Have Clinical Trials Properly Assessed c-Met Inhibitors?
Hughes, Veronica S; Siemann, Dietmar W
2018-02-01
The c-Met/HGF pathway is implicated in cancer progression and dissemination. Many inhibitors have been developed to target this pathway. Unfortunately, most trials have failed to demonstrate efficacy. However, clinical trials have not adequately tested the concept of c-Met pathway inhibition due to the lack of appropriate patient selection criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Horne, Gillian A; Copland, Mhairi
2017-05-01
Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.
[Interdisciplinary clinical pathway for colorectal cancer].
Fischbach, W; Engemann, R
2006-07-01
Limited financial resources in public health care have led to the introduction of clinical pathways as a means to a better effectivity and efficacy. Colorectal cancer met the requirements for establishing such a pathway in a distinguished way: high patient volume, high costs, interdisciplinary multi-modal treatment concepts in a relevant frequency, and existing evidence based guidelines. This article gives an example of a clinical pathway for colorectal cancer as established in our hospital. The potential of such pathways to save costs as well as their implications on treatment results and patients' satisfaction will have to be critically analyzed in the future before their value can be definitely estimated.
Molecular pathways and therapeutic targets in lung cancer
Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi
2014-01-01
Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523
Clinical implications of hedgehog signaling pathway inhibitors
Liu, Hailan; Gu, Dongsheng; Xie, Jingwu
2011-01-01
Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and Carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated Carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications. PMID:21192841
Biomarkers in the Detection of Prostate Cancer in African Americans
2014-09-01
tissues by Taqman low density array: application to Hedgehog and Wnt pathway analysis in ovarian endome- trioid adenocarcinoma . J. Mol. Diagn. 8 : 76...2007) Hedgehog pathway expression in heterogeneous pancreatic adenocarcinoma: implications for the molecular analysis of clinically available
mTOR Pathways in Cancer and Autophagy.
Paquette, Mathieu; El-Houjeiri, Leeanna; Pause, Arnim
2018-01-12
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
A proposed clinical research support career pathway for noninvestigators.
Smith, Sheree; Gullick, Janice; Ballard, Jacqueline; Perry, Lin
2018-06-01
To discuss the international experience of clinical research support for noninvestigator roles and to propose a new pathway for Australia, to promote a sustainable research support workforce capable of delivering high-quality clinical research. Noninvestigator research support roles are currently characterized by an ad hoc approach to training, with limited role delineation and perceived professional isolation with implications for study completion rates and participant safety. A focused approach to developing and implementing research support pathways has improved patient recruitment, study completion, job satisfaction, and research governance. The Queensland and New South Wales state-based Nurses' Awards, the Australian Qualifications Framework, and a University Professional (Research) Staff Award. Research nurses in the clinical environment improve study coordination, adherence to study protocol, patient safety, and clinical care. A career pathway that guides education and outlines position descriptions and skill sets would enhance development of the research support workforce. This pathway could contribute to changing the patient outcomes through coordination and study completion of high-quality research. A wide consultative approach is required to determine a cost-effective and feasible approach to implementation and evaluation of the proposed pathway. © 2018 John Wiley & Sons Australia, Ltd.
Maclennan, Sara Jane; Maclennan, Steven J; Imamura, Mari; Omar, Muhammad Imran; Vale, Luke; Lam, Thomas; Royle, Pamela; Royle, Justine; Swami, Satchi; Pickard, Rob; McClinton, Sam; Griffiths, T R Leyshon; Dahm, Philipp; N'dow, James
2011-06-01
Making healthcare treatment decisions is a complex process involving a broad stakeholder base including patients, their families, health professionals, clinical practice guideline developers and funders of healthcare. This paper presents a review of a methodology for the development of urological cancer care pathways (UCAN care pathways), which reflects an appreciation of this broad stakeholder base. The methods section includes an overview of the steps in the development of the UCAN care pathways and engagement with clinical content experts and patient groups. The development process is outlined, the uses of the urological cancer care pathways discussed and the implications for clinical practice highlighted. The full set of UCAN care pathways is published in this paper. These include care pathways on localised prostate cancer, locally advanced prostate cancer, metastatic prostate cancer, hormone-resistant prostate cancer, localised renal cell cancer, advanced renal cell cancer, testicular cancer, penile cancer, muscle invasive and metastatic bladder cancer and non-muscle invasive bladder cancer. The process provides a useful framework for improving urological cancer care through evidence synthesis, research prioritisation, stakeholder involvement and international collaboration. Although the focus of this work is urological cancers, the methodology can be applied to all aspects of urology and is transferable to other clinical specialties.
Genetics and the Placebo Effect: the Placebome
Hall, Kathryn T.; Loscalzo, Joseph; Kaptchuk, Ted J.
2015-01-01
Placebos are indispensable controls in randomized clinical trials (RCTs), and placebo responses significantly contribute to routine clinical outcomes. Recent neurophysiological studies reveal neurotransmitter pathways that mediate placebo effects. Evidence that genetic variations in these pathways can modify placebo effects raises the possibility of using genetic screening to identify placebo responders and thereby increase RCT efficacy and improve therapeutic care. Furthermore, the possibility of interaction between placebo and drug molecular pathways warrants consideration in RCT design. The study of genomic effects on placebo response, “the placebome”, is in its infancy. Here, we review evidence from placebo studies and RCTs to identify putative genes in the placebome, examine evidence for placebo-drug interactions, and discuss implications for RCTs and clinical care. PMID:25883069
Major Developments in the Design of Inhibitors along the Kynurenine Pathway
Jacobs, Kelly R.; Castellano-González, Gloria; Guillemin, Gilles J.; Lovejoy, David B.
2017-01-01
Disrupted kynurenine pathway (KP) metabolism has been implicated in the progression of neurodegenerative disease, psychiatric disorders and cancer. Modulation of enzyme activity along this pathway may therefore offer potential new therapeutic strategies for these conditions. Considering their prominent positions in the KP, the enzymes indoleamine 2,3-dioxygenase, kynurenine 3-monooxygenase and kynurenine aminotransferase, appear the most attractive targets. Already, increasing interest in this pathway has led to the identification of a number of potent and selective enzyme inhibitors with promising pre-clinical data and the elucidation of several enzyme crystal structures provides scope to rationalize the molecular mechanisms of inhibitor activity. The field seems poised to yield one or more inhibitors that should find clinical utility. PMID:28464785
Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of EAE1
Liu, Yudong; Holdbrooks, Andrew T.; De Sarno, Patrizia; Rowse, Amber L.; Yanagisawa, Lora L.; McFarland, Braden C.; Harrington, Laurie E.; Raman, Chander; Sabbaj, Steffanie; Benveniste, Etty N.; Qin, Hongwei
2014-01-01
Pathogenic T helper cells and myeloid cells are involved in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is utilized by numerous cytokines for signaling, and is critical for development, regulation and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have utilized AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in MOG-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of pro-inflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T-cells, and attenuates antigen-presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple pre-clinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases. PMID:24323580
Targeting disease through novel pathways of apoptosis and autophagy.
Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui
2012-12-01
Apoptosis and autophagy impact cell death in multiple systems of the body. Development of new therapeutic strategies that target these processes must address their complex role during developmental cell growth as well as during the modulation of toxic cellular environments. Novel signaling pathways involving Wnt1-inducible signaling pathway protein 1 (WISP1), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), β-catenin and mammalian target of rapamycin (mTOR) govern apoptotic and autophagic pathways during oxidant stress that affect the course of a broad spectrum of disease entities including Alzheimer's disease, Parkinson's disease, myocardial injury, skeletal system trauma, immune system dysfunction and cancer progression. Implications of potential biological and clinical outcome for these signaling pathways are presented. The CCN family member WISP1 and its intimate relationship with canonical and non-canonical wingless signaling pathways of PI3K, Akt1, β-catenin and mTOR offer an exciting approach for governing the pathways of apoptosis and autophagy especially in clinical disorders that are currently without effective treatments. Future studies that can elucidate the intricate role of these cytoprotective pathways during apoptosis and autophagy can further the successful translation and development of these cellular targets into robust and safe clinical therapeutic strategies.
Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.
Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele
2014-01-01
The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.
Adams, Elisabeth J; Ehrlich, Alice; Turner, Katherine M E; Shah, Kunj; Macleod, John; Goldenberg, Simon; Meray, Robin K; Pearce, Vikki; Horner, Patrick
2014-07-23
We aimed to explore patient pathways using a chlamydia/gonorrhoea point-of-care (POC) nucleic acid amplification test (NAAT), and estimate and compare the costs of the proposed POC pathways with the current pathways using standard laboratory-based NAAT testing. Workshops were conducted with healthcare professionals at four sexual health clinics representing diverse models of care in the UK. They mapped out current pathways that used chlamydia/gonorrhoea tests, and constructed new pathways using a POC NAAT. Healthcare professionals' time was assessed in each pathway. The proposed POC pathways were then priced using a model built in Microsoft Excel, and compared to previously published costs for pathways using standard NAAT-based testing in an off-site laboratory. Pathways using a POC NAAT for asymptomatic and symptomatic patients and chlamydia/gonorrhoea-only tests were shorter and less expensive than most of the current pathways. Notably, we estimate that POC testing as part of a sexual health screen for symptomatic patients, or as stand-alone chlamydia/gonorrhoea testing, could reduce costs per patient by as much as £16 or £6, respectively. In both cases, healthcare professionals' time would be reduced by approximately 10 min per patient. POC testing for chlamydia/gonorrhoea in a clinical setting may reduce costs and clinician time, and may lead to more appropriate and quicker care for patients. Further study is warranted on how to best implement POC testing in clinics, and on the broader clinical and cost implications of this technology. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Lannert, Brittany K
2015-07-01
Vicarious traumatization of nonvictim members of communities targeted by bias crimes has been suggested by previous qualitative studies and often dominates public discussion following bias events, but proximal and distal responses of community members have yet to be comprehensively modeled, and quantitative research on vicarious responses is scarce. This comprehensive review integrates theoretical and empirical literatures in social, clinical, and physiological psychology in the development of a model of affective, cognitive, and physiological responses of lesbian, gay, and bisexual individuals upon exposure to information about bias crimes. Extant qualitative research in vicarious response to bias crimes is reviewed in light of theoretical implications and methodological limitations. Potential pathways to mental health outcomes are outlined, including accumulative effects of anticipatory defensive responding, multiplicative effects of minority stress, and putative traumatogenic physiological and cognitive processes of threat. Methodological considerations, future research directions, and clinical implications are also discussed. © The Author(s) 2014.
Ju, Huai-Qiang; Zhuang, Zhuo-Nan; Li, Hao; Tian, Tian; Lu, Yun-Xin; Fan, Xiao-Qiang; Zhou, Hai-Jun; Mo, Hai-Yu; Sheng, Hui; Chiao, Paul J; Xu, Rui-Hua
2016-08-28
Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor for the redox reactions in the metabolic pathways of cancer cells that have elevated aerobic glycolysis (Warburg effect). Cancer cells are reported to rely on NAD recycling and inhibition of the NAD salvage pathway causes metabolic collapse and cell death. However, the underlying regulatory mechanisms and clinical implications for the NAD salvage pathway in pancreatic ductal adenocarcinoma (PDAC) remain unclear. This study showed that the expression of Nampt, the rate-limiting enzyme of the NAD salvage pathway, was significantly increased in PDAC cells and PDAC tissues. Additionally, inhibition of Nampt impaired tumor growth in vitro and tumorigenesis in vivo, which was accompanied by a decreased cellular NAD level and glycolytic activity. Mechanistically, the Nampt expression was independent of Kras and p16 status, but it was directly regulated by miR-206, which was inversely correlated with the expression of Nampt in PDAC tissues. Importantly, pharmacological inhibition of Nampt by its inhibitor, FK866, significantly enhanced the antitumor activity of gemcitabine in PDAC cells and in orthotopic xenograft mouse models. In conclusion, the present study revealed a novel regulatory mechanism for Nampt in PDAC and suggested that Nampt inhibition may override gemcitabine resistance by decreasing the NAD level and suppressing glycolytic activity, warranting further clinical investigation for pancreatic cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies
Ahmed, Wesam; Van Etten, Richard A.
2013-01-01
The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472
Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A
2015-12-01
Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clinical features and pathophysiology of Complex Regional Pain Syndrome – current state of the art
Marinus, Johan; Moseley, G. Lorimer; Birklein, Frank; Baron, Ralf; Maihöfner, Christian; Kingery, Wade S.; van Hilten, Jacobus J.
2017-01-01
That a minor injury can trigger a complex regional pain syndrome (CRPS) - multiple system dysfunction, severe and often chronic pain and disability - has fascinated scientists and perplexed clinicians for decades. However, substantial advances across several medical disciplines have recently increased our understanding of CRPS. Compelling evidence implicates biological pathways that underlie aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity in the clinical features of CRPS. Collectively, the evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury. Varying susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS. PMID:21683929
DNA Repair in Prostate Cancer: Biology and Clinical Implications.
Mateo, Joaquin; Boysen, Gunther; Barbieri, Christopher E; Bryant, Helen E; Castro, Elena; Nelson, Pete S; Olmos, David; Pritchard, Colin C; Rubin, Mark A; de Bono, Johann S
2017-03-01
For more precise, personalized care in prostate cancer (PC), a new classification based on molecular features relevant for prognostication and treatment stratification is needed. Genomic aberrations in the DNA damage repair pathway are common in PC, particularly in late-stage disease, and may be relevant for treatment stratification. To review current knowledge on the prevalence and clinical significance of aberrations in DNA repair genes in PC, particularly in metastatic disease. A literature search up to July 2016 was conducted, including clinical trials and preclinical basic research studies. Keywords included DNA repair, BRCA, ATM, CRPC, prostate cancer, PARP, platinum, predictive biomarkers, and hereditary cancer. We review how the DNA repair pathway is relevant to prostate carcinogenesis and progression. Data on how this may be relevant to hereditary cancer and genetic counseling are included, as well as data from clinical trials of PARP inhibitors and platinum therapeutics in PC. Relevant studies have identified genomic defects in DNA repair in PCs in 20-30% of advanced castration-resistant PC cases, a proportion of which are germline aberrations and heritable. Phase 1/2 clinical trial data, and other supporting clinical data, support the development of PARP inhibitors and DNA-damaging agents in this molecularly defined subgroup of PC following success in other cancer types. These studies may be an opportunity to improve patient care with personalized therapeutic strategies. Key literature on how genomic defects in the DNA damage repair pathway are relevant for prostate cancer biology and clinical management is reviewed. Potential implications for future changes in patient care are discussed. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
PHEOCHROMOCYTOMA: IMPLICATIONS IN TUMORIGENESIS AND THE ACTUAL MANAGEMENT
Shah, Urvi; Giubellino, Alessio; Pacak, Karel
2012-01-01
Pheochromocytomas and paragangliomas are rare neuroendocrine catecholamine producing tumors with varied clinical presentations, biochemistries and genetic makeup. These features outline the complexity and the difficulties in studying and understanding the oncogenesis of these tumors. The study of families with genetically inherited mutations in pheochromocytoma susceptibility genes has greatly enhanced our understanding of the pathophysiology and mechanisms of oncogenesis of the disease, and consequently changed our clinical approach. Several molecular pathways and mutations in their important regulatory proteins have been identified. Such mutations are responsible for the dysregulation of metabolic pathways involved in oxygen and nutrient sensing, apoptosis regulation, cell proliferation, migration and invasion. The knowledge derived from the study of these pathways will be fundamental in the future clinical management of these patients. As a rare disease that often masks its clinical presentation, the diagnosis is frequently missed and a high level of suspicion is required. Management of this disease requires a multidisciplinary team approach and has been discussed along with advances in its treatment. PMID:22691888
Pheochromocytoma: implications in tumorigenesis and the actual management.
Shah, U; Giubellino, A; Pacak, K
2012-06-01
Pheochromocytomas and paragangliomas are rare neuroendocrine catecholamine producing tumors with varied clinical presentations, biochemistries and genetic makeup. These features outline the complexity and the difficulties in studying and understanding the oncogenesis of these tumors. The study of families with genetically inherited mutations in pheochromocytoma susceptibility genes has greatly enhanced our understanding of the pathophysiology and mechanisms of oncogenesis of the disease, and consequently changed our clinical approach. Several molecular pathways and mutations in their important regulatory proteins have been identified. Such mutations are responsible for the dysregulation of metabolic pathways involved in oxygen and nutrient sensing, apoptosis regulation, cell proliferation, migration and invasion. The knowledge derived from the study of these pathways will be fundamental in the future clinical management of these patients. As a rare disease that often masks its clinical presentation, the diagnosis is frequently missed and a high level of suspicion is required. Management of this disease requires a multidisciplinary team approach and will be discussed along with advances in its treatment.
Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications
Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.
2016-01-01
Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089
Passos, Giordani Rodrigues Dos; Sato, Douglas Kazutoshi; Becker, Jefferson; Fujihara, Kazuo
2016-01-01
Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders. PMID:26941483
Beyond Monoamines-Novel Targets for Treatment-Resistant Depression: A Comprehensive Review
Rosenblat, Christian; McIntyre, Roger S.; Alves, Gilberto S.; Fountoulakis, Konstantinos N.; Carvalho, André F.
2015-01-01
Major depressive disorder (MDD) is a leading cause of disability worldwide. Current first line therapies target modulation of the monoamine system. A large variety of agents are currently available that effectively alter monoamine levels; however, approximately one third of MDD patients remain treatment refractory after adequate trials of multiple monoamine based therapies. Therefore, patients with treatment-resistant depression (TRD) may require modulation of pathways outside of the classic monoamine system. The purpose of this review was thus to discuss novel targets for TRD, to describe their potential mechanisms of action, the available clinical evidence for these targets, the limitations of available evidence as well as future research directions. Several alternate pathways involved in the patho-etiology of TRD have been uncovered including the following: inflammatory pathways, the oxidative stress pathway, the hypothalamic-pituitary-adrenal (HPA) axis, the metabolic and bioenergetics system, neurotrophic pathways, the glutamate system, the opioid system and the cholinergic system. For each of these systems, several targets have been assessed in preclinical and clinical models. Preclinical models strongly implicate these pathways in the patho-etiology of MDD. Clinical trials for TRD have been conducted for several novel targets; however, most of the trials discussed are small and several are uncontrolled. Therefore, further clinical trials are required to assess the true efficacy of these targets for TRD. As well, several promising novel agents have been clinically tested in MDD populations, but have yet to be assessed specifically for TRD. Thus, their applicability to TRD remains unknown. PMID:26467412
mRNA levels of enzymes and receptors implicated in arachidonic acid metabolism in gliomas.
De Armas, Rafael; Durand, Karine; Guillaudeau, Angélique; Weinbreck, Nicolas; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Acosta, Gisela; Pebet, Matias; Chaunavel, Alain; Marin, Benoît; Labrousse, François; Denizot, Yves
2010-07-01
Gliomas are tumors of the central nervous system derived from glial cells. They show cellular heterogeneity and lack specific diagnostic markers. Although a possible role for the eicosanoid cascade has been suggested in glioma tumorigenesis, the relationship between enzymes and receptors implicated in arachidonic acid metabolism, with histological tumor type has not yet been determined. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure and compare transcript levels of enzymes and receptors implicated in both lipoxygenase and cyclooxygenase pathways between oligodendrogliomas, astrocytomas, glioblastomas and mixed oligoastrocytomas. Arachidonic acid metabolism-related enzymes and receptor transcripts (i) were underexpressed in classical oligodendrogliomas compared to astrocytomas and/or glioblastomas, (ii) differed between astrocytomas and glioblastomas and (iii) had an intermediate expression in mixed oligoastrocytomas. mRNA levels of enzymes and receptors implicated both in lipoxygenase and cyclooxygenase pathways differed significantly in gliomas according to the histological type. Copyright 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Protein kinase inhibitors against malignant lymphoma
D’Cruz, Osmond J; Uckun, Fatih M
2013-01-01
Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343
Rehman, Ata; Yelf, Eric; Pearson, Jacqueline; Yeo, Wilf
2017-04-01
This study investigated the cost implications of poor compliance to established guidelines for management of suspected pulmonary embolism (PE) in two NSW public hospitals. A retrospective audit showed that the prevalence of PE overall was 9.9% (4.3% in the low-risk groups) in 436 patients. An estimated total of $32 454 (14%) was spent on unnecessary tests. © 2017 Royal Australasian College of Physicians.
The role of genetics and antibodies in sepsis
Giamarellos-Bourboulis, Evangelos J.
2016-01-01
During the course of sepsis when immunosuppression predominates, the concentrations of circulating immunoglobulins (IGs) are decreased and this is associated with adverse outcomes. The production of IGs as response to invasive bacterial pathogens takes place through a complex pathway starting from the recognition of the antigen (Ag) by innate immune cells that process and present Ags to T cells. The orchestration of T-helper (Th) lymphocyte responses directs specific B cells and ends with the production of IGs by plasma cells. All molecules implicated in this process are encoded by genes bearing single nucleotide polymorphisms (SNPs). Meta-analysis of case-control studies have shown that the carriage of minor frequency SNPs of CD14, TLR2 and TNF is associated with increased sepsis risk. The ambiguity of results of clinical trials studying the clinical efficacy of exogenous IG administration in sepsis suggests that efficacy of treatment should be considered after adjustment for SNPs of all implicated genes in the pathway of IG production. PMID:27713886
The role of genetics and antibodies in sepsis.
Giamarellos-Bourboulis, Evangelos J; Opal, Steven M
2016-09-01
During the course of sepsis when immunosuppression predominates, the concentrations of circulating immunoglobulins (IGs) are decreased and this is associated with adverse outcomes. The production of IGs as response to invasive bacterial pathogens takes place through a complex pathway starting from the recognition of the antigen (Ag) by innate immune cells that process and present Ags to T cells. The orchestration of T-helper (Th) lymphocyte responses directs specific B cells and ends with the production of IGs by plasma cells. All molecules implicated in this process are encoded by genes bearing single nucleotide polymorphisms (SNPs). Meta-analysis of case-control studies have shown that the carriage of minor frequency SNPs of CD14 , TLR2 and TNF is associated with increased sepsis risk. The ambiguity of results of clinical trials studying the clinical efficacy of exogenous IG administration in sepsis suggests that efficacy of treatment should be considered after adjustment for SNPs of all implicated genes in the pathway of IG production.
Lin, Frank Y.; Bergstrom, Katie; Person, Richard; Bavle, Abhishek; Ballester, Leomar Y.; Scollon, Sarah; Raesz-Martinez, Robin; Jea, Andrew; Birchansky, Sherri; Wheeler, David A.; Berg, Stacey L.; Chintagumpala, Murali M.; Adesina, Adekunle M.; Eng, Christine; Roy, Angshumoy; Plon, Sharon E.; Parsons, D. Williams
2016-01-01
The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care. PMID:27626068
Clinical implications of parallel visual pathways.
Bassi, C J; Lehmkuhle, S
1990-02-01
Visual information travels from the retina to visual cortical areas along at least two parallel pathways. In this paper, anatomical and physiological evidence is presented to demonstrate the existence of, and trace these two pathways throughout the visual systems of the cat, primate, and human. Physiological and behavioral experiments are discussed which establish that these two pathways are differentially sensitive to stimuli that vary in spatial and temporal frequency. One pathway (M-pathway) is more sensitive to coarse visual form that is modulated or moving at fast rates, whereas the other pathway (P-pathway) is more sensitive to spatial detail that is stationary or moving at slow rates. This difference between the M- and P-pathways is related to some spatial and temporal effects observed in humans. Furthermore, evidence is presented that certain diseases selectively comprise the functioning of M- or P-pathways (i.e., glaucoma, Alzheimer's disease, and anisometropic amblyopia), and some of the spatial and temporal deficits observed in these patients are presented within the context of the dysfunction of the M- or P-pathway.
Cheng, Tsung-Mei
2013-05-01
Reforming China's public hospitals to curb widespread overtreatment and improve the quality and affordability of care has been the most challenging aspect of that nation's ambitious health reform, which began in 2009. This article describes a pilot project under way in several of China's provinces that combines payment reform with the implementation of evidence-based clinical pathways at a few hospitals serving rural areas. Results to date include reduced length-of-stay and prescription drug use and higher patient and provider satisfaction. These early results suggest that the pilot may be achieving its goals, which may have far-reaching and positive implications for China's ongoing reform.
2012-01-01
Background Coronary heart disease (CHD) is a common medical problem in general practice. Due to its chronic character, shared care of the patient between general practitioner (GP) and cardiologist (C) is required. In order to improve the cooperation between both medical specialists for patients with CHD, a local treatment pathway was developed. The objective of this study was first to evaluate GPs’ opinions regarding the pathway and its practical implications, and secondly to suggest a theoretical framework of the findings by feeding the identified key factors influencing the pathway implementation into a multi-dimensional model. Methods The evaluation of the pathway was conducted in a qualitative design on a sample of 12 pathway developers (8 GPs and 4 cardiologists) and 4 pathway users (GPs). Face-to face interviews, which were aligned with previously conducted studies of the department and assumptions of the theory of planned behaviour (TPB), were performed following a semi-structured interview guideline. These were audio-taped, transcribed verbatim, coded, and analyzed according to the standards of qualitative content analysis. Results We identified 10 frequently mentioned key factors having an impact on the implementation success of the CHD treatment pathway. We thereby differentiated between pathway related (pathway content, effort, individual flexibility, ownership), behaviour related (previous behaviour, support), interaction related (patient, shared care/colleagues), and system related factors (context, health care system). The overall evaluation of the CHD pathway was positive, but did not automatically lead to a change of clinical behaviour as some GPs felt to have already acted as the pathway recommends. Conclusions By providing an account of our experience creating and implementing an intersectoral care pathway for CHD, this study contributes to our knowledge of factors that may influence physicians’ decisions regarding the use of a local treatment pathway. An improved adaptation of the pathway in daily practice might be best achieved by a combined implementation strategy addressing internal and external factors. A simple, direct adaptation regards the design of the pathway material (e.g. layout, PC version), or the embedding of the pathway in another programme, like a Disease Management Programme (DMP). In addition to these practical implications, we propose a theoretical framework to understand the key factors’ influence on the pathway implementation, with the identified factors along the microlevel (pathway related factors), the mesolevel (interaction related factors), and system- related factors along the macrolevel. PMID:22584032
Kramer, Lena; Schlößler, Kathrin; Träger, Susanne; Donner-Banzhoff, Norbert
2012-05-14
Coronary heart disease (CHD) is a common medical problem in general practice. Due to its chronic character, shared care of the patient between general practitioner (GP) and cardiologist (C) is required. In order to improve the cooperation between both medical specialists for patients with CHD, a local treatment pathway was developed. The objective of this study was first to evaluate GPs' opinions regarding the pathway and its practical implications, and secondly to suggest a theoretical framework of the findings by feeding the identified key factors influencing the pathway implementation into a multi-dimensional model. The evaluation of the pathway was conducted in a qualitative design on a sample of 12 pathway developers (8 GPs and 4 cardiologists) and 4 pathway users (GPs). Face-to face interviews, which were aligned with previously conducted studies of the department and assumptions of the theory of planned behaviour (TPB), were performed following a semi-structured interview guideline. These were audio-taped, transcribed verbatim, coded, and analyzed according to the standards of qualitative content analysis. We identified 10 frequently mentioned key factors having an impact on the implementation success of the CHD treatment pathway. We thereby differentiated between pathway related (pathway content, effort, individual flexibility, ownership), behaviour related (previous behaviour, support), interaction related (patient, shared care/colleagues), and system related factors (context, health care system). The overall evaluation of the CHD pathway was positive, but did not automatically lead to a change of clinical behaviour as some GPs felt to have already acted as the pathway recommends. By providing an account of our experience creating and implementing an intersectoral care pathway for CHD, this study contributes to our knowledge of factors that may influence physicians' decisions regarding the use of a local treatment pathway. An improved adaptation of the pathway in daily practice might be best achieved by a combined implementation strategy addressing internal and external factors. A simple, direct adaptation regards the design of the pathway material (e.g. layout, PC version), or the embedding of the pathway in another programme, like a Disease Management Programme (DMP). In addition to these practical implications, we propose a theoretical framework to understand the key factors' influence on the pathway implementation, with the identified factors along the microlevel (pathway related factors), the mesolevel (interaction related factors), and system- related factors along the macrolevel.
Recent developments in anti-cancer agents targeting PI3K, Akt and mTORC1/2.
Dienstmann, Rodrigo; Rodon, Jordi; Markman, Ben; Tabernero, Josep
2011-05-01
Inappropriate PI3K signaling is one of the most frequent occurrences in human cancer and is critical for tumor progression. A variety of genetic mutations and amplifications have been described affecting key components of this pathway, with implications not only for tumorigenesis but also for resistance to targeted agents. Emerging preclinical research has significantly advanced our understanding of the PI3K pathway and its complex downstream signalling, interactions and crosstalk. This knowledge, combined with the limited clinical antitumor activity of mTOR complex 1 inhibitors, has led to the development of rationally designed drugs targeting key elements of this pathway, such as pure PI3K inhibitors (both pan-PI3K and isoform-specific), dual PI3K/ mTOR inhibitors, Akt inhibitors, and mTOR complexes 1 and 2 catalytic site inhibitors. This review will focus primarily on an analysis of newly developed inhibitors of this pathway that have entered clinical trials, and recently registered patents in this field.
Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?
Rothwell, Patrick E
2016-01-01
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.
Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?
Rothwell, Patrick E.
2016-01-01
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789
Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.
Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L
2003-07-15
Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.
Developmental Pathways from Parental Substance Use to Childhood Academic Achievement
Brook, Judith S.; Saar, Naomi S.; Brook, David W.
2010-01-01
This cross-sectional study examined the pathways to childhood academic achievement in 209 African American and Puerto Rican children and their mothers. There were three pathways to childhood academic achievement: (a) the mother-child relationship and the child’s personality mediated between parental substance use and childhood academic achievement; (b) the child’s personality mediated between parental education and childhood academic achievement; and (c) there was a direct relationship between the child’s gender and childhood academic achievement. Policy and clinical implications suggest the importance of increasing educational opportunities for all parents, providing substance use treatment and self-esteem workshops, and altering the school curriculum. PMID:20525035
Wong, Christopher X; Ganesan, Anand N; Selvanayagam, Joseph B
2017-05-01
Obesity is increasingly recognized as a major modifiable determinant of atrial fibrillation (AF). Although body mass index and other clinical measures are useful indications of general adiposity, much recent interest has focused on epicardial fat, a distinct adipose tissue depot that can be readily assessed using non-invasive imaging techniques. A growing body of data from epidemiological and clinical studies has demonstrated that epicardial fat is consistently associated with the presence, severity, and recurrence of AF across a range of clinical settings. Evidence from basic science and translational studies has also suggested that arrhythmogenic mechanisms may involve adipocyte infiltration, pro-fibrotic, and pro-inflammatory paracrine effects, oxidative stress, and other pathways. Despite these advances, however, significant uncertainty exists and many questions remain unanswered. In this article, we review our present understanding of epicardial fat, including its classification and quantification, existing evidence implicating its role in AF, potential mechanisms, implications for clinicians, and future directions for research. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Autism and the synapse: emerging mechanisms and mechanism-based therapies.
Ebrahimi-Fakhari, Darius; Sahin, Mustafa
2015-04-01
Recent studies have implicated hundreds of genetic variants in the cause of autism spectrum disorder (ASD). Genes involved in 'monogenic' forms of syndromic ASD converge on common pathways that are involved in synaptic development, plasticity and signaling. In this review, we discuss how these 'developmental synaptopathies' inform our understanding of the molecular disease in ASD and highlight promising approaches that have bridged the gap between the bench and the clinic. Accumulating evidence suggests that synaptic deficits in syndromic and nonsyndromic ASD can be mapped to gene mutations in pathways that control synaptic protein synthesis and degradation, postsynaptic scaffold architecture and neurotransmitter receptors. This is recapitulated in models of Fragile X syndrome (FXS), Tuberous Sclerosis Complex (TSC), Angelman syndrome and Phelan-McDermid syndrome (PMS), all of which cause syndromic ASD. Important recent advances include the development of mouse models and patient-derived induced pluripotent stem cell (iPSC) lines that enable a detailed investigation of synaptic deficits and the identification of potential targets for therapy. Examples of the latter include mGluR5 antagonists in FXS, mTOR inhibitors in TSC and insulin-like growth factor 1 (IGF-1) in PMS. Identifying converging pathways in syndromic forms of ASD will uncover novel therapeutic targets for non-syndromic ASD. Insights into developmental synaptopathies will lead to rational development of mechanism-based therapies and clinical trials that may provide a blueprint for other common pathways implicated in the molecular neuropathology of ASD.
Stammler, Dominik; Eigenbrod, Tatjana; Menz, Sarah; Frick, Julia S; Sweet, Matthew J; Shakespear, Melanie R; Jantsch, Jonathan; Siegert, Isabel; Wölfle, Sabine; Langer, Julian D; Oehme, Ina; Schaefer, Liliana; Fischer, Andre; Knievel, Judith; Heeg, Klaus; Dalpke, Alexander H; Bode, Konrad A
2015-12-01
Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1β processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1β maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1β secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1β, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1β cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1β by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1β, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications. Copyright © 2015 by The American Association of Immunologists, Inc.
Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand?
Baig, S; Seevasant, I; Mohamad, J; Mukheem, A; Huri, H Z; Kamarul, T
2016-01-01
Underneath the intricacy of every cancer lies mysterious events that impel the tumour cell and its posterity into abnormal growth and tissue invasion. Oncogenic mutations disturb the regulatory circuits responsible for the governance of versatile cellular functions, permitting tumour cells to endure deregulated proliferation, resist to proapoptotic insults, invade and erode normal tissues and above all escape apoptosis. This disruption of apoptosis has been highly implicated in various malignancies and has been exploited as an anticancer strategy. Owing to the fact that apoptosis causes minimal inflammation and damage to the tissue, apoptotic cell death-based therapy has been the centre of attraction for the development of anticancer drugs. Increased understanding of the molecular pathways underlying apoptosis has enabled scientists to establish unique approaches targeting apoptosis pathways in cancer therapeutics. In this review, we reconnoitre the two major pathways (intrinsic and extrinsic) targeted cancer therapeutics, steering toward chief modulators of these pathways, such as B-cell lymphoma 2 protein family members (pro- and antiapoptotic), inhibitor of apoptosis proteins, and the foremost thespian of extrinsic pathway regulator, tumour necrosis factor-related apoptosis-inducing agent. Together, we also will have a look from clinical perspective to address the agents (drugs) and therapeutic strategies adopted to target these specific proteins/pathways that have entered clinical trials. PMID:26775709
Targeting kinase signaling pathways with constrained peptide scaffolds
Hanold, Laura E.; Fulton, Melody D.; Kennedy, Eileen J.
2017-01-01
Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications. PMID:28185915
Léonard, Boris; Kridelka, Frederic; Delbecque, Katty; Goffin, Frederic; Demoulin, Stéphanie; Doyen, Jean; Delvenne, Philippe
2014-01-01
Condyloma acuminatum, intraepithelial neoplasia, and squamous cell carcinoma are three relatively frequent vulvar lesions. Condyloma acuminatum is induced by low risk genotypes of human papillomavirus (HPV). Vulvar intraepithelial neoplasia (VIN) and squamous cell carcinoma have different etiopathogenic pathways and are related or not with high risk HPV types. The goal of this paper is to review the main pathological and clinical features of these lesions. A special attention has been paid also to epidemiological data, pathological classification, and clinical implications of these diseases. PMID:24719870
Targeting Developmental Pathways: The Achilles Heel of Cancer?
Dempke, Wolfram C M; Fenchel, Klaus; Uciechowski, Peter; Chevassut, Timothy
2017-01-01
Developmental pathways (e.g., Notch, Hippo, Hedgehog, Wnt, and TGF-β/BMP/FGF) are networks of genes that act co-ordinately to establish the body plan, and disruptions of genes in one pathway can have effects in related pathways and may result in serious dysmorphogenesis or cancer. Interestingly, all developmental pathways are highly conserved cell signalling systems present in almost all multicellular organisms. In addition, they have a crucial role in cell proliferation, apoptosis, differentiation, and finally in organ development. Of note, almost all of these pathways promote oncogenesis through synergistic associations with the Hippo signalling pathway, and several lines of evidence have also indicated that these pathways (e.g., Wnt/β-catenin) may be implicated in checkpoint inhibitor resistance (e.g., CTLA-4, PD-1, and PD-L1). Since Notch inhibition in vivo results in partial loss of its stemness features such as self-renewal, chemoresistance, invasive and migratory potential, and tumorigenesis, these highly conserved developmental pathways are regarded as being critical for regulation of self-renewal in both embryonic and adult stem cells and hence are likely to be implicated in the maintenance of cancer stem cells. Many small molecules are currently in preclinical and early clinical development, and only two compounds are approved for treatment of advanced or metastatic basal cell carcinoma (vismodegib and sonidegib). Furthermore, therapeutic targeting of cancer stem cells using drugs that disrupt activated developmental pathways may also represent an attractive strategy that is potentially relevant to many types of malignancy, notably blood cancers, where the evidence for leukaemia stem cells is well established. Future work will hopefully pave the way for the development of new strategies for targeting these pervasive oncogenic pathways. © 2017 S. Karger AG, Basel.
The Syk kinase as a therapeutic target in leukemia and lymphoma.
Efremov, Dimitar G; Laurenti, Luca
2011-05-01
The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-01-01
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-04-19
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Duffy, Anne; Lewitzka, Ute; Doucette, Sarah; Andreazza, Ana; Grof, Paul
2012-05-01
The study aims to provide a selective review of the literature pertaining to the hypothalamic-pituitary-adrenal (HPA) axis and immune abnormalities as informative biological indicators of vulnerability in bipolar disorder (BD). We summarize key findings relating to HPA axis and immunological abnormalities in bipolar patients and their high-risk offspring. Findings derive from a review of selected original papers published in the literature, and supplemented by papers identified through bibliography review. Neurobiological findings are discussed in the context of emergent BD in those at genetic risk and synthesized into a neurodevelopmental model of illness onset and progression. BD is associated with a number of genetic and possibly epigenetic abnormalities associated with neurotransmitter, hormonal and immunologically mediated neurobiological pathways. Data from clinical and high-risk studies implicate HPA axis and immune system abnormalities, which may represent inherited vulnerabilities important for the transition to illness onset. Post-mortem and clinical studies implicate intracellular signal transduction processes and disturbance in energy metabolism associated with established BD. Specifically, long-standing maladaptive alterations such as changes in neuronal systems may be mediated through changes in intracellular signalling pathways, oxidative stress, cellular energy metabolism and apoptosis associated with substantial burden of illness. Prospective longitudinal studies of endophenotypes and biomarkers such as HPA axis and immune abnormalities in high-risk offspring will be helpful to understand genetically mediated biological pathways associated with illness onset and progression. A clinical staging model describing emergent illness in those at genetic risk should facilitate this line of investigation. © 2011 Blackwell Publishing Asia Pty Ltd.
Polyamines and cancer: Implications for chemoprevention and chemotherapy
Nowotarski, Shannon L.; Woster, Patrick M.; Casero, Robert A.
2013-01-01
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes and a poorly characterized transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate, and skin cancers, and altered levels of the rate limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway specific drugs, and ongoing clinical trials targeting polyamine biosynthesis. PMID:23432971
ERIC Educational Resources Information Center
Veatch, Olivia J.; Pendergast, Julie S.; Allen, Melissa J.; Leu, Roberta M.; Johnson, Carl Hirschie; Elsea, Sarah H.; Malow, Beth A.
2015-01-01
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with…
The genomic landscape of chronic lymphocytic leukaemia: biological and clinical implications.
Strefford, Jonathan C
2015-04-01
Chronic lymphocytic leukaemia (CLL) remains at the forefront of the genetic analysis of human tumours, principally due its prevalence, protracted natural history and accessibility to suitable material for analysis. With the application of high-throughput genetic technologies, we have an unbridled view of the architecture of the CLL genome, including a comprehensive description of the copy number and mutational landscape of the disease, a detailed picture of clonal evolution during pathogenesis, and the molecular mechanisms that drive genomic instability and therapeutic resistance. This work has nuanced the prognostic importance of established copy number alterations, and identified novel prognostically relevant gene mutations that function within biological pathways that are attractive treatment targets. Herein, an overview of recent genomic discoveries will be reviewed, with associated biological and clinical implications, and a view into how clinical implementation may be facilitated. © 2014 John Wiley & Sons Ltd.
Hua, Susan; Cabot, Peter J
2010-09-01
Peripheral mechanisms of endogenous pain control are significant. In peripheral inflamed tissue, an interaction between immune-cell-derived opioids and opioid receptors localized on sensory nerve terminals results in potent, clinically measurable analgesia. Opioid peptides and the mRNA encoding their precursor proteins are present in immune cells. These cells 'home' preferentially to injured tissue, where they secrete opioids to reduce pain. Investigation of the mechanisms underlying the migration of opioid-containing immune cells to inflamed tissue is an active area of research, with recent data demonstrating the importance of cell adhesion molecules in leukocyte adhesion to both the endothelium in vascular transmigration and to neurons within peripheral inflamed tissue. This review summarizes the physiological mechanisms and clinical significance of this unique endogenous peripheral analgesic pathway and discusses therapeutic implications for the development of novel targeted peripheral analgesics. Copyright 2010 Elsevier Ltd. All rights reserved.
Adverse effects of anticancer agents that target the VEGF pathway.
Chen, Helen X; Cleck, Jessica N
2009-08-01
Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.
Beaver, Julia A.; Tzou, Abraham; Blumenthal, Gideon M.; McKee, Amy E.; Kim, Geoffrey; Pazdur, Richard; Philip, Reena
2016-01-01
As technologies evolve, and diagnostics move from detection of single biomarkers toward complex signatures, an increase in the clinical use and regulatory submission of complex signatures is anticipated. However, to date, no complex signatures have been approved as companion diagnostics. In this article, we will describe the potential benefit of complex signatures and their unique regulatory challenges including analytical performance validation, complex signature simulation, and clinical performance evaluation. We also will review the potential regulatory pathways for clearance, approval, or acceptance of complex signatures by the U.S. Food and Drug Administration (FDA). These regulatory pathways include regulations applicable to in vitro diagnostic devices, including companion diagnostic devices, the potential for labeling as a complementary diagnostic, and the biomarker qualification program. PMID:27993967
Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
Asaduzzaman Khan, Md.; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang
2017-01-01
Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics. PMID:28881699
Thymoquinone, as an anticancer molecule: from basic research to clinical investigation.
Asaduzzaman Khan, Md; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang
2017-08-01
Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics.
Novel strategies targeting cancer stem cells through phytochemicals and their analogs
Dandawate, Prasad; Padhye, Subhash; Ahmad, Aamir
2013-01-01
Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity of self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase–Akt–mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs. Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate. With the inclusion of a novel derivative of curcumin, CDF, we showcase how natural agents can be effectively modified to increase their efficacy, particularly against CSCs. We hope that this article will generate interest among researchers for further mechanistic and clinical studies exploiting the cancer preventive and therapeutic role of nutraceuticals by targeted elimination of CSCs. PMID:24076568
Rhee, Ye-Young; Kim, Kyung-Ju; Kang, Gyeong Hoon
2017-01-15
The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway.
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies
Hardaway, Aimalie L; Podgorski, Izabela
2013-01-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.
Hardaway, Aimalie L; Podgorski, Izabela
2013-06-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
Targeting fibroblast growth factor pathways in endometrial cancer.
Winterhoff, Boris; Konecny, Gottfried E
Novel treatments that improve outcomes for patients with recurrent or metastatic endometrial cancer (EC) remain an unmet need. Aberrant signaling by fibroblast growth factors (FGFs) and FGF receptors (FGFRs) has been implicated in several human cancers. Activating mutations in FGFR2 have been found in up to 16% of ECs, suggesting an opportunity for targeted therapy. This review summarizes the role of the FGF pathway in angiogenesis and EC, and provides an overview of FGFR-targeted therapies under clinical development for the treatment of EC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics
Maschinot, C.A.; Pace, J.R.; Hadden, M.K.
2016-01-01
The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919
Plants Used in the Management of Diabetic Complications
Dodda, D.; Ciddi, V.
2014-01-01
Diabetes is a disease, which has assumed vital public health importance because of the complications associated with it. Various mechanisms including polyol pathway along with a complex integrating paradigm have been implicated in glucose-mediated complications. Though polyol pathway was established as a major mechanism, precise pathogenesis of these complications is not yet completely elucidated. Thus research focus was shifted towards key enzyme, aldose reductase in the pathway. Even though various compounds with aldose reductase inhibitory activity were synthesised, a very few compounds are under clinical use. However, studies on these compounds were always under conflicting results and an attempt has been made to review various natural substances with aldose reductase inhibitory activity and their role in management of diabetic complications. PMID:24843182
Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities
Soll, Jennifer M.; Sobol, Robert W.; Mosammaparast, Nima
2016-01-01
Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so called ‘epigenetic’ adducts. We discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. PMID:27816326
Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia
Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.
2018-01-01
Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1, COL9A2, ERBB3, FBN1, GJA1, GNPTG, IFIH1, KIF11, LTBP2, OCA2, POLR3B, POMT1, PTPN11, TFAP2A, ZNF469). Conclusions Common genetic variants within or nearby genes that cause syndromic myopia are enriched for variants that cause nonsyndromic, common myopia. Analysis of syndromic forms of refractive errors can provide new insights into the etiology of myopia and additional potential targets for therapeutic interventions. PMID:29346494
ERIC Educational Resources Information Center
Bilias-Lolis, Evelyn; Bray, Melissa; Howell, Meiko
2017-01-01
Self-modeling is a robust behavioral intervention whose therapeutic outcomes have a positive impact on a host of clinical behaviors as well as diverse student populations. To date, only two theoretical positions have emerged in the literature that attempt to account for the mechanism of this efficacious behavioral intervention. The first…
Bartlett, Danielle M; Cruickshank, Travis M; Hannan, Anthony J; Eastwood, Peter R; Lazar, Alpar S; Ziman, Mel R
2016-12-01
Huntington's disease (HD) is a fatal neurodegenerative disease caused by an extended polyglutamine tract in the huntingtin protein. Circadian, sleep and hypothalamic-pituitary-adrenal (HPA) axis disturbances are observed in HD as early as 15 years before clinical disease onset. Disturbances in these key processes result in increased cortisol and altered melatonin release which may negatively impact on brain-derived neurotrophic factor (BDNF) expression and contribute to documented neuropathological and clinical disease features. This review describes the normal interactions between neurotrophic factors, the HPA-axis and circadian rhythm, as indicated by levels of BDNF, cortisol and melatonin, and the alterations in these intricately balanced networks in HD. We also discuss the implications of these alterations on the neurobiology of HD and the potential to result in hypothalamic, circadian, and sleep pathologies. Measurable alterations in these pathways provide targets that, if treated early, may reduce degeneration of brain structures. We therefore focus here on the means by which multidisciplinary therapy could be utilised as a non-pharmaceutical approach to restore the balance of these pathways. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Speed, Doug; Hoggart, Clive; Petrovski, Slave; Tachmazidou, Ioanna; Coffey, Alison; Jorgensen, Andrea; Eleftherohorinou, Hariklia; De Iorio, Maria; Todaro, Marian; De, Tisham; Smith, David; Smith, Philip E.; Jackson, Margaret; Cooper, Paul; Kellett, Mark; Howell, Stephen; Newton, Mark; Yerra, Raju; Tan, Meng; French, Chris; Reuber, Markus; Sills, Graeme E.; Chadwick, David; Pirmohamed, Munir; Bentley, David; Scheffer, Ingrid; Berkovic, Samuel; Balding, David; Palotie, Aarno; Marson, Anthony; O'Brien, Terence J.; Johnson, Michael R.
2014-01-01
We present the analysis of a prospective multicentre study to investigate genetic effects on the prognosis of newly treated epilepsy. Patients with a new clinical diagnosis of epilepsy requiring medication were recruited and followed up prospectively. The clinical outcome was defined as freedom from seizures for a minimum of 12 months in accordance with the consensus statement from the International League Against Epilepsy (ILAE). Genetic effects on remission of seizures after starting treatment were analysed with and without adjustment for significant clinical prognostic factors, and the results from each cohort were combined using a fixed-effects meta-analysis. After quality control (QC), we analysed 889 newly treated epilepsy patients using 472 450 genotyped and 6.9 × 106 imputed single-nucleotide polymorphisms. Suggestive evidence for association (defined as Pmeta < 5.0 × 10−7) with remission of seizures after starting treatment was observed at three loci: 6p12.2 (rs492146, Pmeta = 2.1 × 10−7, OR[G] = 0.57), 9p23 (rs72700966, Pmeta = 3.1 × 10−7, OR[C] = 2.70) and 15q13.2 (rs143536437, Pmeta = 3.2 × 10−7, OR[C] = 1.92). Genes of biological interest at these loci include PTPRD and ARHGAP11B (encoding functions implicated in neuronal development) and GSTA4 (a phase II biotransformation enzyme). Pathway analysis using two independent methods implicated a number of pathways in the prognosis of epilepsy, including KEGG categories ‘calcium signaling pathway’ and ‘phosphatidylinositol signaling pathway’. Through a series of power curves, we conclude that it is unlikely any single common variant explains >4.4% of the variation in the outcome of newly treated epilepsy. PMID:23962720
TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic.
Cheng, Emily; Armstrong, Cheryl L; Galisteo, Rebeca; Winkles, Jeffrey A
2013-12-23
The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.
Gastrointestinal disorders associated with migraine: A comprehensive review
Cámara-Lemarroy, Carlos R; Rodriguez-Gutierrez, Rene; Monreal-Robles, Roberto; Marfil-Rivera, Alejandro
2016-01-01
Migraine is a recurrent and commonly disabling primary headache disorder that affects over 17% of women and 5%-8% of men. Migraine susceptibility is multifactorial with genetic, hormonal and environmental factors all playing an important role. The physiopathology of migraine is complex and still not fully understood. Many different neuropeptides, neurotransmitters and brain pathways have been implicated. In connection with the myriad mechanisms and pathways implicated in migraine, a variety of multisystemic comorbidities (e.g., cardiovascular, psychiatric and other neurological conditions) have been found to be closely associated with migraine. Recent reports demonstrate an increased frequency of gastrointestinal (GI) disorders in patients with migraine compared with the general population. Helicobacter pylori infection, irritable bowel syndrome, gastroparesis, hepatobiliary disorders, celiac disease and alterations in the microbiota have been linked to the occurrence of migraine. Several mechanisms involving the gut-brain axis, such as a chronic inflammatory response with inflammatory and vasoactive mediators passing to the circulatory system, intestinal microbiota modulation of the enteric immunological milieu and dysfunction of the autonomic and enteric nervous system, have been postulated to explain these associations. However, the precise mechanisms and pathways related to the gut-brain axis in migraine need to be fully elucidated. In this review, we survey the available literature linking migraine with GI disorders. We discuss the possible physiopathological mechanisms, and clinical implications as well as several future areas of interest for research. PMID:27688656
Gastrointestinal disorders associated with migraine: A comprehensive review.
Cámara-Lemarroy, Carlos R; Rodriguez-Gutierrez, Rene; Monreal-Robles, Roberto; Marfil-Rivera, Alejandro
2016-09-28
Migraine is a recurrent and commonly disabling primary headache disorder that affects over 17% of women and 5%-8% of men. Migraine susceptibility is multifactorial with genetic, hormonal and environmental factors all playing an important role. The physiopathology of migraine is complex and still not fully understood. Many different neuropeptides, neurotransmitters and brain pathways have been implicated. In connection with the myriad mechanisms and pathways implicated in migraine, a variety of multisystemic comorbidities (e.g., cardiovascular, psychiatric and other neurological conditions) have been found to be closely associated with migraine. Recent reports demonstrate an increased frequency of gastrointestinal (GI) disorders in patients with migraine compared with the general population. Helicobacter pylori infection, irritable bowel syndrome, gastroparesis, hepatobiliary disorders, celiac disease and alterations in the microbiota have been linked to the occurrence of migraine. Several mechanisms involving the gut-brain axis, such as a chronic inflammatory response with inflammatory and vasoactive mediators passing to the circulatory system, intestinal microbiota modulation of the enteric immunological milieu and dysfunction of the autonomic and enteric nervous system, have been postulated to explain these associations. However, the precise mechanisms and pathways related to the gut-brain axis in migraine need to be fully elucidated. In this review, we survey the available literature linking migraine with GI disorders. We discuss the possible physiopathological mechanisms, and clinical implications as well as several future areas of interest for research.
