Sample records for clinical presentation imaging

  1. XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle

    2002-05-01

    We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.

  2. A data grid for imaging-based clinical trials

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Chao, Sander S.; Lee, Jasper; Liu, Brent; Documet, Jorge; Huang, H. K.

    2007-03-01

    Clinical trials play a crucial role in testing new drugs or devices in modern medicine. Medical imaging has also become an important tool in clinical trials because images provide a unique and fast diagnosis with visual observation and quantitative assessment. A typical imaging-based clinical trial consists of: 1) A well-defined rigorous clinical trial protocol, 2) a radiology core that has a quality control mechanism, a biostatistics component, and a server for storing and distributing data and analysis results; and 3) many field sites that generate and send image studies to the radiology core. As the number of clinical trials increases, it becomes a challenge for a radiology core servicing multiple trials to have a server robust enough to administrate and quickly distribute information to participating radiologists/clinicians worldwide. The Data Grid can satisfy the aforementioned requirements of imaging based clinical trials. In this paper, we present a Data Grid architecture for imaging-based clinical trials. A Data Grid prototype has been implemented in the Image Processing and Informatics (IPI) Laboratory at the University of Southern California to test and evaluate performance in storing trial images and analysis results for a clinical trial. The implementation methodology and evaluation protocol of the Data Grid are presented.

  3. Molecular imaging in the diagnosis of Alzheimer's disease and related disorders.

    PubMed

    Koric, L; Guedj, E; Habert, M O; Semah, F; Branger, P; Payoux, P; Le Jeune, F

    2016-12-01

    The diagnosis of Alzheimer's disease (AD) and its related disorders rely on clinical criteria. There is, however, a large clinical overlap between the different neurodegenerative diseases affecting cognition and, frequently, there are diagnostic uncertainties with atypical clinical presentations. Current clinical practices can now regularly use positron emission tomography (PET) and single-photon emission computed tomography (SPECT) molecular imaging to help resolve such uncertainties. The Neurology Group of the French Society of Nuclear Medicine and Federations of Memory, Resources and Research Centers have collaborated to establish clinical guidelines to determine which molecular imaging techniques to use when seeking a differential diagnosis between AD and other neurodegenerative disorders affecting cognition. According to the current medical literature, the potential usefulness of molecular imaging to address the typical clinical criteria in common forms of AD remains modest, as typical AD presentations rarely raise questions of differential diagnoses with other neurodegenerative disorders. However, molecular imaging could be of significant value in the diagnosis of atypical neurodegenerative disorders, including early onset, rapid cognitive decline, prominent non-amnestic presentations involving language, visuospatial, behavioral/executive and/or non-cognitive symptoms in AD, or prominent amnestic presentations in other non-AD dementias. The clinical use of molecular imaging should be recommended for assessing cognitive disturbances particularly in patients with early clinical onset (before age 65) and atypical presentations. However, diagnostic tools should always be part of the global clinical approach, as an isolated positive result cannot adequately establish a diagnosis of any neurodegenerative disorder. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Multimedia platform for authoring and presentation of clinical rounds in cardiology

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Lapstra, Lorelle

    2003-05-01

    We developed a multimedia presentation platform that allows retrieving data from any digital and analog modalities and to prepare a script of a clinical presentation in an XML format. This system was designed for cardiac multi-disciplinary conferences involving different cardiology specialists as well as cardiovascular surgeons. A typical presentation requires preparation of summary reports of data obtained from the different investigations and imaging techniques. An XML-based scripting methodology was developed to allow for preparation of clinical presentations. The image display program uses the generated script for the sequential presentation of different images that are displayed on pre-determined presentation settings. The ability to prepare and present clinical conferences electronically is more efficient and less time consuming than conventional settings using analog and digital documents, films and videotapes. The script of a given presentation can further be saved as part of the patient record for subsequent review of the documents and images that supported a given medical or therapeutic decision. This also constitutes a perfect documentation method for surgeons and physicians responsible of therapeutic procedures that were decided upon during the clinical conference. It allows them to review the relevant data that supported a given therapeutic decision.

  5. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    PubMed

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  6. Cognitive Fusion Questionnaire-Body Image: Psychometric Properties and Its Incremental Power in the Prediction of Binge Eating Severity.

    PubMed

    Lucena-Santos, Paola; Trindade, Inês A; Oliveira, Margareth; Pinto-Gouveia, José

    2017-05-19

    Given the clinical usefulness of the CFQ-BI (Cognitive Fusion Questionnaire-Body Image; the only existing measure to assess the body-image-related cognitive fusion), the present study aimed to confirm its one-factor structure, to verify its measurement invariance between clinical and non-clinical samples, to analyze its internal consistency and sensitivity to detect differences between samples, as well as to explore the incremental and convergent validities of the CFQ-BI scores in Brazilian samples.  This was a cross-sectional study, which was conducted in clinical (women with overweight or obesity in treatment for weight loss) and non-clinical samples (women from the general population). The one-factor structure was confirmed showing factorial measurement invariance across clinical and non-clinical samples. The CFQ-BI scores presented an excellent internal consistency, were able to discriminate clinical and non-clinical samples, and were positively associated with binge eating severity, general cognitive fusion, and psychological inflexibility. Furthermore, body-image-related cognitive fusion scores (CFQ-BI) presented incremental validity over a general measure of cognitive fusion in the prediction of binge eating symptoms. This study demonstrated that CFQ-BI is a short scale with reliable and robust scores in Brazilian samples, presenting incremental and convergent validities, measurement invariance, and sensitivity to detect differences between clinical and non-clinical groups of women, enabling comparative studies between them.

  7. A Simplified Approach to Encephalitis and Its Mimics: Key Clinical Decision Points in the Setting of Specific Imaging Abnormalities.

    PubMed

    McKnight, Colin D; Kelly, Aine M; Petrou, Myria; Nidecker, Anna E; Lorincz, Matthew T; Altaee, Duaa K; Gebarski, Stephen S; Foerster, Bradley

    2017-06-01

    Infectious encephalitis is a relatively common cause of morbidity and mortality. Treatment of infectious encephalitis with antiviral medication can be highly effective when administered promptly. Clinical mimics of encephalitis arise from a broad range of pathologic processes, including toxic, metabolic, neoplastic, autoimmune, and cardiovascular etiologies. These mimics need to be rapidly differentiated from infectious encephalitis to appropriately manage the correct etiology; however, the many overlapping signs of these various entities present a challenge to accurate diagnosis. A systematic approach that considers both the clinical manifestations and the imaging findings of infectious encephalitis and its mimics can contribute to more accurate and timely diagnosis. Following an institutional review board approval, a health insurance portability and accountability act (HIPAA)-compliant search of our institutional imaging database (teaching files) was conducted to generate a list of adult and pediatric patients who presented between January 1, 1995 and October 10, 2013 for imaging to evaluate possible cases of encephalitis. Pertinent medical records, including clinical notes as well as surgical and pathology reports, were reviewed and correlated with imaging findings. Clinical and imaging findings were combined to generate useful flowcharts designed to assist in distinguishing infectious encephalitis from its mimics. Key imaging features were reviewed and were placed in the context of the provided flowcharts. Four flowcharts were presented based on the primary anatomic site of imaging abnormality: group 1: temporal lobe; group 2: cerebral cortex; group 3: deep gray matter; and group 4: white matter. An approach that combines features on clinical presentation was then detailed. Imaging examples were used to demonstrate similarities and key differences. Early recognition of infectious encephalitis is critical, but can be quite complex due to diverse pathologies and overlapping features. Synthesis of both the clinical and imaging features of infectious encephalitis and its mimics is critical to a timely and accurate diagnosis. The use of the flowcharts presented in this article can further enable both clinicians and radiologists to more confidently differentiate encephalitis from its mimics and improve patient care. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment.

    PubMed

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-01-01

    This paper discusses the methods for the assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology is valuable in the continuing process of method optimization and guided development of new imaging methods. It includes a three phased study plan covering from initial prototype development to clinical assessment. Recommendations to the clinical assessment protocol, software, and statistical analysis are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer to properly reveal the clinical value. This paper exemplifies the methodology using recent studies of synthetic aperture sequential beamforming tissue harmonic imaging.

  9. Multimodal tissue perfusion imaging using multi-spectral and thermographic imaging systems applied on clinical data

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.

  10. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results.

    PubMed

    Koopmans, Klaas P; Neels, Oliver N; Kema, Ido P; Elsinga, Philip H; Links, Thera P; de Vries, Elisabeth G E; Jager, Pieter L

    2009-09-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-systematic review is presented on receptor based and metabolic imaging methods. Receptor-based imaging covers the molecular backgrounds of somatostatin, vaso-intestinal peptide (VIP), bombesin and cholecystokinin (CCK) receptors and their link with nuclear imaging. Imaging methods based on specific metabolic properties include meta-iodo-benzylguanide (MIBG) and dimercapto-sulphuric acid (DMSA-V) scintigraphy as well as more modern positron emission tomography (PET)-based methods using radio-labeled analogues of amino acids, glucose, dihydroxyphenylalanine (DOPA), dopamine and tryptophan. Diagnostic sensitivities are presented for each imaging method and for each neuroendocrine tumor subtype. Finally, a Forest plot analysis of diagnostic performance is presented for each tumor type in order to provide a comprehensive overview for clinical use.

  11. Clinical evaluation of a confocal microendoscope system for imaging the ovary

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Hatch, Kenneth D.; Sampliner, Richard E.; Udovich, Josh A.; Gmitro, Arthur F.

    2008-02-01

    We have developed a mobile confocal microendoscope system that provides live cellular imaging during surgery to aid in diagnosing microscopic abnormalities including cancer. We present initial clinical trial results using the device to image ovaries in-vivo using fluorescein and ex-vivo results using acridine orange. The imaging catheter has improved depth control and localized dye delivery mechanisms than previously presented. A manual control now provides a simple way for the surgeon to adjust and optimize imaging depth during the procedure while a tiny piezo valve in the imaging catheter controls the dye delivery.

  12. Granulomatous mastitis: changing clinical and imaging features with image-guided biopsy correlation.

    PubMed

    Handa, Priyanka; Leibman, A Jill; Sun, Derek; Abadi, Maria; Goldberg, Aryeh

    2014-10-01

    To review clinical presentation, revisit patient demographics and imaging findings in granulomatous mastitis and determine the optimal biopsy method for diagnosis. A retrospective study was performed to review the clinical presentation, imaging findings and biopsy methods in patients with granulomatous mastitis. Twenty-seven patients with pathology-proven granulomatous mastitis were included. The average age at presentation was 38.0 years (range, 21-73 years). Seven patients were between 48 and 73 years old. Twenty-four patients presented with symptoms and three patients were asymptomatic. Nineteen patients were imaged with mammography demonstrating mammographically occult lesions as the predominant finding. Twenty-six patients were imaged with ultrasound and the most common finding was a mass lesion. Pathological diagnosis was made by image-guided biopsy in 44 % of patients. The imaging features of granulomatous mastitis on mammography are infrequently described. Our study demonstrates that granulomatous mastitis can occur in postmenopausal or asymptomatic patients, although previously reported exclusively in young women with palpable findings. Presentation on mammography as calcifications requiring mammographically guided vacuum-assisted biopsy has not been previously described. The diagnosis of granulomatous mastitis can easily be made by image-guided biopsy and surgical excision should be reserved for definitive treatment. • Characterizes radiographic appearance of granulomatous mastitis in postmenopausal or asymptomatic patients. • Granulomatous mastitis can present exclusively as calcifications on mammography. • The diagnosis of granulomatous mastitis is made by image-guided biopsy techniques.

  13. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.

    PubMed

    Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-08-01

    At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically relevant depths, ideal for imaging soft tissues. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, thereby enabling multimodality imaging with complementary contrast. Here we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and show its ability to image internal organs in vivo, thus illustrating its potential clinical application.

  14. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo

    PubMed Central

    Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2013-01-01

    Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application. PMID:22797808

  15. Clinical imaging of the pancreas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, G.; Gardiner, R.

    1987-01-01

    Featuring more than 300 high-quality radiographs and scan images, clinical imaging of the pancreas systematically reviews all appropriate imaging modalities for diagnosing and evaluating a variety of commonly encountered pancreatic disorders. After presenting a succinct overview of pancreatic embryology, anatomy, and physiology, the authors establish the clinical indications-including postoperative patient evaluation-for radiologic examination of the pancreas. The diagnostic capabilities and limitations of currently available imaging techniques for the pancreas are thoroughly assessed, with carefully selected illustrations depicting the types of images and data obtained using these different techniques. The review of acute and chronic pancreatitis considers the clinical features andmore » possible complications of their variant forms and offers guidance in selecting appropriate imaging studies.« less

  16. The Current State and Path Forward For Enterprise Image Viewing: HIMSS-SIIM Collaborative White Paper.

    PubMed

    Roth, Christopher J; Lannum, Louis M; Dennison, Donald K; Towbin, Alexander J

    2016-10-01

    Clinical specialties have widely varied needs for diagnostic image interpretation, and clinical image and video image consumption. Enterprise viewers are being deployed as part of electronic health record implementations to present the broad spectrum of clinical imaging and multimedia content created in routine medical practice today. This white paper will describe the enterprise viewer use cases, drivers of recent growth, technical considerations, functionality differences between enterprise and specialty viewers, and likely future states. This white paper is aimed at CMIOs and CIOs interested in optimizing the image-enablement of their electronic health record or those who may be struggling with the many clinical image viewers their enterprises may employ today.

  17. CR softcopy display presets based on optimum visualization of specific findings

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Gould, Robert G.; Webb, W. R.

    1999-07-01

    The purpose of this research is to assess the utility of providing presets for computed radiography (CR) softcopy display, based not on the window/level settings, but on image processing applied to the image based on optimization for visualization of specific findings, pathologies, etc. Clinical chest images are acquired using an Agfa ADC 70 CR scanner, and transferred over the PACS network to an image processing station which has the capability to perform multiscale contrast equalization. The optimal image processing settings per finding are developed in conjunction with a thoracic radiologist by manipulating the multiscale image contrast amplification algorithm parameters. Softcopy display of images processed with finding-specific settings are compared with the standard default image presentation for fifty cases of each category. Comparison is scored using a five point scale with positive one and two denoting the standard presentation is preferred over the finding-specific presets, negative one and two denoting the finding-specific preset is preferred over the standard presentation, and zero denoting no difference. Presets have been developed for pneumothorax and clinical cases are currently being collected in preparation for formal clinical trials. Subjective assessments indicate a preference for the optimized-preset presentation of images over the standard default, particularly by inexperienced radiology residents and referring clinicians.

  18. Effect of clinical decision rules, patient cost and malpractice information on clinician brain CT image ordering: a randomized controlled trial.

    PubMed

    Gimbel, Ronald W; Pirrallo, Ronald G; Lowe, Steven C; Wright, David W; Zhang, Lu; Woo, Min-Jae; Fontelo, Paul; Liu, Fang; Connor, Zachary

    2018-03-12

    The frequency of head computed tomography (CT) imaging for mild head trauma patients has raised safety and cost concerns. Validated clinical decision rules exist in the published literature and on-line sources to guide medical image ordering but are often not used by emergency department (ED) clinicians. Using simulation, we explored whether the presentation of a clinical decision rule (i.e. Canadian CT Head Rule - CCHR), findings from malpractice cases related to clinicians not ordering CT imaging in mild head trauma cases, and estimated patient out-of-pocket cost might influence clinician brain CT ordering. Understanding what type and how information may influence clinical decision making in the ordering advanced medical imaging is important in shaping the optimal design and implementation of related clinical decision support systems. Multi-center, double-blinded simulation-based randomized controlled trial. Following standardized clinical vignette presentation, clinicians made an initial imaging decision for the patient. This was followed by additional information on decision support rules, malpractice outcome review, and patient cost; each with opportunity to modify their initial order. The malpractice and cost information differed by assigned group to test the any temporal relationship. The simulation closed with a second vignette and an imaging decision. One hundred sixteen of the 167 participants (66.9%) initially ordered a brain CT scan. After CCHR presentation, the number of clinicians ordering a CT dropped to 76 (45.8%), representing a 21.1% reduction in CT ordering (P = 0.002). This reduction in CT ordering was maintained, in comparison to initial imaging orders, when presented with malpractice review information (p = 0.002) and patient cost information (p = 0.002). About 57% of clinicians changed their order during study, while 43% never modified their imaging order. This study suggests that ED clinician brain CT imaging decisions may be influenced by clinical decision support rules, patient out-of-pocket cost information and findings from malpractice case review. NCT03449862 , February 27, 2018, Retrospectively registered.

  19. Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.

    2014-03-01

    Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.

  20. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  1. TOPICAL REVIEW: Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.

    2002-03-01

    A review of electronic portal imaging devices (EPIDs) used in external beam, megavoltage radiation therapy is presented. The review consists of a brief introduction to the definition, role and clinical significance of portal imaging, along with a discussion of radiotherapy film systems and the motivations for EPIDs. This is followed by a summary of the challenges and constraints inherent to portal imaging along with a concise, historical review of the technologies that have been explored and developed. The paper then examines, in greater depth, the two first-generation technologies that have found widespread clinical use starting from the late 1980s. This is followed by a broad overview of the physics, operation, properties and advantages of active matrix, flat-panel, megavoltage imagers, presently being commercially introduced to clinical environments or expected to be introduced in the future. Finally, a survey of contemporary research efforts focused on improving portal imaging performance by addressing various weaknesses in existing commercial systems is presented.

  2. RayPlus: a Web-Based Platform for Medical Image Processing.

    PubMed

    Yuan, Rong; Luo, Ming; Sun, Zhi; Shi, Shuyue; Xiao, Peng; Xie, Qingguo

    2017-04-01

    Medical image can provide valuable information for preclinical research, clinical diagnosis, and treatment. As the widespread use of digital medical imaging, many researchers are currently developing medical image processing algorithms and systems in order to accommodate a better result to clinical community, including accurate clinical parameters or processed images from the original images. In this paper, we propose a web-based platform to present and process medical images. By using Internet and novel database technologies, authorized users can easily access to medical images and facilitate their workflows of processing with server-side powerful computing performance without any installation. We implement a series of algorithms of image processing and visualization in the initial version of Rayplus. Integration of our system allows much flexibility and convenience for both research and clinical communities.

  3. Acute Disseminated Encephalomyelitis: A Gray Distinction.

    PubMed

    Abu Libdeh, Amal; Goodkin, Howard P; Ramirez-Montealegre, Denia; Brenton, J Nicholas

    2017-03-01

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated, inflammatory acquired demyelinating syndrome predominantly affecting the white matter of the central nervous system. We describe a three-year-old boy whose clinical presentation was suspicious for ADEM but whose initial imaging abnormalities were confined to the deep gray matter (without evidence of white matter involvement). His clinical course was fluctuating and repeat imaging one week after presentation demonstrated interval development of characteristic white matter lesions. Treatment with adjunctive intravenous immunoglobulin and high-dose corticosteroids resulted in significant clinical improvement. Isolated deep gray matter involvement can precede the appearance of white matter abnormalities of ADEM, suggesting that repeat imaging is indicated in individuals whose findings are clinically suspicious for ADEM but who lack characteristic imaging findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    PubMed

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  5. Abdominal aortic aneurysm with periaortic malignant lymphoma differentiated from aneurysmal rupture by clinical presentation and magnetic resonance imaging.

    PubMed

    Kamata, Sokichi; Itou, Yoshito; Idoguchi, Koji; Imakita, Masami; Funatsu, Toshihiro; Yagihara, Toshikatsu

    2018-06-01

    Abdominal aortic aneurysm (AAA) associated with periaortic malignant lymphoma is difficult to differentiate from aneurysmal rupture because of similarities in their clinical presentation and appearance on computed tomography images. We here report a case of AAA associated with periaortic malignant lymphoma diagnosed preoperatively with an absence of typical symptoms, showing that AAA in periaortic malignant lymphoma can present without any clinical correlates. Magnetic resonance imaging was used to confirm the diagnosis. The patient was treated by endovascular repair, which may be safer and more effective than open surgery for AAA associated with malignant lymphoma because of the tight adhesion between the aneurysm and the lymphoid tissue.

  6. Finding-specific display presets for computed radiography soft-copy reading.

    PubMed

    Andriole, K P; Gould, R G; Webb, W R

    1999-05-01

    Much work has been done to optimize the display of cross-sectional modality imaging examinations for soft-copy reading (i.e., window/level tissue presets, and format presentations such as tile and stack modes, four-on-one, nine-on-one, etc). Less attention has been paid to the display of digital forms of the conventional projection x-ray. The purpose of this study is to assess the utility of providing presets for computed radiography (CR) soft-copy display, based not on the window/level settings, but on processing applied to the image optimized for visualization of specific findings, pathologies, etc (i.e., pneumothorax, tumor, tube location). It is felt that digital display of CR images based on finding-specific processing presets has the potential to: speed reading of digital projection x-ray examinations on soft copy; improve diagnostic efficacy; standardize display across examination type, clinical scenario, important key findings, and significant negatives; facilitate image comparison; and improve confidence in and acceptance of soft-copy reading. Clinical chest images are acquired using an Agfa-Gevaert (Mortsel, Belgium) ADC 70 CR scanner and Fuji (Stamford, CT) 9000 and AC2 CR scanners. Those demonstrating pertinent findings are transferred over the clinical picture archiving and communications system (PACS) network to a research image processing station (Agfa PS5000), where the optimal image-processing settings per finding, pathologic category, etc, are developed in conjunction with a thoracic radiologist, by manipulating the multiscale image contrast amplification (Agfa MUSICA) algorithm parameters. Soft-copy display of images processed with finding-specific settings are compared with the standard default image presentation for 50 cases of each category. Comparison is scored using a 5-point scale with the positive scale denoting the standard presentation is preferred over the finding-specific processing, the negative scale denoting the finding-specific processing is preferred over the standard presentation, and zero denoting no difference. Processing settings have been developed for several findings including pneumothorax and lung nodules, and clinical cases are currently being collected in preparation for formal clinical trials. Preliminary results indicate a preference for the optimized-processing presentation of images over the standard default, particularly by inexperienced radiology residents and referring clinicians.

  7. MO-D-213-06: Quantitative Image Quality Metrics Are for Physicists, Not Radiologists: How to Communicate to Your Radiologists Using Their Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T; Rubert, N; Ranallo, F

    Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework avoids use of the overall “look” or “feel” to dictate acquisition parameter selection. Equipment grants GE Healthcare.« less

  8. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System

    PubMed Central

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F.; Kim, Chulhong

    2016-01-01

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies. PMID:27731357

  9. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System.

    PubMed

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F; Kim, Chulhong

    2016-10-12

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies.

  10. A Clinical Evaluation of Cone Beam Computed Tomography

    DTIC Science & Technology

    2013-07-31

    body of literature lacks in vivo studies comparing CBCT images with clinical findings. The purpose of this descriptive case series was to...All (18/18) bone measurements were underrepresented on CBCT images in this study . This case series also identified limitations in accuracy when... study was to compare pre-surgical CBCT images against the actual clinical presentation of the hard tissues. METHOD: Eleven patients requiring

  11. Shoe rim and shoe buckle pseudotumor of the ankle in elite and professional figure skaters and snowboarders: MR imaging findings.

    PubMed

    Anderson, S E; Weber, M; Steinbach, L S; Ballmer, F T

    2004-06-01

    To review MR imaging of figure skaters and snowboarders presenting with painful soft-tissue swelling of the lateral supramalleolar region with a clinical provisional diagnosis of soft-tissue tumor. MR imaging was prospectively reviewed by two sub-specialized musculoskeletal radiologists. The findings were correlated with a second clinical review and examination of the shoe wear. The patients were four female athletes undergoing heavy training regimes, ranging in age between 16 and 25 years. Two patients were elite figure skaters, and two were professional snowboarders. Three patients had unilateral masses with pain, and one patient presented with bilateral clinical findings. MR imaging showed subcutaneous, focal soft-tissue masses of the supramalleolar region in five ankles at the same level above the ankle joint. MR imaging prompted a second clinical review and correlation with the shoe wear. The MR imaging findings correlated to the level of the shoe rim or shoe buckle in all patients, confirming the suspected MR imaging diagnosis of an impingement syndrome. All four sportswomen were training excessively, ignoring safety advice regarding training duration, timing of breaks, and shoe wear rotation. Ice skaters and snowboarders may present with persistent and disabling pain. On MR imaging, this corresponds to a focal soft-tissue abnormality, which may be due to subcutaneous fat impingement between the fibula and the shoe rim or shoe buckle. Copyright 2004 ISS

  12. A multimedia electronic patient record (ePR) system for image-assisted minimally invasive spinal surgery.

    PubMed

    Documet, Jorge; Le, Anh; Liu, Brent; Chiu, John; Huang, H K

    2010-05-01

    This paper presents the concept of bridging the gap between diagnostic images and image-assisted surgical treatment through the development of a one-stop multimedia electronic patient record (ePR) system that manages and distributes the real-time multimodality imaging and informatics data that assists the surgeon during all clinical phases of the operation from planning Intra-Op to post-care follow-up. We present the concept of this multimedia ePR for surgery by first focusing on image-assisted minimally invasive spinal surgery as a clinical application. Three clinical phases of minimally invasive spinal surgery workflow in Pre-Op, Intra-Op, and Post-Op are discussed. The ePR architecture was developed based on the three-phased workflow, which includes the Pre-Op, Intra-Op, and Post-Op modules and four components comprising of the input integration unit, fault-tolerant gateway server, fault-tolerant ePR server, and the visualization and display. A prototype was built and deployed to a minimally invasive spinal surgery clinical site with user training and support for daily use. A step-by-step approach was introduced to develop a multimedia ePR system for imaging-assisted minimally invasive spinal surgery that includes images, clinical forms, waveforms, and textual data for planning the surgery, two real-time imaging techniques (digital fluoroscopic, DF) and endoscope video images (Endo), and more than half a dozen live vital signs of the patient during surgery. Clinical implementation experiences and challenges were also discussed.

  13. Spinal infections: clinical and imaging features.

    PubMed

    Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio

    2014-10-01

    Spinal infections represent a group of rare conditions affecting vertebral bodies, intervertebral discs, paraspinal soft tissues, epidural space, meninges, and spinal cord. The causal factors, clinical presentations, and imaging features are a challenge because the difficulty to differentiate them from other conditions, such as degenerative and inflammatory disorders and spinal neoplasm. They require early recognition because delay diagnosis, imaging, and intervention may have devastating consequences especially in children and the elderly. This article reviews the most common spinal infections, their pathophysiologic, clinical manifestation, and their imaging findings.

  14. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  15. A Review of Clinical and Imaging Findings in Eosinophilic Lung Diseases.

    PubMed

    Bernheim, Adam; McLoud, Theresa

    2017-05-01

    The purpose of this article is to review the clinical and imaging findings associated with eosinophilic lung diseases. The spectrum of eosinophilic lung diseases comprises a diverse group of pulmonary disorders that have an association with tissue or peripheral eosinophilia. These diseases have varied clinical presentations and may be associated with several other abnormalities. Characteristic imaging findings are often detected with chest radiography, and CT best shows parenchymal abnormalities. The integration of clinical, radiologic, and pathologic findings facilitates diagnosis and directs appropriate treatment.

  16. Image management within a PACS

    NASA Astrophysics Data System (ADS)

    Glicksman, Robert A.; Prior, Fred W.; Wilson, Dennis L.

    1993-09-01

    The full benefits of a PACS system cannot be achieved by a departmental system, as films must still be made to service referring physicians and clinics. Therefore, a full hospital PACS must provide workstations throughout the hospital which are connected to the central file server and database, but which present `clinical' views of radiological data. In contrast to the radiologist, the clinician needs to select examinations from a `patient list' which presents the results of his/her radiology referrals. The most important data for the clinician is the radiology report, which must be immediately available upon selection of the examination. The images themselves, perhaps with annotations provided by the reading radiologist, must also be available in a few seconds from selection. Furthermore, the ability to display radiologist selected relevant historical images along with the new examination is necessary in those instances where the radiologist felt that certain historical images were important in the interpretation and diagnosis of the patient. Therefore, views of the new and historical data along clinical lines, conference preparation features, and modality and body part specific selections are also required to successfully implement a full hospital PACS. This paper describes the concepts for image selection and presentation at PACS workstations, both `diagnostic' workstations within the radiology department and `clinical' workstations which support the rest of the hospital and outpatient clinics.

  17. Implementation of an anonymisation tool for clinical trials using a clinical trial processor integrated with an existing trial patient data information system.

    PubMed

    Aryanto, Kadek Y E; Broekema, André; Oudkerk, Matthijs; van Ooijen, Peter M A

    2012-01-01

    To present an adapted Clinical Trial Processor (CTP) test set-up for receiving, anonymising and saving Digital Imaging and Communications in Medicine (DICOM) data using external input from the original database of an existing clinical study information system to guide the anonymisation process. Two methods are presented for an adapted CTP test set-up. In the first method, images are pushed from the Picture Archiving and Communication System (PACS) using the DICOM protocol through a local network. In the second method, images are transferred through the internet using the HTTPS protocol. In total 25,000 images from 50 patients were moved from the PACS, anonymised and stored within roughly 2 h using the first method. In the second method, an average of 10 images per minute were transferred and processed over a residential connection. In both methods, no duplicated images were stored when previous images were retransferred. The anonymised images are stored in appropriate directories. The CTP can transfer and process DICOM images correctly in a very easy set-up providing a fast, secure and stable environment. The adapted CTP allows easy integration into an environment in which patient data are already included in an existing information system.

  18. Artifacts Affecting Musculoskeletal Magnetic Resonance Imaging: Their Origins and Solutions.

    PubMed

    Roth, Eira; Hoff, Michael; Richardson, Michael L; Ha, Alice S; Porrino, Jack

    2016-01-01

    Among articles within the radiology literature, few present the manifestations of magnetic resonance imaging artifacts in a clinically oriented manner. Recognizing such artifacts is imperative given the increasing clinical use of magnetic resonance imaging and the emphasis by the American Board of Radiology on practical physics applications. The purpose of this article is to present magnetic resonance physics principles visually and conceptually in the context of common musculoskeletal radiology artifacts and their solutions, described using nonmathematical explanations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Management of Low-Flow Vascular Malformations: Clinical Presentation, Classification, Patient Selection, Imaging and Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCafferty, Ian, E-mail: ian.mccafferty@uhb.nhs.uk

    This review article aims to give an overview of the current state of imaging, patient selection, agents and techniques used in the management of low-flow vascular malformations. The review includes the current classifications for low-flow vascular malformations including the 2014 updates. Clinical presentation and assessment is covered with a detailed section on the common sclerosant agents used to treat low-flow vascular malformations, including dosing and common complications. Imaging is described with a guide to a simple stratification of the use of imaging for diagnosis and interventional techniques.

  20. Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.

    PubMed

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-06-01

    We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.

  1. A multimedia Electronic Patient Record (ePR) system for Image-Assisted Minimally Invasive Spinal Surgery

    PubMed Central

    Documet, Jorge; Le, Anh; Liu, Brent; Chiu, John; Huang, HK

    2009-01-01

    Purpose This paper presents the concept of bridging the gap between diagnostic images and image-assisted surgical treatment through the development of a one-stop multimedia electronic patient record (ePR) system that manages and distributes the real-time multimodality imaging and informatics data that assists the surgeon during all clinical phases of the operation from planning Intra-Op to post-care follow-up. We present the concept of this multimedia ePR for surgery by first focusing on Image-Assisted Minimally Invasive Spinal Surgery as a clinical application. Methods Three clinical Phases of Minimally Invasive Spinal Surgery workflow in Pre-Op, Intra-Op, and Post Op are discussed. The ePR architecture was developed based on the three-phased workflow, which includes the Pre-Op, Intra-Op, and Post-Op modules and four components comprising of the input integration unit, fault-tolerant gateway server, fault-tolerant ePR server, and the visualization and display. A prototype was built and deployed to a Minimally Invasive Spinal Surgery clinical site with user training and support for daily use. Summary A step-by step approach was introduced to develop a multi-media ePR system for Imaging-Assisted Minimally Invasive Spinal Surgery that includes images, clinical forms, waveforms, and textual data for planning the surgery, two real-time imaging techniques (digital fluoroscopic, DF) and endoscope video images (Endo), and more than half a dozen live vital signs of the patient during surgery. Clinical implementation experiences and challenges were also discussed. PMID:20033507

  2. Image is everything: pearls and pitfalls of digital photography and PowerPoint presentations for the cosmetic surgeon.

    PubMed

    Niamtu, Joseph

    2004-01-01

    Cosmetic surgery and photography are inseparable. Clinical photographs serve as diagnostic aids, medical records, legal protection, and marketing tools. In the past, taking high-quality, standardized images and maintaining and using them for presentations were tasks of significant proportion when done correctly. Although the cosmetic literature is replete with articles on standardized photography, this has eluded many practitioners in part to the complexity. A paradigm shift has occurred in the past decade, and digital technology has revolutionized clinical photography and presentations. Digital technology has made it easier than ever to take high-quality, standardized images and to use them in a multitude of ways to enhance the practice of cosmetic surgery. PowerPoint presentations have become the standard for academic presentations, but many pitfalls exist, especially when taking a backup disc to play on an alternate computer at a lecture venue. Embracing digital technology has a mild to moderate learning curve but is complicated by old habits and holdovers from the days of slide photography, macro lenses, and specialized flashes. Discussion is presented to circumvent common problems involving computer glitches with PowerPoint presentations. In the past, high-quality clinical photography was complex and sometimes beyond the confines of a busy clinical practice. The digital revolution of the past decade has removed many of these associated barriers, and it has never been easier or more affordable to take images and use them in a multitude of ways for learning, judging surgical outcomes, teaching and lecturing, and marketing. Even though this technology has existed for years, many practitioners have failed to embrace it for various reasons or fears. By following a few simple techniques, even the most novice practitioner can be on the forefront of digital imaging technology. By observing a number of modified techniques with digital cameras, any practitioner can take high-quality, standardized clinical photographs and can make and use these images to enhance his or her practice. This article deals with common pitfalls of digital photography and PowerPoint presentations and presents multiple pearls to achieve proficiency quickly with digital photography and imaging as well as avoid malfunction of PowerPoint presentations in an academic lecture venue.

  3. Web-based oil immersion whole slide imaging increases efficiency and clinical team satisfaction in hematopathology tumor board

    PubMed Central

    Chen, Zhongchuan Will; Kohan, Jessica; Perkins, Sherrie L.; Hussong, Jerry W.; Salama, Mohamed E.

    2014-01-01

    Background: Whole slide imaging (WSI) is widely used for education and research, but is increasingly being used to streamline clinical workflow. We present our experience with regard to satisfaction and time utilization using oil immersion WSI for presentation of blood/marrow aspirate smears, core biopsies, and tissue sections in hematology/oncology tumor board/treatment planning conferences (TPC). Methods: Lymph nodes and bone marrow core biopsies were scanned at ×20 magnification and blood/marrow smears at 83X under oil immersion and uploaded to an online library with areas of interest to be displayed annotated digitally via web browser. Pathologist time required to prepare slides for scanning was compared to that required to prepare for microscope projection (MP). Time required to present cases during TPC was also compared. A 10-point evaluation survey was used to assess clinician satisfaction with each presentation method. Results: There was no significant difference in hematopathologist preparation time between WSI and MP. However, presentation time was significantly less for WSI compared to MP as selection and annotation of slides was done prior to TPC with WSI, enabling more efficient use of TPC presentation time. Survey results showed a significant increase in satisfaction by clinical attendees with regard to image quality, efficiency of presentation of pertinent findings, aid in clinical decision-making, and overall satisfaction regarding pathology presentation. A majority of respondents also noted decreased motion sickness with WSI. Conclusions: Whole slide imaging, particularly with the ability to use oil scanning, provides higher quality images compared to MP and significantly increases clinician satisfaction. WSI streamlines preparation for TPC by permitting prior slide selection, resulting in greater efficiency during TPC presentation. PMID:25379347

  4. Multimodality Imaging Approach towards Primary Aortic Sarcomas Arising after Endovascular Abdominal Aortic Aneurysm Repair: Case Series Report.

    PubMed

    Kamran, Mudassar; Fowler, Kathryn J; Mellnick, Vincent M; Sicard, Gregorio A; Narra, Vamsi R

    2016-06-01

    Primary aortic neoplasms are rare. Aortic sarcoma arising after endovascular aneurysm repair (EVAR) is a scarce subset of primary aortic malignancies, reports of which are infrequent in the published literature. The diagnosis of aortic sarcoma is challenging due to its non-specific clinical presentation, and the prognosis is poor due to delayed diagnosis, rapid proliferation, and propensity for metastasis. Post-EVAR, aortic sarcomas may mimic other more common aortic processes on surveillance imaging. Radiologists are rarely knowledgeable about this rare entity for which multimodality imaging and awareness are invaluable in early diagnosis. A series of three pathologically confirmed cases are presented to display the multimodality imaging features and clinical presentations of aortic sarcoma arising after EVAR.

  5. Supercontinuum ultra-high resolution line-field OCT; experimental spectrograph comparison and comparison with current clinical OCT systems by the imaging of a human cornea

    NASA Astrophysics Data System (ADS)

    Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun

    2018-03-01

    Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.

  6. Congenital portosystemic shunts: imaging findings and clinical presentations in 11 patients.

    PubMed

    Konstas, Angelos A; Digumarthy, Subba R; Avery, Laura L; Wallace, Karen L; Lisovsky, Mikhail; Misdraji, Joseph; Hahn, Peter F

    2011-11-01

    To evaluate the clinical anatomy and presentations of congenital portosystemic shunts, and determine features that promote recognition on imaging. Institutional review board approval was obtained for this HIPAA-compliant study. The requirement for written informed consent was waived. Radiology reports were retrospectively reviewed from non-cirrhotic patients who underwent imaging studies from January 1999 through February 2009. Clinical sources reviewed included electronic medical records, archived images and histopathological material. Eleven patients with congenital portosystemic shunts were identified (six male and five female; age range 20 days to 84 years). Seven patients had extrahepatic and four patients had intrahepatic shunts. All 11 patients had absent or hypoplastic intrahepatic portal veins, a feature detected by CT and MRI, but not by US. Seven patients presented with shunt complications and four with presentations unrelated to shunt pathophysiology. Three adult patients had four splenic artery aneurysms. Prospective radiological evaluation of five adult patients with cross-sectional imaging had failed prospectively to recognize the presence of congenital portosystemic shunts on one or more imaging examinations. Congenital portosystemic shunts are associated with splenic artery aneurysms, a previously unrecognized association. Portosystemic shunts were undetected during prospective radiologic evaluation in the majority of adult patients, highlighting the need to alert radiologists to this congenital anomaly. Copyright © 2010. Published by Elsevier Ireland Ltd.

  7. Optimized imaging of the midface and orbits

    PubMed Central

    Langner, Sönke

    2015-01-01

    A variety of imaging techniques are available for imaging the midface and orbits. This review article describes the different imaging techniques based on the recent literature and discusses their impact on clinical routine imaging. Imaging protocols are presented for different diseases and the different imaging modalities. PMID:26770279

  8. Breast-Dedicated Radionuclide Imaging Systems.

    PubMed

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Imaging pediatric magnet ingestion with surgical-pathological correlation.

    PubMed

    Otjen, Jeffrey P; Rohrmann, Charles A; Iyer, Ramesh S

    2013-07-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented.

  10. Fast ℓ1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime

    PubMed Central

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-01-01

    We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529

  11. Pre-clinical and Clinical Evaluation of High Resolution, Mobile Gamma Camera and Positron Imaging Devices

    DTIC Science & Technology

    2009-10-01

    Field-of-View, Mobile PET/SPECT System for Bedside Environments: A Dynamic Cardiac Phantom Study using 99mTc and 18F- FDG . Presented at the American...using Tc-99m tracers and viability imaging using F- 18 tracers [3]-[7]. For cardiac F-18 imaging in a bedside environment, the 511 keV SPECT approach...SPECT system may have difficulty imaging subtle myocardial defects with F-18 tracers , but it may effectively image moderate to severe defects. The

  12. The Potential of Clinical Phenotyping of Heart Failure With Imaging Biomarkers for Guiding Therapies: A Focused Update.

    PubMed

    Sengupta, Partho P; Kramer, Christopher M; Narula, Jagat; Dilsizian, Vasken

    2017-09-01

    The need for noninvasive assessment of cardiac volumes and ejection fraction (EF) ushered in the use of cardiac imaging techniques in heart failure (HF) trials that investigated the roles of pharmacological and device-based therapies. However, in contrast to HF with reduced EF (HFrEF), modern HF pharmacotherapy has not improved outcomes in HF with preserved EF (HFpEF), largely attributed to patient heterogeneity and incomplete understanding of pathophysiological insights underlying the clinical presentations of HFpEF. Modern cardiac imaging methods offer insights into many sets of changes in cardiac tissue structure and function that can precisely link cause with cardiac remodeling at organ and tissue levels to clinical presentations in HF. This has inspired investigators to seek a more comprehensive understanding of HF presentations using imaging techniques. This article summarizes the available evidence regarding the role of cardiac imaging in HF. Furthermore, we discuss the value of cardiac imaging techniques in identifying HF patient subtypes who share similar causes and mechanistic pathways that can be targeted using specific HF therapies. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. A Japanese Encephalitis Patient Presenting with Parkinsonism with Corresponding Laterality of Magnetic Resonance and Dopamine Transporter Imaging Findings.

    PubMed

    Tadokoro, Koh; Ohta, Yasuyuki; Sato, Kota; Maeki, Takahiro; Sasaki, Ryo; Takahashi, Yoshiaki; Shang, Jingwei; Takemoto, Mami; Hishikawa, Nozomi; Yamashita, Toru; Lim, Chang Kweng; Tajima, Shigeru; Abe, Koji

    2018-03-09

    Japanese encephalitis (JE) survivors often present with nigrostriatal aftereffects with parkinsonian features. A 67-year-old woman with JE showed right-dominant clinical parkinsonism and left-dominant substantia nigra lesions after magnetic resonance imaging (MRI). Dopamine transporter (DAT) imaging using 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane ( 123 I-FP-CIT) revealed a corresponding left-dominant decrease. The present case is the first to reveal a clear match of laterality between clinical parkinsonism, MRI-based substantia nigra lesions, and impaired DAT in presynaptic dopaminergic neurons in JE.

  14. Demystifying MR Neurography of the Lumbosacral Plexus: From Protocols to Pathologies

    PubMed Central

    Muniz Neto, Francisco J.; Kihara Filho, Eduardo N.; Miranda, Frederico C.; Rosemberg, Laercio A.; Santos, Durval C. B.

    2018-01-01

    Magnetic resonance neurography is a high-resolution imaging technique that allows evaluating different neurological pathologies in correlation to clinical and the electrophysiological data. The aim of this article is to present a review on the anatomy of the lumbosacral plexus nerves, along with imaging protocols, interpretation pitfalls, and most common pathologies that should be recognized by the radiologist: traumatic, iatrogenic, entrapment, tumoral, infectious, and inflammatory conditions. An extensive series of clinical and imaging cases is presented to illustrate key-points throughout the article. PMID:29662907

  15. Medical imaging: examples of clinical applications

    NASA Astrophysics Data System (ADS)

    Meinzer, H. P.; Thorn, M.; Vetter, M.; Hassenpflug, P.; Hastenteufel, M.; Wolf, I.

    Clinical routine is currently producing a multitude of diagnostic digital images but only a few are used in therapy planning and treatment. Medical imaging is involved in both diagnosis and therapy. Using a computer, existing 2D images can be transformed into interactive 3D volumes and results from different modalities can be merged. Furthermore, it is possible to calculate functional areas that were not visible in the primary images. This paper presents examples of clinical applications that are integrated into clinical routine and are based on medical imaging fundamentals. In liver surgery, the importance of virtual planning is increasing because surgery is still the only possible curative procedure. Visualisation and analysis of heart defects are also gaining in significance due to improved surgery techniques. Finally, an outlook is provided on future developments in medical imaging using navigation to support the surgeon's work. The paper intends to give an impression of the wide range of medical imaging that goes beyond the mere calculation of medical images.

  16. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  17. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  18. Digital management and regulatory submission of medical images from clinical trials: role and benefits of the core laboratory

    NASA Astrophysics Data System (ADS)

    Robbins, William L.; Conklin, James J.

    1995-10-01

    Medical images (angiography, CT, MRI, nuclear medicine, ultrasound, x ray) play an increasingly important role in the clinical development and regulatory review process for pharmaceuticals and medical devices. Since medical images are increasingly acquired and archived digitally, or are readily digitized from film, they can be visualized, processed and analyzed in a variety of ways using digital image processing and display technology. Moreover, with image-based data management and data visualization tools, medical images can be electronically organized and submitted to the U.S. Food and Drug Administration (FDA) for review. The collection, processing, analysis, archival, and submission of medical images in a digital format versus an analog (film-based) format presents both challenges and opportunities for the clinical and regulatory information management specialist. The medical imaging 'core laboratory' is an important resource for clinical trials and regulatory submissions involving medical imaging data. Use of digital imaging technology within a core laboratory can increase efficiency and decrease overall costs in the image data management and regulatory review process.

  19. ACR Appropriateness Criteria Crohn Disease.

    PubMed

    Kim, David H; Carucci, Laura R; Baker, Mark E; Cash, Brooks D; Dillman, Jonathan R; Feig, Barry W; Fowler, Kathryn J; Gage, Kenneth L; Noto, Richard B; Smith, Martin P; Yaghmai, Vahid; Yee, Judy; Lalani, Tasneem

    2015-10-01

    Crohn disease is a chronic inflammatory disorder involving the gastrointestinal tract, characterized by episodic flares and times of remission. Underlying structural damage occurs progressively, with recurrent bouts of inflammation. The diagnosis and management of this disease process is dependent on several clinical, laboratory, imaging, endoscopic, and histologic factors. In recent years, with the maturation of CT enterography, and MR enterography, imaging has played an increasingly important role in relation to Crohn Disease. In addition to these specialized examination modalities, ultrasound and routine CT have potential uses. Fluoroscopy, radiography, and nuclear medicine may be less beneficial depending on the clinical scenario. The imaging modality best suited to evaluating this disease may change, depending on the target population, severity of presentation, and specific clinical situation. This document presents seven clinical scenarios (variants) in both the adult and pediatric populations and rates the appropriateness of the available imaging options. They are summarized in a consolidated table, and the underlying rationale and supporting literature are presented in the accompanying narrative. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. Congenital cystic lesions of the head and neck.

    PubMed

    Ibrahim, Mohannad; Hammoud, Khaled; Maheshwari, Mohit; Pandya, Amit

    2011-08-01

    This article presents clinical characteristics and radiologic features of congenital cervical cystic masses, among them thyroglossal duct cysts, cystic hygromas, branchial cleft cysts, and the some of the rare congenital cysts, such as thymic and cervical bronchogenic cysts. The imaging options and the value of each for particular masses, as well as present clinical and radiologic images for each, are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Molecular Imaging in the Era of Personalized Medicine

    PubMed Central

    Jung, Kyung-Ho; Lee, Kyung-Han

    2015-01-01

    Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging. PMID:25812652

  2. Molecular imaging in the era of personalized medicine.

    PubMed

    Jung, Kyung-Ho; Lee, Kyung-Han

    2015-01-01

    Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.

  3. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.

    PubMed

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-06-01

    Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging. © 2018 American Association of Physicists in Medicine.

  4. WE-G-19A-01: Radiologists and Medical Physicists: Working Together to Achieve Common Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Ma, J; Steele, J

    It is vitally important that medical physicists understand the clinical questions that radiologists are trying to answer with patient images. Knowledge of the types of information the radiologist needs helps medical physicists configure imaging protocols that appropriately balance radiation dose, time, and image quality. The ability to communicate with radiologists and understand medical terminology, anatomy, and physiology is key to creating such imaging protocols. In this session, radiologists will present clinical cases and describe the information they are seeking in the clinical images. Medical physicists will then discuss how imaging protocols are configured. Learning Objectives: Understand the types of informationmore » that radiologists seek in medical images. Apply this understanding in configuring the imaging equipment to deliver this information. Develop strategies for working with physician colleagues.« less

  5. Ultrasound transducer selection in clinical imaging practice.

    PubMed

    Szabo, Thomas L; Lewin, Peter A

    2013-04-01

    Many types of medical ultrasound transducers are used in clinical practice. They operate at different center frequencies, have different physical dimensions, footprints, and shapes, and provide different image formats. However, little information is available about which transducers are most appropriate for a given application, and the purpose of this article is to address this deficiency. Specifically, the relationship between the transducer, imaging format, and clinical applications is discussed, and systematic selection criteria that allow matching of transducers to specific clinical needs are presented. These criteria include access to and coverage of the region of interest, maximum scan depth, and coverage of essential diagnostic modes required to optimize a patient's diagnosis. Three comprehensive figures organize and summarize the imaging planes, scanning modes, and types of diagnostic transducers to facilitate their selection in clinical diagnosis.

