the AO system. The effectiveness of the AO system for improving the performance of coherent optical communication is presented in terms of the bit error rate and system availability.

  18. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography

    PubMed Central

    Tang, Qinggong; Wang, Jianting; Frank, Aaron; Lin, Jonathan; Li, Zhifang; Chen, Chao-wei; Jin, Lily; Wu, Tongtong; Greenwald, Bruce D.; Mashimo, Hiroshi; Chen, Yu

    2016-01-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is difficult to detect the subsurface lesions. In this research, we investigated the feasibility of a novel multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. The C57BL/6J-ApcMin/J mice were imaged using OCT and FLOT, and the correlated histopathological diagnosis was obtained. Quantitative structural (scattering coefficient) and molecular (relative enzyme activity) parameters were obtained from OCT and FLOT images for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 88.23% (82.35%) for sensitivity (specificity) compared to either modality alone. This study suggested that combining OCT and FLOT is promising for subsurface cancer detection, diagnosis, and characterization. PMID:28018738

  19. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

    PubMed Central

    Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jones, Steven M.; Jonnal, Ravi S.; Mujat, Mircea; Park, B. Hyle; de Boer, Johannes F.; Miller, Donald T.

    2011-01-01

    Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25°/µm to 0.65°/µm were found in the birefringent nerve fiber layer at 6° eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. PMID:19997405

  20. Optical Coherence Tomography in Kidney Transplantation

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Wierwille, Jeremiah; Chen, Yu

    End-stage renal disease (ESRD) is associated with both high mortality rates and an enormous economic burden [1]. The preferred treatment option for ESRD that can extend patients' lives and improve their quality of life is kidney transplantation. However, organ shortages continue to pose a major problem in kidney transplantation. Most kidneys for transplantation come from heart-beating cadavers. Although non-heart-beating cadavers represent a potentially large pool of donor kidneys, these kidneys are not often used due to the unknown extent of damage to the renal tubules (i.e., acute tubular necrosis or "ATN") induced by ischemia (i.e., lack of blood flow). Also, ischemic insult suffered by kidneys awaiting transplantation frequently causes ATN that leads to varying degrees of delayed graft function (DGF) after transplantation. Finally, ATN represents a significant risk for eventual graft and patient survival [2, 3] and can be difficult to discern from rejection. In present clinical practice, there is no reliable real-time test to determine the viability of donor kidneys and whether or not donor kidneys might exhibit ATN. Therefore, there is a critical need for an objective and reliable real-time test to predict ATN to use these organs safely and utilize the donor pool optimally. In this review, we provided preliminary data indicating that OCT can be used to predict the post-transplant function of kidneys used in transplantation.

  1. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  2. Detection of dermal systemic sclerosis using noncontact optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Li, Jiasong; Wu, Chen; Han, Zhaolong; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Hicks, M. John; Mohan, Chandra; Larin, Kirill V.

    2016-03-01

    Systemic sclerosis (SSc) is a connective tissue disease that results in excessive accumulation of collagen in the skin and internal organs. Overall, SSc is a rare disorder, but has a high mortality, particularly in last decade of life. To improve the survival rate, an accurate and early diagnosis is crucial. Currently, the modified Rodnan skin score (mRSS) is the gold standard for evaluating SSc progression based on clinical palpation at 17 sites on the body. However, this procedure can be time consuming, and the assessed score may be biased by the experience of the clinician, causing inter- and intraobserver variabilities. Moreover, the instrinsic elasticity of skin may further bias the mRSS assessment in the early stages of SSc, such as oedematous. To overcome these limitations, there is a need for a rapid, accurate, and objective assessment technique. Optical coherence elastography (OCE) is a novel, rapidly emerging technique, which can assess mechanical contrast in tissues with micrometer spatial resolution. In this work, we demonstrate the first use of OCE to assess the mechanical properties of control and SSc-like diseased skin non-invasively. A focused air-pulse induced an elastic wave in the skin, which was detected by a home-built OCE system. The elastic wave propagated significantly faster in SSc skin compared to healthy skin. The Young's modulus of the SSc skin was significantly higher than that of normal skin (P<0.05). Thus, OCE was able to objectively differentiate healthy and fibrotic skin completely noninvasively and is a promising and potentially useful new technology for quantifying skin involvement in SSc.

  3. Optical coherence tomography using the Niris system in otolaryngology

    NASA Astrophysics Data System (ADS)

    Rubinstein, Marc; Armstrong, William B.; Djalilian, Hamid R.; Crumley, Roger L.; Kim, Jason H.; Nguyen, Quoc A.; Foulad, Allen I.; Ghasri, Pedram E.; Wong, Brian J. F.

    2009-02-01

    Objectives: To determine the feasibility and accuracy of the Niris Optical Coherence Tomography (OCT) system in imaging of the mucosal abnormalities of the head and neck. The Niris system is the first commercially available OCT device for applications outside ophthalmology. Methods: We obtained OCT images of benign, premalignant and malignant lesions throughout the head and neck, using the Niris OCT imaging system (Imalux, Cleveland, OH). This imaging system has a tissue penetration depth of approximately 1-2mm, a scanning range of 2mm and a spatial depth resolution of approximately 10-20μm. Imaging was performed in the outpatient setting and in the operating room using a flexible probe. Results: High-resolution cross-sectional images from the oral cavity, nasal cavity, ears and larynx showed distinct layers and structures such as mucosa layer, basal membrane and lamina propria, were clearly identified. In the pathology images disruption of the basal membrane was clearly shown. Device set-up took approximately 5 minutes and the image acquisition was rapid. The system can be operated by the person performing the exam. Conclusions: The Niris system is non invasive and easy to incorporate into the operating room and the clinic. It requires minimal set-up and requires only one person to operate. The unique ability of the OCT offers high-resolution images showing the microanatomy of different sites. OCT imaging with the Niris device potentially offers an efficient, quick and reliable imaging modality in guiding surgical biopsies, intra-operative decision making, and therapeutic options for different otolaryngologic pathologies and premalignant disease.

  4. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system

    NASA Astrophysics Data System (ADS)

    Li, Jin-Jin; Zhu, Ka-Di

    2012-02-01

    We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique.

  5. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.

    PubMed

    Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T

    2001-12-03

    Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.

  6. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  7. Development and Application of Multifunctional Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei

    Microcirculation refers to the functions of capillaries and the neighboring lymphatic vessels. It plays a vital role in the pathophysiology of disorders in many clinical areas including cardiology, dermatology, neurology and ophthalmology, and so forth. It is crucial to develop imaging technologies that can provide both qualitative and quantitative information as to how microcirculation responds to certain injury and/or disease, and its treatment. Optical coherence tomography (OCT) is a non-invasive optical imaging technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine. Current state-of-the-art OCT systems operate in the Fourier domain, using either a broadband light source with a spectrometer, known as spectral domain OCT (SDOCT), or a rapidly tunable laser, known as swept source OCT (SSOCT). The current Fourier domain OCT systems have dramatically improvement in sensitivity, resolution and speed compared to time domain OCT. In addition to the improvement in the OCT system hardware, different methods for functional measurements of tissue beds have been developed and demonstrated. This includes but not limited to, i) Phase-resolved Doppler OCT for quantifying the blood flow, ii) OCT angiography for visualization of microvasculature, iii) Polarization sensitive OCT for measuring the intrinsic optical property/ birefringence of tissue, iv) spectroscopic OCT for measuring blood oxygenation, etc. Functional OCT can provide important clinical information that is not available in the typical intensity based structural OCT images. Among these functional OCT modalities, Doppler OCT and OCT angiography attract great interests as they show high capability for in vivo study of microvascular pathology. By analyzing the Doppler effect of a flowing particle on light frequency, Doppler OCT allows the quantification of the blood flow speed and blood flow rate. The most popular approach for Doppler OCT is achieved through

  8. Optical low-coherence tomography of bronchial tissue

    NASA Astrophysics Data System (ADS)

    Bamford, Karl J.; James, Stephen W.; Barr, Hugh; Tatam, Ralph P.

    1999-12-01

    An optical fiber based low coherence interferometer for measuring the Epithelium thickness of Bronchial tissue, for early diagnosis of Carcinoma in situ, is presented. Previous simulation of laser induced fluorescence using an electromagnetic scattering model has extracted the relative permittivity value for the Submucosa and Epithelium layers indicating a difference of up to 0.14. The optical system presented here uses a low coherence source operating at 840 nm with a bandwidth of 30 nm, coupled into single mode optical fiber. A Fizeau cavity is formed between the fiber end and the tissue under investigation. A remote processing interferometer is used to monitor changes in permittivity between the different tissue layers. An initial experiment has demonstrated a sensitivity measurement of 40 dB for a permittivity difference measurement of 0.61. Preliminary results have shown that the discontinuity between the Bronchial Epithelium layer and its surrounding medium can be identified allowing the thickness of the Epithelium layer to be measured to an accuracy of 20 micrometers . Since interferometric noise contributions are only significant within the processing interferometer, the fiber optic Fizeau interferometer technique is a strong candidate for the development of an endoscope for the early detection of cancer within Gastrointestinal and Respiratory tracts.

  9. Invited Article: A compact optically coherent fiber frequency comb.

    PubMed

    Sinclair, L C; Deschênes, J-D; Sonderhouse, L; Swann, W C; Khader, I H; Baumann, E; Newbury, N R; Coddington, I

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ∼200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  10. Invited Article: A compact optically coherent fiber frequency comb

    NASA Astrophysics Data System (ADS)

    Sinclair, L. C.; Deschênes, J.-D.; Sonderhouse, L.; Swann, W. C.; Khader, I. H.; Baumann, E.; Newbury, N. R.; Coddington, I.

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ˜200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  11. Phase resolved digital signal processing in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    de Boer, Johannes F.; Tripathi, Renu; Park, Boris H.; Nassif, Nader

    2002-06-01

    We present phase resolved digital signal processing techniques for Optical Coherence Tomography to correct for the non Gaussian shape of source spectra and for Group Delay Dispersion (GDD). A broadband source centered at 820 nm was synthesized by combining the spectra of two superluminescent diodes to improve axial image resolution in an optical coherence tomography (OCT) system. Spectral shaping was used to reduce the side lobes (ringing) in the axial point spread function due to the non-Gaussian shape of the spectra. Images of onion cells taken with each individual source and the combined sources, respectively, show the improved resolution and quality enhancement in a turbid biological sample. An OCT system operating at 1310 nm was used to demonstrate that the broadening effect of group delay dispersion (GDD) on the coherence function could be eliminated completely by introducing a quadratic phase shift in the Fourier domain of the interferometric signal. The technique is demonstrated by images of human skin grafts with group delay dispersion mismatch between sample and reference arm before and after digital processing.

  12. Low-power coherent and noncoherent light in clinical practice

    NASA Astrophysics Data System (ADS)

    Antipa, Ciprian; Pascu, Mihail-Lucian; Stanciulescu, Viorica; Mayerzedt, Claudia; Vlaiculescu, Mihaela

    1996-11-01

    In order to find out the comparative clinical effects of coherent and noncoherent low power light, we divided 74 patients with sciatics in three groups, treated with the same energy dose, as follows: A group: with IR continuous diode laser; B group: with noncoherent IR diode; C group: with placebo laser. The positive results were 66.66 percent for A group, 52.00 percent for B group and 36.36 percent for C group. We conclude, after these preliminary results, that coherent low power light has superior clinical efficacy versus noncoherent light and placebo laser, when used the same energy dose.

  13. Swept-source anatomic optical coherence elastography of porcine trachea

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Price, Hillel; Mitran, Sorin; Zdanski, Carlton; Oldenburg, Amy L.

    2016-02-01

    Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68+/-0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06+/-0.12 to 3.34+/-0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.

  14. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  15. PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh

    2015-05-01

    Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The

  16. An electro-optic resonant modulator for coherent optical communication

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Chen, C.-C.; Hemmati, H.

    1991-01-01

    A resonant cavity electro-optic phase modulator has been designed and implemented to operate at a data rate of 10 Mbps. The modulator consists of an electro-optic crystal located in a highly resonant cavity. The cavity is electro-optically switched on and off resonance, and the phase dispersion near the cavity resonance provides the output phase modulation. The performance of the modulator was measured by first heterodyne detecting the signal to an intermediate frequency, and measuring the spectral characteristics using an RF spectrum analyzer. The measured phase shift is shown to be in good agreement with the theoretical predictions. Further theoretical analysis shows that the design of the modulator can be scaled to operate at 100 Mbps.

  17. Integrated intravascular optical coherence tomography ultrasound imaging system.

    PubMed

    Yin, Jiechen; Yang, Hao-Chung; Li, Xiang; Zhang, Jun; Zhou, Qifa; Hu, Changhong; Shung, K Kirk; Chen, Zhongping

    2010-01-01

    We report on a dual-modality optical coherence tomography (OCT) ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an US transducer. The OCT optical components mainly consist of a single-mode fiber, a gradient index lens for light-beam focusing, and a right-angled prism for reflecting light into biological tissue. A 40-MHz piezoelectric transducer (PZT-5H) side-viewing US transducer was fabricated to obtain the US image. These components were integrated into a single probe, enabling both OCT and US imaging at the same time. In vitro OCT and ultrasound images of a rabbit aorta were obtained using this dual-modality imaging system. This study demonstrates the feasibility of an OCT-US system for intravascular imaging, which is expected to have a prominent impact on early detection and characterization of atherosclerosis.

  18. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  19. Integrated intravascular optical coherence tomography ultrasound imaging system

    PubMed Central

    Yin, Jiechen; Yang, Hao-Chung; Li, Xiang; Zhang, Jun; Zhou, Qifa; Hu, Changhong; Shung, K. Kirk; Chen, Zhongping

    2010-01-01

    We report on a dual-modality optical coherence tomography (OCT) ultrasound (US) system for intravascular imaging. To the best of our knowledge, we have developed the first integrated OCT-US probe that combines OCT optical components with an US transducer. The OCT optical components mainly consist of a single-mode fiber, a gradient index lens for light-beam focusing, and a right-angled prism for reflecting light into biological tissue. A 40-MHz piezoelectric transducer (PZT-5H) side-viewing US transducer was fabricated to obtain the US image. These components were integrated into a single probe, enabling both OCT and US imaging at the same time. In vitro OCT and ultrasound images of a rabbit aorta were obtained using this dual-modality imaging system. This study demonstrates the feasibility of an OCT-US system for intravascular imaging, which is expected to have a prominent impact on early detection and characterization of atherosclerosis. PMID:20210424

  20. Evaluation of Retinal Nerve Fiber Layer in Patients with Idiopathic Optic Perineuritis using Optical Coherence Tomography

    PubMed Central

    Byon, Ik Soo; Jung, Jae Ho; Choi, Jae-Hwan; Seo, Je Hyun; Lee, Ji Eun; Choi, Hee-Young

    2015-01-01

    Abstract The aim of this study was to assess the effect of idiopathic Optic perineuritis on the retinal nerve fiber layer, and determine the ability of optical coherence tomography to evaluate retinal nerve fiber loss after idiopathic Optic perineuritis. Four patients were assessed in this study. In all cases, average retinal nerve fiber layer was significantly thinner in the affected eye in comparison with the normal reference value and with the value for the contralateral normal eye at 12 months after the onset of optic perineuritis. Our study revealed that retinal nerve fiber layer loss occurs in idiopathic optic nerve sheath inflammation. PMID:27928329

  1. Biological elements carry out optical tasks in coherent imaging systems

    NASA Astrophysics Data System (ADS)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  2. Early detection of tooth wear by en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mărcăuteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Eniko; Hughes, Mike; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-02-01

    Excessive dental wear (pathological attrition and/or abfractions) is a frequent complication in bruxing patients. The parafunction causes heavy occlusal loads. The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-face optical coherence tomography was used for investigating and imaging of several extracted tooth, with a normal morphology, derived from patients with active bruxism and from subjects without parafunction. We found a characteristic pattern of enamel cracks in patients with first degree bruxism and with a normal tooth morphology. We conclude that the en-face optical coherence tomography is a promising non-invasive alternative technique for the early detection of occlusal overload, before it becomes clinically evident as tooth wear.