Kim, Sangwon F.; Mollace, Vincenzo
2013-01-01
The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area. PMID:23389111
Ma, Terry King-Wing; McAdoo, Stephen P.
2017-01-01
Glomerulonephritis (GN) affects patients of all ages and is an important cause of morbidity and mortality. Non-selective immunosuppressive drugs have been used in immune-mediated GN but often result in systemic side effects and occasionally fatal infective complications. There is increasing evidence from both preclinical and clinical studies that abnormal activation of receptor and non-receptor tyrosine kinase signalling pathways are implicated in the pathogenesis of immune-mediated GN. Activation of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR) and discoidin domain receptor 1 (DDR1) have been demonstrated in anti-GBM disease. SYK is implicated in the pathogenesis of ANCA-associated GN. SYK, BTK, PDGFR, EFGR, DDR1 and Janus kinase are implicated in the pathogenesis of lupus nephritis. A representative animal model of IgA nephropathy (IgAN) is lacking. Based on the results from in vitro and human renal biopsy study results, a phase II clinical trial is ongoing to evaluate the efficacy and safety of fostamatinib (an oral SYK inhibitor) in high-risk IgAN patient. Various tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment. Clinical trials of TKIs in GN may be justified given their long-term safety data. In this review we will discuss the current unmet medical needs in GN treatment and research as well as the current stage of development of TKIs in GN treatment and propose an accelerated translational research approach to investigate whether selective inhibition of tyrosine kinase provides a safer and more efficacious option for GN treatment. PMID:28391340
Ma, Terry King-Wing; McAdoo, Stephen P; Tam, Frederick Wai Keung
2017-01-01
Glomerulonephritis (GN) affects patients of all ages and is an important cause of morbidity and mortality. Non-selective immunosuppressive drugs have been used in immune-mediated GN but often result in systemic side effects and occasionally fatal infective complications. There is increasing evidence from both preclinical and clinical studies that abnormal activation of receptor and non-receptor tyrosine kinase signalling pathways are implicated in the pathogenesis of immune-mediated GN. Activation of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR) and discoidin domain receptor 1 (DDR1) have been demonstrated in anti-GBM disease. SYK is implicated in the pathogenesis of ANCA-associated GN. SYK, BTK, PDGFR, EFGR, DDR1 and Janus kinase are implicated in the pathogenesis of lupus nephritis. A representative animal model of IgA nephropathy (IgAN) is lacking. Based on the results from in vitro and human renal biopsy study results, a phase II clinical trial is ongoing to evaluate the efficacy and safety of fostamatinib (an oral SYK inhibitor) in high-risk IgAN patient. Various tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment. Clinical trials of TKIs in GN may be justified given their long-term safety data. In this review we will discuss the current unmet medical needs in GN treatment and research as well as the current stage of development of TKIs in GN treatment and propose an accelerated translational research approach to investigate whether selective inhibition of tyrosine kinase provides a safer and more efficacious option for GN treatment. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.
Molecular biology of pancreatic cancer: how useful is it in clinical practice?
Sakorafas, George H; Smyrniotis, Vasileios
2012-07-10
During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the effectiveness of treatment and prognosis of patients with pancreatic cancer.
Savic, Sinisa; Mistry, Anoop; Wilson, Anthony G; Barcenas-Morales, Gabriela; Doffinger, Rainer; Emery, Paul; McGonagle, Dennis
2017-01-01
At the population level, rheumatoid arthritis (RA) is generally viewed as autoimmune in nature with a small subgroup of cases having a palindromic form or systemic autoinflammatory disorder (SAID) phenotype. Herein, we describe resistant cases of classical autoantibody associated RA that had clinical, genetic and therapeutic responses indicative of coexistent autoinflammatory disease. Five patients with clinically overlapping features between RA and SAID including polysynovitis and autoantibody/shared epitope positivity, and who had abrupt severe self-limiting attacks including fevers and serositis, are described. Mutations or single nucleotide polymorphisms in recognised autoinflammatory pathways were evident. Generally, these cases responded poorly to conventional Disease-modifying anti-rheumatic drugs (DMARD) treatment with some excellent responses to colchicine or interleukin 1 pathway blockade. A subgroup of RA cases have a mixed autoimmune-autoinflammatory phenotype and genotype with therapeutic implications. PMID:29177082
Savic, Sinisa; Mistry, Anoop; Wilson, Anthony G; Barcenas-Morales, Gabriela; Doffinger, Rainer; Emery, Paul; McGonagle, Dennis
2017-01-01
At the population level, rheumatoid arthritis (RA) is generally viewed as autoimmune in nature with a small subgroup of cases having a palindromic form or systemic autoinflammatory disorder (SAID) phenotype. Herein, we describe resistant cases of classical autoantibody associated RA that had clinical, genetic and therapeutic responses indicative of coexistent autoinflammatory disease. Five patients with clinically overlapping features between RA and SAID including polysynovitis and autoantibody/shared epitope positivity, and who had abrupt severe self-limiting attacks including fevers and serositis, are described. Mutations or single nucleotide polymorphisms in recognised autoinflammatory pathways were evident. Generally, these cases responded poorly to conventional Disease-modifying anti-rheumatic drugs (DMARD) treatment with some excellent responses to colchicine or interleukin 1 pathway blockade. A subgroup of RA cases have a mixed autoimmune-autoinflammatory phenotype and genotype with therapeutic implications.
Dysregulation of Wnt/β-catenin Signaling in Gastrointestinal Cancers
White, Bryan D.; Chien, Andy J.; Dawson, David W.
2012-01-01
Aberrant Wnt/β-catenin signaling is widely implicated in numerous malignancies, including cancers of the gastrointestinal (GI) tract. Dysregulation of signaling is traditionally attributed to mutations in Axin, APC (adenomatous polyposis coli), and β-catenin that lead to constitutive hyperactivation of the pathway. However, Wnt/β-catenin signaling is also modulated through various other mechanisms in cancer, including crosstalk with other altered signaling pathways. A more complex view of Wnt/β-catenin signaling and its role in GI cancers is now emerging as divergent phenotypic outcomes are found to be dictated by temporospatial context and relative levels of pathway activation. This review summarizes the dysregulation of Wnt/β-catenin signaling in colorectal carcinoma, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma, with particular emphasis on the latter two. We conclude by addressing some of the major challenges faced in attempting to target the pathway in the clinic. PMID:22155636
Hamad, Islam; Al-Hanbali, Othman; Hunter, A Christy; Rutt, Kenneth J; Andresen, Thomas L; Moghimi, S Moein
2010-11-23
Nanoparticles with surface projected polyethyleneoxide (PEO) chains in "mushroom-brush" and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site-specific targeting for controlled drug delivery and release as well as diagnostic imaging. We report on the "structure-activity" relationship pertaining to surface-immobilized PEO of various configurations on model nanoparticles, and the initiation of complement cascade, which is the most ancient component of innate human immunity, and its activation may induce clinically significant adverse reactions in some individuals. Conformational states of surface-projected PEO chains, arising from the block copolymer poloxamine 908 adsorption, on polystyrene nanoparticles trigger complement activation differently. Alteration of copolymer architecture on nanospheres from mushroom to brush configuration not only switches complement activation from C1q-dependent classical to lectin pathway but also reduces the level of generated complement activation products C4d, Bb, C5a, and SC5b-9. Also, changes in adsorbed polymer configuration trigger alternative pathway activation differently and through different initiators. Notably, the role for properdin-mediated activation of alternative pathway was only restricted to particles displaying PEO chains in a transition mushroom-brush configuration. Since nanoparticle-mediated complement activation is of clinical concern, our findings provide a rational basis for improved surface engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine.
Targeting a Common Collaborator in Cancer Development
Myers, Andrea P.; Cantley, Lewis C.
2012-01-01
In this issue of Science Translational Medicine, Wallin et al. have identified a subset of breast and ovarian cancer cell lines that show synergistic response to the combination of doxorubicin and GDC-0941, a class IA phosphatidylinositol 3-kinase (PI3K) inhibitor. Here, we discuss the potential implications of these data on the clinical development of PI3K pathway inhibitors as cancer therapeutics. PMID:20826838
Levitt, Joseph E.; Rogers, Angela J.
2017-01-01
The acute respiratory distress syndrome (ARDS) is a common cause of acute respiratory failure, and is associated with substantial mortality and morbidity. Dozens of clinical trials targeting ARDS have failed, with no drug specifically targeting lung injury in widespread clinical use. Thus, the need for drug development in ARDS is great. Targeted proteomic studies in ARDS have identified many key pathways in the disease, including inflammation, epithelial injury, endothelial injury or activation, and disordered coagulation and repair. Recent studies reveal the potential for proteomic changes to identify novel subphenotypes of ARDS patients who may be most likely to respond to therapy and could thus be targeted for enrollment in clinical trials. Nontargeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in the disease. Proteomics will play an important role in phenotyping of patients and developing novel therapies for ARDS in the future. PMID:27031735
Peacock, James; Diaz, Keith M.; Viera, Anthony J.; Schwartz, Joseph E.; Shimbo, Daichi
2014-01-01
‘Masked hypertension’ is defined as having non-elevated clinic blood pressure (BP) with elevated out-of-clinic average BP, typically determined by ambulatory BP monitoring. Approximately 15–30% of adults with non-elevated clinic BP have masked hypertension. Masked hypertension is associated with increased risks of cardiovascular morbidity and mortality compared to sustained normotension (non-elevated clinic and ambulatory BP), which is similar to or approaching the risk associated with sustained hypertension (elevated clinic and ambulatory BP). The confluence of increased cardiovascular risk and a failure to be diagnosed by the conventional approach of clinic BP measurement makes masked hypertension a significant public health concern. However, many important questions remain. First, the definition of masked hypertension varies across studies. Further, the best approach in the clinical setting to exclude masked hypertension also remains unknown. It is unclear whether home BP monitoring is an adequate substitute for ambulatory BP monitoring in identifying masked hypertension. Few studies have examined the mechanistic pathways that may explain masked hypertension. Finally, scarce data are available on the best approach to treating individuals with masked hypertension. Herein, we review the current literature on masked hypertension including definition, prevalence, clinical implications, special patient populations, correlates, issues related to diagnosis, treatment, and areas for future research. PMID:24573133
Irving, Julie A E
2016-03-01
Acute lymphoblastic leukaemia is the most common childhood cancer and for those children who relapse, prognosis is poor and new therapeutic strategies are needed. Recurrent pathways implicated in relapse include RAS, JAK STAT, cell cycle, epigenetic regulation, B cell development, glucocorticoid response, nucleotide metabolism and DNA repair. Targeting these pathways is a rational therapeutic strategy and may deliver novel, targeted therapies into the clinic. Relapse often stems from a minor clone present at diagnosis and thus analysis of persisting leukaemia during upfront therapy may allow targeted drug intervention to prevent relapse. © 2015 John Wiley & Sons Ltd.
Psychotherapy, psychopathology, research and practice: pathways of connections and integration.
Castonguay, Louis G
2011-03-01
This paper describes three pathways of connections between different communities of knowledge seekers: integration of psychotherapeutic approaches, integration of psychotherapy and psychopathology, and integration of science and practice. Some of the issues discussed involve the delineation and investigation of common factors (e.g., principles of change), improvement of major forms of psychotherapy, clinical implications of psychopathology research, as well as current and future directions related to practice-research networks. The aim of this paper is to suggest that building bridges across theoretical orientations, scientific fields, professional experiences, and epistemological views may be a fruitful strategy to improve our understanding and the impact of psychotherapy.
[Is endometriosis a precancerous lesion? Perspectives and clinical implications].
Chene, G; Caloone, J; Moret, S; Le Bail-Carval, K; Chabert, P; Beaufils, E; Mellier, G; Lamblin, G
2016-02-01
Epidemiological studies have shown a relationship between endometriosis and clear cell/endometrioid ovarian cancers (named "Endometriosis Associated Ovarian Cancer" or EAOC). The recent discovery of signaling pathways (especially the SWI/SNF and PI3K/AKT/mTOR pathways) that linked endometriosis and EAOC could lead to the development of specific biomarkers as ARID1A to screen benign to premalignant endometriosis and to new targeted treatment. Moreover, the better understanding of the pathogenesis of the epithelial ovarian cancer arising from the Fallopian tube could allow new early prevention strategies that will be described in this review. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Rhee, Ye-Young; Kim, Kyung-Ju; Kang, Gyeong Hoon
2017-01-01
The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway. PMID:27885175
The Fanconi anemia pathway and ICL repair: implications for cancer therapy
Wang, Lily C; Gautier, Jean
2011-01-01
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and –independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates (Moldovan and D’Andrea, 2009). However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition. PMID:20807115
Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway.
Lallemand-Breitenbach, Valérie; Jeanne, Marion; Benhenda, Shirine; Nasr, Rihab; Lei, Ming; Peres, Laurent; Zhou, Jun; Zhu, Jun; Raught, Brian; de Thé, Hugues
2008-05-01
In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.
The visual system in migraine: from the bench side to the office.
Kowacs, Pedro A; Utiumi, Marco A; Piovesan, Elcio J
2015-02-01
Throughout history, migraine-associated visual symptoms have puzzled patients, doctors, and neuroscientists. The visual aspects of migraine extend far beyond the aura phenomena, and have several clinical implications. A narrative review was conducted, beginning with migraine mechanisms, then followed by pertinent aspects of the anatomy of visual pathways, clinical features, implications of the visual system on therapy, migraine on visually impaired populations, treatment of visual auras and ocular (retinal) migraine, effect of prophylactic migraine treatments on visual aura, visual symptoms induced by anti-migraine or anti-headache drugs, and differential diagnosis. A comprehensive narrative review from both basic and clinical standpoints on the visual aspects of migraine was attained; however, the results were biased to provide any useful information for the clinician. This paper achieved its goals of addressing and condensing information on the pathophysiology of the visual aspects of migraine and its clinical aspects, especially with regards to therapy, making it useful not only for those unfamiliar to the theme but to experienced physicians as well. © 2015 American Headache Society.
Inflammatory targets of therapy in sickle cell disease
Owusu-Ansah, Amma; Ihunnah, Chibueze A.; Walker, Aisha L.; Ofori-Acquah, Solomon F.
2015-01-01
Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident over several decades that a more complex disease process contributes to the myriad of clinical complications seen in SCD patients with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition they are useful tools to dissecting the molecular and cellular mechanisms that promote individual clinical events, and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only FDA approved drug for SCD. PMID:26226206
PI3K inhibitors as new cancer therapeutics: implications for clinical trial design
Massacesi, Cristian; Di Tomaso, Emmanuelle; Urban, Patrick; Germa, Caroline; Quadt, Cornelia; Trandafir, Lucia; Aimone, Paola; Fretault, Nathalie; Dharan, Bharani; Tavorath, Ranjana; Hirawat, Samit
2016-01-01
The PI3K–AKT–mTOR pathway is frequently activated in cancer. PI3K inhibitors, including the pan-PI3K inhibitor buparlisib (BKM120) and the PI3Kα-selective inhibitor alpelisib (BYL719), currently in clinical development by Novartis Oncology, may therefore be effective as anticancer agents. Early clinical studies with PI3K inhibitors have demonstrated preliminary antitumor activity and acceptable safety profiles. However, a number of unanswered questions regarding PI3K inhibition in cancer remain, including: what is the best approach for different tumor types, and which biomarkers will accurately identify the patient populations most likely to benefit from specific PI3K inhibitors? This review summarizes the strategies being employed by Novartis Oncology to help maximize the benefits of clinical studies with buparlisib and alpelisib, including stratification according to PI3K pathway activation status, selective enrollment/target enrichment (where patients with PI3K pathway-activated tumors are specifically recruited), nonselective enrollment with mandatory tissue collection, and enrollment of patients who have progressed on previous targeted agents, such as mTOR inhibitors or endocrine therapy. An overview of Novartis-sponsored and Novartis-supported trials that are utilizing these approaches in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme, is also described. PMID:26793003
Frick, Paul J
2009-12-01
This paper reviews several attempts to extend the construct of psychopathy to children and adolescents. The research suggests that the presence of callous-unemotional (CU) traits may be particularly important. Specifically, the presence of these traits designates a clinically important subgroup of youth with childhood-onset conduct problems who show a particularly severe, aggressive, and stable pattern of antisocial behaviour. Also, children with CU traits show numerous emotional, cognitive, and personality features that are distinct from other antisocial youth that are similar to features found in adults with psychopathy. The research on CU traits has important implications for understanding the different causal pathways through which children develop severe antisocial and aggressive behaviour, as well as implications for diagnosing and intervening with antisocial youth.
Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives
Del Pinto, Rita; Ferri, Claudio; Cominelli, Fabio
2017-01-01
Increasing evidence supports the concept that the vitamin D axis possesses immunoregulatory functions, with vitamin D receptor (VDR) status representing the major determinant of vitamin D’s pleiotropic effects. Vitamin D promotes the production of anti-microbial peptides, including β-defensins and cathelicidins, the shift towards Th2 immune responses, and regulates autophagy and epithelial barrier integrity. Impairment of vitamin D-mediated pathways are associated with chronic inflammatory conditions, including inflammatory bowel diseases (IBD). Interestingly, inhibition of vitamin D pathways results in dysbiosis of the gut microbiome, which has mechanistically been implicated in the development of IBD. Herein, we explore the role of the vitamin D axis in immune-mediated diseases, with particular emphasis on its interplay with the gut microbiome in the pathogenesis of IBD. The potential clinical implications and therapeutic relevance of this interaction will also be discussed, including optimizing VDR function, both with vitamin D analogues and probiotics, which may represent a complementary approach to current IBD treatments. PMID:29112157
Buzdin, Anton; Sorokin, Maxim; Garazha, Andrew; Sekacheva, Marina; Kim, Ella; Zhukov, Nikolay; Wang, Ye; Li, Xinmin; Kar, Souvik; Hartmann, Christian; Samii, Amir; Giese, Alf; Borisov, Nicolas
2018-06-20
Anticancer target drugs (ATDs) specifically bind and inhibit molecular targets that play important roles in cancer development and progression, being deeply implicated in intracellular signaling pathways. To date, hundreds of different ATDs were approved for clinical use in the different countries. Compared to previous chemotherapy treatments, ATDs often demonstrate reduced side effects and increased efficiency, but also have higher costs. However, the efficiency of ATDs for the advanced stage tumors is still insufficient. Different ATDs have different mechanisms of action and are effective in different cohorts of patients. Personalized approaches are therefore needed to select the best ATD candidates for the individual patients. In this review, we focus on a new generation of biomarkers - molecular pathway activation - and on their applications for predicting individual tumor response to ATDs. The success in high throughput gene expression profiling and emergence of novel bioinformatic tools reinforced quick development of pathway related field of molecular biomedicine. The ability to quantitatively measure degree of a pathway activation using gene expression data has revolutionized this field and made the corresponding analysis quick, robust and inexpensive. This success was further enhanced by using machine learning algorithms for selection of the best biomarkers. We review here the current progress in translating these studies to clinical oncology and patient-oriented adjustment of cancer therapy. Copyright © 2018. Published by Elsevier Ltd.
Antiphospholipid Syndrome Nephropathy: From Pathogenesis to Treatment.
Tektonidou, Maria G
2018-01-01
Kidney damage is a well-recognized complication of the antiphospholipid syndrome (APS), either primary or systemic lupus erythematosus (SLE)-associated APS. Kidney involvement in APS involves a variety of manifestations, such as renal artery thrombosis or stenosis, renal vein thrombosis, allograft loss due to thrombosis after kidney transplantation, and injury to the renal microvasculature, also known as APS nephropathy. Biopsy in patients with APS nephropathy includes acute thrombotic microangiopathy lesions and chronic intrarenal vascular lesions such as interlobular fibrous intimal hyperplasia, arterial and arteriolar recanalizing thrombosis, fibrous arterial occlusion, and focal cortical atrophy. The most frequent clinical features are hypertension, microscopic hematuria, proteinuria (ranging from mild to nephritic levels), and renal insufficiency. It is uncertain whether antiphospholipid antibodies or other factors are implicated in the development of APS nephropathy, and whether it is driven mainly by thrombotic or by inflammatory processes. Experimental models and clinical studies of thrombotic microangiopathy lesions implicate activation of the complement cascade, tissue factor, and the mTORC pathway. Currently, the management of APS nephropathy relies on expert opinion, and consensus is lacking. There is limited evidence about the effect of anticoagulants, and their use remains controversial. Treatment approaches in patients with APS nephropathy lesions may include the use of heparin based on its role on complement activation pathway inhibition or the use of intravenous immunoglobulin and/or plasma exchange. Targeted therapies may also be considered based on potential APS nephropathy pathogenetic mechanisms such as B-cell directed therapies, complement inhibition, tissue factor inhibition, mTOR pathway inhibition, or anti-interferon antibodies, but prospective multicenter studies are needed to address their role.
Ardura, Juan Antonio; Corton, Marta; Fernández-Fernández, Beatriz; Aguilera, Oscar; Gomez-Guerrero, Carmen; Mas, Sebastián; Moreno, Juan Antonio; Ruiz-Ortega, Marta; Sanz, Ana Belen; Sanchez-Niño, Maria Dolores; Rojo, Federico; Vivanco, Fernando; Esbrit, Pedro; Ayuso, Carmen; Alvarez-Llamas, Gloria; Egido, Jesús; García-Foncillas, Jesús; Ortiz, Alberto
2017-01-01
Worldwide deaths from diabetes mellitus (DM) and colorectal cancer increased by 90% and 57%, respectively, over the past 20 years. The risk of colorectal cancer was estimated to be 27% higher in patients with type 2 DM than in non-diabetic controls. However, there are potential confounders, information from lower income countries is scarce, across the globe there is no correlation between DM prevalence and colorectal cancer incidence and the association has evolved over time, suggesting the impact of additional environmental factors. The clinical relevance of these associations depends on understanding the mechanism involved. Although evidence is limited, insulin use has been associated with increased and metformin with decreased incidence of colorectal cancer. In addition, colorectal cancer shares some cellular and molecular pathways with diabetes target organ damage, exemplified by diabetic kidney disease. These include epithelial cell injury, activation of inflammation and Wnt/β-catenin pathways and iron homeostasis defects, among others. Indeed, some drugs have undergone clinical trials for both cancer and diabetic kidney disease. Genome-wide association studies have identified diabetes-associated genes (e.g. TCF7L2) that may also contribute to colorectal cancer. We review the epidemiological evidence, potential pathophysiological mechanisms and therapeutic implications of the association between DM and colorectal cancer. Further studies should clarify the worldwide association between DM and colorectal cancer, strengthen the biological plausibility of a cause-and-effect relationship through characterization of the molecular pathways involved, search for specific molecular signatures of colorectal cancer under diabetic conditions, and eventually explore DM-specific strategies to prevent or treat colorectal cancer. PMID:28060743
May, Stephen; Withers, Sarah; Reeve, Sarah; Greasley, Alison
2010-01-01
The aim of this study was to explore the clinical reasoning process used by novice physical therapists in specific patient problems. Nine physical therapists in the UK with limited experience of managing musculoskeletal problems were included. Semi-structured interviews were conducted on how novice physical therapists would assess and manage a patient with a shoulder problem; interviews were transcribed and analyzed using framework analysis. To be included as a final theme at least 50% of participants had to mention that theme. A large number of items (n = 93) were excluded as fewer than 50% of participants referred to each item. Included items related to seven main themes: history (16), physical exam (13), investigations (1), diagnostic reasoning (1), clinical reasoning process (diagnostic pathway) (3), clinical reasoning process (management pathway) (5) and treatment options (1). Items mostly related to information gathering, although there was some use of hypothetico-deductive clinical reasoning there appeared to be limited understanding of the clinical implications of data gathered, and clinical reasoning through use of pattern recognition was minimal. Major weaknesses were apparent in the clinical reasoning skills of these novice therapists compared to previous reports of expert clinical reasoning, indicating areas for development in the education of student and junior physical therapists. PMID:21655390
Binding Pathway of Opiates to μ-Opioid Receptors Revealed by Machine Learning
NASA Astrophysics Data System (ADS)
Barati Farimani, Amir; Feinberg, Evan; Pande, Vijay
2018-02-01
Many important analgesics relieve pain by binding to the $\\mu$-Opioid Receptor ($\\mu$OR), which makes the $\\mu$OR among the most clinically relevant proteins of the G Protein Coupled Receptor (GPCR) family. Despite previous studies on the activation pathways of the GPCRs, the mechanism of opiate binding and the selectivity of $\\mu$OR are largely unknown. We performed extensive molecular dynamics (MD) simulation and analysis to find the selective allosteric binding sites of the $\\mu$OR and the path opiates take to bind to the orthosteric site. In this study, we predicted that the allosteric site is responsible for the attraction and selection of opiates. Using Markov state models and machine learning, we traced the pathway of opiates in binding to the orthosteric site, the main binding pocket. Our results have important implications in designing novel analgesics.
Pathogenetic Importance and Therapeutic Implications of NF-κB in Lymphoid Malignancies
Lim, Kian-Huat; Yang, Yibin; Staudt, Louis M.
2014-01-01
Summary Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be ‘addicted’ to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies. PMID:22435566
The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels.
Paneni, Francesco; Diaz Cañestro, Candela; Libby, Peter; Lüscher, Thomas F; Camici, Giovanni G
2017-04-18
Cardiovascular disease (CVD) presents a great burden for elderly patients, their caregivers, and health systems. Structural and functional alterations of vessels accumulate throughout life, culminating in increased risk of developing CVD. The growing elderly population worldwide highlights the need to understand how aging promotes CVD in order to develop new strategies to confront this challenge. This review provides examples of some major unresolved clinical problems encountered in daily cardiovascular practice as we care for elderly patients. Next, the authors summarize the current understanding of the mechanisms implicated in cardiovascular aging, and the potential for targeting novel pathways implicated in endothelial dysfunction, mitochondrial oxidative stress, chromatin remodeling, and genomic instability. Lastly, the authors consider critical aspects of vascular repair, including autologous transplantation of bone marrow-derived stem cells in elderly patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Tops, Sanne; Habel, Ute; Radke, Sina
2018-03-12
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.
Wallin, Jeffrey J; Guan, Jane; Prior, Wei Wei; Edgar, Kyle A; Kassees, Robert; Sampath, Deepak; Belvin, Marcia; Friedman, Lori S
2010-09-08
The phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is frequently disrupted in cancer and implicated in multiple aspects of tumor growth and survival. In addition, increased activity of this pathway in cancer is associated with resistance to chemotherapeutic agents. Therefore, it has been hypothesized that PI3K inhibitors could help to overcome resistance to chemotherapies. We used preclinical cancer models to determine the effects of combining the DNA-damaging drug doxorubicin with GDC-0941, a class I PI3K inhibitor that is currently being tested in early-stage clinical trials. We found that PI3K inhibition significantly increased apoptosis and enhanced the antitumor effects of doxorubicin in a defined set of breast and ovarian cancer models. Doxorubicin treatment caused an increase in the amount of nuclear phospho-Akt(Ser473) in cancer cells that rely on the PI3K pathway for survival. This increased phospho-Akt(Ser473) response to doxorubicin correlates with the strength of GDC-0941's effect to augment doxorubicin action. These studies predict that clinical use of combination therapies with GDC-0941 in addition to DNA-damaging agents will be effective in tumors that rely on the PI3K pathway for survival.
Lipton, Jonathan O; Sahin, Mustafa
2014-10-22
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Lindsay, Cameron; Seikaly, Hadi; Biron, Vincent L
2017-01-31
Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.
Marone, Ugo; Aloj, Luigi; Di Monta, Gianluca; Caracò, Corrado
2011-01-01
Sentinel lymph node biopsy is commonly applied as staging procedure of regional lymph nodes in patients with cutaneous melanoma. Dynamic lymphoscintigraphy defines the lymphatic pathways from a primary melanoma site and allows to identify the node receiving lymphatic drainage from the primary tumor, which is the sentinel lymph node. In rare cases, lymphoscintigraphy shows sites of lymphatic drainage in nonclassical basins never described in the past when lymphatic drainage was considered only according to the anatomical proximity of the tumor primary site. These peculiar sentinel nodes, so-called "uncommon/interval" nodes, must be surgically removed because they may contain micrometastatic disease and may be the only site of nodal involvement.
Marone, Ugo; Aloj, Luigi; Di Monta, Gianluca; Caracò, Corrado
2011-01-01
Sentinel lymph node biopsy is commonly applied as staging procedure of regional lymph nodes in patients with cutaneous melanoma. Dynamic lymphoscintigraphy defines the lymphatic pathways from a primary melanoma site and allows to identify the node receiving lymphatic drainage from the primary tumor, which is the sentinel lymph node. In rare cases, lymphoscintigraphy shows sites of lymphatic drainage in nonclassical basins never described in the past when lymphatic drainage was considered only according to the anatomical proximity of the tumor primary site. These peculiar sentinel nodes, so-called “uncommon/interval” nodes, must be surgically removed because they may contain micrometastatic disease and may be the only site of nodal involvement. PMID:22242203
O'Farrell, Katherine; Harkin, Andrew
2017-01-01
The kynurenine pathway (KP), which is activated in times of stress and infection has been implicated in the pathophysiology of neurodegenerative and psychiatric disorders. Activation of this tryptophan metabolising pathway results in the production of neuroactive metabolites which have the potential to interfere with normal neuronal functioning which may contribute to altered neuronal transmission and the emergence of symptoms of these brain disorders. This review investigates the involvement of the KP in a range of neurological disorders, examining recent in vitro, in vivo and clinical discoveries highlights evidence to indicate that the KP is a potential therapeutic target in both neurodegenerative and stress-related neuropsychiatric disorders. Furthermore, this review identifies gaps in our knowledge with regard to this field which are yet to be examined to lead to a more comprehensive understanding of the role of KP activation in brain health and disease. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2015 Elsevier Ltd. All rights reserved.
How does the serrated polyp pathway alter CRC screening and surveillance?
Kahi, Charles J
2015-03-01
Screening and surveillance for colorectal cancer (CRC) reduces mortality through the detection of early-stage adenocarcinoma, and more importantly the detection and removal of premalignant polyps. While adenomas have historically been considered the most common and screening-relevant precursor lesions, there is accumulating evidence showing that the serrated pathway is an important contributor to CRC, and a disproportionate contributor to interval or postcolonoscopy CRC, particularly in the proximal colon. The serrated pathway is characterized by mutations in the BRAF gene, high levels of methylation of promoter CpG islands (CIMP-high), and the sessile serrated adenoma/polyp (SSA/P) is the most important precursor lesion. The study of serrated polyps has been complicated by evolving nomenclature, substantial variation among pathologists in the identification of SSA/Ps, high variability in endoscopic detection rates, and uncertainty regarding the relation to synchronous and metachronous colonic neoplasia. This paper presents an overview of the serrated polyp pathway and discusses its clinical implications including its impact on CRC screening.
Assessing the utility of the willingness/prototype model in predicting help-seeking decisions.
Hammer, Joseph H; Vogel, David L
2013-01-01
Prior research on professional psychological help-seeking behavior has operated on the assumption that the decision to seek help is based on intentional and reasoned processes. However, research on the dual-process prototype/willingness model (PWM; Gerrard, Gibbons, Houlihan, Stock, & Pomery, 2008) suggests health-related decisions may also involve social reaction processes that influence one's spontaneous willingness (rather than planned intention) to seek help, given conducive circumstances. The present study used structural equation modeling to evaluate the ability of these 2 information-processing pathways (i.e., the reasoned pathway and the social reaction pathway) to predict help-seeking decisions among 182 college students currently experiencing clinical levels of psychological distress. Results indicated that when both pathways were modeled simultaneously, only the social reaction pathway independently accounted for significant variance in help-seeking decisions. These findings argue for the utility of the PWM framework in the context of professional psychological help seeking and hold implications for future counseling psychology research, prevention, and practice. PsycINFO Database Record (c) 2013 APA, all rights reserved.
The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus
2017-01-01
Despite improvements in awareness and treatment of type II diabetes mellitus (TIIDM), this disease remains a major source of morbidity and mortality worldwide, and prevalence continues to rise. Oxidative damage caused by free radicals has long been known to contribute to the pathogenesis and progression of TIIDM and its complications. Only recently, however, has the role of the Nrf2/Keap1/ARE master antioxidant pathway in diabetic dysfunction begun to be elucidated. There is accumulating evidence that this pathway is implicated in diabetic damage to the pancreas, heart, and skin, among other cell types and tissues. Animal studies and clinical trials have shown promising results suggesting that activation of this pathway can delay or reverse some of these impairments in TIIDM. In this review, we outline the role of oxidative damage and the Nrf2/Keap1/ARE pathway in TIIDM, focusing on current and future efforts to utilize this relationship as a therapeutic target for prevention, prognosis, and treatment of TIID. PMID:28913364
Genetics of pancreatic neuroendocrine tumors: implications for the clinic
Pea, Antonio; Hruban, Ralph H.; Wood, Laura D.
2016-01-01
Pancreatic neuroendocrine tumors (PanNETs) are a common and deadly neoplasm of the pancreas. Although the importance of genetic alterations in PanNETs has been known for many years, recent comprehensive sequencing studies have greatly expanded our knowledge of neuroendocrine tumorigenesis in the pancreas. These studies have identified specific cellular processes that are altered in PanNETs, highlighted alterations with prognostic implications, and pointed to pathways for targeted therapies. In this review, we will discuss the genetic alterations that play a key role in PanNET tumorigenesis, with a specific focus on those alterations with the potential to change the way patients with these neoplasms are diagnosed and treated. PMID:26413978
B-cell receptor signaling as a driver of lymphoma development and evolution.
Niemann, Carsten U; Wiestner, Adrian
2013-12-01
The B-cell receptor (BCR) is essential for normal B-cell development and maturation. In an increasing number of B-cell malignancies, BCR signaling is implicated as a pivotal pathway in tumorigenesis. Mechanisms of BCR activation are quite diverse and range from chronic antigenic drive by microbial or viral antigens to autostimulation of B-cells by self-antigens to activating mutations in intracellular components of the BCR pathway. Hepatitis C virus infection can lead to the development of splenic marginal zone lymphoma, while Helicobacter pylori infection is associated with the development of mucosa-associated lymphoid tissue lymphomas. In some of these cases, successful treatment of the infection removes the inciting antigen and results in resolution of the lymphoma. Chronic lymphocytic leukemia has been recognized for decades as a malignancy of auto-reactive B-cells and its clinical course is in part determined by the differential response of the malignant cells to BCR activation. In a number of B-cell malignancies, activating mutations in signal transduction components of the BCR pathway have been identified; prominent examples are activated B-cell-like (ABC) diffuse large B-cell lymphomas (DLBCL) that carry mutations in CD79B and CARD11 and display chronic active BCR signaling resulting in constitutive activation of the NF-κB pathway. Despite considerable heterogeneity in biology and clinical course, many mature B-cell malignancies are highly sensitive to kinase inhibitors that disrupt BCR signaling. Thus, targeted therapy through inhibition of BCR signaling is emerging as a new treatment paradigm for many B-cell malignancies. Here, we review the role of the BCR in the pathogenesis of B-cell malignancies and summarize clinical results of the emerging class of kinase inhibitors that target this pathway. Copyright © 2013. Published by Elsevier Ltd.
Gulizia, Michele Massimo; Colivicchi, Furio; Ricciardi, Gualtiero; Giampaoli, Simona; Maggioni, Aldo Pietro; Averna, Maurizio; Graziani, Maria Stella; Ceriotti, Ferruccio; Mugelli, Alessandro; Rossi, Francesco; Medea, Gerardo; Parretti, Damiano; Abrignani, Maurizio Giuseppe; Arca, Marcello; Perrone Filardi, Pasquale; Perticone, Francesco; Catapano, Alberico; Griffo, Raffaele; Nardi, Federico; Riccio, Carmine; Di Lenarda, Andrea; Scherillo, Marino; Musacchio, Nicoletta; Panno, Antonio Vittorio; Zito, Giovanni Battista; Campanini, Mauro; Bolognese, Leonardo; Faggiano, Pompilio Massimo; Musumeci, Giuseppe; Pusineri, Enrico; Ciaccio, Marcello; Bonora, Enzo; Cantelli Forti, Giorgio; Ruggieri, Maria Pia; Cricelli, Claudio; Romeo, Francesco; Ferrari, Roberto; Maseri, Attilio
2017-05-01
Atherosclerotic cardiovascular disease still represents the leading cause of death in Western countries. A wealth of scientific evidence demonstrates that increased blood cholesterol levels have a major impact on the outbreak and progression of atherosclerotic plaques. Moreover, several cholesterol-lowering pharmacological agents, including statins and ezetimibe, have proved effective in improving clinical outcomes. This document focuses on the clinical management of hypercholesterolaemia and has been conceived by 16 Italian medical associations with the support of the Italian National Institute of Health. The authors discuss in detail the role of hypercholesterolaemia in the genesis of atherosclerotic cardiovascular disease. In addition, the implications for high cholesterol levels in the definition of the individual cardiovascular risk profile have been carefully analysed, while all available therapeutic options for blood cholesterol reduction and cardiovascular risk mitigation have been explored. Finally, this document outlines the diagnostic and therapeutic pathways for the clinical management of patients with hypercholesterolaemia.
Li, Shuxia; Zhu, Dongyi; Duan, Hongmei; Ren, Anran; Glintborg, Dorte; Andersen, Marianne; Skov, Vibe; Thomassen, Mads; Kruse, Torben; Tan, Qihua
2017-03-28
As a universally common endocrinopathy in women of reproductive age, the polycystic ovarian syndrome is characterized by composite clinical phenotypes reflecting the contributions of reproductive impact of ovarian dysfunction and metabolic abnormalities with widely varying symptoms resulting from interference of the genome with the environment through integrative biological mechanisms including epigenetics. We have performed a genome-wide DNA methylation analysis on polycystic ovarian syndrome and identified a substantial number of genomic sites differentially methylated in the whole blood of PCOS patients and healthy controls (52 sites, false discovery rate < 0.05 and corresponding p value < 5.68e-06), highly consistently replicating biological pathways extensively implicated in immunity and immunity-related inflammatory disorders (false discovery rate < 0.05) that were reportedly regulated in the DNA methylome from ovarian tissue under PCOS condition. Most importantly, our genome-wide profiling focusing on PCOS patients revealed a large number of DNA methylation sites and their enriched functional pathways significantly associated with diverse clinical features (levels of prolactin, estradiol, progesterone and menstrual cycle) that could serve as novel molecular basis of the clinical heterogeneity observed in PCOS women.
Colivicchi, Furio; Ricciardi, Gualtiero; Giampaoli, Simona; Maggioni, Aldo Pietro; Averna, Maurizio; Graziani, Maria Stella; Ceriotti, Ferruccio; Mugelli, Alessandro; Rossi, Francesco; Medea, Gerardo; Parretti, Damiano; Abrignani, Maurizio Giuseppe; Arca, Marcello; Perrone Filardi, Pasquale; Perticone, Francesco; Catapano, Alberico; Griffo, Raffaele; Nardi, Federico; Riccio, Carmine; Di Lenarda, Andrea; Scherillo, Marino; Musacchio, Nicoletta; Panno, Antonio Vittorio; Zito, Giovanni Battista; Campanini, Mauro; Bolognese, Leonardo; Faggiano, Pompilio Massimo; Musumeci, Giuseppe; Pusineri, Enrico; Ciaccio, Marcello; Bonora, Enzo; Cantelli Forti, Giorgio; Ruggieri, Maria Pia; Cricelli, Claudio; Romeo, Francesco; Ferrari, Roberto; Maseri, Attilio
2017-01-01
Abstract Atherosclerotic cardiovascular disease still represents the leading cause of death in Western countries. A wealth of scientific evidence demonstrates that increased blood cholesterol levels have a major impact on the outbreak and progression of atherosclerotic plaques. Moreover, several cholesterol-lowering pharmacological agents, including statins and ezetimibe, have proved effective in improving clinical outcomes. This document focuses on the clinical management of hypercholesterolaemia and has been conceived by 16 Italian medical associations with the support of the Italian National Institute of Health. The authors discuss in detail the role of hypercholesterolaemia in the genesis of atherosclerotic cardiovascular disease. In addition, the implications for high cholesterol levels in the definition of the individual cardiovascular risk profile have been carefully analysed, while all available therapeutic options for blood cholesterol reduction and cardiovascular risk mitigation have been explored. Finally, this document outlines the diagnostic and therapeutic pathways for the clinical management of patients with hypercholesterolaemia. PMID:28751833
The Emerging Role of Insulin and Insulin-Like Growth Factor Signaling in Cancer Stem Cells
Malaguarnera, Roberta; Belfiore, Antonino
2014-01-01
Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications. PMID:24550888
Veatch, Olivia J; Pendergast, Julie S; Allen, Melissa J; Leu, Roberta M; Johnson, Carl Hirschie; Elsea, Sarah H; Malow, Beth A
2015-01-01
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with comorbid expression of sleep onset delay. We evaluated variation in two melatonin pathway genes, acetylserotonin O-methyltransferase (ASMT) and cytochrome P450 1A2 (CYP1A2). We observed higher frequencies than currently reported (p < 0.04) for variants evidenced to decrease ASMT expression and related to decreased CYP1A2 enzyme activity (p ≤ 0.0007). We detected a relationship between genotypes in ASMT and CYP1A2 (r(2) = 0.63). Our results indicate that expression of sleep onset delay relates to melatonin pathway genes.
Holmes, Christopher; Kim-Spoon, Jungmeen
2016-03-01
This review explores the relation of religiousness and spirituality with externalizing psychopathology in adolescence given the heightened externalizing psychopathology during this developmental period. Utilizing a developmental psychopathology framework, previous literature is reviewed focusing on the diversity of pathways from religiousness and spirituality to externalizing psychopathology at multiple levels of analysis. Moreover, the pathways considered include both intraindividual factors (e.g., self-control, monitoring, delay discounting and time orientation, and neurobiological regulatory systems) and ecological factors (e.g., intergenerational transmission, parent-child relationships, and community relationships). These pathways are explored in light of theoretical viewpoints including social control theory, divine interaction theory, and the religious ecology model. Limitations of extant work are examined, including measurement and design issues, exploration of potential negative effects of religiousness and spirituality, and bias toward Western religions. Finally, future directions of research and clinical implications are discussed.
Holmes, Christopher; Kim-Spoon, Jungmeen
2015-01-01
This review explores the relation of religiousness and spirituality with externalizing psychopathology in adolescence given the heightened externalizing psychopathology during this developmental period. Utilizing a developmental psychopathology framework, previous literature is reviewed focusing on the diversity of pathways from religiousness and spirituality to externalizing psychopathology at multiple levels of analysis. Moreover, the pathways considered include both intraindividual factors (e.g., self-control, monitoring, delay discounting and time orientation, and neurobiological regulatory systems) and ecological factors (e.g., intergenerational transmission, parent-child relationships, and community relationships). These pathways are explored in light of theoretical viewpoints including social control theory, divine interaction theory, and the religious ecology model. Limitations of extant work are examined, including measurement and design issues, exploration of potential negative effects of religiousness and spirituality, and bias towards Western religions. Finally, future directions of research and clinical implications are discussed. PMID:26662624
The Hippo signal transduction pathway in soft tissue sarcomas.
Mohamed, Abdalla D; Tremblay, Annie M; Murray, Graeme I; Wackerhage, Henning
2015-08-01
Sarcomas are rare cancers (≈1% of all solid tumours) usually of mesenchymal origin. Here, we review evidence implicating the Hippo pathway in soft tissue sarcomas. Several transgenic mouse models of Hippo pathway members (Nf2, Mob1, LATS1 and YAP1 mutants) develop various types of sarcoma. Despite that, Hippo member genes are rarely point mutated in human sarcomas. Instead, WWTR1-CAMTA1 and YAP1-TFE3 fusion genes are found in almost all cases of epithelioid haemangioendothelioma. Also copy number gains of YAP1 and other Hippo members occur at low frequencies but the most likely cause of perturbed Hippo signalling in sarcoma is the cross-talk with commonly mutated cancer genes such as KRAS, PIK3CA, CTNNB1 or FBXW7. Current Hippo pathway-targeting drugs include compounds that target the interaction between YAP and TEAD G protein-coupled receptors (GPCR) and the mevalonate pathway (e.g. statins). Given that many Hippo pathway-modulating drugs are already used in patients, this could lead to early clinical trials testing their efficacy in different types of sarcoma. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds
Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin
2011-01-01
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962
Kavarana, Minoo N.; Jones, Jeffrey A.; Stroud, Robert E.; Bradley, Scott M.; Ikonomidis, John S.; Mukherjee, Rupak
2015-01-01
Children with functional single ventricle heart disease are commonly palliated down a staged clinical pathway toward a Fontan completion procedure (total cavopulmonary connection). The Fontan physiology is fraught with long term complications associated with lower body systemic venous hypertension, eventually resulting in significant morbidity and mortality. The bidirectional Glenn shunt or superior cavopulmonary connection (SCPC) is commonly the transitional stage in single ventricle surgical management and provides excellent palliation. Some studies have demonstrated lower morbidity and mortality with the SCPC when compared with the Fontan. Unfortunately the durability of the SCPC is significantly limited by the development of pulmonary arteriovenous malformations (PAVMs) which have been commonly attributed to the absence of hepatic venous blood flow and the lack of pulsatile flow to the affected lungs. Abnormal angiogenesis has been suggested as a final common pathway to PAVM development. Understanding these fundamental mechanisms through the investigation of angiogenic pathways associated with the pathogenesis of PAVMs would help to develop medical therapies that could prevent or reverse this complication following SCPC. Such therapies could improve the longevity of the SCPC, potentially eliminate or significantly postpone the Fontan completion with its associated complications, and improve long-term survival in children with single ventricle disease. PMID:24758411
Biologically Targeted Therapeutics in Pediatric Brain Tumors
Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.
2013-01-01
Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764
Biologically targeted therapeutics in pediatric brain tumors.
Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J
2012-04-01
Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.
PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track?
Gasparri, Maria Luisa; Bardhi, Erlisa; Ruscito, Ilary; Papadia, Andrea; Farooqi, Ammad Ahmad; Marchetti, Claudia; Bogani, Giorgio; Ceccacci, Irene; Mueller, Michael D.; Benedetti Panici, Pierluigi
2017-01-01
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents. PMID:29093603
PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track?
Gasparri, Maria Luisa; Bardhi, Erlisa; Ruscito, Ilary; Papadia, Andrea; Farooqi, Ammad Ahmad; Marchetti, Claudia; Bogani, Giorgio; Ceccacci, Irene; Mueller, Michael D; Benedetti Panici, Pierluigi
2017-10-01
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Targeting cancer by binding iron: Dissecting cellular signaling pathways
Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.
2015-01-01
Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440
Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC.
Li, Xue; Lian, Zhen; Wang, Shuai; Xing, Ligang; Yu, Jinming
2018-04-01
Immune checkpoint inhibitors targeting the programmed cell death receptor/ligand 1 (PD-1/PD-L1) pathway displayed striking and durable clinical responses in patients with non-small-cell lung cancer (NSCLC). However, it is still undefined about the efficacy of PD-1/PD-L1 inhibitors in NSCLC patients with EGFR activating mutations. Preclinical studies indicate the immune modulatory effect of EGFR signaling by regulating expression of MHC I/II and PD-L1 on tumor cells and activity of lymphocytes. Thus, it might be practicable for the use of PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in patients with EGFR activating mutations. In this review, we discussed the regulation effect of EGFR signaling on PD-1/PD-L1 pathway and the potential mechanisms behind combing EGFR-TKIs with PD-1/PD-L1 inhibitors. We also reviewed current available data on PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in NSCLC with EGFR activating mutations, and explored possible factors influence its efficacy, which would be important considerations for future clinical trial designs. Copyright © 2018 Elsevier B.V. All rights reserved.
Chan, Agnes S; Sze, Sophia L; Cheung, Mei-Chun; Han, Yvonne M Y
2016-11-01
To review the development, application, and value of neuropsychology, and the standard education and training pathway for neuropsychologists or clinical neuropsychologists in Hong Kong. The information provided here was gathered via a literature review of the status of neuropsychology and the validity of commonly adopted neuropsychological tests in Hong Kong. Additional details were acquired via the internet about local tertiary education curricula and the related requirements, the availability of professional associations for licensure or board certification, and relevant statistics/surveys conducted by the government. Some information about the clinical practice of neuropsychology was collected through personal communication with local clinical psychologists. The development of neuropsychology in Hong Kong over the past 20 years is rapid and productive, given the increasing application of advanced neuroimaging techniques, neuropsychological tests, and opportunities for exchanging up-to-date neuropsychological knowledge and professional training through international conferences, workshops, and seminars. Given that neuropsychology services are often provided by clinical psychologists who are master's degree graduates in clinical psychology, the relatively limited training in neuropsychological knowledge and skills and the lack of division for membership or mandatory registration as a neuropsychologist/clinical neuropsychologist may have an impact on the quality of clinical neuropsychological services and the development of this specialty. These findings signify a need for further improvement or refinement of educational and training pathways for neuropsychologist or clinical neuropsychologist along with the recognition of its value in clinical practice through registration of different disciplines of psychology in Hong Kong.
Psychosocial Correlates of Hepatitis C: Interaction and impact on quality of life
Janke, E. Amy; McGraw, Sarah; Fraenkel, Liana; Garcia-Tsao, Guadalupe
2009-01-01
Despite demonstrated prevalence of psychosocial problems among hepatitis C (HCV) patients, little is known about how these problems develop, why they are sustained, and how clinical providers can effectively intervene. This study uses a qualitative approach to investigate the nature of psychosocial issues in HCV. Focus groups were conducted with HCV patients during which participants discussed significant feelings of anger, depression, and stigma associated with diagnosis. Participants noted these feelings/experiences isolated them from potential sources of social support. Results have important implications for clinical providers and suggest pathways by which HCV-related psychosocial factors interact and impact of quality of life. PMID:19122126
Xu, Song; Liu, Renwang; Da, Yurong
2018-06-05
This study compared tumor-related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype-tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug-pathway network for LUAD was constructed, and molecular docking was carried out. After the integration of 57 LUAD-related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD-related oncogenic pathways were involved in the LUAD drug-pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG-028671, may have potential roles for LUAD treatment but require further experimental verification. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.
Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S
2017-11-01
The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Protein Kinases and Parkinson's Disease.
Mehdi, Syed Jafar; Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M; Barger, Steven W; Sarkar, Sumit; Paule, Merle G; Ali, Syed F; Imam, Syed Z
2016-09-20
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson's disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson's disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson's disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules.
Swanton, Charles; Szallasi, Zoltan; Brenton, James D; Downward, Julian
2008-01-01
The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts. PMID:18986507
Yu, Dongyin; Lofgren, Julie A.; Osgood, Tao; Robertson, Rebecca; Canon, Jude; Su, Cheng; Jones, Adrie; Zhao, Xiaoning; Deshpande, Chetan; Payton, Marc; Ledell, Jebediah; Hughes, Paul E.; Oliner, Jonathan D.
2014-01-01
While MDM2 inhibitors hold great promise as cancer therapeutics, drug resistance will likely limit their efficacy as single agents. To identify drug combinations that might circumvent resistance, we screened for agents that could synergize with MDM2 inhibition in the suppression of cell viability. We observed broad and robust synergy when combining MDM2 antagonists with either MEK or PI3K inhibitors. Synergy was not limited to cell lines harboring MAPK or PI3K pathway mutations, nor did it depend on which node of the PI3K axis was targeted. MDM2 inhibitors also synergized strongly with BH3 mimetics, BCR-ABL antagonists, and HDAC inhibitors. MDM2 inhibitor-mediated synergy with agents targeting these mechanisms was much more prevalent than previously appreciated, implying that clinical translation of these combinations could have far-reaching implications for public health. These findings highlight the importance of combinatorial drug targeting and provide a framework for the rational design of MDM2 inhibitor clinical trials. PMID:24810962
Guanosine triphosphatase activation occurs downstream of calcineurin in cardiac hypertrophy*.
Richardson, Kenneth E; Tannous, Paul; Berenji, Kambeez; Nolan, Bridgid; Bayless, Kayla J; Davis, George E; Rothermel, Beverly A; Hill, Joseph A
2005-12-01
There is great interest in deciphering mechanisms of maladaptive remodeling in cardiac hypertrophy in the hope of affording clinical benefit. Potential targets of therapeutic intervention include the cytoplasmic phosphatase calcineurin and small guanosine triphosphate-binding proteins, such as Rac1 and RhoA, all of which have been implicated in maladaptive hypertrophy. However, little is known about the interaction-if any-between these important signaling molecules in hypertrophic heart disease. In this study, we examined the molecular interplay among these molecules, finding that Rho family guanosine triphosphatase signaling occurs either downstream of calcineurin or as a required, parallel pathway. It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition blocks hypertrophy, and we report here that "statin" therapy effectively suppresses small G protein activation and blunts hypertrophic growth in vitro and in vivo. Importantly, despite significant suppression of hypertrophy, clinical and hemodynamic markers remained compensated, suggesting that the hypertrophic growth induced by this pathway is not required to maintain circulatory performance.