  6. MR Imaging of the Triangular Fibrocartilage Complex.

    PubMed

    Cody, Michael E; Nakamura, David T; Small, Kirstin M; Yoshioka, Hiroshi

    2015-08-01

    MR imaging has emerged as the mainstay in imaging internal derangement of the soft tissues of the musculoskeletal system largely because of superior contrast resolution. The complex geometry and diminutive size of the triangular fibrocartilage complex (TFCC) and its constituent structures can make optimal imaging of the TFCC challenging; therefore, production of clinically useful images requires careful optimization of image acquisition parameters. This article provides a foundation for advanced TFCC imaging including factors to optimize magnetic resonance images, arthrography, detailed anatomy, and classification of injury. In addition, clinical presentations and treatments for TFCC injury are briefly considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems

    NASA Astrophysics Data System (ADS)

    Saager, Rolf B.; Baldado, Melissa L.; Rowland, Rebecca A.; Kelly, Kristen M.; Durkin, Anthony J.

    2018-04-01

    With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.

  8. Phantom testing of a novel endoscopic OCT probe: a prelude to clinical in-vivo laryngeal use

    NASA Astrophysics Data System (ADS)

    Tatla, Taran; Pang, J. Y.; Cernat, R.; Dobre, G.; Tadrous, P. J.; Bradu, A.; Gelikonov, G.; Gelikonov, V.; Podoleanu, A. G.

    2012-12-01

    Optical coherence tomography is a novel imaging technique providing potentially high resolution tri-dimensional images of tissue microstructure up to 2-3mm deep. We present pre-clinical data from a novel miniaturised OCT probe utilised for endoscopic imaging of laryngeal mucosa. A 1300nm SS-OCT probe was passed in tandem with a flexible fibreoptic nasoendoscope into the larynx of a manikin. Ex vivo OCT images were acquired using a desktop 1300nm TD-OCT imaging system. The feasibility, robustness and safety of this set-up was demonstrated as a preliminary step to extending the use of this assembly to a clinical patient cohort with varying laryngeal pathologies.

  9. Magnetic resonance imaging of the brain in epileptic adult patients: experience in Ramathibodi Hospital.

    PubMed

    Solosrungruang, Anusorn; Laothamatas, Jiraporn; Chinwarun, Yotin

    2007-04-01

    The purpose of the present study was to classify the imaging structural abnormalities of epileptic adult patients referred for magnetic resonance imaging (MR imaging) of the brain at Ramathibodi Hospital and to correlate with the clinical data and EEG. MR imaging of 91 adult epileptic patients (age ranging from 15-85 years old with an average of 36.90 years old) were retrospectively reviewed and classified into eight groups according to etiologies. Then clinical data and EEG correlations were analyzed using the Kappa analysis. All of the MR imaging of the brain were performed at Ramathibodi Hospital from January 2001 to December 2002. Secondary generalized tonic clonic seizure was the most common clinical presenting seizure type. Extra temporal lobe epilepsy was the most common clinical diagnosis. Of the thirty-three patients who underwent EEG before performing MR imaging, 17 had normal EEG From MR imaging, temporal lobe lesion was the main affected location and mesial temporal sclerosis (MTS) was the most common cause of the epilepsy in patients. For age group classification, young adult (15-34 years old) and adult (35-64 years old) age groups, MTS was the most common etiology of epilepsy with cortical dysplasia being the second most common cause for the first group and vascular disease for the latter group. For the older age group (> 64 years old), vascular disease and idiopathic cause were equally common etiologies. MRI, EEG findings, and clinical data were all concordant with statistical significance. MRI is the non-invasive modality of choice for evaluation of the epileptic patients. The result is concordant with the clinical and EEG findings. It can detect and localize the structural abnormality accurately and is useful in the treatment planning.

  10. Utilizing data grid architecture for the backup and recovery of clinical image data.

    PubMed

    Liu, Brent J; Zhou, M Z; Documet, J

    2005-01-01

    Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models. However, there has been limited investigation into the impact of this emerging technology in medical imaging and informatics. In particular, PACS technology, an established clinical image repository system, while having matured significantly during the past ten years, still remains weak in the area of clinical image data backup. Current solutions are expensive or time consuming and the technology is far from foolproof. Many large-scale PACS archive systems still encounter downtime for hours or days, which has the critical effect of crippling daily clinical operations. In this paper, a review of current backup solutions will be presented along with a brief introduction to grid technology. Finally, research and development utilizing the grid architecture for the recovery of clinical image data, in particular, PACS image data, will be presented. The focus of this paper is centered on applying a grid computing architecture to a DICOM environment since DICOM has become the standard for clinical image data and PACS utilizes this standard. A federation of PACS can be created allowing a failed PACS archive to recover its image data from others in the federation in a seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid is composed of one research laboratory and two clinical sites. The Globus 3.0 Toolkit (Co-developed by the Argonne National Laboratory and Information Sciences Institute, USC) for developing the core and user level middleware is utilized to achieve grid connectivity. The successful implementation and evaluation of utilizing data grid architecture for clinical PACS data backup and recovery will provide an understanding of the methodology for using Data Grid in clinical image data backup for PACS, as well as establishment of benchmarks for performance from future grid technology improvements. In addition, the testbed can serve as a road map for expanded research into large enterprise and federation level data grids to guarantee CA (Continuous Availability, 99.999% up time) in a variety of medical data archiving, retrieval, and distribution scenarios.

  11. [Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model : Are your clinical imaging processes ready for the digital era?

    PubMed

    Studzinski, J

    2017-06-01

    The Digital Imaging Adoption Model (DIAM) has been jointly developed by HIMSS Analytics and the European Society of Radiology (ESR). It helps evaluate the maturity of IT-supported processes in medical imaging, particularly in radiology. This eight-stage maturity model drives your organisational, strategic and tactical alignment towards imaging-IT planning. The key audience for the model comprises hospitals with imaging centers, as well as external imaging centers that collaborate with hospitals. The assessment focuses on different dimensions relevant to digital imaging, such as software infrastructure and usage, workflow security, clinical documentation and decision support, data exchange and analytical capabilities. With its standardised approach, it enables regional, national and international benchmarking. All DIAM participants receive a structured report that can be used as a basis for presenting, e.g. budget planning and investment decisions at management level.

  12. Clinics in diagnostic imaging (179). Severe rhabdomyolysis complicated by myonecrosis.

    PubMed

    Kok, Shi Xian Shawn; Tan, Tien Jin

    2017-08-01

    A 32-year-old man presented to the emergency department with severe right lower limb pain and swelling of three days' duration. He had multiple prior admissions for recurrent seizures and suicide attempts. Markedly elevated serum creatine kinase levels and urine myoglobinuria were consistent with a diagnosis of rhabdomyolysis. Initial magnetic resonance imaging of the right lower limb revealed diffuse muscle oedema and features of myositis in the gluteal muscles and the adductor, anterior and posterior compartments of the thigh. Follow-up magnetic resonance imaging performed 11 days later showed interval development of areas of myonecrosis and haemorrhage. The causes, clinical presentation and imaging features of rhabdomyolysis are discussed. Copyright: © Singapore Medical Association.

  13. Confocal microendoscopy: Characterization of imaging bundles, fluorescent contrast agents, and early clinical results

    NASA Astrophysics Data System (ADS)

    Udovich, Joshua Anthony

    Ovarian cancer is the fifth leading cause of cancer related deaths among women. Early detection improves the chances of survival following diagnosis, and new imaging modalities have the potential to reduce deaths due to this disease. The confocal microendoscope (CME) is a non-destructive in-vivo imaging device for visualization of the ovaries that operates in real-time. Two components of the CME system are evaluated in this paper, and initial results from an ongoing clinical trial are presented. Fiber-optic imaging bundles are used in the CME imaging catheter to relay images over distances of up to 20 feet. When detecting fluorescent signals from investigated tissue, any fluorescence in the system can potentially reduce contrast in images. The emission and transmission properties of three commercially available fiber optic imaging bundles were evaluated. Emission maps of fluorescence from bundles were generated at multiple excitation wavelengths to determine the profile and amount of fluorescence present in bundles manufactured by Sumitomo, Fujikura, and Schott. Results are also presented that show the variation of transmittance as a function of illumination angle in these bundles. Users of high-resolution fiber-optic imaging bundles should be aware of these properties and take them into account during system design. Contrast is improved in images obtained with the CME through the application of topical dyes. Acridine orange (AO) and SYTO 16 are two fluorescent stains that are used to show the size, shape, and distribution of cell nuclei. Unfortunately, little is known about the effects of these dyes on living tissues. This study was undertaken to evaluate the effects of dye treatment on peritoneal tissues in mice. Seventy-five Balb/c mice were split into five groups of fifteen and given peritoneal injections of dye or saline. The proportions of negative outcomes for the control and test groups were compared using confidence intervals and the Fisher's exact test. No significant difference was determined between the groups. These data provide preliminary results on determining the effect of these dyes on living tissues. Preliminary results of a clinical trial are presented showing in-vivo use of the CME for imaging of the ovaries. This is the first portion of a two part study to demonstrate the clinical diagnosis potential of the CME system. A mobile version of the bench-top CME was modified to be used in the clinic. Fluorescein sodium is used as an initial contrast agent in these studies to demonstrate fluorescence imaging. Twenty patients were successfully imaged, and results of this study have allowed progression to a clinical validation study showing the diagnostic capabilities of the CME.

  14. Medical photography: principles for orthopedics.

    PubMed

    Uzun, Metin; Bülbül, Murat; Toker, Serdar; Beksaç, Burak; Kara, Adnan

    2014-04-05

    Medical photography is used clinically for patient evaluation, treatment decisions, and scientific documentation. Although standards for medical photography exist in many branches of medicine, we have not encountered such criteria in publications in the area of orthopedics. This study aims to (1) assess the quality of medical images used in an orthopedic publication and (2) to propose standards for medical photography in this area. Clinical photographs were reviewed from all issues of a journal published between the years 2008 and 2012. A quality of clinical images was developed based on the criteria published for the specialties of dermatology and cosmetic surgery. All images were reviewed on the appropriateness of background, patient preparation, and technique. In this study, only 44.9% of clinical images in an orthopedic publication adhered to the proposed conventions. Standards have not been established for medical photography in orthopedics as in other specialty areas. Our results suggest that photographic clinical information in orthopedic publications may be limited by inadequate presentation. We propose that formal conventions for clinical images should be established.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamran, Mudassar, E-mail: kamranm@mir.wustl.edu; Fowler, Kathryn J., E-mail: fowlerk@mir.wustl.edu; Mellnick, Vincent M., E-mail: mellnickv@mir.wustl.edu

    Primary aortic neoplasms are rare. Aortic sarcoma arising after endovascular aneurysm repair (EVAR) is a scarce subset of primary aortic malignancies, reports of which are infrequent in the published literature. The diagnosis of aortic sarcoma is challenging due to its non-specific clinical presentation, and the prognosis is poor due to delayed diagnosis, rapid proliferation, and propensity for metastasis. Post-EVAR, aortic sarcomas may mimic other more common aortic processes on surveillance imaging. Radiologists are rarely knowledgeable about this rare entity for which multimodality imaging and awareness are invaluable in early diagnosis. A series of three pathologically confirmed cases are presented tomore » display the multimodality imaging features and clinical presentations of aortic sarcoma arising after EVAR.« less

  16. Diagnosis and Management of Budd Chiari Syndrome: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copelan, Alexander, E-mail: alexander.copelan@beaumont.edu; Remer, Erick M., E-mail: remere1@ccf.org; Sands, Mark, E-mail: sandsm@ccf.org

    Imaging plays a crucial role in the early detection and assessment of the extent of disease in Budd Chiari syndrome (BCS). Early diagnosis and intervention to mitigate hepatic congestion is vital to restoring hepatic function and alleviating portal hypertension. Interventional radiology serves a key role in the management of these patients. The interventionist should be knowledgeable of the clinical presentation as well as key imaging findings, which often dictate the approach to treatment. This article concisely reviews the etiology, pathophysiology, and clinical presentation of BCS and provides a detailed description of imaging and treatment options, particularly interventional management.

  17. Periorbital dirofilariasis—Clinical and imaging findings: Live worm on ultrasound

    PubMed Central

    Gopinath, Thandre N; Lakshmi, K P; Shaji, P C; Rajalakshmi, P C

    2013-01-01

    Ocular dirofilariasis is a zoonotic filariasis caused by nematode worm,Dirofilaria. We present a case of dirofilariasis affecting the upper eyelid in a 2-year-old child presenting as an acutely inflammed cyst, from southern Indian state of Kerala. Live adult worm was surgically removed and confirmed to be Dirofilaria repens. Live worm showing continuous movement was seen on the pre-operative high-resolution ultrasound. Ultrasound can be helpful in pre-operative identification of live worm. Imaging findings reported in literature are very few. We describe the clinical, ultrasound, and magnetic resonance imaging (MRI) findings. PMID:23803483

  18. Clinical Amyloid Imaging.

    PubMed

    Mallik, Atul; Drzezga, Alex; Minoshima, Satoshi

    2017-01-01

    Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ambient lighting: setting international standards for the viewing of softcopy chest images

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Ryan, John; Evanoff, Micheal G.; Keeling, Aoife; Chakraborty, Dev; Manning, David; Brennan, Patrick C.

    2007-03-01

    Clinical radiological judgments are increasingly being made on softcopy LCD monitors. These monitors are found throughout the hospital environment in radiological reading rooms, outpatient clinics and wards. This means that ambient lighting where clinical judgments from images are made can vary widely. Inappropriate ambient lighting has several deleterious effects: monitor reflections reduce contrast; veiling glare adds brightness; dynamic range and detectability of low contrast objects is limited. Radiological images displayed on LCDs are more sensitive to the impact of inappropriate ambient lighting and with these devices problems described above are often more evident. The current work aims to provide data on optimum ambient lighting, based on lesions within chest images. The data provided may be used for the establishment of workable ambient lighting standards. Ambient lighting at 30cms from the monitor was set at 480 Lux (office lighting) 100 Lux (WHO recommendations), 40 Lux and <10 Lux. All monitors were calibrated to DICOM part 14 GSDF. Sixty radiologists were presented with 30 chest images, 15 images having simulated nodular lesions of varying subtlety and size. Lesions were positioned in accordance with typical clinical presentation and were validated radiologically. Each image was presented for 30 seconds and viewers were asked to identify and score any visualized lesion from 1-4 to indicate confidence level of detection. At the end of the session, sensitivity and specificity were calculated. Analysis of the data suggests that visualization of chest lesions is affected by inappropriate lighting with chest radiologists demonstrating greater ambient lighting dependency. JAFROC analyses are currently being performed.

  20. Development of a novel imaging informatics-based system with an intelligent workflow engine (IWEIS) to support imaging-based clinical trials

    PubMed Central

    Wang, Ximing; Liu, Brent J; Martinez, Clarisa; Zhang, Xuejun; Winstein, Carolee J

    2015-01-01

    Imaging based clinical trials can benefit from a solution to efficiently collect, analyze, and distribute multimedia data at various stages within the workflow. Currently, the data management needs of these trials are typically addressed with custom-built systems. However, software development of the custom- built systems for versatile workflows can be resource-consuming. To address these challenges, we present a system with a workflow engine for imaging based clinical trials. The system enables a project coordinator to build a data collection and management system specifically related to study protocol workflow without programming. Web Access to DICOM Objects (WADO) module with novel features is integrated to further facilitate imaging related study. The system was initially evaluated by an imaging based rehabilitation clinical trial. The evaluation shows that the cost of the development of system can be much reduced compared to the custom-built system. By providing a solution to customize a system and automate the workflow, the system will save on development time and reduce errors especially for imaging clinical trials. PMID:25870169

  1. Macrodystrophia lipomatosa: four case reports

    PubMed Central

    2010-01-01

    Aim Macrodystrophia lipomatosa is a rare cause of gigantism of limb which can be confused with other common causes like congenital lymphedema. It presents usually with loss of function and cosmetic problems. Four cases are described with emphasis on clinical presentation, differential diagnoses, imaging and treatment options. Methods & Results Four patients of macrodystrophia lipomatosa were thoroughly examined and subjected to investigations. Conclusion Besides diligent clinical examination, imaging and histopathology are crucial in clinching the diagnosis. PMID:20969776

  2. Radiological and endoscopic imaging methods in the management of cystic pancreatic neoplasms.

    PubMed

    Aslan, Ahmet; Inan, Ibrahim; Orman, Süleyman; Aslan, Mine; Acar, Murat

    2017-01-01

    The management of cystic pancreatic neoplasm (CPN) is a clinical dilemma because of its clinical presentations and malignant potential. Surgery is the best treatment choice ; however, pancreatic surgery still has high complication rates, even in experienced centers. Imaging methods have a definitive role in the management of CPN and computed tomography, magnetic resonance imaging, and endoscopic ultrasonography are the preferred methods since they can reveal the suspicious features for malignancy. Therefore, radiologists, gastroenterologists, endoscopists, and surgeons should be aware of the common features of CPN, its discrete presentations on imaging methods, and the limitations of these modalities in the management of the disease. This study aims to review the radiological and endoscopic imaging methods used for the management of CPN. © Acta Gastro-Enterologica Belgica.

  3. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images.

    PubMed

    Lee, Kyung Eun; Lee, Seo Ho; Shin, Eun-Seok; Shim, Eun Bo

    2017-06-26

    Hemodynamic simulation for quantifying fractional flow reserve (FFR) is often performed in a patient-specific geometry of coronary arteries reconstructed from the images from various imaging modalities. Because optical coherence tomography (OCT) images can provide more precise vascular lumen geometry, regardless of stenotic severity, hemodynamic simulation based on OCT images may be effective. The aim of this study is to perform OCT-FFR simulations by coupling a 3D CFD model from geometrically correct OCT images with a LPM based on vessel lengths extracted from CAG data with clinical validations for the present method. To simulate coronary hemodynamics, we developed a fast and accurate method that combined a computational fluid dynamics (CFD) model of an OCT-based region of interest (ROI) with a lumped parameter model (LPM) of the coronary microvasculature and veins. Here, the LPM was based on vessel lengths extracted from coronary X-ray angiography (CAG) images. Based on a vessel length-based approach, we describe a theoretical formulation for the total resistance of the LPM from a three-dimensional (3D) CFD model of the ROI. To show the utility of this method, we present calculated examples of FFR from OCT images. To validate the OCT-based FFR calculation (OCT-FFR) clinically, we compared the computed OCT-FFR values for 17 vessels of 13 patients with clinically measured FFR (M-FFR) values. A novel formulation for the total resistance of LPM is introduced to accurately simulate a 3D CFD model of the ROI. The simulated FFR values compared well with clinically measured ones, showing the accuracy of the method. Moreover, the present method is fast in terms of computational time, enabling clinicians to provide solutions handled within the hospital.

  4. Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs.

    PubMed

    Chakrabarty, Lipi; Joshi, Gopal Datt; Chakravarty, Arunava; Raman, Ganesh V; Krishnadas, S R; Sivaswamy, Jayanthi

    2016-07-01

    To describe and evaluate the performance of an automated CAD system for detection of glaucoma from color fundus photographs. Color fundus photographs of 2252 eyes from 1126 subjects were collected from 2 centers: Aravind Eye Hospital, Madurai and Coimbatore, India. The images of 1926 eyes (963 subjects) were used to train an automated image analysis-based system, which was developed to provide a decision on a given fundus image. A total of 163 subjects were clinically examined by 2 ophthalmologists independently and their diagnostic decisions were recorded. The consensus decision was defined to be the clinical reference (gold standard). Fundus images of eyes with disagreement in diagnosis were excluded from the study. The fundus images of the remaining 314 eyes (157 subjects) were presented to 4 graders and their diagnostic decisions on the same were collected. The performance of the system was evaluated on the 314 images, using the reference standard. The sensitivity and specificity of the system and 4 independent graders were determined against the clinical reference standard. The system achieved an area under receiver operating characteristic curve of 0.792 with a sensitivity of 0.716 and specificity of 0.717 at a selected threshold for the detection of glaucoma. The agreement with the clinical reference standard as determined by Cohen κ is 0.45 for the proposed system. This is comparable to that of the image-based decisions of 4 ophthalmologists. An automated system was presented for glaucoma detection from color fundus photographs. The overall evaluation results indicated that the presented system was comparable in performance to glaucoma classification by a manual grader solely based on fundus image examination.

  5. Development of imaging biomarkers and generation of big data.

    PubMed

    Alberich-Bayarri, Ángel; Hernández-Navarro, Rafael; Ruiz-Martínez, Enrique; García-Castro, Fabio; García-Juan, David; Martí-Bonmatí, Luis

    2017-06-01

    Several image processing algorithms have emerged to cover unmet clinical needs but their application to radiological routine with a clear clinical impact is still not straightforward. Moving from local to big infrastructures, such as Medical Imaging Biobanks (millions of studies), or even more, Federations of Medical Imaging Biobanks (in some cases totaling to hundreds of millions of studies) require the integration of automated pipelines for fast analysis of pooled data to extract clinically relevant conclusions, not uniquely linked to medical imaging, but in combination to other information such as genetic profiling. A general strategy for the development of imaging biomarkers and their integration in the cloud for the quantitative management and exploitation in large databases is herein presented. The proposed platform has been successfully launched and is being validated nowadays among the early adopters' community of radiologists, clinicians, and medical imaging researchers.

  6. Correlation between Clinical Features and Magnetic Resonance Imaging Findings in Lumbar Disc Prolapse.

    PubMed

    Thapa, S S; Lakhey, R B; Sharma, P; Pokhrel, R K

    2016-05-01

    Magnetic resonance imaging is routinely done for diagnosis of lumbar disc prolapse. Many abnormalities of disc are observed even in asymptomatic patient.This study was conducted tocorrelate these abnormalities observed on Magnetic resonance imaging and clinical features of lumbar disc prolapse. A This prospective analytical study includes 57 cases of lumbar disc prolapse presenting to Department of Orthopedics, Tribhuvan University Teaching Hospital from March 2011 to August 2012. All patientshad Magnetic resonance imaging of lumbar spine and the findings regarding type, level and position of lumbar disc prolapse, any neural canal or foraminal compromise was recorded. These imaging findings were then correlated with clinical signs and symptoms. Chi-square test was used to find out p-value for correlation between clinical features and Magnetic resonance imaging findings using SPSS 17.0. This study included 57 patients, with mean age 36.8 years. Of them 41(71.9%) patients had radicular leg pain along specific dermatome. Magnetic resonance imaging showed 104 lumbar disc prolapselevel. Disc prolapse at L4-L5 and L5-S1 level constituted 85.5%.Magnetic resonance imaging findings of neural foramina compromise and nerve root compression were fairly correlated withclinical findings of radicular pain and neurological deficit. Clinical features and Magnetic resonance imaging findings of lumbar discprolasehad faircorrelation, but all imaging abnormalities do not have a clinical significance.

  7. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  8. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  9. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.

    PubMed

    Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B

    2014-11-01

    The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.

  10. Web Tools for Distributed Clinical Case Conferencing

    PubMed Central

    Lober, WB; Li, H; Trigg, LJ; Stewart, BK; Chou, D

    2001-01-01

    We have developed an information system to support distributed clinical case conferences held via video conferencing. The system has been designed by studying physicians of several specialties presenting hematology-oncology patients at Tumor Board. However, the principles of clinical case presentation are similar across many medical specialties, and we believe our approach has general applicability for presenting image and other clinical information, and organizing it for subsequent re-use in teaching files.

  11. Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.

    2016-02-01

    Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.

  12. Effect of delay in hospital presentation on clinical and imaging findings in acute pulmonary thromboembolism.

    PubMed

    Jenab, Yaser; Alemzadeh-Ansari, Mohammad Javad; Fehri, Seyedeh Arezoo; Ghaffari-Marandi, Neda; Jalali, Arash

    2014-04-01

    There is limited information on the extent and clinical importance of the delay in hospital presentation of acute pulmonary thromboembolism (PTE). The aim of this study was to investigate the delay in hospital presentation of PTE and its association with clinical and imaging findings in PTE. This prospective study was conducted on patients admitted to our hospital with a diagnosis of acute PTE between September 2007 and September 2011. Relationships between delay in hospital presentation and clinical findings, risk factors, imaging findings, and in-hospital mortality were analyzed. Of the 195 patients enrolled, 84 (43.1%) patients presented 3 days after the onset of symptoms. Patients with chest pain, history of immobility for more than 3 days, recent surgery, and estrogen use had significantly less delayed presentation. Right ventricular dysfunction was significantly more frequent in patients with delayed presentation (odds ratio [OR] = 2.38; 95% confidence interval [CI] 1.27-4.44; p = 0.006); however, no relationship was found between delay in presentation and pulmonary computed tomographic angiography or color Doppler sonography findings. Patients with delayed presentation were at higher risk of in-hospital mortality (OR = 4.32; 95% CI 1.12-16.49; p = 0.021). Our study showed that a significant portion of patients with acute PTE had delayed presentation. Also, patients with delayed presentation had worse echocardiographic findings and higher in-hospital mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Design and validation of a mathematical breast phantom for contrast-enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Jong, Roberta A.; Yaffe, Martin J.

    2011-03-01

    In contrast-enhanced digital mammography (CEDM) an iodinated contrast agent is employed to increase lesion contrast and to provide tissue functional information. Here, we present the details of a software phantom that can be used as a tool for the simulation of CEDM images, and compare the degree of anatomic noise present in images simulated using the phantom to that associated with breast parenchyma in clinical CEDM images. Such a phantom could be useful for multiparametric investigations including characterization of CEDM imaging performance and system optimization. The phantom has a realistic mammographic appearance based on a clustered lumpy background and models contrast agent uptake according to breast tissue physiology. Fifty unique phantoms were generated and used to simulate regions of interest (ROI) of pre-contrast images and logarithmically subtracted CEDM images using monoenergetic ray tracing. Power law exponents, β, were used as a measure of anatomic noise and were determined using a linear least-squares fit to log-log plots of the square of the modulus of radially averaged image power spectra versus spatial frequency. The power spectra for ROI selected from regions of normal parenchyma in 10 pairs of clinical CEDM pre-contrast and subtracted images were also measured for comparison with the simulated images. There was good agreement between the measured β in the simulated CEDM images and the clinical images. The values of β were consistently lower for the logarithmically subtracted CEDM images compared to the pre-contrast images, indicating that the subtraction process reduced anatomical noise.

  14. Ultrasound imaging for the rheumatologist XXX. Sonographic assessment of the painful knee.

    PubMed

    Meenagh, G; Filippucci, E; Delle Sedie, A; Iagnocco, A; Scirè, C A; Riente, L; Montecucco, C; Valesini, G; Bombardieri, S; Grassi, W

    2010-01-01

    The knee joint is a frequent focus of attention for rheumatologists when assessing patients presenting to a clinic and may represent underlying intra-articular inflammatory pathology or involvement of the surrounding soft tissues. This study describes the correlation between clinical and ultrasound findings in patients presenting with a variety of rheumatic disorders and knee pain. US imaging provides for a sensitive and detailed identification of different intra- and peri-articular pathology responsible for knee pain.

  15. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, E; Nelson, J; Hangiandreou, N

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidencebased medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. CT 2.0: CT has been undergoing a dramatic transition in themore » last few decades. While the changes in the technology merits discussions of their own, an important question is how clinical medical physicists are expected to effectively engage with the new realities of CT technology and practice. Consistent with the upcoming paradigm of Medical Physics 2.0, this CT presentation aims to provide definitions and demonstration of the components of the new clinical medical physics practice pertaining CT. The topics covered include physics metrics and analytics that aim to provide higher order clinicallyrelevant quantification of system performance as pertains to new (and not so new) technologies. That will include the new radiation and dose metrics (SSDE, organ dose, risk indices), image quality metrology (MTF/NPS/d’), task-based phantoms, and the effect of patient size. That will follow with a discussion of the testing implication of new CT hardware (detectors, tubes), acquisition methods (innovative helical geometries, AEC, wide beam CT, dual energy, inverse geometry, application specialties), and image processing and analysis (iterative reconstructions, quantitative CT, advanced renditions). The presentation will conclude with a discussion of clinical and operational aspects of Medical Physics 2.0 including training and communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications. Identify approaches for implementing comprehensive medical physics services in future imaging practices.« less

  16. A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: technology development and clinical study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.

    2016-03-01

    We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Due to the limitations of the existing real-time diagnostic tools the patients at risk are periodically monitored with retinal imaging to confirm the absence of new tumor seedings. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.

  17. [Research applications in digital radiology. Big data and co].

    PubMed

    Müller, H; Hanbury, A

    2016-02-01

    Medical imaging produces increasingly complex images (e.g. thinner slices and higher resolution) with more protocols, so that image reading has also become much more complex. More information needs to be processed and usually the number of radiologists available for these tasks has not increased to the same extent. The objective of this article is to present current research results from projects on the use of image data for clinical decision support. An infrastructure that can allow large volumes of data to be accessed is presented. In this way the best performing tools can be identified without the medical data having to leave secure servers. The text presents the results of the VISCERAL and Khresmoi EU-funded projects, which allow the analysis of previous cases from institutional archives to support decision-making and for process automation. The results also represent a secure evaluation environment for medical image analysis. This allows the use of data extracted from past cases to solve information needs occurring when diagnosing new cases. The presented research prototypes allow direct extraction of knowledge from the visual data of the images and to use this for decision support or process automation. Real clinical use has not been tested but several subjective user tests showed the effectiveness and efficiency of the process. The future in radiology will clearly depend on better use of the important knowledge in clinical image archives to automate processes and aid decision-making via big data analysis. This can help concentrate the work of radiologists towards the most important parts of diagnostics.

  18. Rationale and design of the SMaRT trial: A randomised, prospective, parallel, non-blinded, one-centre trial to evaluate the use of magnetic resonance imaging in acute setting in patients presenting with suspected scaphoid fracture.

    PubMed

    Rua, Tiago; Vijayanathan, Sanjay; Parkin, David; Goh, Vicky; McCrone, Paul; Gidwani, Sam

    2018-04-01

    Background Wrist injury is a common presentation to the Emergency Department in the United Kingdom. Among these injuries, the scaphoid is the most common fractured carpal bone. However, given the limited ability of conventional radiography to accurately diagnose a suspected scaphoid fracture on presentation, its diagnosis and management remain challenging. Despite the vast clinical evidence supporting the superior accuracy of magnetic resonance imaging, there is little to no evidence around the real-world clinical and economic impact of immediate magnetic resonance imaging in the management of suspected scaphoid fractures. Methods Review of design and implementation challenges associated with the identification and subsequent recruitment of eligible patients, implementation of a novel clinical pathway in an acute setting, rationale behind the primary and secondary outcomes selected and measurement of the primary outcome. Results The Scaphoid Magnetic Resonance Imaging in Trauma trial is a single-site prospective, randomised, non-blinded, parallel design trial that aims to evaluate the use of immediate magnetic resonance imaging in the management of patients presenting to the acute setting with suspected scaphoid fractures. The primary outcome is the total 3-month cost per patient associated with the diagnosis and treatment of suspected scaphoid fractures. It is hypothesised that the immediate use of magnetic resonance imaging, a more accurate but expensive imaging modality, in patients with negative findings in the initial four-view radiography, will reduce the overall National Health Service costs by promoting definitive care and avoiding unnecessary diagnostic and treatment procedures. Other rationale design considerations in the recruitment, randomisation, data acquisition and intervention implementation are also discussed. Several of these challenges derive from real-world operational issues associated with the provision of magnetic resonance imaging in an intrinsically complex acute setting. Staff engagement during the trial's planning phase, combined with an extensive training programme rolled out prior to the trial's launch, were essential to raise staff awareness and engagement. Given the acute nature of the clinical condition, the latter was deemed essential as the eligibility assessment, recruitment, randomisation and treatment allocation processes all need to happen in a very tight time frame. Limitations Findings from the Scaphoid Magnetic Resonance Imaging in Trauma trial might not be generalisable to other National Health Service hospitals, foreign healthcare systems nor patient presentations outside normal magnetic resonance imaging working hours. Conclusion The Scaphoid Magnetic Resonance Imaging in Trauma trial was designed to evaluate the costs, patient satisfaction and clinical outcomes around the management of suspected scaphoid fractures and ultimately provide solid evidence on which to base the United Kingdom and international clinical practice. This article discusses the steps considered in the design of this novel trial, with particular emphasis on the issues and lessons learned during the planning and implementation stages.

  19. Role of imaging in testicular cancer: current and future practice.

    PubMed

    Barrisford, Glen W; Kreydin, Evgeniy I; Preston, Mark A; Rodriguez, Dayron; Harisighani, Mukesh G; Feldman, Adam S

    2015-09-01

    The article provides a summary of the epidemiologic and clinical aspects of testicular malignancy. Current standard imaging and novel techniques are reviewed. Present data and clinical treatment trends have favored surveillance protocols over adjuvant radiation or chemotherapy for low-stage testicular malignancy. This has resulted in increasing numbers of imaging studies and the potential for increased long-term exposure risks. Understanding imaging associated risks as well as strategies to minimize these risks is of increasing importance. The development, validation and incorporation of alternative lower risk highly efficacious and cost-effective imaging techniques is essential.

  20. Hospital integrated parallel cluster for fast and cost-efficient image analysis: clinical experience and research evaluation

    NASA Astrophysics Data System (ADS)

    Erberich, Stephan G.; Hoppe, Martin; Jansen, Christian; Schmidt, Thomas; Thron, Armin; Oberschelp, Walter

    2001-08-01

    In the last few years more and more University Hospitals as well as private hospitals changed to digital information systems for patient record, diagnostic files and digital images. Not only that patient management becomes easier, it is also very remarkable how clinical research can profit from Picture Archiving and Communication Systems (PACS) and diagnostic databases, especially from image databases. Since images are available on the finger tip, difficulties arise when image data needs to be processed, e.g. segmented, classified or co-registered, which usually demands a lot computational power. Today's clinical environment does support PACS very well, but real image processing is still under-developed. The purpose of this paper is to introduce a parallel cluster of standard distributed systems and its software components and how such a system can be integrated into a hospital environment. To demonstrate the cluster technique we present our clinical experience with the crucial but cost-intensive motion correction of clinical routine and research functional MRI (fMRI) data, as it is processed in our Lab on a daily basis.

  1. Towards a clinical implementation of μOCT instrument for in vivo imaging of human airways

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Cui, Dongyao; Ford, Timothy N.; Hyun, Daryl; Dong, Jing; Yin, Biwei; Birket, Susan E.; Solomon, George M.; Liu, Linbo; Rowe, Steven M.; Tearney, Guillermo J.

    2017-03-01

    High resolution micro-optical coherence tomography (µOCT) technology has been demonstrated to be useful for imaging respiratory epithelial functional microanatomy relevant to the study of pulmonary diseases such as cystic fibrosis and COPD. We previously reported the use of a benchtop μOCT imaging technology to image several relevant respiratory epithelial functional microanatomy at 40 fps and at lateral and axial resolutions of 2 and 1.3μm, respectively. We now present the development of a portable μOCT imaging system with comparable optical and imaging performance, which enables the μOCT technology to be translated to the clinic for in vivo imaging of human airways.

  2. Imaging of the carotid space.

    PubMed

    Kuwada, Clinton; Mannion, Kyle; Aulino, Joseph M; Kanekar, Sangam G

    2012-12-01

    The most common of the lesions in the carotid space are discussed in relation to their radiographic diagnosis and clinical implications. The appearance of tumors and lesions on computed tomography or magnetic resonance imaging is presented, and their differential diagnosis is discussed. The image of each carotid disease is presented, and the discussion concludes with treatment recommendations and considerations. Copyright © 2012. Published by Elsevier Inc.

  3. Multispectral, Fluorescent and Photoplethysmographic Imaging for Remote Skin Assessment

    PubMed Central

    Spigulis, Janis

    2017-01-01

    Optical tissue imaging has several advantages over the routine clinical imaging methods, including non-invasiveness (it does not change the structure of tissues), remote operation (it avoids infections) and the ability to quantify the tissue condition by means of specific image parameters. Dermatologists and other skin experts need compact (preferably pocket-size), self-sustaining and easy-to-use imaging devices. The operational principles and designs of ten portable in-vivo skin imaging prototypes developed at the Biophotonics Laboratory of Institute of Atomic Physics and Spectroscopy, University of Latvia during the recent five years are presented in this paper. Four groups of imaging devices are considered. Multi-spectral imagers offer possibilities for distant mapping of specific skin parameters, thus facilitating better diagnostics of skin malformations. Autofluorescence intensity and photobleaching rate imagers show a promising potential for skin tumor identification and margin delineation. Photoplethysmography video-imagers ensure remote detection of cutaneous blood pulsations and can provide real-time information on cardiovascular parameters and anesthesia efficiency. Multimodal skin imagers perform several of the abovementioned functions by taking a number of spectral and video images with the same image sensor. Design details of the developed prototypes and results of clinical tests illustrating their functionality are presented and discussed. PMID:28534815

  4. Imaging macrophages with nanoparticles

    NASA Astrophysics Data System (ADS)

    Weissleder, Ralph; Nahrendorf, Matthias; Pittet, Mikael J.

    2014-02-01

    Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.

  5. Applications of PET CT in clinical practice: Present and future

    NASA Astrophysics Data System (ADS)

    Costa, Durval Campos

    2007-02-01

    Radionuclide imaging and specially positron emission tomography (PET) has already demonstrated its benefits in three major medical subjects, i.e. neurology, cardiology and particularly clinical oncology. More recently the combination of PET and X-ray computed tomography (CT) as PET-CT led to a significant increment of the already large number of clinical applications of this imaging modality. This "anatomy-metabolic fusion" also known as Metabolic Imaging has its future assured if we can: (1) improve resolution reducing partial volume effect, (2) achieve very fast whole body imaging, (3) obtain accurate quantification of specific functions with higher contrast resolution and, if possible, (4) reduce exposure rates due to the unavoidable use of ionizing radiation.

  6. The Use of Published Clinical Study Reports to Support U.S. Food and Drug Administration Approval of Imaging Agents.

    PubMed

    Rieves, Dwaine; Jacobs, Paula

    2016-12-01

    Pharmaceutical companies typically perform prospective, multicenter phase 3 clinical studies to support approval of a new imaging agent by the U.S. Food and Drug Administration (FDA). In uncommon situations, the FDA has approved imaging agents based solely, or in large part, on the clinical study experience described in published reports, including reports of exploratory (i.e., phase 1 or 2) studies performed at a single clinical site. We performed a survey of published reports to assess the potential of the reported information to support FDA approval of a commonly cited investigational imaging agent. Our survey revealed critical data limitations in most publications, all of which reported exploratory clinical studies. Here we summarize the precedent for FDA approval of imaging agents using effectiveness data from publications, FDA guidance, and our experience in reviewing publications. We also present a key-data checklist for investigators to consider in the design, conduct, and reporting of exploratory clinical studies for publication. We encourage editors and peer reviewers to consider requiring these key data when reviewing these reports for publication. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  8. Clinical presentation, imaging findings, and prognosis of spinal dural arteriovenous fistula.

    PubMed

    Lee, Jookyung; Lim, Young-Min; Suh, Dae Chul; Rhim, Seung Chul; Kim, Sang Joon; Kim, Kwang-Kuk

    2016-04-01

    Spinal dural arteriovenous fistula (SDAVF) is a relatively common acquired vascular malformation of the spinal cord. Assessment of a SDAVF is often difficult because of non-specific findings on non-invasive imaging modalities. Diagnosis of a SDAVF is often delayed, and some patients receive unnecessary treatment and treatment delays, often resulting in a poor outcome. The aim of this study was to characterize the clinical presentation, typical imaging findings, and long-term outcome of SDAVF. Forty patients (13 women, 27 men; mean age 58.18 ± standard deviation 14.75 years) who were treated at our hospital from June 1992 to March 2014 were retrospectively reviewed. We investigated the baseline characteristics, clinical presentation, imaging findings, treatment modalities, and outcome of the patients. The most common clinical presentation was a sensory symptom (80%), followed by motor weakness (70%), and sphincter dysfunction (62.5%). Roughly one-third (32.5%) of patients had a stepwise progression of fluctuating weakness and sensory symptoms, but the most common presentation was chronic progressive myelopathic symptoms (47.5%). Thirty-four patients (85%) had T2 signal change on the spinal cord MRI, indicative of cord edema. Thirty-eight patients had typical perimedullary vessel flow voids on T2-weighted MRI. Twenty-eight patients were treated with endovascular embolization, five patients underwent surgery, and four patients underwent both. Clinical outcome was determined by severity of initial deficit (p=0.008), extent of cord edema (p=0.010), treatment failure (p=0.004), and a residual fistula (p=0.017). SDAVF causes a treatable myelopathy, so early diagnosis and intervention is essential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Use of diagnostic imaging in the emergency department for cervical spine injuries in Kingston, Ontario.

    PubMed

    Pickett, William; Kukaswadia, Atif; Thompson, Wendy; Frechette, Mylene; McFaull, Steven; Dowdall, Hilary; Brison, Robert J

    2014-01-01

    This study assessed the use and clinical yield of diagnostic imaging (radiography, computed tomography, and medical resonance imaging) ordered to assist in the diagnosis of acute neck injuries presenting to emergency departments (EDs) in Kingston, Ontario, from 2002-2003 to 2009-2010. Acute neck injury cases were identified using records from the Kingston sites of the Canadian National Ambulatory Care Reporting System. Use of radiography was analyzed over time and related to proportions of cases diagnosed with clinically significant cervical spine injuries. A total of 4,712 neck injury cases were identified. Proportions of cases referred for diagnostic imaging to the neck varied significantly over time, from 30.4% in 2002-2003 to 37.6% in 2009-2010 (ptrend  =  0.02). The percentage of total cases that were positive for clinically significant cervical spine injury ("clinical yield") also varied from a low of 5.8% in 2005-2006 to 9.2% in 2008-2009 (ptrend  =  0.04), although the clinical yield of neck-imaged cases did not increase across the study years (ptrend  =  0.23). Increased clinical yield was not observed in association with higher neck imaging rates whether that yield was expressed as a percentage of total cases positive for clinically significant injury (p  =  0.29) or as a percentage of neck-imaged cases that were positive (p  =  0.77). We observed increases in the use of diagnostic images over time, reflecting a need to reinforce an existing clinical decision rule for cervical spine radiography. Temporal increases in the clinical yield for total cases may suggest a changing case mix or more judicious use of advanced types of diagnostic imaging.

  10. False-positive diagnosis of disease progression by magnetic resonance imaging for response assessment in prostate cancer with bone metastases: A case report and review of the pitfalls of images in the literature

    PubMed Central

    YU, YI-SHAN; LI, WAN-HU; LI, MING-HUAN; MENG, XUE; KONG, LI; YU, JIN-MING

    2015-01-01

    Bone metastases are common in prostate cancer. However, differentiating neoplastic from non-neoplastic alterations of bone on images is challenging. In the present report, a rare case of bone marrow reconversion on magnetic resonance imaging (MRI) assessment, which may lead to a false-positive diagnosis of disease progression of bone metastases in hormone-resistant prostate cancer, is presented. Furthermore, a review of the literature regarding the pitfalls of images for response assessment, including the ‘flare’ phenomenon on bone scintigraphy, computed tomography (CT), positron emission tomography/CT and marrow reconversion on MRI is also provided. These inaccuracies, which may lead to a premature termination of an efficacious treatment, should be carefully considered by the radiologists and oncologists involved in clinical trials. The case reported in the present study showed how to assess the early therapeutic response and select the appropriate treatment for the patient when these pitfalls are encountered on clinical images. PMID:26788174

  11. Role of Kinetic Modeling in Biomedical Imaging

    PubMed Central

    Huang, Sung-Cheng

    2009-01-01

    Biomedical imaging can reveal clear 3-dimensional body morphology non-invasively with high spatial resolution. Its efficacy, in both clinical and pre-clinical settings, is enhanced with its capability to provide in vivo functional/biological information in tissue. The role of kinetic modeling in providing biological/functional information in biomedical imaging is described. General characteristics and limitations in extracting biological information are addressed and practical approaches to solve the problems are discussed and illustrated with examples. Some future challenges and opportunities for kinetic modeling to expand the capability of biomedical imaging are also presented. PMID:20640185

  12. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal heart function. Presented is the first use of transthoracic ARFI imaging in a serial study of heart failure in a porcine model. Results demonstrate the ability of transthoracic ARFI to image cyclically-varying stiffness changes in healthy and infarcted myocardium under good B-mode imaging conditions at depths in the range of 3-5 cm. Challenging imaging scenarios such as deep regions of interest, vigorous lateral motion and stable, reverberant clutter are analyzed and discussed. Results are then presented from the first study of clinical feasibility of transthoracic cardiac ARFI imaging. At the Duke University Medical Center, healthy volunteers and patients having magnetic resonance imaging-confirmed apical infarcts were enrolled for the study. The number of patients who met the inclusion criteria in this preliminary clinical trial was low, but results showed that the limitations seen in animal studies were not overcome by allowing transmit power levels to exceed the FDA mechanical index (MI) limit. The results suggested the primary source of image degradation was clutter rather than lack of radiation force. Additionally, the transthoracic method applied in its present form was not shown capable of tracking propagating ARFI-induced shear waves in the myocardium. Under current instrumentation and processing methods, results of these studies support feasibility for transthoracic ARFI in high-quality B-Mode imaging conditions. Transthoracic ARFI was not shown sensitive to infarct or to tracking heart failure in the presence of clutter and signal decorrelation. This work does provide evidence that transthoracic ARFI imaging is a safe non-invasive tool, but clinical efficacy as a diagnostic tool will need to be addressed by further development to overcome current challenges and increase robustness to sources of image degradation.

  13. DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.

    PubMed

    Abdelaziz, Marwa; Krejci, Ivo

    2015-01-01

    In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice.

  14. Magnetic resonance imaging findings in patients presenting with (sub)acute cerebellar ataxia.

    PubMed

    Schneider, Tanja; Thomalla, Götz; Goebell, Einar; Piotrowski, Anna; Yousem, David Mark

    2015-06-01

    Acute or subacute cerebellar inflammation is mainly caused by postinfectious, toxic, neoplastic, vascular, or idiopathic processes and can result in cerebellar ataxia. Previous magnetic resonance (MR) studies in single patients who developed acute or subacute ataxia showed varying imaging features. Eighteen patients presenting with acute and subacute onset of ataxia were included in this study. Cases of chronic-progressive/hereditary and noncerebellar causes (ischemia, multiple sclerosis lesions, metastasis, bleedings) were excluded. MR imaging findings were then matched with the clinical history of the patient. An underlying etiology for ataxic symptoms were found in 14/18 patients (postinfectious/infectious, paraneoplastic, autoimmune, drug-induced). In two of five patients without MR imaging findings and three of eight patients with minimal imaging features (cerebellar atrophy, slight signal alterations, and small areas of restricted diffusion), adverse clinical outcomes were documented. Of the five patients with prominent MR findings (cerebellar swelling, contrast enhancement, or broad signal abnormalities), two were lost to follow-up and two showed long-term sequelae. No correlation was found between the presence of initial MRI findings in subacute or acute ataxia patients and their long-term clinical outcome. MR imaging was more flagrantly positive in cases due to encephalitis.

  15. Alzheimer Disease: New Concepts on Its Neurobiology and the Clinical Role Imaging Will Play

    PubMed Central

    2012-01-01

    Alzheimer disease (AD) is one of, if not the most, feared diseases associated with aging. The prevalence of AD increases exponentially with age after 60 years. Increasing life expectancy coupled with the absence of any approved disease-modifying therapies at present position AD as a dominant public health problem. Major advances have occurred in the development of disease biomarkers for AD in the past 2 decades. At present, the most well-developed AD biomarkers are the cerebrospinal fluid analytes amyloid-β 42 and tau and the brain imaging measures amyloid positron emission tomography (PET), fluorodeoxyglucose PET, and magnetic resonance imaging. CSF and imaging biomarkers are incorporated into revised diagnostic guidelines for AD, which have recently been updated for the first time since their original formulation in 1984. Results of recent studies suggest the possibility of an ordered evolution of AD biomarker abnormalities that can be used to stage the typical 20–30-year course of the disease. When compared with biomarkers in other areas of medicine, however, the absence of standardized quantitative metrics for AD imaging biomarkers constitutes a major deficiency. Failure to move toward a standardized system of quantitative metrics has substantially limited potential diagnostic usefulness of imaging in AD. This presents an important opportunity that, if widely embraced, could greatly expand the application of imaging to improve clinical diagnosis and the quality and efficiency of clinical trials. © RSNA, 2012 PMID:22517954

  16. Improved image alignment method in application to X-ray images and biological images.

    PubMed

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  17. Pituitary xanthogranulomas: clinical features, radiological appearances and post-operative outcomes.