  3. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Duan, Jinming; Tench, Christopher; Gottlob, Irene; Proudlock, Frank; Bai, Li

    2015-11-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation.

  4. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images.

    PubMed

    Duan, Jinming; Tench, Christopher; Gottlob, Irene; Proudlock, Frank; Bai, Li

    2015-11-21

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation.

  5. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    PubMed Central

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    AIM To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS Seventeen consecutive subjects (33 eyes) were recruited from the study hospital's Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other's analyses of OCT images. RESULTS Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (P<0.01). The agreement for angle closure between AS-OCT and gonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59) and k=0.35 (95% CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49) and slight at k=0.17 (95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45). CONCLUSION Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively. PMID:25938053

  6. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

    PubMed Central

    Lee, Sang-Hyuck; Werner, John S.; Zawadzki, Robert J.

    2013-01-01

    We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented. PMID:24298411

  7. Miniature endoscopic optical coherence tomography for calculus detection.

    PubMed

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (P<0.001) in SD values. Finally, the receiver operating characteristic curve had a high capacity (area under the curve=0.934) for discriminating between healthy regions (including enamel pearl) and dental calculus.

  8. Imaging Coronary Atherosclerosis and Vulnerable Plaques with Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Jang, Ik-Kyung; Kashiwagi, Manubu; Bouma, Brett E.

    Intracoronary optical coherence tomography (OCT) is an invasive microscopic imaging technology that has been developed for the identification of vulnerable plaque. OCT acquires cross-sectional images of tissue reflectance and, since it may be implemented through an optical fiber probe, it is readily adaptable to coronary catheters for insertion into coronary arteries and circumferential imaging of arterial pathology. The first investigation of vascular optical coherence tomography ex vivo demonstrated the potential of this technique to identify arterial microstructure. Subsequent development of OCT technology enabled image acquisition at rates sufficient for intracoronary imaging in human patients. In this chapter, we review studies conducted with this technology at the Massachusetts General Hospital (MGH). Results from these studies show that a wide variety of microscopic features, including those associated with TCFAs, can be identified by OCT imaging both ex vivo and in living human patients. These findings suggest that this technology will play an important role in improving our understanding of coronary artery disease, guiding local therapy, and decreasing themortality of AMI.

  9. Compressive sensing optical coherence tomography using randomly accessible lasers

    NASA Astrophysics Data System (ADS)

    Harfouche, Mark; Satyan, Naresh; Vasilyev, Arseny; Yariv, Amnon

    2014-05-01

    We propose and demonstrate a novel a compressive sensing swept source optical coherence tomography (SSOCT) system that enables high speed images to be taken while maintaining the high resolution offered from a large bandwidth sweep. Conventional SSOCT systems sweep the optical frequency of a laser ω(t) to determine the depth of the reflectors at a given lateral location. A scatterer located at delay τ appears as a sinusoid cos (ω(t)τ ) at the photodetector. The finite optical chirp rate and the speed of analog to digital and digital to analog converters limit the acquisition rate of an axial scan. The proposed acquisition modality enables much faster image acquisition rates by interrogating the beat signal at randomly selected optical frequencies while preserving resolution and depth of field. The system utilizes a randomly accessible laser, a modulated grating Y-branch laser, to sample the interference pattern from a scene at randomly selected optical frequencies over an optical bandwidth of 5 THz , corresponding to a resolution of 30 μm in air. The depth profile is then reconstructed using an l1 minimization algorithm with a LASSO constraint. Signal-dependent noise sources, shot noise and phase noise, are analyzed and taken into consideration during the recovery. Redundant dictionaries are used to improve the reconstruction of the depth profile. A compression by a factor of 10 for sparse targets up to a depth of 15 mm in noisy environments is shown.

  10. Temperature dependence of coherent phonons in TbVO4 crystal probed by ultrafast optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Ma, H.; Li, D.; Wang, L.; Ma, G.; Guo, F.; Chen, J.

    2011-07-01

    Coherent optical phonons in terbium vanadate (TbVO4) are investigated by using femtosecond time-resolved pump-probe spectroscopy at temperatures from 20 to 300 K. Combined with the Raman spectrum, the coherent phonon mode is attributed to an optical phonon mode of B1g symmetry. The main generation mechanism of the coherent optical phonons is revealed to be the impulsive stimulated Raman scattering. The temperature dependence of the dephasing time reveals that the main mechanism of the coherent phonon population decay is anharmonic phonon-phonon coupling, which causes a redshift of the coherent phonon frequency with increasing temperature.

  11. Evaluating Polypoidal Choroidal Vasculopathy With Optical Coherence Tomography Angiography

    PubMed Central

    Wang, Min; Zhou, Yao; Gao, Simon S.; Liu, Wei; Huang, Yongheng; Huang, David; Jia, Yali

    2016-01-01

    Purpose We observed and analyzed the morphologic characteristics of polypoidal lesions and abnormal branching vascular network (BVN) in patients with polypoidal choroidal vasculopathy (PCV) by optical coherence tomography angiography (OCTA). Methods A retrospective observational case series was done of patients with PCV. All patients were scanned with a 70-kHz spectral-domain OCT system using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm to distinguish blood flow from static tissue. The OCTA images of these patients were compared to those from indocyanine green angiography (ICGA). Semiautomated segmentation was used to further analyze the polypoidal lesion and the BVN. Results We studied 13 eyes of 13 patients 51 to 69 years old. A total of 11 patients were treatment-naive. Two patients had multiple anti-VEGF injections and one underwent photodynamic therapy (PDT). Optical coherence tomography angiography was able to detect the BVN in all cases. Using cross-sectional OCTA, BVN locations were shown to be in the space between the RPE and Bruch's membrane. Using en face OCTA, the BVN vascular pattern could be shown more clearly than by ICGA. Polypoidal lesions showed high flow signals in different patterns in 12 cases in the outer retina slab. Using cross-sectional OCTA, the polyps were shown to be just below the top of the pigment epithelial detachment (PED). In one case, the polypoidal lesion was not detectable at the outer retina slab. Conclusions Optical coherence tomography angiography is a noninvasive imaging tool for detecting vascular changes in PCV. Branching vascular networks showed more clearly on OCTA than on ICGA. Polypoidal lesions had variable patterns on OCTA and were not always detected. The OCTA patterns of the polypoidal lesions and the BVN are helpful in understanding the pathology of PCV. PMID:27472276

  12. Complete 360° circumferential gonioscopic optical coherence tomography imaging of the iridocorneal angle

    PubMed Central

    McNabb, Ryan P.; Challa, Pratap; Kuo, Anthony N.; Izatt, Joseph A.

    2015-01-01

    Clinically, gonioscopy is used to provide en face views of the ocular angle. The angle has been imaged with optical coherence tomography (OCT) through the corneoscleral limbus but is currently unable to image the angle from within the ocular anterior chamber. We developed a novel gonioscopic OCT system that images the angle circumferentially from inside the eye through a custom, radially symmetric, gonioscopic contact lens. We present, to our knowledge, the first 360° circumferential volumes (two normal subjects, two subjects with pathology) of peripheral iris and iridocorneal angle structures obtained via an internal approach not typically available in the clinic. PMID:25909021

  13. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking

    PubMed Central

    Twa, Michael D.; Li, Jiasong; Vantipalli, Srilatha; Singh, Manmohan; Aglyamov, Salavat; Emelianov, Stanislav; Larin, Kirill V.

    2014-01-01

    Corneal collagen cross-linking (CXL) is a clinical treatment for keratoconus that structurally reinforces degenerating ocular tissue, thereby limiting disease progression. Clinical outcomes would benefit from noninvasive methods to assess tissue material properties in affected individuals. Regional variations in tissue properties were quantified before and after CXL in rabbit eyes using optical coherence elastography (OCE) imaging. Low-amplitude (<1µm) elastic waves were generated using micro air-pulse stimulation and the resulting wave amplitude and speed were measured using phase-stabilized swept-source OCE. OCE imaging following CXL treatment demonstrates increased corneal stiffness through faster elastic wave propagation speeds and lower wave amplitudes. PMID:24877005

  14. Coherent Detection of High-Rate Optical PPM Signals

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Fernandez, Michela Munoz

    2006-01-01

    A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to

  15. Fiber optic low-coherence Michelson interferometer for silicon growth measurement

    NASA Astrophysics Data System (ADS)

    Michael, Robert R., Jr.; Lawson, Christopher M.

    1994-02-01

    We report on the use of optical low coherence reflectometry for silicon characterization. The measurement system uses a low coherence light source (edge-emitting LED) in conjunction with a fiber optic Michelson interferometer. This non-contact fiber optic measurement system has been used to measure silicon thickness and flatness to an accuracy of +/- 1.5 micrometers in the laboratory.

  16. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  17. Modulation of optical spatial coherence by surface plasmon polaritons.

    PubMed

    Divitt, Shawn; Frimmer, Martin; Visser, Taco D; Novotny, Lukas

    2016-07-01

    The interference pattern observed in Young's double-slit experiment is intimately related to the statistical correlations of the waves emitted by the slits. As the waves in the slits become more correlated, the visibility of the interference pattern increases. Here, we experimentally modulate the statistical correlations between the optical fields emitted by a pair of slits in a metal film. The interaction between the slits is mediated by surface plasmon polaritons and can be tuned by the slit separation, which allows us to either increase or decrease the spatial coherence of the emerging fields relative to that of the incoming fields.

  18. Requirement of optical coherence for continuous-variable quantum teleportation.

    PubMed

    Rudolph, T; Sanders, B C

    2001-08-13

    We show that the sender and the receiver each require coherent devices in order to achieve unconditional continuous variable quantum teleportation (CVQT), and this requirement cannot be achieved with conventional laser sources, linear optics, ideal photon detectors, and perfect Fock state sources. The appearance of successful CVQT in recent experiments is due to interpreting the measurement record fallaciously in terms of one preferred ensemble (or decomposition) of the correct density matrix describing the state. Our analysis is unrelated to technical problems such as laser phase drift or finite squeezing bandwidth.

  19. One step geometrical calibration method for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Stritzel, Jenny; Rahlves, Maik; Majdani, Omid; Reithmeier, Eduard; Ortmaier, Tobias; Roth, Bernhard

    2016-01-01

    We present a novel one-step calibration methodology for geometrical distortion correction for optical coherence tomography (OCT). A calibration standard especially designed for OCT is introduced, which consists of an array of inverse pyramidal structures. The use of multiple landmarks situated on four different height levels on the pyramids allow performing a 3D geometrical calibration. The calibration procedure itself is based on a parametric model of the OCT beam propagation. It is validated by experimental results and enables the reduction of systematic errors by more than one order of magnitude. In future, our results can improve OCT image reconstruction and interpretation for medical applications such as real time monitoring of surgery.

  20. Balanced detection for spectral domain optical coherence tomography.

    PubMed

    Kuo, Wen-Chuan; Lai, Chih-Ming; Huang, Yi-Shiang; Chang, Cheng-Yi; Kuo, Yue-Ming

    2013-08-12

    The use and advantages of applying balanced-detection (BD) operation method to high speed spectral domain optical coherence tomography (SDOCT) are presented in this study, which we believe is the first such demonstration. Compared to conventional SDOCT, BD-SDOCT provides two unique advantages. First, the method can suppress background noise and autocorrelation artifacts in biological tissues. Second, it is a power-efficient method which is particularly helpful for high speed SDOCT to eliminate random intensity noise and to achieve shot noise limited detection. This performance allows in vivo three-dimensional tissue visualization with high imaging quality and high speed.

  1. Methods to assess sensitivity of optical coherence tomography systems

    PubMed Central

    Agrawal, Anant; Pfefer, T. Joshua; Woolliams, Peter D.; Tomlins, Peter H.; Nehmetallah, George

    2017-01-01

    Measuring the sensitivity of an optical coherence tomography (OCT) system determines the minimum sample reflectivity it can detect and provides a figure of merit for system optimization and comparison. The published literature lacks a detailed description of OCT sensitivity measurement procedures. Here we describe a commonly-used measurement method and introduce two new phantom-based methods, which also offer a means to directly visualize low reflectivity conditions relevant to biological tissue. We provide quantitative results for the three methods from different OCT system configurations and discuss the methods’ advantages and disadvantages. PMID:28270992

  2. Coherence properties of a doubly resonant monolithic optical parametric oscillator

    NASA Technical Reports Server (NTRS)

    Nabors, C. D.; Yang, S. T.; Day, T.; Byer, R. L.

    1990-01-01

    A doubly resonant optical parametric oscillator (DRO) pumped with the second harmonic of a narrow-linewidth Nd:YAG laser is described. The linewidth of the DRO signal was less than 13 kHz, the DRO was shown to generate a phase-locked subharmonic of the pump at degeneracy, and the signal and the idler were shown to be mutually coherent with the pump and to be phase-anticorrelated with each other away from degeneracy. The signal-idler heterodyne linewidth was 500 Hz, and pump phase modulation was shown to transfer to the DRO phase at degeneracy.

  3. Capturing the vital vascular fingerprint with optical coherence tomography.

    PubMed

    Liu, Gangjun; Chen, Zhongping

    2013-08-01

    Using fingerprints as a method to identify an individual has been accepted in forensics since the nineteenth century, and the fingerprint has become one of the most widely used biometric characteristics. Most of the modern fingerprint recognition systems are based on the print pattern of the finger surface and are not robust against spoof attaching. We demonstrate a novel vital vascular fingerprint system using Doppler optical coherence tomography that provides highly sensitive and reliable personal identification. Because the system is based on blood flow, which only exists in a livng person, the technique is robust against spoof attaching.

  4. Dark-field circular depolarization optical coherence microscopy

    PubMed Central

    Mehta, Kalpesh; Zhang, Pengfei; Yeo, Eugenia Li Ling; Kah, James Chen Yong; Chen, Nanguang

    2013-01-01

    Optical coherence microscopy (OCM) is a widely used structural imaging modality. To extend its application in molecular imaging, gold nanorods are widely used as contrast agents for OCM. However, they very often offer limited sensitivity as a result of poor signal to background ratio. Here we experimentally demonstrate that a novel OCM implementation based on dark-field circular depolarization detection can efficiently detect circularly depolarized signal from gold nanorods and at the same time efficiently suppress the background signals. This results into a significant improvement in signal to background ratio. PMID:24049689

  5. Application of optical coherence tomography based microangiography for cerebral imaging

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  6. Optical coherence tomography for glucose monitoring in blood

    NASA Astrophysics Data System (ADS)

    Ullah, Hafeez; Hussain, Fayyaz; Ikram, Masroor

    2015-08-01

    In this review, we have discussed the potential application of the emerging imaging modality, i.e., optical coherence tomography (OCT) for glucose monitoring in biological tissues. OCT provides monitoring of glucose diffusion in different fibrous tissues like in sclera by determining the permeability rate with acceptable accuracy both in type 1 and in type 2 diabetes. The maximum precision of glucose measurement in Intralipid suspensions, for example, with the OCT technique yields the accuracy up to 4.4 mM for 10 % Intralipid and 2.2 mM for 3 % Intralipid.