Perrot, Carole Y; Javelaud, Delphine; Mauviel, Alain
2013-02-01
Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.
Molecular biology of gastric cancer.
Cervantes, A; Rodríguez Braun, E; Pérez Fidalgo, A; Chirivella González, I
2007-04-01
Despite its decreasing incidence overall, gastric cancer is still a challenging disease. Therapy is based mainly upon surgical resection when the tumour remains localised in the stomach. Conventional chemotherapy may play a role in treating micrometastatic disease and is effective as palliative therapy for recurrent or advanced disease. However, the knowledge of molecular pathways implicated in gastric cancer pathogenesis is still in its infancy and the contribution of molecular biology to the development of new targeted therapies in gastric cancer is far behind other more common cancers such as breast, colon or lung. This review will focus first on the difference of two well defined types of gastric cancer: intestinal and diffuse. A discussion of the cell of origin of gastric cancer with some intriguing data implicating bone marrow derived cells will follow, and a comprehensive review of different genetic alterations detected in gastric cancer, underlining those that may have clinical, therapeutic or prognostic implications.
Morrison, Michael; Dickenson, Donna; Lee, Sandra Soo-Jin
2016-11-14
New technologies are transforming and reconfiguring the boundaries between patients, research participants and consumers, between research and clinical practice, and between public and private domains. From personalised medicine to big data and social media, these platforms facilitate new kinds of interactions, challenge longstanding understandings of privacy and consent, and raise fundamental questions about how the translational patient pathway should be organised.This editorial introduces the cross-journal article collection "Translation in healthcare: ethical, legal, and social implications", briefly outlining the genesis of the collection in the 2015 Translation in healthcare conference in Oxford, UK and providing an introduction to the contemporary ethical challenges of translational research in biology and medicine accompanied by a summary of the papers included in this collection.
Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA.
Yang, Xian; Han, Rui; Guo, Yike; Bradley, Jeremy; Cox, Benita; Dickinson, Robert; Kitney, Richard
2012-01-01
Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways. Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the effective management and further optimization of clinical pathways. Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours of a clinical pathway by extracting information from public clinical databases and other related documents using CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time can be quantitatively analysed. A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus the number of patients being served is maintained with less cost; 2) the patient passage time is estimated, providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input patients are found, helping hospitals to decide whether they can serve more patients with the existing resource allocation. ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby assisting hospitals to effectively manage time and resources in clinical pathway.
Scott, Alexander; Bahr, Roald
2014-01-01
Tendinopathy is a clinical syndrome of pain, tendon thickening, and increased blood flow. The current review highlights evidence supporting an underlying role of neuropeptides in the etiology, clinical presentation, and treatment of painful overuse tendinopathy. Painful tendons demonstrate an increased presence of Substance P-containing nerves which are strongly implicated as a potential source of pain, but which also play important roles in the tendon’s attempt to self-repair. Recent findings have identified potential roles of additional sensory and autonomic neuropeptides which regulate pain, tissue remodeling, and vascular flow, including acetylcholine, noradrenaline and neuropeptide Y. Neuropeptide production within tendons is stimulated by mechanical load and exercise, and both direct and indirect neuropeptide effects may be responsible for the potential benefits of heavy-load eccentric loading. A model is presented which delineates the physiologic basis for signalling pathways between tenocytes, mast cells and sensory and autonomic nerves, with implications for understanding the mechanisms of traditional as well as emerging treatment strategies including sclerosing therapy and nitric oxide. PMID:19273194
Shenk, Chad E; Griffin, Amanda M; O'Donnell, Kieran J
2015-11-01
Major depressive disorder (MDD) is a prevalent psychiatric condition in the child maltreatment population. However, not all children who have been maltreated will develop MDD or MDD symptoms, suggesting the presence of unique risk pathways that explain how certain children develop MDD symptoms when others do not. The current study tested several candidate risk pathways to MDD symptoms following child maltreatment: neuroendocrine, autonomic, affective, and emotion regulation. Female adolescents (N = 110; age range = 14-19) were recruited into a substantiated child maltreatment or comparison condition and completed a laboratory stressor, saliva samples, and measures of emotion regulation, negative affect, and MDD symptoms. MDD symptoms were reassessed 18 months later. Mediational modeling revealed that emotion regulation was the only significant indirect effect of the relationship between child maltreatment and subsequent MDD symptoms, demonstrating that children exposed to maltreatment had greater difficulties managing affective states that in turn led to more severe MDD symptoms. These results highlight the importance of emotion dysregulation as a central risk pathway to MDD following child maltreatment. Areas of future research and implications for optimizing prevention and clinical intervention through the direct targeting of transdiagnostic risk pathways are discussed.
Glucocerebrosidase Mutations in Parkinson Disease.
O'Regan, Grace; deSouza, Ruth-Mary; Balestrino, Roberta; Schapira, Anthony H
2017-01-01
Following the discovery of a higher than expected incidence of Parkinson Disease (PD) in Gaucher disease, a lysosomal storage disorder, mutations in the glucocerebrocidase (GBA) gene, which encodes a lysosomal enzyme involved in sphingolipid degradation were explored in the context of idiopathic PD. GBA mutations are now known to be the single largest risk factor for development of idiopathic PD. Clinically, on imaging and pharmacologically, GBA PD is almost identical to idiopathic PD, other than certain features that can be identified in the specialist research setting but not in routine clinical practice. In patients with a known GBA mutation, it is possible to monitor for prodromal signs of PD. The clinical similarity with idiopathic PD and the chance to identify PD at a pre-clinical stage provides a unique opportunity to research therapeutic options for early PD, before major irreversible neurodegeneration occurs. However, to date, the molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are not fully elucidated. Experimental models to define the molecular mechanisms and test therapeutic options include cell culture, transgenic mice and other in vivo models amenable to genetic manipulation, such as drosophilia. Some key pathological pathways of interest in the context of GBA mutations include alpha synuclein aggregation, lysosomal-autophagy axis changes and endoplasmic reticulum stress. Therapeutic agents that exploit these pathways are being developed and include the small molecule chaperone Ambroxol. This review aims to summarise the main features of GBA-PD and provide insights into the pathological relevance of GBA mutations on molecular pathways and the therapeutic implications for PD resulting from investigation of the role of GBA in PD.
Translating new knowledge into practices: reconceptualising stroke as an emergency condition
Snow, Stephanie J
2013-01-01
Objectives To examine how the new concept of stroke as an emergency condition led to the development of new clinical pathways for stroke patients in Newcastle Upon Tyne, implemented through protocols which were then rapidly adopted across the UK and further afield. Methods Historical analysis using health policy documents, published papers and correspondence on stroke alongside 17 interviews with stroke clinicians and managers in the UK and the US. Results The challenges of implementation stemmed from organisational and professional barriers rather than scientific or technological difficulties. Stroke’s historical status as a non-treatable illness was a barrier to the adoption of acute treatments. Building new pathways for stroke patients by developing protocols for paramedics and emergency room staff originated as a local solution to a local problem but were taken up widely. Discussion Understanding the clinical response to the reconceptualisation of stroke as a treatable disease contributes to our understandings of the relations between clinical research and practice. These findings have implications for how we understand the translation of new knowledge into practice and its transfer across different clinical communities and settings. Protocols are shown to be a particularly valuable tool, bridging knowledge between communities and manifesting a new identity for stroke. PMID:23129788
Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.
2014-01-01
Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644
Serrated pathway in colorectal carcinogenesis
Yamane, Letícia; Scapulatempo-Neto, Cristovam; Reis, Rui Manuel; Guimarães, Denise Peixoto
2014-01-01
Serrated adenocarcinoma is a recently described subset of colorectal cancer (CRC), which account for about 10% of all CRCs and follows an alternative pathway in which serrated polyps replace the traditional adenoma as the precursor lesion to CRC. Serrated polyps form a heterogeneous group of colorectal lesions that includes hyperplastic polyps (HPs), sessile serrated adenoma (SSA), traditional serrated adenoma (TSA) and mixed polyps. HPs are the most common serrated polyp followed by SSA and TSA. This distinct histogenesis is believed to have a major influence in prevention strategies, patient prognosis and therapeutic impact. Genetically, serrated polyps exhibited also a distinct pattern, with KRAS and BRAF having an important contribution to its development. Two other molecular changes that have been implicated in the serrated pathway include microsatellite instability and the CpG island methylator phenotype. In the present review we will address the current knowledge of serrated polyps, clinical pathological features and will update the most recent findings of its molecular pathways. The understanding of their biology and malignancy potential is imperative to implement a surveillance approach in order to prevent colorectal cancer development. PMID:24627599
Benveniste, Helene; Lee, Hedok; Volkow, Nora D
2017-01-01
The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.
Genetic basis and gene therapy trials for thyroid cancer.
Al-Humadi, Hussam; Zarros, Apostolos; Al-Saigh, Rafal; Liapi, Charis
2010-01-01
Gene therapy is regarded as one of the most promising novel therapeutic approaches for hopeless cases of thyroid cancer and those not responding to traditional treatment. In the last two decades, many studies have focused on the genetic factors behind the origin and the development of thyroid cancer, in order to investigate and shed more light on the molecular pathways implicated in different differentiated or undifferentiated types of thyroid tumors. We, herein, review the current data on the main genes that have been proven to (or thought to) be implicated in thyroid cancer etiology, and which are involved in several well-known signaling pathways (such as the mitogen-activated protein kinase and phosphatidylinositol-3-kinase/Akt pathways). Moreover, we review the results of the efforts made through multiple gene therapy trials, via several gene therapy approaches/strategies, on different thyroid carcinomas. Our review leads to the conclusion that future research efforts should seriously consider gene therapy for the treatment of thyroid cancer, and, thus, should: (a) shed more light on the molecular basis of thyroid cancer tumorigenesis, (b) focus on the development of novel gene therapy approaches that can achieve the required antitumoral efficacy with minimum normal tissue toxicity, as well as (c) perform more gene therapy clinical trials, in order to acquire more data on the efficacy of the examined approaches and to record the provoked adverse effects.
Disease implication of hyper-Hippo signalling.
Wang, Shu-Ping; Wang, Lan-Hsin
2016-10-01
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. © 2016 The Authors.
Disease implication of hyper-Hippo signalling
Wang, Shu-Ping
2016-01-01
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders. PMID:27805903
Revankar, Nikhil; Ward, Alexandra J; Pelligra, Christopher G; Kongnakorn, Thitima; Fan, Weihong; LaPensee, Kenneth T
2014-10-01
The economic implications from the US Medicare perspective of adopting alternative treatment strategies for acute bacterial skin and skin structure infections (ABSSSIs) are substantial. The objective of this study is to describe a modeling framework that explores the impact of decisions related to both the location of care and switching to different antibiotics at discharge. A discrete event simulation (DES) was developed to model the treatment pathway of each patient through various locations (emergency department [ED], inpatient, and outpatient) and the treatments prescribed (empiric antibiotic, switching to a different antibiotic at discharge, or a second antibiotic). Costs are reported in 2012 USD. The mean number of days on antibiotic in a cohort assigned to a full course of vancomycin was 11.2 days, with 64% of the treatment course being administered in the outpatient setting. Mean total costs per patient were $8671, with inpatient care accounting for 58% of the costs accrued. The majority of outpatient costs were associated with parenteral administration rather than drug acquisition or monitoring. Scenarios modifying the treatment pathway to increase the proportion of patients receiving the first dose in the ED, and then managing them in the outpatient setting or prescribing an oral antibiotic at discharge to avoid the cost associated with administering parenteral therapy, therefore have a major impact and lower the typical cost per patient by 11-20%. Since vancomycin is commonly used as empiric therapy in clinical practice, based on these analyses, a shift in treatment practice could result in substantial savings from the Medicare perspective. The choice of antibiotic and location of care influence the costs and resource use associated with the management of ABSSSIs. The DES framework presented here can provide insight into the potential economic implications of decisions that modify the treatment pathway.
Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.
Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin
2011-09-01
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. Copyright © 2011 Elsevier Inc. All rights reserved.
Hilton, Gillean; Unsworth, Carolyn A; Stuckey, Ruth; Murphy, Gregory C
2018-01-01
Vocational potential in people with spinal cord injury (SCI) are unrealised with rates of employment substantially lower than in the labour force participation of the general population and the pre-injury employment rates. To understand the experience and pathway of people achieving employment outcome after traumatic spinal cord injury by; classifying participants into employment outcome groups of stable, unstable and without employment; identifying pre and post-injury pathways for participants in each group and, exploring the experiences of people of seeking, gaining and maintaining employment. Thirty-one participants were interviewed. Mixed methods approach including interpretive phenomenological analysis and vocational pathway mapping of quantitative data. The most common pathway identified was from study and work pre-injury to stable employment post-injury. Four super-ordinate themes were identified from the interpretive phenomenological analysis; expectations of work, system impacts, worker identity and social supports. Implications for clinical practice include fostering cultural change, strategies for system navigation, promotion of worker identity and optimal use of social supports. The findings increase insight and understanding of the complex experience of employment after spinal cord injury. There is opportunity to guide experimental research, policy development and education concerning the complexity of the return to work experience and factors that influence pathways.
Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei
2012-01-01
The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144
Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer.
Nguyen, Thanh Hung; Kugler, Jan-Michael
2018-04-17
The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system.
Clinical pathways for primary care: current use, interest and perceived usability.
Waters, Richard C; Toy, Jennifer M; Drechsler, Adam
2018-02-26
Translating clinical evidence to daily practice remains a challenge and may improve with clinical pathways. We assessed interest in and usability of clinical pathways by primary care professionals. An online survey was created. Interest in pathways for patient care and learning was assessed at start and finish. Participants completed baseline questions then pathway-associated question sets related to management of 2 chronic diseases. Perceived pathway usability was assessed using the system usability scale. Accuracy and confidence of answers was compared for baseline and pathway-assisted questions. Of 115 participants, 17.4% had used clinical pathways, the lowest of decision support tool types surveyed. Accuracy and confidence in answers significantly improved for all pathways. Interest in using pathways daily or weekly was above 75% for the respondents. There is low utilization of, but high interest in, clinical pathways by primary care clinicians. Pathways improve accuracy and confidence in answering written clinical questions.
Warren, Timothy A; Broit, Natasa; Simmons, Jacinta L; Pierce, Carly J; Chawla, Sharad; Lambie, Duncan L J; Quagliotto, Gary; Brown, Ian S; Parsons, Peter G; Panizza, Benedict J; Boyle, Glen M
2016-09-26
Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.
Defining quality health care with outcomes assessment while achieving economic value.
Shaw, L J; Miller, D D
2000-02-01
The effectiveness of a procedure is increasingly guided by the evaluation of patient outcomes. Outcomes data is used to develop clinical pathways of care and to define appropriate resource-use levels without sacrificing quality of care. Integration of the economic implications of medical services into an outcome-based guideline allows for the development of disease-management strategies. In cardiovascular medicine, risk reduction is associated with high cost due to the "pay-back" of new technologies and therapies. A major challenge is to define a balance between "high tech" care and cost. This paper devises an outpatient evidence-based guideline using clinical and economic outcomes data for the diagnosis of coronary disease.
New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities.
Abou Zahr, Abdallah; Bernabe Ramirez, Carolina; Wozney, Jocelyn; Prebet, Thomas; Zeidan, Amer M
2016-01-01
Myelodysplastic syndromes (MDS) include a heterogeneous group of acquired hematopoietic malignancies characterized by ineffective hematopoiesis, peripheral cytopenias, and a varying propensity for progression to acute myeloid leukemia. The clinical heterogeneity in MDS is a reflection of its molecular heterogeneity. Better understanding of aberrant epigenetics, dysregulation of immune responses, and del(5q) MDS has provided the rationale for well-established treatments in MDS. Further understanding of abnormal signal transduction and aberrant apoptosis pathways has led to development of new rational therapies that are in advanced phases of clinical translation. This review seeks to describe recent developments in our understanding of the pathogenesis of MDS and the potential therapeutic implications of these observations.
2012-01-01
This is a report of the first Plasmodium vivax congenital malaria case in Guatemala and the first case in Latin America with genotypical, histological and clinical characterization. The findings show that maternal P. vivax infection still occurs in areas that are in the pathway towards malaria elimination, and can be associated with detrimental health effects for the neonate. It also highlights the need in very low transmission areas of not only maintaining, but increasing awareness of the problem and developing surveillance strategies, based on population risk, to detect the infection especially in this vulnerable group of the population. PMID:23217209
Cardio-oncology Related to Heart Failure: Epidermal Growth Factor Receptor Target-Based Therapy.
Kenigsberg, Benjamin; Jain, Varun; Barac, Ana
2017-04-01
Cancer therapy targeting the epidermal growth factor receptor (EGFR)/erythroblastic leukemia viral oncogene B (ErbB)/human EGFR receptor (HER) family of tyrosine kinases has been successfully used in treatment of several malignancies. The ErbB pathways play a role in the maintenance of cardiac homeostasis. This article summarizes current knowledge about EGFR/ErbB/HER receptor-targeted cancer therapeutics focusing on their cardiotoxicity profiles, molecular mechanisms, and implications in clinical cardio-oncology. The article discusses challenges in predicting, monitoring, and treating cardiac dysfunction and heart failure associated with ErbB-targeted cancer therapeutics and highlights opportunities for researchers and clinical investigators. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Mu-Tai; Chen, Mu-Kuan; Huang, Chia-Chun; Huang, Chao-Yuan
2015-02-01
The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.
Monogenic Disorders of Adrenal Steroidogenesis.
Baranowski, Elizabeth S; Arlt, Wiebke; Idkowiak, Jan
2018-06-06
Disorders of adrenal steroidogenesis comprise autosomal recessive conditions affecting steroidogenic enzymes of the adrenal cortex. Those are located within the 3 major branches of the steroidogenic machinery involved in the production of mineralocorticoids, glucocorticoids, and androgens. This mini review describes the principles of adrenal steroidogenesis, including the newly appreciated 11-oxygenated androgen pathway. This is followed by a description of pathophysiology, biochemistry, and clinical implications of steroidogenic disorders, including mutations affecting cholesterol import and steroid synthesis, the latter comprising both mutations affecting steroidogenic enzymes and co-factors required for efficient catalysis. A good understanding of adrenal steroidogenic pathways and their regulation is crucial as the basis for sound management of these disorders, which in the majority present in early childhood. © 2018 The Author(s) Published by S. Karger AG, Basel.
Perl, Andras; Hanczko, Robert; Telarico, Tiffany; Oaks, Zachary; Landas, Steve
2011-01-01
Metabolism of glucose through the pentose phosphate pathway (PPP) influences the development of diverse pathologies. Hemolytic anemia due to deficiency of PPP enzyme glucose 6-phosphate dehydrogenase is the most common genetic disease in humans. Recently, inactivation of another PPP enzyme, transaldolase (TAL), has been implicated in male infertility and fatty liver progressing to steatohepatitis and cancer. Hepatocarcinogenesis was associated with activation of aldose reductase and redox-sensitive transcription factors and prevented by N-acetylcysteine. Here, we discuss how alternative formulations of the PPP with and without TAL reflect cell type-specific metabolic control of oxidative stress, a critical source of inflammation and carcinogenesis. Ongoing studies of TAL deficiency will identify new molecular targets for diagnosis and treatment in clinical practice. PMID:21376665
The Emerging Role of the Hippo Pathway in Lung Cancers: Clinical Implications.
Teoh, Seong Lin; Das, Srijit
2017-11-30
The incidence of lung cancers has increased globally. Increased exposure to tobacco, passive smoking, less consumption of vegetables and fruits and occupational exposure to asbestos, arsenic and chromium are the main risk factors. The pathophysiology of lung cancer is complex and not well understood. Various microRNAs, genes and pathways are associated with lung cancers. The genes involved in lung cancers produce proteins involved in cell growth, differentiation, different cell cycles, apoptosis, immune modulation, tumor spread and progression. The Hippo pathway (also known as the Salvador-Warts-Hippo pathway) is the latest emerging concept in cancers. The Hippo pathway plays an important role in controlling the size of the tissue and organ by virtue of its action on cell proliferation and apoptosis. In the present review, we highlight the mammalian Hippo pathway, role of its core members, its upstream regulators, downstream effectors and the resistance cases in lung cancers. Specific interaction of Mer with cell surface hyaluronan receptor CD44 is vital in cell contact inhibition, thereby activating Hippo pathway. Both transcription co-activators YAP and TAZ (also known as WWTR1, being homologs of Drosophila Yki) are important regulators of proliferation and apoptosis, and serve as major downstream effectors of the Hippo pathway. Mutation of NF2, the upstream regulator of Hippo pathway is linked to the cancers. Targeting YAP and TAZ may be important for future drug delivery and treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance
Ahmed, Sunjida; Bradshaw, Azore-Dee; Gera, Shweta; Dewan, M. Zahidunnabi; Xu, Ruliang
2017-01-01
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal human cancers due to its complicated genomic instability. PDAC frequently presents at an advanced stage with extensive metastasis, which portends a poor prognosis. The known risk factors associated with PDAC include advanced age, smoking, long-standing chronic pancreatitis, obesity, and diabetes. Its association with genomic and somatic mutations is the most important factor for its aggressiveness. The most common gene mutations associated with PDAC include KRas2, p16, TP53, and Smad4. Among these, Smad4 mutation is relatively specific and its inactivation is found in more than 50% of invasive pancreatic adenocarcinomas. Smad4 is a member of the Smad family of signal transducers and acts as a central mediator of transforming growth factor beta (TGF-β) signaling pathways. The TGF-β signaling pathway promotes many physiological processes, including cell growth, differentiation, proliferation, fibrosis, and scar formation. It also plays a major role in the development of tumors through induction of angiogenesis and immune suppression. In this review, we will discuss the molecular mechanism of TGF-β/Smad4 signaling in the pathogenesis of pancreatic adenocarcinoma and its clinical implication, particularly potential as a prognostic factor and a therapeutic target. PMID:28067794
A Risk and Maintenance Model for Bulimia Nervosa: From Impulsive Action to Compulsive Behavior
Pearson, Carolyn M.; Wonderlich, Stephen A.; Smith, Gregory T.
2015-01-01
This paper offers a new model for bulimia nervosa (BN) that explains both the initial impulsive nature of binge eating and purging as well as the compulsive quality of the fully developed disorder. The model is based on a review of advances in research on BN and advances in relevant basic psychological science. It integrates transdiagnostic personality risk, eating disorder specific risk, reinforcement theory, cognitive neuroscience, and theory drawn from the drug addiction literature. We identify both a state-based and a trait-based risk pathway, and we then propose possible state-by-trait interaction risk processes. The state-based pathway emphasizes depletion of self-control. The trait-based pathway emphasizes transactions between the trait of negative urgency (the tendency to act rashly when distressed) and high-risk psychosocial learning. We then describe a process by which initially impulsive BN behaviors become compulsive over time, and we consider the clinical implications of our model. PMID:25961467
Regulation of expression, activity and localization of fungal chitin synthases
Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.
2013-01-01
The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913
Noonan syndrome and clinically related disorders
Tartaglia, Marco; Gelb, Bruce D.; Zenker, Martin
2010-01-01
Noonan syndrome is a relatively common, clinically variable developmental disorder. Cardinal features include postnatally reduced growth, distinctive facial dysmorphism, congenital heart defects and hypertrophic cardiomyopathy, variable cognitive deficit and skeletal, ectodermal and hematologic anomalies. Noonan syndrome is transmitted as an autosomal dominant trait, and is genetically heterogeneous. So far, heterozygous mutations in nine genes (PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 and CBL) have been documented to underlie this disorder or clinically related phenotypes. Based on these recent discoveries, the diagnosis can now be confirmed molecularly in approximately 75% of affected individuals. Affected genes encode for proteins participating in the RAS-mitogen-activated protein kinases (MAPK) signal transduction pathway, which is implicated in several developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Here, we provide an overview of clinical aspects of this disorder and closely related conditions, the molecular mechanisms underlying pathogenesis, and major genotype-phenotype correlations. PMID:21396583
Clinical and Biological Relevance of Genomic Heterogeneity in Chronic Lymphocytic Leukemia
Friedman, Daphne R.; Lucas, Joseph E.; Weinberg, J. Brice
2013-01-01
Background Chronic lymphocytic leukemia (CLL) is typically regarded as an indolent B-cell malignancy. However, there is wide variability with regards to need for therapy, time to progressive disease, and treatment response. This clinical variability is due, in part, to biological heterogeneity between individual patients’ leukemias. While much has been learned about this biological variation using genomic approaches, it is unclear whether such efforts have sufficiently evaluated biological and clinical heterogeneity in CLL. Methods To study the extent of genomic variability in CLL and the biological and clinical attributes of genomic classification in CLL, we evaluated 893 unique CLL samples from fifteen publicly available gene expression profiling datasets. We used unsupervised approaches to divide the data into subgroups, evaluated the biological pathways and genetic aberrations that were associated with the subgroups, and compared prognostic and clinical outcome data between the subgroups. Results Using an unsupervised approach, we determined that approximately 600 CLL samples are needed to define the spectrum of diversity in CLL genomic expression. We identified seven genomically-defined CLL subgroups that have distinct biological properties, are associated with specific chromosomal deletions and amplifications, and have marked differences in molecular prognostic markers and clinical outcomes. Conclusions Our results indicate that investigations focusing on small numbers of patient samples likely provide a biased outlook on CLL biology. These findings may have important implications in identifying patients who should be treated with specific targeted therapies, which could have efficacy against CLL cells that rely on specific biological pathways. PMID:23468975
Clinical and biological relevance of genomic heterogeneity in chronic lymphocytic leukemia.
Friedman, Daphne R; Lucas, Joseph E; Weinberg, J Brice
2013-01-01
Chronic lymphocytic leukemia (CLL) is typically regarded as an indolent B-cell malignancy. However, there is wide variability with regards to need for therapy, time to progressive disease, and treatment response. This clinical variability is due, in part, to biological heterogeneity between individual patients' leukemias. While much has been learned about this biological variation using genomic approaches, it is unclear whether such efforts have sufficiently evaluated biological and clinical heterogeneity in CLL. To study the extent of genomic variability in CLL and the biological and clinical attributes of genomic classification in CLL, we evaluated 893 unique CLL samples from fifteen publicly available gene expression profiling datasets. We used unsupervised approaches to divide the data into subgroups, evaluated the biological pathways and genetic aberrations that were associated with the subgroups, and compared prognostic and clinical outcome data between the subgroups. Using an unsupervised approach, we determined that approximately 600 CLL samples are needed to define the spectrum of diversity in CLL genomic expression. We identified seven genomically-defined CLL subgroups that have distinct biological properties, are associated with specific chromosomal deletions and amplifications, and have marked differences in molecular prognostic markers and clinical outcomes. Our results indicate that investigations focusing on small numbers of patient samples likely provide a biased outlook on CLL biology. These findings may have important implications in identifying patients who should be treated with specific targeted therapies, which could have efficacy against CLL cells that rely on specific biological pathways.
The canonical Wnt signaling pathway in autism.
Zhang, Yinghua; Yuan, Xiangshan; Wang, Zhongping; Li, Ruixi
2014-01-01
Mounting attention is being focused on the canonical Wnt signaling pathway which has been implicated in the pathogenesis of autism in some our and other recent studies. The canonical Wnt pathway is involved in cell proliferation, differentiation and migration, especially during nervous system development. Given its various functions, dysfunction of the canonical Wnt pathway may exert adverse effects on neurodevelopment and therefore leads to the pathogenesis of autism. Here, we review human and animal studies that implicate the canonical Wnt signal transduction pathway in the pathogenesis of autism. We also describe the crosstalk between the canonical Wnt pathway and the Notch signaling pathway in several types of autism spectrum disorders, including Asperger syndrome and Fragile X. Further research on the crosstalk between the canonical Wnt signaling pathway and other signaling cascades in autism may be an efficient avenue to understand the etiology of autism and ultimately lead to alternative medications for autism-like phenotypes.
Pan, Bo; Huang, Xu-Feng; Deng, Chao
2016-03-28
Aripiprazole, a dopamine D₂ receptor (D₂R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D₂R antagonist) and bifeprunox (a D₂R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D₂Rs.
Ubiquitin-Dependent Regulation of the Mammalian Hippo Pathway: Therapeutic Implications for Cancer
Nguyen, Thanh Hung
2018-01-01
The Hippo pathway serves as a key barrier for oncogenic transformation. It acts by limiting the activity of the proto-oncogenes YAP and TAZ. Reduced Hippo signaling and elevated YAP/TAZ activities are frequently observed in various types of tumors. Emerging evidence suggests that the ubiquitin system plays an important role in regulating Hippo pathway activity. Deregulation of ubiquitin ligases and of deubiquitinating enzymes has been implicated in increased YAP/TAZ activity in cancer. In this article, we review recent insights into the ubiquitin-mediated regulation of the mammalian Hippo pathway, its deregulation in cancer, and possibilities for targeting the Hippo pathway through the ubiquitin system. PMID:29673168
Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee
2017-04-25
Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.
Kikuchi, Hidetomo; Yuan, Bo; Yuhara, Eisuke; Imai, Masahiko; Furutani, Ryota; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Takagi, Norio; Toyoda, Hiroo
2014-08-01
We have demonstrated that an extract from the ripe fruit of Vitex angus-castus (Vitex), might be a promising anticancer candidate. In order to further provide a molecular rationale for clinical development in anticancer therapy, a detailed mechanism underlying the efficacy of Vitex against HL-60 cells was investigated. Vitex induced a dose- and time-dependent decrease in cell viability associated with induction of apoptosis and G(2)/M cell cycle arrest, both of which were suppressed by the addition of SB203580, an inhibitor for p38 MAPK. Furthermore, SB203580 significantly suppressed Vitex-induced phosphorylation of histone H3, a downstream molecule of p38 MAPK known to be involved in apoptosis induction in tumor cells. Notably, Vitex induced upregulation of intracellular ATP, known to bind its binding pocket inside activated p38 MAPK and to be required for the activation of p38 MAPK pathway. These results, thus, suggest that upregulation of intracellular ATP and phosphorylation of histone H3 are closely associated with the activation of p38 MAPK pathway, consequently contributing to Vitex-mediated cytotoxicity. Intriguingly, a significant decrease of intracellular ROS levels and downregulation of expression level of gp91(phox), an important component of NADPH oxidase, were observed in Vitex-treated cells. A greater decline in ROS levels along with enhanced apoptosis was observed after treatment with Vitex in combination with SnPP, an inhibitor specific for HO-1. Since NADPH oxidase and HO-1 are closely correlated to redox status associated with intracellular ROS levels, the two enzymes are suggested to be implicated in Vitex-mediated cytotoxicity in HL-60 cells by regulating ROS generation. We also suggest that activation of the p38 MAPK pathway may be dependent on the alterations of intracellular ATP levels, rather than that of intracellular ROS levels. These results may have important implications for appropriate clinical uses of Vitex and provide novel insights into the interaction between Vitex and other conventional drugs capable of affecting intracellular redox status.
Razawy, Wida; van Driel, Marjolein
2018-01-01
Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561
Schrepf, Andrew; Lutgendorf, Susan K.; Pyter, Leah M.
2015-01-01
Cancer patients suffer high levels of affective and cognitive disturbances, which have been attributed to diagnosis-related distress, impairment of quality of life, and side effects of primary treatment. An inflammatory microenvironment is also a feature of the vast majority of solid tumors. However, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and cognitive disturbances. In this review, we summarize the burgeoning evidence from rodent cancer models that solid tumors alter neurobiological pathways and subsequent behavioral processes with relevance to affective and cognitive disturbances reported in human cancer populations. We consider, in parallel, the evidence from human clinical cancer research demonstrating that affective and cognitive disturbances are common in some malignancies prior to diagnosis and treatment. We further consider the underlying neurobiological pathways, including altered neuroinflammation, tryptophan metabolism, prostaglandin synthesis and associated neuroanatomical changes, that are most strongly implicated in the rodent literature and supported by analogous evidence from human cancer populations. We focus on the implications of these findings for behavioral researchers and clinicians, with particular emphasis on methodological issues and areas of future research. PMID:25958011
Martino, Steve; Brigham, Gregory S.; Higgins, Christine; Gallon, Steve; Freese, Thomas E.; Albright, Lonnetta M.; Hulsey, Eric G.; Krom, Laurie; Storti, Susan A.; Perl, Harold; Nugent, Cathrine D.; Pintello, Denise; Condon, Timothy P.
2010-01-01
Since 2001, the National Drug Abuse Treatment Clinical Trials Network (CTN) has worked to put the results of its trials into the hands of community treatment programs, in large part through its participation in the National Institute on Drug Abuse - Substance Abuse and Mental Health Services Administration Blending Initiative and its close involvement with the Center for Substance Abuse Treatment’s Addiction Technology Transfer Centers. This article describes 1) the CTN’s integral role in the Blending Initiative, 2) key partnerships and dissemination pathways through which the results of CTN trials are developed into blending products and then transferred to community treatment programs, and 3) three blending initiatives involving buprenorphine, motivational incentives, and motivational interviewing. The Blending Initiative has resulted in high utilization of its products, preparation of over 200 regional trainers, widespread training of service providers in most U.S. States, Puerto Rico, and the U.S. Virgin Islands, and movement toward the development of web-based implementation supports and technical assistance. Implications for future directions of the Blending Initiative and opportunities for research are discussed. PMID:20307793
Stress, Seizures, and Hypothalamic-Pituitary-Adrenal Axis Targets for the Treatment of Epilepsy
Maguire, Jamie; Salpekar, Jay A.
2012-01-01
Epilepsy is a heterogeneous condition with multiple etiologies including genetics, infection, trauma, vascular, neoplasms, and toxic exposures. The overlap of psychiatric comorbidity adds to the challenge of optimal treatment for people with epilepsy. Seizure episodes themselves may have varying triggers; however, for decades, stress has been commonly and consistently suspected to be a trigger for seizure events. This paper explores the relationship between stress and seizures and reviews clinical data as well as animal studies that increasingly corroborate the impact of stress hormones on neuronal excitability and seizure susceptibility. The basis for enthusiasm for targeting glucocorticoid receptors for the treatment of epilepsy and the mixed results of such treatment efforts are reviewed. In addition, this paper will highlight recent findings identifying a regulatory pathway controlling the body’s physiologic response to stress which represents a novel therapeutic target for modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, the HPA axis may have important clinical implications for seizure control and imply use of anticonvulsants that influence this neuronal pathway. PMID:23200771
Skvarc, David R; Berk, Michael; Byrne, Linda K; Dean, Olivia M; Dodd, Seetal; Lewis, Matthew; Marriott, Andrew; Moore, Eileen M; Morris, Gerwyn; Page, Richard S; Gray, Laura
2018-01-01
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Marshall Brinkley, D; Ali, Omair M; Zalawadiya, Sandip K; Wang, Thomas J
2017-10-01
Vitamin D is principally known for its role in calcium homeostasis, but preclinical studies implicate multiple pathways through which vitamin D may affect cardiovascular function and influence risk for heart failure. Many adults with cardiovascular disease have low vitamin D status, making it a potential therapeutic target. We review the rationale and potential role of vitamin D supplementation in the prevention and treatment of chronic heart failure. Substantial observational evidence has associated low vitamin D status with the risk of heart failure, ventricular remodeling, and clinical outcomes in heart failure, including mortality. However, trials assessing the influence of vitamin D supplementation on surrogate markers and clinical outcomes in heart failure have generally been small and inconclusive. There are insufficient data to recommend routine assessment or supplementation of vitamin D for the prevention or treatment of chronic heart failure. Prospective trials powered for clinical outcomes are warranted.
Duncan, Christopher M; Hall Long, Kirsten; Warner, David O; Hebl, James R
2009-01-01
Total knee and total hip arthoplasty (THA) are 2 of the most common surgical procedures performed in the United States and represent the greatest single Medicare procedural expenditure. This study was designed to evaluate the economic impact of implementing a multimodal analgesic regimen (Total Joint Regional Anesthesia [TJRA] Clinical Pathway) on the estimated direct medical costs of patients undergoing lower extremity joint replacement surgery. An economic cost comparison was performed on Mayo Clinic patients (n = 100) undergoing traditional total knee or total hip arthroplasty using the TJRA Clinical Pathway. Study patients were matched 1:1 with historical controls undergoing similar procedures using traditional anesthetic (non-TJRA) techniques. Matching criteria included age, sex, surgeon, type of procedure, and American Society of Anesthesiologists (ASA) physical status (PS) classification. Hospital-based direct costs were collected for each patient and analyzed in standardized inflation-adjusted constant dollars using cost-to-charge ratios, wage indexes, and physician services valued using Medicare reimbursement rates. The estimated mean direct hospital costs were compared between groups, and a subgroup analysis was performed based on ASA PS classification. The estimated mean direct hospital costs were significantly reduced among TJRA patients when compared with controls (cost difference, 1999 dollars; 95% confidence interval, 584-3231 dollars; P = 0.0004). A significant reduction in hospital-based (Medicare Part A) costs accounted for the majority of the total cost savings. Use of a comprehensive, multimodal analgesic regimen (TJRA Clinical Pathway) in patients undergoing lower extremity joint replacement surgery provides a significant reduction in the estimated total direct medical costs. The reduction in mean cost is primarily associated with lower hospital-based (Medicare Part A) costs, with the greatest overall cost difference appearing among patients with significant comorbidities (ASA PS III-IV patients).
Tsao, Anne S.; Harun, Nusrat; Fujimoto, Junya; Devito, Vikki; Lee, J. Jack; Kuhn, Elisabetta; Mehran, Reza; Rice, David; Moran, Cesar; Hong, Waun Ki; Shen, Li; Suraokar, Milind; Wistuba, Ignacio
2014-01-01
Background PDGF/PDGFR pathway has been implicated in malignant pleural mesothelioma (MPM) carcinogenesis and evidence suggests autocrine mechanisms of proliferation. We sought to evaluate the incidence of PDGFRB gene copy number gain (CNG) by fluorescence in situ hybridization (FISH) and PDGFR pathway protein expression by immunohistochemistry (IHC) and correlate it to patient clinical outcome. Methods 88 archived tumor blocks from resected MPM with full clinical information were used to perform IHC biomarkers (PDGFRα, PDGFRβ, p-PDGFRβ) and FISH analysis of PDGFRB gene CNG. Spearman's rank correlation, Wilcoxon rank-sum test, Kruskal-Wallis test, BLiP plots, and Kaplan-Meier method were used to analyze the biomarkers and correlation to clinical outcome. Results Several correlations between the IHC biomarkers were seen; however, none correlated to clinically relevant patient demographics or histology. In the CNG analysis, PDGFRB gene CNG in > 10% of tumor cells had lower cytoplasmic p-PDGFRβ (p=0.029), while PDGFRB gene CNG in > 40% of tumor cells had a higher cytoplasmic PDGFRβ (p=0.04). PDGFRB gene CNG status did not associate with patient demographics or tumor characteristics. PDGFR pathway IHC biomarkers did not associate with survival outcomes. However, patients with PDGFRB CNG > 40% of tumor cells had improved relapse-free survival [HR 0.25 (95% CI 0.09, 0.72), p=0.0096] and improved overall survival [HR 0.32 (95% CI 0.11, 0.89), p=0.029]. Conclusions PDGFRB CNG > 40% of MPM tumor cells is a potential prognostic biomarker for surgery and may identify a unique population of mesothelioma patients. Future validation of this biomarker in prospective trials is needed. PMID:24747001
Jabbour, Mona; Curran, Janet; Scott, Shannon D; Guttman, Astrid; Rotter, Thomas; Ducharme, Francine M; Lougheed, M Diane; McNaughton-Filion, M Louise; Newton, Amanda; Shafir, Mark; Paprica, Alison; Klassen, Terry; Taljaard, Monica; Grimshaw, Jeremy; Johnson, David W
2013-05-22
The clinical pathway is a tool that operationalizes best evidence recommendations and clinical practice guidelines in an accessible format for 'point of care' management by multidisciplinary health teams in hospital settings. While high-quality, expert-developed clinical pathways have many potential benefits, their impact has been limited by variable implementation strategies and suboptimal research designs. Best strategies for implementing pathways into hospital settings remain unknown. This study will seek to develop and comprehensively evaluate best strategies for effective local implementation of externally developed expert clinical pathways. We will develop a theory-based and knowledge user-informed intervention strategy to implement two pediatric clinical pathways: asthma and gastroenteritis. Using a balanced incomplete block design, we will randomize 16 community emergency departments to receive the intervention for one clinical pathway and serve as control for the alternate clinical pathway, thus conducting two cluster randomized controlled trials to evaluate this implementation intervention. A minimization procedure will be used to randomize sites. Intervention sites will receive a tailored strategy to support full clinical pathway implementation. We will evaluate implementation strategy effectiveness through measurement of relevant process and clinical outcomes. The primary process outcome will be the presence of an appropriately completed clinical pathway on the chart for relevant patients. Primary clinical outcomes for each clinical pathway include the following: Asthma--the proportion of asthmatic patients treated appropriately with corticosteroids in the emergency department and at discharge; and Gastroenteritis--the proportion of relevant patients appropriately treated with oral rehydration therapy. Data sources include chart audits, administrative databases, environmental scans, and qualitative interviews. We will also conduct an overall process evaluation to assess the implementation strategy and an economic analysis to evaluate implementation costs and benefits. This study will contribute to the body of evidence supporting effective strategies for clinical pathway implementation, and ultimately reducing the research to practice gaps by operationalizing best evidence care recommendations through effective use of clinical pathways. ClinicalTrials.gov: NCT01815710.
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.
2012-01-01
Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391
Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K
2013-05-01
Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.
2013-05-01
Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less
Pellagatti, Andrea; Armstrong, Richard N; Steeples, Violetta; Sharma, Eshita; Repapi, Emmanouela; Singh, Shalini; Sanchi, Andrea; Radujkovic, Aleksandar; Horn, Patrick; Dolatshad, Hamid; Roy, Swagata; Broxholme, John; Lockstone, Helen; Taylor, Stephen; Giagounidis, Aristoteles; Vyas, Paresh; Schuh, Anna; Hamblin, Angela; Papaemmanuil, Elli; Killick, Sally; Malcovati, Luca; Hennrich, Marco L; Gavin, Anne-Claude; Ho, Anthony D; Luft, Thomas; Hellström-Lindberg, Eva; Cazzola, Mario; Smith, Christopher W J; Smith, Stephen; Boultwood, Jacqueline
2018-06-21
SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34 + cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. Copyright © 2018 American Society of Hematology.
Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P
2016-03-01
Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.
Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia.
Moos, Walter H; Maneta, Eleni; Pinkert, Carl A; Irwin, Michael H; Hoffman, Michelle E; Faller, Douglas V; Steliou, Kosta
2016-03-01
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia. © 2016 Wiley Periodicals, Inc.
Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah
2017-07-01
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.
Shenk, Chad E.; Griffin, Amanda M.; O’Donnell, Kieran J.
2016-01-01
Major depressive disorder (MDD) is a prevalent psychiatric condition in the child maltreatment population. However, not all children who have been maltreated will develop MDD or MDD symptoms, suggesting the presence of unique risk pathways that explain how certain children develop MDD symptoms when others do not. The current study tested several candidate risk pathways to MDD symptoms following child maltreatment: 1) neuroendocrine, 2) autonomic, 3) affective, and 4) emotion regulation. Female adolescents (N=110; Age range: 14–19) were recruited into a substantiated child maltreatment or comparison condition and completed a laboratory stressor, saliva samples, and measures of emotion regulation, negative affect, and MDD symptoms. MDD symptoms were reassessed eighteen months later. Mediational modeling revealed that emotion regulation was the only significant indirect effect of the relationship between child maltreatment and subsequent MDD symptoms, demonstrating that children exposed to maltreatment had greater difficulties managing affective states that in turn led to more severe MDD symptoms. These results highlight the importance of emotion dysregulation as a central risk pathway to MDD following child maltreatment. Areas of future research and implications for optimizing prevention and clinical intervention through the direct targeting of transdiagnostic risk pathways are discussed. PMID:26535940
Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets
Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent
2014-01-01
By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711
Neuronal pathway finding: from neurons to initial neural networks.
Roscigno, Cecelia I
2004-10-01
Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.
The facial nerve: anatomy and associated disorders for oral health professionals.
Takezawa, Kojiro; Townsend, Grant; Ghabriel, Mounir
2018-04-01
The facial nerve, the seventh cranial nerve, is of great clinical significance to oral health professionals. Most published literature either addresses the central connections of the nerve or its peripheral distribution but few integrate both of these components and also highlight the main disorders affecting the nerve that have clinical implications in dentistry. The aim of the current study is to provide a comprehensive description of the facial nerve. Multiple aspects of the facial nerve are discussed and integrated, including its neuroanatomy, functional anatomy, gross anatomy, clinical problems that may involve the nerve, and the use of detailed anatomical knowledge in the diagnosis of the site of facial nerve lesion in clinical neurology. Examples are provided of disorders that can affect the facial nerve during its intra-cranial, intra-temporal and extra-cranial pathways, and key aspects of clinical management are discussed. The current study is complemented by original detailed dissections and sketches that highlight key anatomical features and emphasise the extent and nature of anatomical variations displayed by the facial nerve.
Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans
2016-01-01
Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087
Huber, Heinrich J; McKiernan, Ross G; Prehn, Jochen H M
2014-03-01
Most cytotoxic chemotherapeutics are believed to kill cancer cells by inducing apoptosis. Understanding the factors that contribute to impairment of apoptosis in cancer cells is therefore critical for the development of novel therapies that circumvent the widespread chemoresistance. Apoptosis, however, is a complex and tightly controlled process that can be induced by different classes of chemotherapeutics targeting different signalling nodes and pathways. Moreover, apoptosis initiation and apoptosis execution strongly depend on patient-specific, genomic and proteomic signatures. Here, we will review recent translational studies that suggest a critical link between the sensitivity of cancer cells to initiate apoptosis and clinical outcome. Next we will discuss recent advances in the field of system modelling of apoptosis pathways for the prediction of treatment responses. We propose that initiation of mitochondrial apoptosis, defined as the process of mitochondrial outer membrane permeabilisation (MOMP), is a dose-dependent decision process that allows for a prediction of individual therapy responses and therapeutic windows. We provide evidence in contrast that apoptosis execution post-MOMP may be a binary decision that dictates whether apoptosis is executed or not. We will discuss the implications of this concept for the future use of novel adjuvant therapeutics that specifically target apoptosis signalling pathways or which may be used to reduce the impact of cell-to-cell heterogeneity on therapy responses. Finally, we will discuss the technical and regulatory requirements surrounding the use and implications of system-based patient stratification tools for the future of personalised oncology.
Role of microRNA Pathway in Mental Retardation
Qurashi, Abrar; Chang, Shuang; Jin, Peng
2007-01-01
Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP). MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides in length, which have been implicated in diversified biological pathways. Recent studies have linked the miRNA pathway to fragile X syndrome. Here we review the role of the miRNA pathway in fragile X syndrome and discuss its implication in MR in general. PMID:17982588
Clinical pathway for video-assisted thoracic surgery: the Hong Kong story.
Sihoe, Alan D L
2016-02-01
A clinical pathway provides a scheduled, objective protocol for the multi-disciplinary, evidence-based management of patients with a specific condition or undergoing a specific procedure. In implementing a clinical pathway for the care of patients receiving video-assisted thoracic surgery (VATS) in Hong Kong, many insights were gained into what makes a clinical pathway work: meticulous preparation and team-building are keys to success; the pathway must be constantly reviewed and revisions made in response to evolving clinical need; and data collection is a key element to allow auditing and clinical research. If these can be achieved, a clinical pathway delivers not only measurable improvements in patient outcomes, but also fundamentally complements clinical advances such as VATS. This article narrates the story of how the clinical pathway for VATS in Hong Kong was created and evolved, highlighting how the above lessons were learned.
The Hippo Pathway as Drug Targets in Cancer Therapy and Regenerative Medicine.
Nagashima, Shunta; Bao, Yijun; Hata, Yutaka
2017-01-01
Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ) co-operate with numerous transcription factors to regulate gene transcriptions. YAP1 and TAZ are negatively regulated by the tumor suppressive Hippo pathway. In human cancers, the Hippo pathway is frequently deregulated and YAP1 and TAZ escape the inhibition by the Hippo pathway. The upregulation of YAP1 and TAZ induces epithelial-mesenchymal transition and increases drug resistance in cancer cells. TAZ is implicated in cancer stemness. In consequence cancers with hyperactive YAP1 and TAZ are associated with poor clinical prognosis. Inhibitors of YAP1 and TAZ are reasoned to be beneficial in cancer therapy. On the other hand, since YAP1 and TAZ play important roles in the regulation of various tissue stem cells and in tissue repair, activators of YAP1 and TAZ are useful in the regenerative medicine. We discuss the potential application of inhibitors and activators of YAP1 and TAZ in human diseases and review the progress of drug screenings to search for them. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
Lange-Asschenfeldt, Christian; Kojda, Georg
2008-06-01
Exercise training promotes extensive cardiovascular changes and adaptive mechanisms in both the peripheral and cerebral vasculature, such as improved organ blood flow, induction of antioxidant pathways, and enhanced angiogenesis and vascular regeneration. Clinical studies have demonstrated a reduction of morbidity and mortality from cardiovascular disease among exercising individuals. However, evidence from recent large clinical trials also suggests a substantial reduction of dementia risk - particularly regarding Alzheimer's disease (AD) - with regular exercise. Enhanced neurogenesis and improved synaptic plasticity have been implicated in this beneficial effect. However, recent research has revealed that vascular and specifically endothelial dysfunction is essentially involved in the disease process and profoundly aggravates underlying neurodegeneration. Moreover, vascular risk factors (VRFs) are probably determinants of incidence and course of AD. In this review, we emphasize the interconnection between AD and VRFs and the impact of cerebrovascular and endothelial dysfunction on AD pathophysiology. Furthermore, we describe the molecular mechanisms of the beneficial effects of exercise on the vasculature such as activation of the vascular nitric oxide (NO)/endothelial NO synthase (eNOS) pathway, upregulation of antioxidant enzymes, and angiogenesis. Finally, recent prospective clinical studies dealing with the effect of exercise on the risk of incident AD are briefly reviewed. We conclude that, next to upholding neuronal plasticity, regular exercise may counteract AD pathophysiology by building a vascular reserve.
Malek, Reem; Wang, Hailun; Taparra, Kekoa; Tran, Phuoc T.
2017-01-01
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into three groups: (1) extracellular inducers of EMT; (2) the transcription factors that orchestrate the EMT transcriptome; and, (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT such as the signal transduction pathways TGFβ, EFGR and Axl-Gas6. We emphasize in more detail pathways that are we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only one EMT related process will be unsuccessful or only transiently successful. We suggest with greater understanding of epithelial plasticity regulation such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes. PMID:28214899
Feng, Yinling; Wang, Xuefeng
2017-03-01
In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.
2013-01-01
Background The clinical pathway is a tool that operationalizes best evidence recommendations and clinical practice guidelines in an accessible format for ‘point of care’ management by multidisciplinary health teams in hospital settings. While high-quality, expert-developed clinical pathways have many potential benefits, their impact has been limited by variable implementation strategies and suboptimal research designs. Best strategies for implementing pathways into hospital settings remain unknown. This study will seek to develop and comprehensively evaluate best strategies for effective local implementation of externally developed expert clinical pathways. Design/methods We will develop a theory-based and knowledge user-informed intervention strategy to implement two pediatric clinical pathways: asthma and gastroenteritis. Using a balanced incomplete block design, we will randomize 16 community emergency departments to receive the intervention for one clinical pathway and serve as control for the alternate clinical pathway, thus conducting two cluster randomized controlled trials to evaluate this implementation intervention. A minimization procedure will be used to randomize sites. Intervention sites will receive a tailored strategy to support full clinical pathway implementation. We will evaluate implementation strategy effectiveness through measurement of relevant process and clinical outcomes. The primary process outcome will be the presence of an appropriately completed clinical pathway on the chart for relevant patients. Primary clinical outcomes for each clinical pathway include the following: Asthma—the proportion of asthmatic patients treated appropriately with corticosteroids in the emergency department and at discharge; and Gastroenteritis—the proportion of relevant patients appropriately treated with oral rehydration therapy. Data sources include chart audits, administrative databases, environmental scans, and qualitative interviews. We will also conduct an overall process evaluation to assess the implementation strategy and an economic analysis to evaluate implementation costs and benefits. Discussion This study will contribute to the body of evidence supporting effective strategies for clinical pathway implementation, and ultimately reducing the research to practice gaps by operationalizing best evidence care recommendations through effective use of clinical pathways. Trial registration ClinicalTrials.gov: NCT01815710 PMID:23692634
"Am I Doing the Right Thing?": Pathways to Parenting a Gender Variant Child.