    PubMed

    Ved, R; Logier, N; Leach, P; Davies, J S; Hayhurst, C

    2018-06-01

    Xanthogranulomas are inflammatory masses most commonly found at peripheral sites such as the skin. Sellar and parasellar xanthogranulomas are rare and present a diagnostic challenge as they are difficult to differentiate from other sellar lesions such as craniopharyngiomas and Rathke's cleft cysts pre-operatively. Their radiological imaging features are yet to be clearly defined, and clinical outcomes after surgery are also uncertain. This study reviews clinical presentation, radiological appearances, and clinical outcomes in a cohort of patients with pituitary xanthogranulomas. A prospectively maintained pituitary surgery database was screened for histologically confirmed pituitary xanthogranulomas between May 2011-December 2016. Retrospective case note assessments were then performed by three independent reviewers. Patient demographics, clinical presentations, imaging, and clinical outcomes were analysed. During the study period 295 endoscopic endonasal pituitary surgeries were performed. Six patients had confirmed pituitary xanthogranulomas (2%). Patients most commonly presented with visual field deficits and/or endocrine dysfunction. Common imaging features included: a cystic consistency, hyperintensity on T1-weighted MR images, and contrast enhancement either peripherally (n = 3) or homogenously (n = 3). The most common pre-operative endocrine deficits were hyperprolactinaemia and hypoadrenalism (at least one of which was identified in 4/6 patients; 66%). Thirty-three percent (2/6) of patients presented with diabetes insipidus. The most common post-operative endocrinological deficits were adrenocortical dysfunction (66%) and gonadotropin deficiency (66%). Visual assessments normalised in all six patients post-operatively. Gross total resection was achieved in all patients, and at median follow up of 33.5 months there were no cases of tumour recurrence. The prevalence of pituitary xanthogranulomas in our series is higher than that suggested in the literature. Surgery restored normal vision to all cases, however four patients (67%) required long-term hormonal replacement post-operatively. Imaging features such peripheral rim enhancement, a suprasellar tumour epicentre, and the absence of both calcification or cavernous sinus invasion were identified as potential indicators that together should alert clinicians to the possibility of pituitary xanthogranuloma when assessing patients with cystic sellar and parasellar tumours.

  18. Imaging of athletic pubalgia and core muscle injuries: clinical and therapeutic correlations.

    PubMed

    Palisch, Andrew; Zoga, Adam C; Meyers, William C

    2013-07-01

    Athletes frequently injure their hips and core muscles. Accurate diagnosis and proper treatment of groin pain in the athlete can be tricky, frequently posing vexing problem for trainers and physicians. Clinical presentations of the various hip problems overlap with respect to history and physical examination. This article reviews clinical presentations and magnetic resonance imaging findings specific to the various causes of groin pain in the athlete. The focus is on the core muscle injuries (athletic pubalgia or "sports hernia"). The goal is to raise awareness about the variety of injuries that occur and therapeutic options. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Lateral epicondylitis and beyond: imaging of lateral elbow pain with clinical-radiologic correlation.

    PubMed

    Kotnis, Nikhil A; Chiavaras, Mary M; Harish, Srinivasan

    2012-04-01

    The diagnosis of lateral epicondylitis is often straightforward and can be made on the basis of clinical findings. However, radiological assessment is valuable where the clinical picture is less clear or where symptoms are refractory to treatment. Demographics, aspects of clinical history, or certain physical signs may suggest an alternate diagnosis. Knowledge of the typical clinical presentation and imaging findings of lateral epicondylitis, in addition to other potential causes of lateral elbow pain, is necessary. These include entrapment of the posterior interosseous and lateral antebrachial cutaneous nerves, posterolateral rotatory instability, posterolateral plica syndrome, Panner's disease, osteochondritis dissecans of the capitellum, radiocapitellar overload syndrome, occult fractures and chondral-osseous impaction injuries, and radiocapitellar arthritis. Knowledge of these potential masquerades of lateral epicondylitis and their characteristic clinical and imaging features is essential for accurate diagnosis. The goal of this review is to provide an approach to the imaging of lateral elbow pain, discussing the relevant anatomy, various causes, and discriminating factors, which will allow for an accurate diagnosis.

  20. Spectral CT Image Restoration via an Average Image-Induced Nonlocal Means Filter.

    PubMed

    Zeng, Dong; Huang, Jing; Zhang, Hua; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-05-01

    Spectral computed tomography (SCT) images reconstructed by an analytical approach often suffer from a poor signal-to-noise ratio and strong streak artifacts when sufficient photon counts are not available in SCT imaging. In reducing noise-induced artifacts in SCT images, in this study, we propose an average image-induced nonlocal means (aviNLM) filter for each energy-specific image restoration.  Methods:  The present aviNLM algorithm exploits redundant information in the whole energy domain. Specifically, the proposed aviNLM algorithm yields the restored results by performing a nonlocal weighted average operation on the noisy energy-specific images with the nonlocal weight matrix between the target and prior images, in which the prior image is generated from all of the images reconstructed in each energy bin.  Results: Qualitative and quantitative studies are conducted to evaluate the aviNLM filter by using the data of digital phantom, physical phantom, and clinical patient data acquired from the energy-resolved and -integrated detectors, respectively. Experimental results show that the present aviNLM filter can achieve promising results for SCT image restoration in terms of noise-induced artifact suppression, cross profile, and contrast-to-noise ratio and material decomposition assessment. Conclusion and Significance: The present aviNLM algorithm has useful potential for radiation dose reduction by lowering the mAs in SCT imaging, and it may be useful for some other clinical applications, such as in myocardial perfusion imaging and radiotherapy.

  1. [Guidelines for wise utilization of knee imaging].

    PubMed

    Finestone, Aharon S; Eshed, Iris; Freedman, Yehuda; Beer, Yiftah; Bar-Sever, Zvi; Kots, Yavvgeni; Adar, Eliyahu; Mann, Gideon

    2012-02-01

    The knee is a complex structure afflicted with diverse pathologies. Correct management of knee complaints demands wise utilization of imaging modalities, considering their accuracy in the specific clinical situation, the patient's safety and availability and financial issues. Some of these considerations are universal, while others are local, depending on medical and insurance systems. There is controversy and unclearness regarding the best imaging modality in different clinical situations. To develop clinical guidelines for utilizing knee imaging. Leading physicians in specialties associated with knee disease and imaging were invited to participate in a panel on the guidelines. Controversies were settled in the main panel or in sub-panels. The panel agreed on the principles in choosing from the various modalities, primarily medical accuracy, followed by patient safety, availability and cost. There was agreement that the physician is responsible to choose the most appropriate diagnostic tool, consulting, when necessary, on the advantages, limitations and risks of the various imaging modalities. A comprehensive table was compiled with the importance of the different imaging modalities in various clinical situations. For the first time, Israeli guidelines on wise utilization of knee imaging are presented. They take into consideration the clinical situations and also availability and financial issues specific to Israel. These guidelines will serve physicians of several disciplines and medical insurers to improve patient management efficiently.

  2. Radiological image presentation requires consideration of human adaptation characteristics

    NASA Astrophysics Data System (ADS)

    O'Connell, N. M.; Toomey, R. J.; McEntee, M.; Ryan, J.; Stowe, J.; Adams, A.; Brennan, P. C.

    2008-03-01

    Visualisation of anatomical or pathological image data is highly dependent on the eye's ability to discriminate between image brightnesses and this is best achieved when these data are presented to the viewer at luminance levels to which the eye is adapted. Current ambient light recommendations are often linked to overall monitor luminance but this relies on specific regions of interest matching overall monitor brightness. The current work investigates the luminances of specific regions of interest within three image-types: postero-anterior (PA) chest; PA wrist; computerised tomography (CT) of the head. Luminance levels were measured within the hilar region and peripheral lung distal radius and supra-ventricular grey matter. For each image type average monitor luminances were calculated with a calibrated photometer at ambient light levels of 0, 100 and 400 lux. Thirty samples of each image-type were employed, resulting in a total of over 6,000 measurements. Results demonstrate that average monitor luminances varied from clinically-significant values by up to a factor of 4, 2 and 6 for chest, wrist and CT head images respectively. Values for the thoracic hilum and wrist were higher and for the peripheral lung and CT brain lower than overall monitor levels. The ambient light level had no impact on the results. The results demonstrate that clinically important radiological information for common radiological examinations is not being presented to the viewer in a way that facilitates optimised visual adaptation and subsequent interpretation. The importance of image-processing algorithms focussing on clinically-significant anatomical regions instead of radiographic projections is highlighted.

  3. A new MRI grading system for chondromalacia patellae.

    PubMed

    Özgen, Ali; Taşdelen, Neslihan; Fırat, Zeynep

    2017-04-01

    Background Chondromalacia patellae is a very common disorder. Although magnetic resonance imaging (MRI) is widely used to investigate patellar cartilage lesions, there is no descriptive MRI-based grading system for chondromalacia patellae. Purpose To propose a new MRI grading system for chondromalacia patellae with corresponding high resolution images which might be useful in precisely reporting and comparing knee examinations in routine daily practice and used in predicting natural course and clinical outcome of the patellar cartilage lesions. Material and Methods High resolution fat-saturated proton density (FS PD) images in the axial plane with corresponding T2 mapping images were reviewed. A detailed MRI grading system covering the deficiencies of the existing gradings has been set and presented on these images. Two experienced observers blinded to clinical data examined 44 knee MR images and evaluated patellar cartilage changes according to the proposed grading system. Inter- and intra-rater validity testing using kappa statistics were calculated. Results A descriptive and detailed grading system with corresponding FS PD and T2 mapping images has been presented. Inter-rater agreement was 0.80 (95% confidence interval [CI], 0.71-0.89). Intra-rater agreements were 0.83 (95% CI, 0.74-0.91) for observer A and 0.79 (95% CI, 0.70-0.88) for observer B (k-values). Conclusion We present a new MRI grading system for chondromalacia patellae with corresponding images and good inter- and intra-rater agreement which might be useful in reporting and comparing knee MRI examinations in daily practice and may also have the potential for using more precisely predicting prognosis and clinical outcome of the patients.

  4. Imaging findings in craniofacial childhood rhabdomyosarcoma

    PubMed Central

    Merks, Johannes H. M.; Saeed, Peerooz; Balm, Alfons J. M.; Bras, Johannes; Pieters, Bradley R.; Adam, Judit A.; van Rijn, Rick R.

    2010-01-01

    Rhabdomyosarcoma (RMS) is the commonest paediatric soft-tissue sarcoma constituting 3–5% of all malignancies in childhood. RMS has a predilection for the head and neck area and tumours in this location account for 40% of all childhood RMS cases. In this review we address the clinical and imaging presentations of craniofacial RMS, discuss the most appropriate imaging techniques, present characteristic imaging features and offer an overview of differential diagnostic considerations. Post-treatment changes will be briefly addressed. PMID:20725831

  5. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system.

    PubMed

    Kuo, Nathanael; Kang, Hyun Jae; Song, Danny Y; Kang, Jin U; Boctor, Emad M

    2012-06-01

    Prostate brachytherapy is a popular prostate cancer treatment option that involves the permanent implantation of radioactive seeds into the prostate. However, contemporary brachytherapy procedure is limited by the lack of an imaging system that can provide real-time seed-position feedback. While many other imaging systems have been proposed, photoacoustic imaging has emerged as a potential ideal modality to address this need, since it could easily be incorporated into the current ultrasound system used in the operating room. We present such a photoacoustic imaging system built around a clinical ultrasound system to achieve the task of visualizing and localizing seeds. We performed several experiments to analyze the effects of various parameters on the appearance of brachytherapy seeds in photoacoustic images. We also imaged multiple seeds in an ex vivo dog prostate phantom to demonstrate the possibility of using this system in a clinical setting. Although still in its infancy, these initial results of a photoacoustic imaging system for the application of prostate brachytherapy seed localization are highly promising.

  6. Recent advances in high-throughput QCL-based infrared microspectral imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rowlette, Jeremy A.; Fotheringham, Edeline; Nichols, David; Weida, Miles J.; Kane, Justin; Priest, Allen; Arnone, David B.; Bird, Benjamin; Chapman, William B.; Caffey, David B.; Larson, Paul; Day, Timothy

    2017-02-01

    The field of infrared spectral imaging and microscopy is advancing rapidly due in large measure to the recent commercialization of the first high-throughput, high-spatial-definition quantum cascade laser (QCL) microscope. Having speed, resolution and noise performance advantages while also eliminating the need for cryogenic cooling, its introduction has established a clear path to translating the well-established diagnostic capability of infrared spectroscopy into clinical and pre-clinical histology, cytology and hematology workflows. Demand for even higher throughput while maintaining high-spectral fidelity and low-noise performance continues to drive innovation in QCL-based spectral imaging instrumentation. In this talk, we will present for the first time, recent technological advances in tunable QCL photonics which have led to an additional 10X enhancement in spectral image data collection speed while preserving the high spectral fidelity and SNR exhibited by the first generation of QCL microscopes. This new approach continues to leverage the benefits of uncooled microbolometer focal plane array cameras, which we find to be essential for ensuring both reproducibility of data across instruments and achieving the high-reliability needed in clinical applications. We will discuss the physics underlying these technological advancements as well as the new biomedical applications these advancements are enabling, including automated whole-slide infrared chemical imaging on clinically relevant timescales.

  7. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    NASA Astrophysics Data System (ADS)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in vivo images of a human testicle. In all instances, the methods presented here outperform conventional image reconstruction methods by a significant margin. As TONE and its variants are general image reconstruction techniques, the theories and research presented here have the potential to significantly improve not only ultrasound's clinical utility, but that of other imaging modalities as well.

  8. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  9. A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: translation from laboratory bench to clinical study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.

    2016-03-01

    We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Currently, the patients at risk are periodically monitored with retinal imaging for possible morphological changes over time, and new tumor seedings, as the existing real-time diagnostic tools are limited. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.

  10. Redefining late acute graft pancreatitis: clinical presentation, radiologic findings, principles of management, and prognosis.

    PubMed

    Small, Risa M; Shetzigovski, Ilanit; Blachar, Arye; Sosna, Jacob; Klausner, Joseph M; Nakache, Richard; Ben-Haim, Menahem

    2008-06-01

    To define the incidence, clinical presentation, radiologic findings and principles of diagnosis, and management of acute graft pancreatitis occurring more than 3 months after transplantation. Acute graft pancreatitis is a frequent late complication after simultaneous pancreas-kidney transplantation (SPKT) with enteric drainage that is not well understood. We performed a retrospective analysis of data from patients who underwent SPKT with enteric drainage at our institution. All recipients who experienced episodes that met the clinical criteria for late graft pancreatitis were included. We excluded events proven to be anastomotic or duodenal stump leaks. Clinical presentation, laboratory findings, radiologic imaging, course of management, and graft and patient outcome were evaluated and analyzed. Of 79 SPKTs (1995-2007), 11 (14%) recipients experienced 31 episodes of late graft pancreatitis (average number per patient, 3; range, 1-13), occurring an average of 28 months after transplantation (range, 3 months to 8 years). All patients presented with right lower quadrant abdominal peritonitis, fever, and findings compatible with pancreas graft inflammation on computed tomography or ultrasound imaging. Mild hyperamylasemia (>110 IU/L) was found in 82% of cases. Treatment was conservative, including bowel rest, antibiotics, and percutaneous sampling and drainage of abscesses as necessary. Excellent graft and patient survival were achieved. The diagnosis of late acute graft pancreatitis is clinical, with confirmatory computed tomography or ultrasound imaging. Conservative treatment yields excellent graft and patient survival.

  11. An architecture for a brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.

    2000-01-01

    The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.

  12. A descriptive study of Lewy body dementia with functional imaging support in a Chinese population: a preliminary study.

    PubMed

    Shea, Y F; Chu, L W; Lee, S C

    2017-06-01

    Lewy body dementia includes dementia with Lewy bodies and Parkinson's disease dementia. There have been limited clinical studies among Chinese patients with Lewy body dementia. This study aimed to review the presenting clinical features and identify risk factors for complications including falls, dysphagia, aspiration pneumonia, pressure sores, and mortality in Chinese patients with Lewy body dementia. We also wished to identify any difference in clinical features of patients with Lewy body dementia with and without an Alzheimer's disease pattern of functional imaging. We retrospectively reviewed 23 patients with Lewy body dementia supported by functional imaging. Baseline demographics, presenting clinical and behavioural and psychological symptoms of dementia, functional and cognitive assessment scores, and complications during follow-up were reviewed. Patients with Lewy body dementia were further classified as having an Alzheimer's disease imaging pattern if functional imaging demonstrated bilateral temporoparietal hypometabolism or hypoperfusion with or without precuneus and posterior cingulate gyrus hypometabolism or hypoperfusion. The pre-imaging accuracy of clinical diagnosis was 52%. In 83% of patients, behavioural and psychological symptoms of dementia were evident. Falls, dysphagia, aspiration pneumonia, pressure sores, and death occurred in 70%, 52%, 26%, 26%, and 30% of patients, respectively with corresponding event rates per person-years of 0.32, 0.17, 0.18, 0.08, and 0.10. Patients with aspiration pneumonia compared with those without were more likely to have dysphagia (100% vs 35%; P=0.01). Deceased patients with Lewy body dementia, compared with alive patients, had a higher (median [interquartile range]) presenting Clinical Dementia Rating score (1 [1-2] vs 0.5 [0.5-1.0]; P=0.01), lower mean (± standard deviation) baseline Barthel index (13 ± 7 vs 18 ± 4; P=0.04), and were more likely to be prescribed levodopa (86% vs 31%; P=0.03). Patients with Lewy body dementia with an Alzheimer's disease pattern of functional imaging, compared with those without the pattern, were younger at presentation (mean ± standard deviation, 73 ± 6 vs 80 ± 6 years; P=0.02) and had a lower Mini-Mental State Examination score at 1 year (15 ± 8 vs 22 ± 6; P=0.05). Falls, dysphagia, aspiration pneumonia, and pressure sores were common among patients with Lewy body dementia. Those with an Alzheimer's disease pattern of functional imaging had a younger age of onset and lower 1-year Mini-Mental State Examination score.

  13. An introduction to Na(18)F bone scintigraphy: basic principles, advanced imaging concepts, and case examples.

    PubMed

    Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P

    2007-06-01

    Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.

  14. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  15. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  16. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  17. Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole-body. In addition, the total acquisition length can be reduced from 45min to ~35min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error (MSE) and the CNR metrics, resulting in enhanced task-based imaging. PMID:24080962

  18. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  19. Development of a user customizable imaging informatics-based intelligent workflow engine system to enhance rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Martinez, Clarisa; Wang, Jing; Liu, Ye; Liu, Brent

    2014-03-01

    Clinical trials usually have a demand to collect, track and analyze multimedia data according to the workflow. Currently, the clinical trial data management requirements are normally addressed with custom-built systems. Challenges occur in the workflow design within different trials. The traditional pre-defined custom-built system is usually limited to a specific clinical trial and normally requires time-consuming and resource-intensive software development. To provide a solution, we present a user customizable imaging informatics-based intelligent workflow engine system for managing stroke rehabilitation clinical trials with intelligent workflow. The intelligent workflow engine provides flexibility in building and tailoring the workflow in various stages of clinical trials. By providing a solution to tailor and automate the workflow, the system will save time and reduce errors for clinical trials. Although our system is designed for clinical trials for rehabilitation, it may be extended to other imaging based clinical trials as well.

  20. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play

    PubMed Central

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-01-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders. PMID:23546169

  1. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play.

    PubMed

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-05-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  2. Active contour based segmentation of resected livers in CT images

    NASA Astrophysics Data System (ADS)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  3. Device and methods for "gold standard" registration of clinical 3D and 2D cerebral angiograms

    NASA Astrophysics Data System (ADS)

    Madan, Hennadii; Likar, Boštjan; Pernuš, Franjo; Å piclin, Žiga

    2015-03-01

    Translation of any novel and existing 3D-2D image registration methods into clinical image-guidance systems is limited due to lack of their objective validation on clinical image datasets. The main reason is that, besides the calibration of the 2D imaging system, a reference or "gold standard" registration is very difficult to obtain on clinical image datasets. In the context of cerebral endovascular image-guided interventions (EIGIs), we present a calibration device in the form of a headband with integrated fiducial markers and, secondly, propose an automated pipeline comprising 3D and 2D image processing, analysis and annotation steps, the result of which is a retrospective calibration of the 2D imaging system and an optimal, i.e., "gold standard" registration of 3D and 2D images. The device and methods were used to create the "gold standard" on 15 datasets of 3D and 2D cerebral angiograms, whereas each dataset was acquired on a patient undergoing EIGI for either aneurysm coiling or embolization of arteriovenous malformation. The use of the device integrated seamlessly in the clinical workflow of EIGI. While the automated pipeline eliminated all manual input or interactive image processing, analysis or annotation. In this way, the time to obtain the "gold standard" was reduced from 30 to less than one minute and the "gold standard" of 3D-2D registration on all 15 datasets of cerebral angiograms was obtained with a sub-0.1 mm accuracy.

  4. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function.

    PubMed

    D'hooge, Jan; Bijnens, Bart; Thoen, Jan; Van de Werf, Frans; Sutherland, George R; Suetens, Paul

    2002-09-01

    Ultrasonic imaging is the noninvasive clinical imaging modality of choice for diagnosing heart disease. At present, two-dimensional ultrasonic grayscale images provide a relatively cheap, fast, bedside method to study the morphology of the heart. Several methods have been proposed to assess myocardial function. These have been based on either grayscale or motion (velocity) information measured in real-time. However, the quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. To do this, ultrasonic strain and strain-rate imaging have been introduced. In the clinical setting, these techniques currently only allow one component of the true three-dimensional deformation to be measured. Clinical, multidimensional strain (rate) information can currently thus only be obtained by combining data acquired using different transducer positions. Nevertheless, given the appropriate postprocessing, the clinical value of these techniques has already been shown. Moreover, multidimensional strain and strain-rate estimation of the heart in vivo by means of a single ultrasound acquisition has been shown to be feasible. In this paper, the new techniques of ultrasonic strain rate and strain imaging of the heart are reviewed in terms of definitions, data acquisition, strain-rate estimation, postprocessing, and parameter extraction. Their clinical validation and relevance will be discussed using clinical examples on relevant cardiac pathology. Based on these examples, suggestions are made for future developments of these techniques.

  5. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  6. Corneal topography with high-speed swept source OCT in clinical examination

    PubMed Central

    Karnowski, Karol; Kaluzny, Bartlomiej J.; Szkulmowski, Maciej; Gora, Michalina; Wojtkowski, Maciej

    2011-01-01

    We present the applicability of high-speed swept source (SS) optical coherence tomography (OCT) for quantitative evaluation of the corneal topography. A high-speed OCT device of 108,000 lines/s permits dense 3D imaging of the anterior segment within a time period of less than one fourth of second, minimizing the influence of motion artifacts on final images and topographic analysis. The swept laser performance was specially adapted to meet imaging depth requirements. For the first time to our knowledge the results of a quantitative corneal analysis based on SS OCT for clinical pathologies such as keratoconus, a cornea with superficial postinfectious scar, and a cornea 5 months after penetrating keratoplasty are presented. Additionally, a comparison with widely used commercial systems, a Placido-based topographer and a Scheimpflug imaging-based topographer, is demonstrated. PMID:21991558

  7. Generation of 3D synthetic breast tissue

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are an emergent approach for the rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. A fundamental requirement of this approach for mammography is the use of realistic looking breast anatomy in the studies to produce clinically relevant results. In this work, a biologically inspired approach has been used to simulate realistic synthetic breast phantom blocks for use in virtual clinical trials. A variety of high and low frequency features (including Cooper's ligaments, blood vessels and glandular tissue) have been extracted from clinical digital breast tomosynthesis images and used to simulate synthetic breast blocks. The appearance of the phantom blocks was validated by presenting a selection of simulated 2D and DBT images interleaved with real images to a team of experienced readers for rating using an ROC paradigm. The average areas under the curve for 2D and DBT images were 0.53+/-.04 and 0.55+/-.07 respectively; errors are the standard errors of the mean. The values indicate that the observers had difficulty in differentiating the real images from simulated images. The statistical properties of simulated images of the phantom blocks were evaluated by means of power spectrum analysis. The power spectrum curves for real and simulated images closely match and overlap indicating good agreement.

  8. Current status on the application of image processing of digital intraoral radiographs amongst general dental practitioners.

    PubMed

    Tohidast, Parisa; Shi, Xie-Qi

    2016-01-01

    The objectives of this study were to present the subjective knowledge level and the use of image processing on digital intraoral radiographs amongst general dental practitioners at Distriktståndvrden AB, Stockholm. A questionnaire, consisting of12 questions, was sent to 12 dental prac- tices in Stockholm. Additionally, 2000 radiographs were randomly selected from these clinics for evaluation of applied image processing and its effect on image quality. Descriptive and analytical statistical methods were applied to present the current status of the use of image proces- sing alternatives for the dentists' daily clinical work. 50 out of 53 dentists participated in the survey.The survey showed that most of dentists in.this study had received education on image processing at some stage of their career. No correlations were found between application of image processing on one side and educa- tion received with regards to image processing, previous working experience, age and gender on the other. Image processing in terms of adjusting brightness and contrast was frequently used. Overall, in this study 24.5% of the 200 images were actually image processed in practice, in which 90% of the images were improved or maintained in image quality. According to our survey, image processing is experienced to be frequently used by the dentists at Distriktstandvåden AB for diagnosing anatomical and pathological changes using intraoral radiographs. 24.5% of the 200 images were actually image processed in terms of adjusting brightness and/or contrast. In the present study we did not found that the dentists' age, gender, previous working experience and education in image processing influence their viewpoint towards the application of image processing.

  9. Bleeding Duodenal: Varices Treatment by TIPS and Transcatheter Embolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopera, Jorge E.; Arthurs, Blain; Scheuerman, Christian

    2008-03-15

    We describe our clinical experience in 4 patients with portal hypertension who presented with bleeding mesenteric varices originating from the superior mesenteric vein with retrograde filling of collaterals draining into the inferior vena cava. The clinical presentation, imaging findings, and potential therapeutic management are discussed.

  10. Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool

    PubMed Central

    Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry

    2011-01-01

    Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144

  11. Using x-ray mammograms to assist in microwave breast image interpretation.

    PubMed

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  12. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  13. Quantifying the quality of medical x-ray images: An evaluation based on normal anatomy for lumbar spine and chest radiography

    NASA Astrophysics Data System (ADS)

    Tingberg, Anders Martin

    Optimisation in diagnostic radiology requires accurate methods for determination of patient absorbed dose and clinical image quality. Simple methods for evaluation of clinical image quality are at present scarce and this project aims at developing such methods. Two methods are used and further developed; fulfillment of image criteria (IC) and visual grading analysis (VGA). Clinical image quality descriptors are defined based on these two methods: image criteria score (ICS) and visual grading analysis score (VGAS), respectively. For both methods the basis is the Image Criteria of the ``European Guidelines on Quality Criteria for Diagnostic Radiographic Images''. Both methods have proved to be useful for evaluation of clinical image quality. The two methods complement each other: IC is an absolute method, which means that the quality of images of different patients and produced with different radiographic techniques can be compared with each other. The separating power of IC is, however, weaker than that of VGA. VGA is the best method for comparing images produced with different radiographic techniques and has strong separating power, but the results are relative, since the quality of an image is compared to the quality of a reference image. The usefulness of the two methods has been verified by comparing the results from both of them with results from a generally accepted method for evaluation of clinical image quality, receiver operating characteristics (ROC). The results of the comparison between the two methods based on visibility of anatomical structures and the method based on detection of pathological structures (free-response forced error) indicate that the former two methods can be used for evaluation of clinical image quality as efficiently as the method based on ROC. More studies are, however, needed for us to be able to draw a general conclusion, including studies of other organs, using other radiographic techniques, etc. The results of the experimental evaluation of clinical image quality are compared with physical quantities calculated with a theoretical model based on a voxel phantom, and correlations are found. The results demonstrate that the computer model can be a useful toot in planning further experimental studies.

  14. Motion Artefacts in MRI: a Complex Problem with Many Partial Solutions

    PubMed Central

    Zaitsev, Maxim; Maclaren, Julian.; Herbst, Michael

    2015-01-01

    Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artefacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artefacts, but no single method can be applied in all imaging situations. Instead, a ‘toolbox’ of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artefacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artefacts, with the aim of aiding artefact detection and mitigation in particular clinical situations. PMID:25630632

  15. Motion artifacts in MRI: A complex problem with many partial solutions.

    PubMed

    Zaitsev, Maxim; Maclaren, Julian; Herbst, Michael

    2015-10-01

    Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artifacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artifacts, but no single method can be applied in all imaging situations. Instead, a "toolbox" of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artifacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artifacts, with the aim of aiding artifact detection and mitigation in particular clinical situations. © 2015 Wiley Periodicals, Inc.

  16. Color-coded depth information in volume-rendered magnetic resonance angiography

    NASA Astrophysics Data System (ADS)

    Smedby, Orjan; Edsborg, Karin; Henriksson, John

    2004-05-01

    Magnetic Resonance Angiography (MRA) and Computed Tomography Angiography (CTA) data are usually presented using Maximum Intensity Projection (MIP) or Volume Rendering Technique (VRT), but these often fail to demonstrate a stenosis if the projection angle is not suitably chosen. In order to make vascular stenoses visible in projection images independent of the choice of viewing angle, a method is proposed to supplement these images with colors representing the local caliber of the vessel. After preprocessing the volume image with a median filter, segmentation is performed by thresholding, and a Euclidean distance transform is applied. The distance to the background from each voxel in the vessel is mapped to a color. These colors can either be rendered directly using MIP or be presented together with opacity information based on the original image using VRT. The method was tested in a synthetic dataset containing a cylindrical vessel with stenoses in varying angles. The results suggest that the visibility of stenoses is enhanced by the color information. In clinical feasibility experiments, the technique was applied to clinical MRA data. The results are encouraging and indicate that the technique can be used with clinical images.

  17. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  18. Panoramic autofluorescence: highlighting retinal pathology.

    PubMed

    Slotnick, Samantha; Sherman, Jerome

    2012-05-01

    Recent technological advances in fundus autofluorescence (FAF) are providing new opportunities for insight into retinal physiology and pathophysiology. FAF provides distinctly different imaging information than standard photography or color separation. A review of the basis for this imaging technology is included to help the clinician understand how to interpret FAF images. Cases are presented to illustrate image interpretation. Optos, which manufactures equipment for simultaneous panoramic imaging, has recently outfitted several units with AF capabilities. Six cases are presented in which panoramic autofluorescent (PAF) images highlight retinal pathology, using Optos' Ultra-Widefield technology. Supportive imaging technologies, such as Optomap® images and spectral domain optical coherence tomography (SD-OCT), are used to assist in the clinical interpretation of retinal pathology detected on PAF. Hypofluorescent regions on FAF are identified to occur along with a disruption in the photoreceptors and/or retinal pigment epithelium, as borne out on SD-OCT. Hyperfluorescent regions on FAF occur at the advancing zones of retinal degeneration, indicating impending damage. PAF enables such inferences to be made in retinal areas which lie beyond the reach of SD-OCT imaging. PAF also enhances clinical pattern recognition over a large area and in comparison with the fellow eye. Symmetric retinal degenerations often occur with genetic conditions, such as retinitis pigmentosa, and may impel the clinician to recommend genetic testing. Autofluorescent ophthalmoscopy is a non-invasive procedure that can detect changes in metabolic activity at the retinal pigment epithelium before clinical ophthalmoscopy. Already, AF is being used as an adjunct technology to fluorescein angiography in cases of age-related macular degeneration. Both hyper- and hypoautofluorescent changes are indicative of pathology. Peripheral retinal abnormalities may precede central retinal impacts, potentially providing early signs for intervention before impacting visual acuity. The panoramic image enhances clinical pattern recognition over a large area and in comparison between eyes. Optos' Ultra-Widefield technology is capable of capturing high-resolution images of the peripheral retina without requiring dilation.

  19. Clinical outcomes of pediatric patients with acute abdominal pain and incidental findings of free intraperitoneal fluid on diagnostic imaging.

    PubMed

    Matz, Samantha; Connell, Mary; Sinha, Madhumita; Goettl, Christopher S; Patel, Palak C; Drachman, David

    2013-09-01

    The presence of free intraperitoneal fluid on diagnostic imaging (sonography or computed tomography [CT]) may indicate an acute inflammatory process in children with abdominal pain in a nontraumatic setting. Although clinical outcomes of pediatric trauma patients with free fluid on diagnostic examinations without evidence of solid-organ injury have been studied, similar studies in the absence of trauma are rare. Our objective was to study clinical outcomes of children with acute abdominal pain of nontraumatic etiology and free intraperitoneal fluid on diagnostic imaging (abdominal/pelvic sonography, CT, or both). We conducted a retrospective review of medical records of children aged 0 to 18 years presenting to a pediatric emergency department with acute abdominal pain (nontraumatic) between April 2008 and March 2009. Patients with intraperitoneal free fluid on imaging were divided into 2 groups: group I, imaging suggestive of an intra-abdominal surgical condition such as appendicitis; and group II, no evidence of an acute surgical condition on imaging, including patients with equivocal studies. Computed tomograms and sonograms were reviewed by a board-certified radiologist, and the free fluid volume was quantitated. Of 1613 patients who underwent diagnostic imaging, 407 were eligible for the study; 134 (33%) had free fluid detected on diagnostic imaging. In patients with both sonography and CT, there was a significant correlation in the free fluid volume (r = 0.79; P < .0005). A significantly greater number of male patients with free fluid had a surgical condition identified on imaging (57.4% versus 25%; P < .001). Children with free fluid and an associated condition on imaging were more likely to have surgery (94.4% versus 6.3%; P < .001). We found clinical outcomes (surgical versus nonsurgical) to be most correlated with a surgical diagnosis on diagnostic imaging and not with the amount of fluid present.

  20. Achieving high-value cardiac imaging: challenges and opportunities.

    PubMed

    Wiener, David H

    2014-01-01

    Cardiac imaging is under intense scrutiny as a contributor to health care costs, with multiple initiatives under way to reduce and eliminate inappropriate testing. Appropriate use criteria are valuable guides to selecting imaging studies but until recently have focused on the test rather than the patient. Patient-centered means are needed to define the true value of imaging for patients in specific clinical situations. This article provides a definition of high-value cardiac imaging. A paradigm to judge the efficacy of echocardiography in the absence of randomized controlled trials is presented. Candidate clinical scenarios are proposed in which echocardiography constitutes high-value imaging, as well as stratagems to increase the likelihood that high-value cardiac imaging takes place in those circumstances. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  1. Video-mosaicking of in vivo reflectance confocal microscopy images for noninvasive examination of skin lesion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.

  2. SU-E-J-129: A Strategy to Consolidate the Image Database of a VERO Unit Into a Radiotherapy Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Y; Medin, P; Yordy, J

    2014-06-01

    Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO,more » was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.« less

  3. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  4. Comparative study between ultrasonography and optical coherence tomography in interventional cardiology

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, Félix; de la Torre-Hernández, José María; Ortega-Quijano, Noé; Zueco-Gil, José Javier; Arce-Diego, José Luis

    2009-07-01

    In this work, we present clinical images of IVUS and OCT in the evaluation of pharmacological stent endothelization. These preliminary imaging results are analyzed and compared in order to determine the ability of these technologies to visualize relevant intravascular features of interest in interventional cardiology. The results enable to compare the performance of both techniques and to evaluate their potential for clinical purposes.

  5. Dorsal midbrain syndrome associated with persistent neck extension: Clinical and diagnostic imaging findings in 2 dogs

    PubMed Central

    Canal, Sara; Baroni, Massimo; Falzone, Cristian; De Benedictis, Giulia M.; Bernardini, Marco

    2015-01-01

    Two young dogs were evaluated for an acute onset of abnormal head posture and eye movement. Neurological examination was characterized mostly by permanent neck extension, abnormalities of pupils, and eye movement. A mesencephalic mass lesion was detected on magnetic resonance imaging in both cases. Neurophysiological pathways likely responsible for this peculiar clinical presentation are discussed. PMID:26663922

  6. Combined photoacoustic and magneto-acoustic imaging.

    PubMed

    Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Ma, Li Leo; Johnston, Keith P; Sokolov, Konstantin; Emelianov, Stanislav

    2009-01-01

    Ultrasound is a widely used modality with excellent spatial resolution, low cost, portability, reliability and safety. In clinical practice and in the biomedical field, molecular ultrasound-based imaging techniques are desired to visualize tissue pathologies, such as cancer. In this paper, we present an advanced imaging technique - combined photoacoustic and magneto-acoustic imaging - capable of visualizing the anatomical, functional and biomechanical properties of tissues or organs. The experiments to test the combined imaging technique were performed using dual, nanoparticle-based contrast agents that exhibit the desired optical and magnetic properties. The results of our study demonstrate the feasibility of the combined photoacoustic and magneto-acoustic imaging that takes the advantages of each imaging techniques and provides high sensitivity, reliable contrast and good penetrating depth. Therefore, the developed imaging technique can be used in wide range of biomedical and clinical application.

  7. Image acquisition context: procedure description attributes for clinically relevant indexing and selective retrieval of biomedical images.

    PubMed

    Bidgood, W D; Bray, B; Brown, N; Mori, A R; Spackman, K A; Golichowski, A; Jones, R H; Korman, L; Dove, B; Hildebrand, L; Berg, M

    1999-01-01

    To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. The authors introduce the notion of "image acquisition context," the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries.

  8. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  9. Biomarker-guided translation of brain imaging into disease pathway models

    PubMed Central

    Younesi, Erfan; Hofmann-Apitius, Martin

    2013-01-01

    The advent of state-of-the-art brain imaging technologies in recent years and the ability of such technologies to provide high-resolution information at both structural and functional levels has spawned large efforts to introduce novel non-invasive imaging biomarkers for early prediction and diagnosis of brain disorders; however, their utility in both clinic and drug development at their best resolution remains limited to visualizing and monitoring disease progression. Given the fact that efficient translation of valuable information embedded in brain scans into clinical application is of paramount scientific and public health importance, a strategy is needed to bridge the current gap between imaging and molecular biology, particularly in neurodegenerative diseases. As an attempt to address this issue, we present a novel computational method to link readouts of imaging biomarkers to their underlying molecular pathways with the aim of guiding clinical diagnosis, prognosis and even target identification in drug discovery for Alzheimer's disease. PMID:24287435

  10. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis

    PubMed Central

    Traboulsee, A.; Simon, J.H.; Stone, L.; Fisher, E.; Jones, D.E.; Malhotra, A.; Newsome, S.D.; Oh, J.; Reich, D.S.; Richert, N.; Rammohan, K.; Khan, O.; Radue, E.-W.; Ford, C.; Halper, J.; Li, D.

    2016-01-01

    SUMMARY An international group of neurologists and radiologists developed revised guidelines for standardized brain and spinal cord MR imaging for the diagnosis and follow-up of MS. A brain MR imaging with gadolinium is recommended for the diagnosis of MS. A spinal cord MR imaging is recommended if the brain MR imaging is nondiagnostic or if the presenting symptoms are at the level of the spinal cord. A follow-up brain MR imaging with gadolinium is recommended to demonstrate dissemination in time and ongoing clinically silent disease activity while on treatment, to evaluate unexpected clinical worsening, to re-assess the original diagnosis, and as a new baseline before starting or modifying therapy. A routine brain MR imaging should be considered every 6 months to 2 years for all patients with relapsing MS. The brain MR imaging protocol includes 3D T1-weighted, 3D T2-FLAIR, 3D T2-weighted, post-single-dose gadolinium-enhanced T1-weighted sequences, and a DWI sequence. The progressive multifocal leukoencephalopathy surveillance protocol includes FLAIR and DWI sequences only. The spinal cord MR imaging protocol includes sagittal T1-weighted and proton attenuation, STIR or phase-sensitive inversion recovery, axial T2- or T2*-weighted imaging through suspicious lesions, and, in some cases, postcontrast gadolinium-enhanced T1-weighted imaging. The clinical question being addressed should be provided in the requisition for the MR imaging. The radiology report should be descriptive, with results referenced to previous studies. MR imaging studies should be permanently retained and available. The current revision incorporates new clinical information and imaging techniques that have become more available. PMID:26564433

  11. Magnetic resonance imaging protocols for examination of the neurocranium at 3 T.

    PubMed

    Schwindt, W; Kugel, H; Bachmann, R; Kloska, S; Allkemper, T; Maintz, D; Pfleiderer, B; Tombach, B; Heindel, W

    2003-09-01

    The increasing availability of high-field (3 T) MR scanners requires adapting and optimizing clinical imaging protocols to exploit the theoretically higher signal-to-noise ratio (SNR) of the higher field strength. Our aim was to establish reliable and stable protocols meeting the clinical demands for imaging the neurocranium at 3 T. Two hundred patients with a broad range of indications received an examination of the neurocranium with an appropriate assortment of imaging techniques at 3 T. Several imaging parameters were optimized. Keeping scan times comparable to those at 1.5 T we increased spatial resolution. Contrast-enhanced and non-enhanced T1-weighted imaging was best applying gradient-echo and inversion recovery (rather than spin-echo) techniques, respectively. For fluid-attenuated inversion recovery (FLAIR) imaging a TE of 120 ms yielded optimum contrast-to-noise ratio (CNR). High-resolution isotropic 3D data sets were acquired within reasonable scan times. Some artifacts were pronounced, but generally imaging profited from the higher SNR. We present a set of optimized examination protocols for neuroimaging at 3 T, which proved to be reliable in a clinical routine setting.

  12. Low-dose quantitative phase contrast medical CT

    NASA Astrophysics Data System (ADS)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the presented results have been validated by a team of clinical radiologists and represent an important step in the exploitation of XPCI-CT for in vivo and possible clinical applications.

  13. The role of MRI in musculoskeletal practice: a clinical perspective

    PubMed Central

    Dean Deyle, Gail

    2011-01-01

    This clinical perspective presents an overview of current and potential uses for magnetic resonance imaging (MRI) in musculoskeletal practice. Clinical practice guidelines and current evidence for improved outcomes will help providers determine the situations when an MRI is indicated. The advanced competency standard of examination used by physical therapists will be helpful to prevent overuse of musculoskeletal imaging, reduce diagnostic errors, and provide the appropriate clinical context to pathology revealed on MRI. Physical therapists are diagnostically accurate and appropriately conservative in their use of MRI consistent with evidence-based principles of diagnosis and screening. PMID:22851878

  14. Distributed file management for remote clinical image-viewing stations

    NASA Astrophysics Data System (ADS)

    Ligier, Yves; Ratib, Osman M.; Girard, Christian; Logean, Marianne; Trayser, Gerhard

    1996-05-01

    The Geneva PACS is based on a distributed architecture, with different archive servers used to store all the image files produced by digital imaging modalities. Images can then be visualized on different display stations with the Osiris software. Image visualization require to have the image file physically present on the local station. Thus, images must be transferred from archive servers to local display stations in an acceptable way, which means fast and user friendly where the notion of file must be hidden to users. The transfer of image files is done according to different schemes including prefetching and direct image selection. Prefetching allows the retrieval of previous studies of a patient in advance. A direct image selection is also provided in order to retrieve images on request. When images are transferred locally on the display station, they are stored in Papyrus files, each file containing a set of images. File names are used by the Osiris viewing software to open image sequences. But file names alone are not explicit enough to properly describe the content of the file. A specific utility has been developed to present a list of patients, and for each patient a list of exams which can be selected and automatically displayed. The system has been successfully tested in different clinical environments. It will be soon extended on a hospital wide basis.

  15. The spine in Paget’s disease

    PubMed Central

    Dell’Atti, C.; Lalam, R. K.; Tins, B. J.; Tyrrell, P. N. M.

    2007-01-01

    Paget’s disease (PD) is a chronic metabolically active bone disease, characterized by a disturbance in bone modelling and remodelling due to an increase in osteoblastic and osteoclastic activity. The vertebra is the second most commonly affected site. This article reviews the various spinal pathomechanisms and osseous dynamics involved in producing the varied imaging appearances and their clinical relevance. Advanced imaging of osseous, articular and bone marrow manifestations of PD in all the vertebral components are presented. Pagetic changes often result in clinical symptoms including back pain, spinal stenosis and neural dysfunction. Various pathological complications due to PD involvement result in these clinical symptoms. Recognition of the imaging manifestations of spinal PD and the potential complications that cause the clinical symptoms enables accurate assessment of patients prior to appropriate management. PMID:17410356

  16. PACS archive upgrade and data migration: clinical experiences

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Sarti, Dennis A.; Huang, H. K.; Donnelly, John

    2002-05-01

    Saint John's Health Center PACS data volumes have increased dramatically since the hospital became filmless in April of 1999. This is due in part of continuous image accumulation, and the integration of a new multi-slice detector CT scanner into PACS. The original PACS archive would not be able to handle the distribution and archiving load and capacity in the near future. Furthermore, there is no secondary copy backup of all the archived PACS image data for disaster recovery purposes. The purpose of this paper is to present a clinical and technical process template to upgrade and expand the PACS archive, migrate existing PACs image data to the new archive, and provide a back-up and disaster recovery function not currently available. Discussion of the technical and clinical pitfalls and challenges involved in this process will be presented as well. The server hardware configuration was upgraded and a secondary backup implemented for disaster recovery. The upgrade includes new software versions, database reconfiguration, and installation of a new tape jukebox to replace the current MOD jukebox. Upon completion, all PACS image data from the original MOD jukebox was migrated to the new tape jukebox and verified. The migration was performed during clinical operation continuously in the background. Once the data migration was completed the MOD jukebox was removed. All newly acquired PACS exams are now archived to the new tape jukebox. All PACs image data residing on the original MOD jukebox have been successfully migrated into the new archive. In addition, a secondary backup of all PACS image data has been implemented for disaster recovery and has been verified using disaster scenario testing. No PACS image data was lost during the entire process and there was very little clinical impact during the entire upgrade and data migration. Some of the pitfalls and challenges during this upgrade process included hardware reconfiguration for the original archive server, clinical downtime involved with the upgrade, and data migration planning to minimize impact on clinical workflow. The impact was minimized with a downtime contingency plan.

  17. Imaging of musculoskeletal manifestations in sickle cell disease patients.

    PubMed

    Kosaraju, Vijaya; Harwani, Alok; Partovi, Sasan; Bhojwani, Nicholas; Garg, Vasant; Ayyappan, Sabarish; Kosmas, Christos; Robbin, Mark

    2017-05-01

    Sickle cell disease (SCD) is a hereditary red cell disorder with clinical manifestations secondary to sickling or crescent-shaped distortion of the red blood cells. Major clinical manifestations of SCD include haemolytic anaemia and vaso-occlusive phenomena resulting in ischaemic tissue injury and organ damage. Chronic sequelae of the anaemia and vaso-occlusive processes involving the musculoskeletal system include complications related to extramedullary haematopoiesis, osteonecrosis, myonecrosis and osteomyelitis. Sickle cell bone disease is one of the commonest clinical presentations. Awareness and knowledge of the imaging features related to these complications are essential for early diagnosis and prompt management. In this article, the pathophysiology and key imaging findings related to these complications are reviewed.

  18. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems.

    PubMed

    Maulucci, Giuseppe; Bačić, Goran; Bridal, Lori; Schmidt, Harald Hhw; Tavitian, Bertrand; Viel, Thomas; Utsumi, Hideo; Yalçın, A Süha; De Spirito, Marco

    2016-06-01

    Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939-958.

  19. Emerging diagnostic and therapeutic molecular imaging applications in vascular disease

    PubMed Central

    Eraso, Luis H; Reilly, Muredach P; Sehgal, Chandra; Mohler, Emile R

    2013-01-01

    Assessment of vascular disease has evolved from mere indirect and direct measurements of luminal stenosis to sophisticated imaging methods to depict millimeter structural changes of the vasculature. In the near future, the emergence of multimodal molecular imaging strategies may enable robust therapeutic and diagnostic (‘theragnostic’) approaches to vascular diseases that comprehensively consider structural, functional, biological and genomic characteristics of the disease in individualized risk assessment, early diagnosis and delivery of targeted interventions. This review presents a summary of recent preclinical and clinical developments in molecular imaging and theragnostic applications covering diverse atherosclerosis events such as endothelial activation, macrophage infammatory activity, plaque neovascularization and arterial thrombosis. The main focus is on molecular targets designed for imaging platforms commonly used in clinical medicine including magnetic resonance, computed tomography and positron emission tomography. A special emphasis is given to vascular ultrasound applications, considering the important role this imaging platform plays in the clinical and research practice of the vascular medicine specialty. PMID:21310769

  20. From PACS to Web-based ePR system with image distribution for enterprise-level filmless healthcare delivery.

    PubMed

    Huang, H K

    2011-07-01

    The concept of PACS (picture archiving and communication system) was initiated in 1982 during the SPIE medical imaging conference in New Port Beach, CA. Since then PACS has been matured to become an everyday clinical tool for image archiving, communication, display, and review. This paper follows the continuous development of PACS technology including Web-based PACS, PACS and ePR (electronic patient record), enterprise PACS to ePR with image distribution (ID). The concept of large-scale Web-based enterprise PACS and ePR with image distribution is presented along with its implementation, clinical deployment, and operation. The Hong Kong Hospital Authority's (HKHA) integration of its home-grown clinical management system (CMS) with PACS and ePR with image distribution is used as a case study. The current concept and design criteria of the HKHA enterprise integration of the CMS, PACS, and ePR-ID for filmless healthcare delivery are discussed, followed by its work-in-progress and current status.