  7. Probing beyond the laser coherence time in optical clock comparisons

    NASA Astrophysics Data System (ADS)

    Hume, David B.; Leibrandt, David R.

    2016-03-01

    We develop differential measurement protocols that circumvent the laser noise limit in the stability of optical clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows for probe times longer than the laser coherence time, avoids the Dick effect, and supports Heisenberg-limited measurement precision. We present protocols for such frequency comparisons and develop numerical simulations of the protocols with realistic noise sources. These methods provide a route to reduce frequency ratio measurement durations by more than an order of magnitude.

  8. Polarization-sensitive full-field optical coherence tomography.

    PubMed

    Moneron, Gael; Boccara, Albert-Claude; Dubois, Arnaud

    2007-07-15

    We present a polarization-sensitive full-field optical coherence tomography system that can produce high-resolution images of the linear retardance and reflectivity properties of biological media. En face images can be delivered at a frame rate of 3.5 Hz by combination of interferometric images acquired by two CCD cameras in an interference microscope illuminated with a tungsten halogen lamp. Isotropic spatial resolution of approximately 1.0 microm is achieved. The technique is demonstrated on ex vivo muscle tissues.

  9. Primate retina imaging with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ducros, Mathieu G.; Marsack, Jason D.; Rylander, H. Grady; Thomsen, Sharon L.; Milner, Thomas E.

    2001-12-01

    Polarization-sensitive optical coherence tomography (PSOCT) is applied to determine the depth-resolved polarization state of light backreflected from the eye. The birefringence of the retinal nerve fiber layer (RNFL) was observed and measured from PSOCT images recorded postmortem in a Rhesus monkey. An image-processing algorithm was developed to identify birefringent regions in acquired PSOCT retinal images and automatically determine the thickness of the RNFL. Values of the RNFL thickness determined from histology and PSOCT were compared. PSOCT may provide a new method to determine RNFL thickness and birefringence for glaucoma diagnostics.

  10. Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography

    PubMed Central

    Gao, Simon S.; Patel, Rachel C.; Jain, Nieraj; Zhang, Miao; Weleber, Richard G.; Huang, David; Pennesi, Mark E.; Jia, Yali

    2016-01-01

    The choriocapillaris plays an important role in supporting the metabolic demands of the retina. Studies of the choriocapillaris in disease states with optical coherence tomography angiography (OCTA) have proven insightful. However, image artifacts complicate the identification and quantification of the choriocapillaris in degenerative diseases such as choroideremia. Here, we demonstrate a supervised machine learning approach to detect intact choriocapillaris based on training with results from an expert grader. We trained a random forest classifier to evaluate en face structural OCT and OCTA information along with spatial image features. Evaluation of the trained classifier using previously unseen data showed good agreement with manual grading. PMID:28101400

  11. Coherent and noncoherent low-power diodes in clinical practice

    NASA Astrophysics Data System (ADS)

    Antipa, Ciprian; Pascu, Mihail-Lucian; Stanciulescu, Viorica; Vlaiculescu, Mihaela; Ionescu, Elena; Bordea, Daniel

    1997-05-01

    Clinical efficacy of the low power laser (LPL) in medical treatments is still not well established. In a double blind, placebo controlled study, we tried to find out first which type of LPL is more efficient, and second if coherence is an important character for clinical efficacy. We treated 1228 patients having different rheumatic diseases, with low power diode, used as follows: A group: IR coherent diode, continuous emission, 3 mW power; B group: IR coherent diode, pulsed emission, output power about 3 mW; C group: IR noncoherent diode continuous emission 9 mW power; D group: both IR diode lasers (continuous or pulsed) and HeNe laser, continuous emission, 2 mW power; E group: placebo laser as control group. The energy dose used for every group was the same, as well as the clinical protocols. The positive results were: 66.16% for A group; 64.06% for B group; 48.87% for C group; 76.66% for D group, and 39.07% for E group. Finally, we showed that LPL is really efficient in the treatment of some rheumatic diseases, especially when red and IR diode laser were used in combination. The type of emission (continuous or pulsed) is not important, but coherence is obviously necessary for clinical efficacy.

  12. The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography

    PubMed Central

    Uhm, Ki Bang; Sung, Kyung Rim; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2016-01-01

    Purpose To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT). Methods The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability. Results The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement. Conclusions Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements. PMID:27783663

  13. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...materials, and to determine the feasibility of fast optical control of quantum states in gallium nitride and zinc oxide heterostructures. Because of...necessary work toward coherent optical control of quantum states at higher temperatures, with ultimately room-temperature coherent control. We also

  14. Magnetomotive optical coherence tomography for elastography of small biosamples

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy

    2008-10-01

    Optical coherence tomography (OCT) is a 3D micron-resolution imaging modality using the low-coherence properties of near-infrared light to render depth-resolved images typically a few millimeters into biological tissue. Visco-elasticity is an important parameter for detecting and staging various human diseases. We report a method for analyzing the visco-elastic properties of small tissue samples using magnetomotive OCT. Superparamagnetic nanoparticles (MNPs, ˜20nm) are diffused into a tissue sample. Subsequently, an electromagnet is modulated with a chirped frequency waveform from 0-1kHz, providing a modulated force on the MNPs in the tissue. The mechanical response of the tissue is recorded using OCT at linerates of 1-10kHz. Because OCT is a coherence imaging technique, sub-wavelength displacements are detected in the phase of the interferogram. The mechanical frequency response and associated phase lag fit a model for a damped harmonic oscillator, and results in homogeneous agarose cylinders can be interpreted in terms of Love's solutions for longitudinal vibration modes. A rat mammary tumor biopsy was also analyzed with this technique during formaldehyde fixation, and a trend toward higher frequency correlates with stiffening of the tissue during the fixation process. In collaboration with Stephen Boppart, University of Illinois at Urbana-Champaign.

  15. Optical coherence tomography image enhancement by using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ponce-de-Leon, Y. R.; Lopez-Rios, J. A.; Pichardo-Molina, J. L.; Alcalá Ochoa, N.

    2011-08-01

    Optical Coherence Tomography (OCT) is an imaging technique to get cross-sectional images with resolutions of a few microns and deep penetration in tissue of some millimeters. For many years OCT has been applied to analyze different human tissues like eyes, skin, teeth, urinary bladders, gastrointestinal, respiratory or genitourinary tracts and recently breast cancer tissues have been studied. Many of these tissues are composed specially of lipids and collagen, proteins which cause multiple light scattering (MLS) reducing significantly the optical depth and the contrast of OCT imaging. So, one of the big challenges of this technique is to acquire images with good contrast. Gold nanoparticles (NPs) exhibit interesting optical properties due to its plasmon resonance frequency. Optical absorbance is strong when gold NPs have dimension under 50 nm, but over this size optical scattering becomes dominant. In this work we show the preliminary results of the use of gold NPs as a contrast medium to enhance the OCT images quality. Our experimental results show which type of particles (morphology and size) present the best enhancement in the region of 1325 nm which corresponds to the central wavelength source excitation. All our experiments were carried out with a commercial OCT (thorlabs) system and our NPs were tested in water and gel phantoms.

  16. Quantitative characterization of developing collagen gels using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Choudhury, Niloy; Tran, Noi T.; Hanson, Stephen R.; Jacques, Steven L.

    2010-03-01

    Nondestructive optical imaging methods such as optical coherence tomography (OCT) have been proposed for characterizing engineered tissues such as collagen gels. In our study, OCT was used to image collagen gels with different seeding densities of smooth muscle cells (SMCs), including acellular gels, over a five-day period during which the gels contracted and became turbid with increased optical scattering. The gels were characterized quantitatively by their optical properties, specified by analysis of OCT data using a theoretical model. At 6 h, seeded cell density and scattering coefficient (μs) were correlated, with μs equal to 10.8 cm-1/(106 cells/mL). Seeded cell density and the scattering anisotropy (g) were uncorrelated. Over five days, the reflectivity in SMC gels gradually doubled with little change in optical attenuation, which indicated a decrease in g that increased backscatter, but only a small drop in μs. At five days, a subpopulation of sites on the gel showed substantially higher reflectivity (approximately a tenfold increase from the first 24 h). In summary, the increased turbidity of SMC gels that develops over time is due to a change in the structure of collagen, which affects g, and not simply due to a change in number density of collagen fibers due to contraction.

  17. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan

    2012-06-01

    The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.

  18. Imaging of oral pathological tissue using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  19. Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography

    SciTech Connect

    Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.

    2000-02-01

    The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.

  20. Nanoshells as an optical coherence tomography contrast agent

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Halas, Naomi J.; West, Jennifer L.; Drezek, Rebekah A.

    2004-07-01

    Nanoshells are a layered dielectric core/metal shell composite nanostructure with an optical resonance geometrically tunable through the visible and near infrared. Due to their small size, ability to generate a strong backscattering signal, and potential for surface modification, they may be an ideal in vivo optical coherence tomography contrast agent. We performed a pilot study to assess their capabilities. Images of a cuvette filled with dilute nanoshells, 2 μm polystyrene microspheres, or a combination were obtained. When compared to microspheres, images of the nanoshells where much brighter and attenuation of the bottom cuvette interface less. Injection of micropheres into the tail vein of mice and hamsters caused a noticeable brightening of OCT images of the dorsal skin. These pilot studies indicate that nanoshells may be an excellent OCT contrast agent; work is continuing to determine optimum nanoshell parameters and applications.

  1. Feasibility study of an optically coherent telescope array in space

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1983-01-01

    Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.

  2. Lasers for coherent optical satellite links with large dynamics.

    PubMed

    Chiodo, Nicola; Djerroud, Khelifa; Acef, Ouali; Clairon, André; Wolf, Peter

    2013-10-20

    We present the experimental realization of a laser system for ground-to-satellite optical Doppler ranging at the atmospheric turbulence limit. Such a system needs to display good frequency stability (a few parts in 10-14) while allowing large and well-controlled frequency sweeps of ±12  GHz at rates exceeding 100  MHz/s. Furthermore it needs to be sufficiently compact and robust for transportation to different astronomical observation sites, where it is to be interfaced with satellite ranging telescopes. We demonstrate that our system fulfills those requirements and should therefore allow operation of ground to low Earth orbit satellite coherent optical links limited only by atmospheric turbulence.

  3. Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans.

    PubMed

    Wang, Ruikang K; Zhang, Anqi; Choi, Woo June; Zhang, Qinqin; Chen, Chieh-Li; Miller, Andrew; Gregori, Giovanni; Rosenfeld, Philip J

    2016-05-15

    Optical coherence tomography angiography (OCTA) has increasingly become clinically important, particularly in ophthalmology. However, the field of view (FOV) for current OCTA imaging is severely limited due to A-scan rates that can be afforded by current clinical systems and, more importantly, the requirement of a repeated scanning protocol. This Letter evaluates the possibility of using only two repeated B-scans for OCTA for the purpose of an increased FOV. The effect of repeated numbers on the OCTA result is discussed through experiments on an animal model in vivo and evaluated using quantitative metrics for image quality. Demonstrated through in vivo imaging of a pathological human eye, we show that optical microangiography-based OCTA with two repeated B-scans can provide wide-field angiography up to 12×12  mm with clinically acceptable image quality.

  4. Cutting Edge of Traumatic Maculopathy with Spectral-domain Optical Coherence Tomography – A Review

    PubMed Central

    Mendes, Sílvia; Campos, António; Campos, Joana; Neves, Arminda; Beselga, Diana; Fernandes, Cristina; Castro Sousa, João Paulo

    2015-01-01

    This article reviews clinically relevant data regarding traumatic maculopathy (TM), frequently observed in clinical practice, especially due to sport or traffic accident injuries. It is characterized by transient gray-whitish retinal coloration and reduction of visual acuity (VA) with closed, blunt object globe trauma of their prior. It may be limited to the posterior pole (Berlin’s edema), or peripheral areas of the retina. Spectral-domain optical coherence tomography (SD-OCT) provides detail insight using high resolution cross-sectional tomographs of the ocular tissue. It is a potent non-invasive tool for the clinician to follow-up. Clinicians are, thereby empowered with a tool that enables evaluation of the retinal status and allows for prediction of the prognosis. Spectral-domain optical coherence tomography supports the idea that the major site of injury is in the photoreceptor and layers of the retinal pigment epithelium (RPE). Depending on the severity of the trauma, SD-OCT may reveal differential optical densities of intraretinal spaces ranging from disappearance of the thin hyporeflective optical space in mild lesions, or areas of disruption of the inner segment/outer segment (IS/OS) junction and hyperreflectivity of the overlying retina, pigment disorders and retinal atrophy, in more severe cases. The prognosis for recovery of vision is generally good, and improvement occurs within 3-4 weeks. PMID:26060831

  5. Utilization of Optical Coherence Tomography in the Evaluation of Cherry Hemangiomas.

    PubMed

    Aldahan, Adam S; Mlacker, Stephanie; Shah, Vidhi V; Chen, Lucy L; Nouri, Keyvan; Grichnik, James M

    2016-06-01

    Cherry hemangiomas are common vascular proliferative lesions that can be concerning from a cosmetic perspective. Laser therapy is often used to eradicate cherry hemangiomas, but some lesions require multiple treatments or do not resolve at all. The suboptimal response to laser treatment may be due to limitations in penetration depth by vascular lasers such as the pulsed dye laser. Optical coherence tomography is a low-energy, light-based imaging device that can evaluate the depth and extent of vascular lesions such as cherry hemangiomas by allowing visualization of tissue structure and blood vessel architecture, which cannot be appreciated by clinical or dermatoscopic examination alone. We present optical coherence tomography images of a cherry hemangioma to demonstrate the precision and resolution of this imaging modality. Optical coherence tomography provides valuable information that has the potential to predict response to laser therapy without unnecessary attempts. Future prospective studies will determine its value for this purpose.

    J Drugs Dermatol. 2016;15(6):713-714.

  6. Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2016-12-01

    To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.