Gray, Sarah A O; Sweeney, Kristen K; Randazzo, Renee; Levitt, Heidi M
2016-03-01
Gender variant (GV) children have a subjective sense of gender identity and/or preferences regarding clothing, activities, and/or playmates that are different from what is culturally normative for their biological sex. Despite increases in rates of GV children and their families presenting at clinics, there is little research on how raising a GV child affects the family as a whole or how families make decisions regarding their care. This study took an ecological-transactional framework to explore the question, "what is the experience of parents who raise a GV or transgender child?" Eight mothers and three fathers of GV male and female children (ages 5-13) referred through a GV support group participated in interviews. Transcripts were analyzed using an adaptation of grounded theory analysis. These parents attempted to pave the way to a nonstigmatized childhood for their GV child, typically through two pathways: rescuing the child from fear of stigma and hurt or accepting GV and advocating for a more tolerant world. Many participants used both pathways to different degrees or shifted paths over time, and the paths selected were related to parents' own understanding of GV and their experiences and backgrounds as well as characteristics of the children they were parenting and the communities they inhabited. Limitations, clinical implications, and future directions are discussed. © 2015 Family Process Institute.
A new glaucoma hypothesis: a role of glymphatic system dysfunction.
Wostyn, Peter; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul; De Groot, Veva
2015-06-29
In a recent review article titled "A new look at cerebrospinal fluid circulation", Brinker et al. comprehensively described novel insights from molecular and cellular biology as well as neuroimaging research, which indicate that cerebrospinal fluid (CSF) physiology is much more complex than previously believed. The glymphatic system is a recently defined brain-wide paravascular pathway for CSF and interstitial fluid exchange that facilitates efficient clearance of interstitial solutes, including amyloid-β, from the brain. Although further studies are needed to substantiate the functional significance of the glymphatic concept, one implication is that glymphatic pathway dysfunction may contribute to the deficient amyloid-β clearance in Alzheimer's disease. In this paper, we review several lines of evidence suggesting that the glymphatic system may also have potential clinical relevance for the understanding of glaucoma. As a clinically acceptable MRI-based approach to evaluate glymphatic pathway function in humans has recently been developed, a unique opportunity now exists to investigate whether suppression of the glymphatic system contributes to the development of glaucoma. The observation of a dysfunctional glymphatic system in patients with glaucoma would provide support for the hypothesis recently proposed by our group that CSF circulatory dysfunction may play a contributory role in the pathogenesis of glaucomatous damage. This would suggest a new hypothesis for glaucoma, which, just like Alzheimer's disease, might be considered then as an imbalance between production and clearance of neurotoxins, including amyloid-β.
“Am I Doing the Right Thing?”: Pathways to Parenting a Gender Variant Child
GRAY, SARAH A. O.; SWEENEY, KRISTEN K.; RANDAZZO, RENEE; LEVITT, HEIDI M.
2017-01-01
Gender variant (GV) children have a subjective sense of gender identity and/or preferences regarding clothing, activities, and/or playmates that are different from what is culturally normative for their biological sex. Despite increases in rates of GV children and their families presenting at clinics, there is little research on how raising a GV child affects the family as a whole or how families make decisions regarding their care. This study took an ecological-transactional framework to explore the question, “what is the experience of parents who raise a GV or transgender child?” Eight mothers and three fathers of GV male and female children (ages 5–13) referred through a GV support group participated in interviews. Transcripts were analyzed using an adaptation of grounded theory analysis. These parents attempted to pave the way to a nonstigmatized childhood for their GV child, typically through two pathways: rescuing the child from fear of stigma and hurt or accepting GV and advocating for a more tolerant world. Many participants used both pathways to different degrees or shifted paths over time, and the paths selected were related to parents’ own understanding of GV and their experiences and backgrounds as well as characteristics of the children they were parenting and the communities they inhabited. Limitations, clinical implications, and future directions are discussed. PMID:25639568
A scoping review of adult chronic kidney disease clinical pathways for primary care.
Elliott, Meghan J; Gil, Sarah; Hemmelgarn, Brenda R; Manns, Braden J; Tonelli, Marcello; Jun, Min; Donald, Maoliosa
2017-05-01
Chronic kidney disease (CKD) affects ∼10% of the adult population. The majority of patients with CKD are managed by primary care physicians, and despite the availability of effective treatment options, the use of evidence-based interventions for CKD in this setting remains suboptimal. Clinical pathways have been identified as effective tools to guide primary care physicians in providing evidence-based care. We aimed to describe the availability, characteristics and credibility of clinical pathways for adult CKD using a scoping review methodology. We searched Medline, Embase, CINAHL and targeted Internet sites from inception to 31 October 2014 to identify studies and resources that identified adult CKD clinical pathways for primary care settings. Study selection and data extraction were independently performed by two reviewers. From 487 citations, 41 items were eligible for review: 7 published articles and 34 grey literature resources published between 2001 and 2014. Of the 41 clinical pathways, 32, 24 and 22% were from the UK, USA and Canada, respectively. The majority (66%, n = 31) of clinical pathways were static in nature (did not have an online interactive feature). The majority (76%) of articles/resources reported using one or more clinical practice guidelines as a resource to guide the clinical pathway content. Few articles described a dissemination and evaluation plan for the clinical pathway, but most reported the targeted end-users. Our scoping review synthesized available literature on CKD clinical pathways in the primary care setting. We found that existing clinical pathways are diverse in their design, content and implementation. These results can be used by researchers developing or testing new or existing clinical pathways and by practitioners and health system stakeholders who aim to implement CKD clinical pathways in clinical practice. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Pan, Bo; Huang, Xu-Feng; Deng, Chao
2016-01-01
Aripiprazole, a dopamine D2 receptor (D2R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D2R antagonist) and bifeprunox (a D2R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D2Rs. PMID:27043526
Martínez, Sandra; Pérez, Laura; Galmarini, Carlos M; Aracil, Miguel; Tercero, Juan C; Gago, Federico; Albella, Beatriz; Bueren, Juan A
2013-01-01
BACKGROUND AND PURPOSE We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. EXPERIMENTAL APPROACH Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. KEY RESULTS While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. CONCLUSIONS AND IMPLICATIONS Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of ‘fanconizing’ cancer cells in order to make them more sensitive to other anti-tumour drugs. PMID:23937566
Wnt and lithium: a common destiny in the therapy of nervous system pathologies?
Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel
2014-04-01
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Understanding the aetiology and resolution of chronic otitis media from animal and human studies
Thornton, Ruth B.; Kirkham, Lea-Ann S.; Kerschner, Joseph E.; Cheeseman, Michael T.
2017-01-01
ABSTRACT Inflammation of the middle ear, known clinically as chronic otitis media, presents in different forms, such as chronic otitis media with effusion (COME; glue ear) and chronic suppurative otitis media (CSOM). These are highly prevalent diseases, especially in childhood, and lead to significant morbidity worldwide. However, much remains unclear about this disease, including its aetiology, initiation and perpetuation, and the relative roles of mucosal and leukocyte biology, pathogens, and Eustachian tube function. Chronic otitis media is commonly modelled in mice but most existing models only partially mimic human disease and many are syndromic. Nevertheless, these models have provided insights into potential disease mechanisms, and have implicated altered immune signalling, mucociliary function and Eustachian tube function as potential predisposing mechanisms. Clinical studies of chronic otitis media have yet to implicate a particular molecular pathway or mechanism, and current human genetic studies are underpowered. We also do not fully understand how existing interventions, such as tympanic membrane repair, work, nor how chronic otitis media spontaneously resolves. This Clinical Puzzle article describes our current knowledge of chronic otitis media and the existing research models for this condition. It also identifies unanswered questions about its pathogenesis and treatment, with the goal of advancing our understanding of this disease to aid the development of novel therapeutic interventions. PMID:29125825
Role of Obesity in Asthma: Mechanisms and Management Strategies.
Scott, Hayley A; Wood, Lisa G; Gibson, Peter G
2017-08-01
Obesity is a commonly reported comorbidity in asthma, particularly in severe asthma. Obese asthmatics are highly symptomatic with a poor quality of life, despite using high-dose inhaled corticosteroids. While the clinical manifestations have been documented, the aetiologies of obese-asthma remain unclear. Several potential mechanisms have been proposed, including poor diet quality, physical inactivity and consequent accrual of excess adipose tissue. Each of these factors independently activates inflammatory pathways, potentially exerting effects in the airways. Because the origins of obesity are multifactorial, it is now believed there are multiple obese-asthma phenotypes, with varied aetiologies and clinical consequences. In this review, we will describe the clinical implications of obesity in people with asthma, our current understanding of the mechanisms driving this association and describe recently proposed obese-asthma phenotypes. We will then discuss how asthma management is complicated by obesity, and provide graded recommendations for the management of obesity in this population.
Natural products as modulator of autophagy with potential clinical prospects.
Wang, Peiqi; Zhu, Lingjuan; Sun, Dejuan; Gan, Feihong; Gao, Suyu; Yin, Yuanyuan; Chen, Lixia
2017-03-01
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Single-cell proteomics: potential implications for cancer diagnostics.
Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T
2016-01-01
Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.
Wound care clinical pathway: a conceptual model.
Barr, J E; Cuzzell, J
1996-08-01
A clinical pathway is a written sequence of clinical processes or events that guides a patient with a defined problem toward an expected outcome. Clinical pathways are tools to assist with the cost-effective management of clinical outcomes related to specific problems or disease processes. The primary obstacles to developing clinical pathways for wound care are the chronic natures of some wounds and the many variables that can delay healing. The pathway introduced in this article was modeled upon the three phases of tissue repair: inflammatory, proliferative, and maturation. This physiology-based model allows clinicians to identify and monitor outcomes based on observable and measurable clinical parameters. The pathway design, which also includes educational and behavioral outcomes, allows the clinician to individualize the expected timeframe for outcome achievement based on individual patient criteria and expert judgement. Integral to the pathway are the "4P's" which help standardize the clinical processes by wound type: Protocols, Policies, Procedures, and Patient education tools. Four categories into which variances are categorized based on the cause of the deviation from the norm are patient, process/system, practitioner, and planning/discharge. Additional research is warranted to support the value of this clinical pathway in the clinical arena.
Effectiveness of clinical pathways for total knee and total hip arthroplasty: literature review.
Kim, Stephen; Losina, Elena; Solomon, Daniel H; Wright, John; Katz, Jeffrey N
2003-01-01
Although many hospitals have implemented clinical pathways to standardize the process of care, the effectiveness of clinical pathways for total hip and knee arthroplasties has not been reviewed critically. We searched for articles comparing outcomes of total hip or knee arthroplasty for patients who were treated using clinical pathways as opposed to patients treated without these pathways. Eleven studies met criteria for inclusion. Ten used historical controls, and 1 was a randomized trial. The studies had important methodological limitations. In general, the articles showed that patients treated using pathways experienced shorter hospital stays and lower costs, with comparable clinical outcomes as compared with patients treated without clinical pathways. We concluded that clinical pathways appear successful in reducing costs and length of stay in the acute care hospital, with no compromise in patient outcomes. However, interpretation of these studies is complicated by substantial methodological limitations, particularly the use of historical controls and failure to account for length of stay in rehabilitation facilities. Copyright 2003, Elsevier Science (USA). All rights reserved.
Valente, Mattia; Zwaan, Esther; Wit, Mirjam; Kimman, Geert P; Umans, Victor
2010-12-01
Clinical pathways attempt to increase efficiency by organizing the care-delivery process into individual analyzable steps. However, full advantage may only be taken if the process is governed by a "process care taker." Currently, new opportunities are emerging for nurses to become involved as health care experts and may become an intermediate between patient and clinical team. We evaluate a digital clinical pathway for electrocardioversion in atrial fibrillation with a nurse-coordinator in the ongoing consecutive experience in clinical practice. The introduction of a digital pathway into the hospital information system allows continuous surveillance of clinical outcome indicators as well as variance indicators. This article describes a service evaluation and the implementation and effects of introducing a clinical pathway. However, when comparing the 2 eras, the primary goals were improved guideline-adherence and reduced walk-through times in the 600 consecutive pathway patients versus 100 consecutive control patients. The pathway was launched in January 2008. Up to January 2009, 600 all-comer, elective patients were treated using this integrated digital clinical pathway, without exception. Treatment and outpatient check-up appointments are made immediately for all patients. The pathway enabled the cardiologist to complete the risk calculator and drug therapy recommendations significantly better when compared with control patients and also reduced walk-through times significantly. Patient satisfaction rose from 8.7 to 9.1 (P < 0.01) using the pathway. A nurse-led clinical pathway for cardioversion patients is safely and efficaciously introduced in a teaching hospital. The pathway improved guideline-adherence. These results emphasize the importance of a nurse-coordinator who is an intermediary between atrial fibrillation patients and the clinical care team.
Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer.
Namani, Akhileshwar; Li, Yulong; Wang, Xiu Jun; Tang, Xiuwen
2014-09-01
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases.
Lau, Kimberley; Srivatsav, Varun; Rizwan, Ayesha; Nashed, Andrew; Liu, Rui; Shen, Rui; Akhtar, Mahmood
2017-08-10
The human gut is heavily colonized by a community of microbiota, primarily bacteria, that exists in a symbiotic relationship with the host and plays a critical role in maintaining host homeostasis. The consumption of a high-fat (HF) diet has been shown to induce gut dysbiosis and reduce intestinal integrity. Recent studies have revealed that dysbiosis contributes to the progression of cardiovascular diseases (CVDs) by promoting two major CVD risk factors-atherosclerosis and hypertension. Imbalances in host-microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Dysbiosis has been implicated in the development of atherosclerosis through metabolism-independent and metabolite-dependent pathways. This review will illustrate how these pathways contribute to the various stages of atherosclerotic plaque progression. In addition, dysbiosis can promote hypertension through vascular fibrosis and an alteration of vascular tone. As CVD is the number one cause of death globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research, with vast therapeutic potential.
Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases
Lau, Kimberley; Srivatsav, Varun; Rizwan, Ayesha; Nashed, Andrew; Liu, Rui; Shen, Rui; Akhtar, Mahmood
2017-01-01
The human gut is heavily colonized by a community of microbiota, primarily bacteria, that exists in a symbiotic relationship with the host and plays a critical role in maintaining host homeostasis. The consumption of a high-fat (HF) diet has been shown to induce gut dysbiosis and reduce intestinal integrity. Recent studies have revealed that dysbiosis contributes to the progression of cardiovascular diseases (CVDs) by promoting two major CVD risk factors—atherosclerosis and hypertension. Imbalances in host–microbial interaction impair homeostatic mechanisms that regulate health and can activate multiple pathways leading to CVD risk factor progression. Dysbiosis has been implicated in the development of atherosclerosis through metabolism-independent and metabolite-dependent pathways. This review will illustrate how these pathways contribute to the various stages of atherosclerotic plaque progression. In addition, dysbiosis can promote hypertension through vascular fibrosis and an alteration of vascular tone. As CVD is the number one cause of death globally, investigating the gut microbiota as a locus of intervention presents a novel and clinically relevant avenue for future research, with vast therapeutic potential. PMID:28796176
Developmental pathways to autism: A review of prospective studies of infants at risk☆
Jones, Emily J.H.; Gliga, Teodora; Bedford, Rachael; Charman, Tony; Johnson, Mark H.
2014-01-01
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders characterized by impairments in social interaction and communication, and the presence of restrictive and repetitive behaviors. Symptoms of ASD likely emerge from a complex interaction between pre-existing neurodevelopmental vulnerabilities and the child's environment, modified by compensatory skills and protective factors. Prospective studies of infants at high familial risk for ASD (who have an older sibling with a diagnosis) are beginning to characterize these developmental pathways to the emergence of clinical symptoms. Here, we review the range of behavioral and neurocognitive markers for later ASD that have been identified in high-risk infants in the first years of life. We discuss theoretical implications of emerging patterns, and identify key directions for future work, including potential resolutions to several methodological challenges for the field. Mapping how ASD unfolds from birth is critical to our understanding of the developmental mechanisms underlying this disorder. A more nuanced understanding of developmental pathways to ASD will help us not only to identify children who need early intervention, but also to improve the range of interventions available to them. PMID:24361967
Duric, Vanja
2014-01-01
Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response. PMID:22585060
Ghosh, Arnab
2017-01-01
Abstract Significance: Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. Critical Issues: In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. Future Directions: We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182–190. PMID:26983679
Approaches and advances in the genetic causes of autoimmune disease and their implications.
Inshaw, Jamie R J; Cutler, Antony J; Burren, Oliver S; Stefana, M Irina; Todd, John A
2018-06-20
Genome-wide association studies are transformative in revealing the polygenetic basis of common diseases, with autoimmune diseases leading the charge. Although the field is just over 10 years old, advances in understanding the underlying mechanistic pathways of these conditions, which result from a dense multifactorial blend of genetic, developmental and environmental factors, have already been informative, including insights into therapeutic possibilities. Nevertheless, the challenge of identifying the actual causal genes and pathways and their biological effects on altering disease risk remains for many identified susceptibility regions. It is this fundamental knowledge that will underpin the revolution in patient stratification, the discovery of therapeutic targets and clinical trial design in the next 20 years. Here we outline recent advances in analytical and phenotyping approaches and the emergence of large cohorts with standardized gene-expression data and other phenotypic data that are fueling a bounty of discovery and improved understanding of human physiology.
Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications
Xiong, Xia; Lai, Rui
2018-01-01
Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs. PMID:29750172
Zeisel, Steven H.
2014-01-01
One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to nutrients. These SNPS can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit “retuning” of metabolic pathways during early life. PMID:22614815
Physical fitness: a pathway to health and resilience.
Deuster, Patricia A; Silverman, Marni N
2013-01-01
Various groups representing a number of different perspectives (for example, operational, architectural, community, institutional, and individual resilience) use the term resilience. We define resilience as the ability to withstand, recover, and grow in the face of stressors and changing demands. Physical fitness is one pathway toward resilience because it is associated with many traits and attributes required for resilience. In addition, physical fitness confers resilience because regular exercise and/or physical activity induces positive physiologic and psychological benefits, protects against the potential consequences of stressful events, and prevents many chronic diseases. This article presents a brief historical overview of the health-promoting effects of exercise and physical activity, followed by a discussion on the concept of hardiness and mental toughness and how they relate to resilience and physical fitness; how physical fitness promotes resilience; the clinical implications of a sedentary lifestyle; and the relevance of physical fitness and resilience to Army Medicine's Performance Triad.
Neurophysiology of pruritus: interaction of itch and pain.
Ikoma, Akihiko; Rukwied, Roman; Ständer, Sonja; Steinhoff, Martin; Miyachi, Yoshiki; Schmelz, Martin
2003-11-01
The discovery of an itch-specific neuronal pathway, which is distinct from the pain-processing pathway, has clarified the neuronal basis for the itch sensation. Albeit being distinct, there are complex interactions between pain and itch. The inhibition of itch by pain is well known and can explain the antipruritic effect of scratching. However, the opposite effect also exists and has major clinical implications: inhibition of pain processing (eg, by spinal opioids) can generate itch. Conversely, blockade of spinal opioid receptors can be used as an antipruritic therapy. Moreover, the spinal processing of pain and itch can be modulated, resulting in a hypersensitivity or hyposensitivity to pain or itch: similar to chronic painful conditions, ongoing activity of pruriceptors can induce a spinal hypersensitivity for itch in patients with chronic pruritus. Therapeutic antipruritic approaches therefore should target both local inflammation and spinal sensitization of itch processing.
Ranji, Peyman; Salmani Kesejini, Tayyebali; Saeedikhoo, Sara; Alizadeh, Ali Mohammad
2016-10-01
Cancer stem cells (CSCs) are a small subpopulation of tumor cells with capabilities of self-renewal, dedifferentiation, tumorigenicity, and inherent chemo-and-radio therapy resistance. Tumor resistance is believed to be caused by CSCs that are intrinsically challenging to common treatments. A number of CSC markers including CD44, CD133, receptor tyrosine kinase, aldehyde dehydrogenases, epithelial cell adhesion molecule/epithelial specific antigen, and ATP-binding cassette subfamily G member 2 have been proved as the useful targets for defining CSC population in solid tumors. Furthermore, targeting CSC markers through new therapeutic strategies will ultimately improve treatments and overcome cancer drug resistance. Therefore, the identification of novel strategies to increase sensitivity of CSC markers has major clinical implications. This review will focus on the innovative treatment methods such as nano-, immuno-, gene-, and chemotherapy approaches for targeting CSC-specific markers and/or their associated signaling pathways.
Cross-generational influences on childhood anxiety disorders: pathways and mechanisms
Leckman, James F.; Silverman, Wendy K.; Feldman, Ruth
2016-01-01
Anxiety disorders are common across the lifespan, cause severe distress and impairment, and usually have their onset in childhood. Substantial clinical and epidemiological research has demonstrated the existence of links between anxiety and its disorders in children and parents. Research on the pathways and mechanisms underlying these links has pointed to both behavioral and biological systems. This review synthesizes and summarizes several major aspects of this research. Behavioral systems include vicarious learning, social referencing, and modeling of parental anxiety; overly protective or critical parenting styles; and aspects of parental responses to child anxiety including family accommodation of the child’s symptoms. Biological systems include aspects of the prenatal environment affected by maternal anxiety, development and functioning of the oxytocinergic system, and genetic and epigenetic transmission. Implications for the prevention and treatment of child anxiety disorders are discussed, including the potential to enhance child anxiety treatment outcomes through biologically informed parent-based interventions. PMID:27145763
Cross-generational influences on childhood anxiety disorders: pathways and mechanisms.
Lebowitz, Eli R; Leckman, James F; Silverman, Wendy K; Feldman, Ruth
2016-09-01
Anxiety disorders are common across the lifespan, cause severe distress and impairment, and usually have their onset in childhood. Substantial clinical and epidemiological research has demonstrated the existence of links between anxiety and its disorders in children and parents. Research on the pathways and mechanisms underlying these links has pointed to both behavioral and biological systems. This review synthesizes and summarizes several major aspects of this research. Behavioral systems include vicarious learning, social referencing, and modeling of parental anxiety; overly protective or critical parenting styles; and aspects of parental responses to child anxiety including family accommodation of the child's symptoms. Biological systems include aspects of the prenatal environment affected by maternal anxiety, development and functioning of the oxytocinergic system, and genetic and epigenetic transmission. Implications for the prevention and treatment of child anxiety disorders are discussed, including the potential to enhance child anxiety treatment outcomes through biologically informed parent-based interventions.
Tapia, Patrick C
2006-01-01
The aging process in higher mammals is increasingly being shown to feature a potentially substantial contribution from the longitudinal deterioration of normative stem cell dynamics seen with the passage of time. The precise mechanistic sequence producing this phenomenon is not entirely understood, but recent evidence has strongly implicated intracellular downstream effectors of endocrinologic pathways thought to be engaged by the obese state, specifically the insulin, IGF-1, and leptin signaling pathways. Among the intracellular effectors of these signals, a uniquely potent influence on stem cell dynamics may be attributable to Rho/ROCK, JAK kinase activity and STAT3 activity. In particular, it has already been shown that specific tyrosine kinase activities, such as that seen with Rho kinase, are presently thought to be associated with adverse health outcomes in numerous clinical contexts. Furthermore, the Rho GTPase is thought to be contributing to end-stage renal disease. However, in addition to its contribution to organ system dysfunction, the Rho/ROCK pathway has recently been shown to be activated by insulin and IGF-1, providing a tantalizing connection to nutrition and aging science. The JAK-STAT pathway, in contrast, has long been associated with pro-inflammatory cytokines, but has recently been implicated in leptin signaling as well. Importantly, JAK-STAT signaling has, similarly to Rho/ROCK signaling, been implicated as capable of accelerating stem cell proliferation. The implications of these recent determinations, in light of the recent finding of telomere attrition in humans associated with obesity, are that the intracellular determinants of aging may already be known, and the known common influence of these signaling elements on longitudinal stem cell dynamics is a pronounced induction of proliferation, an elevation that has been linked to the pathologic evolution of longitudinal organ-level dysfunction and the organismal-level physiologic decline seen with the inexorable passage of time. Besides the obvious utility for the management for human age-related dysfunction that investigation of pharmacologic inhibitors of these proteins would provide, interventions such as caloric restriction and possibly intermittent fasting may beneficially influence stem cell proliferation dynamics and reduce intracellular correlates of mitogenic drive. Integrating the findings present in the present body of research may reveal endocrinological states that are compatible with longevity, and will also provide novel insight into the specific proteomic determinants of age-related physiologic decline, ushering in a new epoch of medicine that fosters the management of the "pre-etiopathology" of chronic disease and disability of aging, therefore mitigating the suffering widely thought to be inherent in the latter stages of life.
Characterization of clinical signs in the human interactome.
Chagoyen, Monica; Pazos, Florencio
2016-06-15
Many diseases are related by shared associated molecules and pathways, exhibiting comorbidities and common phenotypes, an indication of the continuous nature of the human pathological landscape. Although it is continuous, this landscape is always partitioned into discrete diseases when studied at the molecular level. Clinical signs are also important phenotypic descriptors that can reveal the molecular mechanisms that underlie pathological states, but have seldom been the subject of systemic research. Here, we quantify the modular nature of the clinical signs associated with genetic diseases in the human interactome. We found that clinical signs are reflected as modules at the molecular network level, to at least to the same extent as diseases. They can thus serve as a valid complementary partition of the human pathological landscape, with implications for etiology research, diagnosis and treatment. monica.chagoyen@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Targeting the androgen receptor in triple-negative breast cancer: current perspectives.
Mina, Alain; Yoder, Rachel; Sharma, Priyanka
2017-01-01
Triple-negative breast cancer (TNBC) is an aggressive subtype associated with frequent recurrence and metastasis. Unlike hormone receptor-positive subtypes, treatment of TNBC is currently limited by the lack of clinically available targeted therapies. Androgen signaling is necessary for normal breast development, and its dysregulation has been implicated in breast tumorigenesis. In recent years, gene expression studies have identified a subset of TNBC that is enriched for androgen receptor (AR) signaling. Interference with androgen signaling in TNBC is promising, and AR-inhibiting drugs have shown antitumorigenic activity in preclinical and proof of concept clinical studies. Recent advances in our understanding of androgenic signaling in TNBC, along with the identification of interacting pathways, are allowing development of the next generation of clinical trials with AR inhibitors. As novel AR-targeting agents are developed and evaluated in clinical trials, it is equally important to establish a robust set of biomarkers for identification of TNBC tumors that are most likely to respond to AR inhibition.
Hajishengallis, George; Hajishengallis, Evlambia; Kajikawa, Tetsuhiro; Wang, Baomei; Yancopoulou, Despina; Ricklin, Daniel; Lambris, John D
2016-06-01
Periodontitis is a dysbiotic inflammatory disease leading to the destruction of the tooth-supporting tissues. Current therapies are not always effective and this prevalent oral disease continues to be a significant health and economic burden. Early clinical studies have associated periodontitis with elevated complement activity. Consistently, subsequent genetic and pharmacological studies in rodents have implicated the central complement component C3 and downstream signaling pathways in periodontal host-microbe interactions that promote dysbiosis and inflammatory bone loss. This review discusses these mechanistic advances and moreover focuses on the compstatin family of C3 inhibitors as a novel approach to treat periodontitis. In this regard, local application of the current lead analog Cp40 was recently shown to block both inducible and naturally occurring periodontitis in non-human primates. These promising results from non-human primate studies and the parallel development of Cp40 for clinical use highlight the feasibility for developing an adjunctive, C3-targeted therapy for human periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M
2014-04-01
Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.
Earlier Violent Television Exposure and Later Drug Dependence
Brook, David W.; Katten, Naomi S.; Ning, Yuming; Brook, Judith S.
2013-01-01
This research examined the longitudinal pathways from earlier violent television exposure to later drug dependence. African American and Puerto Rican adolescents were interviewed during three points in time (N = 463). Violent television exposure in late adolescence predicted violent television exposure in young adulthood, which in turn was related to tobacco/marijuana use, nicotine dependence, and later drug dependence. Some policy and clinical implications suggest: a) regulating the times when violent television is broadcast; b) creating developmentally targeted prevention/treatment programs; and c) recognizing that watching violent television may serve as a cue regarding increased susceptibility to nicotine and drug dependence. PMID:18612881
Razawy, Wida; van Driel, Marjolein; Lubberts, Erik
2018-02-01
The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gibbs, Jo; Sutcliffe, Lorna J; Gkatzidou, Voula; Hone, Kate; Ashcroft, Richard E; Harding-Esch, Emma M; Lowndes, Catherine M; Sadiq, S Tariq; Sonnenberg, Pam; Estcourt, Claudia S
2016-07-22
Despite considerable international eHealth impetus, there is no guidance on the development of online clinical care pathways. Advances in diagnostics now enable self-testing with home diagnosis, to which comprehensive online clinical care could be linked, facilitating completely self-directed, remote care. We describe a new framework for developing complex online clinical care pathways and its application to clinical management of people with genital chlamydia infection, the commonest sexually transmitted infection (STI) in England. Using the existing evidence-base, guidelines and examples from contemporary clinical practice, we developed the eClinical Care Pathway Framework, a nine-step iterative process. Step 1: define the aims of the online pathway; Step 2: define the functional units; Step 3: draft the clinical consultation; Step 4: expert review; Step 5: cognitive testing; Step 6: user-centred interface testing; Step 7: specification development; Step 8: software testing, usability testing and further comprehension testing; Step 9: piloting. We then applied the Framework to create a chlamydia online clinical care pathway (Online Chlamydia Pathway). Use of the Framework elucidated content and structure of the care pathway and identified the need for significant changes in sequences of care (Traditional: history, diagnosis, information versus Online: diagnosis, information, history) and prescribing safety assessment. The Framework met the needs of complex STI management and enabled development of a multi-faceted, fully-automated consultation. The Framework provides a comprehensive structure on which complex online care pathways such as those needed for STI management, which involve clinical services, public health surveillance functions and third party (sexual partner) management, can be developed to meet national clinical and public health standards. The Online Chlamydia Pathway's standardised method of collecting data on demographics and sexual behaviour, with potential for interoperability with surveillance systems, could be a powerful tool for public health and clinical management.
The neurobiology of adaptation to seasons: Relevance and correlations in bipolar disorders.
Maruani, Julia; Anderson, George; Etain, Bruno; Lejoyeux, Michel; Bellivier, Frank; Geoffroy, Pierre A
2018-06-25
Bipolar disorders (BDs) are severe and common psychiatric disorders. BD pathogenesis, clinical manifestations and relapses are associated with numerous circadian rhythm abnormalities. In addition, infradian fluctuations of mood, social activity, weight and sleep patterns are very frequent in BD. Disease course with a seasonal pattern (SP) occurs in approximately 25% of depressive and 15% of manic episodes, which is coupled to a more severe disease symptomatology. The pathophysiological mechanisms of seasonal effects in BD await clarification, with likely important clinical consequences. This review aims at synthesizing available data regarding the underlying pathophysiological mechanisms of seasonality in BD patients, with implications for future research directions in the study of seasonality in BD. Three factors are suggested to play significant roles in BD with SP, namely the suprachiasmatic nuclei, as well as the melatonergic and photoperiodism systems. It is proposed that BD with SP may be considered as a complex disorder resulting from the interaction of clock gene vulnerabilities and biological clock neuroplasticity, with environmental factors, such as the response to light. Light seems to play a key role in BD with SP, mainly due to two seasonal signaling pathways: a light to cortex serotonin transporter pathway, as well as a pathway connecting light to melatonin synthesis. This provides a theoretical framework for BD with SP, including for future research and clinical management. The review proposes that future research should explore markers of seasonality in BD, such as plasma melatonin, sleep-wake rhythms (with actigraphy) and genetic or epigenetic variants within the melatonin synthesis pathway. The role of light in driving BD with SP is an active area of research. Seasonality may also be intimately linked to wider aspects of BD, including via interactions with the gut microbiome, the gut-liver axis, cholesterol regulation, aspects of metabolic syndrome, vitamin D, decreased longevity, suicide risk and medication treatment targets. Further research on the role of seasonality in BD is likely to clarify the etiology, course and treatment of BD more widely.
van Reesema, Lauren L Siewertsz; Zheleva, Vasilena; Winston, Janet S; Jansen, Rick J; O'Connor, Carolyn F; Isbell, Andrew J; Bian, Minglei; Qin, Rui; Bassett, Patricia T; Hinson, Virginia J; Dorsch, Kimberly A; Kirby, Brad W; Van Sciver, Robert E; Tang-Tan, Angela M; Harden, Elizabeth A; Chang, David Z; Allen, Cynthia A; Perry, Roger R; Hoefer, Richard A; Tang, Amy H
2016-09-01
Metastatic breast cancer exhibits diverse and rapidly evolving intra- and inter-tumor heterogeneity. Patients with similar clinical presentations often display distinct tumor responses to standard of care (SOC) therapies. Genome landscape studies indicate that EGFR/HER2/RAS "pathway" activation is highly prevalent in malignant breast cancers. The identification of therapy-responsive and prognostic biomarkers is paramount important to stratify patients and guide therapies in clinical oncology and personalized medicine. In this study, we analyzed matched pairs of tumor specimens collected from 182 patients who received neoadjuvant systemic therapies (NST). Statistical analyses were conducted to determine whether EGFR/HER2/RAS pathway biomarkers and clinicopathological predictors, alone and in combination, are prognostic in breast cancer. SIAH and EGFR outperform ER, PR, HER2 and Ki67 as two logical, sensitive and prognostic biomarkers in metastatic breast cancer. We found that increased SIAH and EGFR expression correlated with advanced pathological stage and aggressive molecular subtypes. Both SIAH expression post-NST and NST-induced changes in EGFR expression in invasive mammary tumors are associated with tumor regression and increased survival, whereas ER, PR, and HER2 were not. These results suggest that SIAH and EGFR are two prognostic biomarkers in breast cancer with lymph node metastases. The discovery of incorporating tumor heterogeneity-independent and growth-sensitive RAS pathway biomarkers, SIAH and EGFR, whose altered expression can be used to estimate therapeutic efficacy, detect emergence of resistant clones, forecast tumor regression, differentiate among partial responders, and predict patient survival in the neoadjuvant setting, has a clear clinical implication in personalizing breast cancer therapy. This work was supported by the Dorothy G. Hoefer Foundation for Breast Cancer Research (A.H. Tang); Center for Innovative Technology (CIT)-Commonwealth Research Commercialization Fund (CRCF) (MF14S-009-LS to A.H. Tang), and National Cancer Institute (CA140550 to A.H. Tang). Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.
Gurzick, Martha; Kesten, Karen S
2010-01-01
The purpose of this article was to address the call for evidence-based practice through the development of clinical pathways and to assert the role of the clinical nurse specialist (CNS) as a champion in clinical pathway implementation. In the current health care system, providing quality of care while maintaining cost-effectiveness is an ever-growing battle that institutions face. The CNS's role is central to meeting these demands. An extensive literature review has been conducted to validate the use of clinical pathways as a means of improving patient outcomes. This literature also suggests that clinical pathways must be developed, implemented, and evaluated utilizing validated methods including the use of best practice standards. Execution of clinical pathways should include a clinical expert, who has the ability to look at the system as a whole and can facilitate learning and change by employing a multitude of competencies while maintaining a sphere of influence over patient and families, nurses, and the system. The CNS plays a pivotal role in influencing effective clinical pathway development, implementation, utilization, and ongoing evaluation to ensure improved patient outcomes and reduced costs. This article expands upon the call for evidence-based practice through the utilization of clinical pathways to improve patient outcomes and reduce costs and stresses the importance of the CNS as a primary figure for ensuring proper pathway development, implementation, and ongoing evaluation. Copyright 2010 Elsevier Inc. All rights reserved.
Ten Berge, D M; Braem, M J; Altenburg, A; Dieltjens, M; Van de Heyning, P H; Vanhaecht, K; Vanderveken, O M
2014-05-01
Clinical pathways are used to organize complex care processes by providing structure and standardization. The multidisciplinary approach of oral appliance (OA) therapy for sleep-disordered breathing (SDB) is a complex and dynamic process suitable for such a structured pathway approach. A clinical pathway for patients referred for OA therapy was developed and implemented. The aim of this study was to evaluate the impact of this clinical pathway on the time to delivery of the OA and the organization of the multidisciplinary dental sleep clinic (MDSC). The latter was achieved using the care process self-evaluation tool (CPSET). First, development and implementation of the clinical pathway gave structure and shortened the mean time to delivery by 102 days (240 ± 70 vs. 138 ± 33 days) (Mann-Whitney U: P < 0.001). Second, the CPSET scores were obtained in a cohort of 49 healthcare professionals involved in the pathway. Overall, patient-focused organization received the highest scores (80.5 ± 9.0%), whereas cooperation with primary care received the lowest score (66.7 ± 12.4%). This is the first project on clinical pathways in OA therapy for SDB. The implementation of the pathway in our MDSC has created a significant shortening of the time to delivery. A first evaluation of the clinical pathway using the CPSET scores indicates that all disciplines involved should be thoroughly informed in an ongoing approach.
Next-generation models of human cardiogenesis via genome editing.
Lian, Xiaojun; Xu, Jiejia; Li, Jinsong; Chien, Kenneth R
2014-09-18
Cardiogenesis is one of the earliest and most important steps during human development and is orchestrated by discrete families of heart progenitors, which build distinct regions of the fetal heart. For the past decade, a lineage map for the distinct subsets of progenitors that generate the embryonic mammalian heart has begun to lay a foundation for the development of new strategies for rebuilding the adult heart after injury, an unmet clinical need for the vast majority of patients with end-stage heart failure who are not heart transplant recipients. The studies also have implications for the root causes of congenital heart disease, which affects 1 in 50 live births, the most prevalent malformations in children. Although much of this insight has been generated in murine models, it is becoming increasingly clear that there can be important divergence with principles and pathways for human cardiogenesis, as well as for regenerative pathways. The development of human stem cell models, coupled with recent advances in genome editing with RNA-guided endonucleases, offers a new approach for the primary study of human cardiogenesis. In addition, application of the technology to the in vivo setting in large animal models, including nonhuman primates, has opened the door to genome-edited large animal models of adult and congenital heart disease, as well as a detailed mechanistic dissection of the more diverse and complex set of progenitor families and pathways, which guide human cardiogenesis. Implications of this new technology for a new generation of human-based, genetically tractable systems are discussed, along with potential therapeutic applications. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Challenges of implementing fibromyalgia treatment guidelines in current clinical practice.
Arnold, Lesley M; Clauw, Daniel J
2017-09-01
The current diagnostic and treatment pathway for patients with fibromyalgia (FM) is lengthy, complex, and characterized by multiple physician visits with an average 2-year wait until diagnosis. It is clear that effective identification and appropriate treatment of FM remain a challenge in current clinical practice. Ideally, FM management involves a multidisciplinary approach with the preferable patient pathway originating in primary care but supported by a range of health care providers, including referral to specialist care when necessary. After the publication of individual clinical studies, high-quality reviews, and meta-analyses, recently published FM treatment guidelines have transitioned from an expert consensus to an evidence-based approach. Evidence-based guidelines provide a framework for ensuring early diagnosis and timely adoption of appropriate treatment. However, for successful outcomes, FM treatments must adopt a more holistic approach, which addresses more than just pain. Impact on the associated symptoms of fatigue and cognitive problems, sleep and mood disturbances, and lowered functional status are also important in judging the success of FM therapy. Recently published guidelines recommend the adoption of a symptom-based approach to guide pharmacologic treatment. Emerging treatment options for FM may be best differentiated on the basis of their effect on comorbid symptoms that are often associated with pain (e.g. sleep disturbance, mood, fatigue). The current review discusses the most recently published Canadian guidelines and the implications of the recent European League Against Rheumatism (EULAR) recommendations, with a focus on the challenges of implementing these guidelines in current clinical practice.
The Neurobiology of "Food Addiction" and Its Implications for Obesity Treatment and Policy.
Carter, Adrian; Hendrikse, Joshua; Lee, Natalia; Yücel, Murat; Verdejo-Garcia, Antonio; Andrews, Zane B.; Hall, Wayne
2016-07-17
There is a growing view that certain foods, particularly those high in refined sugars and fats, are addictive and that some forms of obesity can usefully be treated as a food addiction. This perspective is supported by a growing body of neuroscience research demonstrating that the chronic consumption of energy-dense foods causes changes in the brain's reward pathway that are central to the development and maintenance of drug addiction. Obese and overweight individuals also display patterns of eating behavior that resemble the ways in which addicted individuals consume drugs. We critically review the evidence that some forms of obesity or overeating could be considered a food addiction and argue that the use of food addiction as a diagnostic category is premature. We also examine some of the potential positive and negative clinical, social, and public policy implications of describing obesity as a food addiction that require further investigation.
Therapeutic Implications of Brain–Immune Interactions: Treatment in Translation
Miller, Andrew H; Haroon, Ebrahim; Felger, Jennifer C
2017-01-01
A wealth of data has been amassed that details a complex, yet accessible, series of pathways by which the immune system, notably inflammation, can influence the brain and behavior. These data have opened the window to a diverse array of novel targets whose potential efficacy is tied to specific neurotransmitters and neurocircuits as well as specific behaviors. What is clear is that the impact of inflammation on the brain cuts across psychiatric disorders and engages dopaminergic and glutamatergic pathways that regulate motivation and motor activity as well as the sensitivity to threat. Given the ability to identify patient populations with increased inflammation, the precision of interventions can be further tuned, in conjunction with the ability to establish target engagement in the brain through the use of multiple neuroimaging strategies. After a brief overview of the mechanisms by which inflammation affects the brain and behavior, this review examines the extant literature on the efficacy of anti-inflammatory treatments, while forging guidelines for future intelligent clinical trial design. An examination of the most promising therapeutic strategies is also provided, along with some of the most exciting clinical trials that are currently being planned or underway. PMID:27555382
Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.
González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro
2017-01-01
Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Martino, Steve; Brigham, Gregory S; Higgins, Christine; Gallon, Steve; Freese, Thomas E; Albright, Lonnetta M; Hulsey, Eric G; Krom, Laurie; Storti, Susan A; Perl, Harold; Nugent, Cathrine D; Pintello, Denise; Condon, Timothy P
2010-06-01
Since 2001, the National Drug Abuse Treatment Clinical Trials Network (CTN) has worked to put the results of its trials into the hands of community treatment programs, in large part through its participation in the National Institute on Drug Abuse-Substance Abuse and Mental Health Services Administration Blending Initiative and its close involvement with the Center for Substance Abuse Treatment's Addiction Technology Transfer Centers. This article describes (a) the CTN's integral role in the Blending Initiative, (b) key partnerships and dissemination pathways through which the results of CTN trials are developed into blending products and then transferred to community treatment programs, and (c) three blending initiatives involving buprenorphine, motivational incentives, and motivational interviewing. The Blending Initiative has resulted in high utilization of its products, preparation of more than 200 regional trainers, widespread training of service providers in most U.S. States, Puerto Rico, and the U.S. Virgin Islands and movement toward the development of Web-based implementation supports and technical assistance. Implications for future directions of the Blending Initiative and opportunities for research are discussed.
Hudson, Roger; Rushlow, Walter; Laviolette, Steven R
2018-02-01
Growing clinical and preclinical evidence suggests a potential role for the phytocannabinoid cannabidiol (CBD) as a pharmacotherapy for various neuropsychiatric disorders. In contrast, delta-9-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis, is associated with acute and neurodevelopmental propsychotic side effects through its interaction with central cannabinoid type 1 receptors (CB1Rs). CB1R stimulation in the ventral hippocampus (VHipp) potentiates affective memory formation through inputs to the mesolimbic dopamine (DA) system, thereby altering emotional salience attribution. These changes in DA activity and salience attribution, evoked by dysfunctional VHipp regulatory actions and THC exposure, could predispose susceptible individuals to psychotic symptoms. Although THC can accelerate the onset of schizophrenia, CBD displays antipsychotic properties, can prevent the acquisition of emotionally irrelevant memories, and reverses amphetamine-induced neuronal sensitization through selective phosphorylation of the mechanistic target of rapamycin (mTOR) molecular signaling pathway. This review summarizes clinical and preclinical evidence demonstrating that distinct phytocannabinoids act within the VHipp and associated corticolimbic structures to modulate emotional memory processing through changes in mesolimbic DA activity states, salience attribution, and signal transduction pathways associated with schizophrenia-related pathology.
Esophageal cancer stem cells and implications for future therapeutics.
Qian, Xia; Tan, Cheng; Wang, Feng; Yang, Baixia; Ge, Yangyang; Guan, Zhifeng; Cai, Jing
2016-01-01
Esophageal carcinoma (EC) is a lethal disease with high morbidity and mortality worldwide, and the incidence has been increasing in recent years. Although the diagnosis and treatment of EC have improved considerably, EC has rapidly progressed in the clinical setting and has a poor prognosis for its metastasis and recurrence. The general idea of cancer stem cells (CSCs) is primarily based on clinical and experimental observations, indicating the existence of a subpopulation of cells that can self-renew and differentiate. The EC stem cells, which can be isolated from normal pluripotent stem cells by applying similar biomarkers, may participate in promoting esophageal tumorigenesis through renewal and repair. In this review, major emphasis is given to CSC markers, altered CSC-specific pathways, and molecular targeting agents currently available to target CSCs of esophageal cancer. The roles of numerous markers (CD44, aldehyde dehydrogenase, CD133, and ATP-binding cassette subfamily G member 2) and developmental signaling pathways (Wnt/β-catenin, Notch, hedgehog, and Hippo) in isolating esophageal CSCs are discussed in detail. Targeting CSCs can be a logical strategy to treat EC, as these cells are responsible for carcinoma recurrence and chemoradiation resistance.
Dautremont, Jonathan F; Rudmik, Luke R; Yeung, Justin; Asante, Tiffany; Nakoneshny, Steve C; Hoy, Monica; Lui, Amanda; Chandarana, Shamir P; Matthews, Thomas W; Schrag, Christiaan; Dort, Joseph C
2013-12-19
The objective of this study is to evaluate the cost-effectiveness of a postoperative clinical care pathway for patients undergoing major head and neck oncologic surgery with microvascular reconstruction. This is a comparative trial of a prospective treatment group managed on a postoperative clinical care pathway and a historical group managed prior to pathway implementation. Effectiveness outcomes evaluated were total hospital days, return to OR, readmission to ICU and rate of pulmonary complications. Costing perspective was from the government payer. 118 patients were included in the study. All outcomes demonstrated that the postoperative pathway group was both more effective and less costly, and is therefore a dominant clinical intervention. The overall mean pre- and post-pathway costs are $22,733 and $16,564 per patient, respectively. The incremental cost reduction associated with the postoperative pathway was $6,169 per patient. Implementing the postoperative clinical care pathway in patients undergoing head and neck oncologic surgery with reconstruction resulted in improved clinical outcomes and reduced costs.
Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua
2011-01-01
Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. © 2011 Zhang et al.
Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua
2011-01-01
Background Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Methodology/Principal Findings Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Conclusions/Significance Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. PMID:22216347
Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities
Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran
2014-01-01
GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081
Piskun, Caroline M.; Muthuswamy, Anantharaman; Huelsmeyer, Michael K.; Thompson, Victoria; Stein, Timothy J.
2011-01-01
Osteosarcoma is an aggressive malignancy of the bone and an increase in serum alkaline phosphatase concentration has clinical prognostic value in both humans and canines. Increased serum alkaline phosphatase concentration at the time of diagnosis has been associated with poorer outcomes for osteosarcoma patients. The biology underlying this negative prognostic factor is poorly understood. Given that activation of the Wnt signaling pathway has been associated with alkaline phosphatase expression in osteoblasts, we hypothesized that the Wnt/β-catenin signaling pathway would be differentially activated in osteosarcoma tissue based on serum ALP status. Archived canine osteosarcoma samples and primary canine osteosarcoma cell lines were used to evaluate the status of Wnt/β-catenin signaling pathway activity through immunohistochemical staining, western immunoblot analyses, quantitative reverse-transcription polymerase chain reaction, and a Wnt-responsive promoter activity assay. We found no significant difference in β-catenin expression or activation between OSA populations differing in serum ALP concentration. Pathway activity was mildly increased in the primary OSA cell line generated from a patient with increased serum ALP compared to the normal serum ALP OSA cell line. Further investigation into the mechanisms underlying differences in serum ALP concentration is necessary to improve our understanding of the biological implications of this negative prognostic indicator. PMID:22022527
Zhu, Xi; Helpman, Liat; Papini, Santiago; Schneier, Franklin; Markowitz, John C; Van Meter, Page E; Lindquist, Martin A; Wager, Tor D; Neria, Yuval
2017-07-01
Individuals with comorbid posttraumatic stress disorder and major depressive disorder (PTSD-MDD) often exhibit greater functional impairment and poorer treatment response than individuals with PTSD alone. Research has not determined whether PTSD-MDD is associated with different network connectivity abnormalities than PTSD alone. We used functional magnetic resonance imaging (fMRI) to measure resting state functional connectivity (rs-FC) patterns of brain regions involved in fear and reward processing in three groups: patients with PTSD-alone (n = 27), PTSD-MDD (n = 21), and trauma-exposed healthy controls (TEHCs, n = 34). Based on previous research, seeds included basolateral amygdala (BLA), centromedial amygdala (CMA), and nucleus accumbens (NAcc). Regardless of MDD comorbidity, PTSD was associated with decreased connectivity of BLA-orbitalfrontal cortex (OFC) and CMA-thalamus pathways, key to fear processing, and fear expression, respectively. PTSD-MDD, compared to PTSD-alone and TEHC, was associated with decreased connectivity across multiple amygdala and striatal-subcortical pathways: BLA-OFC, NAcc-thalamus, and NAcc-hippocampus. Further, while both the BLA-OFC and the NAcc-thalamus pathways were correlated with MDD symptoms, PTSD symptoms correlated with the amygdala pathways (BLA-OFC; CMA-thalamus) only. Comorbid PTSD-MDD may be associated with multifaceted functional connectivity alterations in both fear and reward systems. Clinical implications are discussed. © 2016 Wiley Periodicals, Inc.
The ubiquitin family meets the Fanconi anemia proteins.
Renaudin, Xavier; Koch Lerner, Leticia; Menck, Carlos Frederico Martins; Rosselli, Filippo
2016-01-01
Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability. Copyright © 2016 Elsevier B.V. All rights reserved.
Theocharis, Stamatios; Giaginis, Constantinos; Dana, Eugene; Thymara, Irene; Rodriguez, Jose; Patsouris, Efstratios; Klijanienko, Jerzy
2017-03-01
Phosphorylated epidermal growth factor receptor (pEGFR) activates several signaling pathways, resulting in tumor-promoting cellular activities, and has been implicated in malignant transformation and disease progression. The present study evaluated the clinical significance of pEGFR protein expression in mobile tongue squamous cell carcinoma (SCC). The present cohort study included 48 patients with mobile tongue SCC. We evaluated whether pEGFR immunohistochemical protein expression is associated with clinical variables and patient outcome. Of the 48 patients included in the present cohort study, 25 were men and 23 were women. The median patient age was 60 years (interquartile range 53 to 72). pEGFR protein expression was significantly increased in well-differentiated tumors compared with poorly differentiated tumors (P = .001). Elevated pEGFR protein expression was significantly more frequently observed in mobile tongue SCC cases with a well-defined tumor shape and an earlier disease stage (P = .010 and P = .019, respectively). Patients with mobile tongue SCC presenting with elevated pEGFR expression had longer overall and disease-free survival times compared with those with low pEGFR expression (P = .015 and P = .006, respectively; log-rank test). On multivariate analysis, pEGFR expression proved to be an independent prognostic factor of both overall and disease-free survival (P = .008 and P = .044, respectively; Cox regression analysis). The results of the present study support evidence that the pEGFR signaling pathway might be implicated in the malignant transformation of mobile tongue SCC. Additional studies are recommended to validate whether pEGFR could be used as a potential biomarker and therapeutic target in mobile tongue SCC. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Kritchevsky, Stephen B; Forman, Daniel E; Callahan, Kathryn; Ely, E Wesley; High, Kevin P; McFarland, Frances; Pérez-Stable, Eliseo J; Schmader, Kenneth; Studenski, Stephanie; Williams, John; Zieman, Susan; Guralnik, Jack M
2018-04-25
Traditional clinical care models focus on the measurement and normalization of individual organ systems and de-emphasize aspects of health related to the integration of physiologic systems. Measures of physical, cognitive and sensory, and psychosocial or emotional function predict important health outcomes like death and disability independently from the severity of a specific disease, cumulative co-morbidity, or disease severity measures. A growing number of clinical scientists in several subspecialties are exploring the utility of functional assessment to predict complication risk, indicate stress resistance, inform disease screening approaches and risk factor interpretation, and evaluate care. Because a substantial number of older adults in the community have some form of functional limitation, integrating functional assessment into clinical medicine could have a large impact. Although interest in functional implications for health and disease management is growing, the science underlying functional capacity, functional limitation, physical frailty, and functional metrics is often siloed among different clinicians and researchers, with fragmented concepts and methods. On August 25-26, 2016, participants at a trans-disciplinary workshop, supported by the National Institute on Aging and the John A. Hartford Foundation, explored what is known about the pathways, contributors, and correlates of physical, cognitive and sensory functional measures across conditions and disease states; considered social determinants and health disparities; identified knowledge gaps, and suggested priorities for future research. This paper summarizes those discussions.