  1. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer

    PubMed Central

    He, Jun; Yang, Leping; Yi, Wenjun; Fan, Wentao; Wen, Yu; Miao, Xiongying; Xiong, Li

    2017-01-01

    Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS. PMID:28849712

  2. Transforming medical imaging applications into collaborative PACS-based telemedical systems

    NASA Astrophysics Data System (ADS)

    Maani, Rouzbeh; Camorlinga, Sergio; Arnason, Neil

    2011-03-01

    Telemedical systems are not practical for use in a clinical workflow unless they are able to communicate with the Picture Archiving and Communications System (PACS). On the other hand, there are many medical imaging applications that are not developed as telemedical systems. Some medical imaging applications do not support collaboration and some do not communicate with the PACS and therefore limit their usability in clinical workflows. This paper presents a general architecture based on a three-tier architecture model. The architecture and the components developed within it, transform medical imaging applications into collaborative PACS-based telemedical systems. As a result, current medical imaging applications that are not telemedical, not supporting collaboration, and not communicating with PACS, can be enhanced to support collaboration among a group of physicians, be accessed remotely, and be clinically useful. The main advantage of the proposed architecture is that it does not impose any modification to the current medical imaging applications and does not make any assumptions about the underlying architecture or operating system.

  3. Complete 360° circumferential gonioscopic optical coherence tomography imaging of the iridocorneal angle

    PubMed Central

    McNabb, Ryan P.; Challa, Pratap; Kuo, Anthony N.; Izatt, Joseph A.

    2015-01-01

    Clinically, gonioscopy is used to provide en face views of the ocular angle. The angle has been imaged with optical coherence tomography (OCT) through the corneoscleral limbus but is currently unable to image the angle from within the ocular anterior chamber. We developed a novel gonioscopic OCT system that images the angle circumferentially from inside the eye through a custom, radially symmetric, gonioscopic contact lens. We present, to our knowledge, the first 360° circumferential volumes (two normal subjects, two subjects with pathology) of peripheral iris and iridocorneal angle structures obtained via an internal approach not typically available in the clinic. PMID:25909021

  4. [Diagnostic imaging of urolithiais. Current recommendations and new developments].

    PubMed

    Thalgott, M; Kurtz, F; Gschwend, J E; Straub, M

    2015-07-01

    Prevalence of urolithiasis is increasing in industrialized countries--in both adults and children, representing a unique diagnostic and therapeutic challenge. Risk-adapted diagnostic imaging currently means assessment with maximized sensitivity and specificity together with minimal radiation exposure. In clinical routine, imaging is performed by sonography, unenhanced computed tomography (NCCT) or intravenous urography (IVU) as well as plain kidney-ureter-bladder (KUB) radiographs. The aim of the present review is a critical guideline-based and therapy-aligned presentation of diagnostic imaging procedures for optimized treatment of urolithiasis considering the specifics in children and pregnant women.

  5. Clinical, pathological, and neuroimaging analyses of two cases of Leigh syndrome in a Chinese family.

    PubMed

    Jin, Taoran; Shen, Hongrui; Zhao, Zhe; Hu, Jing

    2014-11-01

    In this study, the authors examined the clinical manifestations, skeletal muscle pathological characteristics, and neuroimaging results of 2 cases of Leigh syndrome in a Chinese family. The 2 patients presented with general weakness, and 1 of them presented with an impairment of vision. Skeletal muscle biopsies showed a deficiency in cytochrome c oxidase levels. Brain magnetic resonance imaging showed increased T1 and T2 signal intensities in the centrum ovale and dentate nucleus. Diffusion-weighted imaging showed a high-intensity signal. Magnetic resonance spectroscopy showed elevated levels of lactic acid in lesions. The examination of 1 patient at disease onset and during disease remission showed that the lesions detected by magnetic resonance imaging and diffusion-weighted imaging, and the peak for lactic acid detected by magnetic resonance spectroscopy, decreased during remission. These data suggest that changes in the imaging results of patients with Leigh syndrome correlate with disease course and pathogenetic condition. © The Author(s) 2014.

  6. Medical sieve: a cognitive assistant for radiologists and cardiologists

    NASA Astrophysics Data System (ADS)

    Syeda-Mahmood, T.; Walach, E.; Beymer, D.; Gilboa-Solomon, F.; Moradi, M.; Kisilev, P.; Kakrania, D.; Compas, C.; Wang, H.; Negahdar, R.; Cao, Y.; Baldwin, T.; Guo, Y.; Gur, Y.; Rajan, D.; Zlotnick, A.; Rabinovici-Cohen, S.; Ben-Ari, R.; Guy, Amit; Prasanna, P.; Morey, J.; Boyko, O.; Hashoul, S.

    2016-03-01

    Radiologists and cardiologists today have to view large amounts of imaging data relatively quickly leading to eye fatigue. Further, they have only limited access to clinical information relying mostly on their visual interpretation of imaging studies for their diagnostic decisions. In this paper, we present Medical Sieve, an automated cognitive assistant for radiologists and cardiologists designed to help in their clinical decision-making. The sieve is a clinical informatics system that collects clinical, textual and imaging data of patients from electronic health records systems. It then analyzes multimodal content to detect anomalies if any, and summarizes the patient record collecting all relevant information pertinent to a chief complaint. The results of anomaly detection are then fed into a reasoning engine which uses evidence from both patient-independent clinical knowledge and large-scale patient-driven similar patient statistics to arrive at potential differential diagnosis to help in clinical decision making. In compactly summarizing all relevant information to the clinician per chief complaint, the system still retains links to the raw data for detailed review providing holistic summaries of patient conditions. Results of clinical studies in the domains of cardiology and breast radiology have already shown the promise of the system in differential diagnosis and imaging studies summarization.

  7. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  8. Image BOSS: a biomedical object storage system

    NASA Astrophysics Data System (ADS)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  9. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme.

    PubMed

    Tian, Xiumei; Zeng, Dong; Zhang, Shanli; Huang, Jing; Zhang, Hua; He, Ji; Lu, Lijun; Xi, Weiwen; Ma, Jianhua; Bian, Zhaoying

    2016-11-22

    Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.

  10. Semiautomated Workflow for Clinically Streamlined Glioma Parametric Response Mapping

    PubMed Central

    Keith, Lauren; Ross, Brian D.; Galbán, Craig J.; Luker, Gary D.; Galbán, Stefanie; Zhao, Binsheng; Guo, Xiaotao; Chenevert, Thomas L.; Hoff, Benjamin A.

    2017-01-01

    Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging protocols for determining targeted response. Clinical response assessment for brain tumors is determined by volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging. Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used for patient management; an automated and standardized software for performing the analysis and for the generation of a clinical report document is required for this. We present a semiautomated and seamless workflow for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted magnetic resonance imaging scans. The software solution can be integrated using local hardware or performed remotely in the cloud while providing connectivity to existing picture archive and communication systems. This is an important step toward implementing PRM analysis of solid tumors in routine clinical practice. PMID:28286871

  11. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    NASA Astrophysics Data System (ADS)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  12. First-in-human pilot study of a spatial frequency domain oxygenation imaging system

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Mazhar, Amaan; Lee, Bernard T.; Lin, Samuel J.; Tobias, Adam M.; Cuccia, David J.; Stockdale, Alan; Oketokoun, Rafiou; Ashitate, Yoshitomo; Kelly, Edward; Weinmann, Maxwell; Durr, Nicholas J.; Moffitt, Lorissa A.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2011-08-01

    Oxygenation measurements are widely used in patient care. However, most clinically available instruments currently consist of contact probes that only provide global monitoring of the patient (e.g., pulse oximetry probes) or local monitoring of small areas (e.g., spectroscopy-based probes). Visualization of oxygenation over large areas of tissue, without a priori knowledge of the location of defects, has the potential to improve patient management in many surgical and critical care applications. In this study, we present a clinically compatible multispectral spatial frequency domain imaging (SFDI) system optimized for surgical oxygenation imaging. This system was used to image tissue oxygenation over a large area (16×12 cm) and was validated during preclinical studies by comparing results obtained with an FDA-approved clinical oxygenation probe. Skin flap, bowel, and liver vascular occlusion experiments were performed on Yorkshire pigs and demonstrated that over the course of the experiment, relative changes in oxygen saturation measured using SFDI had an accuracy within 10% of those made using the FDA-approved device. Finally, the new SFDI system was translated to the clinic in a first-in-human pilot study that imaged skin flap oxygenation during reconstructive breast surgery. Overall, this study lays the foundation for clinical translation of endogenous contrast imaging using SFDI.

  13. First-in-human pilot study of a spatial frequency domain oxygenation imaging system

    PubMed Central

    Gioux, Sylvain; Mazhar, Amaan; Lee, Bernard T.; Lin, Samuel J.; Tobias, Adam M.; Cuccia, David J.; Stockdale, Alan; Oketokoun, Rafiou; Ashitate, Yoshitomo; Kelly, Edward; Weinmann, Maxwell; Durr, Nicholas J.; Moffitt, Lorissa A.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2011-01-01

    Oxygenation measurements are widely used in patient care. However, most clinically available instruments currently consist of contact probes that only provide global monitoring of the patient (e.g., pulse oximetry probes) or local monitoring of small areas (e.g., spectroscopy-based probes). Visualization of oxygenation over large areas of tissue, without a priori knowledge of the location of defects, has the potential to improve patient management in many surgical and critical care applications. In this study, we present a clinically compatible multispectral spatial frequency domain imaging (SFDI) system optimized for surgical oxygenation imaging. This system was used to image tissue oxygenation over a large area (16×12 cm) and was validated during preclinical studies by comparing results obtained with an FDA-approved clinical oxygenation probe. Skin flap, bowel, and liver vascular occlusion experiments were performed on Yorkshire pigs and demonstrated that over the course of the experiment, relative changes in oxygen saturation measured using SFDI had an accuracy within 10% of those made using the FDA-approved device. Finally, the new SFDI system was translated to the clinic in a first-in-human pilot study that imaged skin flap oxygenation during reconstructive breast surgery. Overall, this study lays the foundation for clinical translation of endogenous contrast imaging using SFDI. PMID:21895327

  14. The Usefulness of MR Imaging of the Temporal Bone in the Evaluation of Patients with Facial and Audiovestibular Dysfunction

    PubMed Central

    Park, Sang Uk; Cho, Young Kuk; Lim, Myung Kwan; Kim, Won Hong; Suh, Chang Hae; Lee, Seung Chul

    2002-01-01

    Objective To evaluate the clinical utility of MR imaging of the temporal bone in patients with facial and audiovestibular dysfunction with particular emphasis on the importance of contrast enhancement. Materials and Methods We retrospectively reviewed the MR images of 179 patients [72 men, 107 women; average age, 44 (range, 1-77) years] who presented with peripheral facial palsy (n=15), audiometrically proven sensorineural hearing loss (n=104), vertigo (n=109), or tinnitus (n=92). Positive MR imaging findings possibly responsible for the patients clinical manifestations were categorized according to the anatomic sites and presumed etiologies of the lesions. We also assessed the utility of contrast-enhanced MR imaging by analyzing its contribution to the demonstration of lesions which would otherwise not have been apparent. All MR images were interpreted by two neuroradiologists, who reached their conclusions by consensus. Results MR images demonstrated positive findings, thought to account for the presenting symptoms, in 78 (44%) of 179 patients, including 15 (100%) of 15 with peripheral facial palsy, 43 (41%) of 104 with sensorineural hearing loss, 40 (37%) of 109 with vertigo, and 39 (42%) of 92 with tinnitus. Thirty (38%) of those 78 patients had lesions that could be confidently recognized only at contrast-enhanced MR imaging. Conclusion Even though its use led to positive findings in less than half of these patients, MR imaging of the temporal bone is a useful diagnostic procedure in the evaluation of those with facial and audiovestibular dysfunction. Because it was only at contrast-enhanced MR imaging that a significant number of patients showed positive imaging findings which explained their clinical manifestations, the use of contrast material is highly recommended. PMID:11919474

  15. Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury.

    PubMed

    Mitsis, E M; Riggio, S; Kostakoglu, L; Dickstein, D L; Machac, J; Delman, B; Goldstein, M; Jennings, D; D'Antonio, E; Martin, J; Naidich, T P; Aloysi, A; Fernandez, C; Seibyl, J; DeKosky, S T; Elder, G A; Marek, K; Gordon, W; Hof, P R; Sano, M; Gandy, S

    2014-09-16

    Single, severe traumatic brain injury (TBI) which elevates CNS amyloid, increases the risk of Alzheimer's disease (AD); while repetitive concussive and subconcussive events as observed in athletes and military personnel, may increase the risk of chronic traumatic encephalopathy (CTE). We describe two clinical cases, one with a history of multiple concussions during a career in the National Football League (NFL) and the second with frontotemporal dementia and a single, severe TBI. Both patients presented with cognitive decline and underwent [(18)F]-Florbetapir positron emission tomography (PET) imaging for amyloid plaques; the retired NFL player also underwent [(18)F]-T807 PET imaging, a new ligand binding to tau, the main constituent of neurofibrillary tangles (NFT). Case 1, the former NFL player, was 71 years old when he presented with memory impairment and a clinical profile highly similar to AD. [(18)F]-Florbetapir PET imaging was negative, essentially excluding AD as a diagnosis. CTE was suspected clinically, and [(18)F]-T807 PET imaging revealed striatal and nigral [(18)F]-T807 retention consistent with the presence of tauopathy. Case 2 was a 56-year-old man with personality changes and cognitive decline who had sustained a fall complicated by a subdural hematoma. At 1 year post injury, [(18)F]-Florbetapir PET imaging was negative for an AD pattern of amyloid accumulation in this subject. Focal [(18)F]-Florbetapir retention was noted at the site of impact. In case 1, amyloid imaging provided improved diagnostic accuracy where standard clinical and laboratory criteria were inadequate. In that same case, tau imaging with [(18)F]-T807 revealed a subcortical tauopathy that we interpret as a novel form of CTE with a distribution of tauopathy that mimics, to some extent, that of progressive supranuclear palsy (PSP), despite a clinical presentation of amnesia without any movement disorder complaints or signs. A key distinguishing feature is that our patient presented with hippocampal involvement, which is more frequently seen in CTE than in PSP. In case 2, focal [(18)F]-Florbetapir retention at the site of injury in an otherwise negative scan suggests focal amyloid aggregation. In each of these complex cases, a combination of [(18)F]-fluorodeoxyglucose, [(18)F]-Florbetapir and/or [(18)F]-T807 PET molecular imaging improved the accuracy of diagnosis and prevented inappropriate interventions.

  16. Bayesian network interface for assisting radiology interpretation and education

    NASA Astrophysics Data System (ADS)

    Duda, Jeffrey; Botzolakis, Emmanuel; Chen, Po-Hao; Mohan, Suyash; Nasrallah, Ilya; Rauschecker, Andreas; Rudie, Jeffrey; Bryan, R. Nick; Gee, James; Cook, Tessa

    2018-03-01

    In this work, we present the use of Bayesian networks for radiologist decision support during clinical interpretation. This computational approach has the advantage of avoiding incorrect diagnoses that result from known human cognitive biases such as anchoring bias, framing effect, availability bias, and premature closure. To integrate Bayesian networks into clinical practice, we developed an open-source web application that provides diagnostic support for a variety of radiology disease entities (e.g., basal ganglia diseases, bone lesions). The Clinical tool presents the user with a set of buttons representing clinical and imaging features of interest. These buttons are used to set the value for each observed feature. As features are identified, the conditional probabilities for each possible diagnosis are updated in real time. Additionally, using sensitivity analysis, the interface may be set to inform the user which remaining imaging features provide maximum discriminatory information to choose the most likely diagnosis. The Case Submission tools allow the user to submit a validated case and the associated imaging features to a database, which can then be used for future tuning/testing of the Bayesian networks. These submitted cases are then reviewed by an assigned expert using the provided QC tool. The Research tool presents users with cases with previously labeled features and a chosen diagnosis, for the purpose of performance evaluation. Similarly, the Education page presents cases with known features, but provides real time feedback on feature selection.

  17. Iatrogenic Hepatopancreaticobiliary Injuries: A Review

    PubMed Central

    Vachhani, Prasanti G.; Copelan, Alexander; Remer, Erick M.; Kapoor, Baljendra

    2015-01-01

    Iatrogenic hepatopancreaticobiliary injuries occur after various types of surgical and nonsurgical procedures. Symptomatically, these injuries may lead to a variety of clinical presentations, including tachycardia and hypotension from hemobilia or hemorrhage. Iatrogenic injuries may be identified during the intervention, immediately afterwards, or have a delayed presentation. These injuries are categorized into nonvascular and vascular injuries. Nonvascular injuries include biliary injuries such as biliary leak or stricture, pancreatic injury, and the development of fluid collections such as abscesses. Vascular injuries include pseudoaneurysms, arteriovenous fistulas, dissection, and perforation. Imaging studies such as ultrasound, computed tomography, magnetic resonance imaging, and digital subtraction angiography are critical for proper diagnosis of these conditions. In this article, we describe the clinical and imaging presentations of these iatrogenic injuries and the armamentarium of minimally invasive procedures (percutaneous drainage catheter placement, balloon dilatation, stenting, and coil embolization) that are useful in their management. PMID:26038625

  18. Clinics in diagnostic imaging. 159. Jejunal intussusception due to Peutz-Jeghers syndrome.

    PubMed

    Krishnan, Vijay; Chawla, Ashish; Wee, Eric; Peh, Wilfred C G

    2015-02-01

    A 21-year-old woman presented with acute onset of upper abdominal pain. A diagnosis of Peutz-Jeghers syndrome (PJS) was made based on the clinical picture of perioral pigmentation with imaging findings of transient jejunojejunal intussusceptions and small bowel polyps, and confirmed by characteristic histopathological appearances of Peutz-Jeghers polyps. PJS is a rare hereditary condition characterised by unique hamartomatous polyps, perioral mucocutaneous pigmentations, and increased susceptibility to gastrointestinal and extraintestinal neoplasms. Patients usually present with recurrent abdominal pain due to intussusception caused by polyps. Other modes of presentations include rectal bleeding and melaena. We describe the imaging findings of PJS and provide a brief review of bowel polyposis syndromes. The latter are relatively rare disorders characterised by multiple polyps in the large or small intestine, with associated risk of malignancies and other extraintestinal manifestations. Awareness of the manifestations and early diagnosis of these syndromes is crucial to prevent further complications.

  19. Does the choice of display system influence perception and visibility of clinically relevant features in digital pathology images?

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron

    2014-03-01

    Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.

  20. TH-E-202-02: The Use of Hypoxia PET Imaging for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humm, J.

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  1. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    PubMed

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  2. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    PubMed

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Imaging in childhood urinary tract infection.

    PubMed

    Riccabona, Michael

    2016-05-01

    Urinary tract infection (UTI) is a common query in pediatric radiology. Imaging for and after UTI is still a heavily debated topic with different approaches, as thorough evidence to decide upon a definite algorithm is scarce. This review article tries to address the clinical rational of the various approaches (general imaging, top-down or bottom-up, selected and individualized imaging concepts…), describes the available imaging modalities and the respective findings in imaging children with UTI, and proposes an imaging algorithm for the work-up of children during and after UTI discussing the "pros and cons" of the different attitudes. In summary, imaging by US is generally considered for all infants and children with a febrile or complicated (upper) UTI, particularly without previously known urinary tract anatomy. The further work-up (searching for renal scarring and assessment of vesico-ureteric reflux) is then decided according to these initial findings as well as the clinical presentation, course, and scenario.

  4. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    PubMed

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  5. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  6. Magnetic resonance imaging of spinal infection.

    PubMed

    Tins, Bernhard J; Cassar-Pullicino, Victor N; Lalam, Radhesh K

    2007-06-01

    This article reviews the pathophysiology of spinal infection and its relevance for imaging. Magnetic resonance imaging (MRI) is the modality with by far the best sensitivity and specificity for spinal infection. The imaging appearances of spinal infection in MRI are outlined, and imaging techniques are discussed. The problems of clinical diagnosis are outlined. There is some emphasis on the MRI differentiation of pyogenic and nonpyogenic infection and on the differential diagnosis of spinal infection centered on the imaging presentation.

  7. Validation of an image-based technique to assess the perceptual quality of clinical chest radiographs with an observer study

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Choudhury, Kingshuk R.; McAdams, H. Page; Foos, David H.; Samei, Ehsan

    2014-03-01

    We previously proposed a novel image-based quality assessment technique1 to assess the perceptual quality of clinical chest radiographs. In this paper, an observer study was designed and conducted to systematically validate this technique. Ten metrics were involved in the observer study, i.e., lung grey level, lung detail, lung noise, riblung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm-lung contrast, and subdiaphragm area. For each metric, three tasks were successively presented to the observers. In each task, six ROI images were randomly presented in a row and observers were asked to rank the images only based on a designated quality and disregard the other qualities. A range slider on the top of the images was used for observers to indicate the acceptable range based on the corresponding perceptual attribute. Five boardcertificated radiologists from Duke participated in this observer study on a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions. The observer data were analyzed in terms of the correlations between the observer ranking orders and the algorithmic ranking orders. Based on the collected acceptable ranges, quality consistency ranges were statistically derived. The observer study showed that, for each metric, the averaged ranking orders of the participated observers were strongly correlated with the algorithmic orders. For the lung grey level, the observer ranking orders completely accorded with the algorithmic ranking orders. The quality consistency ranges derived from this observer study were close to these derived from our previous study. The observer study indicates that the proposed image-based quality assessment technique provides a robust reflection of the perceptual image quality of the clinical chest radiographs. The derived quality consistency ranges can be used to automatically predict the acceptability of a clinical chest radiograph.

  8. High resolution multimodal clinical ophthalmic imaging system

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Patel, Ankit H.; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X.

    2010-01-01

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 µm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 µm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes. PMID:20589021

  9. Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations

    PubMed Central

    Niu, Shanzhou; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2016-01-01

    Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps. PMID:27440948

  10. Magnetic resonance imaging and clinical findings in a miniature Schnauzer with hypodipsic hypernatremia.

    PubMed

    Shimokawa Miyama, Takako; Iwamoto, Emiko; Umeki, Saori; Nakaichi, Munekazu; Okuda, Masaru; Mizuno, Takuya

    2009-10-01

    A 6-month-old miniature Schnauzer presented with hypernatremia and clinical signs of vomiting, diarrhea, inappetence, and lethargy. The dog did not consume water on its own. Hypernatremia and the related clinical signs were resolved by fluid administration. Endocrinological investigations and urinalysis excluded the possibility of diabetes insipidus and hyperaldosteronism. Therefore, the dog was diagnosed with hypodipsic hypernatremia. Magnetic resonance imaging revealed dysgenesis of the corpus callosum and other forebrain structures. On the basis of these findings, congenital brain malformation associated with failure of the osmoreceptor system was suspected.

  11. Co-registration of ultrasound and frequency-domain photoacoustic radar images and image improvement for tumor detection

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2015-03-01

    This paper demonstrates the co-registration of ultrasound (US) and frequency domain photoacoustic radar (FD-PAR) images with significant image improvement from applying image normalization, filtering and amplification techniques. Achieving PA imaging functionality on a commercial Ultrasound instrument could accelerate clinical acceptance and use. Experimental results presented demonstrate live animal testing and show enhancements in signal-to-noise ratio (SNR), contrast and spatial resolution. The co-registered image produced from the US and phase PA images, provides more information than both images independently.

  12. Foreign exam management in practice: seamless access to foreign images and results in a regional environment.

    PubMed

    Nagels, Jason; MacDonald, David; Parker, David

    2015-04-01

    A challenge for many clinical users is that a patient may receive a diagnostic imaging (DI) service at a number of hospitals or private imaging clinics. The DI services that patients receive at other locations could be clinically relevant to current treatments, but typically, there is no seamless method for a clinical user to access longitudinal DI results for their patient. Radiologists, and other specialists that are intensive users of image data, require seamless ingestion of foreign exams into the picture archiving and communication system (PACS) to achieve full clinical value. Most commonly, a clinical user will depend on the patient to bring in a CD that contains imaging from another location. However, a number of issues can arise when using this type of solution. Firstly, a CD will not provide the clinical user with the full longitudinal record of the patient. Secondly, a CD often will not contain the report associated with the images. Finally, a CD is not seamless, due to the need to manually import the contents of the CD into the local PACS. In order to overcome these limitations, and provide clinical users with a greater benefit related to a patient's longitudinal DI history, the implementation of foreign exam management (FEM) at the local site level is required. This paper presents the experiences of FEM in practice. By leveraging industry standards and edge devices to support FEM, multiple sites with disparate PACS and radiology information system (RIS) vendors are able to seamlessly ingest foreign exams within their local PACS as if they are local exams.

  13. The National Institutes of Health Clinical Center Digital Imaging Network, Picture Archival and Communication System, and Radiology Information System.

    PubMed

    Goldszal, A F; Brown, G K; McDonald, H J; Vucich, J J; Staab, E V

    2001-06-01

    In this work, we describe the digital imaging network (DIN), picture archival and communication system (PACS), and radiology information system (RIS) currently being implemented at the Clinical Center, National Institutes of Health (NIH). These systems are presently in clinical operation. The DIN is a redundant meshed network designed to address gigabit density and expected high bandwidth requirements for image transfer and server aggregation. The PACS projected workload is 5.0 TB of new imaging data per year. Its architecture consists of a central, high-throughput Digital Imaging and Communications in Medicine (DICOM) data repository and distributed redundant array of inexpensive disks (RAID) servers employing fiber-channel technology for immediate delivery of imaging data. On demand distribution of images and reports to clinicians and researchers is accomplished via a clustered web server. The RIS follows a client-server model and provides tools to order exams, schedule resources, retrieve and review results, and generate management reports. The RIS-hospital information system (HIS) interfaces include admissions, discharges, and transfers (ATDs)/demographics, orders, appointment notifications, doctors update, and results.

  14. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science). Progress report, January 1, 1984-December 31, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This report presents progress in the areas of cardiac nuclear medicine, other imaging studies, investigations with biomolecules, and assessment of risks associated with the clinical use of radiopharmaceuticals. (ACR)

  15. Simultaneous dual-color fluorescence microscope: a characterization study.

    PubMed

    Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong

    2013-01-01

    High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.

  16. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    PubMed

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  17. Fully automated motion correction in first-pass myocardial perfusion MR image sequences.

    PubMed

    Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-11-01

    This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.

  18. An ITK framework for deterministic global optimization for medical image registration

    NASA Astrophysics Data System (ADS)

    Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.

    2006-03-01

    Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.

  19. TH-E-202-00: PET for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  20. TH-E-202-03: PET for Tumor Response Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W.

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  1. Ongoing evaluation of PACS in a clinical setting

    NASA Astrophysics Data System (ADS)

    Trefler, Martin; Russell, Edward

    1992-05-01

    The radiology department of Jackson Memorial Hospital processes 255,000 clinical examinations each year -- 65,000 of which are portable x rays. Film transportation and loss are major obstacles to the smooth operation of this department. To assist in the solution of these problems we have designed and begun the piecemeal installation of a clinical PACS. This system is based on a platform of IBM RISC/6000 computers and software developed by Genesys Corporation. The initial installation involved the digitization of the portable x rays from three ICUs. The images (in the form of a matrix of 2048 X 1648 pixels) are then entered into the network and can be viewed simultaneously in the radiology department and in the ICU. The second phase of installation, involving the images from two CT scanners and two MRI scanners is currently underway. We have evaluated the system from several standpoints. The first is user acceptance. The users are the radiologists who must make the diagnosis at the workstation and the referring physicians who need the diagnosis quickly but also require the image. The radiologists must be comfortable with their diagnosis based on the images presented at the two viewer workstation. This is compared to the use of a multiviewer which presents many radiographs simultaneously. The second parameter for evaluation involves the impact on patient care in terms of the time elapsed between the taking of the radiograph and the presentation to the physician of the image and the diagnosis.

  2. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  3. Evaluation of image features and classification methods for Barrett's cancer detection using VLE imaging

    NASA Astrophysics Data System (ADS)

    Klomp, Sander; van der Sommen, Fons; Swager, Anne-Fré; Zinger, Svitlana; Schoon, Erik J.; Curvers, Wouter L.; Bergman, Jacques J.; de With, Peter H. N.

    2017-03-01

    Volumetric Laser Endomicroscopy (VLE) is a promising technique for the detection of early neoplasia in Barrett's Esophagus (BE). VLE generates hundreds of high resolution, grayscale, cross-sectional images of the esophagus. However, at present, classifying these images is a time consuming and cumbersome effort performed by an expert using a clinical prediction model. This paper explores the feasibility of using computer vision techniques to accurately predict the presence of dysplastic tissue in VLE BE images. Our contribution is threefold. First, a benchmarking is performed for widely applied machine learning techniques and feature extraction methods. Second, three new features based on the clinical detection model are proposed, having superior classification accuracy and speed, compared to earlier work. Third, we evaluate automated parameter tuning by applying simple grid search and feature selection methods. The results are evaluated on a clinically validated dataset of 30 dysplastic and 30 non-dysplastic VLE images. Optimal classification accuracy is obtained by applying a support vector machine and using our modified Haralick features and optimal image cropping, obtaining an area under the receiver operating characteristic of 0.95 compared to the clinical prediction model at 0.81. Optimal execution time is achieved using a proposed mean and median feature, which is extracted at least factor 2.5 faster than alternative features with comparable performance.

  4. Clinical and Imaging Presentation of a Patient with Beta-Propeller Protein-Associated Neurodegeneration, a Rare and Sporadic form of Neurodegeneration with Brain Iron Accumulation (NBIA).

    PubMed

    Hattingen, Elke; Handke, Nikolaus; Cremer, Kirsten; Hoffjan, Sabine; Kukuk, Guido Matthias

    2017-12-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of inherited neurologic disorders with iron accumulation in the basal ganglia, which share magnetic resonance (MR) imaging characteristics, histopathologic and clinical features. According to the affected basal nuclei, clinical features include extrapyramidal movement disorders and varying degrees of intellectual disability status. The most common NBIA subtype is caused by pathogenic variants in PANK2. The hallmark of MR imaging in patients with PANK2 mutations is an eye-of-the-tiger sign in the globus pallidus. We report a 33-year-old female with a rare subtype of NBIA, called beta-propeller protein-associated neurodegeneration (BPAN) with a hitherto unknown missense variant in WDR45. She presented with BPAN's particular biphasic course of neurological symptoms and with a dominant iron accumulation in the midbrain that enclosed a spotty T2-hyperintensity.

  5. MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z; Sensakovic, W; Hipp, E

    2014-06-15

    Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less

  6. Towards in vivo laser coagulation and concurrent optical coherence tomography through double-clad fiber devices

    NASA Astrophysics Data System (ADS)

    Beaudette, Kathy; Lo, William; Villiger, Martin; Shishkov, Milen; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2016-03-01

    There is a strong clinical need for an optical coherence tomography (OCT) system capable of delivering concurrent coagulation light enabling image-guided dynamic laser marking for targeted collection of biopsies, as opposed to a random sampling, to reduce false-negative findings. Here, we present a system based on double-clad fiber (DCF) capable of delivering pulsed laser light through the inner cladding while performing OCT through the core. A previously clinically validated commercial OCT system (NVisionVLE, Ninepoint Medical) was adapted to enable in vivo esophageal image-guided dynamic laser marking. An optimized DCF coupler was implemented into the system to couple both modalities into the DCF. A DCF-based rotary joint was used to couple light to the spinning DCF-based catheter for helical scanning. DCF-based OCT catheters, providing a beam waist diameter of 62μm at a working distance of 9.3mm, for use with a 17-mm diameter balloon sheath, were used for ex vivo imaging of a swine esophagus. Imaging results using the DCF-based clinical system show an image quality comparable with a conventional system with minimal crosstalk-induced artifacts. To further optimize DCF catheter optical design in order to achieve single-pulse marking, a Zemax model of the DCF output and its validation are presented.

  7. Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF

    PubMed Central

    COAN, Paola; MOLLENHAUER, Juergen; WAGNER, Andreas; Muehleman, Carol; BRAVIN, Alberto

    2009-01-01

    Monitoring the progression of osteoarthritis (OA) and the effects of therapy during clinical trials is still a challenge for present clinical imaging techniques since they present intrinsic limitations and can be sensitive only in case of advanced OA stages. In very severe cases, partial or complete joint replacement surgery is the only solution for reducing pain and restoring the joint functions. Poor imaging quality in practically all medical imaging technologies with respect to joint surfaces and to metal implant imaging calls for the development of new techniques that are sensitive to stages preceding the point of irreversible damage of the cartilage tissue. In this scenario, X-ray phase contrast modalities could play an important role since they can provide improved contrast compared to conventional absorption radiography, with a similar or even reduced tissue radiation dose. In this study, the Analyzer-based imaging (ABI), a technique sensitive to the X-ray refraction and permitting a high scatter rejection, has been successfully applied in-vitro on excised human synovial joints and sheep implants. Pathological and healthy joints as well as metal implants have been imaged in projection and computed tomography ABI mode at high resolution and clinically compatible doses (< 10 mGy). Volume rendering and segmentation permitted visualization of the cartilage from volumetric CT-scans. Results demonstrate that ABI can provide an unequivocal non-invasive diagnosis of the state of disease of the joint and be considered a new tool in orthopaedic research. PMID:18584983

  8. Echocardiography Practice: Insights into Appropriate Clinical Use, Technical Competence and Quality Improvement Program

    PubMed Central

    Kossaify, Antoine; Grollier, Gilles

    2014-01-01

    Echocardiography accounts for nearly half of all cardiac imaging techniques. It is a widely available and adaptable tool, as well as being a cost-effective and mainly a non-invasive test. In addition, echocardiography provides extensive clinical data, which is related to the presence or advent of different modalities (tissue Doppler imaging, speckle tracking imaging, three-dimensional mode, contrast echo, etc.), different approaches (transesophageal, intravascular, etc.), and different applications (ie, heart failure/resynchronization studies, ischemia/stress echo, etc.). In view of this, it is essential to conform to criteria of appropriate use and to keep standards of competence. In this study, we sought to review and discuss clinical practice of echocardiography in light of the criteria of appropriate clinical use, also we present an insight into echocardiographic technical competence and quality improvement project. PMID:24516342

  9. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  10. ED breast cases and other breast emergencies.

    PubMed

    Khadem, Nasim; Reddy, Sravanthi; Lee, Sandy; Larsen, Linda; Walker, Daphne

    2016-02-01

    Patients with pathologic processes of the breast commonly present in the Emergency Department (ED). Familiarity with the imaging and management of the most common entities is essential for the radiologist. Additionally, it is important to understand the limitations of ED imaging and management in the acute setting and to recognize when referrals to a specialty breast center are necessary. The goal of this article is to review the clinical presentations, pathophysiology, imaging, and management of emergency breast cases and common breast pathology seen in the ED.

  11. Diagnosis of cutaneous thermal burn injuries by multispectral imaging analysis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1978-01-01

    Special photographic or television image analysis is shown to be a potentially useful technique to assist the physician in the early diagnosis of thermal burn injury. A background on the medical and physiological problems of burns is presented. The proposed methodology for burns diagnosis from both the theoretical and clinical points of view is discussed. The television/computer system constructed to accomplish this analysis is described, and the clinical results are discussed.

  12. [Gastric adenomyoma clinically simulating hypertrophic pyloric stenosis].

    PubMed

    Sánchez García, S; Rubio Solís, D; Anes González, G; González Sánchez, S

    2016-01-01

    Gastric adenomyomas are extremely uncommon benign tumors in children. On histologic examination, these tumors have an epithelial component similar to pancreatic ducts. We present a case of a pyloric adenomyoma that clinically simulated hypertrophic pyloric stenosis in a newborn girl. Imaging tests, fundamentally magnetic resonance imaging, were very important in the characterization and diagnosis of this entity. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  13. Clinical radiology of the small intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlinger, H.; Maglinte, D.

    1989-01-01

    This book discussed embryology, anatomy, physiology, and immunology of the small intestine. Radiographic procedures in the small intestine especially enterolysis are presented. Focus is on the role of other types of imaging techniques including sonography, computed tomography, radionuclide imaging, angiography, biopsy, and enteroscopy.

  14. [Marketing orientation in rehabilitation--exemplified by image analysis of a rehabilitation clinic for addictions].

    PubMed

    Altenhöner, T; Schönhoff, T; Wehmeier, D

    2001-06-01

    This article presents the findings of an image analysis carried out for a rehabilitation clinic for addictive diseases. The cross-sectional study was designed as an anonymous survey sent to relevant (regional) referral agencies (n = 90), e.g. counselling services for addictive diseases. The study covers the clinic's actual and ideal image, discriminating frequency of referrals, diagnostic categories, region, and type of institution. Results concerning the real profile indicate that on average the dimensions cooperation, communication with regard to personal contact, and reputation of the clinic were more critically judged than the issues information, communication with regard to discharge reports, standards of quality, and consideration of patients' needs. Cooperation, communication with regard to personal contact, and quality standards turned out to be the most important criteria from the referring agencies' perspective (ideal profile). A statistical comparison between those with high and low assignment rates suggested that customers rated the clinic more favourably than non-customers. Thus, it seems that the clinic's image has considerable influence on referral decisions. Particularly interesting is the additional finding that the referring institutions perceive pension insurers' directives to be of secondary relevance.

  15. Isolated Cortical Vein Thrombosis - The Cord Sign

    PubMed Central

    Sharma, Vijay K.; Teoh, Hock L

    2009-01-01

    Isolated cortical vein thrombosis is an uncommon condition and often difficult to diagnose, both clinically and radiologically. We report a case of a 38 years old man who presented with headache of new onset and clinical examination was unremarkable. The unenhanced brain CT did not reveal any abnormality. In view of unrelenting headache and partial seizures, we performed magnetic resonance imaging (with axial T1, T2 and gradient echo sequences, coronal FLAIR, diffusion weighted imaging as well as Gadolinium contrast-enhanced images) and magnetic resonance venography of the brain that revealed an isolated parietal cortical vein thrombosis with the rarely reported 'cord sign'. We report the clinical and radiological findings in our patient with isolated parietal cortical vein thrombosis. PMID:22470649

  16. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  17. Corneal tissue water content mapping with THz imaging: preliminary clinical results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Deng, Sophie X.; Taylor, Zachary; Grundfest, Warren

    2016-03-01

    Well-regulated corneal water content is critical for ocular health and function and can be adversely affected by a number of diseases and injuries. Current clinical practice limits detection of unhealthy corneal water content levels to central corneal thickness measurements performed by ultrasound or optical coherence tomography. Trends revealing increasing or decreasing corneal thickness are fair indicators of corneal water content by individual measurements are highly inaccurate due to the poorly understood relationship between corneal thickness and natural physiologic variation. Recently the utility of THz imaging to accuarately measure corneal water content has been explored on with rabbit models. Preliminary experiments revealed that contact with dielectric windows confounded imaging data and made it nearly impossible to deconvolve thickness variations due to contact from thickness variations due to water content variation. A follow up study with a new optical design allowed the acquisition of rabbit data and the results suggest that the observed, time varying contrast was due entirely to the water dynamics of the cornea. This paper presents the first ever in vivo images of human cornea. Five volunteers with healthy cornea were recruited and their eyes were imaged three times over the course of a few minutes with our novel imaging system. Noticeable changes in corneal reflectivity were observed and attributed to the drying of the tear film. The results suggest that clinically compatible, non-contact corneal imaging is feasible and indicate that signal acquired from non-contact imaging of the cornea is a complicated coupling of stromal water content and tear film.

  18. Use of iris recognition camera technology for the quantification of corneal opacification in mucopolysaccharidoses.

    PubMed

    Aslam, Tariq Mehmood; Shakir, Savana; Wong, James; Au, Leon; Ashworth, Jane

    2012-12-01

    Mucopolysaccharidoses (MPS) can cause corneal opacification that is currently difficult to objectively quantify. With newer treatments for MPS comes an increased need for a more objective, valid and reliable index of disease severity for clinical and research use. Clinical evaluation by slit lamp is very subjective and techniques based on colour photography are difficult to standardise. In this article the authors present evidence for the utility of dedicated image analysis algorithms applied to images obtained by a highly sophisticated iris recognition camera that is small, manoeuvrable and adapted to achieve rapid, reliable and standardised objective imaging in a wide variety of patients while minimising artefactual interference in image quality.

  19. Blunt Cerebrovascular Injuries: Advances in Screening, Imaging, and Management Trends.

    PubMed

    Nagpal, P; Policeni, B A; Bathla, G; Khandelwal, A; Derdeyn, C; Skeete, D

    2017-10-12

    Blunt cerebrovascular injury is a relatively uncommon but sometimes life-threatening injury, particularly in patients presenting with ischemic symptoms in that vascular territory. The decision to pursue vascular imaging (generally CT angiography) is based on clinical and imaging findings. Several grading scales or screening criteria have been developed to guide the decision to pursue vascular imaging, as well as to recommend different treatment options for various injuries. The data supporting many of these guidelines and options are limited however. The purpose of this article is to review and compare these scales and criteria and the data supporting clinical efficacy and to make recommendations for future research in this area. © 2017 by American Journal of Neuroradiology.

  20. Expanding the PACS archive to support clinical review, research, and education missions

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Drane, Walter E.

    1999-07-01

    Designing an image archive and retrieval system that supports multiple users with many different requirements and patterns of use without compromising the performance and functionality required by diagnostic radiology is an intellectual and technical challenge. A diagnostic archive, optimized for performance when retrieving diagnostic images for radiologists needed to be expanded to support a growing clinical review network, the University of Florida Brain Institute's demands for neuro-imaging, Biomedical Engineering's imaging sciences, and an electronic teaching file. Each of the groups presented a different set of problems for the designers of the system. In addition, the radiologists did not want to see nay loss of performance as new users were added.

  1. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity inter-observers in the reporting of image quality assessment.

  2. Teleretinal screening for diabetic retinopathy in six Los Angeles urban safety-net clinics: final study results.

    PubMed

    Ogunyemi, Omolola; George, Sheba; Patty, Lauren; Teklehaimanot, Senait; Baker, Richard

    2013-01-01

    In a previous paper, we presented initial findings from a study on the feasibility and challenges of implementing teleretinal screening for diabetic retinopathy in an urban safety net setting facing eyecare specialist shortages. This paper presents some final results from that study, which involved six South Los Angeles safety net clinics. A total of 2,732 unique patients were screened for diabetic retinopathy by three ophthalmologist readers, with 1035 receiving a recommendation for referral to specialty care. Referrals included 48 for proliferative diabetic retinopathy, 115 for severe non-proliferative diabetic retinopathy (NPDR), 247 for moderate NPDR, 246 for mild NPDR, 97 for clinically significant macular edema, and 282 for a non-diabetic condition, such as glaucoma. Image quality was also assessed, with ophthalmologist readers grading 4% to 13% of retinal images taken at the different clinics as being inadequate for any diagnostic interpretation.

  3. Teleretinal Screening for Diabetic Retinopathy in Six Los Angeles Urban Safety-Net Clinics: Final Study Results

    PubMed Central

    Ogunyemi, Omolola; George, Sheba; Patty, Lauren; Teklehaimanot, Senait; Baker, Richard

    2013-01-01

    In a previous paper, we presented initial findings from a study on the feasibility and challenges of implementing teleretinal screening for diabetic retinopathy in an urban safety net setting facing eyecare specialist shortages. This paper presents some final results from that study, which involved six South Los Angeles safety net clinics. A total of 2,732 unique patients were screened for diabetic retinopathy by three ophthalmologist readers, with 1035 receiving a recommendation for referral to specialty care. Referrals included 48 for proliferative diabetic retinopathy, 115 for severe non-proliferative diabetic retinopathy (NPDR), 247 for moderate NPDR, 246 for mild NPDR, 97 for clinically significant macular edema, and 282 for a non-diabetic condition, such as glaucoma. Image quality was also assessed, with ophthalmologist readers grading 4% to 13% of retinal images taken at the different clinics as being inadequate for any diagnostic interpretation. PMID:24551394

  4. Granulomatous lobular mastitis: imaging, diagnosis, and treatment.

    PubMed

    Hovanessian Larsen, Linda J; Peyvandi, Banafsheh; Klipfel, Nancy; Grant, Edward; Iyengar, Geeta

    2009-08-01

    Granulomatous lobular mastitis is a rare chronic inflammatory disease that has clinical and radiologic findings similar to those of breast cancer. We performed a retrospective analysis of clinical, imaging, and treatment findings in 54 women diagnosed with granulomatous lobular mastitis between January 2000 and April 2008. The imaging findings of granulomatous lobular mastitis overlap with those of malignancy. The most common presentation is a focal asymmetric density on mammography and an irregular hypoechoic mass with tubular extensions on ultrasound. Core biopsy is typically diagnostic. Once the diagnosis is established by tissue sampling, corticosteroids are the first line of treatment.

  5. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  6. Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation

    PubMed Central

    Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467

  7. Clinics in diagnostic imaging (163). Transient lateral patellar dislocation with trochlear dysplasia

    PubMed Central

    Zhang, Junwei; Lee, Chin Hwee

    2015-01-01

    A 14-year-old girl presented with left knee pain and swelling after an injury. Magnetic resonance (MR) imaging showed a transient lateral patellar dislocation with patellar osteochondral fracture, medial patellofemoral ligament tear and underlying femoral trochlear dysplasia. Open reduction and internal fixation of the osteochondral fracture, plication of the medial patellar retinaculum and lateral release were performed. As lateral patellar dislocation is often clinically unsuspected, an understanding of its characteristic imaging features is important in making the diagnosis. Knowledge of the various predisposing factors for patellar instability may also influence the choice of surgical management. We also discuss signs of acute injury and chronic instability observed on MR imaging, and the imaging features of anatomical variants that predispose an individual to lateral patellar dislocation. Treatment options and postsurgical imaging appearances are also briefly described. PMID:26512145

  8. X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments

    NASA Astrophysics Data System (ADS)

    Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan

    2013-01-01

    At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.

  9. [Usefulness of imaging examinations in preoperative diagnosis of acute appendicitis].

    PubMed

    Nitoń, Tomasz; Górecka-Nitoń, Aleksandra

    2014-01-01

    Acute appendicitis (AA) is the cause one of most operations perform in department of general surgery on emergency ward. Frequency of acute appendicitis range from 6-8% of population. Clinical presentation is frequently unspecified and despite common occurence leads to many difficulties in diagnosis. Diagnosis of acute appendicitis includes clinical examination, laboratory tests, diagnostic scoring systems, computer programs as physisian aids and imaging examinations. About 30-45% patients suspected of acute appendicitis have untypical clinical presentation and here use of US or CT is very helpful. Longstanding use of US resulted in high AA evaluation accuracy with high sensitivity (75-90%) and specificity (84-100%). CT demonstrates above 95% ratio of correct diagnoses, reduces negative appendectomy rates and perforation rates as well as unnecessary observations. CT sensitivity and specificity CT is estimated between 83-100% among different authors. Expedited AA diagnosis, surgery and reduced hospitalization time are possible advantages of imaging tests. Additionally these tests can detect alternative deseases imitating acute appnedicitis. Use of imaging tests especially CT is beneficial in fertile women because of frequent genito-urinary disorders leading to the most diagnostic errors. However thera are contraindications in use of CT, for example it can not be performed in early pregnancy etc...

  10. Assessing mental imagery in clinical psychology: A review of imagery measures and a guiding framework

    PubMed Central

    Pearson, David G.; Deeprose, Catherine; Wallace-Hadrill, Sophie M.A.; Heyes, Stephanie Burnett; Holmes, Emily A.

    2013-01-01

    Mental imagery is an under-explored field in clinical psychology research but presents a topic of potential interest and relevance across many clinical disorders, including social phobia, schizophrenia, depression, and post-traumatic stress disorder. There is currently a lack of a guiding framework from which clinicians may select the domains or associated measures most likely to be of appropriate use in mental imagery research. We adopt an interdisciplinary approach and present a review of studies across experimental psychology and clinical psychology in order to highlight the key domains and measures most likely to be of relevance. This includes a consideration of methods for experimentally assessing the generation, maintenance, inspection and transformation of mental images; as well as subjective measures of characteristics such as image vividness and clarity. We present a guiding framework in which we propose that cognitive, subjective and clinical aspects of imagery should be explored in future research. The guiding framework aims to assist researchers in the selection of measures for assessing those aspects of mental imagery that are of most relevance to clinical psychology. We propose that a greater understanding of the role of mental imagery in clinical disorders will help drive forward advances in both theory and treatment. PMID:23123567

  11. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury.