  7. Coherent optical array receiver for PPM signals under atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Munoz Fernandez, Michela

    The performance of a coherent free-space optical communications system operating in the presence of turbulence is investigated. Maximum Likelihood Detection techniques are employed to optimally detect Pulse Position Modulated signals with a focal-plane detector array and to reconstruct the turbulence-degraded signals. Laboratory equipment and experimental setup used to carry out these experiments at the Jet Propulsion Laboratory are described. The key components include two lasers operating at 1064 nm wavelength for use with coherent detection, a 16 element (4 X 4) InGaAs focal-plane detector array, and a data-acquisition and signal-processing assembly needed to sample and collect the data and analyze the results. The detected signals are combined using the least-mean-square (LMS) algorithm. In the first part of the experimental results we show convergence of the algorithm for experimentally obtained signal tones in the presence of atmospheric turbulence. The second part of the experimental results shows adaptive combining of experimentally obtained heterodyned pulse position modulated (PPM) signals with pulse-to-pulse coherence in the presence of simulated spatial distortions resembling atmospheric turbulence. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot noise. A convergence analysis of the algorithm is presented, and results with both computer-simulated and experimentally obtained PPM signals are analyzed. The third part of the experimental results, in which the main goal of this thesis is achieved, includes an investigation of the performance of the Coherent Optical Receiver Experiment (CORE) at JPL. Bit Error Rate (BER) results are presented for single and multichannel optical receivers where quasi shot noise-limited performance is achieved under simulated turbulence conditions using noncoherent postdetection processing techniques. Theoretical BER expressions are

  8. Phase-coherent all-optical frequency division by three

    SciTech Connect

    Lee, Dong-Hoon; Klein, Marvin E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, Petra; Boller, Klaus-Jochen

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier system operated at a wavelength of 812 nm and used as the pump source of the OPO. Optical self-phase-locking of the OPO signal and idler waves is achieved by mutual injection locking of the signal wave and the intracavity frequency-doubled idler wave. The OPO process and the second-harmonic generation of the idler wave are simultaneously phase matched through quasi-phase-matching using two periodically poled sections of different period manufactured within the same LiNbO{sub 3} crystal. An optical self-phase-locking range of up to 1 MHz is experimentally observed. The phase coherence of frequency division by three is measured via the phase stability of an interference pattern formed by the input and output waves of the OPO. The fractional frequency instability of the divider is measured to be smaller than 7.6x10{sup -14} for a measurement time of 10 s (resolution limited). The self-phase-locking characteristics of the cw OPO are theoretically investigated by analytically solving the coupled field equations in the steady-state regime. For the experimental parameters of the OPO, the calculations predict a locking range of 1.3 MHz and a fractional frequency instability of 1.6x10{sup -15}, in good agreement with the experimental results.

  9. Compact adaptive optic-optical coherence tomography system

    DOEpatents

    Olivier, Scot S.; Chen, Diana C.; Jones, Steven M.; McNary, Sean M.

    2011-05-17

    Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.

  10. Compact adaptive optic-optical coherence tomography system

    DOEpatents

    Olivier, Scot S [Livermore, CA; Chen, Diana C [Fremont, CA; Jones, Steven M [Danville, CA; McNary, Sean M [Stockton, CA

    2012-02-28

    Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.

  11. Phase-resolved acoustic radiation force optical coherence elastography.

    PubMed

    Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping

    2012-11-01

    Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.

  12. Endoscopic optical coherence tomography for imaging the tympanic membrane

    NASA Astrophysics Data System (ADS)

    Burkhardt, Anke; Walther, Julia; Cimalla, Peter; Bornitz, Matthias; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is an imaging modality that enables micrometer-scale contactless subsurface imaging of biological tissue. Endoscopy, as another imaging method, has the potential of imaging tubular organs and cavities and therefore has opened up several application areas not accessible before. The combination of OCT and endoscopy uses the advantages of both methods and consequently allows additional imaging of structures beneath surfaces inside cavities. Currently, visual investigations on the surface of the human tympanic membrane are possible but only with expert eyes. up to now, visual imaging of the outer ear up to the tympanic membrane can be carried out by an otoscope, an operating microscope or an endoscope. In contrast to these devices, endoscopy has the advantage of imaging the whole tympanic membrane with one view. The intention of this research is the development of an endoscopic optical coherence tomography (EOCT) device for imaging the tympanic membrane depth-resolved and structures behind it. Detection of fluids in the middle ear, which function as an indicator for otitis media, could help to avoid the application of antibiotics. It is possible to detect a congeries of fluids with the otoscope but the ambition is to the early detection by OCT. The developed scanner head allows imaging in working distances in the range from zero up to 5 mm with a field of view of 2 mm. In the next step, the scanner head should be improved to increase the working distance and the field of view.

  13. Vascular wall stress during intravascular optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Yang, Victor

    2015-03-01

    Biomechanical properties of arterial wall is crucial for understanding the changes in the cardiovascular system. Catheters are used during intravascular optical coherence tomography (IVOCT) imaging. The presence of a catheter alters the flow field, pressure distribution and frictional resistance to flow in an artery. In this paper, we first study the transmural stress distribution of the catheterized vessel. COMSOL (COMSOL 4.4) was used to simulate the blood flow induced deformation in a catheterized vessel. Blood is modeled as an incompressible Newtonian fluid. Stress distribution from an three-layer vascular model with an eccentric catheter are simulated, which provides a general idea about the distribution of the displacement and the stress. Optical coherence elastography techniques were then applied to porcine carotid artery samples to look at the deformation status of the vascular wall during saline or water injection. Preliminary simulation results show nonuniform stress distribution in the circumferential direction of the eccentrically catheterized vascular model. Three strain rate methods were tested for intravascular OCE application. The tissue Doppler method has the potential to be further developed to image the vascular wall biomechnical properties in vivo. Although results in this study are not validated quantitatively, the experiments and methods may be valuable for intravascular OCE studies, which may provide important information for cardiovascular disease prevention, diagnosis and treatment.

  14. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  15. Digital image correlation-based optical coherence elastography.

    PubMed

    Sun, Cuiru; Standish, Beau; Vuong, Barry; Wen, Xiao-Yan; Yang, Victor

    2013-12-01

    Optical coherence elastography (OCE) provides deformation or material properties, mapping of soft tissue. We aim to develop a robust speckle tracking OCE technique with improved resolution and accuracy. A digital image correlation (DIC)-based OCE technique was developed by combining an advanced DIC algorithm with optical coherence tomography (OCT). System calibration and measurement error evaluation demonstrated that this DIC-based OCE technique had a resolution of ~0.6 μm displacement and <0.5% strain measurement in the axial scan direction. The measured displacement ranged from 0.6 to 150 μm, obtained via phantom imaging. The capability of the DIC-based OCE technique, for differentiation of stiffness, was evaluated by imaging a candle gel phantom with an irregularly shaped stiff inclusion. OCE imaging of a chicken breast sample differentiated the fat, membrane, and muscle layers. Strain elastograms of an aneurysm sample showed heterogeneity of the tissue and clear contrast between the adventitia and media. These promising results demonstrated the capability of the DIC-based OCE for the characterization of the various components of the tissue sample. Further improvement of the system will be conducted to make this OCE technique a practical tool for measuring and differentiating material properties of soft tissue.

  16. Optical coherence tomography angiography in pediatric choroidal neovascularization

    PubMed Central

    Veronese, Chiara; Maiolo, Chiara; Huang, David; Jia, Yali; Armstrong, Grayson W.; Morara, Mariachiara; Ciardella, Antonio P.

    2016-01-01

    Purpose To report two cases of pediatric choroidal neovascularization (CNV) and the associated neo-vascular and retinal findings identified on Optical Coherence Tomography Angiography (OCTA) imaging. Methods A 14-year-old boy with handheld laser-induced maculopathy-related CNV and a 13-year-old boy with idiopathic CNV were evaluated with visual acuity testing, slit-lamp exam, fundus photography, fluorescein angiography, indocyanine green angiography, spectral domain optical coherence tomography, and OCTA. Results Macular CNV were identified in both pediatric patients using OCTA imaging. The first case demonstrated a classic pediatric type II CNV with a “tree-like” pattern and a single vessel in-growth site, while the second case demonstrated a type I CNV with a “glomerular” pattern. Conclusion Distinct choroidal neovascular patterns were visualized in these two cases of pediatric CNV when compared to adult subtypes. OCTA is a noninvasive imaging modality capable of evaluating and characterizing pediatric CNV and their associated vascular patterns. PMID:27990495

  17. Coherent Magnetic Response at Optical Frequencies Using Atomic Transitions

    NASA Astrophysics Data System (ADS)

    Brewer, Nicholas R.; Buckholtz, Zachary N.; Simmons, Zachary J.; Mueller, Eli A.; Yavuz, Deniz D.

    2017-01-01

    In optics, the interaction of atoms with the magnetic field of light is almost always ignored since its strength is many orders of magnitude weaker compared to the interaction with the electric field. In this article, by using a magnetic-dipole transition within the 4 f shell of europium ions, we show a strong interaction between a green laser and an ensemble of atomic ions. The electrons move coherently between the ground and excited ionic levels (Rabi flopping) by interacting with the magnetic field of the laser. By measuring the Rabi flopping frequency as the laser intensity is varied, we report the first direct measurement of a magnetic-dipole matrix element in the optical region of the spectrum. Using density-matrix simulations of the ensemble, we infer the generation of coherent magnetization with magnitude 5.5 ×10-3 A /m , which is capable of generating left-handed electromagnetic waves of intensity 1 nW /cm2 . These results open up the prospect of constructing left-handed materials using sharp transitions of atoms.

  18. Self-spectral calibration for spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Xianling; Gao, Wanrong; Bian, Haiyi; Chen, Chaoliang; Liao, Jiuling

    2013-06-01

    A different real-time self-wavelength calibration method for spectral domain optical coherence tomography is presented in which interference spectra measured from two arbitrary points on the tissue surface are used for calibration. The method takes advantages of two favorable conditions of optical coherence tomography (OCT) signal. First, the signal back-scattered from the tissue surface is generally much stronger than that from positions in the tissue interior, so the spectral component of the surface interference could be extracted from the measured spectrum. Second, the tissue surface is not a plane and a phase difference exists between the light reflected from two different points on the surface. Compared with the zero-crossing automatic method, the introduced method has the advantage of removing the error due to dispersion mismatch or the common phase error. The method is tested experimentally to demonstrate the improved signal-to-noise ratio, higher axial resolution, and slower sensitivity degradation with depth when compared to the use of the zero-crossing method and applied to two-dimensional cross-sectional images of human finger skin.

  19. Determination of glucose concentration using Fourier domain optical coherence tomogram

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.

    2009-02-01

    In order to enhance cell culture growth in biosensors such as those for glucose detection must be developed that are capable of monitoring cell culture processes continuously and accurate. Fourier domain optical coherence tomography (FD-OCT) is used to obtain cell images with nanometer level resolution by analyzing the interference pattern by the mixing of reference and objective light to determine glucose concentration in doped double distilled water and create a glucose signature spectrum in salt-sugar solution. We demonstrate ultrahigh-resolution optical coherence tomography (OCT) imaging of in vitro biological cells and an improved deflection angle measurements formal and back projection method is used to reconstruct the two-dimensional glucose concentration performs refractive index distribution. Slopes of OCT signals decreased substantially and almost linearly with the increase of glucose concentration from 2.5 to 15 mg/dl. Phantom studies demonstrated 1% accuracy of scattering- coefficient measurement. Our theoretical and experimental studies suggest that glucose concentration can potentially be measured non-invasively with high sensitivity and accuracy with OCT systems.

  20. Molecular imaging true-colour spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.; Wilson, Christy; Grant, Gerald; Wax, Adam

    2011-12-01

    Molecular imaging holds a pivotal role in medicine due to its ability to provide invaluable insight into disease mechanisms at molecular and cellular levels. To this end, various techniques have been developed for molecular imaging, each with its own advantages and disadvantages. For example, fluorescence imaging achieves micrometre-scale resolution, but has low penetration depths and is mostly limited to exogenous agents. Here, we demonstrate molecular imaging of endogenous and exogenous chromophores using a novel form of spectroscopic optical coherence tomography. Our approach consists of using a wide spectral bandwidth laser source centred in the visible spectrum, thereby allowing facile assessment of haemoglobin oxygen levels, providing contrast from readily available absorbers, and enabling true-colour representation of samples. This approach provides high spectral fidelity while imaging at the micrometre scale in three dimensions. Molecular imaging true-colour spectroscopic optical coherence tomography (METRiCS OCT) has significant implications for many biomedical applications including ophthalmology, early cancer detection, and understanding fundamental disease mechanisms such as hypoxia and angiogenesis.

  1. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry

    PubMed Central

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  2. Optical coherence tomography visualizes neurons in human entorhinal cortex.

    PubMed

    Magnain, Caroline; Augustinack, Jean C; Konukoglu, Ender; Frosch, Matthew P; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J; Boas, David A; Fischl, Bruce

    2015-02-09

    The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50 µm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future.

  3. Digital image correlation-based optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Standish, Beau; Vuong, Barry; Wen, Xiao-Yan; Yang, Victor

    2013-12-01

    Optical coherence elastography (OCE) provides deformation or material properties, mapping of soft tissue. We aim to develop a robust speckle tracking OCE technique with improved resolution and accuracy. A digital image correlation (DIC)-based OCE technique was developed by combining an advanced DIC algorithm with optical coherence tomography (OCT). System calibration and measurement error evaluation demonstrated that this DIC-based OCE technique had a resolution of ˜0.6 μm displacement and <0.5% strain measurement in the axial scan direction. The measured displacement ranged from 0.6 to 150 μm, obtained via phantom imaging. The capability of the DIC-based OCE technique, for differentiation of stiffness, was evaluated by imaging a candle gel phantom with an irregularly shaped stiff inclusion. OCE imaging of a chicken breast sample differentiated the fat, membrane, and muscle layers. Strain elastograms of an aneurysm sample showed heterogeneity of the tissue and clear contrast between the adventitia and media. These promising results demonstrated the capability of the DIC-based OCE for the characterization of the various components of the tissue sample. Further improvement of the system will be conducted to make this OCE technique a practical tool for measuring and differentiating material properties of soft tissue.

  4. Model for coherence transfer in a backward optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Montes, Carlos; Aschieri, Pierre; Picozzi, Antonio

    2011-09-01

    The mirrorless backward optical parametric oscillator (BOPO), where the signal and idler waves are propagating in opposite directions, will establish a distributed feedback mechanism and thus optical parametric oscillation without the need to apply mirrors or external feedback to the cavity. It has been recently demonstrated experimentally by exploiting the periodic poling technique in second-order nonlinear crystals, that the sub-micrometer structured medium achieves an efficient quasi-phase-matching of the three wave interaction in the backward configuration. A remarkable property of such BOPO is the high degree of coherence of the backward wave component, whose spectrum may be several order of magnitudes narrower than that of the pump, due to the convectioninduced phase-locking mechanism. Experimentally and numerically proved the transfer of coherent phase modulations from the pump wave to the parametrically down-converted waves, we show here that this is also possible for a broad bandwidth spectrally incoherent pump. In order to accurately describe the nonlinear counter-propagation dynamics of the three dispersive waves, we have developed for the first time to our knowledge a new numerical scheme which combines the method of the trajectories usually employed to solve the three-wave interaction and the intraband group velocity dispersion effect is performed in the spectral domain with the help of the Fast Fourier Transform (FFT) technique. The model accurately conserves the number of photons and the Manley-Rowe invariants. This allowed us to predict various configurations of MOPOs in which, thanks to the convection-induced phase-locking mechanism, a highly coherent backward wave is spontaneously generated from a highly incoherent pump wave.

  5. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  6. Assessment of Optic Nerve Head Drusen Using Enhanced Depth Imaging and Swept Source Optical Coherence Tomography

    PubMed Central

    Silverman, Anna L.; Tatham, Andrew J.; Medeiros, Felipe A.; Weinreb, Robert N.