Lucchese, Fernando A; Koenig, Harold G
2013-03-01
In this paper we comprehensively review published quantitative research on the relationship between religion, spirituality (R/S), and cardiovascular (CV) disease, discuss mechanisms that help explain the associations reported, examine the clinical implications of those findings, and explore future research needed in Brazil on this topic. First, we define the terms religion, spirituality, and secular humanism. Next, we review research examining the relationships between R/S and CV risk factors (smoking, alcohol/drug use, physical inactivity, poor diet, cholesterol, obesity, diabetes, blood pressure, and psychosocial stress). We then review research on R/S, cardiovascular functions (CV reactivity, heart rate variability, etc.), and inflammatory markers (IL-6, IFN-γ, CRP, fibrinogen, IL-4, IL-10). Next we examine research on R/S and coronary artery disease, hypertension, stroke, dementia, cardiac surgery outcomes, and mortality (CV mortality in particular). We then discuss mechanisms that help explain these relationships (focusing on psychological, social, and behavioral pathways) and present a theoretical causal model based on a Western religious perspective. Next we discuss the clinical applications of the research, and make practical suggestions on how cardiologists and cardiac surgeons can sensitively and sensibly address spiritual issues in clinical practice. Finally, we explore opportunities for future research. No research on R/S and cardiovascular disease has yet been published from Brazil, despite the tremendous interest and involvement of the population in R/S, making this an area of almost unlimited possibilities for researchers in Brazil.
Park, Yun-Yong; Sohn, Bo Hwa; Johnson, Randy L; Kang, Myoung-Hee; Kim, Sang Bae; Shim, Jae-Jun; Mangala, Lingegowda S; Kim, Ji Hoon; Yoo, Jeong Eun; Rodriguez-Aguayo, Cristian; Pradeep, Sunila; Hwang, Jun Eul; Jang, Hee-Jin; Lee, Hyun-Sung; Rupaimoole, Rajesha; Lopez-Berestein, Gabriel; Jeong, Woojin; Park, Inn Sun; Park, Young Nyun; Sood, Anil K; Mills, Gordon B; Lee, Ju-Seog
2016-01-01
Metabolic activation is a common feature of many cancer cells and is frequently associated with the clinical outcomes of various cancers, including hepatocellular carcinoma. Thus, aberrantly activated metabolic pathways in cancer cells are attractive targets for cancer therapy. Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ) are oncogenic downstream effectors of the Hippo tumor suppressor pathway, which is frequently inactivated in many cancers. Our study revealed that YAP1/TAZ regulates amino acid metabolism by up-regulating expression of the amino acid transporters solute carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5). Subsequently, increased uptake of amino acids by the transporters (SLC38A1 and SLC7A5) activates mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth, and stimulates cell proliferation. We also show that high expression of SLC38A1 and SLC7A5 is significantly associated with shorter survival in hepatocellular carcinoma patients. Furthermore, inhibition of the transporters and mTORC1 significantly blocks YAP1/TAZ-mediated tumorigenesis in the liver. These findings elucidate regulatory networks connecting the Hippo pathway to mTORC1 through amino acid metabolism and the mechanism's potential clinical implications for treating hepatocellular carcinoma. YAP1 and TAZ regulate cancer metabolism and mTORC1 through regulation of amino acid transportation, and two amino acid transporters, SLC38A1 and SLC7A5, might be important therapeutic targets. © 2015 by the American Association for the Study of Liver Diseases.
Maughan, Benjamin L; Suzman, Daniel L; Luber, Brandon; Wang, Hao; Glavaris, Stephanie; Hughes, Robert; Sullivan, Rana; Harb, Rana; Boudadi, Karim; Paller, Channing; Eisenberger, Mario; Demarzo, Angelo; Ross, Ashely; Antonarakis, Emmanuel S
2016-12-01
Hedgehog (Hh) pathway signaling has been implicated in prostate cancer tumorigenesis and metastatic development and may be upregulated even further in the castration-resistant state. We hypothesized that antagonism of the Hh pathway with vismodegib in men with metastatic castration-resistant prostate cancer (mCRPC) would result in pathway engagement, inhibition and perhaps induce measurable clinical responses in patients. This is a single-arm study of oral daily vismodegib in men with mCRPC. All patients were required to have biopsies of the tumor and skin (a surrogate tissue) at baseline and after 4 weeks of therapy. Ten patients were planned for enrollment. The primary outcome was the pharmacodynamic assessment of Gli1 mRNA suppression with vismodegib in tumor tissue. Secondary outcomes included PSA response rates, progression-free survival (PFS), overall survival (OS) and safety. Nine patients were enrolled. Gli1 mRNA was significantly suppressed by vismodegib in both tumor tissue (4/7 evaluable biopsies, 57%) and benign skin biopsies (6/8 evaluable biopsies, 75%). The median number of treatment cycles completed was three, with a median PFS of 1.9 months (95% CI 1.3, NA), and a median OS of 7.04 months (95% CI 3.4, NA). No patient achieved a PSA reduction or a measurable tumor response. Safety data were consistent with the known toxicities of vismodegib. Hh signaling, as measured by Gli1 mRNA expression in mCRPC tissues, was suppressed with vismodegib in the majority of patients. Despite this pharmacodynamic response that indicated target inhibition in some patients, there was no apparent signal of clinical activity. Vismodegib will not be developed further as monotherapy in mCRPC.
Bundled payments in orthopedic surgery.
Bushnell, Brandon D
2015-02-01
As a result of reading this article, physicians should be able to: 1. Describe the concept of bundled payments and the potential applications of bundled payments in orthopedic surgery. 2. For specific situations, outline a clinical episode of care, determine the participants in a bundling situation, and define care protocols and pathways. 3. Recognize the importance of resource utilization management, quality outcome measurement, and combined economic-clinical value in determining the value of bundled payment arrangements. 4. Identify the implications of bundled payments for practicing orthopedists, as well as the legal issues and potential future directions of this increasingly popular alternative payment method. Bundled payments, the idea of paying a single price for a bundle of goods and services, is a financial concept familiar to most American consumers because examples appear in many industries. The idea of bundled payments has recently gained significant momentum as a financial model with the potential to decrease the significant current costs of health care. Orthopedic surgery as a field of medicine is uniquely positioned for success in an environment of bundled payments. This article reviews the history, logistics, and implications of the bundled payment model relative to orthopedic surgery. Copyright 2015, SLACK Incorporated.
The ischemic liver cirrhosis theory and its clinical implications.
Mancuso, Andrea
2016-09-01
The canonical pathway theory of cirrhosis addresses inflammation as the main driver of hepatic fibrogenesis in hepatitis, so needing a further hypothesis for etiologies missing inflammation, for which parenchymal extinction is postulated. The present paper reports an alternative hypothesis suggesting a central role of micro-vascular ischemia in fibrogenesis and cirrhosis development, whatever is the aetiology of liver chronic injury. In fact, since chronic liver injury could finally result in endothelial damage and micro-vascular thrombosis, leading to a trigger of inappropriate hepatocyte proliferation and fibrosis, finally cirrhosis development could arise from chronic micro-vascular ischemia. Recently, some important confirmation of this hypothesis has been reported. In fact, in a murine experimental model of congestive hepatopathy, it was found that chronic hepatic congestion leads to sinusoidal thrombosis and strain, which in turn promote hepatic fibrosis. Furthermore, a study on a murine model of cirrhosis reported enoxaparin to reduce hepatic vascular resistance and portal pressure by having a protective role against fibrogenesis. In conclusion, the hypothesis giving a central role of micro-vascular ischemia in fibrogenesis and cirrhosis development could change the clinical scenario of chronic liver disease and have several main implications on management of various liver disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rosenblum, Norman D; Kluijtmans, Manon; Ten Cate, Olle
2016-12-01
The clinician-scientist role is critical to the future of health care, and in 2010, the Carnegie Report on Educating Physicians focused attention on the professional identity of practicing clinicians. Although limited in number, published studies on the topic suggest that professional identity is likely a critical factor that determines career sustainability. In contrast to clinicians with a singular focus on clinical practice, clinician-scientists combine two major disciplines, clinical medicine and scientific research, to bridge discovery and clinical care. Despite its importance to advancing medical practice, the clinician-scientist career faced a variety of threats, which have been identified recently by the 2014 National Institutes of Health Physician Scientist Workforce. Yet, professional identity development in this career pathway is poorly understood. This Perspective focuses on the challenges to the clinician-scientist's professional identity and its development. First, the authors identify the particular challenges that arise from the different cultures of clinical care and science and the implications for clinician-scientist professional identity formation. Next, the authors synthesize insights about professional identity development within a dual-discipline career and apply their analysis to a discussion about the implications for clinician-scientist identity formation. Although not purposely developed to address identity formation, the authors highlight those elements within clinician-scientist training and career development programs that may implicitly support identity development. Finally, the authors highlight a need to identify empirically the elements that compose and determine clinician-scientist professional identity and the processes that shape its formation and sustainability.
Amyotrophic lateral sclerosis: cell vulnerability or system vulnerability?
Talbot, Kevin
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with clinical, pathological and genetic overlap with frontotemporal dementia (FTD). No longer viewed as one disease with a single unified cause, ALS is now considered to be a clinicopathological syndrome resulting from a complex convergence of genetic susceptibility, age-related loss of cellular homeostasis, and possible environmental influences. The rapid increase in recent years of the number of genes in which mutations have been associated with ALS has led to in vitro and in vivo models that have generated a wealth of data indicating disruption of specific biochemical pathways and sub-cellular compartments. Data implicating pathways including protein misfolding, mRNA splicing, oxidative stress, proteosome and mitochondrial dysfunction in the pathogenesis of ALS reinforce a disease model based on selective age-dependent vulnerability of a specific population of cells. To the clinical neurologist, however, ALS presents as a disease of focal onset and contiguous spread. Characteristic regional patterns of involvement and progression suggest that the disease does not proceed randomly but via a restricted number of anatomical pathways. These clinical observations combined with electrophysiological and brain-imaging studies underpin the concept of ALS at the macroscopic level as a 'system degeneration'. This dichotomy between cellular and systems neurobiology raises the fundamental questions of what initiates the disease process in a specific anatomical site and how the disease is propagated. Is the essence of ALS a cell-to-cell transmission of pathology with, for example, a 'prion-like' mechanism, or does the cellular pathology follow degeneration of specific synaptic networks? Elucidating the interaction between cellular degeneration and system level degeneration will aid modeling of the disease in the earliest phases, improve the development of sensitive markers of disease progression and response to therapy, and expand our understanding of the biological basis of clinical and pathological heterogeneity. © 2013 Anatomical Society.
Magyari, Lili; Varszegi, Dalma; Kovesdi, Erzsebet; Sarlos, Patricia; Farago, Bernadett; Javorhazy, Andras; Sumegi, Katalin; Banfai, Zsolt; Melegh, Bela
2014-01-01
Rheumatoid arthritis (RA) is an autoimmune disease, resulting in a chronic, systemic inflammatory disorder. It may affect many tissues and organs, but it primarily affects the flexible joints. In clinical practice patient care generates many questions about diagnosis, prognosis, and treatment. It is challenging for health care specialists to keep up to date with the medical literature. This review summarizes the pathogenesis, the polymorphisms of interleukin and interleukin genes and the standard available and possible future immunologic targets for RA treatment. The identification of disease-associated interleukin and interleukin receptor genes can provide precious insight into the genetic variations prior to disease onset in order to identify the pathways important for RA pathogenesis. The knowledge of the complex genetic background may prove useful for developing novel therapies and making personalized medicine based on the individual’s genetics. PMID:25232528
HSP27 Knockdown Increases Cytoplasmic p21 and Cisplatin Sensitivity in Ovarian Carcinoma Cells.
Lu, Hao; Sun, Chaoyang; Zhou, Ting; Zhou, Bo; Guo, Ensong; Shan, Wanying; Xia, Meng; Li, Kezhen; Weng, Danhui; Meng, Li; Xu, Xiaoyan; Hu, Junbo; Ma, Ding; Chen, Gang
2016-01-01
Drug resistance is the leading cause of chemotherapy failure in the treatment of ovarian cancer. So far, little is known about the mechanism of chemoresistance in ovarian cancer. In this study, we explored the mechanism that HSP27 was involved in cisplatin resistance of ovarian cancer both in vitro and clinically. HSP27 protein was found to be upregulated and expressed in cisplatin-resistant ovarian cancer cell line C13*, and HSP27 siRNA transfection reversed the chemoresistance of C13*. We found that HSP27 exerted its chemoresistant role by inhibiting p21 transferring from the nucleus to the plasma through the activation of phosphorylated-Akt pathway. These findings have implications for clinical trials aimed at a potential therapeutic target for ovarian tumors that are refractory to conventional treatment.
2012-01-01
Background Optimization of the clinical care process by integration of evidence-based knowledge is one of the active components in care pathways. When studying the impact of a care pathway by using a cluster-randomized design, standardization of the care pathway intervention is crucial. This methodology paper describes the development of the clinical content of an evidence-based care pathway for in-hospital management of chronic obstructive pulmonary disease (COPD) exacerbation in the context of a cluster-randomized controlled trial (cRCT) on care pathway effectiveness. Methods The clinical content of a care pathway for COPD exacerbation was developed based on recognized process design and guideline development methods. Subsequently, based on the COPD case study, a generalized eight-step method was designed to support the development of the clinical content of an evidence-based care pathway. Results A set of 38 evidence-based key interventions and a set of 24 process and 15 outcome indicators were developed in eight different steps. Nine Belgian multidisciplinary teams piloted both the set of key interventions and indicators. The key intervention set was judged by the teams as being valid and clinically applicable. In addition, the pilot study showed that the indicators were feasible for the involved clinicians and patients. Conclusions The set of 38 key interventions and the set of process and outcome indicators were found to be appropriate for the development and standardization of the clinical content of the COPD care pathway in the context of a cRCT on pathway effectiveness. The developed eight-step method may facilitate multidisciplinary teams caring for other patient populations in designing the clinical content of their future care pathways. PMID:23190552
Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A
2013-01-01
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.
Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A
2013-01-01
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939
Human Rhinovirus 16 Causes Golgi Apparatus Fragmentation without Blocking Protein Secretion
Mousnier, Aurelie; Swieboda, Dawid; Pinto, Anaïs; Guedán, Anabel; Rogers, Andrew V.; Walton, Ross; Johnston, Sebastian L.
2014-01-01
ABSTRACT The replication of picornaviruses has been described to cause fragmentation of the Golgi apparatus that blocks the secretory pathway. The inhibition of major histocompatibility complex class I upregulation and cytokine, chemokine and interferon secretion may have important implications for host defense. Previous studies have shown that disruption of the secretory pathway can be replicated by expression of individual nonstructural proteins; however the situation with different serotypes of human rhinovirus (HRV) is unclear. The expression of 3A protein from HRV14 or HRV2 did not cause Golgi apparatus disruption or a block in secretion, whereas other studies showed that infection of cells with HRV1A did cause Golgi apparatus disruption which was replicated by the expression of 3A. HRV16 is the serotype most widely used in clinical HRV challenge studies; consequently, to address the issue of Golgi apparatus disruption for HRV16, we have systematically and quantitatively examined the effect of HRV16 on both Golgi apparatus fragmentation and protein secretion in HeLa cells. First, we expressed each individual nonstructural protein and examined their cellular localization and their disruption of endoplasmic reticulum and Golgi apparatus architecture. We quantified their effects on the secretory pathway by measuring secretion of the reporter protein Gaussia luciferase. Finally, we examined the same outcomes following infection of cells with live virus. We demonstrate that expression of HRV16 3A and 3AB and, to a lesser extent, 2B caused dispersal of the Golgi structure, and these three nonstructural proteins also inhibited protein secretion. The infection of cells with HRV16 also caused significant Golgi apparatus dispersal; however, this did not result in the inhibition of protein secretion. IMPORTANCE The ability of replicating picornaviruses to influence the function of the secretory pathway has important implications for host defense. However, there appear to be differences between different members of the family and inconsistent results when comparing infection with live virus to expression of individual nonstructural proteins. We demonstrate that individual nonstructural HRV16 proteins, when expressed in HeLa cells, can both fragment the Golgi apparatus and block secretion, whereas viral infection fragments the Golgi apparatus without blocking secretion. This has major implications for how we interpret mechanistic evidence derived from the expression of single viral proteins. PMID:25100828
Eason, Ken; Waterson, Patrick
2013-05-01
This paper explores the implications that different technical strategies for sharing patient information have for healthcare workers and, as a consequence, for the extent to which these systems provide support for integrated care. Four technical strategies were identified and the forms of coupling they made with healthcare agencies were classified. A study was conducted in England to examine the human and organizational implications of systems implemented by these four strategies. Results were used from evaluation reports of two systems delivered as part of the NPfIT (National Programme for Information Technology) and from user responses to systems delivered in two local health communities in England. In the latter study 40 clinical respondents reported the use of systems to support integrated care in six healthcare pathways. The implementation of a detailed care record system (DCRS) in the NPfIT was problematic because it could not meet the diverse needs of all healthcare agencies and it required considerable local customization. The programme evolved to allow different systems to be delivered for each local health community. A national Summary Care Record (SCR) was implemented but many concerns were raised about wide access to confidential patient information. The two technical strategies that required looser forms of coupling and were under local control led to wide user adoption. The systems that enabled data to be transferred between local systems were successfully used to support integrated care in specific healthcare pathways. The portal approach gave many users an opportunity to view patient data held on a number of databases and this system evolved over a number of years as a result of requests from the user community. The UK national strategy to deliver single shared database systems requires tight coupling between many users and has led to poor adoption because of the diverse needs of healthcare agencies. Sharing patient information has been more successful when local systems have been developed to serve particular healthcare pathways or when separate databases are viewable through a portal. On the basis of this evidence technical strategies that permit the local design of tight coupling are necessary if information systems are to support integrated care in healthcare pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Jackman, David M; Zhang, Yichen; Dalby, Carole; Nguyen, Tom; Nagle, Julia; Lydon, Christine A; Rabin, Michael S; McNiff, Kristen K; Fraile, Belen; Jacobson, Joseph O
2017-04-01
Increasing costs and medical complexity are significant challenges in modern oncology. We explored the use of clinical pathways to support clinical decision making and manage resources prospectively across our network. We created customized lung cancer pathways and partnered with a commercial vendor to provide a Web-based platform for real-time decision support and post-treatment data aggregation. Dana-Farber Cancer Institute (DFCI) Pathways for non-small cell lung cancer (NSCLC) were introduced in January 2014. We identified all DFCI patients who were diagnosed and treated for stage IV NSCLC in 2012 (before pathways) and 2014 (after pathways). Costs of care were determined for 1 year from the time of diagnosis. Pre- and postpathway cohorts included 160 and 210 patients with stage IV NSCLC, respectively. The prepathway group had more women but was otherwise similarly matched for demographic and tumor characteristics. The total 12-month cost of care (adjusted for age, sex, race, distance to DFCI, clinical trial enrollment, and EGFR and ALK status) demonstrated a $15,013 savings after the implementation of pathways ($67,050 before pathways v $52,037 after pathways). Antineoplastics were the largest source of cost savings. Clinical outcomes were not compromised, with similar median overall survival times (10.7 months before v 11.2 months after pathways; P = .08). After introduction of a clinical pathway in metastatic NSCLC, cost of care decreased significantly, with no compromise in survival. In an era where comparative outcomes analysis and value assessment are increasingly important, the implementation of clinical pathways may provide a means to coalesce and disseminate institutional expertise and track and learn from care decisions.
Cancer heterogeneity: origins and implications for genetic association studies
Urbach, Davnah; Lupien, Mathieu; Karagas, Margaret R.; Moore, Jason H.
2012-01-01
Genetic association studies have become standard approaches to characterize the genetic and epigenetic variability associated with cancer development, including predispositions and mutations. However, the bewildering genetic and phenotypic heterogeneity inherent in cancer both magnifies the conceptual and methodological problems associated with these approaches and renders the translation of available genetic information into a knowledge that is both biologically sound and clinically relevant difficult. Here, we elaborate on the underlying causes of this complexity, illustrate why it represents a challenge for genetic association studies, and briefly discuss how it can be reconciled with the ultimate goal of identifying targetable disease pathways and successfully treating individual patients. PMID:22858414
Dean, Melissa A.; Olsen, Randall J.; Long, S. Wesley; Rosato, Adriana E.
2014-01-01
Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice. PMID:24452687
Discovery of Pyrazolopyrimidine Derivatives as Novel Dual Inhibitors of BTK and PI3Kδ.
Pujala, Brahmam; Agarwal, Anil K; Middya, Sandip; Banerjee, Monali; Surya, Arjun; Nayak, Anjan K; Gupta, Ashu; Khare, Sweta; Guguloth, Rambabu; Randive, Nitin A; Shinde, Bharat U; Thakur, Anamika; Patel, Dhananjay I; Raja, Mohd; Green, Michael J; Alfaro, Jennifer; Avila, Patricio; Pérez de Arce, Felipe; Almirez, Ramona G; Kanno, Stacy; Bernales, Sebastián; Hung, David T; Chakravarty, Sarvajit; McCullagh, Emma; Quinn, Kevin P; Rai, Roopa; Pham, Son M
2016-12-08
The aberrant activation of B-cells has been implicated in several types of cancers and hematological disorders. BTK and PI3Kδ are kinases responsible for B-cell signal transduction, and inhibitors of these enzymes have demonstrated clinical benefit in certain types of lymphoma. Simultaneous inhibition of these pathways could result in more robust responses or overcome resistance as observed in single agent use. We report a series of novel compounds that have low nanomolar potency against both BTK and PI3Kδ as well as acceptable PK properties that could be useful in the development of treatments against B-cell related diseases.
The p38–PGC-1α–irisin–betatrophin axis
Sanchis-Gomar, Fabian; Perez-Quilis, Carme
2014-01-01
The discovery of irisin as a novel and promising peptidic hormone has raised hopes regarding the hypothesis that irisin may provide additional benefits, not only for obesity and diabetes, but also for a wide range of pathological conditions since this hormone may prove to be therapeutically and clinically beneficial. In addition, a new hormone, betatrophin, has recently been identified by Yi and coworkers. Both hormones are connected by a new pathway clearly involved in insulin resistance. We hypothesize here how these hormones may be linked and their possible implications in both aged-reduced restricted regenerative capacity and dedifferentiated β cells of diabetic patients. PMID:24575373
Discovery of Pyrazolopyrimidine Derivatives as Novel Dual Inhibitors of BTK and PI3Kδ
2016-01-01
The aberrant activation of B-cells has been implicated in several types of cancers and hematological disorders. BTK and PI3Kδ are kinases responsible for B-cell signal transduction, and inhibitors of these enzymes have demonstrated clinical benefit in certain types of lymphoma. Simultaneous inhibition of these pathways could result in more robust responses or overcome resistance as observed in single agent use. We report a series of novel compounds that have low nanomolar potency against both BTK and PI3Kδ as well as acceptable PK properties that could be useful in the development of treatments against B-cell related diseases. PMID:27994757
Therapeutic modulators of STAT signalling for human diseases
Miklossy, Gabriella; Hilliard, Tyvette S.; Turkson, James
2014-01-01
The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials. PMID:23903221
Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation
Hodgson-Zingman, Denice M.; Karst, Margaret L.; Zingman, Leonid V.; Heublein, Denise M.; Darbar, Dawood; Herron, Kathleen J.; Ballew, Jeffrey D.; de Andrade, Mariza; Burnett, John C.; Olson, Timothy M.
2008-01-01
Summary Atrial fibrillation is a common arrhythmia that is hereditary in a small subgroup of patients. In a family with 11 clinically affected members, we mapped an atrial fibrillation locus to chromosome 1p36-p35 and identified a heterozygous frameshift mutation in the gene encoding atrial natriuretic peptide. Circulating chimeric atrial natriuretic peptide (ANP) was detected in high concentration in subjects with the mutation, and shortened atrial action potentials were seen in an isolated heart model, creating a possible substrate for atrial fibrillation. This report implicates perturbation of the atrial natriuretic peptide–cyclic guanosine monophosphate (cGMP) pathway in cardiac electrical instability. PMID:18614783
Park, Yeonsoo; Baik, Seung Yeon; Kim, Hyang-Sook; Lee, Seung-Hwan
2017-11-01
Korea has the highest suicide rate amongst the OECD countries. Yet, its research on suicidal behaviors has been primitive. While the Interpersonal Psychological Theory of Suicide has gained global attention, there has only been a few researches, which examined its applicability in Korea. In this article, we review the previous studies on suicide and examine the association between the Interpersonal Psychological Theory of Suicide and traditional Korean culture, with an emphasis on Collectivism and Confucianism. We propose that pathways to suicide might vary depending on cultural influences. Clinical implications and suggestions for future research will be discussed.
Improving care coordination using organisational routines.
Prætorius, Thim
2016-01-01
The purpose of this paper is to systematically apply theory of organisational routines to standardised care pathways. The explanatory power of routines is used to address open questions in the care pathway literature about their coordinating and organising role, the way they change and can be replicated, the way they are influenced by the organisation and the way they influence health care professionals. Theory of routines is systematically applied to care pathways in order to develop theoretically derived propositions. Care pathways mirror routines by being recurrent, collective and embedded and specific to an organisation. In particular, care pathways resemble standard operating procedures that can give rise to recurrent collective action patterns. In all, 11 propositions related to five categories are proposed by building on these insights: care pathways and coordination, change, replication, the organisation and health care professionals. Research limitations/implications - The paper is conceptual and uses care pathways as illustrative instances of hospital routines. The propositions provide a starting point for empirical research. The analysis highlights implications that health care professionals and managers have to consider in relation to coordination, change, replication, the way the organisation influences care pathways and the way care pathways influence health care professionals. Originality/value - Theory on organisational routines offers fundamental, yet unexplored, insights into hospital processes, including in particular care coordination.
Selmi, Carlo; Crotti, Chiara; Meroni, Pier Luigi
2013-08-01
Allergy and clinical immunology are examples of areas of knowledge in which working hypotheses are dominant over mechanistic understanding. As such, sometimes scientific efforts follow major streams and overlook some epidemiologically prevalent conditions that thus become underestimated by the research community. For this reason, we welcome the present issue of Clinical Reviews in Allergy and Immunology that is dedicated to uncommon themes in clinical immunology and allergy. First, comprehensive discussions are provided for allergy phenomena of large potential impact in clinical practice such as reactions to cephalosporins or aspirin-induced asthma and in everyday life such as allergies to food additives or legumes. Further, the issue addresses other uncommon themes such as urticaria and angioedema, cercarial dermatitis, or late-onset inflammation to soft tissue fillers. Last, there will be discussion on transversal issues such as olfactory defects in autoimmunity, interleukin 1 beta pathway, and the search for new serological markers in chronic inflammation. As a result, we are convinced that this issue will be of help to clinicians involved in internal medicine as well as to allergists and clinical immunologists. More importantly, we are convinced that these discussions will be of interest also to basic scientists for the numerous translational implications.
Using systems thinking to support clinical system transformation.
Best, Allan; Berland, Alex; Herbert, Carol; Bitz, Jennifer; van Dijk, Marlies W; Krause, Christina; Cochrane, Douglas; Noel, Kevin; Marsden, Julian; McKeown, Shari; Millar, John
2016-05-16
Purpose - The British Columbia Ministry of Health's Clinical Care Management initiative was used as a case study to better understand large-scale change (LSC) within BC's health system. Using a complex system framework, the purpose of this paper is to examine mechanisms that enable and constrain the implementation of clinical guidelines across various clinical settings. Design/methodology/approach - Researchers applied a general model of complex adaptive systems plus two specific conceptual frameworks (realist evaluation and system dynamics mapping) to define and study enablers and constraints. Focus group sessions and interviews with clinicians, executives, managers and board members were validated through an online survey. Findings - The functional themes for managing large-scale clinical change included: creating a context to prepare clinicians for health system transformation initiatives; promoting shared clinical leadership; strengthening knowledge management, strategic communications and opportunities for networking; and clearing pathways through the complexity of a multilevel, dynamic system. Research limitations/implications - The action research methodology was designed to guide continuing improvement of implementation. A sample of initiatives was selected; it was not intended to compare and contrast facilitators and barriers across all initiatives and regions. Similarly, evaluating the results or process of guideline implementation was outside the scope; the methods were designed to enable conversations at multiple levels - policy, management and practice - about how to improve implementation. The study is best seen as a case study of LSC, offering a possible model for replication by others and a tool to shape further dialogue. Practical implications - Recommended action-oriented strategies included engaging local champions; supporting local adaptation for implementation of clinical guidelines; strengthening local teams to guide implementation; reducing change fatigue; ensuring adequate resources; providing consistent communication especially for front-line care providers; and supporting local teams to demonstrate the clinical value of the guidelines to their colleagues. Originality/value - Bringing a complex systems perspective to clinical guideline implementation resulted in a clear understanding of the challenges involved in LSC.
Tzelepi, Vassiliki; Efstathiou, Eleni; Wen, Sijin; Troncoso, Patricia; Karlou, Maria; Pettaway, Curtis A.; Pisters, Louis L.; Hoang, Anh; Logothetis, Christopher J.; Pagliaro, Lance C.
2011-01-01
Purpose Clinicians are increasingly willing to treat prostate cancer within the primary site in the presence of regional lymph node or even limited distant metastases. However, no formal study on the merits of this approach has been reported. We used a preoperative clinical discovery platform to prioritize pathways for assessment as therapeutic targets and to test the hypothesis that the primary site harbors potentially lethal tumors after aggressive treatment. Patients and Methods Patients with locally advanced or lymph node–metastatic prostate cancer underwent 1 year of androgen ablation and three cycles of docetaxel therapy, followed by prostatectomy. All specimens were characterized for stage by accepted criteria. Expression of select molecular markers implicated in disease progression and therapy resistance was determined immunohistochemically and compared with that in 30 archived specimens from untreated patients with high-grade prostate cancer. Marker expression was divided into three groups: intracellular signaling pathways, stromal-epithelial interaction pathways, and angiogenesis. Results Forty patients were enrolled, 30 (75%) of whom underwent prostatectomy and two (5%) who underwent cystoprostatectomy. Twenty-nine specimens contained sufficient residual tumor for inclusion in a tissue microarray. Immunohistochemical analysis showed increased epithelial and stromal expression of CYP17, SRD5A1, and Hedgehog pathway components, and modulations of the insulin-like growth factor I pathway. Conclusion A network of molecular pathways reportedly linked to prostate cancer progression is activated after 1 year of therapy; biomarker expression suggests that potentially lethal cancers persist in the primary tumor and may contribute to progression. PMID:21606419
Cain, Christine L.; Morris, Daniel O.; Rankin, Shelley C.
2016-01-01
ABSTRACT Staphylococcus species are a leading cause of skin and soft tissue infections in humans and animals, and the antibiotics used to treat these infections are often the same. Methicillin- and multidrug-resistant staphylococcal infections are becoming more common in human and veterinary medicine. From a “One Health” perspective, this overlap in antibiotic use and resistance raises concerns over the potential spread of antibiotic resistance genes. Whole-genome sequencing and comparative genomics analysis revealed that Staphylococcus species use divergent pathways to synthesize isoprenoids. Species frequently associated with skin and soft tissue infections in companion animals, including S. schleiferi and S. pseudintermedius, use the nonmevalonate pathway. In contrast, S. aureus, S. epidermidis, and S. lugdunensis use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of S. aureus and S. epidermidis. These data identify an essential metabolic pathway in Staphylococcus that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. IMPORTANCE Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine. PMID:27704053
Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells
Shaha, S P; Tomic, J; Shi, Y; Pham, T; Mero, P; White, D; He, L; Baryza, J L; Wender, P A; Booth, J W; Spaner, D E
2009-01-01
Cytotoxic chemotherapies do not usually mediate the expression of an immunogenic gene programme in tumours, despite activating many of the signalling pathways employed by highly immunogenic cells. Concomitant use of agents that modulate and complement stress-signalling pathways activated by chemotherapeutic agents may then enhance the immunogenicity of cancer cells, increase their susceptibility to T cell-mediated controls and lead to higher clinical remission rates. Consistent with this hypothesis, the microtubule inhibitor, vincristine, caused chronic lymphocytic leukaemia (CLL) cells to die rapidly, without increasing their immunogenicity. Protein kinase C (PKC) agonists (such as bryostatin) delayed the death of vincristine-treated CLL cells and made them highly immunogenic, with increased stimulatory abilities in mixed lymphocyte responses, production of proinflammatory cytokines, expression of co-stimulatory molecules and activation of c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) signalling pathways. This phenotype was similar to the result of activating CLL cells through Toll-like receptors (TLRs), which communicate ‘danger’ signals from infectious pathogens. Use of PKC agonists and microtubule inhibitors to mimic TLR-signalling, and increase the immunogenicity of CLL cells, has implications for the design of chemo-immunotherapeutic strategies. PMID:19737143
Stress and visceral pain: from animal models to clinical therapies
Larauche, Muriel; Mulak, Agata; Taché, Yvette
2011-01-01
Epidemiological studies have implicated stress (psychosocial and physical) as a trigger of first onset or exacerbation of irritable bowel syndrome (IBS) symptoms of which visceral pain is an integrant landmark. A number of experimental acute or chronic exteroceptive or interoceptive stressors induce visceral hyperalgesia in rodents although recent evidence also points to stress-related visceral analgesia as established in the somatic pain field. Underlying mechanisms of stress-related visceral hypersensitivity may involve a combination of sensitization of primary afferents, central sensitization in response to input from the viscera and dysregulation of descending pathways that modulate spinal nociceptive transmission or analgesic response. Biochemical coding of stress involves the recruitment of corticotropin releasing factor (CRF) signaling pathways. Experimental studies established that activation of brain and peripheral CRF receptor subtype 1 plays a primary role in the development of stress-related delayed visceral hyperalgesia while subtype 2 activation induces analgesic response. In line with stress pathways playing a role in IBS, non-pharmacologic and pharmacologic treatment modalities aimed at reducing stress perception using a broad range of evidence-based mind-body interventions and centrally-targeted medications to reduce anxiety impact on brain patterns activated by visceral stimuli and dampen visceral pain. PMID:21575632
Feng, Xingmei; Huang, Dan; Lu, Xiaohui; Feng, Guijuan; Xing, Jing; Lu, Jun; Xu, Ke; Xia, Weiwei; Meng, Yan; Tao, Tao; Li, Liren; Gu, Zhifeng
2014-12-01
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.
Koh, Li Lian; Zeng, Gerald; Teoh, Jennifer
2015-01-01
There has been an increased focus on understanding youth sexual offending in recent years, but there has been limited empirical research on the causes, pathways, and treatment of youth who have sexually offended—especially within a non-Western context. The Good Lives and Self-Regulation Models have often been used to understand and rehabilitate adult sexual offenders, but (unfortunately) there is scant research on youth who sexually offended using these models. The present study aims to describe the different primary goods that are associated with youth sexual offending behaviors in an Asian context. In addition, the study sought to explore whether the age of victim (child vs. nonchild) and nature of sexual offense (penetrative vs. nonpenetrative) influenced the youth’s engagement in offense pathways. The results suggest that pleasure, relatedness, and inner peace were the primary human goods that were most sought after by a sample of 168 youth who sexually offended in Singapore. In addition, offender classification (in relation to the age of victim and nature of sexual offense) influenced the pathways to sexual offending. Therefore, these findings have important clinical implications for assessment, management, and intervention planning for youth who sexually offended. PMID:24048701
Tartaglia, Marco; Gelb, Bruce D
2010-12-01
RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.
Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.
Fontebasso, Adam M; Jabado, Nada
2015-01-01
Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.
What do monoamines do in pain modulation?
Bannister, Kirsty; Dickenson, Anthony H
2016-06-01
Here, we give a topical overview of the ways in which brain processing can alter spinal pain transmission through descending control pathways, and how these change in pain states. We link preclinical findings on the transmitter systems involved and discuss how the monoamines, noradrenaline, 5-hydroxytryptamine (5-HT), and dopamine, can interact through inhibitory and excitatory pathways. Descending pathways control sensory events and the actions of the neurotransmitters noradrenaline and 5-HT in the dorsal horn of the spinal cord are chiefly implicated in nociception or antinociception according to the receptor that is activated. Abnormalities in descending controls effect central pain processing. Following nerve injury a noradrenaline-mediated control of spinal excitability is lost, whereas its restoration reduces neuropathic hypersensitivity. The story with 5-HT remains more complex because of the myriad of receptors that it can act upon; however the most recent findings support that facilitations may dominate over inhibitions. The monoaminergic system can be manipulated to great effect in the clinic resulting in improved treatment outcomes and is the basis for the actions of the antidepressant drugs in pain. Looking to the future, prediction of treatment responses will possible by monitoring a form of inhibitory descending control for optimized pain relief.
Molecular pathways and targets in prostate cancer
Shtivelman, Emma; Beer, Tomasz M.; Evans, Christopher P.
2014-01-01
Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge. PMID:25277175
Serrated Colon Polyps as Precursors to Colorectal Cancer
Sweetser, Seth; Smyrk, Thomas C.; Sinicrope, Frank A.
2013-01-01
Identification of the serrated neoplasia pathway has improved our understanding of the pathogenesis of colorectal cancer (CRC). Insights have included an increased recognition of the malignant potential of different types of serrated polyps, such as sessile and traditional serrated adenomas. Sessile serrated adenomas share molecular features with colon tumors, such as microsatellite instability and a methylator phenotype, indicating that these lesions are precursors that progress via the serrated neoplasia pathway. There is evidence that the serrated pathway contributes to interval or missed cancers. These data have important implications for clinical practice and CRC prevention, since hyperplastic polyps were previously regarded as having no malignant potential. Endoscopic detection of serrated polyps is a challenge because they are often inconspicuous with indistinct margins, and are frequently covered by adherent mucus. It is important for gastroenterologists to recognize the subtle endoscopic features of serrated polyps, which would facilitate their detection and removal, to ensure a high-quality colonoscopy examination. Recognition of the role of serrated polyps in colon carcinogenesis has led to the inclusion of these lesions in post-polypectomy surveillance guidelines. However, an enhanced effort is needed to identify and completely remove serrated adenomas, with the goal of increasing the effectiveness of colonoscopy to reduce CRC incidence. PMID:23267866
2013-01-01
Background Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible. Results Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors. Conclusions Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease. PMID:24330828
Update of the human and mouse Fanconi anemia genes.
Dong, Hongbin; Nebert, Daniel W; Bruford, Elspeth A; Thompson, David C; Joenje, Hans; Vasiliou, Vasilis
2015-11-24
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol "FANC." Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called "the FA pathway," which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes--known to exist in vertebrates, invertebrates, plants, and yeast--that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics.
Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B
2017-08-15
Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas
2015-12-01
The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.
Yang, Wei; Hosford, Sarah R; Traphagen, Nicole A; Shee, Kevin; Demidenko, Eugene; Liu, Stephanie; Miller, Todd W
2018-03-01
Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER + breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER + breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER + breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.
Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease.
Testai, Lara; Calderone, Vincenzo
2017-05-16
Background- Cardiovascular diseases, including myocardial infarction, dyslipidaemia and coronary artery pathology, are a major cause of illness and death in Western countries. Therefore, identifying effective therapeutic approaches and their cellular signalling pathways is a challenging goal for medicine. In this regard, several epidemiological studies demonstrate a relationship between the intake of flavonoid-rich foods and the reduction of cardiovascular risk factors and mortality. In particular, flavonoids present in citrus fruits, such as oranges, bergamots, lemons and grapefruit (95% from flavanones), are emerging for their considerable nutraceutical value. Methods- In this review an examination of literature was performed while considering both epidemiological, clinical and pre-clinical evidence supporting the beneficial role of the flavanone class. We evaluated studies in which citrus fruit juices or single flavanone administration and cardiovascular risk factors were analysed; to identify these studies, an electronic search was conducted in PUBMED for papers fulfilling these criteria and written in English. Results- In addition to epidemiological evidence and clinical studies demonstrating that fruits in the Citrus genus significantly reduce the incidence of cardiovascular disease risk, pre-clinical investigations highlight cellular and subcellular targets that are responsible for these beneficial effects. There has been special attention on evaluating intracellular pathways involved in direct cardiovascular and cardiometabolic effects mediated by naringenin, hesperetin and eriodictyol or their glycosylated derivatives. Conclusions- Although some mechanisms of action remain unclear and bioavailability problems remain to be solved, the current evidence supports the use of a nutraceutical approach with citrus fruits to prevent and cure several aspects of cardiovascular disease.
ERIC Educational Resources Information Center
Frick, Paul J.
2012-01-01
Research has indicated that there are several common pathways through which children and adolescents develop conduct disorder, each with different risk factors and each with different underlying developmental mechanisms leading to the child's aggressive and antisocial behavior. The current article briefly summarizes research on these pathways,…
Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins
Muñoz Bello, Jesus Omar; Olmedo Nieva, Leslie; Contreras Paredes, Adriana; Fuentes Gonzalez, Alma Mariana; Rocha Zavaleta, Leticia; Lizano, Marcela
2015-01-01
Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV)-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway. PMID:26295406
[Review of the initiation and development of the conception of clinical pathway].
Wang, Zhen-E; Shangguan, Qing-Miao; Wu, Ping
2010-11-01
Dupont, an American company, used the concept of "pathway" in industry to improve the quality of their products in 1957. In the 1970s, under the pressure of a rise in medical costs, some people realized the concept of the "key pathway" could be used in medicine too. In 1985, the Boston New England Medical Center Hospital (NEMC) succeeded in using the concept of the clinical pathway in medical practice, and afterwards the concept gradually found worldwide application. In 1996, the Fourth Military Medical University in China reported the application of clinical pathway in America. The West China Hospital began to try out the clinical pathway in 1998 and the concept gradually found application in China.
Endometriosis and ovarian cancer: links, risks, and challenges faced.
Pavone, Mary Ellen; Lyttle, Brianna M
2015-01-01
Endometriosis is a benign gynecological condition characterized by specific histological, molecular, and clinical findings. It affects 5%-10% of premenopausal women, is a cause of infertility, and has been implicated as a precursor for certain types of ovarian cancer. Advances in technology, primarily the ability for whole genome sequencing, have led to the discovery of new mutations and a better understanding of the function of previously identified genes and pathways associated with endometriosis associated ovarian cancers (EAOCs) that include PTEN, CTNNB1 (β-catenin), KRAS, microsatellite instability, ARID1A, and the unique role of inflammation in the development of EAOC. Clinically, EAOCs are associated with a younger age at diagnosis, lower stage and grade of tumor, and are more likely to occur in premenopausal women when compared with other ovarian cancers. A shift from screening strategies adopted to prevent EAOCs has resulted in new recommendations for clinical practice by national and international governing bodies. In this paper, we review the common histologic and molecular characteristics of endometriosis and ovarian cancer, risks associated with EAOCs, clinical challenges and give recommendations for providers.
Cloutman, Lauren L.; Binney, Richard J.; Morris, David M.; Parker, Geoffrey J.M.; Lambon Ralph, Matthew A.
2013-01-01
Primate studies have recently identified the dorsal stream as constituting multiple dissociable pathways associated with a range of specialized cognitive functions. To elucidate the nature and number of dorsal pathways in the human brain, the current study utilized in vivo probabilistic tractography to map the structural connectivity associated with subdivisions of the left supramarginal gyrus (SMG). The left SMG is a prominent region within the dorsal stream, which has recently been parcellated into five structurally-distinct regions which possess a dorsal–ventral (and rostral-caudal) organisation, postulated to reflect areas of functional specialisation. The connectivity patterns reveal a dissociation of the arcuate fasciculus into at least two segregated pathways connecting frontal-parietal-temporal regions. Specifically, the connectivity of the inferior SMG, implicated as an acoustic-motor speech interface, is carried by an inner/ventro-dorsal arc of fibres, whilst the pathways of the posterior superior SMG, implicated in object use and cognitive control, forms a parallel outer/dorso-dorsal crescent. PMID:23937853
The diverse functions of Src family kinases in macrophages
Abram, Clare L.; Lowell, Clifford A.
2015-01-01
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways. PMID:18508521
Ecohydrology of the different photosynthetic pathways and implication for sustainable agriculture
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Bartlett, M. S., Jr.; Hartzell, S. R.
2016-12-01
We use a recently proposed model that can simulate the different photosynthetic pathways coupled to the soil-plant-atmosphere continuum (SPAC) to discuss their ecohydrological implications in relation to water use and plant water stress in both natural and agricultural ecosystems. Built around the classical C3 photosynthesis core model (light reactions and Calvin cycle), the model includes a simple CO2-pump parameterization for C4 plants and a circadian rhythm and carbon storage components for the CAM (Crassulacean Acid Metabolism) plants. Its architecture takes advantage of the interesting modularity in which photosynthesis evolved in geological times to provide a relatively simple but comprehensive framework to explore the advantages and tradeoffs in water energy and carbon fluxes of the three photosynthetic pathways under fluctuating environmental forcing. We calibrate the model with reference to a series of C3,C4 and CAM plants, and discuss the trade-offs in water use and plan productivity and the related impact on hydrologic fluxes and soil biogeochemistry. We also consider some important crop species to analyze the implications of choosing crops with different photosynthetic pathways to improve sustainability of agriculture and irrigation in semiarid systems.
21 CFR 866.5320 - Properdin factor B immuno-logical test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... involvement of the alternative to the classical pathway of activation of complement (a group of plasma... the skin). Other diseases in which the alternate pathway of complement activation has been implicated...
21 CFR 866.5320 - Properdin factor B immuno-logical test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... involvement of the alternative to the classical pathway of activation of complement (a group of plasma... the skin). Other diseases in which the alternate pathway of complement activation has been implicated...
21 CFR 866.5320 - Properdin factor B immuno-logical test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... involvement of the alternative to the classical pathway of activation of complement (a group of plasma... the skin). Other diseases in which the alternate pathway of complement activation has been implicated...
Mythri, Rajeswara Babu; Raghunath, Narayana Reddy; Narwade, Santosh Chandrakant; Pandareesh, Mirazkar Dasharatha Rao; Sabitha, Kollarkandi Rajesh; Aiyaz, Mohamad; Chand, Bipin; Sule, Manas; Ghosh, Krittika; Kumar, Senthil; Shankarappa, Bhagyalakshmi; Soundararajan, Soundarya; Alladi, Phalguni Anand; Purushottam, Meera; Gayathri, Narayanappa; Deobagkar, Deepti Dileep; Laxmi, Thenkanidiyoor Rao; Srinivas Bharath, Muchukunte Mukunda
2017-11-01
Idiopathic Parkinson's disease and manganese-induced atypical parkinsonism are characterized by movement disorder and nigrostriatal pathology. Although clinical features, brain region involved and responsiveness to levodopa distinguish both, differences at the neuronal level are largely unknown. We studied the morphological, neurophysiological and molecular differences in dopaminergic neurons exposed to the Parkinson's disease toxin 1-methyl-4-phenylpyridinium ion (MPP + ) and manganese (Mn), followed by validation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and Mn mouse models. Morphological analysis highlighted loss of neuronal processes in the MPP + and not the Mn model. Cellular network dynamics of dopaminergic neurons characterized by spike frequency and inter-spike intervals indicated major neuronal population (~ 93%) with slow discharge rates (0-5 Hz). While MPP + exposure suppressed the firing of these neurons, Mn neither suppressed nor elevated the neuronal activity. High-throughput transcriptomic analysis revealed up-regulation of 694 and 603 genes and down-regulation of 428 and 255 genes in the MPP + and Mn models respectively. Many differentially expressed genes were unique to either models and contributed to neuroinflammation, metabolic/mitochondrial function, apoptosis and nuclear function, synaptic plasticity, neurotransmission and cytoskeleton. Analysis of the Janus kinase-signal transducer and activator of transcription pathway with implications for neuritogenesis and neuronal proliferation revealed contrasting profile in both models. Genome-wide DNA methylomics revealed differences between both models and substantiated the epigenetic basis of the difference in the Janus kinase-signal transducer and activator of transcription pathway. We conclude that idiopathic Parkinson's disease and atypical parkinsonism have divergent neurotoxicological manifestation at the dopaminergic neuronal level with implications for pathobiology and evolution of novel therapeutics. Cover Image for this issue: doi. 10.1111/jnc.13821. © 2017 International Society for Neurochemistry.
Gutenstein, Marc; Pickering, John W; Than, Martin
2018-06-01
Clinical pathways are used to support the management of patients in emergency departments. An existing document-based clinical pathway was used as the foundation on which to design and build a digital clinical pathway for acute chest pain, with the aim of improving clinical calculations, clinician decision-making, documentation, and data collection. Established principles of decision support system design were used to build an application within the existing electronic health record, before testing with a multidisciplinary team of doctors using a think-aloud protocol. Technical authoring was successful, however, usability testing revealed that the user experience and the flexibility of workflow within the application were critical barriers to implementation. Emergency medicine and acute care decision support systems face particular challenges to existing models of linear workflow that should be deliberately addressed in digital pathway design. We make key recommendations regarding digital pathway design in emergency medicine.
Necroptosis: Modules and molecular switches with therapeutic implications.
Arora, Deepika; Sharma, Pradeep Kumar; Siddiqui, Mohammed Haris; Shukla, Yogeshwer
2017-06-01
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Zeisel, Steven H
2012-01-01
One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to, nutrients. These SNPs can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit 'retuning' of metabolic pathways during early life. Copyright © 2012 S. Karger AG, Basel.
Giovannoni, Gavin; Cutter, Gary; Sormani, Maria Pia; Belachew, Shibeshih; Hyde, Robert; Koendgen, Harold; Knappertz, Volker; Tomic, Davorka; Leppert, David; Herndon, Robert; Wheeler-Kingshott, Claudia A M; Ciccarelli, Olga; Selwood, David; di Cantogno, Elisabetta Verdun; Ben-Amor, Ali-Frederic; Matthews, Paul; Carassiti, Daniele; Baker, David; Schmierer, Klaus
2017-02-01
Trials of anti-inflammatory therapies in non-relapsing progressive multiple sclerosis (MS) have been stubbornly negative except recently for an anti-CD20 therapy in primary progressive MS and a S1P modulator siponimod in secondary progressive MS. We argue that this might be because trials have been too short and have focused on assessing neuronal pathways, with insufficient reserve capacity, as the core component of the primary outcome. Delayed neuroaxonal degeneration primed by prior inflammation is not expected to respond to disease-modifying therapies targeting MS-specific mechanisms. However, anti-inflammatory therapies may modify these damaged pathways, but with a therapeutic lag that may take years to manifest. Based on these observations we propose that clinically apparent neurodegenerative components of progressive MS may occur in a length-dependent manner and asynchronously. If this hypothesis is confirmed it may have major implications for the future design of progressive MS trials. Copyright © 2016 Elsevier B.V. All rights reserved.
Genetic screening and diagnosis in epilepsy?