    PubMed

    Feitosa, Matheus Levi Tajra; Sarmento, Carlos Alberto Palmeira; Bocabello, Renato Zonzini; Beltrão-Braga, Patrícia Cristina Baleeiro; Pignatari, Graciela Conceição; Giglio, Robson Fortes; Miglino, Maria Angelica; Orlandin, Jéssica Rodrigues; Ambrósio, Carlos Eduardo

    2017-07-01

    To investigate the therapeutic potential of human immature dental pulp stem cells in the treatment of chronic spinal cord injury in dogs. Three dogs of different breeds with chronic SCI were presented as animal clinical cases. Human immature dental pulp stem cells were injected at three points into the spinal cord, and the animals were evaluated by limb function and magnetic resonance imaging (MRI) pre and post-operative. There was significant improvement from the limb function evaluated by Olby Scale, though it was not supported by the imaging data provided by MRI and clinical sign and evaluation. Human dental pulp stem cell therapy presents promising clinical results in dogs with chronic spinal cord injuries, if used in association with physical therapy.

  12. Contribution of MRI to clinically equivocal penile fracture cases.

    PubMed

    Türkay, Rüştü; Yenice, Mustafa Gürkan; Aksoy, Sema; Şeker, Gökhan; Şahin, Selçuk; İnci, Ercan; Tuğcu, Volkan; Taşcı, Ali İhsan

    2016-11-01

    Penile fracture is a surgical emergency defined as rupture of the tunica albuginea. Although most cases can be diagnosed with clinical evaluation, it has been stated in the literature that diagnosis in as many as 15% of cases can be challenging. In uncertain cases, imaging can help determine diagnosis. Present study included 20 cases where diagnosis could not be made with certainty and magnetic resonance imaging (MRI) was performed. MR images were examined for tunical rupture and accompanying pathologies. When rupture was observed, localization and length of rupture were noted. All patients underwent degloving surgery. All imaging findings were compared to surgical findings. MRI revealed 19 tunical ruptures. In 1 case, hematoma was seen with no sign of penile fracture. No urethral injuries were found. All MRI findings were confirmed during surgery. Performing MRI in clinically equivocal cases can provide crucial data to make precise diagnosis and improve patient management.

  13. Imaging Patterns of Muscle Atrophy.

    PubMed

    Weber, Marc-André; Wolf, Marcel; Wattjes, Mike P

    2018-07-01

    The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Surfer’s Myelopathy: A Radiologic Study of 23 Cases

    PubMed Central

    Nakamoto, B.K.; Siu, A.M.; Hashiba, K.A.; Sinclair, B.T.; Baker, B.J.; Gerber, M.S.; McMurtray, A.M.; Pearce, A.M.; Pearce, J.W.

    2015-01-01

    BACKGROUND AND PURPOSE Surfing is an uncommon cause of an acute nontraumatic myelopathy. This study describes the MR imaging characteristics and clinical correlates in 23 subjects with surfer’s myelopathy. MATERIALS AND METHODS This was a retrospective review of 23 cases of surfer’s myelopathy from 2003–2012. Spinal cord MR imaging characteristics and neurologic examinations with the use of the American Spinal Injury Association scale were reviewed. Logistic regression was used to determine associations between MR imaging characteristics, American Spinal Injury Association scale, and clinical improvement. RESULTS All subjects (19 male, 4 female; mean age, 26.3 ± 7.4 years) demonstrated “pencil-like,” central T2-hyperintense signal abnormalities in the spinal cord extending from the midthoracic region to the conus with associated cord expansion and varying degrees of conus enlargement on spinal cord MR imaging within 24 hours of symptom onset. T1 signal was normal. Faint gadolinium enhancement was present in a minority. Although there was a strong correlation between initial American Spinal Injury Association score and clinical improvement (P = .0032), MR imaging characteristics were not associated with American Spinal Injury Association score or clinical improvement. CONCLUSIONS Surfer’s myelopathy should be considered in the radiographic differential diagnosis of a longitudinally extensive T2-hyperintense spinal cord lesion. MR imaging characteristics do not appear to be associated with severity on examination or clinical improvement. PMID:23828111

  15. AN OVERVIEW OF ELASTOGRAPHY – AN EMERGING BRANCH OF MEDICAL IMAGING

    PubMed Central

    Sarvazyan, Armen; Hall, Timothy J.; Urban, Matthew W.; Fatemi, Mostafa; Aglyamov, Salavat R.; Garra, Brian S.

    2011-01-01

    From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field. In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals. Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice. PMID:22308105

  16. Wireless remote control clinical image workflow: utilizing a PDA for offsite distribution

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean

    2004-04-01

    Last year we presented in RSNA an application to perform wireless remote control of PACS image distribution utilizing a handheld device such as a Personal Digital Assistant (PDA). This paper describes the clinical experiences including workflow scenarios of implementing the PDA application to route exams from the clinical PACS archive server to various locations for offsite distribution of clinical PACS exams. By utilizing this remote control application, radiologists can manage image workflow distribution with a single wireless handheld device without impacting their clinical workflow on diagnostic PACS workstations. A PDA application was designed and developed to perform DICOM Query and C-Move requests by a physician from a clinical PACS Archive to a CD-burning device for automatic burning of PACS data for the distribution to offsite. In addition, it was also used for convenient routing of historical PACS exams to the local web server, local workstations, and teleradiology systems. The application was evaluated by radiologists as well as other clinical staff who need to distribute PACS exams to offsite referring physician"s offices and offsite radiologists. An application for image workflow management utilizing wireless technology was implemented in a clinical environment and evaluated. A PDA application was successfully utilized to perform DICOM Query and C-Move requests from the clinical PACS archive to various offsite exam distribution devices. Clinical staff can utilize the PDA to manage image workflow and PACS exam distribution conveniently for offsite consultations by referring physicians and radiologists. This solution allows the radiologist to expand their effectiveness in health care delivery both within the radiology department as well as offisite by improving their clinical workflow.

  17. Increasing clinical relevance in oral radiology: Benefits and challenges when implementing digital assessment.

    PubMed

    de Lange, T; Møystad, A; Torgersen, G R

    2018-02-13

    The aims of the study were to investigate benefits and challenges in implementing a digital examination and study the clinical relevance of the digital examination in relation to clinical training and practice. The study was based on semi-structured focus-group interviews from two distinct student populations (2016 and 2017) in a bachelor programme in dental hygiene. In addition, conversational data from a plenary discussion from the whole second student population (2017) were collected and analysed. The data were approached on basis of content analysis. A benefit experienced in the digital examination was the ease in typing and editing answers on the computer. This suggests an increased effectiveness in computer-based compared to analogue examinations. An additional advantage was the experienced relevance of the examination related to the clinic. This finding refers not only to the digital presentations of images, but also to the entire setting in the clinic and dental practice. The limitations reported by the students were non-optimal viewing conditions for presenting radiographic images and difficulties in obtaining an overview of the assignments compared to paper-based examinations due to the linear digital examination format. The last finding on lacking overview revealed an influence on student performances which should be taken seriously in designing digital examinations. In conclusion, the digital layout increases efficiency and clinical relevance of examinations to a certain extent. Obstacles were found in limitations related to image presentation and lack of overview of the examination. The latter challenge raises questions related to developing suitable assessment software. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Breast imaging after dark: patient outcomes following evaluation for breast abscess in the emergency department after hours.

    PubMed

    Bosma, Melissa S; Morden, Kasey L; Klein, Katherine A; Neal, Colleen H; Knoepp, Ursula S; Patterson, Stephanie K

    2016-02-01

    In our study, we sought to report the management, clinical outcomes, and follow-up rates of patients who presented for evaluation of breast abscess in the Emergency Department (ED) after hours. A retrospective search of ultrasound reports at our institution identified all patients from January 1, 2009 to June 30, 2013 who were scanned in the ED after hours to evaluate for breast abscess. Patient demographics, clinical information, imaging findings, follow-up rates, and outcomes were reviewed. One hundred eighty-five patients were included in the study. Forty-four percent (86/185) of the patients were diagnosed with abscess based on ultrasound findings in the ED. Twenty-seven percent (23/86) were recently post-operative, and 12 % (10/86) were postpartum/breastfeeding. Mastitis was the diagnosis in the remaining 54 % (99/185). Only 1/86 cases were associated with breast cancer. Seventy-seven percent (66/86) of patients were treated with an invasive procedure; 39 % (26/66) had surgical evacuation, 30 % (20/66) image-guided drainage, 23 % (15/66) bedside or clinic incision and drainage, and 8 % (5/66) palpation-guided fine needle aspiration (FNA). Seventy-seven percent (143/185) of patients had clinical and/or imaging follow-up. Forty-four percent (63/143) had long-term follow-up (≥ 3 months). Almost 50 % of the patients who presented to the ED for evaluation of abscess were diagnosed with abscess while the remaining patients were diagnosed with mastitis. Appropriate clinical and/or imaging follow-up occurred in 77 %. Long-term follow-up (≥ 3 months) occurred more frequently in patients older than 30 years of age. Appropriate follow-up does not occur in approximately one fourth of cases, suggesting that additional clinician and patient education is warranted.

  19. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems

    PubMed Central

    Maulucci, Giuseppe; Bačić, Goran; Bridal, Lori; Schmidt, Harald H.H.W.; Tavitian, Bertrand; Viel, Thomas; Utsumi, Hideo; Yalçın, A. Süha

    2016-01-01

    Abstract Significance: Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. Recent Advances: Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. Critical Issues: An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. Future Directions: None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939–958. PMID:27139586

  20. Novel fiber optic-based needle redox imager for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Xu, He N.; Tang, Qinggong; Gaitan, Brandon; Liu, Yi; Li, Lin Z.; Chen, Yu

    2018-02-01

    Despite various technological advancements in cancer diagnosis, the mortality rates were not decreased significantly. We aim to develop a novel optical imaging tool to assist cancer diagnosis effectively. Fluorescence spectroscopy/imaging is a fast, rapid, and minimally invasive technique which has been successfully applied to diagnosing cancerous cells/tissues. Recently, the ratiometric imaging of intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), as pioneered by Britton Chance and the co-workers in 1950-70's, has gained much attention to quantify the physiological parameters of living cells/tissues. The redox ratio, i.e., FAD/(FAD+NADH) or FAD/NADH, has been shown to be sensitive to various metabolic changes in in vivo and in vitro cells/tissues. Optical redox imaging has also been investigated for providing potential imaging biomarkers for cancer transformation, aggressiveness, and treatment response. Towards this goal, we have designed and developed a novel fiberoptic-based needle redox imager (NRI) that can fit into an 11G clinical coaxial biopsy needle for real time imaging during clinical cancer surgery. In the present study, the device is calibrated with tissue mimicking phantoms of FAD and NADH along with various technical parameters such as sensitivity, dynamic range, linearity, and spatial resolution of the system. We also conducted preliminary imaging of tissues ex vivo for validation. We plan to test the NRI on clinical breast cancer patients. Once validated this device may provide an effective tool for clinical cancer diagnosis.

  1. Reflective THz and MR imaging of burn wounds: a potential clinical validation of THz contrast mechanisms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Nowroozi, Bryan; Sung, Shijun; Garritano, James; Maccabi, Ashkan; Tewari, Priyamvada; Culjat, Martin; Singh, Rahul; Alger, Jeffry; Grundfest, Warren; Taylor, Zachary

    2012-10-01

    Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.

  2. Combinatorial markers of mild cognitive impairment conversion to Alzheimer's disease--cytokines and MRI measures together predict disease progression.

    PubMed

    Furney, Simon J; Kronenberg, Deborah; Simmons, Andrew; Güntert, Andreas; Dobson, Richard J; Proitsi, Petroula; Wahlund, Lars Olof; Kloszewska, Iwona; Mecocci, Patrizia; Soininen, Hilkka; Tsolaki, Magda; Vellas, Bruno; Spenger, Christian; Lovestone, Simon

    2011-01-01

    Progression of people presenting with Mild Cognitive Impairment (MCI) to dementia is not certain and it is not possible for clinicians to predict which people are most likely to convert. The inability of clinicians to predict progression limits the use of MCI as a syndrome for treatment in prevention trials and, as more people present with this syndrome in memory clinics, and as earlier diagnosis is a major goal of health services, this presents an important clinical problem. Some data suggest that CSF biomarkers and functional imaging using PET might act as markers to facilitate prediction of conversion. However, both techniques are costly and not universally available. The objective of our study was to investigate the potential added benefit of combining biomarkers that are more easily obtained in routine clinical practice to predict conversion from MCI to Alzheimer's disease. To explore this we combined automated regional analysis of structural MRI with analysis of plasma cytokines and chemokines and compared these to measures of APOE genotype and clinical assessment to assess which best predict progression. In a total of 205 people with MCI, 77 of whom subsequently converted to Alzheimer's disease, we find biochemical markers of inflammation to be better predictors of conversion than APOE genotype or clinical measures (Area under the curve (AUC) 0.65, 0.62, 0.59 respectively). In a subset of subjects who also had MRI scans the combination of serum markers of inflammation and MRI automated imaging analysis provided the best predictor of conversion (AUC 0.78). These results show that the combination of imaging and cytokine biomarkers provides an improvement in prediction of MCI to AD conversion compared to either datatype alone, APOE genotype or clinical data and an accuracy of prediction that would have clinical utility.

  3. Comparison of fingerprint and facial biometric verification technologies for user access and patient identification in a clinical environment

    NASA Astrophysics Data System (ADS)

    Guo, Bing; Zhang, Yu; Documet, Jorge; Liu, Brent; Lee, Jasper; Shrestha, Rasu; Wang, Kevin; Huang, H. K.

    2007-03-01

    As clinical imaging and informatics systems continue to integrate the healthcare enterprise, the need to prevent patient mis-identification and unauthorized access to clinical data becomes more apparent especially under the Health Insurance Portability and Accountability Act (HIPAA) mandate. Last year, we presented a system to track and verify patients and staff within a clinical environment. This year, we further address the biometric verification component in order to determine which Biometric system is the optimal solution for given applications in the complex clinical environment. We install two biometric identification systems including fingerprint and facial recognition systems at an outpatient imaging facility, Healthcare Consultation Center II (HCCII). We evaluated each solution and documented the advantages and pitfalls of each biometric technology in this clinical environment.

  4. Towards clinically translatable in vivo nanodiagnostics

    NASA Astrophysics Data System (ADS)

    Park, Seung-Min; Aalipour, Amin; Vermesh, Ophir; Yu, Jung Ho; Gambhir, Sanjiv S.

    2017-05-01

    Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.

  5. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  6. Spatial resolution properties of digital autoradiography systems for pre-clinical alpha particle imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Benard, Francois; Celler, Anna; Ruth, Thomas; Schaffer, Paul

    2017-03-01

    Attaching alpha-emitting radionuclides to cancer-targeting agents increases the anti-tumor effects of targeted cancer therapies. The success of alpha therapy for treating bone metastases has increased interest in using targeted alpha therapy (TAT) to treat a broad spectrum of metastatic cancers. Estimating radiation doses to targeted tumors, including small (<250 μm) clusters of cancer cells, and to non-targeted tissues is critical in the pre-clinical development of TATs. However, accurate quantification of heterogeneous distributions of alpha-emitters in small metastases is not possible with existing pre-clinical in-vivo imaging systems. Ex-vivo digital autoradiography using a scintillator in combination with an image intensifier and a charged coupled device (CCD) has gained interest for pre-clinical ex-vivo alpha particle imaging. We present a simulation-based analysis of the fundamental spatial resolution limits of digital autoradiography systems. Spatial resolution was quantified in terms of the modulation transfer function (MTF) and Wagner's equivalent aperture. We modeled systems operating in either particle-counting (PC) or energy-integrating (EI) mode using a cascaded systems approach that accounts for: 1) the stopping power of alpha particles; 2) the distance alpha particles travel within the scintillator; 3) optical blur, and; 4) binning in detector elements. We applied our analysis to imaging of astatine-211 using an LYSO scintillator with thickness ranging from 10 μm to 20 μm. Our analysis demonstrates that when these systems are operated in particle-counting mode with a centroid-calculation algorithm, the effective apertures of 35 μm can be achieved, which suggests that digital autoradiography may enable quantifying the uptake of alpha emitters in tumors consisting of a few cancer cells. Future work will investigate the image noise and energy-resolution properties of digital autoradiography systems.

  7. Proximal femoral osteosarcoma: Diagnostic challenges translate into delayed and inappropriate management.

    PubMed

    Dahan, M; Anract, P; Babinet, A; Larousserie, F; Biau, D

    2017-11-01

    The proximal femuris is an uncommon site of osteosarcoma. The unusual manifestations at this site may lead to diagnostic and therapeutic mistakes. We therefore performed a retrospective study to estimate the proportions of patients with imaging study findings and/or clinical manifestations typical for osteosarcoma and/or inappropriate treatment decisions. Proximal femoral osteosarcoma often produces atypical clinical and radiological presentations. Consecutive patients who underwent surgery at our center to treat proximal femoral osteosarcoma were included. For each patient, we collected the epidemiological characteristics, clinical symptoms, imaging study findings, treatment, and tumor outcome. Proportions were computed with their confidence intervals. Twelve patients had surgery for proximal femoral osteosarcoma between 1986 and 2015. Imaging findings were typical in 1 (8%) patient; they consisted of ill-defined osteolysis in 11/12 (92%) patients, a periosteal reaction in 1/12 (8%) patient, soft tissue involvement in 7/12 (58%) patients, and immature osteoid matrix in 11/12 (92%) patients. No patient had the typical combination of pain with a soft tissue swelling. Management was inappropriate in 2/12 (17%) patients, who did not undergo all the recommended imaging studies before surgery and were treated in another center before the correct diagnosis was established. At last follow-up, 4 patients had died (after a mean of 7 years) and 8 were alive (after a mean of 4 years). Proximal femoral osteosarcoma is uncommon and rarely produces the typical clinical and imaging study findings. The atypical presentation often results in diagnostic errors and inappropriate treatments. Ill-defined osteolysis on standard radiographs should prompt computed tomography or magnetic resonance imaging of the proximal femur. Treatment in a specialized center is imperative. IV, retrospective study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. An imaging colorimeter for noncontact tissue color mapping.

    PubMed

    Balas, C

    1997-06-01

    There has been a considerable effort in several medical fields, for objective color analysis and characterization of biological tissues. Conventional colorimeters have proved inadequate for this purpose, since they do not provide spatial color information and because the measuring procedure randomly affects the color of the tissue. In this paper an imaging colorimeter is presented, where the nonimaging optical photodetector of colorimeters is replaced with the charge-coupled device (CCD) sensor of a color video camera, enabling the independent capturing of the color information for any spatial point within its field-of-view. Combining imaging and colorimetry methods, the acquired image is calibrated and corrected, under several ambient light conditions, providing noncontact reproducible color measurements and mapping, free of the errors and the limitations present in conventional colorimeters. This system was used for monitoring of blood supply changes of psoriatic plaques, that have undergone Psoralens and ultraviolet-A radiation (PUVA) therapy, where reproducible and reliable measurements were demonstrated. These features highlight the potential of the imaging colorimeters as clinical and research tools for the standardization of clinical diagnosis and for the objective evaluation of treatment effectiveness.

  9. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    PubMed

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  10. Cardiac radiology: centenary review.

    PubMed

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  11. Image analysis of oronasal fistulas in cleft palate patients acquired with an intraoral camera.

    PubMed

    Murphy, Tania C; Willmot, Derrick R

    2005-01-01

    The aim of this study was to examine the clinical technique of using an intraoral camera to monitor the size of residual oronasal fistulas in cleft lip-cleft palate patients, to assess its repeatability on study casts and patients, and to compare its use with other methods. Seventeen plaster study casts of cleft palate patients with oronasal fistulas obtained from a 5-year series of 160 patients were used. For the clinical study, 13 patients presenting in a clinic prospectively over a 1-year period were imaged twice by the camera. The area of each fistula on each study cast was measured in the laboratory first using a previously described graph paper and caliper technique and second with the intraoral camera. Images were imported into a computer and subjected to image enhancement and area measurement. The camera was calibrated by imaging a standard periodontal probe within the fistula area. The measurements were repeated using a double-blind technique on randomly renumbered casts to assess the repeatability of measurement of the methods. The clinical images were randomly and blindly numbered and subjected to image enhancement and processing in the same way as for the study casts. Area measurements were computed. Statistical analysis of repeatability of measurement using a paired sample t test showed no significant difference between measurements, indicating a lack of systematic error. An intraclass correlation coefficient of 0.97 for the graph paper and 0.84 for the camera method showed acceptable random error between the repeated records for each of the two methods. The graph paper method remained slightly more repeatable. The mean fistula area of the study casts between each method was not statistically different when compared with a paired samples t test (p = 0.08). The methods were compared using the limits of agreement technique, which showed clinically acceptable repeatability. The clinical study of repeated measures showed no systematic differences when subjected to a t test (p = 0.109) and little random error with an intraclass correlation coefficient of 0.98. The fistula size seen in the clinical study ranged from 18.54 to 271.55 mm. Direct measurements subsequently taken on 13 patients in the clinic without study models showed a wide variation in the size of residual fistulas presenting in a multidisciplinary clinic. It was concluded that an intraoral camera method could be used in place of the previous graph paper method and could be developed for clinical and scientific purposes. This technique may offer advantages over the graph paper method, as it facilitates easy visualization of oronasal fistulas and objective fistulas size determination and permits easy storage of data in clinical records.

  12. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.

    PubMed

    Hay, Peter D; Smith, Julie; O'Connor, Richard A

    2016-02-01

    The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.

  13. Fluence field modulated CT on a clinical TomoTherapy radiation therapy machine

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Purpose: The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging. Methods: A clinical TomoTherapy machine was programmed to deliver 30% imaging dose outside predefined VOIs. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received "full dose" while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at "full" and 30% dose. The noise (pixel standard deviation) was measured inside the VOI region and compared between the three scans. Results: The VOI-FFMCT technique produced an image noise 1.09, 1.05, 1.05, and 1.21 times higher than the "full dose" scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. Conclusions: Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the first time.

  14. Musculoskeletal Imaging Findings of Hematologic Malignancies.

    PubMed

    Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J

    2017-01-01

    Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.

  15. Aesthetic ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Barthe, Peter G.; Slayton, Michael H.

    2012-10-01

    Ultrasound provides key benefits in aesthetic surgery compared to laser and RF based energy sources. We present results of research, development, pre-clinical and clinical studies, regulatory clearance and commercialization of a revolutionary non-invasive aesthetic ultrasound imaging and therapy system. Clinical applications for this platform include non-invasive face-lifts, brow-lifts, and neck-lifts achieved through fractionated treatment of the superficial musculoaponeurotic system (SMAS) and subcutaneous tissue. Treatment consists of placing a grid of micro-coagulative lesions on the order of 1 mm3 at depths in skin of 1 to 6 mm, source energy levels of 0.1 to 3 J, and spacing on the order of 1.5 mm, from 4 to 10 MHz dual-mode image/treat transducers. System details are described, as well as a regulatory pathway consisting of acoustic and bioheat simulations, source characterization (hydrophone, radiation force, and Schlieren), pre-clinical studies (porcine skin ex vivo, in vivo, and human cadaver), human safety studies (treat and resect) and efficacy trials which culminated in FDA clearance (2009) under a new device classification and world-wide usage. Clinical before and after photographs are presented which validate the clinical approach.

  16. Preanalytical considerations in detection of colorectal cancer in blood serum using Raman molecular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Treado, Patrick J.; Stewart, Shona D.; Smith, Aaron; Kirschner, Heather; Post, Christopher; Overholt, Bergein F.

    2016-03-01

    Colorectal cancer (CRC) is the third most common cancer in men and women in the United States. Raman Molecular Imaging (RMI) is an effective technique to evaluate human tissue, cells and bodily fluids, including blood serum for disease diagnosis. ChemImage Corporation, in collaboration with clinicians, has been engaged in development of an in vitro diagnostic Raman assay focused on CRC detection. The Raman Assay for Colorectal Cancer (RACC) exploits the high specificity of Raman imaging to distinguish diseased from normal dried blood serum droplets without additional reagents. Pilot Study results from testing of hundreds of biobank patient samples have demonstrated that RACC detects CRC with high sensitivity and specificity. However, expanded clinical trials, which are ongoing, are revealing a host of important preanalytical considerations associated with sample collection, sample storage and stability, sample shipping, sample preparation and sample interferents, which impact detection performance. Results from recent clinical studies will be presented.

  17. MITK global tractography

    NASA Astrophysics Data System (ADS)

    Neher, Peter F.; Stieltjes, Bram; Reisert, Marco; Reicht, Ignaz; Meinzer, Hans-Peter; Fritzsche, Klaus H.

    2012-02-01

    Fiber tracking algorithms yield valuable information for neurosurgery as well as automated diagnostic approaches. However, they have not yet arrived in the daily clinical practice. In this paper we present an open source integration of the global tractography algorithm proposed by Reisert et.al.1 into the open source Medical Imaging Interaction Toolkit (MITK) developed and maintained by the Division of Medical and Biological Informatics at the German Cancer Research Center (DKFZ). The integration of this algorithm into a standardized and open development environment like MITK enriches accessibility of tractography algorithms for the science community and is an important step towards bringing neuronal tractography closer to a clinical application. The MITK diffusion imaging application, downloadable from www.mitk.org, combines all the steps necessary for a successful tractography: preprocessing, reconstruction of the images, the actual tracking, live monitoring of intermediate results, postprocessing and visualization of the final tracking results. This paper presents typical tracking results and demonstrates the steps for pre- and post-processing of the images.

  18. Development of a computerized atlas of neonatal surgery

    NASA Astrophysics Data System (ADS)

    Gill, Brijesh S.; Hardin, William D., Jr.

    1995-05-01

    Digital imaging is an evolving technology with significant potential for enhancing medical education and practice. Current teaching methodologies still rely on the time-honored traditions of group lectures, small group discussions, and clinical preceptorships. Educational content and value are variable. Utilization of electronic media is in its infancy but offers significant potential for enhancing if not replacing current teaching methodologies. This report details our experience with the creation of an interactive atlas on neonatal surgical conditions. The photographic atlas has been one of the classic tools of practice, reference, and especially of education in surgery. The major limitations on current atlases all stem from the fact that they are produced in book form. The limiting factors in the inclusion of large numbers of images in these volumes include the desire to limit the physical size of the book and the costs associated with high quality color reproduction of print images. The structure of the atlases usually makes them reference tools, rather than teaching tools. We have digitized a large number of clinical images dealing with the diagnosis and surgical management of all of the most common neonatal surgical conditions. The flexibility of the computer presentation environment allows the images to be organized in a number of different ways. In addition to a standard captioned atlas, the user may choose to review case histories of several of the more common conditions in neonates, complete with presenting conditions, imaging studies, surgery and pathology. Use of the computer offers the ability to choose multiple views of the images, including comparison views and transparent overlays that point out important anatomical and histopathological structures, and the ability to perform user self-tests. This atlas thus takes advantage of several aspects of data management unique to computerized digital imaging, particularly the ability to combine all aspects of medical imaging related to a single case for easy retrieval. This facet unique to digital imaging makes it the obvious choice for new methods of teaching such complex subjects as the clinical management of neonatal surgical conditions. We anticipate that many more subjects in the surgical, pathologic, and radiologic realms will eventually be presented in a similar manner.

  19. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  20. The evolution of radiology from paraclinical to clinical.

    PubMed

    Boey, Hong Khim

    2009-07-01

    The perception of Radiology in the early 60s as paraclinical stems from the poor image the clinicians had for our limited resources in providing only plain fi lm studies, VIPs and the single contrast barium studies which exclude only gross lesions. The evolution to clinical status started as early as the mid 60s. My personal recollection and reflection of the histological events that took place covered here highlights the reasons for the transformation from paraclinical to clinical and these form the main theme for this paper. Radiologists' professionalism plays an infinite part in the evolution to clinical Radiology. Rapid technological advances in imaging help to propel Radiology to the forefront. But credit must go to the individual Radiologist for their personal efforts and contributions. Reflection on past events of Radiology in Singapore leading to the establishment of Clinical Radiology was presented. The future of Radiology is brought up for discussion on the role of Radiologists with reference to subspecialisation necessitated by the ever increasing advances in Medical Imaging and demand for Interventional Radiology.

  1. Imaging of autoimmune encephalitis--Relevance for clinical practice and hippocampal function.

    PubMed

    Heine, J; Prüss, H; Bartsch, T; Ploner, C J; Paul, F; Finke, C

    2015-11-19

    The field of autoimmune encephalitides associated with antibodies targeting cell-surface antigens is rapidly expanding and new antibodies are discovered frequently. Typical clinical presentations include cognitive deficits, psychiatric symptoms, movement disorders and seizures and the majority of patients respond well to immunotherapy. Pathophysiological mechanisms and clinical features are increasingly recognized and indicate hippocampal dysfunction in most of these syndromes. Here, we review the neuroimaging characteristics of autoimmune encephalitides, including N-methyl-d-aspartate (NMDA) receptor, leucine-rich glioma inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2) encephalitis as well as more recently discovered and less frequent forms such as dipeptidyl-peptidase-like protein 6 (DPPX) or glycine receptor encephalitis. We summarize findings of routine magnetic resonance imaging (MRI) investigations as well as (18)F-fluoro-2-deoxy-d-glucose (FDG)-positron emission tomography (PET) and single photon emission tomography (SPECT) imaging and relate these observations to clinical features and disease outcome. We furthermore review results of advanced imaging analyses such as diffusion tensor imaging, volumetric analyses and resting-state functional MRI. Finally, we discuss contributions of these neuroimaging observations to the understanding of the pathophysiology of autoimmune encephalitides. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Autofluorescence of pigmented skin lesions using a pulsed UV laser with synchronized detection: clinical results

    NASA Astrophysics Data System (ADS)

    Cheng, Haynes P. H.; Svenmarker, Pontus; Xie, Haiyan; Tidemand-Lichtenberg, Peter; Jensen, Ole B.; Bendsoe, Niels; Svanberg, Katarina; Petersen, Paul Michael; Pedersen, Christian; Andersson-Engels, Stefan; Andersen, Peter E.

    2010-04-01

    We report preliminary clinical results of autofluorescence imaging of malignant and benign skin lesions, using pulsed 355 nm laser excitation with synchronized detection. The novel synchronized detection system allows high signal-tonoise ratio to be achieved in the resulting autofluorescence signal, which may in turn produce high contrast images that improve diagnosis, even in the presence of ambient room light. The synchronized set-up utilizes a compact, diode pumped, pulsed UV laser at 355 nm which is coupled to a CCD camera and a liquid crystal tunable filter. The excitation and image capture is sampled at 5 kHz and the resulting autofluorescence is captured with the liquid crystal filter cycling through seven wavelengths between 420 nm and 580 nm. The clinical study targets pigmented skin lesions and evaluates the prospects of using autofluorescence as a possible means in differentiating malignant and benign skin tumors. Up to now, sixteen patients have participated in the clinical study. The autofluorescence images, averaged over the exposure time of one second, will be presented along with histopathological results. Initial survey of the images show good contrast and diagnostic results show promising agreement based on the histopathological results.

  3. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  4. Enhanced interfaces for web-based enterprise-wide image distribution.

    PubMed

    Jost, R Gilbert; Blaine, G James; Fritz, Kevin; Blume, Hartwig; Sadhra, Sarbjit

    2002-01-01

    Modern Web browsers support image distribution with two shortcomings: (1) image grayscale presentation at client workstations is often sub-optimal and generally inconsistent with the presentation state on diagnostic workstations and (2) an Electronic Patient Record (EPR) application usually cannot directly access images with an integrated viewer. We have modified our EPR and our Web-based image-distribution system to allow access to images from within the EPR. In addition, at the client workstation, a grayscale transformation is performed that consists of two components: a client-display-specific component based on the characteristic display function of the class of display system, and a modality-specific transformation that is downloaded with every image. The described techniques have been implemented in our institution and currently support enterprise-wide clinical image distribution. The effectiveness of the techniques is reviewed.

  5. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas.

    PubMed

    Ntali, Georgia; Wass, John A

    2018-04-01

    Non-functioning pituitary adenomas (NFPAs) are benign pituitary neoplasms that do not cause a hormonal hypersecretory syndrome. An improved understanding of their epidemiology, clinical presentation and diagnosis is needed. A literature review was performed using Pubmed to identify research reports and clinical case series on NFPAs. They account for 14-54% of pituitary adenomas and have a prevalence of 7-41.3/100,000 population. Their standardized incidence rate is 0.65-2.34/100,000 and the peak occurence is from the fourth to the eighth decade. The clinical spectrum of NFPAs varies from being completely asymptomatic to causing significant hypothalamic/pituitary dysfunction and visual field compromise due to their large size. Most patients present with symptoms of mass effect, such as headaches, visual field defects, ophthalmoplegias, and hypopituitarism but also hyperprolactinaemia due to pituitary stalk deviation and less frequently pituitary apoplexy. Non-functioning pituitary incidentalomas are found on brain imaging performed for an unrelated reason. Diagnostic approach includes magnetic resonance imaging of the sellar region, laboratory evaluations, screening for hormone hypersecretion and for hypopituitarism, and a visual field examination if the lesion abuts the optic nerves or chiasm. This article reviews the epidemiology, clinical behaviour and diagnostic approach of non-functioning pituitary adenomas.

  6. Magnetic Resonance Angiography Using Fresh Blood Imaging in Oral and Maxillofacial Regions

    PubMed Central

    Oda, Masafumi; Tanaka, Tatsurou; Kito, Shinji; Habu, Manabu; Kodama, Masaaki; Kokuryo, Shinya; Miyamoto, Ikuya; Yoshiga, Daigo; Yamauchi, Kensuke; Nogami, Shinnosuke; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Ishikawa, Ayataka; Nishida, Ikuko; Saeki, Katsura; Morikawa, Kazumasa; Matsuo, Kou; Seta, Yuji; Yamashita, Yoshihiro; Maki, Kenshi; Tominaga, Kazuhiro; Morimoto, Yasuhiro

    2012-01-01

    The present paper provides general dentists with an introduction to the clinical applications and significance of magnetic resonance angiography (MRA) in the oral and maxillofacial regions. Specifically, the method and characteristics of MRA are first explained using the relevant MR sequences. Next, clinical applications to the oral and maxillofacial regions, such as identification of hemangiomas and surrounding vessels by MRA, are discussed. Moreover, the clinical significance of MRA for other regions is presented to elucidate future clinical applications of MRA in the oral and maxillofacial regions. PMID:23118751

  7. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, T.

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  8. ACR Appropriateness Criteria Low Back Pain.

    PubMed

    Patel, Nandini D; Broderick, Daniel F; Burns, Judah; Deshmukh, Tejaswini K; Fries, Ian Blair; Harvey, H Benjamin; Holly, Langston; Hunt, Christopher H; Jagadeesan, Bharathi D; Kennedy, Tabassum A; O'Toole, John E; Perlmutter, Joel S; Policeni, Bruno; Rosenow, Joshua M; Schroeder, Jason W; Whitehead, Matthew T; Cornelius, Rebecca S; Corey, Amanda S

    2016-09-01

    Most patients presenting with uncomplicated acute low back pain (LBP) and/or radiculopathy do not require imaging. Imaging is considered in those patients who have had up to 6 weeks of medical management and physical therapy that resulted in little or no improvement in their back pain. It is also considered for those patients presenting with red flags raising suspicion for serious underlying conditions, such as cauda equina syndrome, malignancy, fracture, and infection. Many imaging modalities are available to clinicians and radiologists for evaluating LBP. Application of these modalities depends largely on the working diagnosis, the urgency of the clinical problem, and comorbidities of the patient. When there is concern for fracture of the lumbar spine, multidetector CT is recommended. Those deemed to be interventional candidates, with LBP lasting for > 6 weeks having completed conservative management with persistent radiculopathic symptoms, may seek MRI. Patients with severe or progressive neurologic deficit on presentation and red flags should be evaluated with MRI. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (the RAND/UCLA Appropriateness Method and the Grading of Recommendations Assessment, Development, and Evaluation) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Ultrashort echo time (UTE) MRI for the assessment of caries lesions

    PubMed Central

    Bracher, A-K; Hofmann, C; Bornstedt, A; Hell, E; Janke, F; Ulrici, J; Haller, B; Geibel, M-A; Rasche, V

    2013-01-01

    Objective: Direct in vivo MRI of dental hard tissues by applying ultrashort echo time (UTE) MRI techniques has recently been reported. The objective of the presented study is to clinically evaluate the applicability of UTE MRI for the identification of caries lesions. Methods: 40 randomly selected patients (mean age 41 ± 15 years) were enrolled in this study. 39 patients underwent a conventional clinical assessment, dental bitewing X-ray and a dental MRI investigation comprising a conventional turbo-spin echo (TSE) and a dedicated UTE scan. One patient had to be excluded owing to claustrophobia. In four patients, the clinical treatment of the lesions was documented by intraoral pictures, and the resulting volume of the cavity after excavation was documented by dental imprints and compared with the MRI findings. Results: In total, 161 lesions were identified. 157 (97%) were visible in the UTE images, 27 (17%) in the conventional TSE images and 137 (85%) in the X-ray images. In total, 14 teeth could not be analysed by MR owing to artefacts caused by dental fillings. All lesions appear significantly larger in the UTE images as compared with the X-ray and TSE images. In situ measurements confirm the accuracy of the lesion dimensions as observed in the UTE images. Conclusion: The presented data provide evidence that UTE MR imaging can be applied for the identification of caries lesions. Although the current data suggest an even higher sensitivity of UTE MRI, some limitations must be expected from dental fillings. PMID:23420857

  10. Novel Developments in Instrumentation for PET Imaging

    NASA Astrophysics Data System (ADS)

    Karp, Joel

    2013-04-01

    Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.

  11. [Adrenal incidentaloma: a clinical problem related to imaging].

    PubMed

    de Bruijne, E L E; Burgmans, J P J; Krestin, G P; Pols, H A P; van den Meiracker, A H; de Herder, W W

    2005-08-13

    Two female patients, 68 and 67 years of age, were referred for right abdominal pain and pyelonephritis, respectively. During the diagnostic work-up, an unsuspected adrenal mass was found in both patients. Hormonal evaluation and imaging showed a benign non-hyperactive functioning adenoma in one patient and a pheochromocytoma in the other. Both patients were successfully treated with endoscopic adrenalectomy. Wider application and improvement of abdominal imaging procedures have caused an increase of incidentally detected adrenal masses, posing a common clinical problem. Typically, a diagnosis can be made on the basis of the characteristic radiological image. The exact nature of the defect is often unclear and further evaluation is required to determine functionality and possible malignancy. An algorithm is presented for the management of adrenal incidentalomas.

  12. Integration of Optical Coherence Tomography Scan Patterns to Augment Clinical Data Suite

    NASA Technical Reports Server (NTRS)

    Mason, S.; Patel, N.; Van Baalen, M.; Tarver, W.; Otto, C.; Samuels, B.; Koslovsky, M.; Schaefer, C.; Taiym, W.; Wear, M.; hide

    2018-01-01

    Vision changes identified in long duration spaceflight astronauts has led Space Medicine at NASA to adopt a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented at NASA, including on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to increase the fidelity of the current OCT data set by integrating the traditional circumpapillary OCT image with radial and horizontal block images at the optic nerve head. The retinal nerve fiber layer was segmented by two experienced individuals. Intra-rater (N=4 subjects and 70 images) and inter-rater (N=4 subjects and 221 images) agreement was performed. The results of this analysis and the potential benefits will be presented.

  13. Utility of positron emission tomography in schwannomatosis.

    PubMed

    Lieber, Bryan; Han, ByoungJun; Allen, Jeffrey; Fatterpekar, Girish; Agarwal, Nitin; Kazemi, Noojan; Zagzag, David

    2016-08-01

    Schwannomatosis is characterized by multiple non-intradermal schwannomas with patients often presenting with a painful mass in their extremities. In this syndrome malignant transformation of schwannomas is rare in spite of their large size at presentation. Non-invasive measures of assessing the biological behavior of plexiform neurofibromas in neurofibromatosis type 1 such as positron emission tomography (PET), CT scanning and MRI are well characterized but little information has been published on the use of PET imaging in schwannomatosis. We report a unique clinical presentation portraying the use of PET imaging in schwannomatosis. A 27-year-old woman presented with multiple, rapidly growing, large and painful schwannomas confirmed to be related to a constitutional mutation in the SMARCB1 complex. Whole body PET/MRI revealed numerous PET-avid tumors suggestive of malignant peripheral nerve sheath tumors. Surgery was performed on multiple tumors and none of them had histologic evidence of malignant transformation. Overall, PET imaging may not be a reliable predictor of malignant transformation in schwannomatosis, tempering enthusiasm for surgical interventions for tumors not producing significant clinical signs or symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. GIFT-Cloud: A data sharing and collaboration platform for medical imaging research.

    PubMed

    Doel, Tom; Shakir, Dzhoshkun I; Pratt, Rosalind; Aertsen, Michael; Moggridge, James; Bellon, Erwin; David, Anna L; Deprest, Jan; Vercauteren, Tom; Ourselin, Sébastien

    2017-02-01

    Clinical imaging data are essential for developing research software for computer-aided diagnosis, treatment planning and image-guided surgery, yet existing systems are poorly suited for data sharing between healthcare and academia: research systems rarely provide an integrated approach for data exchange with clinicians; hospital systems are focused towards clinical patient care with limited access for external researchers; and safe haven environments are not well suited to algorithm development. We have established GIFT-Cloud, a data and medical image sharing platform, to meet the needs of GIFT-Surg, an international research collaboration that is developing novel imaging methods for fetal surgery. GIFT-Cloud also has general applicability to other areas of imaging research. GIFT-Cloud builds upon well-established cross-platform technologies. The Server provides secure anonymised data storage, direct web-based data access and a REST API for integrating external software. The Uploader provides automated on-site anonymisation, encryption and data upload. Gateways provide a seamless process for uploading medical data from clinical systems to the research server. GIFT-Cloud has been implemented in a multi-centre study for fetal medicine research. We present a case study of placental segmentation for pre-operative surgical planning, showing how GIFT-Cloud underpins the research and integrates with the clinical workflow. GIFT-Cloud simplifies the transfer of imaging data from clinical to research institutions, facilitating the development and validation of medical research software and the sharing of results back to the clinical partners. GIFT-Cloud supports collaboration between multiple healthcare and research institutions while satisfying the demands of patient confidentiality, data security and data ownership. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Calibration and evaluation of a magnetically tracked ICE probe for guidance of left atrial ablation therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.

    2012-02-01

    The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.

  16. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  17. Summary report of the First International Workshop on PET/MR imaging, March 19-23, 2012, Tübingen, Germany.

    PubMed

    Bailey, Dale L; Barthel, Henryk; Beyer, Thomas; Boellaard, Ronald; Gückel, Brigitte; Hellwig, Dirk; Herzog, Hans; Pichler, Bernd J; Quick, Harald H; Sabri, Osama; Scheffler, Klaus; Schlemmer, Heinz P; Schwenzer, Nina F; Wehrl, Hans F

    2013-08-01

    We report from the First International Workshop on positron emission tomography/magnetic resonance imaging (PET/MRI) that was organized by the University of Tübingen in March 2012. Approximately 100 imaging experts in MRI, PET and PET/computed tomography (CT), among them early adopters of pre-clinical and clinical PET/MRI technology, gathered from March 19 to 24, 2012 in Tübingen, Germany. The objective of the workshop was to provide a forum for sharing first-hand methodological and clinical know-how and to assess the potential of combined PET/MRI in various applications from pre-clinical research to scientific as well as clinical applications in humans. The workshop was comprised of pro-active sessions including tutorials, specific discussion panels and grand rounds. Pre-selected experts moderated the sessions, and feedback from the subsequent discussions is presented here to a greater readership. Naturally, the summaries provided herein are subjective descriptions of the hopes and challenges of PET/MR imaging as seen by the workshop attendees at a very early point in time of adopting PET/MRI technology and, as such, represent only a snapshot of current approaches.

  18. Onion cell imaging by using Talbot/self-imaging effect

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra

    2017-08-01

    This paper presents the amplitude and phase imaging of onion epidermis cell using the self-imaging capabilities of a grating (Talbot effect) in visible light region. In proposed method, the Fresnel diffraction pattern from the first grating and object is recorded at self-image plane. Fast Fourier Transform (FFT) is used for extracting the 3D amplitude and phase image of onion epidermis cell. The stability of the proposed system, from environmental perturbation as well as its compactness and portability give the proposed system a high potential for several clinical applications.

  19. The clinical spectrum of phaeochromocytoma: analysis of 115 patients.

    PubMed

    Safwat, Ahmed S; Bissada, Nabil K; Seyam, Raouf M; Al Sobhi, Saif; Hanash, Kamal A

    2008-06-01

    To analyse the presentation, manifestations and outcome in consecutive patients with phaeochromocytoma, as this disease has a wide range of pathological and clinical expressions. The records of 115 patients with phaeochromocytoma were analysed retrospectively, recording the patients' age, sex, presenting symptoms and clinical signs, chemical, radiological and pathological findings and associated conditions. Of the 115 patients, 90 had adrenal tumours, 18 extra-adrenal and seven combined adrenal and extra-adrenal tumours. Ten patients had malignant and 105 had benign phaeochromocytoma. Eighty-six patients had sporadic and 29 had familial phaeochromocytoma, comprising eight with von Hippel-Lindau (VHL) disease, 17 with multiple endocrine neoplasia type II (MEN II) and four with von Recklinghausen disease. Two patients with sporadic phaeochromocytoma had Grave's disease. Ten patients (8.7%) had malignant phaeochromocytoma, of whom two had MEN II. A pregnant woman required prolonged intensive-care management before adrenalectomy and lost a fetus. Phaeochromocytoma is an interesting clinical entity with a wide spectrum of pathological and clinical manifestations. The diagnosis of phaeochromocytoma is confirmed by chemical methods, and located using imaging techniques, with computed tomography, magnetic resonance imaging and (131)I-meta-iodobenzyl guanidine radioisotope scanning being the most common. This series reflects the pathological and clinical spectrum of phaeochromocytoma. The presence of other manifestations of familial phaeochromocytoma influenced the presentation and prognosis of these patients.

  20. Surveillance imaging for lymphoma: pros and cons.

    PubMed

    Lynch, Ryan C; Zelenetz, Andrew D; Armitage, James O; Carson, Kenneth R

    2014-01-01

    There is no international consensus on the optimal frequency or duration of computed tomography or positron emission tomography scanning for surveillance in patients who achieve complete remission after initial therapy for lymphoma. Although some clinical practice guidelines suggest periodic imaging is reasonable, others suggest little or no benefit to this practice. From a theoretical perspective, the frequency and duration of surveillance imaging is largely dependent upon the lymphoma subtype. Aggressive lymphomas with a fast growth rate will require surveillance more frequently and for a shorter duration compared to the indolent lymphomas. Historically, relapse has been detected in a majority of patients based upon clinically evident signs and symptoms. Currently, no study has demonstrated an overall survival difference for patients with relapse detected by imaging as opposed to clinical evaluation, although one study did demonstrate a lower second-line International Prognostic Index in patients with relapse detected by surveillance imaging. Enthusiasm for this finding has been tempered by recent studies highlighting the potential long-term risk of secondary malignancies because of ionizing radiation exposure from diagnostic imaging. These factors along with the significant costs associated with diagnostic imaging have contributed to an ongoing debate regarding the relative costs, risks, and benefits of radiographic surveillance. Herein we present perspectives for and against routine surveillance imaging in an effort to facilitate a better understanding of the issues relevant to what is ultimately a clinical decision made by an oncologist and his or her patient.

  1. SEGMENTING CT PROSTATE IMAGES USING POPULATION AND PATIENT-SPECIFIC STATISTICS FOR RADIOTHERAPY.

    PubMed

    Feng, Qianjin; Foskey, Mark; Tang, Songyuan; Chen, Wufan; Shen, Dinggang

    2009-08-07

    This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application.

  2. SEGMENTING CT PROSTATE IMAGES USING POPULATION AND PATIENT-SPECIFIC STATISTICS FOR RADIOTHERAPY

    PubMed Central

    Feng, Qianjin; Foskey, Mark; Tang, Songyuan; Chen, Wufan; Shen, Dinggang

    2010-01-01

    This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application. PMID:21197416

  3. Imaging diagnosis of portal hypertension.

    PubMed

    Conangla-Planes, M; Serres, X; Persiva, O; Augustín, S

    2018-02-19

    Portal hypertension is a clinical entity defined by a hydrostatic pressure greater than 5mm Hg in the portal territory, being clinically significant when it is greater than or equal to 10mm Hg. Starting from this threshold, complications can develop, such as the bleeding of esophageal varices, the appearance of ascites, or hepatic encephalopathy. Imaging techniques play an important role as a noninvasive method for determining whether portal hypertension is present. This article analyzes various imaging findings that can suggest the presence of portal hypertension and can help to define its etiology, severity, and possible complications. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  4. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  5. Clinics in diagnostic imaging (168).