    2015-01-01

    Background Optic nerve head drusen (ONHD) are calcific deposits buried or at the surface of the optic disc. Although ONHD may be associated with progressive visual field defects, the mechanism of drusen-related field loss is poorly understood. Methods for detecting and imaging disc drusen include B-scan ultrasonography, fundus autofluorescence, and optical coherence tomography (OCT). These modalities are useful for drusen detection but are limited by low resolution or poor penetration of deep structures. This review was designed to assess the potential role of new OCT technologies in imaging ONHD. Evidence Acquisition Critical appraisal of published literature and comparison of new imaging devices to established technology. Results The new imaging modalities of enhanced depth imaging optical coherence tomography (EDI-OCT) and swept source optical coherence tomography (SS-OCT) are able to provide unprecedented in vivo detail of ONHD. Using these devices it is now possible to quantify optic disc drusen dimensions and assess integrity of neighboring retinal structures, including the retinal nerve fiber layer. Conclusions EDI-OCT and SS-OCT have the potential to allow better detection of longitudinal changes in drusen and neural retina and improve our understanding of drusen-related visual field loss. PMID:24662838

  7. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb.

    PubMed

    Stowe, Matthew C; Cruz, Flavio C; Marian, Adela; Ye, Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  8. High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Cruz, Flavio C.; Marian, Adela; Ye Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  9. Coherent detection and digital signal processing for fiber optic communications

    NASA Astrophysics Data System (ADS)

    Ip, Ezra

    The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due

  10. Modern fibre-optic coherent lidars for remote sensing

    NASA Astrophysics Data System (ADS)

    Hill, Chris

    2015-10-01

    This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from <<1 through ~1 to >>1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific

  11. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  12. Frequency-time coherence for all-optical sampling without optical pulse source

    PubMed Central

    Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift. PMID:27687495

  13. Defining Field Cancerization of the Skin Using Noninvasive Optical Coherence Tomography Imaging to Detect and Monitor Actinic Keratosis in Ingenol Mebutate 0.015%- Treated Patients

    PubMed Central

    Schwartz, Michelle; Feldman, Eleanor; Bieber, Amy; Bienenfeld, Amanda; Nandanan, Naveen; Siegel, Daniel M.

    2016-01-01

    Objective: The objective of this study was to assess the ability of optical coherence tomography to detect clinical and subclinical actinic keratoses confirmed by histopathology. The efficacy of ingenol mebutate treatment of actinic keratosis was also evaluated using optical coherence tomography, and correlation of treatment efficacy with severity of local skin reactions was determined. Design: Single-arm, open-label, split-face study. Setting: Hospital outpatient clinic. Participants: Male subjects (N=30) with seven actinic keratoses. Measurements: A suspected actinic keratosis and the normal-appearing, perilesional skin were imaged, biopsied for histopathologic analysis, and the results compared with the clinical and a blinded optical coherence tomography diagnosis. Treatment with ingenol mebutate gel 0.015% was randomly administered to three clinically suspected actinic keratoses and the perilesional skin; three additional, suspected actinic keratoses lesions and perilesional areas were left untreated. Clinical and optical coherence tomography images were obtained for all lesions. Severity of local skin reactions was recorded to evaluate the relationship between local skin reaction and treatment effect. Results: Optical coherence tomography analysis had a 100-percent (28/28) correlation with the clinical diagnosis of actinic keratosis and detected 16 of 22 (73%) histopathologically confirmed subclinical lesions from perilesional skin sites. By optical coherence tomography assessment, the clearance rate for clinically observed lesions was 76 percent for ingenol mebutate-treated areas versus 11 percent for untreated areas; the clearance rate for treated subclinical lesions was 88 percent versus 43 percent for untreated areas. Clearance rates did not vary with the severity of the local response. Conclusion: Optical coherence tomography is effective at detecting clinical and subclinical actinic keratoses and monitoring their response to treatment. PMID:27386042

  14. Enhanced coherent OTDR for long span optical transmission lines containing optical fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Furukawa, Shin-Ichi; Tanaka, Kuniaki; Koyamada, Yahei; Sumida, Masatoyo

    1995-05-01

    We have newly constructed an enhanced coherent optical time domain reflectometer (C-OTDR) for use in testing optical cable spans in transmission lines containing erbium-doped fiber amplifiers (EDFA's), which is based on heterodyne detection using acousto-optic (AO) switches. In order to avoid any optical surges in the EDFA's in the transmission lines, optical dummy pulses were added between the signal pulses by an AO switch to keep the probe power from the C-OTDR as uniform as possible. We achieved a large single-way dynamic range of 42 dB with 5 dBm less probe power. The measurable portion of the fiber spans was more than 80 km in optical transmission lines containing EDFA's. This is twice the previously reported value.

  15. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  16. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  17. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  18. Coherent electro-optical detection of terahertz radiation from an optical parametric oscillator.

    PubMed

    Meng, F Z; Thomson, M D; Molter, D; Löffler, T; Jonuscheit, J; Beigang, R; Bartschke, J; Bauer, T; Nittmann, M; Roskos, H G

    2010-05-24

    We report the realization of coherent electro-optical detection of nanosecond terahertz (THz) pulses from an optical parametric oscillator, which is pumped by a Q-switched nanosecond Nd:YVO4 laser at 1064 nm and emits at approximately 1.5 THz. The beam profile and wavefront of the THz beam at focus are electro-optically characterized toward the realization of a real-time THz camera. A peak dynamic range of approximately 37 dB/radical Hz is achieved with single-pixel detection.

  19. Meta-analysis of optical low-coherence reflectometry versus partial coherence interferometry biometry

    PubMed Central

    Huang, Jinhai; McAlinden, Colm; Huang, Yingying; Wen, Daizong; Savini, Giacomo; Tu, Ruixue; Wang, Qinmei

    2017-01-01

    A meta-analysis to compare ocular biometry measured by optical low-coherence reflectometry (Lenstar LS900; Haag Streit) and partial coherence interferometry (the IOLMaster optical biometer; Carl Zeiss Meditec). A systematic literature search was conducted for articles published up to August 6th 2015 in the Cochrane Library, PubMed, Medline, Embase, China Knowledge Resource Integrated Database and Wanfang Data. A total of 18 studies involving 1921 eyes were included. There were no statistically significant differences in axial length (mean difference [MD] 0 mm; 95% confidence interval (CI) −0.08 to 0.08 mm; p = 0.92), anterior chamber depth (MD 0.02 mm; 95% CI −0.07 to 0.10 mm; p = 0.67), flat keratometry (MD −0.05 D; 95% CI −0.16 to 0.06 D; p = 0.39), steep keratometry (MD −0.09 D; 95% CI −0.20 to 0.03 D; p = 0.13), and mean keratometry (MD −0.15 D; 95% CI −0.30 to 0.00 D; p = 0.05). The white to white distance showed a statistically significant difference (MD −0.14 mm; 95% CI −0.25 to −0.02 mm; p = 0.02). In conclusion, there was no difference in the comparison of AL, ACD and keratometry readings between the Lenstar and IOLMaster. However the WTW distance indicated a statistically significant difference between the two devices. Apart from the WTW distance, measurements for AL, ACD and keratometry readings may be used interchangeability with both devices. PMID:28233846

  20. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.

    PubMed

    Syc, Stephanie B; Saidha, Shiv; Newsome, Scott D; Ratchford, John N; Levy, Michael; Ford, E'tona; Crainiceanu, Ciprian M; Durbin, Mary K; Oakley, Jonathan D; Meyer, Scott A; Frohman, Elliot M; Calabresi, Peter A

    2012-02-01

    Post-mortem ganglion cell dropout has been observed in multiple sclerosis; however, longitudinal in vivo assessment of retinal neuronal layers following acute optic neuritis remains largely unexplored. Peripapillary retinal nerve fibre layer thickness, measured by optical coherence tomography, has been proposed as an outcome measure in studies of neuroprotective agents in multiple sclerosis, yet potential swelling during the acute stages of optic neuritis may confound baseline measurements. The objective of this study was to ascertain whether patients with multiple sclerosis or neuromyelitis optica develop retinal neuronal layer pathology following acute optic neuritis, and to systematically characterize such changes in vivo over time. Spectral domain optical coherence tomography imaging, including automated retinal layer segmentation, was performed serially in 20 participants during the acute phase of optic neuritis, and again 3 and 6 months later. Imaging was performed cross-sectionally in 98 multiple sclerosis participants, 22 neuromyelitis optica participants and 72 healthy controls. Neuronal thinning was observed in the ganglion cell layer of eyes affected by acute optic neuritis 3 and 6 months after onset (P < 0.001). Baseline ganglion cell layer thicknesses did not demonstrate swelling when compared with contralateral unaffected eyes, whereas peripapillary retinal nerve fibre layer oedema was observed in affected eyes (P = 0.008) and subsequently thinned over the course of this study. Ganglion cell layer thickness was lower in both participants with multiple sclerosis and participants with neuromyelitis optica, with and without a history of optic neuritis, when compared with healthy controls (P < 0.001) and correlated with visual function. Of all patient groups investigated, those with neuromyelitis optica and a history of optic neuritis exhibited the greatest reduction in ganglion cell layer thickness. Results from our in vivo longitudinal study

  1. Optical modeling of sunlight by using partially coherent sources in organic solar cells.

    PubMed

    Alaibakhsh, Hamzeh; Darvish, Ghafar

    2016-03-01

    We investigate the effects of coherent and partially coherent sources in optical modeling of organic solar cells. Two different organic solar cells are investigated: one without substrate and the other with a millimeter-sized glass substrate. The coherent light absorption is calculated with rigorous coupled-wave analysis. The result of this method is convolved with a distribution function to calculate the partially coherent light absorption. We propose a new formulation to accurately model sunlight as a set of partially coherent sources. In the structure with glass substrate, the accurate sunlight modeling results in the elimination of coherent effects in the thick substrate, but the coherency in other layers is not affected. Using partially coherent sources instead of coherent sources for simulations with sunlight results in a smoother absorption spectrum, but the change in the absorption efficiency is negligible.

  2. In vivo quantification of cochlin in glaucomatous DBA/2J mice using optical coherence tomography

    PubMed Central

    Wang, Jianhua; Aljohani, Ayman; Carreon, Teresia; Gregori, Giovanni; Bhattacharya, Sanjoy K.

    2015-01-01

    The expression of cochlin in the trabecular meshwork (TM) precedes the clinical glaucoma symptoms in DBA/2J mice. The ability to quantify cochlin in the local tissue (TM) offers potential diagnostic and prognostic values. We present two (spectroscopic and magnetomotive) optical coherence tomography (OCT) approaches for in vivo cochlin quantification in a periodic manner. The cochlin-antibody OCT signal remains stable for up to 24 hours as seen at 3.5 hours after injection allowing for repeated quantification in the living mouse eyes. PMID:26047051

  3. Measurement of the refractive index of human teeth by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Meng, Zhuo; Yao, X. Steve; Yao, Hui; Liang, Yan; Liu, Tiegen; Li, Yanni; Wang, Guanhua; Lan, Shoufeng

    2009-05-01

    We describe a novel method based on optical coherence tomography (OCT) for the accurate measurement of the refractive index of in vitro human teeth. We obtain the refractive indices of enamel, dentin, and cementum to be 1.631+/-0.007, 1.540+/-0.013, and 1.582+/-0.010, respectively. The profile of the refractive index is readily obtained via an OCT B scan across a tooth. This method can be used to study the refractive index changes caused by dental decay and therefore has great potential for the clinical diagnosis of early dental caries.

  4. Potential of optical coherence tomography for early diagnosis of oral malignancies

    PubMed Central

    DeCoro, Michael; Wilder-Smith, Petra

    2014-01-01

    With nearly 1,500,000 new patients diagnosed every year in the USA, cancer poses a considerable challenge to healthcare today. Oral cancer is responsible for a sizeable portion of deaths due to cancer, primarily because it is diagnosed at a late stage when the prognosis is poor. Current methods for diagnosing oral cancer need to be augmented by better early detection, monitoring and screening modalities. A new approach is needed that provides real-time, accurate, noninvasive diagnosis. The results of early clinical trials using in vivo optical coherence tomography for the diagnosis of oral dysplasia and malignancy are encouraging. PMID:20214513

  5. Quantitative evaluation of dental abfraction and attrition using a swept-source optical coherence tomography system.

    PubMed

    Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Podoleanu, Adrian Gh

    2014-02-01

    A fast swept-source optical coherence tomography (SS-OCT) system is employed to acquire volumes of dental tissue, in order to monitor the temporal evolution of dental wear. An imaging method is developed to evaluate the volume of tissue lost in ex vivo artificially induced abfractions and attritions. The minimal volume (measured in air) that our system could measure is 2352 μm3. A volume of 25,000 A-scans is collected in 2.5 s. All these recommend the SS-OCT method as a valuable tool for dynamic evaluation of the abfraction and attrition with remarkable potential for clinical use.

  6. Miniature optical coherence tomography system based on silicon photonics

    NASA Astrophysics Data System (ADS)

    Margallo-Balbás, Eduardo; Pandraud, Gregory; French, Patrick J.

    2008-02-01

    Optical Coherence Tomography (OCT) is a promising medical imaging technique. It has found applications in many fields of medicine and has a large potential for the optical biopsy of tumours. One of the technological challenges impairing faster adoption of OCT is the relative complexity of the optical instrumentation required, which translates into expensive and bulky setups. In this paper we report an implementation of Time Domain OCT (TD-OCT) based on a silicon photonic platform. The devices are fabricated using Silicon-On-Insulator (SOI) wafers, on which rib waveguides are defined. While most of the components needed are well-known in this technology, a fast delay line with sufficient scanning range is a specific requirement of TD-OCT. In the system reported, this was obtained making use of the thermo-optical effect of silicon. By modulating the thermal resistance of the waveguide to the substrate, it is possible to establish a trade-off between maximum working frequency and power dissipation. Within this trade-off, the systems obtained can be operated in the kHz range, and they achieve temperature shifts corresponding to scanning ranges of over 2mm. Though the current implementation still requires external sources and detectors to be coupled to the Planar Lightwave Circuit (PLC), future work will include three-dimensional integration of these components onto the substrate. With the potential to include the read-out and driving electronics on the same die, the reported approach can yield extremely compact and low-cost TD-OCT systems, enabling a wealth of new applications, including gastrointestinal pills with optical biopsy capabilities.

  7. Quasiparticle Representation of Coherent Nonlinear Optical Signals of Multiexcitons

    NASA Astrophysics Data System (ADS)

    Fingerhut, Benjamin; Bennet, Kochise; Roslyak, Oleksiy; Mukamel, Shaul

    2013-03-01

    Elementary excitations of many-Fermion systems can be described within the quasiparticle approach which is widely used in the calculation of transport and optical properties of metals, semiconductors, molecular aggregates and strongly correlated quantum materials. The excitations are then viewed as independent harmonic oscillators where the many-body interactions between the oscillators are mapped into anharmonicities. We present a Green's function approach based on coboson algebra for calculating nonlinear optical signals and apply it onwards the study of two and three exciton states. The method only requires the diagonalization of the single exciton manifold and avoids equations of motion of multi-exciton manifolds. Using coboson algebra many body effects are recast in terms of tetradic exciton-exciton interactions: Coulomb scattering and Pauli exchange. The physical space of Fermions is recovered by singular-value decomposition of the over-complete coboson basis set. The approach is used to calculate third and fifth order quantum coherence optical signals that directly probe correlations in two- and three exciton states and their projections on the two and single exciton manifold.