Sisodiya, Sanjay M
2015-04-01
Genetic discovery has been extremely rapid over the last year, with many new discoveries illuminating novel mechanisms and pathways. In particular, the application of whole exome and whole genome sequencing has identified many new genetic causes of the epilepsies. As such methods become increasingly available, it will be critical for practicing neurologists to be acquainted with them. This review surveys some important developments over the last year. The range of tests available to the clinician is wide, and likely soon to be dominated by whole exome and whole genome sequencing. Both whole exome and whole genome sequencing have usually proven to be more powerful than most existing tests. Many new genes have been implicated in the epilepsies, with emerging evidence of the involvement of particular multigene pathways. For the practicing clinician, it will be important to appreciate progress in the field, and to prepare for the application of novel genetic testing in clinical practice, as genetic data are likely to contribute importantly for many people with epilepsy.
EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients
Yeoh, Sharon; Jackson, George
2017-01-01
Since the discovery of the fusion between EML4 (echinoderm microtubule associated protein-like 4) and ALK (anaplastic lymphoma kinase), EML4-ALK, in lung adenocarcinomas in 2007, and the subsequent identification of at least 15 different variants in lung cancers, there has been a revolution in molecular-targeted therapy that has transformed the outlook for these patients. Our recent focus has been on understanding how and why the expression of particular variants can affect biological and molecular properties of cancer cells, as well as identifying the key signalling pathways triggered, as a result. In the clinical setting, this understanding led to the discovery that the type of variant influences the response of patients to ALK therapy. Here, we discuss what we know so far about the EML4-ALK variants in molecular signalling pathways and what questions remain to be answered. In the longer term, this analysis may uncover ways to specifically treat patients for a better outcome. PMID:28872581
EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients.
Sabir, Sarah R; Yeoh, Sharon; Jackson, George; Bayliss, Richard
2017-09-05
Since the discovery of the fusion between EML4 (echinoderm microtubule associated protein-like 4) and ALK (anaplastic lymphoma kinase), EML4-ALK, in lung adenocarcinomas in 2007, and the subsequent identification of at least 15 different variants in lung cancers, there has been a revolution in molecular-targeted therapy that has transformed the outlook for these patients. Our recent focus has been on understanding how and why the expression of particular variants can affect biological and molecular properties of cancer cells, as well as identifying the key signalling pathways triggered, as a result. In the clinical setting, this understanding led to the discovery that the type of variant influences the response of patients to ALK therapy. Here, we discuss what we know so far about the EML4-ALK variants in molecular signalling pathways and what questions remain to be answered. In the longer term, this analysis may uncover ways to specifically treat patients for a better outcome.
Walsh, Kate; DiLillo, David; Klanecky, Alicia; McChargue, Dennis
2013-02-01
Sexual assault occurring when the victim is unable to consent or resist due to the use or administration of alcohol or drugs (i.e., incapacitated/drug-or-alcohol facilitated rape; IR/DAFR) is a particularly prevalent form of victimization experienced by college women. By definition, substance use precedes IR/DAFR; however, few studies have examined other potential risk factors for IR/DAFR that may be unique from those associated with forcible rape (FR; i.e., sexual assault occurring due to threats or physical restraint). The present investigation tested a model of risk for IR/DAFR and FR suggesting that child or adolescent sexual abuse (CASA) leads to posttraumatic stress disorder (PTSD) symptoms, which in turn increase the likelihood of IR/DAFR, but not FR. Results revealed full mediation for PTSD hyperarousal symptoms in the pathway between CASA and IR/DAFR, and partial mediation for hyperarousal symptoms in the pathway between CASA and FR. Theoretical and clinical implications are discussed.
p53 downregulates the Fanconi anaemia DNA repair pathway
Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck
2016-01-01
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104
p53 downregulates the Fanconi anaemia DNA repair pathway.
Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck
2016-04-01
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.
Cost unit accounting based on a clinical pathway: a practical tool for DRG implementation.
Feyrer, R; Rösch, J; Weyand, M; Kunzmann, U
2005-10-01
Setting up a reliable cost unit accounting system in a hospital is a fundamental necessity for economic survival, given the current general conditions in the healthcare system. Definition of a suitable cost unit is a crucial factor for success. We present here the development and use of a clinical pathway as a cost unit as an alternative to the DRG. Elective coronary artery bypass grafting was selected as an example. Development of the clinical pathway was conducted according to a modular concept that mirrored all the treatment processes across various levels and modules. Using service records and analyses the process algorithms of the clinical pathway were developed and visualized with CorelTM iGrafix Process 2003. A detailed process cost record constituted the basis of the pathway costing, in which financial evaluation of the treatment processes was performed. The result of this study was a structured clinical pathway for coronary artery bypass grafting together with a cost calculation in the form of cost unit accounting. The use of a clinical pathway as a cost unit offers considerable advantages compared to the DRG or clinical case. The variance in the diagnoses and procedures within a pathway is minimal, so the consumption of resources is homogeneous. This leads to a considerable improvement in the value of cost unit accounting as a strategic control instrument in hospitals.
Williams, B A; DeRiso, B M; Engel, L B; Figallo, C M; Anders, J W; Sproul, K A; Ilkin, H; Harner, C D; Fu, F H; Nagarajan, N J; Evans, J H; Watkins, W D
1998-11-01
(1) To introduce anesthesia clinical pathways as a management tool to improve the quality of care; (2) to use the Procedural Times Glossary published by the Association of Anesthesia Clinical Directors (AACD) as a template for data collection and analysis; and (3) to determine the effects of anesthesia clinical pathways on surgical processes, outcomes, and costs in common ambulatory orthopedic surgery. Hospital database and patient chart review of consecutive patients undergoing anterior cruciate ligament reconstruction (ACLR) during academic years (AY) 1995-1996 and 1996-1997. Patient data from AY 1995-1996, during which no intraoperative anesthesia clinical pathways existed, served as historical controls. Data from AY 1996-1997, during which intraoperative anesthesia clinical pathways were used, served as the treatment group. Regional anesthesia options were routinely offered to patients in the clinical pathway. Ambulatory surgery center in a teaching hospital. The records of 503 ASA physical status I and II patients were reviewed. 1996-1997 patients underwent clinical pathway anesthesia care in which the intraoperative and postoperative anesthesia process was standardized with respect to symptom management, drugs, and equipment used. 1995-1996 patients did not have a standardized intraoperative and postoperative anesthetic course with respect to the management of common symptoms or to specific drugs and supplies used. Intervals described in the AACD Procedural Times Glossary, anesthesia drug and supply costs, and patient outcome variables (postoperative nursing interventions required and unexpected admissions), as influenced by the use of the anesthesia clinical pathway, were measured. Clinical pathway anesthesia care of ACLR in 1996-1997, which actively incorporated regional anesthesia options, reduced pharmacy and materials cost variability; slightly increased turnover time; improved intraoperative anesthesia and surgical efficiency, recovery times, and unexpected admission rates; and decreased the number of required nursing interventions for common postoperative symptoms. Clinical pathway patient management systems in anesthesia care are likely to produce useful outcome data of current practice patterns when compared with historical controls. This management tool may be useful in simultaneously containing costs and improving process efficiency and patient outcomes.
Zhou, Jianbiao; Bi, Chonglei; Chng, Wee-Joo; Cheong, Lip-Lee; Liu, Shaw-Cheng; Mahara, Sylvia; Tay, Kian-Ghee; Zeng, Qi; Li, Jie; Guo, Ke; Tan, Cheng Peow Bobby; Yu, Hanry; Albert, Daniel H.; Chen, Chien-Shing
2011-01-01
Combination with other small molecule drugs represents a promising strategy to improve therapeutic efficacy of FLT3 inhibitors in the clinic. We demonstrated that combining ABT-869, a FLT3 inhibitor, with SAHA, a HDAC inhibitor, led to synergistic killing of the AML cells with FLT3 mutations and suppression of colony formation. We identified a core gene signature that is uniquely induced by the combination treatment in 2 different leukemia cell lines. Among these, we showed that downregulation of PTP4A3 (PRL-3) played a role in this synergism. PRL-3 is downstream of FLT3 signaling and ectopic expression of PRL-3 conferred therapeutic resistance through upregulation of STAT (signal transducers and activators of transcription) pathway activity and anti-apoptotic Mcl-1 protein. PRL-3 interacts with HDAC4 and SAHA downregulates PRL-3 via a proteasome dependent pathway. In addition, PRL-3 protein was identified in 47% of AML cases, but was absent in myeloid cells in normal bone marrows. Our results suggest such combination therapies may significantly improve the therapeutic efficacy of FLT3 inhibitors. PRL-3 plays a potential pathological role in AML and it might be a useful therapeutic target in AML, and warrant clinical investigation. PMID:21589872
Psychological factors mediate key symptoms of fibromyalgia through their influence on stress.
Malin, Katrina; Littlejohn, Geoffrey Owen
2016-09-01
The clinical features of fibromyalgia are associated with various psychological factors, including stress. We examined the hypothesis that the path that psychological factors follow in influencing fibromyalgia symptoms is through their direct effect on stress. Ninety-eight females with ACR 1990 classified fibromyalgia completed the following questionnaires: The Big 5 Personality Inventory, Fibromyalgia Impact Questionnaire, Perceived Stress Scale, Profile of Mood States, Mastery Scale, and Perceived Control of Internal States Scale. SPSS (PASW version 22) was used to perform basic t tests, means, and standard deviations to show difference between symptom characteristics. Pathway analysis using structural equation modelling (Laavan) examined the effect of stress on the relationships between psychological factors and the elements that define the fibromyalgia phenotype. The preferred model showed that the identified path clearly linked the psychological variables of anxiety, neuroticism and mastery, but not internal control, to the three key elements of fibromyalgia, namely pain, fatigue and sleep (p < 0.001), via the person's perceived stress. Confusion, however, did not fit the preferred model. This study confirms that stress is a necessary link in the pathway between certain identified, established and significant psychological factors and key fibromyalgia symptoms. This has implications for the understanding of contributing mechanisms and the clinical care of patients with fibromyalgia.
Data Mining of Gene Arrays for Biomarkers of Survival in Ovarian Cancer
Coveney, Clare; Boocock, David J.; Rees, Robert C.; Deen, Suha; Ball, Graham R.
2015-01-01
The expected five-year survival rate from a stage III ovarian cancer diagnosis is a mere 22%; this applies to the 7000 new cases diagnosed yearly in the UK. Stratification of patients with this heterogeneous disease, based on active molecular pathways, would aid a targeted treatment improving the prognosis for many cases. While hundreds of genes have been associated with ovarian cancer, few have yet been verified by peer research for clinical significance. Here, a meta-analysis approach was applied to two carefully selected gene expression microarray datasets. Artificial neural networks, Cox univariate survival analyses and T-tests identified genes whose expression was consistently and significantly associated with patient survival. The rigor of this experimental design increases confidence in the genes found to be of interest. A list of 56 genes were distilled from a potential 37,000 to be significantly related to survival in both datasets with a FDR of 1.39859 × 10−11, the identities of which both verify genes already implicated with this disease and provide novel genes and pathways to pursue. Further investigation and validation of these may lead to clinical insights and have potential to predict a patient’s response to treatment or be used as a novel target for therapy. PMID:27600227
Disorders of erythrocyte hydration.
Gallagher, Patrick G
2017-12-21
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte. © 2017 by The American Society of Hematology.
Kopalli, Spandana Rajendra; Kang, Tae-Bong; Koppula, Sushruta
2016-11-01
Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Raison, Charles L.; Hale, Matthew W.; Williams, Lawrence E.; Wager, Tor D.; Lowry, Christopher A.
2015-01-01
Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders. PMID:25628593
Vahidnezhad, Hassan; Youssefian, Leila; Uitto, Jouni
2016-01-01
A number of critical signaling pathways are required for homeostatic regulation of cell survival, differentiation, and proliferation during organogenesis. One of them is the PI3K-AKT-mTOR pathway consisting of a cascade of inhibitor/activator molecules. Recently, a number of heritable diseases with skin involvement, manifesting particularly with tissue overgrowth, have been shown to result from mutations in the genes in the PI3K-AKT-mTOR and interacting intracellular pathways. Many of these conditions represent an overlapping spectrum of phenotypic manifestations forming a basis for novel, unifying classifications. Identification of the mutant genes and specific mutations in these patients has implications for diagnostics and genetic counseling and provides a rational basis for the development of novel treatment modalities for this currently intractable group of disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences.
de Ferranti, Sarah; Mozaffarian, Dariush
2008-06-01
As the prevalence of adiposity soars in both developed and developing nations, appreciation of the close links between obesity and disease increases. The strong relationships between excess adipose tissue and poor health outcomes, including cardiovascular disease, diabetes, and cancer, mandate elucidation of the complex cellular, hormonal, and molecular pathophysiology whereby adiposity initiates and maintains adverse health effects. In this report we review adipocyte metabolism and function in the context of energy imbalance and postprandial nutrient excess, including adipocyte hypertrophy and hyperplasia, adipocyte dysfunction, and other systemic consequences. We also discuss implications for laboratory evaluation and clinical care, including the role of lifestyle modifications. Chronic energy imbalance produces adipocyte hypertrophy and hyperplasia, endoplasmic reticulum stress, and mitochondrial dysfunction. These processes lead to increased intracellular and systemic release of adipokines, free fatty acids, and inflammatory mediators that cause adipocyte dysfunction and induce adverse effects in the liver, pancreatic beta-cells, and skeletal muscle as well as the heart and vascular beds. Several specialized laboratory tests can quantify these processes and predict clinical risk, but translation to the clinical setting is premature. Current and future pharmacologic interventions may target these pathways; modest changes in diet, physical activity, weight, and smoking are likely to have the greatest impact. Adipocyte endoplasmic reticulum and mitochondrial stress, and associated changes in circulating adipokines, free fatty acids, and inflammatory mediators, are central to adverse health effects of adiposity. Future investigation should focus on these pathways and on reversing the adverse lifestyle behaviors that are the fundamental causes of adiposity.
Narayanan, Sathiya Pandi; Singh, Smriti; Gupta, Amit; Yadav, Sandhya; Singh, Shree Ram; Shukla, Sanjeev
2015-10-28
The histone demethylase KDM1A specifically demethylates lysine residues and its deregulation has been implicated in the initiation and progression of various cancers. However, KDM1A's molecular role and its pathological consequences, and prognostic significance in oral cancer remain less understood. In the present study, we sought to investigate the expression of KDM1A and its downstream role in oral cancer pathogenesis. By comparing mRNA expression profiles, we identified an elevated KDM1A expression in oral tumors when compared to normal oral tissues. In silico pathway prediction identified the association between KDM1A and E2F1 signaling in oral cancer. Pathway scanning, functional annotation analysis and In vitro assays showed the KDM1A's involvement in oral cancer cell proliferation and the cell cycle. Moreover, real time PCR and luciferase assays confirmed KDM1A's role in regulation of E2F1 signaling activity in oral cancer. Elevated KDM1A expression is associated with poor clinical outcome in oral cancer. Our data indicate that deregulated KDM1A expression is positively associated with proliferative phenotype of oral cancer and confers poor clinical outcome. These cumulative data suggest that KDM1A might be a potential diagnostic and therapeutic target for oral cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ratna Priya, Rinki; Chew, Emily Y.; Swaroop, Anand
2012-01-01
Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals over 55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic and non-genetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from human genome project, genomewide association studies and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Here, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher a new era of personalized medicine in the clinical management of AMD. PMID:23009893
Cryopyrin-associated periodic syndrome: an update on diagnosis and treatment response.
Yu, Justin R; Leslie, Kieron S
2011-02-01
Cryopyrin-associated periodic syndrome (CAPS) is a rare hereditary inflammatory disorder encompassing a continuum of three phenotypes: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and neonatal-onset multisystem inflammatory disease. Distinguishing features include cutaneous, neurological, ophthalmologic, and rheumatologic manifestations. CAPS results from a gain-of-function mutation of the NLRP3 gene coding for cryopyrin, which forms intracellular protein complexes known as inflammasomes. Defects of the inflammasomes lead to overproduction of interleukin-1, resulting in inflammatory symptoms seen in CAPS. Diagnosis is often delayed and requires a thorough review of clinical symptoms. Remarkable advances in our understanding of the genetics and the molecular pathway that is responsible for the clinical phenotype of CAPS has led to the development of effective treatments. It also has become clear that the NLRP3 inflammasome plays a critical role in innate immune defense and therefore has wider implications for other inflammatory disease states.
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers.
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S; Hegde, Apurva M; Lenoir, Walter; Liu, Wenbin; Liu, Yuexin; Fan, Huihui; Shen, Hui; Ravikumar, Visweswaran; Rao, Arvind; Schultz, Andre; Li, Xubin; Sumazin, Pavel; Williams, Cecilia; Mestdagh, Pieter; Gunaratne, Preethi H; Yau, Christina; Bowlby, Reanne; Robertson, A Gordon; Tiezzi, Daniel G; Wang, Chen; Cherniack, Andrew D; Godwin, Andrew K; Kuderer, Nicole M; Rader, Janet S; Zuna, Rosemary E; Sood, Anil K; Lazar, Alexander J; Ojesina, Akinyemi I; Adebamowo, Clement; Adebamowo, Sally N; Baggerly, Keith A; Chen, Ting-Wen; Chiu, Hua-Sheng; Lefever, Steve; Liu, Liang; MacKenzie, Karen; Orsulic, Sandra; Roszik, Jason; Shelley, Carl Simon; Song, Qianqian; Vellano, Christopher P; Wentzensen, Nicolas; Weinstein, John N; Mills, Gordon B; Levine, Douglas A; Akbani, Rehan
2018-04-09
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. Copyright © 2018 Elsevier Inc. All rights reserved.
Pfau, Doreen B; Geber, Christian; Birklein, Frank; Treede, Rolf-Detlef
2012-06-01
Quantitative sensory testing (QST) is a widely accepted tool to investigate somatosensory changes in pain patients. Many different protocols have been developed in clinical pain research within recent years. In this review, we provide an overview of QST and tested neuroanatomical pathways, including peripheral and central structures. Based on research studies using animal and human surrogate models of neuropathic pain, possible underlying mechanisms of chronic pain are discussed. Clinically, QST may be useful for 1) the identification of subgroups of patients with different underlying pain mechanisms; 2) prediction of therapeutic outcomes; and 3) quantification of therapeutic interventions in pain therapy. Combined with sensory mapping, QST may provide useful information on the site of neural damage and on mechanisms of positive and negative somatosensory abnormalities. The use of QST in individual patients for diagnostic purposes leading to individualized therapy is an interesting concept, but needs further validation.
2008-01-01
Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors. PMID:18684881
ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status
Huntoon, Catherine J.; Flatten, Karen S.; Wahner Hendrickson, Andrea E.; Huehls, Amelia M.; Sutor, Shari L.; Kaufmann, Scott H.; Karnitz, Larry M.
2013-01-01
Replication stress and DNA damage activate the ATR-CHK1 checkpoint signaling pathway that licenses repair and cell survival processes. In this study, we examined the respective roles of the ATR and CHK1 kinases in ovarian cancer cells using genetic and pharmacological inhibitors of in combination with cisplatin, topotecan, gemcitabine and the poly(ADP-ribose)-polymerase (PARP) inhibitor veliparib (ABT-888), four agents with clinical activity in ovarian cancer. RNAi-mediated depletion or inhibition of ATR sensitized ovarian cancer cells to all four agents. In contrast, while cisplatin, topotecan and gemcitabine each activated CHK1, RNAi-mediated depletion or inhibition of this kinase in cells sensitized them only to gemcitabine. Unexpectedly, we found that neither the ATR kinase inhibitor VE-821 or the CHK1 inhibitor MK-8776 blocked ATR-mediated CHK1 phosphorylation or autophosphorylation, two commonly used readouts for inhibition of the ATR-CHK1 pathway. Instead, their ability to sensitize cells correlated with enhanced CDC25A levels. Additionally, we also found that VE-821 could further sensitize BRCA1-depleted cells to cisplatin, topotecan and veliparib beyond the potent sensitization already caused by their deficiency in homologous recombination. Taken together, our results established that ATR and CHK1 inhibitors differentially sensitize ovarian cancer cells to commonly used chemotherapy agents, and that CHK1 phosphorylation status may not offer a reliable marker for inhibition of the ATR-CHK1 pathway. A key implication of our work is the clinical rationale it provides to evaluate ATR inhibitors in combination with PARP inhibitors in BRCA1/2-deficient cells. PMID:23548269
Tu, Min; Li, Zhanjun; Liu, Xian; Lv, Nan; Xi, Chunhua; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Wang, Shui; Gao, Wentao; Miao, Yi
2017-03-01
Vasohibin 2 (VASH2) is identified as an angiogenic factor, and has been implicated in tumor angiogenesis, proliferation and epithelial-mesenchymal transition (EMT). To investigate the EMT role of VASH2 in breast cancer, we overexpressed or knocked down expression of VASH2 in human breast cancer cell lines. We observed that VASH2 induced EMT in vitro and in vivo. The transforming growth factor β1 (TGFβ1) pathway was activated by VASH2, and expression of a dominant negative TGFβ type II receptor could block VASH2-mediated EMT. In clinical breast cancer tissues VASH2 positively correlated with TGFβ1 expression, but negatively correlated with E-cadherin (a marker of EMT) expression. Under hypoxic conditions in vitro or in vivo, we found that down-regulation of estrogen receptor 1 (ESR1) in VASH2 overexpressing ESR1 positive cells suppressed E-cadherin. Correlation coefficient analysis indicated that VASH2 and ESR1 expression were negatively correlated in clinical human breast cancer tissues. Further study revealed that a transcription factor of ESR1, GATA-binding factor 3 (GATA3), was down-regulated by VASH2 under hypoxia or in vivo. These findings suggest that VASH2 drives breast cancer cells to undergo EMT by activation of the TGFβ1 pathway and hypoxia dependent repression GATA3-ESR1 pathway, leading to cancer metastasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
State-dependent and reflex drives to the upper airway: basic physiology with clinical implications
Hughes, Stuart W.; Malhotra, Atul
2013-01-01
The root cause of the most common and serious of the sleep disorders is impairment of breathing, and a number of factors predispose a particular individual to hypoventilation during sleep. In turn, obstructive hypopneas and apneas are the most common of the sleep-related respiratory problems and are caused by dysfunction of the upper airway as a conduit for airflow. The overarching principle that underpins the full spectrum of clinical sleep-related breathing disorders is that the sleeping brain modifies respiratory muscle activity and control mechanisms and diminishes the ability to respond to respiratory distress. Depression of upper airway muscle activity and reflex responses, and suppression of arousal (i.e., “waking-up”) responses to respiratory disturbance, can also occur with commonly used sedating agents (e.g., hypnotics and anesthetics). Growing evidence indicates that the sometimes critical problems of sleep and sedation-induced depression of breathing and arousal responses may be working through common brain pathways acting on common cellular mechanisms. To identify these state-dependent pathways and reflex mechanisms, as they affect the upper airway, is the focus of this paper. Major emphasis is on the synthesis of established and recent findings. In particular, we specifically focus on 1) the recently defined mechanism of genioglossus muscle inhibition in rapid-eye-movement sleep; 2) convergence of diverse neurotransmitters and signaling pathways onto one root mechanism that may explain pharyngeal motor suppression in sleep and drug-induced brain sedation; 3) the lateral reticular formation as a key hub of respiratory and reflex drives to the upper airway. PMID:23970535
Padmanabhan, Sandosh; Aman, Alisha; Dominiczak, Anna F
2018-06-07
Hypertension is recognised as the biggest contributor to the global burden of disease, but it is controlled in less than a fifth of patients worldwide, despite being relatively easy to detect and the availability of inexpensive safe generic drugs. Blood pressure is regulated by a complex network of physiologic pathways with currently available drugs targeting key receptors or enzymes in the top pathways. Major advances in the dissection of both monogenic and polygenic determinants of blood pressure regulation and variation have not resulted in rapid translation of these discoveries into clinical applications or precision medicine. Uromodulin is an example of a novel gene for hypertension identified from genome-wide association studies, currently the basis of a clinical trial to reposition loop diuretics in hypertension management. Gene-editing studies have established a genome-wide association studies (GWAS) SNP in chromosome 6p24, implicated in six conditions including hypertension, as a distal regulator of the endothelin-1 gene around 3000 base pairs away. Genomics of aldosterone-producing adenomas bring to focus the paradox in genomic medicine where availability of cheap generic drugs may render precision medicine uneconomical. The speed of technology-driven genomic discoveries and the sluggish traditional pathways of drug development and translation need harmonisation to make a timely and early impact on global public health. This requires a directed collaborative effort for which we propose a hypertension moonshot to make a quantum leap in hypertension management and cardiovascular risk reduction by bringing together traditional bioscience, omics, engineering, digital technology and data science.
Renard, Justine; Norris, Christopher; Rushlow, Walter; Laviolette, Steven R
2017-04-01
Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT 1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Fuzhou; Stefano, George B; Kream, Richard M
2014-07-12
Cumulating evidence indicated that nerve injury-associated cellular and molecular changes play an essential role in contributing to the development of pathological pain, and more recent findings implicated the critical role of epigenetic mechanisms in pain-related sensitization in the DRG subsequent to nerve injury. In this part of the dyad review (Part II), we reviewed and paid special attention on the etiological contribution of DGR gene expression modulated by epigenetic mechanisms of CRPS. As essential effectors to different molecular activation, we first discussed the activation of various signaling pathways that subsequently from nerve injury, and in further illustrated the fundamental and functional underpinnings of nerve injury-induced pain, in which we argued for the potential epigenetic mechanisms in response to sensitizing stimuli or injury. Therefore, understanding the specific mediating factors that influence individual epigenetic differences contributing to pain sensitivity and responsiveness to analgesics possesses crucial clinical implications.
Personalized Guideline-Based Treatment Recommendations Using Natural Language Processing Techniques.
Becker, Matthias; Böckmann, Britta
2017-01-01
Clinical guidelines and clinical pathways are accepted and proven instruments for quality assurance and process optimization. Today, electronic representation of clinical guidelines exists as unstructured text, but is not well-integrated with patient-specific information from electronic health records. Consequently, generic content of the clinical guidelines is accessible, but it is not possible to visualize the position of the patient on the clinical pathway, decision support cannot be provided by personalized guidelines for the next treatment step. The Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) provides common reference terminology as well as the semantic link for combining the pathways and the patient-specific information. This paper proposes a model-based approach to support the development of guideline-compliant pathways combined with patient-specific structured and unstructured information using SNOMED CT. To identify SNOMED CT concepts, a software was developed to extract SNOMED CT codes out of structured and unstructured German data to map these with clinical pathways annotated in accordance with the systematized nomenclature.
Bates, Nathaniel A.; Myer, Gregory D.; Hewett, Timothy E.
2014-01-01
Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (P-range < 0.01-0.95). However, none of the anthropometric relationships accounted for clinical variance or provided substantive univariate accuracy needed for clinical prediction algorithms (r2 < 0.20). Mass and BMI demonstrated models that were significant (P < 0.05) and predictive (r2 > 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions. PMID:25266933
Oberman, Lindsay M
2012-12-01
The CDC currently estimates the prevalence of autism spectrum disorders (ASD) at 1 in 88 children. Though the exact etiology of ASD is unknown, recent studies implicate synaptic maturation and plasticity in the pathogenesis of ASD leading to an imbalance of excitation and inhibition, and specifically a disproportionately high level of excitation. Pharmacological agents that modulate excitation and inhibition are currently in clinical trials for treatment of ASD and show promising preliminary results. This paper reviews the literature implicating the role of glutamate and GABA pathways in the pathophysiology of ASD. It also provides a review of the current results from both animal models and human clinical trials of drugs aimed at normalizing the imbalance of excitation and inhibition through the use of metabotropic glutamate receptor (mGluR) antagonists and GABA agonists. Both mGluR antagonists and GABA agonists have promising preliminary data from animal model and small-scale Phase II human trials. They show significant efficacy in subpopulations and appear to have favorable side-effect profiles. Though preliminary data are extremely promising, results from ongoing larger, double-blind, placebo-controlled studies will give a more complete understanding of the efficacy and side-effect profile related to these drugs.
Xu, Xiao; Jin, Tao; Wei, Zhijie; Wang, Jianmin
2017-01-01
Clinical pathways are widely used around the world for providing quality medical treatment and controlling healthcare cost. However, the expert-designed clinical pathways can hardly deal with the variances among hospitals and patients. It calls for more dynamic and adaptive process, which is derived from various clinical data. Topic-based clinical pathway mining is an effective approach to discover a concise process model. Through this approach, the latent topics found by latent Dirichlet allocation (LDA) represent the clinical goals. And process mining methods are used to extract the temporal relations between these topics. However, the topic quality is usually not desirable due to the low performance of the LDA in clinical data. In this paper, we incorporate topic assignment constraint and topic correlation limitation into the LDA to enhance the ability of discovering high-quality topics. Two real-world datasets are used to evaluate the proposed method. The results show that the topics discovered by our method are with higher coherence, informativeness, and coverage than the original LDA. These quality topics are suitable to represent the clinical goals. Also, we illustrate that our method is effective in generating a comprehensive topic-based clinical pathway model.
Xu, Xiao; Wei, Zhijie
2017-01-01
Clinical pathways are widely used around the world for providing quality medical treatment and controlling healthcare cost. However, the expert-designed clinical pathways can hardly deal with the variances among hospitals and patients. It calls for more dynamic and adaptive process, which is derived from various clinical data. Topic-based clinical pathway mining is an effective approach to discover a concise process model. Through this approach, the latent topics found by latent Dirichlet allocation (LDA) represent the clinical goals. And process mining methods are used to extract the temporal relations between these topics. However, the topic quality is usually not desirable due to the low performance of the LDA in clinical data. In this paper, we incorporate topic assignment constraint and topic correlation limitation into the LDA to enhance the ability of discovering high-quality topics. Two real-world datasets are used to evaluate the proposed method. The results show that the topics discovered by our method are with higher coherence, informativeness, and coverage than the original LDA. These quality topics are suitable to represent the clinical goals. Also, we illustrate that our method is effective in generating a comprehensive topic-based clinical pathway model. PMID:29065617
Lambert, Ann Marie; Gagnon, Lise; Fontaine, Francine S
2014-01-01
A literature review about transference in the treatment of dissociative identity disorder (DID) is presented. Common transference reactions resulting from serious traumas are explored, considering that those kind of trauma are higly present in the pathways of DID patients. Post traumatic transference aspects specific to DID are also presented. In addition, common transference patterns and dissociative aspects of transference in the treatment of DID are explained. Transference is also discussed in relationship to the possible impact of disorganized attachment, which is a main component in the development of DID. The clinical implications of this proposition will be discussed and supported by a case example.
Total Worker Health: Implications for the Occupational Health Nurse.
Campbell, Karen; Burns, Candace
2015-07-01
Total Worker Health™ is defined as a "strategy integrating occupational safety and health protection with health promotion to prevent worker injury and illness and to advance worker health and well-being." This strategy aligns workplace safety with individual behaviors that support healthy lifestyles. The Patient Protection and Affordable Care Act of 2010 presumes that incentive-oriented worksite health promotion provides a critical pathway to reduce group health costs. Because of their scientific and clinical backgrounds, professional nurses are well qualified to educate and assist individuals with healthy lifestyle choices. Occupational health nurses and patient advocates can shape wellness initiatives that best serve both employees and their employers. © 2015 The Author(s).
Clinical Pathways and the Patient Perspective in the Pursuit of Value-Based Oncology Care.
Ersek, Jennifer L; Nadler, Eric; Freeman-Daily, Janet; Mazharuddin, Samir; Kim, Edward S
2017-01-01
The art of practicing oncology has evolved substantially in the past 5 years. As more and more diagnostic tests, biomarker-directed therapies, and immunotherapies make their way to the oncology marketplace, oncologists will find it increasingly difficult to keep up with the many therapeutic options. Additionally, the cost of cancer care seems to be increasing. Clinical pathways are a systematic way to organize and display detailed, evidence-based treatment options and assist the practitioner with best practice. When selecting which treatment regimens to include on a clinical pathway, considerations must include the efficacy and safety, as well as costs, of the therapy. Pathway treatment regimens must be continually assessed and modified to ensure that the most up-to-date, high-quality options are incorporated. Value-based models, such as the ASCO Value Framework, can assist providers in presenting economic evaluations of clinical pathway treatment options to patients, thus allowing the patient to decide the overall value of each treatment regimen. Although oncologists and pathway developers can decide which treatment regimens to include on a clinical pathway based on the efficacy of the treatment, assessment of the value of that treatment regimen ultimately lies with the patient. Patient definitions of value will be an important component to enhancing current value-based oncology care models and incorporating new, high-quality, value-based therapeutics into oncology clinical pathways.
Brown, Samuel M.; Grissom, Colin K.; Rondina, Matthew T.; Hoidal, John R.; Scholand, Mary Beth; Wolff, Roger K.; Morris, Alan H.; Paine, Robert
2015-01-01
Purpose/Aim Acute Respiratory Distress Syndrome (ARDS) is an important clinical and public health problem. Why some at-risk individuals develop ARDS and others do not is unclear but may be related to differences in inflammatory and cell signaling systems. The Receptor for Advanced Glycation Endproducts (RAGE) and Granulocyte-Monocyte Stimulating Factor (GM-CSF) pathways have recently been implicated in pulmonary pathophysiology; whether genetic variation within these pathways contributes to ARDS risk or outcome is unknown. Materials and Methods We studied 842 patients from three centers in Utah and 14 non-Utah ARDS Network centers. We studied patients at risk for ARDS and patients with ARDS to determine whether Single Nucleotide Polymorphisms (SNPs) in the RAGE and GM-CSF pathways were associated with development of ARDS. We studied 29 SNPs in 5 genes within the two pathways and controlled for age, sepsis as ARDS risk factor, and severity of illness, while targeting a false discovery rate of ≤5%. In a secondary analysis we evaluated associations with mortality. Results Of 842 patients, 690 had ARDS, and 152 were at-risk. Sepsis was the risk factor for ARDS in 250 (30%) patients. When controlling for age, APACHE III score, sepsis as risk factor, and multiple comparisons, no SNPs were significantly associated with ARDS. In a secondary analysis, only rs743564 in CSF2 approached significance with regard to mortality (OR 2.17, unadjusted p = 0.005, adjusted p = 0.15). Conclusions Candidate SNPs within 5 genes in the RAGE and GM-CSF pathways were not significantly associated with development of ARDS in this multi-centric cohort. PMID:25513711
Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis
Newaz, Khalique; Sriram, K.; Bera, Debajyoti
2015-01-01
Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these immunological pathways occupy influential positions in the PFNs (protein functional networks) that are related to prion disease. Importantly, this functional network involvement is prevalent in all the five different mouse strain-prion strain combinations that we studied. We also conclude that the dysregulation of the core elements of the bow-tie structure, which belongs to PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corresponding to other biological pathways. PMID:26646948
In Silico Analysis of Putrefaction Pathways in Bacteria and Its Implication in Colorectal Cancer
Kaur, Harrisham; Das, Chandrani; Mande, Sharmila S.
2017-01-01
Fermentation of undigested proteins in human gastrointestinal tract (gut) by the resident microbiota, a process called bacterial putrefaction, can sometimes disrupt the gut homeostasis. In this process, essential amino acids (e.g., histidine, tryptophan, etc.) that are required by the host may be utilized by the gut microbes. In addition, some of the products of putrefaction, like ammonia, putrescine, cresol, indole, phenol, etc., have been implicated in the disease pathogenesis of colorectal cancer (CRC). We have investigated bacterial putrefaction pathways that are known to be associated with such metabolites. Results of the comprehensive in silico analysis of the selected putrefaction pathways across bacterial genomes revealed presence of these pathways in limited bacterial groups. Majority of these bacteria are commonly found in human gut. These include Bacillus, Clostridium, Enterobacter, Escherichia, Fusobacterium, Salmonella, etc. Interestingly, while pathogens utilize almost all the analyzed pathways, commensals prefer putrescine and H2S production pathways for metabolizing the undigested proteins. Further, comparison of the putrefaction pathways in the gut microbiomes of healthy, carcinoma and adenoma datasets indicate higher abundances of putrefying bacteria in the carcinoma stage of CRC. The insights obtained from the present study indicate utilization of possible microbiome-based therapies to minimize the adverse effects of gut microbiome in enteric diseases. PMID:29163445
Clinical pathways for suicidality in emergency settings: a public health priority.
Wilhelm, Kay; Korczak, Viola; Tietze, Tad; Reddy, Prasuna
2017-05-01
Rates of self-harm in Australia are increasing and constitute a concerning public health issue. Although there are standard treatment pathways for physical complaints, such as headache, abdominal pain and chest pain, in Emergency Medicine, there is no national pathway for self-harm or other psychiatric conditions that present to the emergency department. Herein we outline the difference between clinical practice guidelines and clinical pathways, discuss pathways we have identified on self-harm in Australia and overseas and discuss their applicability to the Australian context and the next steps forward in addressing this public health issue.
Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links
Samuel, Varman T.; Shulman, Gerald I.
2012-01-01
Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956
Donley, David W; Olson, Andrew R; Raisbeck, Merl F; Fox, Jonathan H; Gigley, Jason P
2016-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early-advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD.
Donley, David W.; Olson, Andrew R.; Raisbeck, Merl F.; Fox, Jonathan H.; Gigley, Jason P.
2016-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early–advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD. PMID:27611938
Wonodi, Ikwunga; Stine, O. Colin; Sathyasaikumar, Korrapati V.; Roberts, Rosalinda C.; Mitchell, Braxton D.; Hong, L. Elliot; Kajii, Yasushi; Thaker, Gunvant K.; Schwarcz, Robert
2013-01-01
Context Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. Objectives To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Design Case-control postmortem and clinical study. Setting Maryland Brain Collection, outpatient clinics. Participants Postmortem specimens from schizophrenia patients (n=32) and control donors (n=32) and a clinical sample of schizophrenia patients (n=248) and healthy controls (n=228). Main Outcome Measures Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). Results In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Conclusion Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits. PMID:21727251
Wonodi, Ikwunga; Stine, O Colin; Sathyasaikumar, Korrapati V; Roberts, Rosalinda C; Mitchell, Braxton D; Hong, L Elliot; Kajii, Yasushi; Thaker, Gunvant K; Schwarcz, Robert
2011-07-01
Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Case-control postmortem and clinical study. Maryland Brain Collection, outpatient clinics. Postmortem specimens from schizophrenia patients (n = 32) and control donors (n = 32) and a clinical sample of schizophrenia patients (n = 248) and healthy controls (n = 228). Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits.
Dzwierzynski, W W; Spitz, K; Hartz, A; Guse, C; Larson, D L
1998-11-01
Clinical pathways are interdisciplinary patient care plans intended to reduce variance and improve quality of care while lowering health care cost. This study was undertaken to determine whether the development of a clinical pathway for care of patients with pressure ulcers can indeed decrease health care costs while preserving quality of care. A clinical pathway for surgical reconstruction of pressure ulcers was developed by standardizing the current practices of our plastic surgeon group. The pathway provided direction in optimal scheduling of physician interventions along with nursing, physical and occupational therapies, and spinal cord rehabilitation interventions. It covered all potential elements of patient care, including laboratory, radiology, dietary services, intravenous fluids, and use of specialty beds. It defined patient outcomes and outlined discharge planning. Pathways were distributed throughout all services caring for patients with pressure ulcers. Patient charts and billing data were reviewed for the 16-month periods before and after initiation of the pathway. No other significant changes in treatment occurred during this time frame. Ninety-seven patient charts were examined (54 before pathway and 43 after pathway implementation). Parameters evaluated included length of stay and total charges (including bed use, medications, laboratory tests, and radiology). Patient readmission rate was also examined. A significant reduction in patient length of stay and total charges was achieved after implementation of the clinical pathway. Reduction was seen not only for patients treated with flaps by plastic surgery but also for patients with pressure ulcers who were not specifically targeted such as those from other services. The readmission rate decreased slightly, although not significantly, after the pathway inception. Total cost saving was almost $11,000 per patient (23 percent). In conclusion, implementation of a clinical pathway, because it standardizes care and reduces variations and duplication of care, can reduce health care cost without impairing quality of care in the treatment of decubitus ulcer patients.
Schubert, Klaus Oliver; Föcking, Melanie; Cotter, David R
2015-09-01
Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus. Copyright © 2015 Elsevier B.V. All rights reserved.
Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients.
Hashemi, Sepehr; Fernandez Martinez, Juan Luis; Saligan, Leorey; Sonis, Stephen
2017-09-01
Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.
Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination
Yoon, Jane; van Horssen, Jack; Han, May H.; Bollyky, Paul L.; Palmer, Theo D.; Steinman, Lawrence
2017-01-01
The small heat shock protein αB-crystallin (CRYAB) has been implicated in multiple sclerosis (MS) pathogenesis. Earlier studies have indicated that CRYAB inhibits inflammation and attenuates clinical disease when administered in the experimental autoimmune encephalomyelitis model of MS. In this study, we evaluated the role of CRYAB in primary demyelinating events. Using the cuprizone model of demyelination, a noninflammatory model that allows the analysis of glial responses in MS, we show that endogenous CRYAB expression is associated with increased severity of demyelination. Moreover, we demonstrate a strong correlation between the expression of CRYAB and the extent of reactive astrogliosis in demyelinating areas and in in vitro assays. In addition, we reveal that CRYAB is differentially phosphorylated in astrocytes in active demyelinating MS lesions, as well as in cuprizone-induced lesions, and that this phosphorylation is required for the reactive astrocyte response associated with demyelination. Furthermore, taking a proteomics approach to identify proteins that are bound by the phosphorylated forms of CRYAB in primary cultured astrocytes, we show that there is clear differential binding of protein targets due to the specific phosphorylation of CRYAB. Subsequent Ingenuity Pathway Analysis of these targets reveals implications for intracellular pathways and biological processes that could be affected by these modifications. Together, these findings demonstrate that astrocytes play a pivotal role in demyelination, making them a potential target for therapeutic intervention, and that phosphorylation of CRYAB is a key factor supporting the pathogenic response of astrocytes to oligodendrocyte injury. PMID:28196893
IGFBP2 modulates the chemoresistant phenotype in esophageal adenocarcinoma
Myers, Amy L.; Lin, Lin; Nancarrow, Derek J.; Wang, Zhuwen; Ferrer-Torres, Daysha; Thomas, Dafydd G.; Orringer, Mark B.; Lin, Jules; Reddy, Rishindra M.; Beer, David G.; Chang, Andrew C.
2015-01-01
Esophageal adenocarcinoma (EAC) patients commonly present with advanced stage disease and demonstrate resistance to therapy, with response rates below 40%. Understanding the molecular mechanisms of resistance is crucial for improvement of clinical outcomes. IGFBP2 is a member of the IGFBP family of proteins that has been reported to modulate both IGF and integrin signaling and is a mediator of cell growth, invasion and resistance in other tumor types. In this study, high IGFBP2 expression was observed in a subset of primary EACs and was found to be significantly higher in patients with shorter disease-free intervals as well as in treatment-resistant EACs as compared to chemonaive EACs. Modulation of IGFBP2 expression in EAC cell lines promoted cell proliferation, migration and invasion, implicating a role in the metastatic potential of these cells. Additionally, knockdown of IGFBP2 sensitized EAC cells to cisplatin in a serum-dependent manner. Further in vitro exploration into this chemosensitization implicated both the AKT and ERK pathways. Silencing of IGFBP2 enhanced IGF1-induced immediate activation of AKT and reduced cisplatin-induced ERK activation. Addition of MEK1/2 (selumetinib or trametinib) or AKT (AKT Inhibitor VIII) inhibitors enhanced siIGFBP2-induced sensitization of EAC cells to cisplatin. These results suggest that targeted inhibition of IGFBP2 alone or together with either the MAPK or PI3K/AKT signaling pathway in IGFBP2-overexpressing EAC tumors may be an effective approach for sensitizing resistant EACs to standard neoadjuvant chemotherapy. PMID:26317790
Windsor, John; Garrod, Tamsin; Talley, Nicholas J; Tebbutt, Carmel; Churchill, James; Farmer, Elizabeth; Baur, Louise; Smith, Julian A
2017-04-01
There has been a decline in the proportion of clinical academics compared with full-time clinicians, since 2004. A Working Party was established to help develop and implement a model for the training of clinical academics. After a highly successful first summit in 2014 that summarised the challenges faced by clinical academics in Australia and New Zealand, a second summit was convened late in 2015 to report on progress and to identify key areas for further action. The second summit provided survey results that identified the varied training pathways currently offered to clinical academics and the institutions willing to be involved in developing improved pathways. A literature review also described the contributions that clinical academics make to the health sector and the challenges faced by this workforce sector. Current training pathways created for clinical academics by Australasian institutions were presented as examples of what can be done. The perspectives of government and research organisations presented at the summit helped define how key stakeholders can contribute. Following the summit, there was a strong commitment to continue to work towards developing a sustainable and defined training pathway for clinical academics. The need for a coordinated and integrated approach was highlighted. Some key objectives were agreed upon for the next phase, including identifying and engaging key advocates within government and leading institutions; publishing and profiling the contributions of successful clinical academics to healthcare outcomes; defining the stages of a clinical academic training pathway; and establishing a mentoring programme for training clinical academics. © 2017 Royal Australasian College of Physicians.
The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition
McLachlan, Neil M.; Wilson, Sarah J.
2017-01-01
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850
Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway[S
Alecu, Irina; Othman, Alaa; Penno, Anke; Saied, Essa M.; Arenz, Christoph; von Eckardstein, Arnold; Hornemann, Thorsten
2017-01-01
The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic β-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D. PMID:27872144
Lee, Sun-Hwa; Suk, Kyoungho
2018-04-20
Despite the considerable social and economic burden on the healthcare system worldwide due to neurodegenerative diseases, there are currently few disease-altering treatment options for many of these conditions. Therefore, new approaches for both prevention and intervention for neurodegenerative diseases are urgently required. Microglia-mediated neurotoxicity is one of the pathologic hallmarks common to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Current therapeutic approaches to target microglia-mediated neurotoxicity are focused on the identification of glia phenotype modulators (GPMs), which can inhibit the 'classical' pro-inflammatory and neurotoxic phenotypes of microglia. Areas covered: This article reviews selected microglial molecular targets and pathways involved in either neurotoxicity or neuroprotection and how their identification. Expert opinion: Microglial activation and their signaling pathways have important implications in the neurotoxicity and brain disorders. Pharmacological modulation of microglial activation may serve as a potential therapeutic approach for targeting microglia-mediated neurotoxicity. However, given that microglia change their activation states depending on the timing, stage, and severity of disease, and even aging, the appropriate window should be considered for this approach to be clinically effective. In the future, the identification of unknown extracellular signals and intracellular molecular switches that control phenotypic shifts may facilitate the development of novel therapeutics targeting microglia-mediated neurotoxicity.
Advancing the educational and career pathway for clinical trials nurses.
Scott, Kathleen; White, Kathryn; Roydhouse, Jessica K
2013-04-01
Clinical trials nurses play a pivotal role in the conduct of clinical research, but the educational and career pathway for these nurses remains unclear. This article reports findings from a survey of nurses working in cancer clinical trials research in Australia. Most participants held postgraduate qualifications (42 of 61); however, clinical trials education was primarily attained through short professional development courses. Interest in pursuing trial-specific postgraduate education was high, but barriers were identified, including cost, time, and unclear benefit for career advancement. Job titles varied substantially, which is indicative of an unclear employment pathway. These findings suggest that initiatives to improve the educational and career pathway for clinical trials nurses are needed and should include the following: formal educational preparation, greater consistency in employment status, and clearer career progression. These strategies should be underpinned by broad professional recognition of the clinical trials nurse as a specialized nursing role. Copyright 2013, SLACK Incorporated.
Tsao, Anne S; Harun, Nusrat; Fujimoto, Junya; Devito, Vikki; Lee, J Jack; Kuhn, Elisabetta; Mehran, Reza; Rice, David; Moran, Cesar; Hong, Waun Ki; Shen, Li; Suraokar, Milind; Wistuba, Ignacio
2014-06-01
PDGF/PDGFR pathway has been implicated in malignant pleural mesothelioma (MPM) carcinogenesis, and evidence suggests autocrine mechanisms of proliferation. We sought to evaluate the incidence of PDGFRB gene copy number gain (CNG) by fluorescence in situ hybridization and PDGFR pathway protein expression by immunohistochemistry (IHC) and correlate it to patient clinical outcome. Eighty-eight archived tumor blocks from resected MPM with full clinical information were used to perform IHC biomarkers (PDGFRα, PDGFRβ, p-PDGFRβ) and fluorescence in situ hybridization analysis of PDGFRB gene CNG. Spearman rank correlation, Wilcoxon rank-sum test, Kruskal-Wallis test, BLiP plots, and Kaplan-Meier method were used to analyze the biomarkers and correlation to clinical outcome. Several correlations between the IHC biomarkers were seen; however, none correlated to clinically relevant patient demographics or histology. In the CNG analysis, PDGFRB gene CNG in >10% of tumor cells had lower cytoplasmic p-PDGFRβ (P=.029), while PDGFRB gene CNG in >40% of tumor cells had a higher cytoplasmic PDGFRβ (P=.04). PDGFRB gene CNG status did not associate with patient demographics or tumor characteristics. PDGFR pathway IHC biomarkers did not associate with survival outcomes. However, patients with PDGFRB CNG >40% of tumor cells had improved relapse-free survival (HR 0.25 [95% CI 0.09-0.72], P=.0096) and improved overall survival (HR 0.32 [95% CI 0.11-0.89], P=.029). PDGFRB CNG >40% of MPM tumor cells is a potential prognostic biomarker for surgery and may identify a unique population of mesothelioma patients. Future validation of this biomarker in prospective trials is needed. From a retrospective review of archived tissue specimens from patients with resected malignant pleural mesothelioma tumors, we show that patients with PDGFRB CNG >40% of tumor cells had improved relapse-free survival (HR 0.25 [95% CI 0.09-0.72], P=.0096) and improved overall survival (HR 0.32 [95% CI 0.11-0.89], P=.029). PDGFRB CNG >40% of MPM tumor cells is a potential prognostic biomarker for surgery and may identify a unique population of mesothelioma patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas GD; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie CY; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Goncalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Heijer, Martin; den Hollander, Anneke I; den Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan FA; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna MM; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken Sin; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O’Donoghue, Michelle L.; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John RB; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva RB; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert Vernon; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; van der Laan, Sander W; van Duijn, Cornelia M; van Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth JF
2018-01-01
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity. PMID:29273807
A gender-related action of IFNbeta-therapy was found in multiple sclerosis.
Contasta, Ida; Totaro, Rocco; Pellegrini, Patrizia; Del Beato, Tiziana; Carolei, Antonio; Berghella, Anna Maria
2012-11-14
Understanding how sexual dimorphism affects the physiological and pathological responses of the immune system is of considerable clinical importance and could lead to new approaches in therapy. Sexual dimorphism has already been noted as an important factor in autoimmune diseases: the aim of this study was to establish whether sexual dimorphism in autoimmune diseases is the result of differing pathways being involved in the regulation of T-helper (Th) cell network homeostasis. We focused on sexually dimorphic changes in the immune response in multiple sclerosis (MS) patients in order to ascertain how these alterations relate to the pathway regulation of the cytokine homeostasis and the Th cell networks. We studied antigen presenting cell (APC)-dependent T cell activation in groups of healthy subjects, in patients under interferon (IFN) β-therapy and untreated. Cytokines, soluble (s) CD30 and the expanded disability status scale (EDSS) were used as biomarkers for T cell differentiation and neurological deficit. The data confirm our belief that sexual dimorphism in autoimmune diseases is the result of differing pathways that regulate Th cell network homeostasis: interleukin (IL) 6 pathways in women and IFNγ pathways in men. Given the increased susceptibility of women to MS and the significance of IL6 in the autoimmune process compared to IFNγ, it is logical to assume that IL6 pathways are in some way implicated in the prevalence of autoimmune diseases in women. Indeed, our data indicate that IL6 pathways are also involved in T regulatory (Treg) cell imbalance and an increase in neurological deficit in both men and women groups of MS patients, underlining the autoimmune etiology of multiple sclerosis. In further support of differing cytokine pathways in men and women, we noted that the efficacy of IFNβ-treatment in the re-establishment of Th-network balance and in the delaying of the neurological disability progression is linked to the IL6 pathway in women, but to the IFNγ pathway in men. Lastly, we also identified specific gender biomarkers for the use in therapy. The identification of gender-specific drugs is of considerable importance in translational medicine and will undoubtedly lead to more appropriate therapeutic strategies and more successful treatment.
Ji, Jiafu; Jia, Shuqin; Jia, Yongning; Ji, Ke; Hargest, Rachel; Jiang, Wen G
2015-09-15
It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.
The exploration of contrasting pathways in Triple Negative Breast Cancer (TNBC).