    PubMed

    Lai, Yusheng Keefe; Mahmood, Rameysh Danovani

    2016-05-01

    A 16-year-old Chinese male patient presented with constipation lasting five days, colicky abdominal pain, lethargy, weakness and body aches. He was able to pass flatus. Abdominal radiography showed a distended stomach causing inferior displacement of the transverse colon. Computed tomography revealed a dilated oesophagus, stomach and duodenum up to its third portion, with a short aortomesenteric distance and narrow angle. There was also consolidation in the lungs bilaterally. Based on the constellation of clinical and imaging findings, a diagnosis of superior mesenteric artery syndrome complicated by aspiration pneumonia was made. The patient was subsequently started on intravenous hydration, nasogastric tube aspiration and antibiotics. Following stabilisation of his acute condition, a nasojejunal feeding tube was inserted and a feeding plan was implemented to promote weight gain. The clinical presentation, differentials, diagnosis and treatment of superior mesenteric artery syndrome are discussed. Copyright: © Singapore Medical Association.

  6. Clinical image and pathology of hypertrophic cranial pachymeningitis.

    PubMed

    Shi, C H; Niu, S T; Zhang, Z Q

    2014-12-12

    The objective of this study was to examine the clinical findings, magnetic resonance imaging (MRI), pathological features, and treatment experiments of patients with hypertrophic cranial pachymeningitis (HCP). The clinical findings, MRI, and pathological appearances of 9 patients with HCP were analyzed retrospectively. The thickened dura mater was markedly enhanced after contrast media injection. The lesion near the brain hemisphere presented long regions of T1- and T2-weighted abnormal signal intensities. The abnormal signal intensities of the brain tissue were decreased significantly. Pathological examination demonstrated chronic inflammation changes, with cerebral dura mater fibrous tissue showing obvious hyperplasia, and the periphery of the blood vessel showing a great quantity of infiltrating phlegmonosis cells. HCP mainly presents headache and paralysis of multiple cranial nerves. The distinctive signs on brain MRIs involve strengthening the signal in the cerebral dura.

  7. Consortium for Imaging and Biomarkers (CIB) | Division of Cancer Prevention

    Cancer.gov

    Overdiagnosis and false positives present significant clinical problems in the prevention, detection and treatment of | 8 lead investigators combining imaging methods for the visualization of lesions with biomarkers to improve the accuracy of screening, early cancer detection, and the diagnosis of early stage cancers.

  8. Initial clinical testing of a multi-spectral imaging system built on a smartphone platform

    NASA Astrophysics Data System (ADS)

    Mink, Jonah W.; Wexler, Shraga; Bolton, Frank J.; Hummel, Charles; Kahn, Bruce S.; Levitz, David

    2016-03-01

    Multi-spectral imaging systems are often expensive and bulky. An innovative multi-spectral imaging system was fitted onto a mobile colposcope, an imaging system built around a smartphone in order to image the uterine cervix from outside the body. The multi-spectral mobile colposcope (MSMC) acquires images at different wavelengths. This paper presents the clinical testing of MSMC imaging (technical validation of the MSMC system is described elsewhere 1 ). Patients who were referred to colposcopy following abnormal screening test (Pap or HPV DNA test) according to the standard of care were enrolled. Multi-spectral image sets of the cervix were acquired, consisting of images from the various wavelengths. Image acquisition took 1-2 sec. Areas suspected for dysplasia under white light imaging were biopsied, according to the standard of care. Biopsied sites were recorded on a clockface map of the cervix. Following the procedure, MSMC data was processed from the sites of biopsied sites. To date, the initial histopathological results are still outstanding. Qualitatively, structures in the cervical images were sharper at lower wavelengths than higher wavelengths. Patients tolerated imaging well. The result suggests MSMC holds promise for cervical imaging.

  9. A proposal for a CT driven classification of left colon acute diverticulitis.

    PubMed

    Sartelli, Massimo; Moore, Frederick A; Ansaloni, Luca; Di Saverio, Salomone; Coccolini, Federico; Griffiths, Ewen A; Coimbra, Raul; Agresta, Ferdinando; Sakakushev, Boris; Ordoñez, Carlos A; Abu-Zidan, Fikri M; Karamarkovic, Aleksandar; Augustin, Goran; Costa Navarro, David; Ulrych, Jan; Demetrashvili, Zaza; Melo, Renato B; Marwah, Sanjay; Zachariah, Sanoop K; Wani, Imtiaz; Shelat, Vishal G; Kim, Jae Il; McFarlane, Michael; Pintar, Tadaja; Rems, Miran; Bala, Miklosh; Ben-Ishay, Offir; Gomes, Carlos Augusto; Faro, Mario Paulo; Pereira, Gerson Alves; Catani, Marco; Baiocchi, Gianluca; Bini, Roberto; Anania, Gabriele; Negoi, Ionut; Kecbaja, Zurabs; Omari, Abdelkarim H; Cui, Yunfeng; Kenig, Jakub; Sato, Norio; Vereczkei, Andras; Skrovina, Matej; Das, Koray; Bellanova, Giovanni; Di Carlo, Isidoro; Segovia Lohse, Helmut A; Kong, Victor; Kok, Kenneth Y; Massalou, Damien; Smirnov, Dmitry; Gachabayov, Mahir; Gkiokas, Georgios; Marinis, Athanasios; Spyropoulos, Charalampos; Nikolopoulos, Ioannis; Bouliaris, Konstantinos; Tepp, Jaan; Lohsiriwat, Varut; Çolak, Elif; Isik, Arda; Rios-Cruz, Daniel; Soto, Rodolfo; Abbas, Ashraf; Tranà, Cristian; Caproli, Emanuele; Soldatenkova, Darija; Corcione, Francesco; Piazza, Diego; Catena, Fausto

    2015-01-01

    Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice.

  10. The Translational Role of Diffusion Tensor Image Analysis in Animal Models of Developmental Pathologies

    PubMed Central

    Oguz, Ipek; McMurray, Matthew S.; Styner, Martin; Johns, Josephine M.

    2013-01-01

    Diffusion Tensor Magnetic Resonance Imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers. PMID:22627095

  11. Clinical and Magnetic Resonance Imaging Findings of Neurotoxocariasis.

    PubMed

    Sánchez, Sofia S; García, Hector H; Nicoletti, Alessandra

    2018-01-01

    Human toxocariasis is one of the most prevalent helminthiases worldwide. Toxocara canis larvae can cross the blood-brain barrier leading to the neurotoxocariasis. The clinical presentation consists of a wide spectrum of neurological manifestations, but asymptomatic infection is probably common. Neurotoxocariasis is not a frequent diagnosis probably due to the non-specific nature of its symptoms as well as the lack of confirmatory diagnostic tests. Diagnosis of neurotoxocariasis is based on the presence of a high titer of anti- Toxocara antibody in the cerebrospinal fluid or in the serum, presence of eosinophilia in the serum or cerebrospinal fluid, and clinical and radiological improvement after anthelmintic therapy; however, universally accepted diagnostic criteria are lacking. Magnetic resonance imaging (MRI) findings include single or multiple, subcortical, cortical or white matter hyperintense lesions, best visualized on FLAIR and T2-weighted imaging, and usually isointense or hypointense on T1. These imaging findings are suggestive but not specific to neurotoxocariasis. Definitive diagnosis is made by histological confirmation, but it is rarely followed. This review provides an overview of the clinical manifestations, management options, and MRI findings of neurotoxocariasis.

  12. Clinical and Magnetic Resonance Imaging Findings of Neurotoxocariasis

    PubMed Central

    Sánchez, Sofia S.; García, Hector H.; Nicoletti, Alessandra

    2018-01-01

    Human toxocariasis is one of the most prevalent helminthiases worldwide. Toxocara canis larvae can cross the blood–brain barrier leading to the neurotoxocariasis. The clinical presentation consists of a wide spectrum of neurological manifestations, but asymptomatic infection is probably common. Neurotoxocariasis is not a frequent diagnosis probably due to the non-specific nature of its symptoms as well as the lack of confirmatory diagnostic tests. Diagnosis of neurotoxocariasis is based on the presence of a high titer of anti-Toxocara antibody in the cerebrospinal fluid or in the serum, presence of eosinophilia in the serum or cerebrospinal fluid, and clinical and radiological improvement after anthelmintic therapy; however, universally accepted diagnostic criteria are lacking. Magnetic resonance imaging (MRI) findings include single or multiple, subcortical, cortical or white matter hyperintense lesions, best visualized on FLAIR and T2-weighted imaging, and usually isointense or hypointense on T1. These imaging findings are suggestive but not specific to neurotoxocariasis. Definitive diagnosis is made by histological confirmation, but it is rarely followed. This review provides an overview of the clinical manifestations, management options, and MRI findings of neurotoxocariasis. PMID:29472889

  13. SPECT/CT in imaging foot and ankle pathology-the demise of other coregistration techniques.

    PubMed

    Mohan, Hosahalli K; Gnanasegaran, Gopinath; Vijayanathan, Sanjay; Fogelman, Ignac

    2010-01-01

    Disorders of the ankle and foot are common and given the complex anatomy and function of the foot, they present a significant clinical challenge. Imaging plays a crucial role in the management of these patients, with multiple imaging options available to the clinician. The American College of radiology has set the appropriateness criteria for the use of the available investigating modalities in the management of foot and ankle pathologies. These are broadly classified into anatomical and functional imaging modalities. Recently, single-photon emission computed tomography and/or computed tomography scanners, which can elegantly combine functional and anatomical images have been introduced, promising an exciting and important development. This review describes our clinical experience with single-photon emission computed tomography and/or computed tomography and discusses potential applications of these techniques.

  14. Spatially weighted mutual information image registration for image guided radiation therapy.

    PubMed

    Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W

    2010-09-01

    To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with a Gaussian weight function (SWMI-GW) was tested between two different imaging modalities: CT and MRI image sets. SWMI-GW converges 10% faster than registration using mutual information with an ROI. SWMI-GW as well as SWMI with SOI-based weight function (SWMI-SOI) shows better compensation of the target organ's deformation and neighboring critical organs' deformation. SWMI-GW was also used to successfully fuse MRI and CT images. Rigid-body image registration using our SWMI-GW and SWMI-SOI as cost functions can achieve better registration results in (a) designated image region(s) as well as faster convergence. With the theoretical foundation established, we believe SWMI could be extended to larger clinical testing.

  15. A case of coffee-ground emesis in an elderly patient

    PubMed Central

    De Palma, Giovanni D; Persico, Marcello; Forestieri, Pietro

    2014-01-01

    Key Clinical Message Black esophagus is an exceeding rare disorder with a multifactorial etiology. Clinical presentation is generally related to upper gastrointestinal bleeding. Diagnosis is based on endoscopic images. Overall mortality is largely related to the underlying medical condition. PMID:25356232

  16. Adult Brain Tumors and Pseudotumors: Interesting (Bizarre) Cases.

    PubMed

    Causil, Lazaro D; Ames, Romy; Puac, Paulo; Castillo, Mauricio

    2016-11-01

    Some brain tumors results are interesting due to their rarity at presentation and overwhelming imaging characteristics, posing a diagnostic challenge in the eyes of any experienced neuroradiologist. This article focuses on the most important features regarding epidemiology, location, clinical presentation, histopathology, and imaging findings of cases considered "bizarre." A review of the most recent literature dealing with these unusual tumors and pseudotumors is presented, highlighting key points related to the diagnosis, treatments, outcomes, and differential diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework

    PubMed Central

    Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent

    2017-01-01

    In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts. PMID:28360851

  18. Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework.

    PubMed

    Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent

    2017-01-01

    In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.

  19. Partial anomalous pulmonary venous return in Turner syndrome.

    PubMed

    van den Hoven, Allard T; Chelu, Raluca G; Duijnhouwer, Anthonie L; Demulier, Laurent; Devos, Daniel; Nieman, Koen; Witsenburg, Maarten; van den Bosch, Annemien E; Loeys, Bart L; van Hagen, Iris M; Roos-Hesselink, Jolien W

    2017-10-01

    The aim of this study is to describe the prevalence, anatomy, associations and clinical impact of partial anomalous pulmonary venous return in patients with Turner syndrome. All Turner patients who presented at our Turner clinic, between January 2007 and October 2015 were included in this study and underwent ECG, echocardiography and advanced imaging such as cardiac magnetic resonance or computed tomography as part of their regular clinical workup. All imaging was re-evaluated and detailed anatomy was described. Partial anomalous pulmonary venous return was diagnosed in 24 (25%) out of 96 Turner patients included and 14 (58%) of these 24 partial anomalous pulmonary venous return had not been reported previously. Right atrial or ventricular dilatation was present in 11 (46%) of 24 partial anomalous pulmonary venous return patients. When studied with advanced imaging modalities and looked for with specific attention, PAPVR is found in 1 out of 4 Turner patients. Half of these patients had right atrial and/or ventricular dilatation. Evaluation of pulmonary venous return should be included in the standard protocol in all Turner patients. Copyright © 2017. Published by Elsevier B.V.

  20. Neural correlate of Internet use in patients undergoing psychological treatment for Internet addiction.

    PubMed

    Lai, Carlo; Altavilla, Daniela; Mazza, Marianna; Scappaticci, Silvia; Tambelli, Renata; Aceto, Paola; Luciani, Massimiliano; Corvino, Stefano; Martinelli, David; Alimonti, Flaminia; Tonioni, Federico

    2017-06-01

    The new version of Diagnostic and Statistical Manual of Mental Disorders (DSM-5th) proposed the Internet Gaming Disorder for the diagnosis of Internet addiction (IA) considering the neurobiological evidence of the craving. The aim was to test the neural correlate in response to the Internet cue in patients with IA. Sixteen males with IA diagnosis (clinical group) and 14 healthy male (control group) were recruited for an experimental visual task composed of Internet images and emotional images. During the visual presentation of Internet cue, electroencefalographic data were recorded using Net Station 4.5.1 with a 256-channels HydroCel Geodesic Sensor Net. Event-related potential (ERP) components and low-resolution electromagnetic tomography (sLoreta) were analysed. sLoreta analyses showed that patients from the clinical group presented a higher primary somatosensorial cortex and lower paralimbic, temporal and orbito-frontal activation in response to both Internet and emotional images compared to those of the control group. These results suggest that clinically recognized pathological use of Internet could be linked to dissociative symptoms.

  1. Interconnecting smartphone, image analysis server, and case report forms in clinical trials for automatic skin lesion tracking in clinical trials

    NASA Astrophysics Data System (ADS)

    Haak, Daniel; Doma, Aliaa; Gombert, Alexander; Deserno, Thomas M.

    2016-03-01

    Today, subject's medical data in controlled clinical trials is captured digitally in electronic case report forms (eCRFs). However, eCRFs only insufficiently support integration of subject's image data, although medical imaging is looming large in studies today. For bed-side image integration, we present a mobile application (App) that utilizes the smartphone-integrated camera. To ensure high image quality with this inexpensive consumer hardware, color reference cards are placed in the camera's field of view next to the lesion. The cards are used for automatic calibration of geometry, color, and contrast. In addition, a personalized code is read from the cards that allows subject identification. For data integration, the App is connected to an communication and image analysis server that also holds the code-study-subject relation. In a second system interconnection, web services are used to connect the smartphone with OpenClinica, an open-source, Food and Drug Administration (FDA)-approved electronic data capture (EDC) system in clinical trials. Once the photographs have been securely stored on the server, they are released automatically from the mobile device. The workflow of the system is demonstrated by an ongoing clinical trial, in which photographic documentation is frequently performed to measure the effect of wound incision management systems. All 205 images, which have been collected in the study so far, have been correctly identified and successfully integrated into the corresponding subject's eCRF. Using this system, manual steps for the study personnel are reduced, and, therefore, errors, latency and costs decreased. Our approach also increases data security and privacy.

  2. Symptomatic Thoracic Spinal Cord Herniation: Case Series and Technical Report

    PubMed Central

    Hawasli, Ammar H.; Ray, Wilson Z.; Wright, Neill M.

    2014-01-01

    Background and Importance Idiopathic spinal cord herniation (ISCH) is an uncommon condition located predominantly in the thoracic spine and often associated with a remote history of a major traumatic injury. ISCH has an incompletely described presentation and unknown etiology. There is no consensus on treatment algorithm and surgical technique, and there is little data on clinical outcomes. Clinical Presentation In this case series and technical report, we describe the atypical myelopathy presentation, remote history of traumatic injury, radiographic progression, treatment, and outcomes of 5 patients treated at Washington University for symptomatic ISCH. A video showing surgical repair is presented. In contrast to classic compressive myelopathy symptomology, ISCH patients presented with an atypical myelopathy, characterized by asymmetric motor and sensory deficits and early-onset urinary incontinence. Clinical deterioration correlated with progressive spinal cord displacement and herniation observed on yearly spinal imaging in a patient imaged serially due to multiple sclerosis. Finally compared to compressive myelopathy in the thoracic spine, surgical treatment of ISH led to rapid improvement despite long duration of symptoms. Conclusion Symptomatic ISCH presents with atypical myelopathy and slow temporal progression and can be successfully managed with surgical repair. PMID:24871148

  3. Performance assessment of multi-frequency processing of ICU chest images for enhanced visualization of tubes and catheters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Couwenhoven, Mary E.; Foos, David H.; Doran, James; Yankelevitz, David F.; Henschke, Claudia I.

    2008-03-01

    An image-processing method has been developed to improve the visibility of tube and catheter features in portable chest x-ray (CXR) images captured in the intensive care unit (ICU). The image-processing method is based on a multi-frequency approach, wherein the input image is decomposed into different spatial frequency bands, and those bands that contain the tube and catheter signals are individually enhanced by nonlinear boosting functions. Using a random sampling strategy, 50 cases were retrospectively selected for the study from a large database of portable CXR images that had been collected from multiple institutions over a two-year period. All images used in the study were captured using photo-stimulable, storage phosphor computed radiography (CR) systems. Each image was processed two ways. The images were processed with default image processing parameters such as those used in clinical settings (control). The 50 images were then separately processed using the new tube and catheter enhancement algorithm (test). Three board-certified radiologists participated in a reader study to assess differences in both detection-confidence performance and diagnostic efficiency between the control and test images. Images were evaluated on a diagnostic-quality, 3-megapixel monochrome monitor. Two scenarios were studied: the baseline scenario, representative of today's workflow (a single-control image presented with the window/level adjustments enabled) vs. the test scenario (a control/test image pair presented with a toggle enabled and the window/level settings disabled). The radiologists were asked to read the images in each scenario as they normally would for clinical diagnosis. Trend analysis indicates that the test scenario offers improved reading efficiency while providing as good or better detection capability compared to the baseline scenario.

  4. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.

    PubMed

    Xu, Xuanang; Zhou, Fugen; Liu, Bo

    2018-03-19

    Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.

  5. International year of Chemistry 2011. A guide to the history of clinical chemistry.

    PubMed

    Kricka, Larry J; Savory, John

    2011-08-01

    This review was written as part of the celebration of the International Year of Chemistry 2011. In this review we provide a chronicle of the history of clinical chemistry, with a focus on North America. We outline major methodological advances and trace the development of professional societies and journals dedicated to clinical chemistry. This review also serves as a guide to reference materials for those interested in the history of clinical chemistry. The various resources available, in sound recordings, videos, moving images, image and document archives, museums, and websites dedicated to diagnostic company timelines, are surveyed. These resources provide a map of how the medical subspecialty of clinical chemistry arrived at its present state. This information will undoubtedly help visionaries to determine in which direction clinical chemistry will move in the future.

  6. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.

    PubMed

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-04-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.

  7. Multiattribute selection of acute stroke imaging software platform for Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) clinical trial.

    PubMed

    Churilov, Leonid; Liu, Daniel; Ma, Henry; Christensen, Soren; Nagakane, Yoshinari; Campbell, Bruce; Parsons, Mark W; Levi, Christopher R; Davis, Stephen M; Donnan, Geoffrey A

    2013-04-01

    The appropriateness of a software platform for rapid MRI assessment of the amount of salvageable brain tissue after stroke is critical for both the validity of the Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) Clinical Trial of stroke thrombolysis beyond 4.5 hours and for stroke patient care outcomes. The objective of this research is to develop and implement a methodology for selecting the acute stroke imaging software platform most appropriate for the setting of a multi-centre clinical trial. A multi-disciplinary decision making panel formulated the set of preferentially independent evaluation attributes. Alternative Multi-Attribute Value Measurement methods were used to identify the best imaging software platform followed by sensitivity analysis to ensure the validity and robustness of the proposed solution. Four alternative imaging software platforms were identified. RApid processing of PerfusIon and Diffusion (RAPID) software was selected as the most appropriate for the needs of the EXTEND trial. A theoretically grounded generic multi-attribute selection methodology for imaging software was developed and implemented. The developed methodology assured both a high quality decision outcome and a rational and transparent decision process. This development contributes to stroke literature in the area of comprehensive evaluation of MRI clinical software. At the time of evaluation, RAPID software presented the most appropriate imaging software platform for use in the EXTEND clinical trial. The proposed multi-attribute imaging software evaluation methodology is based on sound theoretical foundations of multiple criteria decision analysis and can be successfully used for choosing the most appropriate imaging software while ensuring both robust decision process and outcomes. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  8. Oedema of the abductor digiti quinti muscle due to subacute denervation: report of two cases.

    PubMed

    Chimutengwende-Gordon, Mukai; O'Donnell, Paul; Cullen, Nicholas; Singh, Dishan

    2014-03-01

    The clinical presentation of abductor digiti quinti (ADQ) denervation is often non-specific. The diagnosis is generally clinical and may be easily missed. This case report of two patients describes the magnetic resonance imaging (MRI) finding of unilateral oedema and fatty infiltration isolated to the ADQ. A 36-year old woman who presented with laterally located left foot pain was initially diagnosed as having plantar fasciitis. An MRI scan arranged due to the unusual site of the pain showed increased signal intensity within the ADQ muscle on T1 and T2 images indicating fatty infiltration. Short tau inversion recovery (STIR) images showed hyperintensity of the ADQ indicating oedema. The MRI scan of a 45-year old man who presented with a three month history of left heel pain revealed similar findings. These MRI appearances indicate subacute denervation, which, when involving solely the ADQ muscle suggests entrapment of the first branch of the lateral plantar nerve. Consideration of this imaging finding when examining MRI scans of patients with non-specific heel pain has the potential to facilitate diagnosis. Copyright © 2013 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  9. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  10. In vivo imaging of endogenous neural stem cells in the adult brain

    PubMed Central

    Rueger, Maria Adele; Schroeter, Michael

    2015-01-01

    The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting. PMID:25621107

  11. New spectral imaging techniques for blood oximetry in the retina

    NASA Astrophysics Data System (ADS)

    Alabboud, Ied; Muyo, Gonzalo; Gorman, Alistair; Mordant, David; McNaught, Andrew; Petres, Clement; Petillot, Yvan R.; Harvey, Andrew R.

    2007-07-01

    Hyperspectral imaging of the retina presents a unique opportunity for direct and quantitative mapping of retinal biochemistry - particularly of the vasculature where blood oximetry is enabled by the strong variation of absorption spectra with oxygenation. This is particularly pertinent both to research and to clinical investigation and diagnosis of retinal diseases such as diabetes, glaucoma and age-related macular degeneration. The optimal exploitation of hyperspectral imaging however, presents a set of challenging problems, including; the poorly characterised and controlled optical environment of structures within the retina to be imaged; the erratic motion of the eye ball; and the compounding effects of the optical sensitivity of the retina and the low numerical aperture of the eye. We have developed two spectral imaging techniques to address these issues. We describe first a system in which a liquid crystal tuneable filter is integrated into the illumination system of a conventional fundus camera to enable time-sequential, random access recording of narrow-band spectral images. Image processing techniques are described to eradicate the artefacts that may be introduced by time-sequential imaging. In addition we describe a unique snapshot spectral imaging technique dubbed IRIS that employs polarising interferometry and Wollaston prism beam splitters to simultaneously replicate and spectrally filter images of the retina into multiple spectral bands onto a single detector array. Results of early clinical trials acquired with these two techniques together with a physical model which enables oximetry map are reported.

  12. Lipid detection by intravascular photoacoustic imaging with flexible catheter at 20 fps (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Min; Daeichin, Verya; Springeling, Geert; van der Steen, Antonius F. W.; van Soest, Gijs

    2016-02-01

    Intravascular Photoacoustic (IVPA) imaging is a promising new technology to assess lipid content of coronary atherosclerotic plaque, an important determinant of the risk associated with the plaque triggering a heart attack. Clinical translation of IVPA imaging requires real-time image acquisition, which has been a technological challenge. In this work, we demonstrate a high-speed, dual-wavelength IVPA imaging system at 1.7 µm wavelength, operating with a flexible catheter of 1.2 mm outer diameter (including outer sheath). The catheter was custom designed and fabricated, and used a 40 MHz transducer for intravascular ultrasound (IVUS) and IVPA imaging. The optical excitation is provided by a dual OPO system, pumped by CW diode-pumped Q-switched Nd:YAG lasers, with a repetition rate of 5 kHz. Each OPO can be tuned to a custom wavelength between 1690 and 1750 nm; two wavelengths only are needed to discriminate between plaque lipids and adipose tissue. The pulse energy is about 80 µJ. We tested the imaging performance of the presented system in a polyvinyl-alcohol (PVA) vessel mimicking phantom and human coronary arteries ex vivo. IVPA identified lipid deposits inside atherosclerotic plaque, while IVUS showed tissue structure. We demonstrated IVPA imaging at a speed of 20 frames per second, with 250 A-scans per frame. This is significantly faster than previous IVPA imaging systems, and will enable the translation of IVPA imaging into clinical practice.

  13. Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm.

    PubMed

    Josse, G; George, J; Black, D

    2011-08-01

    Optical coherence tomography (OCT) is an imaging system that enables in vivo epidermal thickness (ET) measurement. In order to use OCT in large-scale clinical studies, automatic algorithm detection of the dermo-epidermal junction (DEJ) is needed. This may be difficult due to image noise from optical speckle, which requires specific image treatment procedures to reduce this. In the present work, a description of the position of the DEJ is given, and an algorithm for boundary detection is presented. Twenty-nine images were taken from the skin of normal healthy subjects, from five different body sites. Seven expert assessors were asked to trace the DEJ for ET measurement on each of the images. The variability between experts was compared with a new image processing method. Between-expert variability was relatively low with a mean standard deviation of 3.4 μm. However, local positioning of the DEJ between experts was often different. The described algorithm performed adequately on all images. ET was automatically measured with a precision of < 5 μm compared with the experts on all sites studied except that of the back. Moreover, the local algorithm positioning was verified. The new image processing method for measuring ET from OCT images significantly reduces calculation time for this parameter, and avoids user intervention. The main advantages of this are that data can be analyzed more rapidly and reproducibly in clinical trials. © 2011 John Wiley & Sons A/S.

  14. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent manner to the DSF systems for the TCDD comparisons. This would suggest that FDXD would therefore perform adequately in a clinical fluoroscopic environment and our initial clinical experiences support this. Noise reduction processing of the fluoroscopic data acquired on FDXD was also found to further improve TCDD performance for FDXD. FDXD therefore combines acceptable fluoroscopic performance with excellent radiographic (snap shot) imaging fidelity, allowing the possibility of a universal x-ray detector to be developed, based on FDXD's technology. It is also envisaged that fluoroscopic performance will be improved by the development of digital image enhancement techniques specifically tailored to the characteristics of the FDXD detector.

  15. Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.

    PubMed Central

    Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio

    2014-01-01

    A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed. PMID:25091891

  16. [Magnetic resonance imaging of tibial periostitis].

    PubMed

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  17. Hip Imaging in Athletes: Sports Imaging Series.

    PubMed

    Agten, Christoph A; Sutter, Reto; Buck, Florian M; Pfirrmann, Christian W A

    2016-08-01

    Hip or groin pain in athletes is common and clinical presentation is often nonspecific. Imaging is a very important diagnostic step in the work-up of athletes with hip pain. This review article provides an overview on hip biomechanics and discusses strategies for hip imaging modalities such as radiography, ultrasonography, computed tomography, and magnetic resonance (MR) imaging (MR arthrography and traction MR arthrography). The authors explain current concepts of femoroacetabular impingement and the problem of high prevalence of cam- and pincer-type morphology in asymptomatic persons. With the main focus on MR imaging, the authors present abnormalities of the hip joint and the surrounding soft tissues that can occur in athletes: intraarticular and extraarticular hip impingement syndromes, labral and cartilage disease, microinstability of the hip, myotendinous injuries, and athletic pubalgia. (©) RSNA, 2016.

  18. Sinus venosus atrial septal defect as a cause of palpitations and dyspnea in an adult: a diagnostic imaging challenge.

    PubMed

    Donovan, Michael S; Kassop, David; Liotta, Robert A; Hulten, Edward A

    2015-01-01

    Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction.

  19. Sinus Venosus Atrial Septal Defect as a Cause of Palpitations and Dyspnea in an Adult: A Diagnostic Imaging Challenge

    PubMed Central

    Donovan, Michael S.; Kassop, David; Liotta, Robert A.; Hulten, Edward A.

    2015-01-01

    Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction. PMID:25705227

  20. Clinical applications with the HIDAC positron camera

    NASA Astrophysics Data System (ADS)

    Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.

    1988-06-01

    A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation, and more detailed data on a larger number of clinical and experimental PET scans will be necessary for definitive evaluation. Nevertheless, the HIDAC positron camera may be used for clinical PET imaging in well-defined patient cases, particularly in situations where both high spatial resolution is desired in the reconstructed image of the examined pathological condition and at the same time "static" PET imaging may be adequate, as is the case in thyroid-, ENT- and liver tomographic imaging using the HIDAC positron camera.

  1. T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.

    PubMed

    Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael

    2017-01-01

    A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials.

    PubMed

    Diaz-Manera, Jordi; Fernandez-Torron, Roberto; LLauger, Jaume; James, Meredith K; Mayhew, Anna; Smith, Fiona E; Moore, Ursula R; Blamire, Andrew M; Carlier, Pierre G; Rufibach, Laura; Mittal, Plavi; Eagle, Michelle; Jacobs, Marni; Hodgson, Tim; Wallace, Dorothy; Ward, Louise; Smith, Mark; Stramare, Roberto; Rampado, Alessandro; Sato, Noriko; Tamaru, Takeshi; Harwick, Bruce; Rico Gala, Susana; Turk, Suna; Coppenrath, Eva M; Foster, Glenn; Bendahan, David; Le Fur, Yann; Fricke, Stanley T; Otero, Hansel; Foster, Sheryl L; Peduto, Anthony; Sawyer, Anne Marie; Hilsden, Heather; Lochmuller, Hanns; Grieben, Ulrike; Spuler, Simone; Tesi Rocha, Carolina; Day, John W; Jones, Kristi J; Bharucha-Goebel, Diana X; Salort-Campana, Emmanuelle; Harms, Matthew; Pestronk, Alan; Krause, Sabine; Schreiber-Katz, Olivia; Walter, Maggie C; Paradas, Carmen; Hogrel, Jean-Yves; Stojkovic, Tanya; Takeda, Shin'ichi; Mori-Yoshimura, Madoka; Bravver, Elena; Sparks, Susan; Bello, Luca; Semplicini, Claudio; Pegoraro, Elena; Mendell, Jerry R; Bushby, Kate; Straub, Volker

    2018-05-07

    Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. NCT01676077. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Pediatric lymphangiectasia: an imaging spectrum.

    PubMed

    Malone, Ladonna J; Fenton, Laura Z; Weinman, Jason P; Anagnost, Miran R; Browne, Lorna P

    2015-04-01

    Lymphangiectasia is a rarely encountered lymphatic dysplasia characterized by lymphatic dilation without proliferation. Although it can occur anywhere, the most common locations are the central conducting lymphatics and the pulmonary and intestinal lymphatic networks. Recent advances in lymphatic interventions have resulted in an increased reliance on imaging to characterize patterns of disease. To describe the patient populations, underlying conditions, and imaging features of lymphangiectasia encountered at a tertiary pediatric institution over a 10-year period and correlate these with pathology and patient outcomes. We retrospectively reviewed the pathology database from 2002 to 2012 to identify patients with pathologically or surgically proven lymphangiectasia who had undergone cross-sectional imaging. Medical records were reviewed for patient demographics, underlying conditions, treatment and outcome. Thirteen children were identified, ranging in age from 1 month to 16 years. Five had pulmonary lymphangiectasia, four intestinal and four diffuse involvement. Pulmonary imaging findings include diffuse or segmental interlobular septal thickening, pleural effusions and dilated mediastinal lymphatics. Intestinal imaging findings include focal or diffuse bowel wall thickening with central lymphatic dilation. Diffuse involvement included dilation of the central lymphatics and involvement of more than one organ system. Children with infantile presentation and diffuse pulmonary, intestinal or diffuse lymphatic abnormalities had a high mortality rate. Children with later presentations and segmental involvement demonstrated clinical improvement with occasional regression of disease. Three children with dilated central lymphatics on imaging underwent successful lymphatic duct ligation procedures with improved clinical course. Lymphangiectasia is a complex disorder with a spectrum of presentations, imaging appearances, treatments and outcomes. Cross-sectional imaging techniques distinguish segmental involvement of a single system (pulmonary or intestinal) from diffuse disease and may show dilated central conducting lymphatics, which may benefit from interventions such as ligation or occlusion.

  4. Wide-field OCT imaging of oral lesions in vivo: quantification and classification (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Raizada, Rashika; Lee, Anthony M. D.; Liu, Kelly Y.; MacAulay, Calum E.; Ng, Samson; Poh, Catherine F.; Lane, Pierre M.

    2017-02-01

    Worldwide, there are over 450,000 new cases of oral cancer reported each year. Late-stage diagnosis remains a significant factor responsible for its high mortality rate (>50%). In-vivo non-invasive rapid imaging techniques, that can visualise clinically significant changes in the oral mucosa, may improve the management of oral cancer. We present an analysis of features extracted from oral images obtained using our hand- held wide-field Optical Coherence Tomography (OCT) instrument. The images were analyzed for epithelial scattering, overall tissue scattering, and 3D basement membrane topology. The associations between these three features and disease state (benign, pre-cancer, or cancer), as measured by clinical assessment or pathology, were determined. While scattering coefficient has previously been shown to be sensitive to cancer and dysplasia, likely due to changes in nuclear and cellular density, the addition of basement membrane topology may increase diagnostic ability- as it is known that the presence of bulbous rete pegs in the basement membrane are characteristic of dysplasia. The resolution and field-of-view of our oral OCT system allowed analysis of these features over large areas of up to 2.5mm x 90mm, in a timely fashion, which allow for application in clinical settings.

  5. Postoperative computed tomography and low-field magnetic resonance imaging findings in dogs with degenerative lumbosacral stenosis treated by dorsal laminectomy.

    PubMed

    Rapp, Martin; Ley, Charles J; Hansson, Kerstin; Sjöström, Lennart

    2017-03-20

    To describe postoperative computed tomography (CT) and magnetic resonance imaging (MRI) findings in dogs with degenerative lumbosacral stenosis (DLSS) treated by dorsal laminectomy and partial discectomy. Prospective clinical case study of dogs diagnosed with and treated for DLSS. Surgical and clinical findings were described. Computed tomography and low field MRI findings pre- and postoperatively were described and graded. Clinical, CT and MRI examinations were performed four to 18 months after surgery. Eleven of 13 dogs were clinically improved and two dogs had unchanged clinical status postoperatively despite imaging signs of neural compression. Vacuum phenomenon, spondylosis, sclerosis of the seventh lumbar (L7) and first sacral (S1) vertebrae endplates and lumbosacral intervertebral joint osteoarthritis became more frequent in postoperative CT images. Postoperative MRI showed mild disc extrusions in five cases, and in all cases contrast enhancing non-discal tissue was present. All cases showed contrast enhancement of the L7 spinal nerves both pre- and postoperatively and seven had contrast enhancement of the lumbosacral intervertebral joints and paraspinal tissue postoperatively. Articular process fractures or fissures were noted in four dogs. The study indicates that imaging signs of neural compression are common after DLSS surgery, even in dogs that have clinical improvement. Contrast enhancement of spinal nerves and soft tissues around the region of disc herniation is common both pre- and postoperatively and thus are unreliable criteria for identifying complications of the DLSS surgery.

  6. Pitfalls in classical nuclear medicine: myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Fragkaki, C.; Giannopoulou, Ch

    2011-09-01

    Scintigraphic imaging is a complex functional procedure subject to a variety of artefacts and pitfalls that may limit its clinical and diagnostic accuracy. It is important to be aware of and to recognize them when present and to eliminate them whenever possible. Pitfalls may occur at any stage of the imaging procedure and can be related with the γ-camera or other equipment, personnel handling, patient preparation, image processing or the procedure itself. Often, potential causes of artefacts and pitfalls may overlap. In this short review, special interest will be given to cardiac scintigraphic imaging. Most common causes of artefact in myocardial perfusion imaging are soft tissue attenuation as well as motion and gating errors. Additionally, clinical problems like cardiac abnormalities may cause interpretation pitfalls and nuclear medicine physicians should be familiar with these in order to ensure the correct evaluation of the study. Artefacts or suboptimal image quality can also result from infiltrated injections, misalignment in patient positioning, power instability or interruption, flood field non-uniformities, cracked crystal and several other technical reasons.

  7. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    PubMed

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  8. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    PubMed

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  9. Ultrasound Images of the Tongue: A Tutorial for Assessment and Remediation of Speech Sound Errors.

    PubMed

    Preston, Jonathan L; McAllister Byun, Tara; Boyce, Suzanne E; Hamilton, Sarah; Tiede, Mark; Phillips, Emily; Rivera-Campos, Ahmed; Whalen, Douglas H

    2017-01-03

    Diagnostic ultrasound imaging has been a common tool in medical practice for several decades. It provides a safe and effective method for imaging structures internal to the body. There has been a recent increase in the use of ultrasound technology to visualize the shape and movements of the tongue during speech, both in typical speakers and in clinical populations. Ultrasound imaging of speech has greatly expanded our understanding of how sounds articulated with the tongue (lingual sounds) are produced. Such information can be particularly valuable for speech-language pathologists. Among other advantages, ultrasound images can be used during speech therapy to provide (1) illustrative models of typical (i.e. "correct") tongue configurations for speech sounds, and (2) a source of insight into the articulatory nature of deviant productions. The images can also be used as an additional source of feedback for clinical populations learning to distinguish their better productions from their incorrect productions, en route to establishing more effective articulatory habits. Ultrasound feedback is increasingly used by scientists and clinicians as both the expertise of the users increases and as the expense of the equipment declines. In this tutorial, procedures are presented for collecting ultrasound images of the tongue in a clinical context. We illustrate these procedures in an extended example featuring one common error sound, American English /r/. Images of correct and distorted /r/ are used to demonstrate (1) how to interpret ultrasound images, (2) how to assess tongue shape during production of speech sounds, (3), how to categorize tongue shape errors, and (4), how to provide visual feedback to elicit a more appropriate and functional tongue shape. We present a sample protocol for using real-time ultrasound images of the tongue for visual feedback to remediate speech sound errors. Additionally, example data are shown to illustrate outcomes with the procedure.

  10. Cerebral venous thrombosis: state of the art diagnosis and management.

    PubMed

    Dmytriw, Adam A; Song, Jin Soo A; Yu, Eugene; Poon, Colin S

    2018-05-11

    This review article aims to discuss the pathophysiology, clinical presentation, and neuroimaging of cerebral venous thrombosis (CVT). Different approaches for diagnosis of CVT, including CT/CTV, MRI/MRV, and US will be discussed and the reader will become acquainted with imaging findings as well as limitations of each modality. Lastly, this exhibit will review the standard of care for CVT treatment and emerging endovascular options. A literature search using PubMed and the MEDLINE subengine was completed using the terms "cerebral venous thrombosis," "stroke," and "imaging." Studies reporting on the workup, imaging characteristics, clinical history, and management of patients with CVT were included. The presentation of CVT is often non-specific and requires a high index of clinical suspicion. Signs of CVT on NECT can be divided into indirect signs (edema, parenchymal hemorrhage, subarachnoid hemorrhage, and rarely subdural hematomas) and less commonly direct signs (visualization of dense thrombus within a vein or within the cerebral venous sinuses). Confirmation is performed with CTV, directly demonstrating the thrombus as a filling defect, or MRI/MRV, which also provides superior characterization of parenchymal abnormalities. General pitfalls and anatomic variants will also be discussed. Lastly, endovascular management options including thrombolysis and mechanical thrombectomy are discussed. CVT is a relatively uncommon phenomenon and frequently overlooked at initial presentation. Familiarity with imaging features and diagnostic work-up of CVT will help in providing timely diagnosis and therapy which can significantly improve outcome and diminish the risk of acute and long-term complications, optimizing patient care.

  11. Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.

    2010-02-01

    Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.

  12. MULTIMODAL IMAGING IN VORTEX VEIN VARICES.

    PubMed

    Veronese, Chiara; Staurenghi, Giovanni; Pellegrini, Marco; Maiolo, Chiara; Primavera, Laura; Morara, Mariachiara; Armstrong, Grayson W; Ciardella, Antonio P

    2017-03-22

    The aim of this study is to describe the clinical presentation of vortex vein varices with multimodal imaging. The authors carried out a retrospective case series of eight patients (7 female, 1 male) with an average age of 60.2 years (min 8, max 84, median 68.5) presenting with vortex vein varices. All patients were evaluated at the Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy and at Luigi Sacco Hospital, University of Milan, Milan, Italy. Patients underwent complete ophthalmologic examinations, including best corrected visual acuity, intraocular pressure, anterior segment, and fundus examination. Imaging studies, including fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine green angiography, and spectral-domain enhanced depth imaging optical coherence tomography were also performed. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography using the Heidelberg Retina Angiograph and the Staurenghi 230 SLO Retina Lens were used to demonstrate the disappearance of all retinal lesions when pressure was applied to the globe. All eight cases initially presented to the emergency room. One patient presented secondary to trauma, two patients presented for suspected hemangioma, whereas the other five were referred to the authors' hospitals for suspected retinal lesions. On examination, retinal abnormalities were identified in all 8 patients, with 7 (87.5%) oculus dexter and 1 (12.5%) oculus sinister, and with 1 (12.5%) inferotemporally, 3 (37.5%) superonasally, 3 (37.5%) inferonasally, and 1 (12.5%) inferiorly. Fundus color photography showed an elevated lesion in seven patients and a nonelevated red lesion in one patient. In all patients, near-infrared reflectance imaging showed a hyporeflective lesion in the periphery of the retina. Fundus autofluorescence identified round hypofluorescent rings surrounding weakly hyperfluorescent lesions in all patients. On fluorescein angiography, all lesions were initially hyperfluorescent with a hypofluorescent ring, with the lesion becoming hyperfluorescent after injection of dye. Indocyanine green angiography demonstrated dilation of the vortex vein ampullae in all patients. Spectral-domain enhanced depth imaging optical coherence tomography demonstrated dilated choroidal vessels and a hyporeflective cavity without subretinal fluid in all patients. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography demonstrated disappearance of all retinal lesions when pressure was applied to the globe. Findings are consistent with the diagnosis of vortex vein varix in all eight patients, with six patients (75%) exhibiting a single varix and two patients (25%) exhibiting a double varix. The diagnosis of vortex vein varices can be confirmed through clinical examination through the use of digital pressure to the globe during ophthalmoscopic examination. Adjunctive multimodal imaging (fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine angiography, and spectral-domain enhanced depth imaging optical coherence tomography) was useful in the diagnosis of vortex vein varices in the authors' clinical cases. However, in more challenging clinical cases, the authors' novel use of the ultra-widefield contact lens for application of ocular pressure with a resulting resolution of the varix proved to be a useful and easy diagnostic imaging method for confirming the presence of vortex vein varices.

  13. The data storage grid: the next generation of fault-tolerant storage for backup and disaster recovery of clinical images

    NASA Astrophysics Data System (ADS)

    King, Nelson E.; Liu, Brent; Zhou, Zheng; Documet, Jorge; Huang, H. K.

    2005-04-01

    Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models that can address the problem of fault-tolerant storage for backup and recovery of clinical images. We have researched and developed a novel Data Grid testbed involving several federated PAC systems based on grid architecture. By integrating a grid computing architecture to the DICOM environment, a failed PACS archive can recover its image data from others in the federation in a timely and seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid architecture representing three federated PAC systems, the Fault-Tolerant PACS archive server at the Image Processing and Informatics Laboratory, Marina del Rey, the clinical PACS at Saint John's Health Center, Santa Monica, and the clinical PACS at the Healthcare Consultation Center II, USC Health Science Campus, will be presented. The successful demonstration of the Data Grid in the testbed will provide an understanding of the Data Grid concept in clinical image data backup as well as establishment of benchmarks for performance from future grid technology improvements and serve as a road map for expanded research into large enterprise and federation level data grids to guarantee 99.999 % up time.

  14. Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.

    PubMed

    Caffery, Liam J; Clunie, David; Curiel-Lewandrowski, Clara; Malvehy, Josep; Soyer, H Peter; Halpern, Allan C

    2018-01-17

    Imaging is increasingly being used in dermatology for documentation, diagnosis, and management of cutaneous disease. The lack of standards for dermatologic imaging is an impediment to clinical uptake. Standardization can occur in image acquisition, terminology, interoperability, and metadata. This paper presents the International Skin Imaging Collaboration position on standardization of metadata for dermatologic imaging. Metadata is essential to ensure that dermatologic images are properly managed and interpreted. There are two standards-based approaches to recording and storing metadata in dermatologic imaging. The first uses standard consumer image file formats, and the second is the file format and metadata model developed for the Digital Imaging and Communication in Medicine (DICOM) standard. DICOM would appear to provide an advantage over using consumer image file formats for metadata as it includes all the patient, study, and technical metadata necessary to use images clinically. Whereas, consumer image file formats only include technical metadata and need to be used in conjunction with another actor-for example, an electronic medical record-to supply the patient and study metadata. The use of DICOM may have some ancillary benefits in dermatologic imaging including leveraging DICOM network and workflow services, interoperability of images and metadata, leveraging existing enterprise imaging infrastructure, greater patient safety, and better compliance to legislative requirements for image retention.

  15. Unspecific clinical manifestation of cauda equina myxopapillary ependymoma

    PubMed Central

    Kariev, Gayrat Maratovich; Halikulov, Elbek Shodievich; Rasulov, Shavkat Orzikuloviich

    2015-01-01

    A 9-year-old boy admitted to the neurosurgical hospital complaining of headache, vomiting, abdominal pain, and weakness in the arms and legs, urinary retention. Previously, the patient had a treatment of pediatricians. He was examined, magnetic resonance imaging revealed the tumor of the conus medullaris and cauda equina. The surgery was performed with removal myxopapillary ependymoma (ME). Postoperative neurological symptoms regressed; he has received radiotherapy postoperatively. This case illustrates a rare clinical presentation of ME, which simulated intracranial, thoracic, and caudal pathology. We presented features of the clinical presentation, diagnostics, and treatment options of this ependymoma. PMID:26396623

  16. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system

    NASA Astrophysics Data System (ADS)

    Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

    2015-01-01

    Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.

  17. Development of an Image Colorimeter for Noncontact Skin Color Measurement and Application to the Dermatological Treatment

    NASA Astrophysics Data System (ADS)

    Akimoto, Makio; Chen, Yu; Miyazaki, Michio; Yamashita, Toyonobu; Miyakawa, Michio; Hata, Mieko

    The skin is unique as an organ that is highly accessible to direct visual inspection with light. Visual inspection of cutaneous morphology is the mainstay of clinical dermatology, but relies heavily on subjective assessment by the skilled dermatologists. We present an imaging colorimeter of non-contact skin color measuring system and some experimented results using such instrument. The system is comprised by a video camera, light source, a real-time image processing board, magneto optics disk and personal computer which controls the entire system. The CIE-L*a*b* uniform color space is used. This system is used for monitoring of some clinical diagnosis. The instrument is non-contact, easy to operate, and has a high precision unlike the conventional colorimeters. This instrument is useful for clinical diagnoses, monitoring and evaluating the effectiveness of treatment.

  18. Emotional responses to images of food in adults with an eating disorder: a comparative study with healthy and clinical controls.

    PubMed

    Hay, Phillipa; Katsikitis, Mary

    2014-08-01

    Emotive responses to foods in people with eating disorders are incompletely understood in relation to whether the extent of emotional response is due to the eating disorder or non-specific emotional states. The aims of the present study were to investigate negative and positive emotive responses to food images in adults with an eating disorder, and to compare responses to a (i) healthy and a (ii) clinic (psychiatry) control group. Participants viewed 20 images (16 of foods previously found to evoke fear, disgust and happiness and 4 neutral images) at half-minute intervals and rated emotive responses on 3 visual analogue scales for each image. Participants with an eating disorder (n=26) were found to have significantly increased negative emotive (disgust and fear) responses and reduced positive (happiness) responses to the images compared to the 20 clinic and 61 healthy participants. Differences between groups remained significant when controlling for baseline levels of fear, disgust and happiness. Thus, the emotive responses to foods did not appear due to non-specific increases in anxiety or depression but rather was due to the presence of an eating disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesized Mammography: Clinical Evidence, Appearance, and Implementation.

    PubMed

    Durand, Melissa A

    2018-04-04

    Digital breast tomosynthesis (DBT) has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D) has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.