  8. Cancellation of coherent synchrotron radiation kicks with optics balance.

    PubMed

    Di Mitri, S; Cornacchia, M; Spampinati, S

    2013-01-04

    Minimizing transverse emittance is essential in linear accelerators designed to deliver very high brightness electron beams. Emission of coherent synchrotron radiation (CSR), as a contributing factor to emittance degradation, is an important phenomenon to this respect. A manner in which to cancel this perturbation by imposing certain symmetric conditions on the electron transport system has been suggested.We first expand on this idea by quantitatively relating the beam Courant-Snyder parameters to the emittance growth and by providing a general scheme of CSR suppression with asymmetric optics, provided it is properly balanced along the line. We present the first experimental evidence of this cancellation with the resultant optics balance of multiple CSR kicks: the transverse emittance of a 500 pC, sub-picosecond, high brightness electron beam is being preserved after the passage through the achromatic transfer line of the FERMI@Elettra free electron laser, and emittance growth is observed when the optics balance is intentionally broken. We finally show the agreement between the theoretical model and the experimental results. This study holds the promise of compact dispersive lines with relatively large bending angles, thus reducing costs for future electron facilities.

  9. Compact piezoelectric transducer fiber scanning probe for optical coherence tomography.

    PubMed

    Zhang, Ning; Tsai, Tsung-Han; Ahsen, Osman O; Liang, Kaicheng; Lee, Hsiang-Chieh; Xue, Ping; Li, Xingde; Fujimoto, James G

    2014-01-15

    We developed a compact, optical fiber scanning piezoelectric transducer (PZT) probe for endoscopic and minimally invasive optical coherence tomography (OCT). Compared with previous forward-mount fiber designs, we present a reverse-mount design that achieves a shorter rigid length. The fiber was mounted at the proximal end of a quadruple PZT tube and scanned inside the hollow PZT tube to reduce the probe length. The fiber resonant frequency was 338 Hz using a 17-mm-long fiber. A 0.9 mm fiber deflection was achieved with a driving amplitude of 35 V. Using a GRIN lens-based optical design with a 1.3× magnification, a ∼6 μm spot was scanned over a 1.2 mm diameter field. The probe was encased in a metal hypodermic tube with a ∼25 mm rigid length and covered with a 3.2 mm outer diameter (OD) plastic sheath. Imaging was performed with a swept source OCT system based on a Fourier domain modelocked laser (FDML) light source at a 240 kHz axial scan rate and 8 μm axial resolution (in air). En face OCT imaging of skin in vivo and human colon ex vivo was demonstrated.

  10. Inverse problems of combined photoacoustic and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Elbau, Peter; Mindrinos, Leonidas; Scherzer, Otmar

    2017-02-01

    Optical coherence tomography (OCT) and photoacoustic tomography (PAT) are emerging non-invasive biological and medical imaging techniques. It is a recent trend in experimental science to design experiments that perform PAT and OCT imaging at once. In this paper we present a mathematical model describing the dual experiment. Since OCT is mathematically modelled by Maxwell's equations or some simplifications of it, whereas the light propagation in quantitative photoacoustics is modelled by (simplifications of) the radiative transfer equation, the first step in the derivation of a mathematical model of the dual experiment is to obtain a unified mathematical description, which in our case are Maxwell's equations. As a by-product we therefore derive a new mathematical model of photoacoustic tomography based on Maxwell's equations. It is well known by now, that without additional assumptions on the medium, it is not possible to uniquely reconstruct all optical parameters from either one of these modalities alone. We show that in the combined approach one has additional information, compared to a single modality, and the inverse problem of reconstruction of the optical parameters becomes feasible.

  11. Optical Coherence Tomography in Patients with Chiari I Malformation

    PubMed Central

    Perrini, Paolo; Miccoli, Mario; Baggiani, Angelo; Nardi, Marco

    2015-01-01

    Background/Aims. To evaluate optic nerve head with spectral domain optical coherence tomography (OCT) in patients with Chiari I malformation (CMI) compared to healthy controls. Methods. Cross-sectional study. OCT of the optic nerve head of 22 patients with CMI and 22 healthy controls was quantitatively analyzed. The healthy controls were matched for age and sex with the study population. Mean retinal nerve fiber layer (RNFL) thickness was calculated for both eyes; the mean thickness value was also registered for each quadrant and for each subfield of the four quadrants. Results. CMI patients showed a reduction of the RNFL thickness in both eyes. This reduction was more statistically significant (P < 0.05) for the inferior quadrant in the right eye and in each quadrant than nasal one in the left eye. Conclusion. A distress of the retinal nerve fibers could explain the observed reduction of the RNFL thickness in patients with CMI; in our series the reduction of the RNFL thickness seems lower when CMI is associated with syringomyelia. PMID:25815335

  12. Method for optical coherence elastography of the cornea

    NASA Astrophysics Data System (ADS)

    Ford, Matthew R.; Dupps, William J.; Rollins, Andrew M.; Roy, Abhijit Sinha; Hu, Zhilin

    2011-01-01

    The material properties of the cornea are important determinants of corneal shape and refractive power. Corneal ectatic diseases, such as keratoconus, are characterized by material property abnormalities, are associated with progressive thinning and distortion of the cornea, and represent a leading indication for corneal transplantation. We describe a corneal elastography technique based on optical coherence tomography (OCT) imaging, in which displacement of intracorneal optical features is tracked with a 2-D cross-correlation algorithm as a step toward nondestructive estimation of local and directional corneal material properties. Phantom experiments are performed to measure the effects of image noise and out-of-plane displacement on effectiveness of displacement tracking and demonstrated accuracy within the tolerance of a micromechanical translation stage. Tissue experiments demonstrate the ability to produce 2-D maps of heterogeneous intracorneal displacement with OCT. The ability of a nondestructive optical method to assess tissue under in situ mechanical conditions with physiologic-range stress levels provides a framework for in vivo quantification of 3-D corneal elastic and viscoelastic resistance, including analogs of shear deformation and Poisson's ratio that may be relevant in the early diagnosis of corneal ectatic disease.

  13. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  14. Coherent Fiber Optic Coupling Techniques For Downhole Imaging Camerasl

    NASA Astrophysics Data System (ADS)

    Cameron, George R.

    1987-10-01

    Cameras used to monitor underground nuclear testing experiments are subjected to a variety of harsh conditions which must be accounted for during the design phase. Since experiments are buried several thousand feet below ground, reliability is of foremost concern. Many of the cameras designed at Lawrence Livermore Laboratory contain coherent fiber optic components such as microchannel plate image intensifiers, fiber optic reducers, and diode or CCD imaging arrays. Coupling of these components calls for hardware which will maintain precise contact and alignment in conditions of high vibration, large thermal transition, and high humidity. In addition, the hardware must be easily assembled by untrained technical personnel under less than ideal conditions (windy, dusty, rainy, etc.). A high speed imaging camera based upon a Fairchild CCD array chip was designed at Livermore in 1984. Problems in coupling the array window to a fiber optic reducer were aggravated by mounting of the array chip rigidly to the main video circuit board. A new array chip daughter board, attached by flat ribbon cable and supported by a spring loaded lever combination was designed to overcome the problem. The hardware did not increase the overall size of the existing camera and increased the unit cost by less than 1 K$. The design of this hardware will be discussed along with useful techniques for designers of cameras used in harsh environments.

  15. Method for optical coherence elastography of the cornea

    PubMed Central

    Ford, Matthew R.; Dupps, William J.; Rollins, Andrew M.; Roy, Abhijit Sinha; Hu, Zhilin

    2011-01-01

    The material properties of the cornea are important determinants of corneal shape and refractive power. Corneal ectatic diseases, such as keratoconus, are characterized by material property abnormalities, are associated with progressive thinning and distortion of the cornea, and represent a leading indication for corneal transplantation. We describe a corneal elastography technique based on optical coherence tomography (OCT) imaging, in which displacement of intracorneal optical features is tracked with a 2-D cross-correlation algorithm as a step toward nondestructive estimation of local and directional corneal material properties. Phantom experiments are performed to measure the effects of image noise and out-of-plane displacement on effectiveness of displacement tracking and demonstrated accuracy within the tolerance of a micromechanical translation stage. Tissue experiments demonstrate the ability to produce 2-D maps of heterogeneous intracorneal displacement with OCT. The ability of a nondestructive optical method to assess tissue under in situ mechanical conditions with physiologic-range stress levels provides a framework for in vivo quantification of 3-D corneal elastic and viscoelastic resistance, including analogs of shear deformation and Poisson’s ratio that may be relevant in the early diagnosis of corneal ectatic disease. PMID:21280911

  16. Full-field optical coherence tomography apply in sphere measurements

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Li, Weiwei; li, Juncheng; Wang, Jingyu; Wang, Jianguo

    2016-10-01

    The geometry of a spherical surface, for example that of a precision optic, is completely determined by the radius -of-curvature at one point and the deviation from the perfect spherical form at all other points of the sphere. Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique that utilizes a 2D detector array. This technique avoids mechanical scanning in imaging optics, thereby speeding up the imaging process and enhancing the quality of images. The current paper presents an FF-OCT instrument that is designed to be used in sphere measurement with the principle of multiple delays (MD) OCT to evaluate the curvature and radius of curved objects in single-shot imaging. The optimum combination of the MD principle with the FF-OCT method was evaluated, and the radius of a metal ball was measured with this method. The generated 2n-1 contour lines were obtained by using an MDE with n delays in a single en-face OCT image. This method of measurement, it engaged in the measurement accuracy of spherical and enriches the means of measurement, to make a spherical scan techniques flexible application.

  17. Micro-optical coherence tomography of the mammalian cochlea

    PubMed Central

    Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610

  18. Imaging of artificial cartilage with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eder, K.; Schmitt, R.; Müller-Rath, R.

    2008-02-01

    Tissue Engineering methods have become more and more relevant for orthopedic applications, especially for cartilage repair with autologous chondrocytes. In order to monitor the healing process and bonding between cartilage and the artificial implant, the boundary zone must be imaged non-invasively, for example with OCT. Optical Coherence Tomography (OCT) is a short coherent light based measuring technique which allows the generation of cross-section images of semi-transparent media with a depth resolution of up to 5 μm and a measuring depth of 1-2 mm. Especially for the imaging of cartilage OCT offers new diagnostic possibilities, as conventional methods such as ultrasound and x-ray imaging often do not yield satisfactory resolution or contrast. In this paper, an OCT measurement setup for imaging of human cartilage tissue with OCT is demonstrated, allowing a detection of local damaging and lesions. Furthermore, both compressed and uncompressed collagen gel pads were implanted into human cartilage samples. OCT measurements are presented for samples in different stages of growth, focusing on the boundary zones. Comparisons with histologies are shown, demonstrating the ability of OCT to enable a monitoring of the healing progress in tissue engineering based therapy.

  19. Quantitative Fourier Domain Optical Coherence Tomography Imaging of the Ocular Anterior Segment

    NASA Astrophysics Data System (ADS)

    McNabb, Ryan Palmer

    Clinical imaging within ophthalmology has had transformative effects on ocular health over the last century. Imaging has guided clinicians in their pharmaceutical and surgical treatments of macular degeneration, glaucoma, cataracts and numerous other pathologies. Many of the imaging techniques currently used are photography based and are limited to imaging the surface of ocular structures. This limitation forces clinicians to make assumptions about the underlying tissue which may reduce the efficacy of their diagnoses. Optical coherence tomography (OCT) is a non-invasive, non-ionizing imaging modality that has been widely adopted within the field of ophthalmology in the last 15 years. As an optical imaging technique, OCT utilizes low-coherence interferometry to produce micron-scale three-dimensional datasets of a tissue's structure. Much of the human body consists of tissues that significantly scatter and attenuate optical signals limiting the imaging depth of OCT in those tissues to only 1-2mm. However, the ocular anterior segment is unique among human tissue in that it is primarily transparent or translucent. This allows for relatively deep imaging of tissue structure with OCT and is no longer limited by the optical scattering properties of the tissue. This goal of this work is to develop methods utilizing OCT that offer the potential to reduce the assumptions made by clinicians in their evaluations of their patients' ocular anterior segments. We achieved this by first developing a method to reduce the effects of patient motion during OCT volume acquisitions allowing for accurate, three dimensional measurements of corneal shape. Having accurate corneal shape measurements then allowed us to determine corneal spherical and astigmatic refractive contribution in a given individual. This was then validated in a clinical study that showed OCT better measured refractive change due to surgery than other clinical devices. Additionally, a method was developed to combine

  20. Depths-encoded angular compounding for speckle reduction in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoyuan; Qian, Jie; Chen, Xinjian; Mo, Jianhua

    2016-03-01

    Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.

  1. A Digital Staining Algorithm for Optical Coherence Tomography Images of the Optic Nerve Head

    PubMed Central

    Mari, Jean-Martial; Aung, Tin; Cheng, Ching-Yu; Strouthidis, Nicholas G.; Girard, Michaël J. A.

    2017-01-01

    Purpose To digitally stain spectral-domain optical coherence tomography (OCT) images of the optic nerve head (ONH), and highlight either connective or neural tissues. Methods OCT volumes of the ONH were acquired from one eye of 10 healthy subjects. We processed all volumes with adaptive compensation to remove shadows and enhance deep tissue visibility. For each ONH, we identified the four most dissimilar pixel-intensity histograms, each of which was assumed to represent a tissue group. These four histograms formed a vector basis on which we ‘projected' each OCT volume in order to generate four digitally stained volumes P1 to P4. Digital staining was also verified using a digital phantom, and compared with k-means clustering for three and four clusters. Results Digital staining was able to isolate three regions of interest from the proposed phantom. For the ONH, the digitally stained images P1 highlighted mostly connective tissues, as demonstrated through an excellent contrast increase across the anterior lamina cribrosa boundary (3.6 ± 0.6 times). P2 highlighted the nerve fiber layer and the prelamina, P3 the remaining layers of the retina, and P4 the image background. Further, digital staining was able to separate ONH tissue layers that were not well separated by k-means clustering. Conclusion We have described an algorithm that can digitally stain connective and neural tissues in OCT images of the ONH. Translational Relevance Because connective and neural tissues are considerably altered in glaucoma, digital staining of the ONH tissues may be of interest in the clinical management of this pathology. PMID:28174676

  2. Endoscopic optical coherence tomography based on a microelectromechanical mirror

    NASA Astrophysics Data System (ADS)

    Pan, Yingtian; Xie, Huikai; Fedder, Gary K.

    2001-12-01

    An endoscopic optical coherence tomography (OCT) system based on a microelectromechanical mirror to facilitate lateral light scanning is described. The front-view OCT scope, adapted to the instrument channel of a commercial endoscopic sheath, allows real-time cross-sectional imaging of living biological tissue via direct endoscopic visual guidance. The transverse and axial resolutions of the OCT scope are roughly 20 and 10.2 μm, respectively. Cross-sectional images of 500 × 1000 pixels covering an area of 2.9 mm × 2.8 mm can be acquired at ~5 frames/s and with nearly 100-dB dynamic range. Applications in thickness measurement and bladder tissue imaging are demonstrated.