Narrandes, Shavira; Huang, Shujun; Murphy, Leigh; Xu, Wayne
2018-01-04
Triple Negative Breast Cancers (TNBCs) lack the appropriate targets for currently used breast cancer therapies, conferring an aggressive phenotype, more frequent relapse and poorer survival rates. The biological heterogeneity of TNBC complicates the clinical treatment further. We have explored and compared the biological pathways in TNBC and other subtypes of breast cancers, using an in silico approach and the hypothesis that two opposing effects (Yin and Yang) pathways in cancer cells determine the fate of cancer cells. Identifying breast subgroup specific components of these opposing pathways may aid in selecting potential therapeutic targets as well as further classifying the heterogeneous TNBC subtype. Gene expression and patient clinical data from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used for this study. Gene Set Enrichment Analysis (GSEA) was used to identify the more active pathways in cancer (Yin) than in normal and the more active pathways in normal (Yang) than in cancer. The clustering analysis was performed to compare pathways of TNBC with other types of breast cancers. The association of pathway classified TNBC sub-groups to clinical outcomes was tested using Cox regression model. Among 4729 curated canonical pathways in GSEA database, 133 Yin pathways (FDR < 0.05) and 71 Yang pathways (p-value <0.05) were discovered in TNBC. The FOXM1 is the top Yin pathway while PPARα is the top Yang pathway in TNBC. The TNBC and other types of breast cancers showed different pathways enrichment significance profiles. Using top Yin and Yang pathways as classifier, the TNBC can be further subtyped into six sub-groups each having different clinical outcomes. We first reported that the FOMX1 pathway is the most upregulated and the PPARα pathway is the most downregulated pathway in TNBC. These two pathways could be simultaneously targeted in further studies. Also the pathway classifier we performed in this study provided insight into the TNBC heterogeneity.
Plant-specific multisubunit RNA polymerase in gene silencing.
Lahmy, Sylvie; Bies-Etheve, Natacha; Lagrange, Thierry
2010-01-01
In recent years, a major breakthrough in the study of epigenetic silencing in eukaryotes came with the discovery that the RNA-interference pathway (RNAi) is generally implicated in heterochromatin assembly and gene silencing. An important and paradoxical feature of the RNAi-mediated heterochromatin pathways is their requirement for some form of transcription. In fission yeast, Schizosaccharomyces pombe, centromeric siRNAs have been shown to derive from chromatin-bound nascent transcripts produced by RNA polymerase II (PolII) at the site of heterochromatin formation. Likewise, chromatin-bound nascent transcripts generated by a PolII-related DNA-dependent RNA polymerase, known as PolIVb/PolV, have recently been implicated in RNA-directed DNA methylation (RdDM), the prominent RNAi-mediated chromatin pathway in plants. In this review we discuss recent work on the plant-specific PolII variant enzymes and discuss the mechanistic convergences that have been observed in the role of these enzymes in their respective siRNA-mediated heterochromatin formation pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beriwal, Sushil, E-mail: beriwals@upmc.edu; Rajagopalan, Malolan S.; Flickinger, John C.
2012-07-15
Purpose: Clinical pathways are an important tool used to manage the quality in health care by standardizing processes. This study evaluated the impact of the implementation of a peer-reviewed clinical pathway in a large, integrated National Cancer Institute-Designated Comprehensive Cancer Center Network. Methods: In 2003, we implemented a clinical pathway for the management of bone metastases with palliative radiation therapy. In 2009, we required the entry of management decisions into an online tool that records pathway choices. The pathway specified 1 or 5 fractions for symptomatic bone metastases with the option of 10-14 fractions for certain clinical situations. The datamore » were obtained from 13 integrated sites (3 central academic, 10 community locations) from 2003 through 2010. Results: In this study, 7905 sites were treated with 64% of courses delivered in community practice and 36% in academic locations. Academic practices were more likely than community practices to treat with 1-5 fractions (63% vs. 23%; p < 0.0001). The number of delivered fractions decreased gradually from 2003 to 2010 for both academic and community practices (p < 0.0001); however, greater numbers of fractions were selected more often in community practices (p < 0.0001). Using multivariate logistic regression, we found that a significantly greater selection of 1-5 fractions developed after implementation online pathway monitoring (2009) with an odds ratio of 1.2 (confidence interval, 1.1-1.4) for community and 1.3 (confidence interval, 1.1-1.6) for academic practices. The mean number of fractions also decreased after online peer review from 6.3 to 6.0 for academic (p = 0.07) and 9.4 to 9.0 for community practices (p < 0.0001). Conclusion: This is one of the first studies to examine the efficacy of a clinical pathway for radiation oncology in an integrated cancer network. Clinical pathway implementation appears to be effective in changing patterns of care, particularly with online clinical peer review as a valuable aid to encourage adherence to evidence-based practice.« less
Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer
Reinert, Tomas; Saad, Everardo D.; Barrios, Carlos H.; Bines, José
2017-01-01
Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress. PMID:28361033
Glassey, Rachael; O'Connor, Moira; Ives, Angela; Saunders, Christobel; kConFab Investigators; O'Sullivan, Sarah; Hardcastle, Sarah J
2018-05-11
To explore the barriers and experiences of accessing information for women who have received genetic risk assessment/testing results for breast cancer (BC) and are considering a bilateral prophylactic mastectomy (BPM) and, exploring participants' preferences concerning information and support needs. A qualitative retrospective study guided by interpretative phenomenological analysis was utilised. Semi-structured interviews were conducted with forty-six women who were either considering BPM or had already undergone the surgery. Three themes identified barriers to accessing information; difficulties accessing information, inconsistent information and clinical focus/medicalized information. A fourth theme - preferences of information and support needs, identified three subthemes; these were, psychological support, clearly defined processes and photos of mastectomies/reconstruction surgeries. Barriers to accessing information appeared to be widespread. A lack of integrated services contributed to inconsistent information, and medicalized terminology/clinical focus of consultations further complicated understanding. Preferences for information include clearly defined processes, so women know the pathways after confirmation of familial BC risk. Clinical implications include a multidisciplinary team approach, and a protocol that reflects current practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Latent Tuberculosis Infection: Myths, Models, and Molecular Mechanisms
Dutta, Noton K.
2014-01-01
SUMMARY The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including “latency,” “persistence,” “dormancy,” and “antibiotic tolerance.” Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, “dormant” bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4+ and CD8+ T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI. PMID:25184558
Hildebrandt, Michelle A T; Roth, Jack A; Vaporciyan, Ara A; Pu, Xia; Ye, Yuanqing; Correa, Arlene M; Kim, Jae Y; Swisher, Stephen G; Wu, Xifeng
2015-07-13
Post-operative pulmonary complications are the most common morbidity associated with lung resection in non-small cell lung cancer (NSCLC) patients. The TNF/TRAF2/ASK1/p38 kinase pathway is activated by stress stimuli and inflammatory signals. We hypothesized that genetic polymorphisms within this pathway may contribute to risk of complications. In this case-only study, we genotyped 173 germline genetic variants in a discovery population of 264 NSCLC patients who underwent a lobectomy followed by genotyping of the top variants in a replication population of 264 patients. Complications data was obtained from a prospective database at MD Anderson. MAP2K4:rs12452497 was significantly associated with a decreased risk in both phases, resulting in a 40% reduction in the pooled population (95% CI:0.43-0.83, P = 0.0018). In total, seven variants were significant for risk in the pooled analysis. Gene-based analysis supported the involvement of TRAF2, MAP2K4, and MAP3K5 as mediating complications risk and a highly significant trend was identified between the number of risk genotypes and complications risk (P = 1.63 × 10(-8)). An inverse relationship was observed between association with clinical outcomes and complications for two variants. These results implicate the TNF/TRAF2/ASK1/p38 kinase pathway in modulating risk of pulmonary complications following lobectomy and may be useful biomarkers to identify patients at high risk.
Recovery capital pathways: Modelling the components of recovery wellbeing.
Cano, Ivan; Best, David; Edwards, Michael; Lehman, John
2017-12-01
In recent years, there has been recognition that recovery is a journey that involves the growth of recovery capital. Thus, recovery capital has become a commonly used term in addiction treatment and research yet its operationalization and measurement has been limited. Due to these limitations, there is little understanding of long-term recovery pathways and their clinical application. We used the data of 546 participants from eight different recovery residences spread across Florida, USA. We calculated internal consistency for recovery capital and wellbeing, then assessed their factor structure via confirmatory factor analysis. The relationships between time, recovery barriers and strengths, wellbeing and recovery capital, as well as the moderating effect of gender, were estimated using structural equations modelling. The proposed model obtained an acceptable fit (χ 2 (141, N=546)=533.642, p<0.001; CMIN/DF=3.785; CFI=0.915; TLI=0.896; RMSEA=0.071). Findings indicate a pathway to recovery capital that involves greater time in residence ('retention'), linked to an increase in meaningful activities and a reduction in barriers to recovery and unmet needs that, in turn, promote recovery capital and positive wellbeing. Gender differences were observed. We tested the pathways to recovery for residents in the recovery housing population. Our results have implications not only for retention as a predictor of sustained recovery and wellbeing but also for the importance of meaningful activities in promoting recovery capital and wellbeing. Copyright © 2017 Elsevier B.V. All rights reserved.
Truban, Dominika; Hou, Xu; Caulfield, Thomas R; Fiesel, Fabienne C; Springer, Wolfdieter
2017-01-01
The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.
Birerdinc, A; Estep, M; Afendy, A; Stepanova, M; Younossi, I; Baranova, A; Younossi, Z M
2012-06-01
Anaemia is a common side effect of ribavirin (RBV) which is used for the treatment of hepatitis C. Inosine triphosphatase gene polymorphism (C to A) protects against RBV-induced anaemia. The aim of our study was to genotype patients for inosine triphosphatase gene polymorphism rs1127354 SNP (CC or CA) and associate treatment-induced anaemia with gene expression profile and genotypes. We used 67 hepatitis C patients with available gene expression, clinical, laboratory data and whole-blood samples. Whole blood was used to determine inosine triphosphatase gene polymorphism rs1127354 genotypes (CC or CA). The cohort with inosine triphosphatase gene polymorphism CA genotype revealed a distinct pattern of protection against anaemia and a lower drop in haemoglobin. A variation in the propensity of CC carriers to develop anaemia prompted us to look for additional predictors of anaemia during pegylated interferon (PEG-IFN) and RBV. Pretreatment blood samples of patients receiving a full course of PEG-IFN and RBV were used to assess expression of 153 genes previously implicated in host response to viral infections. The gene expression data were analysed according to presence of anaemia and inosine triphosphatase gene polymorphism genotypes. Thirty-six genes were associated with treatment-related anaemia, six of which are involved in the response to hypoxia pathway (HIF1A, AIF1, RHOC, PTEN, LCK and PDGFB). There was a substantial overlap between sustained virological response (SVR)-predicting and anaemia-related genes; however, of the nine JAK-STAT pathway-related genes associated with SVR, none were implicated in anaemia. These observations exclude the direct involvement of antiviral response in the development of anaemia associated with PEG-IFN and RBV treatment, whereas another, distinct component within the SVR-associated gene expression response may predict anaemia. We have identified baseline gene expression signatures associated with RBV-induced anaemia and identified its functional pathways. In particular, we identified the hypoxia response pathway and the apoptosis/survival-related gene network, as differentially expressed in chronic hepatitis C patients with anaemia. © 2011 Blackwell Publishing Ltd.
Profile of neratinib and its potential in the treatment of breast cancer
Feldinger, Katharina; Kong, Anthony
2015-01-01
The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s). PMID:26089701
Profile of neratinib and its potential in the treatment of breast cancer.
Feldinger, Katharina; Kong, Anthony
2015-01-01
The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s).
Nicasio, Anthony M; Eagye, Kathryn J; Kuti, Effie L; Nicolau, David P; Kuti, Joseph L
2010-05-01
To determine hospital costs associated with the use of a clinical pathway implemented in our intensive care units (ICUs) to optimize antibiotic regimen selection for patients with ventilator-associated pneumonia (VAP) compared with costs in a historical control group treated according to prescriber preference. Retrospective cost analysis from the hospital perspective. Single, tertiary-care medical center. One hundred sixty-six adults with VAP from the medical, surgical, and neurotrauma ICUs (73 historical control patients [2004-2005] and 93 patients given an empiric antibiotic clinical pathway for VAP [2006-2007]). The VAP clinical pathway consisted of an ICU-specific three-drug regimen that considered local minimum inhibitory concentration distributions and a pharmacodynamically optimized dosing strategy. Hospital cost data were collected and inflated to 2007 according to the consumer price index. The VAP-related length of treatment, hospitalization costs, and antibiotic costs were compared between groups. The median VAP length of treatment was 24 days (interquartile range [IQR] 13-35 days] and 11 days (IQR 7-17 days) for historical and clinical pathway groups, respectively (p<0.001). Daily hospital costs were similar for both cohorts over the first 7 days, after which costs declined significantly for patients treated with the clinical pathway (p<0.001). When controlling for baseline differences between groups and length of stay before development of VAP, patients treated with the clinical pathway had shorter lengths of ICU stay after VAP, shorter total hospital lengths of stay after VAP, and lower hospital costs after the treatment of VAP. Median total antibiotic costs for individual patients were similar between groups ($535 [IQR $261-998] vs $482 [IQR $222-985] clinical pathway vs control, p=0.45), and the proportion of VAP hospital resources consumed by antibiotics for both groups was low. Although aggressive dosing of more costly antibiotics was empirically prescribed using the clinical pathway, patients in this group exhibited a shorter duration of treatment, reduced hospital length of stay after VAP, and lower hospital costs without any significant increase in antibiotic expenditures.
Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena
2015-01-01
Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985
Sechler, Marybeth; Parrish, Janet K.; Birks, Diane K.; Jedlicka, Paul
2017-01-01
Ewing Sarcoma is the second most common solid pediatric malignant neoplasm of bone and soft tissue. Driven by EWS/Ets, or rarely variant, oncogenic fusions, Ewing Sarcoma is a biologically and clinically aggressive disease with a high propensity for metastasis. However, the mechanisms underpinning Ewing Sarcoma metastasis are currently not well understood. In the present study, we identify and characterize a novel metastasis-promotional pathway in Ewing Sarcoma, involving the histone demethylase KDM3A, previously identified by our laboratory as a new cancer-promoting gene in this disease. Using global gene expression profiling, we show that KDM3A positively regulates genes and pathways implicated in cell migration and metastasis, and demonstrate, using functional assays, that KDM3A promotes migration in vitro and experimental, post-intravasation, metastasis in vivo. We further identify the Melanoma Cell Adhesion Molecule (MCAM) as a novel KDM3A target gene in Ewing Sarcoma, and an important effector of KDM3A pro-metastatic action. Specifically, we demonstrate that MCAM depletion, like KDM3A depletion, inhibits cell migration in vitro and experimental metastasis in vivo, and that MCAM partially rescues impaired migration due to KDM3A knock-down. Mechanistically, we show that KDM3A regulates MCAM expression both through a direct mechanism, involving modulation of H3K9 methylation at the MCAM promoter, and an indirect mechanism, via the Ets1 transcription factor. Lastly, we identify an association between high MCAM levels in patient tumors and poor survival, in two different Ewing Sarcoma clinical cohorts. Taken together, our studies uncover a new metastasis-promoting pathway in Ewing Sarcoma, with therapeutically targetable components. PMID:28319067
Physical examination of dizziness in athletes after a concussion: A descriptive study.
Reneker, Jennifer C; Cheruvu, Vinay K; Yang, Jingzhen; James, Mark A; Cook, Chad E
2018-04-01
Dizziness is commonly reported after concussion. With the forces experienced at the time of the injury, several anatomical locations may have been altered, causing dizziness. Describe an objective examination and the types of impairment/dysfunction implicated by the results of clinical examination tests in subjects with dizziness after a concussion. Cross-Sectional. Athletes between ages 10-23 were enrolled with a diagnosis of concussion. An examination was completed to identify areas potentially contributing to dizziness, including tests of oculomotor control, the vestibular system, neuromotor control, and musculoskeletal components of the cervical spine. Descriptive analyses were completed to define the anatomical areas/types of dysfunction identified by positive findings of the examination tests. All (n = 41; 100%) subjects had examination findings consistent with central dysfunction. Of these, 36 (97.8%) had oculomotor control deficits; 29 (70.7%) demonstrated motion sensitivity; and 6 (15%) had central vestibular deficits. Nineteen (46.3%) had peripheral dysfunction, including 18 (43.9%) with unilateral hypofunction, and 2 (4.9%) with Benign Paroxysmal Positional Vertigo. Thirty-four (82.9%) had cervical dysfunction, with 11 (26.8%) presenting with cervicogenic dizziness, and 31 (75.6%) with altered neuromotor control. Functional injury to centrally-mediated pathways, specifically oculomotor control, and afferent and efferent pathways in the cervical spine are commonly identified through clinical examination tests in individuals with a complaint of dizziness post-concussion. According to results presented here, a high majority (90%) of the participants demonstrated dizziness that appeared to be multifactorial in nature and was not attributable to one main type of dysfunction. The common pathways between the systems make it difficult to isolate only one anatomical area as a contributor to dizziness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toward an operational model of decision making, emotional regulation, and mental health impact.
Collura, Thomas Francis; Zalaquett, Ronald P; Bonnstetter, Carlos Joyce; Chatters, Seria J
2014-01-01
Current brain research increasingly reveals the underlying mechanisms and processes of human behavior, cognition, and emotion. In addition to being of interest to a wide range of scientists, educators, and professionals, as well as laypeople, brain-based models are of particular value in a clinical setting. Psychiatrists, psychologists, counselors, and other mental health professionals are in need of operational models that integrate recent findings in the physical, cognitive, and emotional domains, and offer a common language for interdisciplinary understanding and communication. Based on individual traits, predispositions, and responses to stimuli, we can begin to identify emotional and behavioral pathways and mental processing patterns. The purpose of this article is to present a brain-path activation model to understand individual differences in decision making and psychopathology. The first section discusses the role of frontal lobe electroencephalography (EEG) asymmetry, summarizes state- and trait-based models of decision making, and provides a more complex analysis that supplements the traditional simple left-right brain model. Key components of the new model are the introduction of right hemisphere parallel and left hemisphere serial scanning in rendering decisions, and the proposition of pathways that incorporate both past experiences as well as future implications into the decision process. Main attributes of each decision-making mechanism are provided. The second section applies the model within the realm of clinical mental health as a tool to understand specific human behavior and pathology. Applications include general and chronic anxiety, depression, paranoia, risk taking, and the pathways employed when well-functioning operational integration is observed. Finally, specific applications such as meditation and mindfulness are offered to facilitate positive functioning.
Kumar, Anupam; Pathak, Pankaj; Purkait, Suvendu; Faruq, Mohammed; Jha, Prerana; Mallick, Supriya; Suri, Vaishali; Sharma, Mehar C; Suri, Ashish; Sarkar, Chitra
2015-03-01
Pediatric oligodendrogliomas (pODGs) are rare central nervous system tumors, and comparatively little is known about their molecular pathogenesis. Co-deletion of 1p/19q; and IDH1, CIC, and FUBP1 mutations, which are molecular signatures of adult oligodendrogliomas, are extremely rare in pODGs. In this report, two pODGs, one each of grade II and grade III, were evaluated using clinical, radiological, histopathologic, and follow-up methods. IDH1, TP53, CIC, H3F3A, and BRAF-V600 E mutations were analyzed by Sanger sequencing and immunohistochemical methods, and 1p/19q co-deletion was analyzed by fluorescence in situ hybridization. PDGFRA amplification, BRAF gain, intragenic duplication of FGFR-TKD, and KIAA1549-BRAF fusion (validated by Sanger sequencing) were analyzed by real-time reverse transcription PCR. Notably, both cases showed the oncogenic KIAA1549_Ex15-BRAF_Ex9 fusion transcript. Further, immunohistochemical analysis showed activation of the MAPK/ERK pathway in both of these cases. However, neither 1p/19q co-deletion; IDH1, TP53, CIC, H3F3A, nor BRAF-V600 E mutation; PDGFRA amplification; BRAF gain; nor duplication of FGFR-TKD was identified. Overall, this study highlights that pODGs can harbor the KIAA1549-BRAF fusion with aberrant MAPK/ERK signaling, and there exists an option of targeting these pathways in such patients. These results indicate that pODGs with the KIAA1549-BRAF fusion may represent a subset of this rare tumor that shares molecular and genetic features of pilocytic astrocytomas. These findings will increase our understanding of pODGs and may have clinical implications. Copyright © 2015 Elsevier Inc. All rights reserved.
Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement
Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.
2009-01-01
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515
Caenepeel, Sean; Cooke, Keegan; Wadsworth, Sarah; Huang, Guo; Robert, Lidia; Moreno, Blanca Homet; Parisi, Giulia; Cajulis, Elaina; Kendall, Richard; Beltran, Pedro; Ribas, Antoni; Coxon, Angela; Hughes, Paul E.
2017-01-01
Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we observed a dominant role for the HGF/MET axis in mediating resistance to BRAF and MEK inhibitors in models of BRAFV600E and NRAS mutant melanoma. In addition, we showed that MAPK pathway inhibition induced rapid increases in MET and GAB1 levels, providing novel mechanistic insight into how BRAFV600E mutant melanoma is primed for HGF-mediated rescue. We also determined that tumor-derived HGF, not systemic HGF, may be required to convey resistance to BRAF inhibition in vivo and that resistance could be reversed following treatment with AMG 337, a selective MET inhibitor. In summary, these findings support the clinical evaluation of MET-directed targeted therapy to circumvent resistance to BRAF and MEK inhibitors in BRAFV600E mutant melanoma. In addition, the induction of MET following treatment with BRAF and MEK inhibitors has the potential to serve as a predictive biomarker for identifying patients best suited for MET inhibitor combination therapy. PMID:28147313
Implementing family communication pathway in neurosurgical patients in an intensive care unit.
Kodali, Sashikanth; Stametz, Rebecca; Clarke, Deserae; Bengier, Amanda; Sun, Haiyan; Layon, A J; Darer, Jonathan
2015-08-01
Family-centered care provides family members with basic needs, which includes information, reassurance, and support. Though national guidelines exist, clinical adoption often lags behind in this area. The Geisinger Health System developed and implemented a program for reliable delivery of best practices related to family communication to patients and families admitted to the intensive care unit (ICU). Using a quasiexperimental study design and the 24-item Family Satisfaction in the Intensive Care Unit questionnaire (FSICU-24©) to determine family satisfaction, we measured the impact of a "family communication pathway" facilitated by tools built into the electronic health record on the family satisfaction of neurosurgical patients admitted to the ICU. There was no statistically significant difference noted in family satisfaction as determined by FSICU-24 scores, including the Care and Decision Making constructs between the pre- and post-intervention pilot population. The percentage of families reporting the occurrence of a family conference showed only minimal improvement, from 46.5% before to 52.5% following the intervention (p = 0.565). This was mirrored by low numbers of documented family conferences by providers, suggesting poor uptake despite buy-in, use of electronic checklists, and repeated attempts at education. This paper reviews the challenges to and implications for implementing national guidelines in the area of family communication in an ICU coupled with the principles of clinical reengineering.
Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.
2014-01-01
Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. PMID:24200853
Catalase plays an important role in a genotoxic pathway of methylated arsenicals
Arsenic is a common contaminant of drinking water in many parts of the world. Consumption of arsenic-contaminated drinking water has been implicated in both cancerous and non-cancerous health conditions. However, the pathways that lead to arsenic-induced health conditions have no...
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J. D.
2016-05-01
We studied evaporite subfacies in the Verde Fmn., AZ. We identified diagenetic pathways and assessed how diagenesis affected biosignature preservation potential (BPP) in each. Results revealed eight pathways, each with diverse impacts on BPP.
Improving performance with clinical decision support.
Brailer, D J; Goldfarb, S; Horgan, M; Katz, F; Paulus, R A; Zakrewski, K
1996-07-01
CADU/CIS (Clinical and Administrative Decision-support Utility and Clinical Information System) is a clinical decision-support workstation that allows large volumes of clinical information systems data to be analyzed in a timely and user-friendly fashion. CARE PROCESS MEASUREMENT: For any given disease, subgroups of patients are identified, and automated, customized "clinical pathways" are generated. For each subgroup, the best practice norms for use of test and therapies are identified. Practice style variations are then compared to outcomes to focus inquiry on decisions that significantly affect outcomes. INTESTINAL OBSTRUCTION: Graduate Health Systems, a multisite integrated provider in the Philadelphia area, has used CADU/CIS to improve quality problems, reduce treatment-intensity variations, and improve clinical participation in care process evaluation and decision making. A task force selected intestinal obstruction without hernia as its first study because of the related high-volume and high-morbidity complications. Use of a ten-step method for clinical performance improvement showed that the intravenous administration of unnecessary fluids to 104 patients with intestinal obstruction induced congestive heart failure (CHF) in 5 patients. Task force members and other practicing physicians are now developing guidelines and other interventions aimed at fluid use. Indeed, the task force used CADU/CIS to identify an additional 250 patients in one year whose conditions were complicated by CHF. A clinical decision support tool can be instrumental in detecting problems with important clinical and economic implications, identifying their important underlying causes, tracking the associated tests and therapies, and monitoring interventions.
Streuli, Isabelle; Santulli, Pietro; Chouzenoux, Sandrine; Chapron, Charles; Batteux, Frédéric
2015-12-01
We investigated whether the myometrium might be intrinsically different in women with adenomyosis. We studied whether the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) and phosphoinositide 3-kinase/mammalian target of rapamycin/AKT (PI3K/mTOR/AKT) cell-signaling pathways, implicated in the pathogenesis of endometriosis, might also be activated in uterine smooth muscle cells (uSMCs) of women with adenomyosis and measured the production of reactive oxygen species (ROS), proinflammatory mediators that modulate cell proliferation and have been shown to activate the MAPK/ERK pathway in endometriosis. The uSMC cultures were derived from myometrium biopsies obtained during hysterectomy or myomectomy in women with adenomyosis and controls with leiomyoma. Proliferation of uSMCs and in vitro activation of the MAPK/ERK cell-signaling pathway were increased in women with adenomyosis compared to controls. The activation of the PI3K/mTOR/AKT pathway was not significant. The ROS production and ROS detoxification pathways were not different between uSMCs of women with adenomyosis and controls suggesting an ROS-independent activation of the MAPK/ERK pathway. Our results also provide evidence that protein kinase inhibitors and the rapanalogue temsirolimus can control proliferation of uSMCs in vitro suggesting an implication of the MAPK/ERK and the PI3K/mTOR/AKT pathways in proliferation of uSMCs in women with adenomyosis and leiomyomas. © The Author(s) 2015.
Rankin, Nicole M; Butow, Phyllis N; Thein, Thida; Robinson, Tracy; Shaw, Joanne M; Price, Melanie A; Clover, Kerrie; Shaw, Tim; Grimison, Peter
2015-01-22
This study aimed to explore barriers to and enablers for future implementation of a draft clinical pathway for anxiety and depression in cancer patients in the Australian context. Health professionals reviewed a draft clinical pathway and participated in qualitative interviews about the delivery of psychosocial care in their setting, individual components of the draft pathway, and barriers and enablers for its future implementation. Five interrelated themes were identified: ownership; resources and responsibility; education and training; patient reluctance; and integration with health services beyond oncology. The five themes were perceived as both barriers and enablers and provide a basis for an implementation plan that includes strategies to overcome barriers. The next steps are to design and deliver the clinical pathway with specific implementation strategies that address team ownership, endorsement by leaders, education and training modules designed for health professionals and patients and identify ways to integrate the pathway into existing cancer services.
Assessing national provision of care: variability in bariatric clinical care pathways.
Telem, Dana A; Majid, Saniea F; Powers, Kinga; DeMaria, Eric; Morton, John; Jones, Daniel B
2017-02-01
The American Society for Metabolic and Bariatric Surgery (ASMBS) Quality Improvement and Patient Safety (QIPS) Committee hypothesized that collecting and sharing clinical pathways could provide a valuable resource to new and existing bariatric programs. To shed light on the variability in practice patterns across the country by analyzing pathways. United States Centers of Excellence METHODS: From June 2014 to April 2015, clinical pathways pertaining to preoperative, intraoperative, and postoperative management of bariatric patients were solicited from the ASMBS executive council (EC), QIPS committee members, and state chapter presidents. Pathways were de-identified and then analyzed based on predetermined metrics pertaining to preoperative, intraoperative, and postoperative care. Concordance and discordance were then analyzed. In total, 31 pathways were collected; response rate was 80% from the EC, 77% from the QIPS committee, and 21% from state chapter presidents. The number of pathways sent in ranged from 1 to 10 with a median of 3 pathways per individual or institution. The majority of pathways centered on perioperative care (80%). Binary assessment (presence or absence) of variables found a high concordance (defined by greater than 65% of pathways accounting for that parameter) in only 6 variables: nutritional evaluation, psychological evaluation, intraoperative venous thromboembolism (VTE) prophylaxis, utilization of antiemetics in the postoperative period, a dedicated pain pathway, and postoperative laboratory evaluation. There is considerable national variation in clinical pathways among practicing bariatric surgeons. Most pathways center on Metabolic and Bariatric Surgery Accredited Quality Improvement Program (MBSAQIP) accreditation parameters, patient satisfaction, or Surgical Care Improvement Protocol (SCIP) measures. These pathways provide a path toward standardization of improved care. Copyright © 2016. Published by Elsevier Inc.
Foster, David A.; Salloum, Darin; Menon, Deepak; Frias, Maria A.
2014-01-01
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. PMID:24990952
Foster, David A; Salloum, Darin; Menon, Deepak; Frias, Maria A
2014-08-15
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Mechanisms of Cancer Cell Dormancy--Another Hallmark of Cancer?
Yeh, Albert C; Ramaswamy, Sridhar
2015-12-01
Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biologic level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biologic insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately downregulate the RAS/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. ©2015 American Association for Cancer Research.
Mechanisms of Cancer Cell Dormancy – Another Hallmark of Cancer?
Yeh, Albert C.; Ramaswamy, Sridhar
2015-01-01
Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biological level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biological insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately down-regulate the Ras/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. PMID:26354021
‘Metabolically healthy obesity’: Origins and implications
Denis, Gerald V.; Obin, Martin S.
2013-01-01
When humans eat more and exercise less, they tend to become obese and unhealthy. The molecular pathways that link obesity to serious diseases like Type 2 diabetes and cardiovascular disease have become a subject of intensive scientific investigation because the exploding prevalence of obesity worldwide represents a grave new threat to the health of hundreds of millions of people. However, obesity is not always destiny. Two important clinical populations have been valuable to understand the mechanisms behind this conundrum: individuals who exhibit metabolic dysfunction, diabetes and elevated cardiovascular disease risk despite a lean body type, and individuals who are relatively protected from these dangers despite significant obesity. Study of this second group of ‘metabolically healthy obese’ people in particular has been revealing because such individuals exhibit specific, identifiable, anatomic, cellular and molecular features that set them apart from the rest of us who suffer declining health with increasing weight. Here, we examine some of these features, including some mouse models that are informative of mechanism, and suggest hypotheses for further study, including the possibility that genes and pathways of the immune system might offer new diagnostic or therapeutic targets. PMID:23068072
Byrne-Nash, Rose; Lucero, Danielle M; Osbaugh, Niki A; Melander, Roberta J; Melander, Christian; Feldheim, Daniel L
2017-07-19
The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.
Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish.
Kwan, Wanda; North, Trista E
2017-01-01
Zebrafish are one of the preeminent model systems for the study of blood development (hematopoiesis), hematopoietic stem and progenitor cell (HSPC) biology, and hematopathology. The zebrafish hematopoietic system shares strong similarities in functional populations, genetic regulators, and niche interactions with its mammalian counterparts. These evolutionarily conserved characteristics, together with emerging technologies in live imaging, compound screening, and genetic manipulation, have been employed to successfully identify and interrogate novel regulatory mechanisms and molecular pathways that guide hematopoiesis. Significantly, perturbations in many of the key developmental signals controlling hematopoiesis are associated with hematological disorders and disease, including anemia, bone marrow failure syndromes, and leukemia. Thus, understanding the regulatory pathways controlling HSPC production and function has important clinical implications. In this review, we describe how the blood system forms and is maintained in zebrafish, with particular focus on new insights into vertebrate hematological regulation gained using this model. The interplay of factors controlling development and disease in the hematopoietic system combined with the unique attributes of the zebrafish make this a powerful platform to discover novel targets for the treatment of hematological disease. © 2017 Elsevier Inc. All rights reserved.
Addissie, Yonit A; Kotecha, Udhaya; Hart, Rachel A; Martinez, Ariel F; Kruszka, Paul; Muenke, Maximilian
2015-11-01
Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis. © 2015 Wiley Periodicals, Inc.
Feldman, Ross D; Limbird, Lee E
2017-01-06
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James
2010-06-30
Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.
Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review
Smith, Elisabeth J; Allantaz, Florence; Bennett, Lynda; Zhang, Dongping; Gao, Xiaochong; Wood, Geryl; Kastner, Daniel L; Punaro, Marilynn; Aksentijevich, Ivona; Pascual, Virginia; Wise, Carol A
2010-01-01
PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the “inflammasome” involved in interleukin-1 (IL-1β) production. Overproduction of IL-1β is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders. PMID:21532836
Liga, Francesca; Ingoglia, Sonia; Inguglia, Cristiano; Lo Coco, Alida; Lo Cricchio, Maria Grazia; Musso, Pasquale; Cheah, Charissa; Rose, Laura; Gutow, Mindy R
2017-05-19
The present study aimed to investigate the relations among perceived parental psychological control (PPC), autonomy and relatedness, and negative outcomes during emerging adulthood in two cultural contexts: Italy and the USA. More specifically, we explored the mechanisms through which dependency-oriented PPC (DPPC) and achievement-oriented PPC (APPC) are associated with both internalizing and externalizing difficulties, focusing on the mediating role of autonomy and relatedness. Participants were 418 European-American and 359 Italian college students. Results indicated that the expressions of PPC with regard to dependency and achievement were related to emerging adults' negative outcomes through different pathways, and these effects were moderated by the cultural group. The implications of the findings for future related empirical investigations and clinical interventions were discussed.
Mechanism of action of rapalogues: the antiangiogenic hypothesis.
Faivre, Sandrine; Raymond, Eric
2008-11-01
mTOR interacts with multiple proteins involved in major signal transduction pathways controlling cell growth, proliferation, and apoptosis. mTOR is acknowledged to play major roles in cellular interplays between cancer and stroma cells, including endothelial cells. Rapalogues demonstrated antitumour activity in several hypervascularized tumours in clinical trials. Whether rapalogues directly affect cancer cells or other stroma cells in tumours remains poorly understood. Knowing whether rapalogues act directly against cancer cells and/or could be considered as antiangiogenic agents has major implications in terms of medical indications and may help to further improve their drug development. Herein, we hypothesize that current rapalogues demonstrating activity in hypervascularized tumours may primarily act through antiangiogenic effects in patients, a hypothesis that certainly requires further translational investigations.
McHugh, Kirk M
2014-04-01
Congenital obstructive nephropathy remains one of the leading causes of chronic renal failure in children. The direct link between obstructed urine flow and abnormal renal development and subsequent dysfunction represents a central paradigm of urogenital pathogenesis that has far-reaching clinical implications. Even so, a number of diagnostic, prognostic, and therapeutic quandaries still exist in the management of congenital obstructive nephropathy. Studies in our laboratory have characterized a unique mutant mouse line that develops in utero megabladder, variable hydronephrosis, and progressive renal failure. Megabladder mice represent a valuable functional model for the study of congenital obstructive nephropathy. Recent studies have begun to shed light on the genetic etiology of mgb (-/-) mice as well as the molecular pathways controlling disease progression in these animals.
A new metabolomic assay to examine inflammation and redox pathways following LPS challenge
2012-01-01
Background Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. Methods The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. Results Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. Conclusions Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications. PMID:23036094
Timberlake, Andrew T; Furey, Charuta G; Choi, Jungmin; Nelson-Williams, Carol; Loring, Erin; Galm, Amy; Kahle, Kristopher T; Steinbacher, Derek M; Larysz, Dawid; Persing, John A; Lifton, Richard P
2017-08-29
Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10 -11 ). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.
High-throughput screening (HTS) assays capable of profiling thousands of environmentally relevant chemicals for in vitro biological activity provide useful information on the potential for disrupting endocrine pathways. Disruption of the estrogen signaling pathway has been implic...
Adenosine receptor desensitization and trafficking.
Mundell, Stuart; Kelly, Eamonn
2011-05-01
As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.
2014-12-01
1 AWARD NUMBER: W81XWH-13-1-0421 TITLE: The Fanconi Anemia BRCA Pathway as a Predictor of Benefit from Bevacizumab in a Large Phase III Clinical...DATES COVERED 30Sep2013 - 29Sep2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0421 The Fanconi Anemia BRCA Pathway as a Predictor of...another upfront clinical trial GOG262. We found that germline or somatic mutations in the BRCA- Fanconi anemia pathway was significantly associated with
Understanding Autoimmunity of Vitiligo and Alopecia Areata
Rork, Jillian F.; Rashighi, Mehdi; Harris, John E.
2016-01-01
Purpose of review Vitiligo and alopecia areata are common, disfiguring skin diseases. Treatment options are limited and include non-targeted approaches such as corticosteroids, topical calcineurin inhibitors, narrow band UVB phototherapy, and other immune-modifying agents. The purpose of this article is to review shared, novel mechanisms between vitiligo and alopecia areata, as well as discuss how they inform the development of future targeted treatments. Recent findings Vitiligo and alopecia areata are both autoimmune diseases, and striking similarities in pathogenesis have been identified at the level of both the innate and adaptive immune system. Increased reactive oxygen species and high cellular stress level have been suggested as the initiating trigger of the innate immune system in both diseases, and genome-wide association studies have implicated risk alleles that influence both innate and adaptive immunity. Most importantly, mechanistic studies in mouse models of vitiligo and alopecia areata have specifically implicated an IFN-γ-driven immune response, including IFN-γ, IFN-γ-induced chemokines, and cytotoxic CD8+ T cells as the main drivers of disease pathogenesis. These recent discoveries may reveal an effective strategy to develop new treatments, and several proof-of-concept clinical studies support this hypothesis. Summary The identification of IFN-γ-driven immune signaling pathways has enabled discoveries of potential new treatments for vitiligo and alopecia areata, and supports initiation of larger clinical trials. PMID:27191524
The Hippo signaling pathway in stem cell biology and cancer
Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang
2014-01-01
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474
Disease implications of the Hippo/YAP pathway
Plouffe, Steven W; Hong, Audrey W; Guan, Kun-Liang
2015-01-01
The Hippo signaling pathway is important for controlling organ size and tissue homeostasis. Originally identified in Drosophila melanogaster, the core components of the Hippo pathway are highly conserved in mammals. The Hippo pathway can be modulated by a wide range of stimuli, including G protein coupled receptor (GPCR) signaling, changes in the actin cytoskeleton, cell-cell contact, and cell polarity. When activated, the Hippo pathway functions as a tumor suppressor to limit cell growth. However, dysregulation by genetic inactivation of core pathway components, or amplification or gene fusion of its downstream effectors, results in increased cell proliferation and decreased apoptosis and differentiation. Not surprisingly, this can lead to tissue overgrowth, tumorigenesis, and many other diseases. PMID:25702974
Zuo, Jian; Yin, Qin; Wang, Yu-Wei; Li, Yan; Lu, Lin-Ming; Xiao, Zhan-Gang; Wang, Guo-Dong; Luan, Jia-Jie
2018-03-01
α-Mangostin (MG) is a bioactive compound isolated from mangosteen. This study was aimed to investigate effects of MG on adjuvant-induced arthritis (AA) in rats and decipher the underlying mechanisms. Clinical severity of AA was evaluated by paw oedema, arthritis score, and hematological parameters. Digital radiography (DR) and histological examinations were employed to assess joints destructions. Immune functions were evaluated by T cell subsets distribution. Effects on NF-κB pathway were investigated by immunohistochemical, western-blot and immunofluorescence methods both in vivo and vitro. It was found MG possessed superior anti-inflammatory effects in vivo, suggested by attenuated paw swelling, reduced inflammatory cells infiltration and decreased the secretion of TNF-α and IL-1β in serum. Meanwhile MG inhibited fibrous hyperplasia, synovial angiogenesis, cartilage and bone degradation in AA rats. Although MG exerted little effects on CD4 + population, it greatly decreased IFN-γ positive cells and promoted expression of FOXP3 in immune organs, indicating restoration of Th1/Treg cells ratio and recovery of immune homeostasis in vivo. Inhibition of NF-κB induced by MG was indicated by reduced the expression of p-p65 and VEGF in synovium. In vitro experiments found MG at 10 μg/ml significantly suppressed the expression and phosphorylation of key proteins implicated in NF-κB pathway and inhibited nucleus translocation of p65. These changes led to increased apoptosis and proliferation inhibition of HFLS-RA cells. The results demonstrated regulation of immune functions was deeply involved in the therapeutic actions of MG on AA, and it's inhibition on NF-κB in fibroblast-like synoviocytes was associated to the protective effects on joints. Copyright © 2018 Elsevier B.V. All rights reserved.
Modelling and Decision Support of Clinical Pathways
NASA Astrophysics Data System (ADS)
Gabriel, Roland; Lux, Thomas
The German health care market is under a rapid rate of change, forcing especially hospitals to provide high-quality services at low costs. Appropriate measures for more effective and efficient service provision are process orientation and decision support by information technology of clinical pathway of a patient. The essential requirements are adequate modelling of clinical pathways as well as usage of adequate systems, which are capable of assisting the complete path of a patient within a hospital, and preferably also outside of it, in a digital way. To fulfil these specifications the authors present a suitable concept, which meets the challenges of well-structured clinical pathways as well as rather poorly structured diagnostic and therapeutic decisions, by interplay of process-oriented and knowledge-based hospital information systems.
2012-01-01
Background Angiogenesis plays an essential role in tumor growth and metastasis, and is a major target in cancer therapy. VEGFR and PDGFR are key players involved in this process. The purpose of this study was to assess the incidence of genetic variants in these receptors and its potential clinical implications in colorectal cancer (CRC). Methods VEGFR2, PDGFRα and PDGFRβ mutations were evaluated by sequencing their tyrosine kinase domains in 8 CRC cell lines and in 92 samples of patients with CRC. Correlations with clinicopathological features and survival were analyzed. Results Four SNPs were identified, three in PDGFRα [exon 12 (A12): c.1701A>G; exon 13 (A13): c.1809G>A; and exon 17 (A17): c.2439+58C>A] and one in PDGFRβ [exon 19 (B19): c.2601A>G]. SNP B19, identified in 58% of tumor samples and in 4 cell lines (LS174T, LS180, SW48, COLO205), was associated with higher PDGFR and pPDGFR protein levels. Consistent with this observation, 5-year survival was greater for patients with PDGFR B19 wild type tumors (AA) than for those harboring the G-allele genotype (GA or GG) (51% vs 17%; p=0.073). Multivariate analysis confirmed SNP B19 (p=0.029) was a significant prognostic factor for survival, independent of age (p=0.060) or TNM stage (p<0.001). Conclusions PDGFRβ exon 19 c.2601A>G SNP is commonly encountered in CRC patients and is associated with increased pathway activation and poorer survival. Implications regarding its potential influence in response to PDGFR-targeted agents remain to be elucidated. PMID:23146028
Porphyrinuria in childhood autistic disorder: Implications for environmental toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, Robert; Skorupka, Corinne; Amet, Lorene
To address a possible environmental contribution to autism, we carried out a retrospective study on urinary porphyrin levels, a biomarker of environmental toxicity, in 269 children with neurodevelopmental and related disorders referred to a Paris clinic (2002-2004), including 106 with autistic disorder. Urinary porphyrin levels determined by high-performance liquid chromatography were compared between diagnostic groups including internal and external control groups. Coproporphyrin levels were elevated in children with autistic disorder relative to control groups. Elevation was maintained on normalization for age or to a control heme pathway metabolite (uroporphyrin) in the same samples. The elevation was significant (P < 0.001).more » Porphyrin levels were unchanged in Asperger's disorder, distinguishing it from autistic disorder. The atypical molecule precoproporphyrin, a specific indicator of heavy metal toxicity, was also elevated in autistic disorder (P < 0.001) but not significantly in Asperger's. A subgroup with autistic disorder was treated with oral dimercaptosuccinic acid (DMSA) with a view to heavy metal removal. Following DMSA there was a significant (P = 0.002) drop in urinary porphyrin excretion. These data implicate environmental toxicity in childhood autistic disorder.« less
The compression dome concept: the restorative implications.
Milicich, Graeme
2017-01-01
Evidence now supports the concept that the enamel on a tooth acts like a compression dome, much like the dome of a cathedral. With an overlying enamel compression dome, the underlying dentin is protected from damaging tensile forces. Disruption of a compression system leads to significant shifts in load pathways. The clinical restorative implications are significant and far-reaching. Cutting the wrong areas of a tooth exposes the underlying dentin to tensile forces that exceed natural design parameters. These forces lead to crack propagation, causing flexural pain and eventual fracture and loss of tooth structure. Improved understanding of the microanatomy of tooth structure and where it is safe to cut teeth has led to a revolution in dentistry that is known by several names, including microdentistry, minimally invasive dentistry, biomimetic dentistry, and bioemulation dentistry. These treatment concepts have developed due to a coalescence of principles of tooth microanatomy, material science, adhesive dentistry, and reinforcing techniques that, when applied together, will allow dentists to repair a compromised compression dome so that it more closely replicates the structure of the healthy tooth.
Polychlorinated biphenyls and links to cardiovascular disease.
Perkins, Jordan T; Petriello, Michael C; Newsome, Bradley J; Hennig, Bernhard
2016-02-01
The pathology of cardiovascular disease is multi-faceted, with links to many modifiable and non-modifiable risk factors. Epidemiological evidence now implicates exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), with an increased risk of developing diabetes, hypertension, and obesity; all of which are clinically relevant to the onset and progression of cardiovascular disease. PCBs exert their cardiovascular toxicity either directly or indirectly via multiple mechanisms, which are highly dependent on the type and concentration of PCBs present. However, many PCBs may modulate cellular signaling pathways leading to common detrimental outcomes including induction of chronic oxidative stress, inflammation, and endocrine disruption. With the abundance of potential toxic pollutants increasing globally, it is critical to identify sensible means of decreasing associated disease risks. Emerging evidence now implicates a protective role of lifestyle modifications such as increased exercise and/or nutritional modulation via anti-inflammatory foods, which may help to decrease the vascular toxicity of PCBs. This review will outline the current state of knowledge linking coplanar and non-coplanar PCBs to cardiovascular disease and describe the possible molecular mechanism of this association.
The Infant Microbiome: Implications for Infant Health and Neurocognitive Development
Yang, Irene; Corwin, Elizabeth J.; Brennan, Patricia A.; Jordan, Sheila; Murphy, Jordan R.; Dunlop, Anne
2015-01-01
Background Beginning at birth, the microbes in the gut perform essential duties related to the digestion and metabolism of food, the development and activation of the immune system, and the production of neurotransmitters that affect behavior and cognitive function. Objectives The objectives of this review are to: (a) provide a brief overview of the microbiome and the “microbiome-gut-brain axis”; (b) discuss factors known to affect the composition of the infant microbiome: mode of delivery, antibiotic exposure, and infant feeding patterns; and (c) present research priorities for nursing science, and clinical implications for infant health and neurocognitive development. Discussion The gut microbiome influences immunological, endocrine, and neural pathways and plays an important role in infant development. Several factors influence colonization of the infant gut microbiome. Different microbial colonization patterns are associated with vaginal versus surgical birth, exposure to antibiotics, and infant feeding patterns. Because of extensive physiological influence, infant microbial colonization patterns have the potential to impact physical and neurocognitive development and life course disease risk. Understanding these influences will inform newborn care and parental education. PMID:26657483
Porphyrinuria in childhood autistic disorder: implications for environmental toxicity.
Nataf, Robert; Skorupka, Corinne; Amet, Lorene; Lam, Alain; Springbett, Anthea; Lathe, Richard
2006-07-15
To address a possible environmental contribution to autism, we carried out a retrospective study on urinary porphyrin levels, a biomarker of environmental toxicity, in 269 children with neurodevelopmental and related disorders referred to a Paris clinic (2002-2004), including 106 with autistic disorder. Urinary porphyrin levels determined by high-performance liquid chromatography were compared between diagnostic groups including internal and external control groups. Coproporphyrin levels were elevated in children with autistic disorder relative to control groups. Elevation was maintained on normalization for age or to a control heme pathway metabolite (uroporphyrin) in the same samples. The elevation was significant (P < 0.001). Porphyrin levels were unchanged in Asperger's disorder, distinguishing it from autistic disorder. The atypical molecule precoproporphyrin, a specific indicator of heavy metal toxicity, was also elevated in autistic disorder (P < 0.001) but not significantly in Asperger's. A subgroup with autistic disorder was treated with oral dimercaptosuccinic acid (DMSA) with a view to heavy metal removal. Following DMSA there was a significant (P = 0.002) drop in urinary porphyrin excretion. These data implicate environmental toxicity in childhood autistic disorder.
Hedgehog Signaling in Prostate Cancer and Its Therapeutic Implication
Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin
2013-01-01
Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition. PMID:23880852
The Microbiome: a Revolution in Treatment for Rheumatic Diseases?
Rosenbaum, James T; Asquith, Mark J
2016-10-01
The microbiome is the term that describes the microbial ecosystem that cohabits an organism such as humans. The microbiome has been implicated in a long list of immune-mediated diseases which include rheumatoid arthritis, ankylosing spondylitis, and even gout. The mechanisms to account for this effect are multiple. The clinical implications from observations on the microbiome and disease are broad. A growing number of microbiota constituents such as Prevotella copri, Porphyromonas gingivalis, and Collinsella have been correlated or causally related to rheumatic disease. The microbiome has a marked effect on the immune system. Our understanding of immune pathways modulated by the microbiota such as the induction of T helper 17 (Th17) cells and secretory immunoglobulin A (IgA) responses to segmented filamentous bacteria continues to expand. In addition to the gut microbiome, bacterial communities of other sites such as the mouth, lung, and skin have also been associated with the pathogenesis of rheumatic diseases. Strategies to alter the microbiome or to alter the immune activation from the microbiome might play a role in the future therapy for rheumatic diseases.
Current methodological approaches in conditioned pain modulation assessment in pediatrics
Hwang, Philippe S; Ma, My-Linh; Spiegelberg, Nora; Ferland, Catherine E
2017-01-01
Conditioned pain modulation (CPM) paradigms have been used in various studies with healthy and non-healthy adult populations in an attempt to elucidate the mechanisms of pain processing. However, only a few studies so far have applied CPM in pediatric populations. Studies finding associations with chronic pain conditions suggest that deficiencies in underlying descending pain pathways may play an important role in the development and persistence of pain early in life. Twelve studies were identified using a PubMed search which examine solely pediatric populations, and these are reviewed with regard to demographics studied, methodological approaches, and conclusions reached. This review aimed to provide both clinicians and researchers with a brief overview of the current state of research regarding the use of CPM in children and adolescents, both healthy and clinical patients. The implications of CPM in experimental and clinical settings and its potential to aid in refining considerations to individualize treatment of pediatric pain syndromes will be discussed. PMID:29263694
Priya, Rinki Ratna; Chew, Emily Y; Swaroop, Anand
2012-12-01
Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals >55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic, and nongenetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from the human genome project, genome-wide association studies, and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Herein, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive, and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher in a new era of personalized medicine in the clinical management of AMD. Proprietary or commercial disclosures may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Inherited dystonias: clinical features and molecular pathways.
Weisheit, Corinne E; Pappas, Samuel S; Dauer, William T
2018-01-01
Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL. Copyright © 2018 Elsevier B.V. All rights reserved.
The Clinical Application of MicroRNAs in Infectious Disease
Drury, Ruth E.; O’Connor, Daniel; Pollard, Andrew J.
2017-01-01
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome. PMID:28993774
The Clinical Application of MicroRNAs in Infectious Disease.
Drury, Ruth E; O'Connor, Daniel; Pollard, Andrew J
2017-01-01
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen-hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Clinical Pathways: A Catalyst for the Adoption of Hypofractionation for Early-Stage Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bhavana V.; Rajagopalan, Malolan S.; Heron, Dwight E.