  20. TU-A-17A-02: In Memoriam of Ben Galkin: Virtual Tools for Validation of X-Ray Breast Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, K; Bakic, P; Abbey, C

    2014-06-15

    This symposium will explore simulation methods for the preclinical evaluation of novel 3D and 4D x-ray breast imaging systems – the subject of AAPM taskgroup TG234. Given the complex design of modern imaging systems, simulations offer significant advantages over long and costly clinical studies in terms of reproducibility, reduced radiation exposures, a known reference standard, and the capability for studying patient and disease subpopulations through appropriate choice of simulation parameters. Our focus will be on testing the realism of software anthropomorphic phantoms and virtual clinical trials tools developed for the optimization and validation of breast imaging systems. The symposium willmore » review the stateof- the-science, as well as the advantages and limitations of various approaches to testing realism of phantoms and simulated breast images. Approaches based upon the visual assessment of synthetic breast images by expert observers will be contrasted with approaches based upon comparing statistical properties between synthetic and clinical images. The role of observer models in the assessment of realism will be considered. Finally, an industry perspective will be presented, summarizing the role and importance of virtual tools and simulation methods in product development. The challenges and conditions that must be satisfied in order for computational modeling and simulation to play a significantly increased role in the design and evaluation of novel breast imaging systems will be addressed. Learning Objectives: Review the state-of-the science in testing realism of software anthropomorphic phantoms and virtual clinical trials tools; Compare approaches based upon the visual assessment by expert observers vs. the analysis of statistical properties of synthetic images; Discuss the role of observer models in the assessment of realism; Summarize the industry perspective to virtual methods for breast imaging.« less

  1. Design and modeling of a prototype fiber scanning CARS endoscope

    NASA Astrophysics Data System (ADS)

    Veilleux, Isra"l.; Doucet, Michel; Coté, Patrice; Verreault, Sonia; Fortin, Michel; Paradis, Patrick; Leclair, Sébastien; Da Costa, Ralph S.; Wilson, Brian C.; Seibel, Eric; Mermut, Ozzy; Cormier, Jean-François

    2010-02-01

    An endoscope capable of Coherent Anti-Stokes Raman scattering (CARS) imaging would be of significant clinical value for improving early detection of endoluminal cancers. However, developing this technology is challenging for many reasons. First, nonlinear imaging techniques such as CARS are single point measurements thus requiring fast scanning in a small footprint if video rate is to be achieved. Moreover, the intrinsic nonlinearity of this modality imposes several technical constraints and limitations, mainly related to pulse and beam distortions that occur within the optical fiber and the focusing objective. Here, we describe the design and report modeling results of a new CARS endoscope. The miniature microscope objective design and its anticipated performance are presented, along with its compatibility with a new spiral scanningfiber imaging technology developed at the University of Washington. This technology has ideal attributes for clinical use, with its small footprint, adjustable field-of-view and high spatial-resolution. This compact hybrid fiber-based endoscopic CARS imaging design is anticipated to have a wide clinical applicability.

  2. Gorlin-Goltz syndrome in a child: case report and clinical review.

    PubMed

    Snoeckx, A; Vanhoenacker, F M; Verhaert, K; Chappelle, K; Parizel, P M

    2008-01-01

    Gorlin-Goltz syndrome is a rare autosomal dominant disorder that involves multiple organ systems, including the skin, skeleton and jaws. We report the case of a mild mentally retarded 7-year-old boy who was referred with a swelling of his left mandible. Imaging studies showed a unilocular well-defined lytic mandibular lesion, calcifications of the falx, bifid ribs and fusion anomalies of the ribs. The mandibular lesion was treated with surgical decompression and proved to represent a keratocyst on histological examination. Further clinical examination revealed cutaneous lesions, Sprengel deformity, pectus excavatum and facial dysmorphism. Based on the combination of imaging and clinical findings the diagnosis of Gorlin-Goltz syndrome was made. This was confirmed by genetic tests. During three-year follow-up the boy presented with recurrent and multiple odontogenic keratocysts. The occurrence of multiple and recurrent keratocysts at young age, should alert the radiologist to the potential diagnosis of an underlying Gorlin-Goltz syndrome. This paper reviews the imaging findings in Gorlin-Goltz syndrome, with emphasis on maxillofacial imaging.

  3. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    PubMed

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  4. A physiotherapy perspective of musculoskeletal imaging in sport.

    PubMed

    Callaghan, M J

    2012-08-01

    This paper presents a physiotherapy perspective on the role that imaging is now playing in the diagnosis and management of musculoskeletal and sporting injuries. Although the Royal College of Radiologists and the UK Chartered Society of Physiotherapy were founded in the latter part of the nineteenth century, it is 100 years later that developments in the UK NHS have led to increased roles for non-medical healthcare professionals and allied health professionals, such as physiotherapists, in an extended clinical role. Physiotherapists, perhaps because of their knowledge of clinical and applied anatomy, have keenly taken up the opportunities offered to request and interpret imaging in its various forms; the most commonly available are plain radiography, musculoskeletal ultrasound and MRI. This has meant taking formal courses under the auspices of universities with mentorship and tutoring within the clinical setting, which are part of a continuing professional development. The ability to request several forms of imaging has enhanced physiotherapy practice and has increased the appreciation of the responsibilities which accompany this new role.

  5. Diagnosis of deep endometriosis: clinical examination, ultrasonography, magnetic resonance imaging, and other techniques.

    PubMed

    Bazot, Marc; Daraï, Emile

    2017-12-01

    The aim of the present review was to evaluate the contribution of clinical examination and imaging techniques, mainly transvaginal sonography and magnetic resonance imaging (MRI) to diagnose deep infiltrating (DE) locations using prisma statement recommendations. Clinical examination has a relative low sensitivity and specificity to diagnose DE. Independently of DE locations, for all transvaginal sonography techniques a pooled sensitivity and specificity of 79% and 94% are observed approaching criteria for a triage test. Whatever the protocol and MRI devices, the pooled sensitivity and specificity for pelvic endometriosis diagnosis were 94% and 77%, respectively. For rectosigmoid endometriosis, pooled sensitivity and specificity of MRI were 92% and 96%, respectively fulfilling criteria of replacement test. In conclusion, advances in imaging techniques offer high sensitivity and specificity to diagnose DE with at least triage value and for rectosigmoid endometriosis replacement value imposing a revision of the concept of laparoscopy as the gold standard. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques

    PubMed Central

    Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.

    2016-01-01

    Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173

  7. Ultrasonographic evaluation of acute pelvic pain in pregnant and postpartum period.

    PubMed

    Park, Sung Bin; Han, Byoung Hee; Lee, Young Ho

    2017-04-22

    Acute pelvic pain in pregnant and postpartum patients presents diagnostic and therapeutic challenges. The interpretation of imaging findings in these patients is influenced by the knowledge of the physiological changes that occur during the pregnant and postpartum period, as well as by the clinical history. Ultrasonography remains the primary imaging investigation of the pregnant and postpartum women. This article describes the causes and imaging features of acute pelvic pain in pregnant and postpartum period and suggests characteristics to such diseases, focusing on the ultrasonography features that allow one to arrive at the corrective diagnosis. Knowledge of the clinical settings and imaging features of acute pelvic pain in pregnant and postpartum period can lead to accurate diagnosis and appropriate management of the condition.

  8. A new system for digital image acquisition, storage and presentation in an accident and emergency department

    PubMed Central

    Clegg, G; Roebuck, S; Steedman, D

    2001-01-01

    Objectives—To develop a computer based storage system for clinical images—radiographs, photographs, ECGs, text—for use in teaching, training, reference and research within an accident and emergency (A&E) department. Exploration of methods to access and utilise the data stored in the archive. Methods—Implementation of a digital image archive using flatbed scanner and digital camera as capture devices. A sophisticated coding system based on ICD 10. Storage via an "intelligent" custom interface. Results—A practical solution to the problems of clinical image storage for teaching purposes. Conclusions—We have successfully developed a digital image capture and storage system, which provides an excellent teaching facility for a busy A&E department. We have revolutionised the practice of the "hand-over meeting". PMID:11435357

  9. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  10. Back pain and scoliosis in children: When to image, what to consider.

    PubMed

    Calloni, Sonia F; Huisman, Thierry Agm; Poretti, Andrea; Soares, Bruno P

    2017-10-01

    Back pain and scoliosis in children most commonly present as benign and self-limited entities. However, persistent back pain and/or progressive scoliosis should always be taken seriously in children. Dedicated diagnostic work-up should exclude etiologies that may result in significant morbidity. Clinical evaluation and management require a comprehensive history and physical and neurological examination. A correct imaging approach is important to define a clear diagnosis and should be reserved for children with persistent symptoms or concerning clinical and laboratory findings. This article reviews the role of different imaging techniques in the diagnostic approach to back pain and scoliosis, and offers a comprehensive review of the main imaging findings associated with common and uncommon causes of back pain and scoliosis in the pediatric population.

  11. Evaluating the health of compromised tissues using a near-infrared spectroscopic imaging system in clinical settings: lessons learned

    NASA Astrophysics Data System (ADS)

    Leonardi, Lorenzo; Sowa, Michael G.; Hewko, Mark D.; Schattka, Bernhard J.; Payette, Jeri R.; Hastings, Michelle; Posthumus, Trevor B.; Mantsch, Henry H.

    2003-07-01

    The present and accepted standard for determining the status of tissue relies on visual inspection of the tissue. Based on the surface appearance of the tissue, medical personnel will make an assessment of the tissue and proceed to a course of action or treatment. Visual inspection of tissue is central to many areas of clinical medicine, and remains a cornerstone of dermatology, reconstructive plastic surgery, and in the management of chronic wounds, and burn injuries. Near infrared spectroscopic imaging holds the promise of being able to monitor the dynamics of tissue physiology in real-time and detect pathology in living tissue. The continuous measurement of metabolic, physiological, or structural changes in tissue is of primary concern in many clinical and biomedical domains. A near infrared hyperspectral imaging system was constructed for the assessment of burn injuries and skin flaps or skin grafts. This device merged basic science with engineering and integrated manufacturing to develop a device suitable to detect ischemic tissue. This device has the potential of providing measures of tissue physiology, oxygen delivery and tissue hydration during patient screening, in the operating room or during therapy and post-operative/treatment monitoring. Results from a pre-clinical burn injury study will be presented.

  12. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography

    NASA Astrophysics Data System (ADS)

    Sheth, Rahul A.; Josephson, Lee; Mahmood, Umar

    2009-11-01

    A fluorescent analog to 2-deoxy-2 [18F] fluoro-D-glucose position emission tomography (FDG-PET) would allow for the introduction of metabolic imaging into intraoperative and minimally invasive settings. We present through in vitro and in vivo experimentation an evaluation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescently labeled glucose molecule, as a molecular beacon of glucose utilization. The competitive inhibition of 2-NBDG uptake by excess free glucose is directly compared against FDG uptake inhibition in cultured cells. 2-NBDG uptake in the brain of a mouse experiencing a generalized seizure is measured, as well as in subcutaneously implanted tumors in mice during fed and fasting states. Localization of 2-NBDG into malignant tissues is studied by laser scanning microscopy. The clinical relevance of 2-NBDG imaging is examined by performing fluorescence colonoscopy, and by correlating preoperative FDG-PET with intraoperative fluorescence imaging. 2-NBDG exhibits a similar uptake inhibition to FDG by excess glucose in the growth media. Uptake is significantly increased in the brain of an animal experiencing seizures versus control, and in subcutaneous tumors after the animals are kept nil per os (NPO) for 24 h versus ad libidum feeding. The clinical utility of 2-NBDG is confirmed by the demonstration of very high target-to-background ratios in minimally invasive and intraoperative imaging of malignant lesions. We present an optical analog of FDG-PET to extend the applicability of metabolic imaging to minimally invasive and intraoperative settings.

  13. Symmetrical and bilateral basal ganglia calcification. Case series and literature review.

    PubMed

    Jiménez-Ruiz, Amado; Cárdenas-Sáenz, Omar; Ruiz-Sandoval, José Luis

    2018-01-01

    Symmetric, bilateral basal ganglia calcification is rare finding that sometimes occurs asymptomatically. Its prevalence increases with age, and the most affected site is the globus pallidus. A series of seven cases with clinical and imaging diagnosis of basal ganglia calcification, recorded during the 2012 to 2016 period at the Department of Internal Medicine of the Hospital Civil de Guadalajara "Fray Antonio Alcalde, is presented. Most common clinical presentation was with altered alertness, headache and seizures. There was one case with movement disorders; there were no cases identified with dementia or tetany. Ganglia calcification can be associated with age-related neurodegenerative changes, but it can be an initial manifestation of a variety of systemic pathologies, including disorders of the calcium metabolism, intoxication by different agents, and autoimmune and genetic diseases. Correlation of typical imaging findings with clinical manifestations and laboratory results should be established to reach a definitive judgment. Copyright: © 2018 SecretarÍa de Salud.

  14. Autoimmune Encephalitis: Pathophysiology and Imaging Review of an Overlooked Diagnosis.

    PubMed

    Kelley, B P; Patel, S C; Marin, H L; Corrigan, J J; Mitsias, P D; Griffith, B

    2017-06-01

    Autoimmune encephalitis is a relatively new category of immune-mediated disease involving the central nervous system that demonstrates a widely variable spectrum of clinical presentations, ranging from the relatively mild or insidious onset of cognitive impairment to more complex forms of encephalopathy with refractory seizure. Due to its diverse clinical features, which can mimic a variety of other pathologic processes, autoimmune encephalitis presents a diagnostic challenge to clinicians. Imaging findings in patients with these disorders can also be quite variable, but recognizing characteristic findings within limbic structures suggestive of autoimmune encephalitis can be a key step in alerting clinicians to the potential diagnosis and ensuring a prompt and appropriate clinical work-up. In this article, we review antibody-mediated encephalitis and its various subtypes with a specific emphasis on the role of neuroimaging in the diagnostic work-up. © 2017 by American Journal of Neuroradiology.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larner, J.

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  16. WE-A-12A-01: Medical Physics 1.0 to 2.0, Session 2: Radiography, Mammography and Fluoroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingold, E; Karellas, A; Strauss, K

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidencebased medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. Radiography 2.0: The development of electronic capture in recent years hasmore » changed the landscape and spurred reinvestment by healthcare providers. The radiography presentation will explore how the diagnostic medical physicist must adapt to these changes to support radiographic imaging, and how she/he can add value in radiography practice over the next 5-10 years. Topics of discussion include new metrology of evaluation, new models of clinical engagement, and effective integration of new technologies. Mammography 2.0: Mammography has been an interesting testing ground on the effectiveness of close involvement of medical physicists with equipment in the past twenty years. The outcomes have clearly shown major improvements in image quality and significant reduction in the average glandular dose. However, the medical physicist's role in mammography has been largely focused to annual surveys and with limited input on operational issues with image artifacts, optimal mammographic acquisition mode and problems with image quality. This mammography presentation will address why and how medical physicists must be prepared to address the new models of practice that include new metrics of performance and the integration of new technologies (DBT, syncretized mammograms, contrast mammography, breast CT) into clinical practice. Fluoroscopy 2.0: Physics support of fluoroscopy should be operationally as opposed to compliance focused. Testing protocols must address new hardware, acquisition methods, and image processing. Future available tools are discussed. Proper configuration of acquisition parameters (focal spot size, voltage and added filter, tube current, pulse width, pulse rate, scatter removal) as a function of patient size from the neonate to bariatric patient is key to providing diagnostic image quality at properly managed radiation doses. Learning Objectives: Appreciate the limitations of the currently available tools and techniques in clinical medical physics in radiography, mammography, and fluoroscopy, and ways to improve upon current deficiencies. Appreciate the changing environment of imaging practice and the need for the medical physicist to be an expert consultant and educator in a capacity that extends beyond the annual survey of equipment. Understand the status of the rapidly changing environment in breast imaging from planar imaging to tomosynthesis and possibly to breast CT. Identify appropriate configuration of acquisition parameters as a function of patient size to manage radiation dose and ensure diagnostic image quality.« less

  17. An efficient intensity-based ready-to-use X-ray image stitcher.

    PubMed

    Wang, Junchen; Zhang, Xiaohui; Sun, Zhen; Yuan, Fuzhen

    2018-06-14

    The limited field of view of the X-ray image intensifier makes it difficult to cover a large target area with a single X-ray image. X-ray image stitching techniques have been proposed to produce a panoramic X-ray image. This paper presents an efficient intensity-based X-ray image stitcher, which does not rely on accurate C-arm motion control or auxiliary devices and hence is ready to use in clinic. The stitcher consumes sequentially captured X-ray images with overlap areas and automatically produces a panoramic image. The gradient information for optimization of image alignment is obtained using a back-propagation scheme so that it is convenient to adopt various image warping models. The proposed stitcher has the following advantages over existing methods: (1) no additional hardware modification or auxiliary markers are needed; (2) it is robust against feature-based approaches; (3) arbitrary warping models and shapes of the region of interest are supported; (4) seamless stitching is achieved using multi-band blending. Experiments have been performed to confirm the effectiveness of the proposed method. The proposed X-ray image stitcher is efficient, accurate and ready to use in clinic. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Evaluation of the low dose cardiac CT imaging using ASIR technique

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  19. [Digital breast tomosynthesis : technical principles, current clinical relevance and future perspectives].

    PubMed

    Hellerhoff, K

    2010-11-01

    In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.

  20. Robust linearized image reconstruction for multifrequency EIT of the breast.

    PubMed

    Boverman, Gregory; Kao, Tzu-Jen; Kulkarni, Rujuta; Kim, Bong Seok; Isaacson, David; Saulnier, Gary J; Newell, Jonathan C

    2008-10-01

    Electrical impedance tomography (EIT) is a developing imaging modality that is beginning to show promise for detecting and characterizing tumors in the breast. At Rensselaer Polytechnic Institute, we have developed a combined EIT-tomosynthesis system that allows for the coregistered and simultaneous analysis of the breast using EIT and X-ray imaging. A significant challenge in EIT is the design of computationally efficient image reconstruction algorithms which are robust to various forms of model mismatch. Specifically, we have implemented a scaling procedure that is robust to the presence of a thin highly-resistive layer of skin at the boundary of the breast and we have developed an algorithm to detect and exclude from the image reconstruction electrodes that are in poor contact with the breast. In our initial clinical studies, it has been difficult to ensure that all electrodes make adequate contact with the breast, and thus procedures for the use of data sets containing poorly contacting electrodes are particularly important. We also present a novel, efficient method to compute the Jacobian matrix for our linearized image reconstruction algorithm by reducing the computation of the sensitivity for each voxel to a quadratic form. Initial clinical results are presented, showing the potential of our algorithms to detect and localize breast tumors.

  1. Neuroradiologic correlation with aphasias. Cortico-subcortical map of language.

    PubMed

    Jiménez de la Peña, M M; Gómez Vicente, L; García Cobos, R; Martínez de Vega, V

    Aphasia is an acquired language disorder due to a cerebral lesion; it is characterized by errors in production, denomination, or comprehension of language. Although most aphasias are mixed, from a practical point of view they are classified into different types according to their main clinical features: Broca's aphasia, Wernicke's aphasia, conduction aphasia, transcortical aphasia, and alexia with or without agraphia. We present the clinical findings for the main subtypes of aphasia, illustrating them with imaging cases, and we provide an up-to-date review of the language network with images from functional magnetic resonance imaging and tractography. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Serial magnetic resonance imaging findings in subarachnoid hemorrhage due to an initially angiographically occult type II spinal aneurysm: Case report.

    PubMed

    Kogan, Michael; Morr, Simon; Siddiqui, Adnan H

    2017-04-28

    Spinal aneurysms are rare causes of spontaneous subarachnoid hemorrhage. We present an unusual, initially occult, case of an upper thoracic intradural extramedullary isolated aneurysm arising from the T2 intercostal-radicular circulation that was initially angiographically occult but was discovered due to unique, albeit nonspecific, magnetic resonance imaging findings of spinal cord T2 hyperintensity and contrast enhancement that were noted to progress with a clinical picture of ictal rehemorrhage. Repeat spinal angiography revealed a spinal aneurysm that was treated surgically. In cases of sufficient clinical suspicion and nonspecific imaging findings, continued vigilance is advised in seeking an underlying pathoanatomic etiology.

  3. Multi-modality imaging of tumor phenotype and response to therapy

    NASA Astrophysics Data System (ADS)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  4. High-energy proton imaging for biomedical applications

    DOE PAGES

    Prall, Matthias; Durante, Marco; Berger, Thomas; ...

    2016-06-10

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allowsmore » imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.« less

  5. High-energy proton imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; Latessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-06-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  6. In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: consensus terminology glossary and illustrative images.

    PubMed

    Scope, Alon; Benvenuto-Andrade, Cristiane; Agero, Anna-Liza C; Malvehy, Josep; Puig, Susana; Rajadhyaksha, Milind; Busam, Klaus J; Marra, Diego E; Torres, Abel; Propperova, Iva; Langley, Richard G; Marghoob, Ashfaq A; Pellacani, Giovanni; Seidenari, Stefania; Halpern, Allan C; Gonzalez, Salvador

    2007-10-01

    Reflectance confocal microscopy (RCM) has been used for over 10 years for in vivo skin imaging. However, to date no standard RCM terminology has been published. To establish a glossary of terms for RCM evaluation of melanocytic lesions. Prominent RCM researchers were presented with RCM images of melanocytic lesions. Reviewers evaluated RCM images for image quality, lesion architecture, and cellular details. Reviewers could utilize published descriptors or contribute unpublished terminology to describe lesion attributes. An online meeting was conducted to reach consensus that integrates and defines existing and new RCM descriptive terms. We present a glossary with descriptors of image quality, normal skin morphology, lesion architecture, and cellular details for RCM evaluation of melanocytic lesions. Usefulness of the glossary in RCM diagnosis of melanocytic lesions needs to be assessed. Standardization of terminology is important toward implementation of RCM in the clinical setting.

  7. Complications of rotator cuff surgery—the role of post-operative imaging in patient care

    PubMed Central

    Thakkar, R S; Thakkar, S C; Srikumaran, U; Fayad, L M

    2014-01-01

    When pain or disability occurs after rotator cuff surgery, post-operative imaging is frequently performed. Post-operative complications and expected post-operative imaging findings in the shoulder are presented, with a focus on MRI, MR arthrography (MRA) and CT arthrography. MR and CT techniques are available to reduce image degradation secondary to surgical distortions of native anatomy and implant-related artefacts and to define complications after rotator cuff surgery. A useful approach to image the shoulder after surgery is the standard radiography, followed by MRI/MRA for patients with low “metal presence” and CT for patients who have a higher metal presence. However, for the assessment of patients who have undergone surgery for rotator cuff injuries, imaging findings should always be correlated with the clinical presentation because post-operative imaging abnormalities do not necessarily correlate with symptoms. PMID:24734935

  8. High-energy proton imaging for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prall, Matthias; Durante, Marco; Berger, Thomas

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allowsmore » imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.« less

  9. High-speed pre-clinical brain imaging using pulsed laser diode based photoacoustic tomography (PLD-PAT) system

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a promising biomedical imaging modality for small animal imaging, breast cancer imaging, monitoring of vascularisation, tumor angiogenesis, blood oxygenation, total haemoglobin concentration etc. The existing PAT systems that uses Q-switched Nd:YAG and OPO nanosecond lasers have limitations in clinical applications because they are expensive, non-potable and not suitable for real-time imaging due to their low pulse repetition rate. Low-energy pulsed near-infrared diode laser which are low-cost, compact, and light-weight (<200 grams), can be used as an alternate. In this work, we present a photoacoustic tomography system with a pulsed laser diode (PLD) that can nanosecond pulses with pulse energy 1.3 mJ/pulse at ~803 nm wavelength and 7000 Hz repetition rate. The PLD is integrated inside a single-detector circular scanning geometric system. To verify the high speed imaging capabilities of the PLD-PAT system, we performed in vivo experimental results on small animal brain imaging using this system. The proposed system is portable, low-cost and can provide real-time imaging.

  10. Molecular Imaging of Breast Cancer: Present and future directions

    NASA Astrophysics Data System (ADS)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  11. Clinics in diagnostic imaging (133). Retained placenta from an intra-abdominal pregnancy.

    PubMed

    Win, T; Tang, P H; Lim, T Y

    2011-01-01

    A 29-year-old Indonesian woman presented with abdominal pain seven months after an intra-abdominal pregnancy. Ultrasonography revealed a cystic mass in the pelvis and magnetic resonance imaging showed an umbilical stump within it, indicating a retained placenta. This was removed surgically, and on histology, an infarcted placenta was confirmed.

  12. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  13. MO-DE-303-03: Session on quantitative imaging for assessment of tumor response to radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, S.

    This session will focus on quantitative imaging for assessment of tumor response to radiation therapy. This is a technically challenging method to translate to practice in radiation therapy. In the new era of precision medicine, however, delivering the right treatment, to the right patient, and at the right time, can positively impact treatment choices and patient outcomes. Quantitative imaging provides the spatial sensitivity required by radiation therapy for precision medicine that is not available by other means. In this Joint ESTRO -AAPM Symposium, three leading-edge investigators will present specific motivations for quantitative imaging biomarkers in radiation therapy of esophageal, headmore » and neck, locally advanced non-small cell lung cancer, and hepatocellular carcinoma. Experiences with the use of dynamic contrast enhanced (DCE) MRI, diffusion- weighted (DW) MRI, PET/CT, and SPECT/CT will be presented. Issues covered will include: response prediction, dose-painting, timing between therapy and imaging, within-therapy biomarkers, confounding effects, normal tissue sparing, dose-response modeling, and association with clinical biomarkers and outcomes. Current information will be presented from investigational studies and clinical practice. Learning Objectives: Learn motivations for the use of quantitative imaging biomarkers for assessment of response to radiation therapy Review the potential areas of application in cancer therapy Examine the challenges for translation, including imaging confounds and paucity of evidence to date Compare exemplary examples of the current state of the art in DCE-MRI, DW-MRI, PET/CT and SPECT/CT imaging for assessment of response to radiation therapy Van der Heide: Research grants from the Dutch Cancer Society and the European Union (FP7) Bowen: RSNA Scholar grant.« less

  14. Clinical applications of textural analysis in non-small cell lung cancer.

    PubMed

    Phillips, Iain; Ajaz, Mazhar; Ezhil, Veni; Prakash, Vineet; Alobaidli, Sheaka; McQuaid, Sarah J; South, Christopher; Scuffham, James; Nisbet, Andrew; Evans, Philip

    2018-01-01

    Lung cancer is the leading cause of cancer mortality worldwide. Treatment pathways include regular cross-sectional imaging, generating large data sets which present intriguing possibilities for exploitation beyond standard visual interpretation. This additional data mining has been termed "radiomics" and includes semantic and agnostic approaches. Textural analysis (TA) is an example of the latter, and uses a range of mathematically derived features to describe an image or region of an image. Often TA is used to describe a suspected or known tumour. TA is an attractive tool as large existing image sets can be submitted to diverse techniques for data processing, presentation, interpretation and hypothesis testing with annotated clinical outcomes. There is a growing anthology of published data using different TA techniques to differentiate between benign and malignant lung nodules, differentiate tissue subtypes of lung cancer, prognosticate and predict outcome and treatment response, as well as predict treatment side effects and potentially aid radiotherapy planning. The aim of this systematic review is to summarize the current published data and understand the potential future role of TA in managing lung cancer.

  15. Delayed coma in head injury: consider cerebral fat embolism.

    PubMed

    Metting, Zwany; Rödiger, Lars A; Regtien, Joost G; van der Naalt, Joukje

    2009-09-01

    To describe a case of a young man with delayed coma after mild head injury, suggestive of cerebral fat embolism (CFE). To underline the value of MR imaging in the differential diagnosis of secondary deterioration in mild head injury. A 21-year-old man admitted with mild head injury after a fall with facial fractures and long bone fractures. He was admitted to the intensive care unit and was mechanically ventilated. Weaning was not possible because of desaturations and pulmonary congestion. Low platelet count and anaemia developed. On several time points during his admission cerebral imaging data were obtained. Non-contrast CT on admission was normal while follow-up MRI showed extensive white matter abnormalities. These imaging abnormalities combined with the clinical presentation suggests cerebral fat embolism (CFE) as the most likely cause of secondary deterioration in our patient. In head injured patients with long bone fractures one should consider cerebral fat embolism. When the classical clinical syndrome is not present, MR imaging is warranted for diagnosis and to exclude other causes of secondary deterioration.

  16. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J; Imbergamo, P

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less

  17. Segmentation of prostate biopsy needles in transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Krefting, Dagmar; Haupt, Barbara; Tolxdorff, Thomas; Kempkensteffen, Carsten; Miller, Kurt

    2007-03-01

    Prostate cancer is the most common cancer in men. Tissue extraction at different locations (biopsy) is the gold-standard for diagnosis of prostate cancer. These biopsies are commonly guided by transrectal ultrasound imaging (TRUS). Exact location of the extracted tissue within the gland is desired for more specific diagnosis and provides better therapy planning. While the orientation and the position of the needle within clinical TRUS image are limited, the appearing length and visibility of the needle varies strongly. Marker lines are present and tissue inhomogeneities and deflection artefacts may appear. Simple intensity, gradient oder edge-detecting based segmentation methods fail. Therefore a multivariate statistical classificator is implemented. The independent feature model is built by supervised learning using a set of manually segmented needles. The feature space is spanned by common binary object features as size and eccentricity as well as imaging-system dependent features like distance and orientation relative to the marker line. The object extraction is done by multi-step binarization of the region of interest. The ROI is automatically determined at the beginning of the segmentation and marker lines are removed from the images. The segmentation itself is realized by scale-invariant classification using maximum likelihood estimation and Mahalanobis distance as discriminator. The technique presented here could be successfully applied in 94% of 1835 TRUS images from 30 tissue extractions. It provides a robust method for biopsy needle localization in clinical prostate biopsy TRUS images.

  18. Fluorescence lifetime technique for surgical imaging, guidance and augmented reality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marcu, Laura

    2017-02-01

    The surgeon's limited ability to accurately delineate the tumor margin during surgical interventions is one key challenge in clinical management of cancer. New methods for guiding tumor resection decisions are needed. Numerous studies have shown that tissue autofluorescence properties have the potential to asses biochemical features associates with distinct pathologies in tissue and to distinguish various cancers from normal tissues. However, despite these promising reports, autofluorescence techniques were sparsely adopted in clinical settings. Moreover, when adopted they were primarily used for pre-operative diagnosis rather than guiding interventions. To address this need, we have researched and engineered instrumentation that utilizes label-free fluorescence lifetime contrast to characterize tissue biochemical features in vivo in patients and methodologies conducive to real-time (few seconds) diagnosis of tissue pathologies during surgical procedures. This presentation overviews clinically-compatible multispectral fluorescence lifetime imaging techniques developed in our laboratory and their ability to operate as stand-alone tools, integrated in a biopsy needle and in conjunction with the da Vinci surgical robot. We present pre-clinical and clinical studies in patients that demonstrate the potential of these techniques for intraoperative assessment of brain tumors and head and neck cancer. Current results demonstrate that intrinsic fluorescence signals can provide useful contrast for delineation distinct types of tissues including tumors intraoperatively. Challenges and solutions in the clinical implementation of these techniques are discussed.

  19. The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations.

    PubMed

    Smith, Shannon M; Dworkin, Robert H; Turk, Dennis C; Baron, Ralf; Polydefkis, Michael; Tracey, Irene; Borsook, David; Edwards, Robert R; Harris, Richard E; Wager, Tor D; Arendt-Nielsen, Lars; Burke, Laurie B; Carr, Daniel B; Chappell, Amy; Farrar, John T; Freeman, Roy; Gilron, Ian; Goli, Veeraindar; Haeussler, Juergen; Jensen, Troels; Katz, Nathaniel P; Kent, Jeffrey; Kopecky, Ernest A; Lee, David A; Maixner, William; Markman, John D; McArthur, Justin C; McDermott, Michael P; Parvathenani, Lav; Raja, Srinivasa N; Rappaport, Bob A; Rice, Andrew S C; Rowbotham, Michael C; Tobias, Jeffrey K; Wasan, Ajay D; Witter, James

    2017-07-01

    Valid and reliable biomarkers can play an important role in clinical trials as indicators of biological or pathogenic processes or as a signal of treatment response. Currently, there are no biomarkers for pain qualified by the U.S. Food and Drug Administration or the European Medicines Agency for use in clinical trials. This article summarizes an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials meeting in which 3 potential biomarkers were discussed for use in the development of analgesic treatments: 1) sensory testing, 2) skin punch biopsy, and 3) brain imaging. The empirical evidence supporting the use of these tests is described within the context of the 4 categories of biomarkers: 1) diagnostic, 2) prognostic, 3) predictive, and 4) pharmacodynamic. Although sensory testing, skin punch biopsy, and brain imaging are promising tools for pain in clinical trials, additional evidence is needed to further support and standardize these tests for use as biomarkers in pain clinical trials. The applicability of sensory testing, skin biopsy, and brain imaging as diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for use in analgesic treatment trials is considered. Evidence in support of their use and outlining problems is presented, as well as a call for further standardization and demonstrations of validity and reliability. Copyright © 2017 American Pain Society. All rights reserved.

  20. Breast hematoma complicating anticoagulant therapy: management and literature review.

    PubMed

    Salemis, Nikolaos S

    2012-01-01

    Anticoagulant-induced spontaneous breast hematoma is a very rare clinical entity with only a few cases reported in the literature so far. We describe a case of a spontaneous breast hematoma in a female patient under combined oral anticoagulant and antiplatelet therapy. Physicians should be aware of this possibility in patients under anticoagulant treatment presenting with sudden onset of breast pain and a palpable mass. Repeat imaging is mandatory until complete clinical and imaging resolution of the hematoma. If an abnormality persists, further investigation is needed to exclude an underlying malignancy.

  1. Clinical applications of selected binaural effects.

    PubMed

    Noffsinger, D

    1982-01-01

    Examination was made of the behaviors exhibited on selected binaural tasks by 556 persons with diagnosed peripheral hearing loss or central nervous system damage. The tasks used included loudness balancing (LB), intracranial midline imaging (MI), masking level differences (MLD), and binaural beats (BB). The methods used were chosen for their clinical utility. Loudness balancing and midline imaging were of the most diagnostic value when hearing loss was present. Masking level differences were best at detecting pathology which did not produce hearing loss. None of the techniques were sensitive to cortical damage.

  2. Clinics in diagnostic imaging (178). Wünderlich syndrome and pseudoaneurysm.

    PubMed

    Chung, Raymond; Chawla, Ashish; Peh, Wilfred Cg

    2017-06-01

    Wünderlich syndrome is a rare entity characterised by spontaneous retroperitoneal haemorrhage with renal origin. We present a case of Wünderlich syndrome secondary to clotting dyscrasia in a 64-year-old woman. The patient experienced a second Wünderlich haemorrhagic event with metachronous pseudoaneurysm formation, which was likely secondary to the large subcapsular haematoma stripping the renal capsule and tearing the cortical arteries. Selective pseudoaneurysm embolisations were successfully performed on both occasions. This clinical entity, its imaging differential diagnoses and management are discussed. Copyright: © Singapore Medical Association.

  3. Radiologic-pathologic findings of solitary fibrous tumor of the prostate presenting as a large mass with delayed filling-in on MRI.

    PubMed

    Bhargava, Puneet; Lee, Jean Hwa; Gupta, Saurabh; Seyal, Adeel Rahim; Vakar-Lopez, Funda; Moshiri, Mariam; Dighe, Manjiri Kiran

    2012-01-01

    We report a case of a solitary fibrous tumor of prostate presenting with urinary retention and a large prostate mass. We describe the clinical presentation, magnetic resonance imaging findings, and histopathology of this rare, benign tumor. Although clinical and radiologic appearances embrace various differential diagnoses including sarcoma, this mass was confirmed by histologic analysis following surgical resection. We report this rare, benign tumor to help the radiologist suggest the diagnosis when presented with a similar case.

  4. Implementation of a computer-aided detection tool for quantification of intracranial radiologic markers on brain CT images

    NASA Astrophysics Data System (ADS)

    Aghaei, Faranak; Ross, Stephen R.; Wang, Yunzhi; Wu, Dee H.; Cornwell, Benjamin O.; Ray, Bappaditya; Zheng, Bin

    2017-03-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a form of hemorrhagic stroke that affects middle-aged individuals and associated with significant morbidity and/or mortality especially those presenting with higher clinical and radiologic grades at the time of admission. Previous studies suggested that blood extravasated after aneurysmal rupture was a potentially clinical prognosis factor. But all such studies used qualitative scales to predict prognosis. The purpose of this study is to develop and test a new interactive computer-aided detection (CAD) tool to detect, segment and quantify brain hemorrhage and ventricular cerebrospinal fluid on non-contrasted brain CT images. First, CAD segments brain skull using a multilayer region growing algorithm with adaptively adjusted thresholds. Second, CAD assigns pixels inside the segmented brain region into one of three classes namely, normal brain tissue, blood and fluid. Third, to avoid "black-box" approach and increase accuracy in quantification of these two image markers using CT images with large noise variation in different cases, a graphic User Interface (GUI) was implemented and allows users to visually examine segmentation results. If a user likes to correct any errors (i.e., deleting clinically irrelevant blood or fluid regions, or fill in the holes inside the relevant blood or fluid regions), he/she can manually define the region and select a corresponding correction function. CAD will automatically perform correction and update the computed data. The new CAD tool is now being used in clinical and research settings to estimate various quantitatively radiological parameters/markers to determine radiological severity of aSAH at presentation and correlate the estimations with various homeostatic/metabolic derangements and predict clinical outcome.

  5. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    PubMed

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on regulatory compliance in addition to documentation of potential safety and efficacy by various investigators.

  6. Externally Acquired Radiological Data for the Clinical Routine - A Review of the Reimbursement Situation in Germany.

    PubMed

    Schreyer, Andreas G; Steinhäuser, René T; Rosenberg, Britta

    2018-02-07

     Interdisciplinary radiological conferences and boards can improve therapeutic pathways. Because of the reinterpretation and presentation of external image data, which already was read, an additional workload is created which is currently not considered by health care providers. In this review we discuss the ongoing basics and possibilities in health economy for a radiological second opinion for the outpatient and inpatient sector in Germany.  Based on up-to-date literature and jurisdiction, we discuss the most important questions for the reimbursement for second opinions and conference presentations of external image data in an FAQ format. Additionally, we focus on the recently introduced E-Health law accordingly.  Radiological services considering second opinion or board presentation of externally acquired image data are currently not adequately covered by health care providers. In particular, there is no reimbursement possibility for the inpatient sector. Only patients with private insurance or privately paid second opinions can be charged when these patients visit the radiologist directly.  Currently there is no adequate reimbursement possibility for a radiological second opinion or image demonstrations in clinical conferences. It will be essential to integrate adequate reimbursement by health care providers in the near future because of the importance of radiology as an essential diagnostic and therapeutic medical partner.   · Currently there is no reimbursement for image interpretation and presentation in boards.. · Second opinions can only be reimbursed for patients with private insurance or privately recompensed.. · The E-Health law allows reimbursement for tele-counsel in very complex situations.. · It will be crucial to integrate radiological second opinion in future reimbursement policies by health care providers.. · Schreyer AG, Steinhäuser RT, Rosenberg B. Externally Acquired Radiological Data for the Clinical Routine - A Review of the Reimbursement Situation in Germany. Fortschr Röntgenstr 2018; DOI: 10.1055/s-0044-101552. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Optoacoustic imaging of tissue blanching during photodynamic therapy of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Viator, John A.; Paltauf, Guenther

    2000-05-01

    Esophageal cancer patients often present a highly inflamed esophagus at the time of treatment by photodynamic therapy. Immediately after treatment, the inflamed vessels have been shut down and the esophagus presents a white surface. Optoacoustic imaging via an optical fiber device can provide a depth profile of the blanching of inflammation. Such a profile may be an indicator of the depth of treatment achieved by the PDT. Our progress toward developing this diagnostic for use in our clinical PDT treatments of esophageal cancer patients is presented.

  8. Retroperitoneal tumour radiotherapy: clinical improvements using kilovoltage cone beam computed tomography.

    PubMed

    Juan-Senabre, Xavier J; Ferrer-Albiach, Carlos; Rodríguez-Cordón, Marta; Santos-Serra, Agustín; López-Tarjuelo, Juan; Calzada-Feliu, Salvador

    2009-04-01

    We present a clinical case of a patient diagnosed with a retroperitoneal sarcoma, which received preoperative treatment with daily verification via computed tomography obtained with kilovoltage cone beam. We compare the benefit of this treatment compared to other conventional treatment without image guiding, reporting quantitative results.

  9. MR/PET Imaging of the Cardiovascular System.

    PubMed

    Robson, Philip M; Dey, Damini; Newby, David E; Berman, Daniel; Li, Debiao; Fayad, Zahi A; Dweck, Marc R

    2017-10-01

    Cardiovascular imaging has largely focused on identifying structural, functional, and metabolic changes in the heart. The ability to reliably assess disease activity would have major potential clinical advantages, including the identification of early disease, differentiating active from stable conditions, and monitoring disease progression or response to therapy. Positron emission tomography (PET) imaging now allows such assessments of disease activity to be acquired in the heart, whereas magnetic resonance (MR) scanning provides detailed anatomic imaging and tissue characterization. Hybrid MR/PET scanners therefore combine the strengths of 2 already powerful imaging modalities. Simultaneous acquisition of the 2 scans also provides added benefits, including improved scanning efficiency, motion correction, and partial volume correction. Radiation exposure is lower than with hybrid PET/computed tomography scanning, which might be particularly beneficial in younger patients who may need repeated scans. The present review discusses the expanding clinical literature investigating MR/PET imaging, highlights its advantages and limitations, and explores future potential applications. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  11. RADIOLOGY EDUCATION: A PILOT STUDY TO ASSESS KNOWLEDGE OF MEDICAL STUDENTS REGARDING IMAGING IN TRAUMA.

    PubMed

    Siddiqui, Saad; Saeed, Muhammad Anwar; Shah, Noreen; Nadeem, Naila

    2015-01-01

    Trauma remains one of the most frequent presentations in emergency departments. Imaging has established role in setting of acute trauma with ability to identify potentially fatal conditions. Adequate knowledge of health professionals regarding trauma imaging is vital for improved healthcare. In this work we try to assess knowledge of medical students regarding imaging in trauma as well as identify most effective way of imparting radiology education. This cross-sectional pilot study was conducted at Aga Khan University Medical College & Khyber Girls Medical College, to assess knowledge of medical students regarding imaging protocols practiced in initial management of trauma patients. Only 40 & 20% respectively were able to identify radiographs included in trauma series. Very few had knowledge of correct indication for Focused abdominal sonography in trauma. Clinical radiology rotation was reported as best way of learning radiology. Change in curricula & restructuring of clinical radiology rotation structure is needed to improve knowledge regarding Trauma imaging.

  12. GPU accelerated optical coherence tomography angiography using strip-based registration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Heisler, Morgan; Lee, Sieun; Mammo, Zaid; Jian, Yifan; Ju, Myeong Jin; Miao, Dongkai; Raposo, Eric; Wahl, Daniel J.; Merkur, Andrew; Navajas, Eduardo; Balaratnasingam, Chandrakumar; Beg, Mirza Faisal; Sarunic, Marinko V.

    2017-02-01

    High quality visualization of the retinal microvasculature can improve our understanding of the onset and development of retinal vascular diseases, which are a major cause of visual morbidity and are increasing in prevalence. Optical Coherence Tomography Angiography (OCT-A) images are acquired over multiple seconds and are particularly susceptible to motion artifacts, which are more prevalent when imaging patients with pathology whose ability to fixate is limited. The acquisition of multiple OCT-A images sequentially can be performed for the purpose of removing motion artifact and increasing the contrast of the vascular network through averaging. Due to the motion artifacts, a robust registration pipeline is needed before feature preserving image averaging can be performed. In this report, we present a novel method for a GPU-accelerated pipeline for acquisition, processing, segmentation, and registration of multiple, sequentially acquired OCT-A images to correct for the motion artifacts in individual images for the purpose of averaging. High performance computing, blending CPU and GPU, was introduced to accelerate processing in order to provide high quality visualization of the retinal microvasculature and to enable a more accurate quantitative analysis in a clinically useful time frame. Specifically, image discontinuities caused by rapid micro-saccadic movements and image warping due to smoother reflex movements were corrected by strip-wise affine registration estimated using Scale Invariant Feature Transform (SIFT) keypoints and subsequent local similarity-based non-rigid registration. These techniques improve the image quality, increasing the value for clinical diagnosis and increasing the range of patients for whom high quality OCT-A images can be acquired.

  13. Clinical experiences with an ASP model backup archive for PACS images

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Cao, Fei; Documet, Luis; Huang, H. K.; Muldoon, Jean

    2003-05-01

    Last year we presented a Fault-Tolerant Backup Archive using an Application Service Provider (ASP) model for disaster recovery. The purpose of this paper is to update and provide clinical experiences related towards implementing the ASP model archive solution for short-term backup of clinical PACS image data as well as possible applications other than disaster recovery. The ASP backup archive provides instantaneous, automatic backup of acquired PACS image data and instantaneous recovery of stored PACS image data all at a low operational cost and with little human intervention. This solution can be used for a variety of scheduled and unscheduled downtimes that occur on the main PACS archive. A backup archive server with hierarchical storage was implemented offsite from the main PACS archive location. Clinical data from a hospital PACS is sent to this ASP storage server in parallel to the exams being archived in the main server. Initially, connectivity between the main archive and the ASP storage server is established via a T-1 connection. In the future, other more cost-effective means of connectivity will be researched such as the Internet 2. We have integrated the ASP model backup archive with a clinical PACS at Saint John's Health Center and has been operational for over 6 months. Pitfalls encountered during integration with a live clinical PACS and the impact to clinical workflow will be discussed. In addition, estimations of the cost of establishing such a solution as well as the cost charged to the users will be included. Clinical downtime scenarios, such as a scheduled mandatory downtime and an unscheduled downtime due to a disaster event to the main archive, were simulated and the PACS exams were sent successfully from the offsite ASP storage server back to the hospital PACS in less than 1 day. The ASP backup archive was able to recover PACS image data for comparison studies with no complex operational procedures. Furthermore, no image data loss was encountered during the recovery. During any clinical downtime scenario, the ASP backup archive server can repopulate a clinical PACS quickly with the majority of studies available for comparison during the interim until the main PACS archive is fully recovered.

  14. Towards the use of OCT angiography in clinical dermatology

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Choi, Woo June; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography (OCT) is a popular imaging technique used in ophthalmology, and on the way to become clinically viable alternative in dermatology due to its capability of acquiring histopathology level images of in vivo tissue, noninvasively. In this study, we demonstrate the capabilities of OCT-based angiography (OMAG) in detecting high-resolution, volumetric structural and microvascular features of in vivo human skin with various conditions using a swept source OCT system that operates on a central wavelength of 1310 nm with an A-line rate of 100 kHz. OMAG images provide detailed in vivo visualization of microvasculature of abnormal human skin conditions from face, chest and belly. Moreover, the progress of wound healing on human skin from arm is monitored during longitudinal wound healing process. The presented results promise the clinical use of OCT angiography in treatment of prevalent cutaneous diseases within human skin, in vivo.

  15. Clinical Applications of Near-infrared Diffuse Correlation Spectroscopy and Tomography for Tissue Blood Flow Monitoring and Imaging

    PubMed Central

    Shang, Yu; Li, Ting; Yu, Guoqiang

    2017-01-01

    Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219

  16. Real-time monitoring of ultrasound imaging of clinical high intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Ter Haar, Gail; Kennedy, James; Leslie, Tom; Wu, Feng

    2005-09-01

    Currently, many clinical devices use the change in gray scale seen on a real-time ultrasound image for the assessment of the success of HIFU treatment. It has been shown previously that, for a single HIFU lesion, the presence of gray-scale change was indicative of successful ablation in 100% of cases for 1.6-MHz beams, and in 90% of cases for 0.8-MHz exposures. The absence of gray-scale change was a reliable indicator of lack of ablative damage only for 0.8-MHz exposures (80%) in 80% of exposures using 1.6-MHz beams there was a lesion even in the absence of gray-scale change. This study has been extended to more realistic clinical treatment protocols. The image appearance has been studied for the different volume ablation techniques that are used in the treatment of liver and kidney cancer. The results will be presented.

  17. Ultrasound of skeletal muscle injury.

    PubMed

    Koh, Eamon Su Chun; McNally, Eugene G

    2007-06-01

    The professional and recreational demands of modern society make the treatment of muscle injury an increasingly important clinical problem, particularly in the athletic population. In the elite athlete, significant financial and professional pressures may also exist that emphasize the need for accurate diagnosis and treatment. With new advances in ultrasound technology, images of exquisite detail allow diagnosis of muscle injury that matches the accuracy of magnetic resonance imaging (MRI). Furthermore, the benefits of real-time and Doppler imaging, ability to perform interventional procedures, and relative cost benefits compared with MRI place ultrasound at the forefront for investigation for these injuries in many circumstances. Muscle injury may be divided into acute and chronic pathology, with muscle strain injury the most common clinical problem presenting to sports physicians. This article reviews the spectrum of acute and chronic muscle injuries, with particular attention to clinical features and some common or important muscle strain injuries.