  3. Optical coherence tomography speckle decorrelation for detecting cell death

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-03-01

    We present a dynamic light scattering technique applied to optical coherence tomography (OCT) for detecting changes in intracellular motion caused by cellular reorganization during apoptosis. We have validated our method by measuring Brownian motion in microsphere suspensions and comparing the measured values to those derived based on particle diffusion calculated using the Einstein-Stokes equation. Autocorrelations of OCT signal intensities acquired from acute myeloid leukemia cells as a function of treatment time demonstrated a significant drop in the decorrelation time after 24 hours of cisplatin treatment. This corresponded with nuclear fragmentation and irregular cell shape observed in histological sections. A similar analysis conducted with multicellular tumor spheroids indicated a shorter decorrelation time in the spheroid core relative to its edges. The spheroid core corresponded to a region exhibiting signs of cell death in histological sections and increased backscatter intensity in OCT images.

  4. Optical coherence tomography of the rat cochlea: preliminary investigations

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; de Boer, Johannes F.; Park, Boris H.; Chen, Zhongping; Nelson, J. Stuart

    1999-06-01

    Optical coherence tomography (OCT) was used to image the internal structure of a rat cochlea. Immediately following sacrifice, the temporal bone of a SPrague-Dawley rat was harvested. Axial OCT cross sectional images (over regions of interest, 1 x 1 mm to 2 x 8 mm) were obtained with a spatial resolution of 10-15 μm. The osseous borders of the lateral membranous labyrinth overlying the cochlea and the scala vestibuli, media, and tympani which were well demarcated by the modiolus, Reissner's and the basilar membranes were clearly identified. OCT can be used to image internal structures in the cochlea without violating the osseous labyrinth, and may potentially be used to diagnose inner ear pathology in vivo in both animal and human subjects.

  5. Split-spectrum phase-gradient optical coherence tomography angiography

    PubMed Central

    Liu, Gangjun; Jia, Yali; Pechauer, Alex D.; Chandwani, Rahul; Huang, David

    2016-01-01

    A phase gradient angiography (PGA) method is proposed for optical coherence tomography (OCT). This method allows the use of phase information to map the microvasculature in tissue without the correction of bulk motion and laser trigger jitter induced phase artifacts. PGA can also be combined with the amplitude/intensity to improve the performance. Split-spectrum technique can further increase the signal to noise ratio by more than two times. In-vivo imaging of human retinal circulation is shown with a 70 kHz, 840 nm spectral domain OCT system and a 200 kHz, 1050 nm swept source OCT system. Four different OCT angiography methods are compared. The best performance was achieved with split-spectrum amplitude and phase-gradient angiography. PMID:27570689

  6. Microvascular contrast enhancement in optical coherence tomography using microbubbles

    NASA Astrophysics Data System (ADS)

    Assadi, Homa; Demidov, Valentin; Karshafian, Raffi; Douplik, Alexandre; Vitkin, I. Alex

    2016-07-01

    Gas microbubbles (MBs) are investigated as intravascular optical coherence tomography (OCT) contrast agents. Agar + intralipid scattering tissue phantoms with two embedded microtubes were fabricated to model vascular blood flow. One was filled with human blood, and the other with a mixture of human blood + MB. Swept-source structural and speckle variance (sv) OCT images, as well as speckle decorrelation times, were evaluated under both no-flow and varying flow conditions. Faster decorrelation times and higher structural and svOCT image contrasts were detected in the presence of MB in all experiments. The effects were largest in the svOCT imaging mode, and uniformly diminished with increasing flow velocity. These findings suggest the feasibility of utilizing MB for tissue hemodynamic investigations and for microvasculature contrast enhancement in OCT angiography.

  7. Correlation between optical coherence tomography images and histology of pigskin

    NASA Astrophysics Data System (ADS)

    Kuranov, Roman; Sapozhnikova, Veronika; Prough, Donald; Cicenaite, Inga; Esenaliev, Rinat

    2007-04-01

    Noninvasive imaging techniques such as optical coherence tomography (OCT) are being widely used for early diagnostics of a variety of pathologies. Traditional tissue preparation for histological evaluation alters the dimensions of histological images such that differences between the dimensions of histologic and OCT images can be as great as 2.5-fold. This discrepancy complicates quantitative interpretation of OCT images. Here we used a steel ring sewn to the pigskin to avoid tissue deformation due to excision and fixation and used a surgical suture as a fixed tissue marker. With these techniques, we achieved good correlation between OCT and histological images with differences of less than 10%. The resulting method significantly enhances the diagnostic capabilities of the OCT technique.

  8. Improving resolution of optical coherence tomography for imaging of microstructures

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Lu, Hui; Wang, James H.; Wang, Michael R.

    2015-03-01

    Multi-frame superresolution technique has been used to improve the lateral resolution of spectral domain optical coherence tomography (SD-OCT) for imaging of 3D microstructures. By adjusting the voltages applied to ? and ? galvanometer scanners in the measurement arm, small lateral imaging positional shifts have been introduced among different C-scans. Utilizing the extracted ?-? plane en face image frames from these specially offset C-scan image sets at the same axial position, we have reconstructed the lateral high resolution image by the efficient multi-frame superresolution technique. To further improve the image quality, we applied the latest K-SVD and bilateral total variation denoising algorithms to the raw SD-OCT lateral images before and along with the superresolution processing, respectively. The performance of the SD-OCT of improved lateral resolution is demonstrated by 3D imaging a microstructure fabricated by photolithography and a double-layer microfluidic device.

  9. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Chuan; Chou, Nai-Kuan; Chou, Chien; Lai, Chih-Ming; Huang, Huan-Jang; Wang, Shoei-Shen; Shyu, Jeou-Jong

    2007-05-01

    Polarization-sensitive optical coherence tomography (PS-OCT) combines the advantages of OCT with image contrast enhancement, which is based on its ability to detect phase retardation and the fast-axis angle. Both PS-OCT images and histopathology have demonstrated similar features that allowed differentiation of atherosclerotic structures (i.e., plaques) from normal tissue. Moreover, the picrosirius polarization method was used to confirm PS-OCT assessment of collagen in the fibrous cap of atherosclerotic plaques, and high-frequency (40 MHz) ultrasound images were used to identify calcium in the vessel wall. Our preliminary ex vivo investigation of human aortic specimens indicated that PS-OCT might help to identify atherosclerotic lesions.

  10. Specificity of noninvasive blood glucose monitoring with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-07-01

    Management of diabetic disease requires frequent monitoring of blood glucose concentration. Development of a noninvasive technique capable of reliable and sensitive monitoring of blood glucose concentration would considerably improve quality of life of diabetic patients and reduce mortality associated with this disease. Recently, we proposed to use Optical Coherence Tomography (OCT) technique for noninvasive glucose monitoring. In this paper, we tested in animals several aspects of specificity of noninvasive blood glucose monitoring with the OCT technique. Influence of temperature and tissue heterogeneity on the OCT signal profile is experimentally studied in this paper. We also theoretically investigated the changes in tissue scattering induced by variation of concentration of glucose and other osmolytes. Obtained results suggest that although several physical and chemical agents could potentially interfere with blood glucose concentration measurements using the OCT technique, their effect is smaller compared to that of glucose under normal physiological conditions.

  11. Detecting early stage osteoarthritis by optical coherence tomography?

    PubMed Central

    Jahr, Holger; Brill, Nicolai; Nebelung, Sven

    2015-01-01

    Abstract Osteoarthritis (OA) is the most common chronic disease of our joints, manifested by a dynamically increasing degeneration of hyaline articular cartilage (AC). While currently no therapy can reverse this process, the few available treatment options are hampered by the inability of early diagnosis. Loss of cartilage surface, or extracellular matrix (ECM), integrity is considered the earliest sign of OA. Despite the increasing number of imaging modalities surprisingly few imaging biomarkers exist. In this narrative review, recent developments in optical coherence tomography are critically evaluated for their potential to assess different aspects of AC quality as biomarkers of OA. Special attention is paid to imaging surface irregularities, ECM organization and the evaluation of posttraumatic injuries by light-based modalities. PMID:26862954

  12. 4D embryonic cardiography using gated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  13. LightPipes: software for education in coherent optics

    NASA Astrophysics Data System (ADS)

    Vdovin, Gleb V.; van Brug, Hedser H.; van Goor, Frederik A.

    1997-12-01

    LightPipes is a portable set of software tools, designed to model the propagation of coherent light in optical systems using a numerical approximations of the scalar theory of diffraction. Models of interferometers, laser resonators, waveguides, holographic setups and many more can be easily built using the components of the package. The command-line shell-based version of the toolbox written originally in C works under Unix, MSDOS and MAC OS. The toolbox also exists as a stand-alone program written in C++, which can be compiled virtually under any existing operational system. A MathCad port of LightPipes provides an extended user interface and full compatibility with the MathCad environment, the Java port allows for running the package over the net using the Netscape web browser.

  14. QAM quantum stream cipher using digital coherent optical transmission.

    PubMed

    Nakazawa, Masataka; Yoshida, Masato; Hirooka, Toshihiko; Kasai, Keisuke

    2014-02-24

    A Quantum Stream Cipher (QSC) using Quadrature Amplitude Modulation (QAM) is presented to greatly increase the secure degree compared with ASK or PSK/QSC. We propose encoding multi-bit data in one symbol with a multi-bit basis state, resulting in QAM/QSC, which employs amplitude and phase encryption of the light beam simultaneously. A 16 QAM/QSC experiment at 10 Gbit/s was successfully carried out over 160 km using a digital coherent optical transmission technique, where 16 QAM data were encrypted in a constellation with 32 × 32~4096 × 4096 symbols. We show experimentally that the Number of Masked Signals (NMS) in the quantum noise Γ(QAM) for QAM/QSC becomes a square multiple larger than Γ(ASK) for ASK/QSC. Γ(QAM) exceeds 10,000. This result indicates that the QSC technique is more robust against eavesdroppers than ASK or PSK/QSC.

  15. Spectrometer calibration for spectroscopic Fourier domain optical coherence tomography

    PubMed Central

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2016-01-01

    We propose a simple and robust procedure for Fourier domain optical coherence tomography (FdOCT) that allows to linearize the detected FdOCT spectra to wavenumber domain and, at the same time, to determine the wavelength of light for each point of detected spectrum. We show that in this approach it is possible to use any measurable physical quantity that has linear dependency on wavenumber and can be extracted from spectral fringes. The actual values of the measured quantity have no importance for the algorithm and do not need to be known at any stage of the procedure. As example we calibrate a spectral OCT spectrometer using Doppler frequency. The technique of spectral calibration can be in principle adapted to of all kind of Fourier domain OCT devices. PMID:28018723

  16. Raman spectra and optical coherent tomography images of skin

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Delgado-Atencio, J. A.; Vazquez-Villa, A.

    2011-03-01

    The optical coherence tomography images are useful to see the internal profile and the structure of material samples. In this work, OCT images were recorded in 10 volunteers with different skin tone which were related to Raman spectra. The areas where we obtained OCT images and Raman spectra were a) index finger nail, b) between index finger and middle finger, c) middle finger tip, d) half of middle finger, e) the thumb finger tip and f) between index finger and thumb, areas measured were for the purpose of finding extracellular fluids with contain triglycerides, cholesterol and glucose that are reported in the literature. The excitation wavelength used for this work was 785 nm, a spectrometer of 6 cm-1 resolution. The spectral region used ranges from 300 to 1800 cm-1. We use an OCT with 930 nm of Central Wavelength, 1.6 mm of Image Depth, 6 mm of image width and 6.2 μm of axial resolution.

  17. Imaging of mouse embryonic eye development using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Kasiraj, Alyssa; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2010-02-01

    Congenital abnormalities are often caused by genetic disorders which alter the normal development of the eye. Embryonic eye imaging in mouse model is important for understanding of normal and abnormal eye development and can contribute to prevention and treatment of eye defects in humans. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) to image eye structure in mouse embryos at 12.5 to 17.5 days post coitus (dpc). The imaging depth of the OCT allowed us to visualize the whole eye globe at these stages. Different ocular tissues including lens, cornea, eyelids, and hyaloid vasculature were visualized. These results suggest that OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  18. Structural characterization of hair fiber by optical coherence tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Freitas, Anderson Zanardi; Robes Velasco, Maria Valeria; Paulo Raele, Marcus; Kaneko, Telma Mary; Vieira, Nilson Dias, Jr.; Baby, Andre Rolim

    2008-09-01

    In this work we use the optical coherence tomography (OCT) technique to produce in vitro transversal section images of human hair. It was possible to identify in the A-scan protocol its principal structures: cuticle, cortex and medulla. The mean diameter of medulla was 29 +/- 7 μm and hair diameter was 122 +/- 16 μm in our samples of standard Afro-ethnic hair. We also compared the OCT signal before and after chemical treatment with 18% w/w ammonium thioglycolate solution. After chemical treatment, it was not possible to identify the main structures of hair fiber, due the index matching promoted by deleterious action of chemical agent. A tridimensional image was built starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 μm at 8 frames per second, and the whole 3D image was built in 60 seconds.

  19. Optical coherence tomography for vulnerability assessment of sandstone.

    PubMed

    Bemand, Elizabeth; Liang, Haida

    2013-05-10

    Sandstone is an important cultural heritage material, in both architectural and natural settings, such as neolithic rock art panels. The majority of deterioration effects in porous materials such as sandstone are influenced by the presence and movement of water through the material. The presence of water within the porous network of a material results in changes in the optical coherence tomography signal intensity that can be used to monitor the wetting front of water penetration of dry porous materials at various depths. The technique is able to detect wetting front velocities from 1 cm s(-1) to 10(-6) cm s(-1), covering the full range of hydraulic conductivities likely to occur in natural sandstones from pervious to impervious.

  20. Real-time multi-functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hyle Park, Boris; Pierce, Mark D.; Cense, Barry; de Boer, Johannes F.

    2003-04-01

    We demonstrate real-time acquisition, processing, and display of tissue structure, birefringence, and blood flow in a multi-functional optical coherence tomography (MF-OCT) system. This is accomplished by efficient data processing of the phase-resolved inteference patterns without dedicated hardware or extensive modification to the high-speed fiber-based OCT system. The system acquires images of 2048 depth scans per second, covering an area of 5 mm in width × 1.2 mm in depth with real-time display updating images in a rolling manner 32 times each second. We present a video of the system display as images from the proximal nail fold of a human volunteer are taken.

  1. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    PubMed

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  2. Crowded optic nerve head evaluation with optical coherence tomography in anterior ischemic optic neuropathy.

    PubMed

    Moghimi, S; Afzali, M; Akbari, M; Ebrahimi, K B; Khodabande, A; Yazdani-Abyaneh, A R; Ghafouri, S N H; Coh, P; Okhravi, S; Fard, M A

    2017-04-07

    PurposeTo characterize the optic nerve head (ONH) structure in patients with non-arteritic anterior ischemic optic neuropathy (NAION) compared to healthy control subjects using spectral domain optical coherence tomography (SD-OCT) via the enhanced depth imaging method.MethodsIn this prospective, cross-sectional, comparative study, we assessed 66 eyes of 33 patients with unilateral NAION and 31 eyes of 31 healthy normal subjects in an academic institution. The peripapillary nerve fiber layer thickness, disc area, and quantitative parameters of the ONH structures, including the Bruch's membrane opening (BMO) area, anterior laminar depth, and prelaminar thickness and depth were compared between the three groups.ResultsLinear mixed model analysis after adjusting for age, sex, and axial length showed that the BMO area was similar in eyes with NAION (1.89±0.33 mm(2)), their fellow eyes (1.85±0.35 mm(2)), and control eyes (1.88±0.37 mm(2); all P>0.99). Anterior laminar depth was also similar in the three groups. The mean prelaminar tissue thickness of the NAION eyes was 445±176 μm, which was thinner than the prelaminar tissue of their unaffected fellow eyes (mean, 539±227 μm, P=0.004), but both were thicker than the prelaminar tissue of the normal subjects (mean 243±145 μm, P=0.001 and P<0.001, respectively).ConclusionsThe thick prelaminar thickness is associated with unilateral NAION in the affected and unaffected eyes.Eye advance online publication, 7 April 2017; doi:10.1038/eye.2017.56.