2015-11-15
Purpose: Hypofractionated whole-breast irradiation (HF-WBI) remains underutilized in the United States despite support by multiple clinical trials. We evaluated the success of iterative modifications of our breast cancer clinical pathway on the adoption of HF-WBI in a large, integrated radiation oncology network. Methods and Materials: The breast clinical pathway was modified in January 2011 (Amendment 1) to recommend HF-WBI as the first option for women ≥70 of age with stages 0 to IIA, while maintaining conventional fractionation (CF) as a pathway-concordant secondary option. In January 2013 (Amendment 2), the pathway's HF-WBI recommendation was extended to women ≥50 years of age.more » In January 2014 (Amendment 3), the pathway mandated HF-WBI as the only pathway-concordant option in women ≥50 years of age, and all pathway-discordant plans were subject to peer review and justification. Women ≥50 years of age with ductal carcinoma in situ or invasive breast cancer who underwent breast conserving surgery and adjuvant WBI were included in this analysis. Results: We identified 5112 patients from 2009 to 2014 who met inclusion criteria. From 2009 to 2012, the overall HF-WBI use rate was 8.3%. Following Amendments 2 and 3 (2013 and 2014, respectively), HF-WBI use significantly increased to 21.8% (17.3% in the community, 39.7% at academic sites) and 76.7% (75.5% in the community, 81.4% at academic sites), respectively (P<.001). Compared to 2009 to 2012, the relative risk of using HF-WBI was 7.9 (95% confidence interval: 7.1-8.6, P<.001) and 10.7 (95% CI: 10.3-11.0, P<.001), respectively, after Amendments 2 and 3, respectively. Age ≥70 and treatment at an academic site increased the likelihood of receiving HF-WBI in 2009 to 2012 and following Amendment 2 (P<.001). Conclusions: This study demonstrates the transformative effect of a clinical pathway on patterns of care for breast radiation therapy. Although our initial HF-WBI use rate was low (8%-22%) and consistent with national rates, the clinical pathway approach dramatically increased adoption rate to >75%. In contrast to passive guidelines, clinical pathways serve as active tools to promote current best practices.« less
PROPOSAL OF A CLINICAL CARE PATHWAY FOR THE MANAGEMENT OF ACUTE UPPER GASTROINTESTINAL BLEEDING.
Franco, Matheus Cavalcante; Nakao, Frank Shigueo; Rodrigues, Rodrigo; Maluf-Filho, Fauze; Paulo, Gustavo Andrade de; Libera, Ermelindo Della
2015-12-01
Upper gastrointestinal bleeding implies significant clinical and economic repercussions. The correct establishment of the latest therapies for the upper gastrointestinal bleeding is associated with reduced in-hospital mortality. The use of clinical pathways for the upper gastrointestinal bleeding is associated with shorter hospital stay and lower hospital costs. The primary objective is the development of a clinical care pathway for the management of patients with upper gastrointestinal bleeding, to be used in tertiary hospital. It was conducted an extensive literature review on the management of upper gastrointestinal bleeding, contained in the primary and secondary information sources. The result is a clinical care pathway for the upper gastrointestinal bleeding in patients with evidence of recent bleeding, diagnosed by melena or hematemesis in the last 12 hours, who are admitted in the emergency rooms and intensive care units of tertiary hospitals. In this compact and understandable pathway, it is well demonstrated the management since the admission, with definition of the inclusion and exclusion criteria, passing through the initial clinical treatment, posterior guidance for endoscopic therapy, and referral to rescue therapies in cases of persistent or rebleeding. It was also included the care that must be taken before hospital discharge for all patients who recover from an episode of bleeding. The introduction of a clinical care pathway for patients with upper gastrointestinal bleeding may contribute to standardization of medical practices, decrease in waiting time for medications and services, length of hospital stay and costs.
Dinsdale, Sarah; Branch, Kay; Cook, Lindsay; Shucksmith, Janet
2016-07-22
Maternal obesity is associated with risks to mother and infant, and has implications for healthcare costs. United Kingdom (UK) levels of maternal obesity are rising, with higher prevalence in North East (NE) England, where this study was set. Pregnancy is often seen as an opportune time for intervention - a 'teachable moment' - which is ripe for promoting behaviour change. In response to rising obesity levels, a National Health Service (NHS) Foundation Trust in NE England implemented three maternal obesity care pathways contingent on Body Mass Index (BMI) at time of booking: pathway 1 for those with BMI ≥30 kg/m(2); pathway 2 for BMI ≥35 kg/m(2); and pathway 3 for BMI ≥40 kg/m(2). These incorporated relevant antenatal, intrapartum and postnatal clinical requirements, and included a focus on weight management intervention. This evaluation explored the accounts of postnatal women who had been through one of these pathways in pregnancy. The study used a generic qualitative approach. Semi-structured interviews were carried out to explore the views and experiences of 24 recent mothers (aged 20-42), living in NE England, who had commenced on one of the pathways during pregnancy. Interviews explored experiences of weight management support during and after pregnancy, and perceived gaps in this support. Data were analysed using thematic content analysis. Three main themes emerged reflecting women's views and experiences of the pathways: communication about the pathways; treating obese pregnant women with sensitivity and respect; and appropriate and accessible lifestyle services and information for women during and after pregnancy. An overarching theme: differences in care, support and advice, was evident when comparing the experiences of women on pathways 1 or 2 with those on pathway 3. This study indicated that women were not averse to risk management and weight management intervention during and after pregnancy. However, in order to improve reach and effectiveness, such interventions need to be well communicated and offer constructive, individualised advice and support. The postnatal phase may also offer an opportune moment for intervention, suggesting that the simple notion of seeing pregnancy alone as a window of opportunity or a 'teachable moment' should be reconsidered.
An update on the genetic architecture of hyperuricemia and gout.
Merriman, Tony R
2015-04-10
Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.
Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer.
Wang, Meng; Medeiros, Bruno C; Erba, Harry P; DeAngelo, Daniel J; Giles, Francis J; Swords, Ronan T
2011-03-01
The NEDD8 (neural precursor cell-expressed developmentally downregulated 8) conjugation pathway regulates the post-translational modification of oncogenic proteins. This pathway has important potential for cancer therapeutics. Several proteins vital in cancer biology are regulated by protein neddylation. These observations led to the development of a small molecule inhibitor that disrupts protein neddylation and leads to cancer cell death and important activity in early phase clinical trials. This review provides an extensive coverage of cellular protein homeostasis with particular emphasis on the NEDD8 conjugation pathway. Insights into a new investigational drug that specifically disrupts the NEDD8 pathway are discussed. The clinical data for this agent are also updated. Neddylation controls key cellular pathways found to be dysregulated in many cancers. Protein neddylation is a relatively under-explored pathway for pharmacologic inhibition in cancer. Selective disruption of this pathway has demonstrated clinical activity in patients with myeloid neoplasms and is worth exploring further in combination with other anti-leukemia agents.
Implications of State and Local Policy on Community College Transfer in California
ERIC Educational Resources Information Center
Neault, Lynn Ceresino; Piland, William E.
2014-01-01
Lower division transfer preparation for the university has been the primary mission of community colleges since their inception creating an important pathway to baccalaureate degree attainment for many students who may not otherwise have the opportunity for higher education. Once considered fairly straightforward, the transfer pathway has become…
Diversity in Pathways to Parenthood: Patterns, Implications, and Emerging Research Directions
ERIC Educational Resources Information Center
Smock, Pamela J.; Greenland, Fiona Rose
2010-01-01
This review examines and synthesizes recent research on pathways to parenthood. We begin by providing basic information about patterns, differentials, and trends and discussing adoption and new reproductive technologies. We next turn to several areas of inquiry that became particularly prominent in the last decade: the continued "decoupling" of…
Meaning Profiles of Dwellings, Pathways, and Metaphors in Design: Implications for Education
ERIC Educational Resources Information Center
Casakin, Hernan; Kreitler, Shulamith
2017-01-01
The study deals with the roles and interrelations of the meaning-based assessments of dwellings, pathways and metaphors in design performance. It is grounded in the Meaning Theory [Kreitler, S., and H. Kreitler. 1990. "The Cognitive Foundations of Personality Traits." New York: Plenum], which enables identifying the cognitive contents…
Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola
2017-06-21
Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).
Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V
2014-01-01
Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Compliance with clinical pathways for inpatient care in Chinese public hospitals.
He, Xiao Yan; Bundorf, M Kate; Gu, Jian Jun; Zhou, Ping; Xue, Di
2015-10-06
The National Health and Family Planning Commission of China has issued more than 400 clinical pathways to improve the effectiveness and efficiency of medical care delivered by public hospitals in China. The aim of our study is to determine whether patient care is compliant with national clinical pathways in public general hospitals of Pudong New Area in Shanghai. We identified the clinical pathways established by the National Health and Family Planning Commission of China for 5 common conditions (community-acquired pneumonia, acute myocardial infarction (AMI), heart failure, cesarean section, type-2 diabetes). We randomly selected patients with each condition admitted to one of 7 public general hospitals in Pudong New Area in China in January, 2013. We identified key process indicators (KPIs) for each pathway and, based on chart review for each patient, determined whether the patient's care was compliant for each indicator. We calculated the proportion of care which was compliant with clinical pathways for each indicator, the average proportion of indicators that were met for each patient, and the proportion of patients whose care was compliant for all measures. For selected indicators, we compared compliance rates among hospitals in our study with those from other countries. Average compliance rates across the KPIs for each condition ranged from 61 % for AMI to 89 % for pneumonia. The percent of patient receiving fully compliant care ranged from 0 for AMI and heart failure to 39 % for pneumonia. Compared to the compliance rate for process indicators in the hospitals of other countries, some rates in the hospitals that we audited were higher, but some were lower. Few patients received care that complied with all the pathways for each condition. The reasons for low compliance with national clinical pathways and how to improve clinical quality in public hospitals of China need to be further explored.
PHB in Cardiovascular and Other Diseases: Present Knowledge and Implications.
Chowdhury, Debabrata; Kumar, Dinesh; Sarma, Pranjal; Tangutur, Anjana Devi; Bhadra, Manika Pal
2017-11-30
Prohibitin (PHB) is overtly conserved evolutionarily and ubiquitously expressed protein with pleiotropic functions in diverse cellular compartments. However, regulation and function of these proteins in different cells, tissues and in various diseases is different as evidenced by expression of these proteins which is found to be reduced in heart diseases, kidney diseases, lung disease, Crohn's disease and ulcerative colitis but this protein is highly expressed in diverse cancers. The mechanism by which this protein acts at the molecular level in different subcellular localizations or in different cells or tissues in different conditions (diseases or normal) has remained poorly understood. There are several studies reported to understand and decipher PHB's role in diseases and/or cancers of ovary, lung, stomach, thyroid, liver, blood, prostrate, gastric, esophagus, glioma, breast, bladder etc. where PHB is shown to act through mechanisms by acting as oncogene, tumor suppressor, antioxidant, antiapoptotic, in angiogenesis, autophagy etc. This review specifically gives attention to the functional role and regulatory mechanism of PHB proteins in cardiovascular health and diseases and its associated implications. Various molecular pathways involved in PHB function and its regulation are analyzed. PHB is rapidly emerging as a critical target molecule for cardiovascular signaling. Progress in delineating CVD and mechanisms of PHB in diverse molecular pathways is essential for determining when and how PHB targeted therapy might be feasible. In this regard, new therapies targeting PHB may best be applied in the future together with molecular profiling of CVD for clinical stratification of disease diagnosis and prognosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wu, Chuan Xing; Xu, Aimin; Zhang, Cathy C; Olson, Peter; Chen, Lin; Lee, Terence K; Cheung, Tan To; Lo, Chung Mau; Wang, Xiao Qi
2017-08-01
Aberrant activation of the Notch signaling pathway is implicated in many solid tumors, including hepatocellular carcinoma, indicating a potential use of Notch inhibitors for treatment. In this study, we investigated the antitumor and antimetastasis efficacy of the novel Notch inhibitor (γ-secretase inhibitor) PF-03084014 in hepatocellular carcinoma. Hepatocellular carcinoma spherical cells (stem-like cancer cells), a sphere-derived orthotopic tumor model and one patient-derived xenograft (PDX) model were used in our experiment. We demonstrated that PF-03084014 inhibited the self-renewal and proliferation of cancer stem cells. PF-03084014 reduced the hepatocellular carcinoma sphere-derived orthotopic tumor and blocked the hepatocellular carcinoma tumor liver to lung metastasis. We further tested the PF-03084014 in PDX models and confirmed the inhibition tumor growth effect. In addition, a low dose of PF-03084014 induced hepatocellular carcinoma sphere differentiation, resulting in chemosensitization. Antitumor activity was associated with PF-03084014-induced suppression of Notch1 activity, decreased Stat3 activation and phosphorylation of the Akt signaling pathway, and reduced epithelial-mesenchymal transition. These are the key contributors to the maintenance of cancer stemness and the promotion of cancer metastasis. Moreover, the Notch-Stat3 association was implicated in the clinical hepatocellular carcinoma prognosis. Collectively, PF-03084014 revealed antitumor and antimetastatic effects in hepatocellular carcinoma, providing evidence for the potential use of gamma-secretase inhibitors as a therapeutic option for the treatment of hepatocellular carcinoma. Mol Cancer Ther; 16(8); 1531-43. ©2017 AACR . ©2017 American Association for Cancer Research.
Neural tube defects – disorders of neurulation and related embryonic processes
Copp, Andrew J.; Greene, Nicholas D. E.
2014-01-01
Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. ‘Open’ NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida) and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. ‘Closed’ NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. ‘Herniation’ NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorised through a pathological opening in the skull or vertebral column (e.g. encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signalling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the BMP and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid, when taken as a peri-conceptional supplement, can prevent many cases. Not all NTDs respond to folic acid, however, and adjunct therapies are required for prevention of this folic acid-resistant category. PMID:24009034
Capacity of clinical pathways--a strategic multi-level evaluation tool.
Cardoen, Brecht; Demeulemeester, Erik
2008-12-01
In this paper we strategically evaluate the efficiency of clinical pathways and their complex interdependencies with respect to joint resource usage and patient throughput. We propose a discrete-event simulation approach that allows for the simultaneous evaluation of multiple clinical pathways and the inherent uncertainty (resource, duration and arrival) that accompanies medical processes. Both the consultation suite and the surgery suite may be modeled and examined in detail by means of sensitivity or scenario analyses. Since each medical facility can somehow be represented as a combination of clinical pathways, i.e. they are conceptually similar, the simulation model is generic in nature. Next to the formulation of the model, we illustrate its applicability by means of a case study that was conducted in a Belgian hospital.
Clark, Jeremy; Cooper, Colin S; Mills, Robert; Rayward-Smith, Victor J; de la Iglesia, Beatriz
2015-01-01
Background Routinely collected data in hospitals is complex, typically heterogeneous, and scattered across multiple Hospital Information Systems (HIS). This big data, created as a byproduct of health care activities, has the potential to provide a better understanding of diseases, unearth hidden patterns, and improve services and cost. The extent and uses of such data rely on its quality, which is not consistently checked, nor fully understood. Nevertheless, using routine data for the construction of data-driven clinical pathways, describing processes and trends, is a key topic receiving increasing attention in the literature. Traditional algorithms do not cope well with unstructured processes or data, and do not produce clinically meaningful visualizations. Supporting systems that provide additional information, context, and quality assurance inspection are needed. Objective The objective of the study is to explore how routine hospital data can be used to develop data-driven pathways that describe the journeys that patients take through care, and their potential uses in biomedical research; it proposes a framework for the construction, quality assessment, and visualization of patient pathways for clinical studies and decision support using a case study on prostate cancer. Methods Data pertaining to prostate cancer patients were extracted from a large UK hospital from eight different HIS, validated, and complemented with information from the local cancer registry. Data-driven pathways were built for each of the 1904 patients and an expert knowledge base, containing rules on the prostate cancer biomarker, was used to assess the completeness and utility of the pathways for a specific clinical study. Software components were built to provide meaningful visualizations for the constructed pathways. Results The proposed framework and pathway formalism enable the summarization, visualization, and querying of complex patient-centric clinical information, as well as the computation of quality indicators and dimensions. A novel graphical representation of the pathways allows the synthesis of such information. Conclusions Clinical pathways built from routinely collected hospital data can unearth information about patients and diseases that may otherwise be unavailable or overlooked in hospitals. Data-driven clinical pathways allow for heterogeneous data (ie, semistructured and unstructured data) to be collated over a unified data model and for data quality dimensions to be assessed. This work has enabled further research on prostate cancer and its biomarkers, and on the development and application of methods to mine, compare, analyze, and visualize pathways constructed from routine data. This is an important development for the reuse of big data in hospitals. PMID:26162314
Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.
Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng
2015-12-01
Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals.
Mimoto, Mizuho S; Nadal, Angel; Sargis, Robert M
2017-06-01
Environmental toxicants are increasingly implicated in the global decline in metabolic health. Focusing on diabetes, herein, the molecular and cellular mechanisms by which metabolism disrupting chemicals (MDCs) impair energy homeostasis are discussed. Emerging data implicate MDC perturbations in a variety of pathways as contributors to metabolic disease pathogenesis, with effects in diverse tissues regulating fuel utilization. Potentiation of traditional metabolic risk factors, such as caloric excess, and emerging threats to metabolism, such as disruptions in circadian rhythms, are important areas of current and future MDC research. Increasing evidence also implicates deleterious effects of MDCs on metabolic programming that occur during vulnerable developmental windows, such as in utero and early post-natal life as well as pregnancy. Recent insights into the mechanisms by which MDCs alter energy homeostasis will advance the field's ability to predict interactions with classical metabolic disease risk factors and empower studies utilizing targeted therapeutics to treat MDC-mediated diabetes.
Implementation and evaluation of a clinical pathway for TRAM breast reconstruction.
Hwang, T G; Wilkins, E G; Lowery, J C; Gentile, J
2000-02-01
Among strategies recently proposed to reduce practice variation, promote quality, and control costs in health care delivery, the concept of the clinical pathway has received considerable attention. Because transverse rectus abdominis musculocutaneous (TRAM) breast reconstruction is a common and often costly intervention, this institution sought to evaluate cost and quality outcomes of a clinical pathways program for this procedure. The TRAM reconstruction clinical pathway was implemented in April of 1996 to standardize postoperative care in this patient population. Outcomes of consecutive pathway cases for the first 14 months of the program were assessed in a retrospective cohort design, by using all nonpathway TRAM cases from the 18 months immediately before pathway implementation as controls. Outcomes assessed included length of hospital stay, postoperative complications, total postoperative charges, and total postoperative costs in relative value units. Data on these dependent variables were collected from hospital charts and billing records. The effects of pathway implementation on the outcomes of interest were analyzed by using analysis of covariance to control for potential confounding by other independent variables, including surgical site (unilateral versus bilateral reconstructions), technique (pedicle versus free TRAMs), timing (immediate versus delayed reconstructions), and patient age. Finally, a comparison of variances in the outcomes of interest between the two groups was analyzed by using an Ftest. For all statistical tests, p values of < or = 0.05 were considered significant. Twenty-nine patients were treated in the TRAM pathway group, whereas the control population included 40 nonpathway patients. After implementation of the TRAM pathway, length of stay decreased from 6.0 to 5.2 days; total postoperative charges were reduced from $8587 to $7744; and total postoperative relative value unit utilization declined from 1686 to 1104. Analysis of covariance showed that the decreases in length of hospital stay and relative value units in the TRAM pathway were statistically significant (p = 0.05 and p = 0.007, respectively). By contrast, no significant increase in complications was observed after pathway implementation. Variability in the TRAM pathway group, as measured by SD, decreased significantly for both length of hospital stay (p = 0.039) and relative value units (p = 0.023). Implementation of the TRAM reconstruction clinical pathway resulted in significant declines in length of hospital stay and total costs. These decreases in resource utilization had no significant effect on postoperative complication rates. Although additional research is needed to further assess the impact of clinical pathways, this approach offers considerable promise for improving the cost-effectiveness of health care.
Looking forward in geriatric anxiety and depression: implications of basic science for the future.
Gershenfeld, Howard K; Philibert, Robert A; Boehm, Gary W
2005-12-01
Major depression and anxiety are common psychiatric illnesses whose etiology remains incompletely understood. This review highlights progress in understanding the etiology of these illnesses through genetic strategies and looks forward to their impact on geriatric psychiatry. We briefly address three broad domains of progress, namely 1) genetic approaches to etiology, including linkage and association studies, pharmacogenetics ("personalized medicine"), and gene x environment interactions; 2) mechanisms of thyroid and testosterone action via nuclear receptors, given these hormones' status as possible augmenters of antidepressants; and 3) the role of the neuroimmune system as a contributor to the stress response. Genetic strategies offer one path for converting correlational findings into causal pathways while complementing studies of a gene's function at the molecular, cellular, network, and whole-organismal levels. Neuroendocrine supplementation (thyroid and testosterone) has a long history and tradition. A molecular understanding of nuclear receptor pathways and their coactivators, the mediator complex proteins, provides a rationale for improved targeting of hormonal action in a tissue-selective manner, yielding drugs with improved safety and efficacy. Neural-immune interactions in psychiatric illness remain tantalizing topics. Research suggests that cytokine pathways may contribute to the maintenance or susceptibility to stress, anxiety, and depressive disorders. The reciprocal and recursive interactions among basic science, drug discovery, and clinical science will continue to provide hopeful themes for improving the lives of patients with treatment-refractive psychiatric illness.
Metabolic genes in cancer: their roles in tumor progression and clinical implications
Furuta, Eiji; Okuda, Hiroshi; Kobayashi, Aya; Watabe, Kounosuke
2010-01-01
Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes. This review summarizes the recent information about the mechanistic link of these genes to oncogenesis and their potential utility as diagnostic markers as well as for therapeutic targets. We particularly focus on three groups of genes; GLUT1, G6PD, TKTL1 and PGI/AMF in glycolytic pathway, ACLY, ACC1 and FAS in lipogenesis and RRM1, RRM2 and TYMS for nucleotide synthesis. All these genes are highly up-regulated in a variety of tumor cells in cancer patients, and they play active roles in tumor progression rather than expressing merely as a consequence of phenotypic change of the cancer cells. Molecular dissection of their orchestrated networks and understanding the exact mechanism of their expression will provide a window of opportunity to target these genes for specific cancer therapy. We also reviewed existing database of gene microarray to validate the utility of these genes for cancer diagnosis. PMID:20122995
Gamus, Dorit
2011-08-01
Rheumatologic and autoimmune diseases are among foremost diseases for which patients seek complementary and integrative medicine options. Therefore, physicians should be informed on the advances in research of these therapies, in order to be able to discuss possible indications and contraindications for these treatment modalities with their patients. This review summarizes several therapeutic modalities of complementary medicine that may be involved in the cholinergic anti-inflammatory pathway. The analysis of systematic reviews of acupuncture for rheumatic conditions has concluded that the evidence is sufficiently sound to warrant positive recommendations of this therapy for osteoarthritis, low back pain and lateral elbow pain. There is relatively strong evidence to support the use of hypnosis in pain treatment, such as in cases of fibromyalgia. A recent controlled study that evaLuated tai-chi in fibromyalgia has reported reductions in pain, improvements in mood, quality of Life, self efficacy and exercise capacity. There is also cumulative evidence that acupuncture, hypnosis and tai-chi may decrease the high frequency of heart rate variability, suggesting enhancement of vagus nerve activity. Hence, it has been hypothesized that these modalities might impact the cholinergic anti-inflammatory pathway to modulate inflammation. Further clinical and basic research to confirm this hypothesis should be performed in order to validate integration of these therapies in comprehensive treatment for some inflammatory and autoimmune diseases.
Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming
2011-01-01
Abstract Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. PMID:20477906
Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Fahad, Mohamed; Hamam, Rimi; Alfayez, Musaad; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M
2018-03-02
Tumour heterogeneity leads to variable clinical response and inaccurate diagnostic and prognostic assessment. Cancer stem cells (CSCs) represent a subpopulation responsible for invasion, metastasis, therapeutic resistance, and recurrence in many human cancer types. However, the true identity of colorectal cancer (CRC) SCs remains elusive. Here, we aimed to characterize and define the gene expression portrait of CSCs in CRC-model SW403 cells. We found that ALDH + positive cells are clonogenic and highly proliferative; their global gene expression profiling-based molecular signature revealed gene enrichment related to DNA damage, MAPK, FAK, oxidative stress response, and Wnt signalling. ALDH + cells showed enhanced ROS stress resistance, whereas MAPK/FAK pathway pharmacologic inhibition limited their survival. Conversely, 5-fluorouracil increased the ALDH + cell fraction among the SW403, HCT116 and SW620 CRC models. Notably, analysis of ALDH1A1 and POU5F1 expression levels in cohorts of 462 or 420 patients for overall (OS) or disease-free (DFS) survival, respectively, obtained from the Cancer Genome Atlas CRC dataset, revealed strong association between elevated expression and poor OS ( p = 0.006) and poor DFS ( p = 0.05), thus implicating ALDH1A1 and POU5F1 in CRC prognosis. Our data reveal distinct molecular signature of ALDH + CSCs in CRC and suggest pathways relevant for successful targeted therapies and management of CRC.
Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex
Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.
2010-01-01
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664
Emerging pathways and future targets for the molecular therapy of pancreatic cancer.
Vaccaro, Vanja; Melisi, Davide; Bria, Emilio; Cuppone, Federica; Ciuffreda, Ludovica; Pino, Maria Simona; Gelibter, Alain; Tortora, Giampaolo; Cognetti, Francesco; Milella, Michele
2011-10-01
Pancreatic cancer treatment remains a challenge for clinicians and researchers. Despite undisputable advances in the comprehension of the molecular mechanisms underlying cancer development and progression, early disease detection and clinical management of patients has made little, if any, progress in the past 20 years. Clinical development of targeted agents directed against validated pathways, such as the EGF/EGF receptor axis, the mutant KRAS protein, MMPs, and VEGF-mediated angiogenesis, alone or in combination with gemcitabine-based standard chemotherapy, has been disappointing. This review explores the preclinical rationale for clinical approaches aimed at targeting the TGF-β, IGF, Hedgehog, Notch and NF-κB signaling pathways, to develop innovative therapeutic strategies for pancreatic cancer. Although some of the already clinically explored approaches (particularly EGFR and KRAS targeting) deserve further clinical consideration, by employing more innovative and creative clinical trial designs than the gemcitabine-targeted agent paradigm that has thus far invariably failed, the targeting of emerging and relatively unexplored signaling pathways holds great promise to increase our understanding of the complex molecular biology and to advance the clinical management of pancreatic cancer.
2010-01-01
Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors. PMID:20591134
Pharmacology of Myopia and Potential Role for Intrinsic Retinal Circadian Rhythms
Stone, Richard A.; Pardue, Machelle T.; Iuvone, P. Michael; Khurana, Tejvir S.
2013-01-01
Despite the high prevalence and public health impact of refractive errors, the mechanisms responsible for ametropias are poorly understood. Much evidence now supports the concept that the retina is central to the mechanism(s) regulating emmetropization and underlying refractive errors. Using a variety of pharmacologic methods and well-defined experimental eye growth models in laboratory animals, many retinal neurotransmitters and neuromodulators have been implicated in this process. Nonetheless, an accepted framework for understanding the molecular and/or cellular pathways that govern postnatal eye development is lacking. Here, we review two extensively studied signaling pathways whose general roles in refractive development are supported by both experimental and clinical data: acetylcholine signaling through muscarinic and/or nicotinic acetylcholine receptors and retinal dopamine pharmacology. The muscarinic acetylcholine receptor antagonist atropine was first studied as an anti-myopia drug some two centuries ago, and much subsequent work has continued to connect muscarinic receptors to eye growth regulation. Recent research implicates a potential role of nicotinic acetycholine receptors; and the refractive effects in population surveys of passive exposure to cigarette smoke, of which nicotine is a constituent, support clinical relevance. Reviewed here, many puzzling results inhibit formulating a mechanistic framework that explains acetylcholine’s role in refractive development. How cholinergic receptor mechanisms might be used to develop acceptable approaches to normalize refractive development remains a challenge. Retinal dopamine signaling not only has a putative role in refractive development, its upregulation by light comprises an important component of the retinal clock network and contributes to the regulation of retinal circadian physiology. During postnatal development, the ocular dimensions undergo circadian and/or diurnal fluctuations in magnitude; these rhythms shift in eyes developing experimental ametropia. Long-standing clinical ideas about myopia in particular have postulated a role for ambient lighting, although molecular or cellular mechanisms for these speculations have remained obscure. Experimental myopia induced by the wearing of a concave spectacle lens alters the retinal expression of a significant proportion of intrinsic circadian clock genes, as well as genes encoding a melatonin receptor and the photopigment melanopsin. Together this evidence suggests a hypothesis that the retinal clock and intrinsic retinal circadian rhythms may be fundamental to the mechanism(s) regulating refractive development, and that disruptions in circadian signals may produce refractive errors. Here we review the potential role of biological rhythms in refractive development. While much future research is needed, this hypothesis could unify many of the disparate clinical and laboratory observations addressing the pathogenesis of refractive errors. PMID:23313151
Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling.
Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet
2012-11-01
As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway.
Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling
Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M.; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet
2012-01-01
As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway. PMID:22951405
Child and adolescent risk factors that differentially predict violent versus nonviolent crime.
Kalvin, Carla B; Bierman, Karen L
2017-11-01
While most research on the development of antisocial and criminal behavior has considered nonviolent and violent crime together, some evidence points to differential risk factors for these separate types of crime. The present study explored differential risk for nonviolent and violent crime by investigating the longitudinal associations between three key child risk factors (aggression, emotion dysregulation, and social isolation) and two key adolescent risk factors (parent detachment and deviant peer affiliation) predicting violent and nonviolent crime outcomes in early adulthood. Data on 754 participants (46% African American, 50% European American, 4% other; 58% male) oversampled for aggressive-disruptive behavior were collected across three time points. Parents and teachers rated aggression, emotion dysregulation, and social isolation in fifth grade (middle childhood, age 10-11); parents and youth rated parent detachment and deviant peer affiliation in seventh and eighth grade (early adolescence, age 12-14) and arrest data were collected when participants were 22-23 years old (early adulthood). Different pathways to violent and nonviolent crime emerged. The severity of child dysfunction in late childhood, including aggression, emotion dysregulation, and social isolation, was a powerful and direct predictor of violent crime. Although child dysfunction also predicted nonviolent crime, the direct pathway accounted for half as much variance as the direct pathway to violent crime. Significant indirect pathways through adolescent socialization experiences (peer deviancy) emerged for nonviolent crime, but not for violent crime, suggesting adolescent socialization plays a more distinctive role in predicting nonviolent than violent crime. The clinical implications of these findings are discussed. © 2017 Wiley Periodicals, Inc.
Truban, Dominika; Hou, Xu; Caulfield, Thomas R.; Fiesel, Fabienne C.; Springer, Wolfdieter
2016-01-01
The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway. PMID:27911343
A novel curcumin derivative for the treatment of diabetic neuropathy.
Daugherty, Daniel J; Marquez, Alexandra; Calcutt, Nigel A; Schubert, David
2018-02-01
Neuropathy is a common complication of long-term diabetes. Proposed mechanisms of neuronal damage caused by diabetes that are downstream of hyperglycemia and/or loss of insulin signaling include ischemic hypoxia, inflammation and loss of neurotrophic support. The curcumin derivative J147 is a potent neurogenic and neuroprotective drug candidate initially developed for the treatment of neurodegenerative conditions associated with aging that impacts many pathways implicated in the pathogenesis of diabetic neuropathy. Here, we demonstrate efficacy of J147 in ameliorating multiple indices of neuropathy in the streptozotocin-induced mouse model of type 1 diabetes. Diabetes was determined by blood glucose, HbA1c, and insulin levels and efficacy of J147 by behavioral, physiologic, biochemical, proteomic, and transcriptomic assays. Biological efficacy of systemic J147 treatment was confirmed by its capacity to decrease TNFα pathway activation and several other markers of neuroinflammation in the CNS. Chronic oral treatment with J147 protected the sciatic nerve from progressive diabetes-induced slowing of large myelinated fiber conduction velocity while single doses of J147 rapidly and transiently reversed established touch-evoked allodynia. Conduction slowing and allodynia are clinically relevant markers of early diabetic neuropathy and neuropathic pain, respectively. RNA expression profiling suggests that one of the pathways by which J147 imparts its protection against diabetic induced neuropathy may be through activation of the AMP kinase pathway. The diverse biological and therapeutic effects of J147 suggest it as an alternative to the polypharmaceutical approaches required to treat the multiple pathogenic mechanisms that contribute to diabetic neuropathy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Epithelial Mesenchymal Transition in Cancer Progression: Prev entive Phytochemicals.
Illam, Soorya P; Narayanankutty, Arunaksharan; Mathew, Shaji E; Valsalakumari, Remya; Jacob, Rosemol M; Raghavamenon, Achuthan C
2017-01-01
Epithelial-Mesenchymal Transition (EMT) is the conversion of epithelial cells into mesenchymal phenotype generally observed during embryogenesis and wound healing as well as in malignant transformation. Several signaling pathways and transcription factors associated with EMT have been explored. Dietary phytochemicals that are multi-targeted agents which interfere with these pathways, assume preventive potential against pathologic EMT. The present review aims to provide a detailed description of the nature and characteristics of EMT in physiological and pathophysiological conditions and the scope of phytochemicals in its prevention. Details regarding the initiation, progression as well as prevention of pathologic EMT and metastasis and recent patents on preventive phytochemicals were obtained from PubMed literatures and patent databases. The phenotypic changes during EMT are regulated by transcription factors like Snail, Slug, Twist and Zeb, which are activated through diverse signaling pathways of TGF-β, NF-kB, Wnt and Notch. s phytocompounds that are potent enough to interfere with these signaling pathways, which in turn prevent pathological implications of EMT. Present review also discusses 28 recent patents on those phytocompounds. EMT is a significant pharmacological target for developing preventive agents to combat pathological conditions like malignancy. Many of the phytochemicals cited in this review are being enrolled for different phases of clinical trials for their efficacy. In spite of the major limitations regarding bioavailability, sensitivity and tolerance of these compounds, their synthetic analogs, formulations and efficient drug delivery systems are also being attempted which will hopefully generate productive and promising results in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhang, Yiye; Padman, Rema
2017-01-01
Patients with multiple chronic conditions (MCC) pose an increasingly complex health management challenge worldwide, particularly due to the significant gap in our understanding of how to provide coordinated care. Drawing on our prior research on learning data-driven clinical pathways from actual practice data, this paper describes a prototype, interactive platform for visualizing the pathways of MCC to support shared decision making. Created using Python web framework, JavaScript library and our clinical pathway learning algorithm, the visualization platform allows clinicians and patients to learn the dominant patterns of co-progression of multiple clinical events from their own data, and interactively explore and interpret the pathways. We demonstrate functionalities of the platform using a cluster of 36 patients, identified from a dataset of 1,084 patients, who are diagnosed with at least chronic kidney disease, hypertension, and diabetes. Future evaluation studies will explore the use of this platform to better understand and manage MCC.
Radhakrishnan, Prakash; Bryant, Vashti C; Blowers, Elizabeth C; Rajule, Rajkumar N; Gautam, Nagsen; Anwar, Muhammad M; Mohr, Ashley M; Grandgenett, Paul M; Bunt, Stephanie K; Arnst, Jamie L; Lele, Subodh M; Alnouti, Yazen; Hollingsworth, Michael A; Natarajan, Amarnath
2013-04-15
The presence of TNF-α in approximately 50% of surgically resected tumors suggests that the canonical NF-κB and the mTOR pathways are activated. Inhibitor of IκB kinase β (IKKβ) acts as the signaling node that regulates transcription via the p-IκBα/NF-κB axis and regulates translation via the mTOR/p-S6K/p-eIF4EBP axis. A kinome screen identified a quinoxaline urea analog 13-197 as an IKKβ inhibitor. We hypothesized that targeting the NF-κB and mTOR pathways with 13-197 will be effective in malignancies driven by these pathways. Retrospective clinical and preclinical studies in pancreas cancers have implicated NF-κB. We examined the effects of 13-197 on the downstream targets of the NF-κB and mTOR pathways in pancreatic cancer cells, pharmacokinetics, toxicity and tumor growth, and metastases in vivo. 13-197 inhibited the kinase activity of IKKβ in vitro and TNF-α-mediated NF-κB transcription in cells with low-μmol/L potency. 13-197 inhibited the phosphorylation of IκBα, S6K, and eIF4EBP, induced G1 arrest, and downregulated the expression of antiapoptotic proteins in pancreatic cancer cells. Prolonged administration of 13-197 did not induce granulocytosis and protected mice from lipopolysaccharide (LPS)-induced death. Results also show that 13-197 is orally available with extensive distribution to peripheral tissues and inhibited tumor growth and metastasis in an orthotopic pancreatic cancer model without any detectable toxicity. These results suggest that 13-197 targets IKKβ and thereby inhibits mTOR and NF-κB pathways. Oral availability along with in vivo efficacy without obvious toxicities makes this quinoxaline urea chemotype a viable cancer therapeutic.
ERIC Educational Resources Information Center
Cantley, Ian
2017-01-01
The outcomes of educational assessments undoubtedly have real implications for students, teachers, schools and education in the widest sense. Assessment results are, for example, used to award qualifications that determine future educational or vocational pathways of students. The results obtained by students in assessments are also used to gauge…
Expression of p16(INK4A) gene in human pituitary tumours.
Machiavelli, Gloria; Cotignola, Javier; Danilowicz, Karina; Carbonara, Carolina; Paes de Lima, Andrea; Basso, Armando; Bruno, Oscar Domingo; Szijan, Irene
2008-01-01
Pituitary adenomas comprise 10-15% of primary intracranial tumours but the mechanisms leading to tumour development are yet to be clearly established. The retinoblastoma pathway, which regulates the progression through the cell cycle, is often deregulated in different types of tumours. We studied the cyclin-dependent kinase inhibitor p16(INK4A) gene expression at mRNA level in human pituitary adenomas. Forty-six tumour specimens of different subtypes, 21 clinically non-functioning, 12 growth hormone-secreting, 6 prolactin-secreting, 6 adrenocorticotropin-secreting, and 1 thyrotropin-secreting tumours were studied. All clinically non-functioning and most of the hormone-secreting tumours were macroadenomas (38/46). The RT-PCR assay and electrophoresis of the PCR-products showed that p16(INK4A) mRNA was undetectable in: 62% of non-functioning, 8% of growth hormone-secreting, 17% of prolactin-secreting and 17% of adrenocorticotropin-secreting adenomas. Forty percent of all macroadenomas and 25% of microadenomas had negative p16(INK4A) mRNA, the latter results suggest that the absence of p16(INK4A) product might be an early event in tumours with no expression of this suppressor gene. Within the non-functioning adenomas 63% were "null cell" and 37% were positive for some hormone, both subgroups showed similar percentage of cases with absence of p16(INK4A) mRNA. Our results show that clinically non-functioning macroadenomas have impaired p16(INK4A) expression in a clearly higher proportion than any other pituitary tumour subtype investigated. Other regulatory pathways may be implicated in the development of tumours with positive p16(INK4A) expression.
Disease-specific clinical pathways - are they feasible in primary care? A mixed-methods study.
Grimsmo, Anders; Løhre, Audhild; Røsstad, Tove; Gjerde, Ingunn; Heiberg, Ina; Steinsbekk, Aslak
2018-06-01
To explore the feasibility of disease-specific clinical pathways when used in primary care. A mixed-method sequential exploratory design was used. First, merging and exploring quality interview data across two cases of collaboration between the specialist care and primary care on the introduction of clinical pathways for four selected chronic diseases. Secondly, using quantitative data covering a population of 214,700 to validate and test hypothesis derived from the qualitative findings. Primary care and specialist care collaborating to manage care coordination. Primary-care representatives expressed that their patients often have complex health and social needs that clinical pathways guidelines seldom consider. The representatives experienced that COPD, heart failure, stroke and hip fracture, frequently seen in hospitals, appear in low numbers in primary care. The quantitative study confirmed the extensive complexity among home healthcare nursing patients and demonstrated that, for each of the four selected diagnoses, a homecare nurse on average is responsible for preparing reception of the patient at home after discharge from hospital, less often than every other year. The feasibility of disease-specific pathways in primary care is limited, both from a clinical and organisational perspective, for patients with complex needs. The low prevalence in primary care of patients with important chronic conditions, needing coordinated care after hospital discharge, constricts transferring tasks from specialist care. Generic clinical pathways are likely to be more feasible and efficient for patients in this setting. Key points Clinical pathways in hospitals apply to single-disease guidelines, while more than 90% of the patients discharged to community health care for follow-up have multimorbidity. Primary care has to manage the health care of the patient holistically, with all his or her complex needs. Patients most frequently admitted to hospitals, i.e. patients with COPD, heart failure, stroke and hip fracture are infrequent in primary care and represent a minority among patients in need of coordinated community health care. In primary care, the low rate of receiving patients discharged from hospitals of major chronic diseases hampers maintenance of required specific skills, thus constricting the transfer of tasks to primary care. Generic clinical pathways are suggested to be more feasible than disease-specific pathways for most patients with complex needs.
DRUGS System Improving the Effects of Clinical Pathways: A Systematic Study.
Wang, Shan; Zhu, Xiaohe; Zhao, Xian; Lu, Yang; Yang, Zhifu; Qian, Xiaoliang; Li, Weiwei; Ma, Lixiazi; Guo, Huning; Wang, Jingwen; Wen, Aidong
2016-03-01
The aim of the study is to assess the feasibility of Drugs Rational Usage Guideline System (DRUGS)-supported clinical pathway (CP) for breast carcinoma, cataract, inguinal hernia and 2-diabetes mellitus whether the application of such a system could improve work efficiency, medical safety, and decrease hospital cost. Four kinds of diseases which included 1773 cases (where 901 cases using paper-based clinical pathways and 872 cases using DRUGS-supported clinical pathways) were selected and their demographic and clinical data were collected. The evaluation criteria were length of stay, preoperative length of stay, hospital cost, antibiotics prescribed during hospitalization, unscheduled surgery, complications and prognosis. The median total LOS was 1 to 3 days shorter in the DRUGS-supported CP group as compared to the Paper-based CP group for all types (p < 0.05). Totel hospital cost decreased significantly in the DRUGS-supported CP group than that in Paper-based CP group. About antibiotics prescribed during hospitalization, there were no statistically differences in the time of initial dose of antibiotic and the duration of administration except the choice of antibiotic categories. The proportion of DRUGS-supported clinical pathway conditions where a broad-spectrum antibiotic was prescribed decreased from 63.6 to 34.5 % (p < 0.01) in the Paper-based group. While after the intervention, the differences were statistically not significant in unscheduled surgery, complications and prognosis. In this study, DRUGS-supported clinical pathway for breast carcinoma, cataract, inguinal hernia, 2-diabetes mellitus was smoothly shifted from a paper-based to an electronic system, and confer benefits at the hospital level.
[Posttraumatic stress disorder endophenotypes: several clinical dimensions for specific treatments].
Auxéméry, Y
2012-01-01
Posttraumatic stress disorder is a syndrome with a very complex clinical that it is useful to describe according to a multidimensional approach. Following a critical review of the international literature, we have been able to highlight the genetic supports of posttraumatic stress disorder in the perspective of returning to the source of the clinical of this syndrome in order to steer its treatment better. We consider in succession the neuromodulation pathways involving dopamine, serotonine and noradrenaline to describe the hyperdomaminergic, hyposerotoninergic and hypernoradrenergic endophenotypes of posttraumatic stress disorder. Neurogenetic studies have affirmed two essential proposals. On the one hand, the pharmacological treatment of psychotraumatic disorders can be very closely adjusted to the different endophenotypes. On the other hand, the psychotherapeutic approach retains all its importance in the sense that it is the subjective implication that generated the trauma, subjectivity interacting with a genetic heritage and environmental factors integrating a social context. The changing definition of posttraumatic stress disorder over time comes from scientific exploration in part determined by a sociocultural context and, reciprocally, the psychic trauma is caused by the collapse of reassuring social values which were considered as immutable. The clinical is not developed according to fixed references: the evolution of neurogenetic techniques changes our perception of psychic traumas and the therapeutic possibilities.
The genetics of Hodgkin lymphoma: an overview and clinical implications.
Borchmann, Sven; Engert, Andreas
2017-09-01
The goal of this review is to give an overview of the genetics of classical Hodgkin lymphoma. Copy number changes, somatic mutations, genome-wide association studies, changes in gene expression, familial classical Hodgkin lymphoma and epigenetic changes will be reviewed. In doing so, special focus is placed on the way recent discoveries have influenced clinical research, diagnostics, treatment and remission monitoring. Furthermore, emphasis is put on how these advances can help to advance the treatment of elderly patients who have a markedly worse prognosis than younger patients. Frequent amplifications of the 9p24.1 locus in classical Hodgkin lymphoma could be the basis for the success of immune checkpoint inhibitors targeting PD-1 or PD-L1 in this disease. The same amplification also affects the JAK/STAT pathway, which has also been targeted in recent clinical trials. Hodgkin lymphoma-specific copy number alterations and mutations have recently been found to be detectable in cell-free DNA. This could provide the basis for advances in the detection of residual disease during treatment and while monitoring patients in remission. The advent of new technologies such as massive parallel sequencing has improved our understanding of the genetics of classical Hodgkin lymphoma. Some of these discoveries are now being translated into clinical research in the form of new diagnostics and treatments.
Meyers, Frederick J; Begg, Melissa D; Fleming, Michael; Merchant, Carol
2012-04-01
The challenges for scholars committed to successful careers in clinical and translational science are increasingly well recognized. The Education and Career Development (EdCD) of the national Clinical and Translational Science Award consortium gathered thought leaders to propose sustainable solutions and an agenda for future studies that would strengthen the infrastructure across the spectrum of pre- and postdoctoral, MD and PhD, scholars. Six consensus statements were prepared that include: (1) the requirement for career development of a qualitatively different investigator; (2) the implications of interdisciplinary science for career advancement including institutional promotion and tenure actions that were developed for discipline-specific accomplishments; (3) the need for long-term commitment of institutions to scholars; (4) discipline-specific curricula are still required but curricula designed to promote team work and interdisciplinary training will promote innovation; (5) PhD trainees have many pathways to career satisfaction and success; and (6) a centralized infrastructure to enhance and reward mentoring is required. Several themes cut across all of the recommendations including team science, innovation, and sustained institutional commitment. Implied themes include an effective and diverse job force and the requirement for a well-crafted public policy that supports continued investments in science education. © 2012 Wiley Periodicals, Inc.
How to implement a clinical pathway for intensive glucose regulation in acute coronary syndromes.
de Mulder, Maarten; Zwaan, Esther; Wielinga, Yvonne; Stam, Frank; Umans, Victor A W M
2009-06-01
Hyperglycemia upon admission of myocardial infarction patients predicts inferior clinical outcomes. Current strategies investigating hyperglycemia correction mostly use glucose-driven protocols. Implementation of these often labor-intensive protocols might be facilitated with the approach of a clinical pathway. Therefore, we evaluated the implementation of our glucose-driven protocol.We adapted a protocol for use in our coronary care unit (CCU), which was implemented according to the steps of a clinical pathway. To compensate for carbohydrates in meals we additionally developed a regimen of subcutaneous insulin.Protocol adherence was facilitated with a Web-based insulin calculator. All hyperglycemic patients admitted to the CCU were eligible for treatment according to this protocol.In a 4-month period, 643 glucose measurements were obtained in hyperglycemic patients admitted to our CCU. Patients were treated intensively with IV insulin for 35 hours and had 23 glucose measurements in this time span on average. This regimen achieved a median glucose of 6.2 mmol/L. Severe hypoglycemia occurred in only 1.1% of measurements and was without severe clinical side effects.Introduction of new intensive insulin protocol according to the steps of a clinical pathway is safe and feasible. The presence of a clinical pathway coordinator and sound communication are important conditions for successful introduction, which can be further aided with a computerized calculator.
Gaps and Pathways Project: driving pathways by diagnosis sheets.
Touchinsky, Susan; Chew, Felicia; Davis, Elin Schold
2014-04-01
This paper describes the development and use of information sheets for occupational therapy practitioners to use as guides for evaluation and intervention planning to address their client's driving and community mobility needs. Called Driving Pathways by Diagnosis Sheets, the information assists therapists with direction to connect impairment to driving risk and incorporate intervention to client goals and priorities related to driving and community mobility. An example of one of the sheets for the diagnosis of arthritis is highlighted and implications for use are discussed.
ERIC Educational Resources Information Center
Thompson, Lisa; Tullis, Ericka; Franke, Todd; Halfon, Neal
2005-01-01
The UCLA Center for Healthier Children, Families and Communities (CHCFC) has developed the School Readiness Critical Pathways (SRCPs) as an evidence-based conceptual model that links related outcomes and strategies. This helps to organize an array of broad and diffuse evidence regarding the strategies that produce school readiness outcomes for…
ERIC Educational Resources Information Center
Madrigal-Garcia, Yanira I.; Acevedo-Gil, Nancy
2016-01-01
This qualitative study examined the distribution of inequitable resources, a culture of control, and implications for postsecondary pathways for Latinas/os in five California high schools. This study integrated critical race theory in education, school culture, and the concept of "panopticon" to examine school structures, climate, and…
Schoenberg, Poppy L A; Speckens, Anne E M
2014-10-01
Depressive severity has been associated with attenuated neocortical frontal midline theta (Fm-θ) power/evoked activity. Mindfulness-Based Cognitive Therapy (MBCT) has shown to be a successful novel intervention for Major Depressive Disorder (MDD), albeit precise working mechanisms remain elusive. We examined the hypothesis that MBCT would have modulating effects upon evoked Fm-θ power, in addition to investigating possible mediation of induced event-related de/synchronisation (ERD/ERS) dynamics. Fifty one patients with a primary diagnosis of MDD (26 exposed to MBCT vs. 25 wait-list/WL controls) undertook a Go/NoGo task consisting of positive, negative and neutral words, further stratified into abstract versus trait adjective matrices. Depressive symptom severity and rumination were also examined. A pattern of enhanced induced Fm-θ synchronisation during the latter 400-800 ms temporal-window pre-to-post MBCT was observed; the contrary in the WL. Modulated ERD/ERS dynamics correlated to amelioration in depressive and rumination symptoms in the MBCT group. We propose the primary action pathway alluded to a neural disengagement mechanism enacting upon tonic neuronal assemblies implicated in emotional and self-related processing. Due to the complexity and presently undiscovered complete unified scientific understanding of neuro-oscillatory-dynamics, and associated clinical interplays; we hypothesise that the electro-cortical and connected clinical working pathways of MBCT in depression are multi-levelled constituting nonlinear and interdependent mechanisms, represented by mediated EEG synchronisation dynamics.
IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?
Zheng, Ping; Tong, Wusong
2017-08-01
There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.
Devgan, S S; Sanal, O; Doil, C; Nakamura, K; Nahas, S A; Pettijohn, K; Bartek, J; Lukas, C; Lukas, J; Gatti, R A
2011-01-01
Maintaining genomic integrity is critical to avoid life-threatening disorders, such as premature aging, neurodegeneration and cancer. A multiprotein cascade operates at sites of DNA double-strand breaks (DSBs) to recognize, signal and repair damage. RNF168 (ring-finger nuclear factor) contributes to this emerging pathway of several E3 ubiquitin ligases that perform sequential ubiquitylations on damaged chromosomes, chromatin modifications essential for aggregation of repair complexes at the DSB sites. Here, we report the clinical and cellular phenotypes associated with a newly identified homozygous nonsense mutation in the RNF168 gene of a patient with a syndrome mimicking ataxia-telangiectasia. The mutation eliminated both of RNF168's ubiquitin-binding motifs, thus blocking progression of the ubiquitylation cascade and retention of repair proteins including tumor suppressors 53BP1 and BRCA1 at DSB sites, consistent with the observed defective DNA damage checkpoints/repair and pronounced radiosensitivity. Rapid screening for RNF168 pathway deficiency was achieved by scoring patients' lymphoblastoid cells for irradiation-induced nuclear foci containing 53BP1, a robust assay we propose for future diagnostic applications. The formation of radiation-induced DSB repair foci was rescued by ectopic expression of wild-type RNF168 in patient's cells, further causally linking the RNF168 mutation with the pathology. Clinically, this novel syndrome featured ataxia, telangiectasia, elevated alphafetoprotein, immunodeficiency, microcephaly and pulmonary failure and has implications for the differential diagnosis of autosomal recessive ataxias. PMID:21394101
Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R; Rago, Carlo; Bhunia, Anil K; Hossain, M Zulfiquer; Paun, Bogdan C; Ren, Yunzhao R; Iacobuzio-Donahue, Christine A; Azad, Nilofer A; Kern, Scott E
2014-01-01
Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.