  3. Whole-field geophysical measurements using coherent optics

    SciTech Connect

    Conley, E.

    1997-10-01

    This paper describes powerful methods of optics and mechanics brought to bear on important geomechanical problems. Whole-field surface glacier ice flow and mine-wall strains were mapped in two separate feasibility studies using high-resolution photography and coherent light to interrogate the images. Young`s fringe patterns result when a double-exposed transparency of a deforming surface is illuminated by a narrow beam of coherent light. Geometry gives a relationship between the surface displacement vector and the interference fringe patterns. The displacement occurring during the time-lapse interval is thus known. When applied to the surface of the Nisqually Glacier, Mt Rainier National Park, WA, the speckle method yielded ice flow data that was compared with similar flow data acquired by surveying techniques. In the areas for which results can be compared, our experiments yield a flow of .6 meters/day where conventional methods yield about .4 meters/day. The same photographic technique was applied to measure the visco-plastic deformation of a proposed nuclear waste repository carved into bedded salt deep in the earth`s crust Data reduction concluded with the differentiation of the displacement vector map to obtain the two-dimensional strain rate field which correlated well with extensometer-gathered data. The research demonstrates the feasibility of using whole-field optical techniques to map ice flow and mine-wall strains, and confirms certain, but not all, measurements of point-by-point instruments. Field work, data analysis, and additional potential applications of the speckle photography method are indicated.

  4. Investigation of murine vasodynamics by Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Meißner, Sven; Müller, Gregor; Walther, Julia; Krüger, Alexander; Cuevas, Maximiliano; Eichhorn, Birgit; Ravens, Ursula; Morawietz, Henning; Koch, Edmund

    2007-07-01

    In vivo imaging of blood vessels obtain useful insights in characterizing the dynamics of vasoconstriction and vasodilation. Fourier domain optical Coherence Tomography (FD-OCT) imaging technique permits in vivo investigation of blood vessels in their anatomical context without preparation traumata by temporal resolved image stacks. OCT is an optical, contact less imaging technique based on Michelson interferometry of short coherent near infrared light. Particularly by the possibility of a contact-less measurement and the high axial resolution up to 10 microns OCT is superior to an investigation by ultra sound measurement. Furthermore we obtain a high time resolution of vessel dynamic measurements with the used Fourier domain OCT-system by a high A-scan rate [1,22kHz]. In this study the model of saphenous artery was chosen for analyzing function and dynamics. The arteria saphena in the mouse is a suitable blood vessel due to the small inner diameter, a sensitive response to vasoactive stimuli and an advantageous anatomically position. Male wild type mice (C57BL/6) at the age of 8 weeks were fed control or high-fat diet for 10 weeks before analyzing the vasodynamics. The blood vessel was stimulated by dermal application of potassium to induce vasoconstriction or Sodium-Nitroprusside (SNP) to induce vasodilation. The morphology of the a. saphena and vein was determined by 3D image stacks. Time series (72 seconds, 300x512 pixel per frame) of cross-sectional images were analysed using semi automatic image processing software. Time course of dynamic parameters of the vessel was measured.

  5. Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.

    2016-03-01

    Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.

  6. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  7. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.

    PubMed

    Yin, Biwei; Dwelle, Jordan; Wang, Bingqing; Wang, Tianyi; Feldman, Marc D; Rylander, Henry G; Milner, Thomas E

    2015-11-01

    Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics.

  8. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study

    PubMed Central

    Wijns, William; Shite, Junya; Jones, Michael R.; Lee, Stephen W.-L.; Price, Matthew J.; Fabbiocchi, Franco; Barbato, Emanuele; Akasaka, Takashi; Bezerra, Hiram; Holmes, David

    2015-01-01

    Aims ILUMIEN I is the largest prospective, non-randomized, observational study of percutaneous coronary intervention (PCI) procedural practice in patients undergoing intra-procedural pre- and post-PCI fractional flow reserve (FFR) and optical coherence tomography (OCT). We report on the impact of OCT on physician decision-making and the association with post-PCI FFR values and early clinical events. Methods and results Optical coherence tomography and documentary FFR were performed pre- and post-PCI in 418 patients (with 467 stenoses) with stable or unstable angina or NSTEMI. Based on pre-PCI OCT, the procedure was altered in 55% of patients (57% of all stenoses) by selecting different stent lengths (shorter in 25%, longer in 43%). After clinically satisfactory stent implantation using angiographic guidance, post-PCI FFR and OCT were repeated. Optical coherence tomography abnormalities deemed unsatisfactory by the implanting physician were identified: 14.5% malapposition, 7.6% under-expansion, 2.7% edge dissection and prompted further stent optimization based on OCT in 25% of patients (27% of all stenoses) using additional in-stent post-dilatation (81%, 101/124) or placement of 20 new stents (12%). Optimization subgroups were identified post hoc: stent placement without reaction to OCT findings (n = 137), change in PCI planning by pre-PCI OCT (n = 165), post-PCI optimization based on post-PCI OCT (n = 41), change in PCI planning, and post-PCI optimization based on OCT (n = 65). Post-PCI FFR values were significantly different (P = 0.003) between optimization groups (lower in cases with pre- and post-PCI reaction to OCT) but no longer different after post-PCI stent optimization. MACE events at 30 days were low: death 0.25%, MI 7.7%, repeat PCI 1.7%, and stent thrombosis 0.25%. Conclusion Physician decision-making was affected by OCT imaging prior to PCI in 57% and post-PCI in 27% of all cases. ClinicalTrials.gov Identifier NCT01663896, Observational Study of Optical

  9. Characterization of automotive paint by optical coherence tomography.

    PubMed

    Zhang, Ning; Wang, Chengming; Sun, Zhenwen; Mei, Hongcheng; Huang, Wei; Xu, Lei; Xie, Lanchi; Guo, Jingjing; Yan, Yuwen; Li, Zhihui; Xu, Xiaojing; Xue, Ping; Liu, Ningning

    2016-09-01

    Automotive paint is common trace evidence that plays a significant role in many vehicle-related criminal cases. However, the conventional methods of obtaining tomographic images tend to damage the samples. Optical coherence tomography (OCT) is a novel method to obtain high-resolution and cross-sectional images of the automotive paints in a non-destructive, and high-speed manner. In this study, OCT was applied to image and analyze the automotive paint, using scanning electron microscope (SEM) as reference. Eight automotive paint samples of different brands were examined. The images of multi-layer structures provided by OCT system with 5μm depth resolution were consistent with those by SEM. To distinguish different paints with similar visual appearance, we extracted internal structural features from the images using peak analysis and optical attenuation fit. Six characterized parameters were found to distinguish the samples including the optical path length (OPL) of base coat, the optical attenuation coefficient (OAC) of base coat, the OPL of clear coat, the back-scattering ratio (BSR) of clear coat and base coat, the OPL of primer surfacer, and the BSR of base coat and primer. Statistical differences were evaluated by an independent t-test with p<0.05. OCT was applied to analyze repainted paint as well. Three-dimensional OCT reconstruction of the paints was also implemented to create en face (transverse section) images for morphology examination and comparison. These results suggest that OCT imaging can provide additional new features for analyzing the automotive paints and thereby may be a promising supplement to traditional methods. Meanwhile, the OCT system is favorable for achieving in-situ and real-time examination at the scene of crime.

  10. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  11. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    PubMed Central

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  12. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography

    PubMed Central

    Bennett, JL; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, KH; Kim, HJ; Asgari, N; Sato, DK; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients’ RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies. PMID:25662342

  13. Multimodal optical coherence/photoacoustic tomography of skin

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh P.; Zhang, Edward Z.; Považay, Boris; Laufer, Jan; Hofer, Bernd; Glittenberg, Carl; Hermann, Boris; Beard, Paul C.; Drexler, Wolfgang

    2011-03-01

    A novel non-invasive in vivo multimodal optical coherence tomography (OCT)/photoacoustic tomography (PAT) imaging system capable of obtaining structural and functional information simultaneously has been demonstrated in skin. A 1060 nm OCT system acquiring 47k depth-scans/s with ~ 7 μm axial and ~ 20 μm transverse resolutions has been incorporated into a backward-mode PA system based on a planar, optically-transparent Fabry-Perot interferometer (FPI) sensor. In this study, the excitation wavelength was set to 670 nm and a focused laser beam at 1550 nm was used as the sensor interrogation beam. OCT and PAT images were obtained sequentially and the coregistered images were combined to form the final 3D image. OCT/PAT images obtained in vivo from the skin of a hairless mouse and human palmar skin demonstrated the ability of this multimodal imaging system to provide complementary structural and functional information from deeper depths with increased contrast.

  14. Morphological phenotyping of mouse hearts using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.

    2014-11-01

    Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.

  15. Optical coherence tomography in guided surgery of GI cancer

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena V.; Abelevich, Alexander I.; Zagaynov, Vladimir E.; Gladkova, Natalia D.; Denisenko, Arkady N.; Feldchtein, Felix I.; Snopova, Ludmila B.; Kutis, Irina S.

    2005-04-01

    Optical Coherence Tomography (OCT) is a new high spatial resolution, real-time optical imaging modality, known from prior pilot studies for its high sensitivity to invasive cancer. We reported our results in an OCT feasibility study for accurate determination of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. The OCT study enrolled 19 patients with rectal adenocarcinoma and 24 patients with distal esophageal carcinoma (14 squamous cell carcinomas, 10 adenocarcinomas). During pre-surgery planning endoscopy we performed in vivo OCT imaging of the tumor border at four dial clock axes (12, 3, 6 and 9 o"clock). The OCT border then was marked by an electrocoagulator, or by a methylene blue tattoo. A cold biopsy (from the esophagus) was performed at visual and OCT borders and compared with visual and OCT readings. 27 post-surgery excised specimens were analyzed. OCT borders matched the histopathology in 94% cases in the rectum and 83.3% in the esophagus. In the cases of a mismatch between the OCT and histology borders, a deep tumor invasion occurred in the muscle layer (esophagus, rectum). Because of its high sensitivity to mucosal cancer, OCT can be used for pre-surgery planning and surgery guidance of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. However, deep invasion in the rectum or esophageal wall has to be controlled by alternative diagnostic modalities.

  16. In vivo optical coherence tomography of human skin microstructure

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Pravdenko, Kirill I.; Shabanov, Dmitry V.; Gladkova, Natalia D.; Pochinko, Vitaly; Zhegalov, V.; Dmitriev, G.; Vazina, I.; Petrova, Galina P.; Nikulin, Nikolai K.

    1994-12-01

    A compact effective optical coherence tomography (OCT) system is presented. It contains approximately equals 0.3 mW superluminescent diode with spectral width 30 nm FWHM (providing approximately equals 15 micrometers longitudinal resolution) and fiber interferometer with integrated longitudinal scanning. The dynamic range 60 dB allows to observe structure of human skin in vivo up to 1.5 mm in depth. A comparison of obtained tomographs with data of histologic analysis of the same samples of the skin have been carried out to identify the observed structures and determine their optical properties. This technique allows one to perform noncontact, noninvasive diagnostic of early stages of different pathological state of the skin, to measure the burn depth and to observe the process of the recovery. Unlike scanning confocal microscopy, OCT is more suitable for an endoscopic investigation of the mucous membranes of hollow organs. Possible diagnostic applications include dermatology, gastroenterology, gynecology, urology, oncology, othorinolaryngology, transplantology. The most promising features are the potential possibility of differential diagnosis of precancer and various types of cancer, estimation of the invasion depth, differential diagnosis of inflammation and dystrophic processes, control of radical operative treatment.

  17. Polarization sensitive optical coherence tomography in equine bone

    NASA Astrophysics Data System (ADS)

    Jacobs, J. W.; Matcher, S. J.

    2009-02-01

    Optical coherence tomography (OCT) has been used to image equine bone samples. OCT and polarization sensitive OCT (PS-OCT) images of equine bone samples, before and after demineralization, are presented. Using a novel approach, taking a series of images at different angles of illumination, the polar angle and true birefringence of collagen within the tissue is determined, at one site in the sample. The images were taken before and after the bones were passed through a demineralization process. The images show an improvement in depth penetration after demineralization allowing better visualization of the internal structure of the bone and the optical orientation of the collagen. A quantitative measurement of true birefringence has been made of the bone; true birefringence was shown to be 1.9x10-3 before demineralization increasing to 2.7x10-3 after demineralization. However, determined collagen fiber orientation remains the same before and after demineralization. The study of bone is extensive within the field of tissue engineering where an understanding of the internal structures is essential. OCT in bone, and improved depth penetration through demineralization, offers a useful approach to bone analysis.

  18. Lung vasculature imaging using speckle variance optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Anthony M. D.; Lane, Pierre M.; McWilliams, Annette; Shaipanich, Tawimas; MacAulay, Calum E.; Yang, Victor X. D.; Lam, Stephen

    2012-02-01

    Architectural changes in and remodeling of the bronchial and pulmonary vasculature are important pathways in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. However, there is a lack of methods that can find and examine small bronchial vasculature in vivo. Structural lung airway imaging using optical coherence tomography (OCT) has previously been shown to be of great utility in examining bronchial lesions during lung cancer screening under the guidance of autofluorescence bronchoscopy. Using a fiber optic endoscopic OCT probe, we acquire OCT images from in vivo human subjects. The side-looking, circumferentially-scanning probe is inserted down the instrument channel of a standard bronchoscope and manually guided to the imaging location. Multiple images are collected with the probe spinning proximally at 100Hz. Due to friction, the distal end of the probe does not spin perfectly synchronous with the proximal end, resulting in non-uniform rotational distortion (NURD) of the images. First, we apply a correction algorithm to remove NURD. We then use a speckle variance algorithm to identify vasculature. The initial data show a vascaulture density in small human airways similar to what would be expected.

  19. Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry.

    PubMed

    Chen, Siyu; Yi, Ji; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2015-09-01

    Optical coherence tomography (OCT) oximetry explores the possibility to measure retinal hemoglobin oxygen saturation level (sO2). We investigated the accuracy of OCT retinal oximetry using Monte Carlo simulation in a commonly used four-layer retinal model. After we determined the appropriate number of simulated photon packets, we studied the effects of blood vessel diameter, signal sampling position, physiological sO2 level, and the blood packing factor on the accuracy of sO2 estimation in OCT retinal oximetry. The simulation results showed that a packing factor between 0.2 and 0.4 yields a reasonably accurate estimation of sO2 within a 5% error tolerance, which is independent of vessel diameter and sampling position, when visible-light illumination is used in OCT. We further explored the optimal optical spectral range for OCT retinal oximetry. The simulation results suggest that visible spectral range around 560 nm is better suited than near-infrared spectral range around 800 nm for OCT oximetry to warrant accurate measurements.

  20. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.

    2015-05-01

    Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.