  18. Boomerang sign: Clinical significance of transient lesion in splenium of corpus callosum.

    PubMed

    Malhotra, Hardeep Singh; Garg, Ravindra Kumar; Vidhate, Mukund R; Sharma, Pawan Kumar

    2012-04-01

    Transient signal abnormality in the splenium of corpus callosum on magnetic resonance imaging (MRI) is occasionally encountered in clinical practice. It has been reported in various clinical conditions apart from patients with epilepsy. We describe 4 patients with different etiologies presenting with signal changes in the splenium of corpus callosum. They were diagnosed as having progressive myoclonic epilepsy (case 1), localization-related epilepsy (case 2), hemicrania continua (case 3), and postinfectious parkinsonism (case 4). While three patients had complete involvement of the splenium on diffusion-weighted image ("boomerang sign"), the patient having hemicrania continua showed semilunar involvement ("mini-boomerang") on T2-weighted and FLAIR image. All the cases had noncontiguous involvement of the splenium. We herein, discuss these cases with transient splenial involvement and stress that such patients do not need aggressive diagnostic and therapeutic interventions. An attempt has been made to review the literature regarding the pathophysiology, etiology, and outcome of such lesions.

  19. PACS in the Utrecht University Hospital: final conclusions of the clinical evaluation

    NASA Astrophysics Data System (ADS)

    Wilmink, J. B.; ter Haar Romeny, Bart M.; Barneveld Binkhuysen, Frits H.; Achterberg, A. J.; Zuiderveld, Karel J.; Calkoen, P.; Kouwenberg, Jef M.

    1990-08-01

    In the past three years, a clinical evaluation of a PACS has been performed in the Utrecht University Hospital as part of the Dutch PACS project. The clinical evaluation focussed on the following aspects: technical evaluation of the prototype PACS equipment coupled to the HIS; diagnostic accuracy studies; studies concerning the impact on the organization of the radiology-department and the referring wards; and cost-savings analysis. Some of the results of these subprojects have already been presented at previous SPIE conferences. In this paper the general condusions are presented about the usefulness of the evaluated PAC-System in the daily routine of radiology department and clinic. By making available the images of radiological examinations fast, complete, reliable and continously on the ward, concrete improvements with regard to the current process could be realized. The possibilities of PACS caused an increasing enthousiasm among the clinicians. By the easier access to all images of their patients during 24 hours/day, they saw more images on the day of the examination and images could be more easily used at consultations of other specialists. The overall conclusion is positive, but a lot of work has to be done to transform PACS from an experimental setup into a routine production system on which a flimless hospital can be based. A complete PACS needs an inteffigent Image Management System, which indudes prefetching algorithms based on data from the Hospital Information System and automated procedures for removing obsolete images from the local buffers in the workstations. As yet PACS is very expensive, and the direct savings in the hospital cannot compensate for the high costs of investment. Possibly PACS can contribute to a shorter stay of patients in the hospital. This will lead to savings for government and health insurance companies and they can be expected to contribute to PAS implementation studies.

  20. Body Image of Women Submitted to Breast Cancer Treatment

    PubMed

    Guedes, Thais Sousa Rodrigues; Dantas de Oliveira, Nayara Priscila; Holanda, Ayrton Martins; Reis, Mariane Albuquerque; Silva, Clécia Patrocínio da; Rocha e Silva, Bárbara Layse; Cancela, Marianna de Camargo; de Souza, Dyego Leandro Bezerra

    2018-06-25

    Background: The study of body image includes the perception of women regarding the physical appearance of their own body. The objective of the present study was to verify the prevalence of body image dissatisfaction and its associated factors in women submitted to breast cancer treatment. Methods: A cross-sectional study carried out with 103 female residents of the municipality of Natal (Northeast Brazil), diagnosed with breast cancer who had undergone cancer treatment for at least 12 months prior to the study, and remained under clinical monitoring. The variable body image was measured through the validated Body Image Scale (BIS). Socioeconomic variables and clinical history were also collected through an individual interview with each participant. The Pearson’s chi-squared test (Fisher’s Exact) was utilized for bivariate analysis, calculating the prevalence ratio with 95% confidence interval. Poisson regression with robust variance was utilized for multivariate analysis. The statistical significance considered was 0.05. Results: The prevalence of body image dissatisfaction was 74.8% CI (65%-82%). Statistically significant associations were observed between body image and multi-professional follow-up (p=0.009) and return to employment after treatment (p=0.022). Conclusion: It was concluded that women who reported employment after cancer treatment presented more alterations in self-perception concerning their appearance. Patients who did not receive multi-professional follow-up reported negative body image, evidencing the need for strategies that increase and improve healthcare, aiming to meet the demands of this population. Creative Commons Attribution License

  1. Morphologic 3D scanning of fallopian tubes to assist ovarian cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Madore, Wendy-Julie; De Montigny, Etienne; Deschênes, Andréanne; Benboujja, Fouzi; Leduc, Mikael; Mes-Masson, Anne-Marie; Provencher, Diane M.; Rahimi, Kurosh; Boudoux, Caroline; Godbout, Nicolas

    2016-02-01

    Pathological evaluation of the fallopian tubes is an important diagnostic result but tumors can be missed using routine approaches. As the majority of high-grade serous ovarian cancers are now believed to originate in the fallopian tubes, pathological examination should include in a thorough examination of the excised ovaries and fallopian tubes. We present an dedicated imaging system for diagnostic exploration of human fallopian tubes. This system is based on optical coherence tomography (OCT), a laser imaging modality giving access to sub- epithelial tissue architecture. This system produces cross-sectional images up to 3 mm in depth, with a lateral resolution of ≍15μm and an axial resolution of ≍12μm. An endoscopic single fiber probe was developed to fit in a human fallopian tube. This 1.2 mm probe produces 3D volume data of the entire inner tube within a few minutes. To demonstrate the clinical potential of OCT for lesion identification, we studied 5 different ovarian lesions and healthy fallopian tubes. We imaged 52 paraffin-embedded human surgical specimens with a benchtop system and compared these images with histology slides. We also imaged and compared healthy oviducts from 3 animal models to find one resembling the human anatomy and to develop a functional ex vivo imaging procedure with the endoscopic probe. We also present an update on an ongoing clinical pilot study on women undergoing prophylactic or diagnostic surgery in which we image ex vivo fallopian tubes with the endoscopic probe.

  2. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied.more » The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize performance in clinical images as well as the sensitivity to clinical image quality.« less

  3. New Trends and Possibilities in Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, H.A.E.; Csernay, L

    New Trends and Possibilities in Nuclear Medicine provides an examination of the latest developments in the field of nuclear medicine. This volume reviews advances made in imaging techniques and presents a detailed overview of many new imaging procedures and their clinical applications, e.g.,the oncological applications of immunoscintigraphy. This book also elucidates the various diagnostic capabilities of nuclear imaging in a wide range of disciplines, including cardiology, neurology, pulmonology, gastroenterology, nephrology, oncology, and hematology.

  4. Diagnostic imaging of infertility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winfield, A.C.; Wentz, A.C.

    1987-01-01

    This text presents a review of all the imaging modalities available in the diagnosis of infertility. This book integrates the perspectives of experts in ob/gyn, radiology, reproductive endocrinology, and urology. It's a one-of-a-kind ''how to'' guide to hysterosalpinography and infertility evaluation, providing complete clinical information on the techniques, pitfalls, problems encountered and differential diagnosis. Detailed descriptions accompany numerous high-quality illustrations to help correlate findings and give meaning to the radiographic and ultrasound images.

  5. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    NASA Astrophysics Data System (ADS)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey Samsonov (University of Wisconsin-Madison, USA) demonstrated new image reconstruction methods for accelerated quantitative parameter mapping and magnetic resonance angiography. Finally, we would like to thank the scientific committee, the local organizing committee and the National Research Tomsk State University for giving an opportunity to share scientific ideas and new developments at the conference and the Russian Science Foundation (project № 14-45-00040) for financial support.

  6. Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future.

    PubMed

    Iima, Mami; Le Bihan, Denis

    2016-01-01

    The concept of diffusion magnetic resonance (MR) imaging emerged in the mid-1980s, together with the first images of water diffusion in the human brain, as a way to probe tissue structure at a microscopic scale, although the images were acquired at a millimetric scale. Since then, diffusion MR imaging has become a pillar of modern clinical imaging. Diffusion MR imaging has mainly been used to investigate neurologic disorders. A dramatic application of diffusion MR imaging has been acute brain ischemia, providing patients with the opportunity to receive suitable treatment at a stage when brain tissue might still be salvageable, thus avoiding terrible handicaps. On the other hand, it was found that water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the nerve fibers. This feature can be exploited to produce stunning maps of the orientation in space of the white matter tracts and brain connections in just a few minutes. Diffusion MR imaging is now also rapidly expanding in oncology, for the detection of malignant lesions and metastases, as well as monitoring. Water diffusion is usually largely decreased in malignant tissues, and body diffusion MR imaging, which does not require any tracer injection, is rapidly becoming a modality of choice to detect, characterize, or even stage malignant lesions, especially for breast or prostate cancer. After a brief summary of the key methodological concepts beyond diffusion MR imaging, this article will give a review of the clinical literature, mainly focusing on current outstanding issues, followed by some innovative proposals for future improvements. © RSNA, 2016

  7. Comparison of Intraoperative Portable CT Scanners in Skull Base and Endoscopic Sinus Surgery: Single Center Case Series

    PubMed Central

    Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.

    2011-01-01

    Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270

  8. Adult congenital heart disease imaging with second-generation dual-source computed tomography: initial experiences and findings.

    PubMed

    Ghoshhajra, Brian B; Sidhu, Manavjot S; El-Sherief, Ahmed; Rojas, Carlos; Yeh, Doreen Defaria; Engel, Leif-Christopher; Liberthson, Richard; Abbara, Suhny; Bhatt, Ami

    2012-01-01

    Adult congenital heart disease patients present a unique challenge to the cardiac imager. Patients may present with both acute and chronic manifestations of their complex congenital heart disease and also require surveillance for sequelae of their medical and surgical interventions. Multimodality imaging is often required to clarify their anatomy and physiology. Radiation dose is of particular concern in these patients with lifelong imaging needs for their chronic disease. The second-generation dual-source scanner is a recently available advanced clinical cardiac computed tomography (CT) scanner. It offers a combination of the high-spatial resolution of modern CT, the high-temporal resolution of dual-source technology, and the wide z-axis coverage of modern cone-beam geometry CT scanners. These advances in technology allow novel protocols that markedly reduce scan time, significantly reduce radiation exposure, and expand the physiologic imaging capabilities of cardiac CT. We present a case series of complicated adult congenital heart disease patients imaged by the second-generation dual-source CT scanner with extremely low-radiation doses and excellent image quality. © 2012 Wiley Periodicals, Inc.

  9. Isolated gallbladder injury in a case of blunt abdominal trauma.

    PubMed

    Birn, Jeffrey; Jung, Melissa; Dearing, Mark

    2012-04-01

    The diagnosis of blunt injury to the gallbladder may constitute a significant challenge to the diagnostician. There is often a delay in presentation with non-specific clinical symptoms. In the absence of reliable clinical symptoms, diagnostic imaging becomes an invaluable tool in the rapid identification of gallbladder injury. We present a case of isolated gallbladder injury following blunt abdominal trauma which was diagnosed by computed tomography and subsequently confirmed by cholecystectomy.

  10. An investigation into the drivers of avolition in schizophrenia.

    PubMed

    Suri, Gaurav; Lavaysse, Lindsey M; Young, Gerald; Moodie, Craig; Tersakyan, Alen; Gross, James J; Gard, David E

    2018-03-01

    Over a century of research has documented that avolition is a core symptom in schizophrenia. However, the drivers of avolition remain unclear. Conceptually, there are at least two potential mutually compatible drivers that could cause avolition in schizophrenia. First, people with schizophrenia might have differences in preferences that result in less goal-directed behavior than non-clinical populations (preference-differences). Second, people with schizophrenia might have difficulty translating their preferences into manifest behavior at rates similar to non-clinical populations (psychological-inertia). In the present work, we modified and validated a well-validated paradigm from the motivation/decision making literature to compare levels of preference-differences and psychological-inertia. To measure preference-differences, people with and without schizophrenia choose between a lower-valenced and higher-valenced image. We measured the rate at which the normatively lower-valenced image was preferred. To measure psychological-inertia, both groups were given the opportunity to volitionally switch from a lower-valenced image and view a higher-valenced image. Contrary to expectations, people with schizophrenia did not differ on either preference-differences or psychological-inertia. Statistical analysis revealed that the possibility of a Type II error for even a weak effect was small. The present data suggest new avenues for research investigating mechanisms underlying avolition and clinical interventions targeting avolition in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  12. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less

  13. Automated characterization of perceptual quality of clinical chest radiographs: Validation and calibration to observer preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Lin, Yuan; Choudhury, Kingshuk R.

    Purpose: The authors previously proposed an image-based technique [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] to assess the perceptual quality of clinical chest radiographs. In this study, an observer study was designed and conducted to validate the output of the program against rankings by expert radiologists and to establish the ranges of the output values that reflect the acceptable image appearance so the program output can be used for image quality optimization and tracking. Methods: Using an IRB-approved protocol, 2500 clinical chest radiographs (PA/AP) were collected from our clinical operation. The images were processed through our perceptual qualitymore » assessment program to measure their appearance in terms of ten metrics of perceptual image quality: lung gray level, lung detail, lung noise, rib–lung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm–lung contrast, and subdiaphragm area. From the results, for each targeted appearance attribute/metric, 18 images were selected such that the images presented a relatively constant appearance with respect to all metrics except the targeted one. The images were then incorporated into a graphical user interface, which displayed them into three panels of six in a random order. Using a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions, each of five participating attending chest radiologists was tasked to spatially order the images based only on the targeted appearance attribute regardless of the other qualities. Once ordered, the observer also indicated the range of image appearances that he/she considered clinically acceptable. The observer data were analyzed in terms of the correlations between the observer and algorithmic rankings and interobserver variability. An observer-averaged acceptable image appearance was also statistically derived for each quality attribute based on the collected individual acceptable ranges. Results: The observer study indicated that, for each image quality attribute, the averaged observer ranking strongly correlated with the algorithmic ranking (linear correlation coefficient R > 0.92), with highest correlation (R = 1) for lung gray level and the lowest (R = 0.92) for mediastinum noise. There was a strong concordance between the observers in terms of their rankings (i.e., Kendall’s tau agreement > 0.84). The observers also generally indicated similar tolerance and preference levels in terms of acceptable ranges, as 85% of the values were close to the overall tolerance or preference levels and the differences were smaller than 0.15. Conclusions: The observer study indicates that the previously proposed technique provides a robust reflection of the perceptual image quality in clinical images. The results established the range of algorithmic outputs for each metric that can be used to quantitatively assess and qualify the appearance quality of clinical chest radiographs.« less

  14. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  15. Three-Dimensional Photoacoustic Endoscopic Imaging of the Rabbit Esophagus

    PubMed Central

    Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy. PMID:25874640

  16. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    PubMed

    Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  17. Evaluation of a New Motion-correction Algorithm Using On-rigid Registration in Respiratory-gated PET/CT Images of Liver Tumors.

    PubMed

    Wagatsuma, Kei; Osawa, Tatsufumi; Yokokawa, Naoki; Miwa, Kenta; Oda, Keiichi; Kudo, Yoshiro; Unno, Yasushi; Ito, Kimiteru; Ishii, Kenji

    2016-01-01

    The present study aimed to determine the qualitative and quantitative accuracy of the Q.Freeze algorithm in PET/CT images of liver tumors. A body phantom and hot spheres representing liver tumors contained 5.3 and 21.2 kBq/mL of a solution containing 18 F radioactivity, respectively. The phantoms were moved in the superior-inferior direction at a motion displacement of 20 mm. Conventional respiratory-gated (RG) and Q.Freeze images were sorted into 6, 10, and 13 phase-groups. The SUV ave was calculated from the background of the body phantom, and the SUV max was determined from the hot spheres of the liver tumors. Three patients with four liver tumors were also clinically assessed by whole-body and RG PET. The RG and Q.Freeze images derived from the clinical study were also sorted into 6, 10 and 13 phase-groups. Liver signal-to-noise ratio (SNR) and SUV max were determined from the RG and Q.Freeze clinical images. The SUV ave of Q.Freeze images was the same as those derived from the body phantom using RG. The liver SNR improved with Q.Freeze, and the SUVs max was not overestimated when Q.Freeze was applied in both the phantom and clinical studies. Q.Freeze did not degrade the liver SNR and SUV max even though the phase number was larger. Q.Freeze delivered qualitative and quantitative motion correction than conventional RG imaging even in 10-phase groups.

  18. Review of Telemicrobiology

    PubMed Central

    Rhoads, Daniel D.; Mathison, Blaine A.; Bishop, Henry S.; da Silva, Alexandre J.; Pantanowitz, Liron

    2016-01-01

    Context Microbiology laboratories are continually pursuing means to improve quality, rapidity, and efficiency of specimen analysis in the face of limited resources. One means by which to achieve these improvements is through the remote analysis of digital images. Telemicrobiology enables the remote interpretation of images of microbiology specimens. To date, the practice of clinical telemicrobiology has not been thoroughly reviewed. Objective Identify the various methods that can be employed for telemicrobiology, including emerging technologies that may provide value to the clinical laboratory. Data Sources Peer-reviewed literature, conference proceedings, meeting presentations, and expert opinions pertaining to telemicrobiology have been evaluated. Results A number of modalities have been employed for telemicroscopy including static capture techniques, whole slide imaging, video telemicroscopy, mobile devices, and hybrid systems. Telemicrobiology has been successfully implemented for applications including routine primary diagnois, expert teleconsultation, and proficiency testing. Emerging areas include digital culture plate reading, mobile health applications and computer-augmented analysis of digital images. Conclusions Static image capture techniques to date have been the most widely used modality for telemicrobiology, despite the fact that other newer technologies are available and may produce better quality interpretations. Increased adoption of telemicrobiology offers added value, quality, and efficiency to the clinical microbiology laboratory. PMID:26317376

  19. Prestructural cartilage assessment using MRI.

    PubMed

    Link, Thomas M; Neumann, Jan; Li, Xiaojuan

    2017-04-01

    Cartilage loss is irreversible, and to date, no effective pharmacotherapies are available to protect or regenerate cartilage. Quantitative prestructural/compositional MR imaging techniques have been developed to characterize the cartilage matrix quality at a stage where abnormal findings are early and potentially reversible, allowing intervention to halt disease progression. The goal of this article is to critically review currently available technologies, present the basic concept behind these techniques, but also to investigate their suitability as imaging biomarkers including their validity, reproducibility, risk prediction and monitoring of therapy. Moreover, we highlighted important clinical applications. This review article focuses on the currently most relevant and clinically applicable technologies, such as T2 mapping, T2*, T1ρ, delayed gadolinium enhanced MRI of cartilage (dGEMRIC), sodium imaging and glycosaminoglycan chemical exchange saturation transfer (gagCEST). To date, most information is available for T2 and T1ρ mapping. dGEMRIC has also been used in multiple clinical studies, although it requires Gd contrast administration. Sodium imaging and gagCEST are promising technologies but are dependent on high field strength and sophisticated software and hardware. 5 J. Magn. Reson. Imaging 2017;45:949-965. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Age-adjusted versus clinical probability-adjusted D-dimer to exclude pulmonary embolism.

    PubMed

    Takach Lapner, Sarah; Stevens, Scott M; Woller, Scott C; Snow, Gregory; Kearon, Clive

    2018-05-05

    A low D-dimer can exclude suspected pulmonary embolism (PE) in cases with low or intermediate clinical probability of disease. Yet D-dimer is nonspecific, so many cases without PE require imaging. D-dimer's specificity is improved by increasing the threshold for a positive test with age (age × 10 ng/mL; age-adjusted D-dimer; AADD) or clinical probability of PE (1000 ng/mL if low and 500 ng/mL if intermediate clinical probability; clinical probability-adjusted D-dimer; CPADD). It is unclear which approach is preferable. We report the sensitivity, specificity and negative predictive value (NPV) of AADD compared to CPADD in suspected PE. A retrospective cohort of 3500 consecutive cases imaged for suspected PE at two U.S. emergency departments was assembled. We analyzed cases with low or intermediate clinical probability of PE (Revised Geneva Score) who had a D-dimer. The outcome was acute PE on imaging at presentation. Of the 3500 cases, 1745 were eligible. 37% were low, and 63% were intermediate clinical probability of PE. PE was present in 145 (8.3%) cases. Sensitivity of CPADD was 87.5% vs. 96.6% for AADD (difference 9.1%; 95% CI 4.3% to 14.0%). NPV of CPADD was 97.1% vs. 99.0% for AADD (difference 1.9%; 95% CI, 0.7% to 3.1%). Specificity of CPADD was 37.5% vs. 30.2% for AADD (difference -7.3%; 95% CI -9.4% to -5.1%). D-dimer was negative in 35.4% of cases using CPADD vs. 28.0% using AADD. CPADD modestly improved the specificity of D-dimer, but had a lower NPV than AADD. AADD appears preferable in this analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Imaging of Dentoalveolar and Jaw Trauma.

    PubMed

    Alimohammadi, Reyhaneh

    2018-01-01

    Prior to the invention of cone beam CT, use of 2-D plain film imaging for trauma involving the mandible was common practice, with CT imaging opted for in cases of more complex situations, especially in the maxilla and related structures. Cone beam CT has emerged as a reasonable and reliable alternative considering radiation dosage, image quality, and comfort for the patient. This article presents an overview of the patterns of dental and maxillofacial fractures using conventional and advanced imaging techniques illustrated with multiple clinical examples selected from the author's oral and maxillofacial radiology practice database. Published by Elsevier Inc.

  2. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    PubMed

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  3. Visual tracking for multi-modality computer-assisted image guidance

    NASA Astrophysics Data System (ADS)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  4. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  5. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  6. Imaging of the Unstable Shoulder

    PubMed Central

    Baudi, Paolo; Rebuzzi, Manuela; Matino, Giovanni; Catani, Fabio

    2017-01-01

    Background: Unstable shoulder can occur in different clinical scenarios with a broad spectrum of symptoms and presentations: first-time (or recurrent) traumatic acute shoulder anterior dislocation or chronic anterior instability after repeated dislocations. Imaging in unstable shoulder is fundamental for choosing the right treatment preventing recurrence. The goal of imaging depends on clinical scenario and patient characteristics. Method: Careful selection and evaluation of the imaging procedures is therefore essential to identify, characterize and quantify the lesions. Proper imaging in unstable shoulder cases is critical to the choice of treatment to prevent recurrence, and to plan surgical intervention. Results: In acute setting, radiographs have to roughly detect and characterize the bone defects present. At about 7 days, it is recommended to perform a MR to demonstrate lesions to labrum and/or ligaments and bone defects: in acute setting, the MRA is not necessary, because of effusion and hemarthrosis that behave as the contrast medium. In recurrence, it is fundamental not only to detect lesions but characterize them for planning the treatment. The first study to do is the MRI (with a magnetic field of at least 1.5 Tesla), and if possible MRA, above all in younger patients. Then, on the basis of the pathologic findings as bipolar lesion or severity of bone defects, CT can be performed. PICO method on 2D or 3D CT is helpful if you need to study a glenoid bone loss, with the “en face view” of glenoid, while a 3D CT reconstruction with the humeral head “en face view” is the gold standard to assess an Hill-Sachs lesion. Conclusion: The clinical diagnoses of anterior shoulder instability can be different and acknowledgement of imaging findings is essential to guide the treatment choice. Imaging features are quite different in chronic than in acute scenario. This requires appropriate indications of many different imaging techniques. PMID:29114335

  7. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  8. Consensus Recommendations of the Multiple Sclerosis Study Group and Portuguese Neuroradiological Society for the Use of the Magnetic Resonance Imaging in Multiple Sclerosis in Clinical Practice: Part 1.

    PubMed

    Abreu, Pedro; Pedrosa, Rui; Sá, Maria José; Cerqueira, João; Sousa, Lívia; Da Silva, Ana Martins; Pinheiro, Joaquim; De Sá, João; Batista, Sónia; Simões, Rita Moiron; Pereira, Daniela Jardim; Vilela, Pedro; Vale, José

    2018-05-30

    Magnetic resonance imaging is established as a recognizable tool in the diagnosis and monitoring of multiple sclerosis patients. In the present, among multiple sclerosis centers, there are different magnetic resonance imaging sequences and protocols used to study multiple sclerosis that may hamper the optimal use of magnetic resonance imaging in multiple sclerosis. In this context, the Group of Studies of Multiple Sclerosis and the Portuguese Society of Neuroradiology, after a joint discussion, appointed a committee of experts to create recommendations adapted to the national reality on the use of magnetic resonance imaging in multiple sclerosis. The purpose of this document is to publish the first Portuguese consensus recommendations on the use of magnetic resonance imaging in multiple sclerosis in clinical practice. The Group of Studies of Multiple Sclerosis and the Portuguese Society of Neuroradiology, after discussion of the topic in national meetings and after a working group meeting held in Figueira da Foz on May 2017, have appointed a committee of experts that have developed by consensus several standard protocols on the use of magnetic resonance imaging in the diagnosis and follow-up of multiple sclerosis. The document obtained was based on the best scientific evidence and expert opinion. Subsequently, the majority of Portuguese multiple sclerosis consultants and departments of neuroradiology scrutinized and reviewed the consensus paper; comments and suggestions were considered. Technical magnetic resonance imaging protocols regarding diagnostic, monitoring and the recommended information to be included in the magnetic resonance imaging report will be published in a separate paper. We provide some practical guidelines to promote standardized strategies to be applied in the clinical practice setting of Portuguese healthcare professionals regarding the use of magnetic resonance imaging in multiple sclerosis. We hope that these first Portuguese magnetic resonance imaging guidelines, based in the best available clinical evidence and practices, will serve to optimize multiple sclerosis management and improve multiple sclerosis patient care across Portugal.

  9. Changes in laboratory test results and diagnostic imaging presentation before the detection of occupational cholangiocarcinoma.

    PubMed

    Kubo, Shoji; Takemura, Shigekazu; Sakata, Chikaharu; Urata, Yorihisa; Nishioka, Takayoshi; Nozawa, Akinori; Kinoshita, Masahiko; Hamano, Genya; Nakanuma, Yasuni; Endo, Ginji

    2014-01-01

    A cholangiocarcinoma outbreak among workers of an offset color proof-printing department in a printing company was recently reported. It is important to understand the clinical course leading to occupational cholangiocarcinoma development for investigation of the carcinogenesis process and for surveillance and early detection. We evaluated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma. We investigated the changes in laboratory test results and diagnostic imaging presentation before the detection of cholangiocarcinoma in 2 patients because the data were available. Results The clinical courses observed in the 2 participating patients showed persistent elevation of serum γ-glutamyl transpeptidase levels with or without elevated serum levels of alanine aminotransferase and/or aspartate aminotransferase before cholangiocarcinoma detection. Dilatation of the bile ducts without tumor-induced stenosis was observed several years before cholangiocarcinoma detection and progressed gradually in both patients. The serum concentration of carbohydrate 19-9 also increased prior to cholangiocarcinoma detection in both patients. Eventually, observation of stenosis of the bile duct and a space-occupying lesion strongly suggested cholangiocarcinoma. Pathological examination of the resected specimens showed chronic bile duct injury and neoplastic lesions, such as "biliary intraepithelial neoplasia" and "intraductal papillary neoplasm of the bile duct" in various sites of the bile ducts, particularly in the dilated bile ducts. The changes in laboratory test results and diagnostic imaging might be related to the development of cholangiocarcinoma. It is important to monitor diagnostic imaging presentation and laboratory test results in workers with extended exposure to organic solvents.

  10. Fundus autofluorescence applications in retinal imaging

    PubMed Central

    Gabai, Andrea; Veritti, Daniele; Lanzetta, Paolo

    2015-01-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications. PMID:26139802

  11. Images in clinical medicine: Segmental neurofibromatosis.

    PubMed

    Ma, Dong-Lai; Hu, Jin

    2015-03-05

    A 4-year-old girl presented for evaluation of cutaneous nodules that had been present on the left side of her trunk since birth. Physical examination revealed numerous soft, nontender papules and nodules across the left upper abdomen and wrapping around to the back.

  12. Pushing the physical limits of spectroscopic imaging for new biology and better medicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Ji-Xin

    2017-02-01

    In vivo molecular spectroscopic imaging is not a simple addition of a spectrometer to a microscope. Innovations are needed to break the physical limits in sensitivity, depth, speed and resolution perspectives. I will present our most recent advances in modality development, biological application, and clinical translation. My talk will focus on the development of mid-infrared photothermal microscope for depth-resolved vibrational imaging of living cells (Science Advances, in press), the discovery of a metabolic signature in cancer stem cells by hyperspectral stimulated Raman scattering imaging (Cell Stem Cell, in press), and the development of an intravascular vibrational photoacoustic catheter for label-free sensing of lipid laden plaques (Scientific Report 2016, 6:25236).

  13. Information granules in image histogram analysis.

    PubMed

    Wieclawek, Wojciech

    2018-04-01

    A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Imaging of Pancreatic and Duodenal Trauma.

    PubMed

    Melamud, Kira; LeBedis, Christina A; Soto, Jorge A

    2015-07-01

    Pancreatic and duodenal injuries are rare but life-threatening occurrences, often occurring in association with other solid organ injuries. Findings of pancreatic and duodenal trauma on computed tomography and MR imaging are often nonspecific, and high levels of clinical suspicion and understanding of mechanism of injury are imperative. Familiarity with the grading schemes of pancreatic and duodenal injury is important because they help in assessing for key imaging findings that directly influence management. This article presents an overview of imaging of blunt and penetrating pancreatic and duodenal injuries, including pathophysiology, available imaging techniques, and variety of imaging features. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    PubMed

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

  16. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.

    PubMed

    Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé

    2012-10-01

    In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.

  17. The current state-of-the-art of spinal cord imaging: Methods

    PubMed Central

    Stroman, P.W.; Wheeler-Kingshott, C.; Bacon, M.; Schwab, J.M.; Bosma, R.; Brooks, J.; Cadotte, D.; Carlstedt, T.; Ciccarelli, O.; Cohen-Adad, J.; Curt, A.; Evangelou, N.; Fehlings, M.G.; Filippi, M.; Kelley, B.J.; Kollias, S.; Mackay, A.; Porro, C.A.; Smith, S.; Strittmatter, S.M.; Summers, P.; Tracey, I.

    2015-01-01

    A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of “critical mass” of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research. PMID:23685159

  18. Classification of images acquired with colposcopy using artificial neural networks.

    PubMed

    Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A

    2014-01-01

    To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study.

  19. PROPOSAL FOR A SIMPLE AND EFFICIENT MONTHLY QUALITY MANAGEMENT PROGRAM ASSESSING THE CONSISTENCY OF ROBOTIC IMAGE-GUIDED SMALL ANIMAL RADIATION SYSTEMS

    PubMed Central

    Brodin, N. Patrik; Guha, Chandan; Tomé, Wolfgang A.

    2015-01-01

    Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first six months experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (± 3 %) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis. PMID:26425981

  20. Development of a web-based DICOM-SR viewer for CAD data of multiple sclerosis lesions in an imaging informatics-based efolder

    NASA Astrophysics Data System (ADS)

    Ma, Kevin; Wong, Jonathan; Zhong, Mark; Zhang, Jeff; Liu, Brent

    2014-03-01

    In the past, we have presented an imaging-informatics based eFolder system for managing and analyzing imaging and lesion data of multiple sclerosis (MS) patients, which allows for data storage, data analysis, and data mining in clinical and research settings. The system integrates the patient's clinical data with imaging studies and a computer-aided detection (CAD) algorithm for quantifying MS lesion volume, lesion contour, locations, and sizes in brain MRI studies. For compliance with IHE integration protocols, long-term storage in PACS, and data query and display in a DICOM compliant clinical setting, CAD results need to be converted into DICOM-Structured Report (SR) format. Open-source dcmtk and customized XML templates are used to convert quantitative MS CAD results from MATLAB to DICOM-SR format. A web-based GUI based on our existing web-accessible DICOM object (WADO) image viewer has been designed to display the CAD results from generated SR files. The GUI is able to parse DICOM-SR files and extract SR document data, then display lesion volume, location, and brain matter volume along with the referenced DICOM imaging study. In addition, the GUI supports lesion contour overlay, which matches a detected MS lesion with its corresponding DICOM-SR data when a user selects either the lesion or the data. The methodology of converting CAD data in native MATLAB format to DICOM-SR and displaying the tabulated DICOM-SR along with the patient's clinical information, and relevant study images in the GUI will be demonstrated. The developed SR conversion model and GUI support aim to further demonstrate how to incorporate CAD post-processing components in a PACS and imaging informatics-based environment.

  1. Proposal for a Simple and Efficient Monthly Quality Management Program Assessing the Consistency of Robotic Image-Guided Small Animal Radiation Systems.

    PubMed

    Brodin, N Patrik; Guha, Chandan; Tomé, Wolfgang A

    2015-11-01

    Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities, highlighting the need for a quality management program (QMP) to ensure consistent and accurate radiation dose delivery. An ongoing, simple, and efficient QMP for image-guided robotic small animal irradiators used in pre-clinical RT research is described. Protocols were developed and implemented to assess the dose output constancy (based on the AAPM TG-61 protocol), cone-beam computed tomography (CBCT) image quality and object representation accuracy (using a custom-designed imaging phantom), CBCT-guided target localization accuracy and consistency of the CBCT-based dose calculation. To facilitate an efficient read-out and limit the user dependence of the QMP data analysis, a semi-automatic image analysis and data representation program was developed using the technical computing software MATLAB. The results of the first 6-mo experience using the suggested QMP for a Small Animal Radiation Research Platform (SARRP) are presented, with data collected on a bi-monthly basis. The dosimetric output constancy was established to be within ±1 %, the consistency of the image resolution was within ±0.2 mm, the accuracy of CBCT-guided target localization was within ±0.5 mm, and dose calculation consistency was within ±2 s (±3%) per treatment beam. Based on these results, this simple quality assurance program allows for the detection of inconsistencies in dosimetric or imaging parameters that are beyond the acceptable variability for a reliable and accurate pre-clinical RT system, on a monthly or bi-monthly basis.

  2. Atypical location of an osteoid osteoma with atypical anterior knee pain

    PubMed Central

    Harun, Mutlu; Hayrettin, Yaldız; Serhat, Mutlu; Engin, Cetinkaya; Kamil, Cepni; Armagan, Arslan; Sancar, Parmaksızoglu Atilla

    2014-01-01

    INTRODUCTION An osteoid osteoma is a painful tumor that most commonly affects the extra-articular parts of the long bones. An intra-articular location of an osteoid osteoma is rare. Various differential diagnoses may arise in connection with such an unusual location because it causes atypical clinical signs. PRESENTATION OF CASE A 24-year-old male developed pain in the central region of the right knee. Magnetic resonance imaging (MRI) showed no clear pathology in the knee joint. A technetium bone scan and computed tomography (CT) were then ordered and confirmed the presence of an osteoid osteoma in the knee joint. The patient was treated through an anteromedial approach to the knee, and the lesion was removed by excisional biopsy under fluoroscopy. DISCUSSION The diagnosis of intra-articular osteoid osteoma is challenging because the clinical presentation can be misleading. MRI is often requested as the first imaging method when dealing with knee symptoms, and radiologists are often unaware of the clinical presentation. Edema seen on MRI can be misleading with respect to the location of the nidus. CT is considered to be the best imaging method because it usually allows for clear visualization of the nidus. Different treatments have been proposed, ranging from open excision to arthroscopic resection. CONCLUSION Osteoid osteoma should be considered in young adult patients with chronic knee pain and no history of trauma. PMID:25462055

  3. Image-guided urologic surgery: intraoperative optical imaging and tissue interrogation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liao, Joseph C.

    2017-02-01

    Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.

  4. NPS assessment of color medical image displays using a monochromatic CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Gu, Xiliang; Fan, Jiahua

    2012-10-01

    This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired

  5. Addressing Common Questions Encountered in the Diagnosis and Management of Cardiac Amyloidosis.

    PubMed

    Maurer, Mathew S; Elliott, Perry; Comenzo, Raymond; Semigran, Marc; Rapezzi, Claudio

    2017-04-04

    Advances in cardiac imaging have resulted in greater recognition of cardiac amyloidosis in everyday clinical practice, but the diagnosis continues to be made in patients with late-stage disease, suggesting that more needs to be done to improve awareness of its clinical manifestations and the potential of therapeutic intervention to improve prognosis. Light chain cardiac amyloidosis, in particular, if recognized early and treated with targeted plasma cell therapy, can be managed very effectively. For patients with transthyretin amyloidosis, there are numerous therapies that are currently in late-phase clinical trials. In this review, we address common questions encountered in clinical practice regarding etiology, clinical presentation, diagnosis, and management of cardiac amyloidosis, focusing on recent important developments in cardiac imaging and biochemical diagnosis. The aim is to show how a systematic approach to the evaluation of suspected cardiac amyloidosis can impact the prognosis of patients in the modern era. © 2017 American Heart Association, Inc.

  6. Addressing Common Questions Encountered in the Diagnosis and Management of Cardiac Amyloidosis

    PubMed Central

    Maurer, Mathew S.; Elliott, Perry; Comenzo, Raymond; Semigran, Marc; Rapezzi, Claudio

    2017-01-01

    Advances in cardiac imaging have resulted in greater recognition of cardiac amyloidosis (CA) in everyday clinical practice, but the diagnosis continues to be made in patients with late stage disease, suggesting that more needs to be done to improve awareness of its clinical manifestations and the potential of therapeutic intervention to improve prognosis. Light chain CA (AL-CA) in particular, if recognized early and treated with targeted plasma cell therapy, can be managed very effectively. For patients with transthyretin amyloidosis, there are numerous therapies that are currently in late phase clinical trials. In this review we address common questions encountered in clinical practice regarding etiology, clinical presentation, diagnosis and management of cardiac amyloidosis, focusing on recent important developments in cardiac imaging and biochemical diagnosis. The aim is to show how a systematic approach to the evaluation of suspected CA can impact the prognosis of patients in the modern era. PMID:28373528

  7. Abdominal Sarcoidosis Mimicking Peritoneal Carcinomatosis.

    PubMed

    Roh, Won Seok; Lee, Seungho; Park, Ji Hyun; Kang, Jeonghyun

    2018-04-01

    We present a patient diagnosed with skin sarcoidosis, breast cancer, pulmonary tuberculosis, and peritoneal sarcoidosis with a past history of colorectal cancer. During stage work up for breast cancer, suspicious lesions on peritoneum were observed in imaging studies. Considering our patient's history and imaging findings, we initially suspected peritoneal carcinomatosis. However, the peritoneal lesion was diagnosed as sarcoidosis in laparoscopic biopsy. This case demonstrates that abdominal sarcoidosis might be considered as a differential diagnosis when there is a lesion suspected of being peritoneal carcinomatosis with nontypical clinical presentations.

  8. Extranasopharyngeal angiofibroma: clinical and radiological presentation.

    PubMed

    Szymańska, Anna; Szymański, Marcin; Morshed, Kamal; Czekajska-Chehab, Elżbieta; Szczerbo-Trojanowska, Małgorzata

    2013-02-01

    Nasopharyngeal angiofibroma (NA) is a rare, vascular tumor affecting adolescent males. Due to aggressive local growth, skull base location and risk of profound hemorrhage, NA is a challenge for surgeons. Angiofibromas have been sporadically described in extanasopharyngeal locations. We review ten cases of extranasopharyngeal angiofibroma (ENA) and discuss the incidence, clinical presentation and management of this pathology. The group consisted of 4 males and 5 females aged 8-49. There were 7 patients with nasal angiofibroma, 1 patient with laryngeal angiofibroma, 1 patient with oral angiofibroma and another patient with infratemporal fossa tumor. In patients with nasal angiofibroma most common presenting symptoms were nasal obstruction and epistaxis. Patients with laryngeal angiofibroma suffered from mild dysphagia and patients with the infratemporal fossa tumor had painless cheek swelling. In four patients with nasal tumor computed tomography (CT) demonstrated mass with strong to intermediate contrast enhancement. In one patient with nasal tumor carotid angiography demonstrated pathological vessels without intensive tumor blush. Infratemporal fossa tumor showed intensive contrast enhancement on CT and magnetic resonance imaging (MRI) scans, and abundant vascularity on angiography. Laryngeal and oral angiofibroma required no radiological imaging. Three nasal tumors were evaluated before introduction of CT to clinical practice. All patients underwent surgery. No recurrences developed. ENAs differ significantly from NAs regarding clinical and radiological presentations. They lack typical clinical and radiological features as they develop in all age groups and in females, may be less vascularised, arise from various sites and produce a variety of symptoms.

  9. Color doppler in clinical cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, W.J.

    1987-01-01

    A presentation of color doppler, which enables physicians to pinpoint problems and develop effective treatment. State-of-the-art illustrations and layout, with color images and explanatory text are included.

  10. Joint image and motion reconstruction for PET using a B-spline motion model.

    PubMed

    Blume, Moritz; Navab, Nassir; Rafecas, Magdalena

    2012-12-21

    We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with a motion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.

  11. Clinics in diagnostic imaging (164). Morel-Lavallée lesion.

    PubMed

    Cheong, Sook Chuei Wendy; Wong, Bak Siew Steven

    2016-01-01

    A 31-year-old male motorcyclist presented with prepatellar swelling of the left knee after a collision with a car. Magnetic resonance imaging of the knee showed no bony or ligamentous injury to the knee. Instead, a well-defined, thin-walled, T2-weighted hyperintense fluid collection with internal septations was identified in a prefascial location overlying the left patella and patellar tendon. The findings were in keeping with those of a Morel-Lavallée lesion, a closed internal degloving injury. Morel-Lavallée lesions are occasionally encountered after a blunt soft-tissue trauma. The presentation and imaging features are discussed. Copyright © Singapore Medical Association.

  12. Sonographic Findings in Necrotizing Fasciitis: Two Ends of the Spectrum.

    PubMed

    Shyy, William; Knight, Roneesha S; Goldstein, Ruth; Isaacs, Eric D; Teismann, Nathan A

    2016-10-01

    Necrotizing fasciitis is a rare but serious disease, and early diagnosis is essential to reducing its substantial morbidity and mortality. The 2 cases presented show that the key clinical and radiographic features of necrotizing fasciitis exist along a continuum of severity at initial presentation; thus, this diagnosis should not be prematurely ruled out in cases that do not show the dramatic features familiar to most clinicians. Although computed tomography and magnetic resonance imaging are considered the most effective imaging modalities, the cases described here illustrate how sonography should be recommended as an initial imaging test to make a rapid diagnosis and initiate therapy.

  13. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  14. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    PubMed

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  15. Multidisciplinary approach to non-surgical management of inguinal disruption in a professional hockey player treated with platelet-rich plasma, manual therapy and exercise: a case report

    PubMed Central

    St-Onge, Eric; MacIntyre, Ian G.; Galea, Anthony M.

    2015-01-01

    Objective: To present the clinical management of inguinal disruption in a professional hockey player and highlight the importance of a multidisciplinary approach to diagnosis and management. Clinical Features: A professional hockey player with recurrent groin pain presented to the clinic after an acute exacerbation of pain while playing hockey. Intervention: The patient received a clinical diagnosis of inguinal disruption. Imaging revealed a tear in the rectus abdominis. Management included two platelet-rich plasma (PRP) injections to the injured tissue, and subsequent manual therapy and exercise. The patient returned to his prior level of performance in 3.5 weeks. Discussion: This case demonstrated the importance of a multidisciplinary team and the need for advanced imaging in athletes with groin pain. Summary: Research quality concerning the non-surgical management of inguinal disruption remains low. This case adds evidence that PRP, with the addition of manual therapy and exercise may serve as a relatively quick and effective non-surgical management strategy. PMID:26816415

  16. The importance of standard operating procedures in clinical trials.

    PubMed

    Sajdak, Rebecca; Trembath, Lisaann; Thomas, Kathy S

    2013-09-01

    This special contribution provides insight into the role that standard operating procedures (SOPs) play in an imaging department and their value in building a high-quality research site. If you have ever participated in a clinical trial, many of the principles described in this article should be familiar. However, this article goes a step further by presenting information from a pharmaceutical or device sponsor's point of view-what the sponsor expects from a site during the course of a research study. This article is intended not to provide a complete set of instructions on how to create a great SOP but, instead, to present guidelines to ensure that the key elements are included. After reading the article, you will be able to define SOPs as they pertain to the clinical trial environment, describe key components of an SOP, list the clinical research SOPs that exist in your institution and imaging department, identify which additional SOPs might improve site performance, and describe how the sponsor relies on SOPs to ensure that the highest quality of research is attained.

  17. Mild encephalopathy/encephalitis with a reversible splenial lesion (MERS): A report of five neonatal cases.

    PubMed

    Sun, Dan; Chen, Wen-Hong; Baralc, Suraj; Wang, Juan; Liu, Zhi-Sheng; Xia, Yuan-Peng; Chen, Lei

    2017-06-01

    Mild encephalopathy/encephalitis with a reversible splenial (MERS) lesion is a clinic-radiological entity. The clinical features of MERS in neonates are still not systemically reported. This paper presents five cases of MERS, and the up-to-date reviews of previously reported cases were collected and analyzed in the literature. Here we describe five cases clinically diagnosed with MERS. All of them were neonates and the average age was about 4 days. They were admitted for the common neurological symptoms such as hyperspasmia, poor reactivity and delirium. Auxiliary examinations during hospitalization also exhibited features in common. In this report, we reached following conclusions. Firstly, magnetic resonance imaging revealed solitary or comprehensive lesions in the splenium of corpus callosum, some of them extending to almost the whole corpus callosum. The lesions showed low intensity signal on T1-weighted images, homogeneously hyperintense signal on T2-weighted images, fluid-attenuated inversion recovery and diffusion-weighted images, and exhibited an obvious reduced diffusion on apparent diffusion coefficient map. Moreover, the lesions in the magnetic resonance imaging disappeared very quickly even prior to the clinical recovery. Secondly, all the cases depicted here suffered electrolyte disturbances especially hyponatremia which could be easily corrected. Lastly, all of the cases recovered quickly over one week to one month and majority of them exhibited signs of infections and normal electroencephalography.

  18. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges

    PubMed Central

    He, Xiaoxiao; Gao, Jinhao; Gambhir, Sanjiv Sam; Cheng, Zhen

    2010-01-01

    Near-infrared fluorescence (NIRF) imaging promises to improve cancer imaging and management; advances in nanomaterials allow scientists to combine new nanoparticles with NIRF imaging techniques, thereby fulfilling this promise. Here, we present a synopsis of current developments in NIRF nanoprobes, their use in imaging small living subjects, their pharmacokinetics and toxicity and finally their integration into multimodal imaging strategies. We also discuss challenges impeding the clinical translation of NIRF nanoprobes for molecular imaging of cancer. Whereas utilization of most NIRF nanoprobes remains at a proof-of-principle stage, optimizing the impact of nanomedicine in cancer patient diagnosis and management will likely be realized through persistent interdisciplinary amalgamation of diverse research fields. PMID:20870460

  19. Nuclear Imaging in Sarcoidosis.

    PubMed

    Piekarski, Eve; Benali, Khadija; Rouzet, François

    2018-05-01

    Sarcoidosis is a multisystem granulomatosis which may result in a wide variety of clinical and biological presentations. Symptoms are often nonspecific, and incidental abnormal findings on chest radiography is rather common. Although sarcoidosis resolves favorably in most cases, some localizations can provoke functional impairment or even impact on patients' prognosis. The diagnosis is based on a pathological hallmark which is the non-necrotizing epithelioid-cell rich granuloma. Owing to the ability to detect inflammation throughout the body with a high sensibility, FDG-PET/CT gained a central role in sarcoidosis because it can suggest the diagnosis in certain clinical context, guide biopsy, evaluate the extent of the disease, help assess the prognosis, and monitor immunosuppressive therapy. This review will briefly describe clinical and typical findings of conventional imaging according to organ involvement, in order to highlight the additional information provided by nuclear imaging. In the future, we can expect to further improve diagnostic performance of imaging in some indications through the availability of more specific radiopharmaceuticals and the wider use of combined PET/MRI. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Nanocarriers for nuclear imaging and radiotherapy of cancer.

    PubMed

    Mitra, Amitava; Nan, Anjan; Line, Bruce R; Ghandehari, Hamidreza

    2006-01-01

    Several nanoscale carriers (nanoparticles, liposomes, water-soluble polymers, micelles and dendrimers) have been developed for targeted delivery of cancer diagnostic and therapeutic agents. These carriers can selectively target cancer sites and carry large payloads, thereby improving cancer detection and therapy effectiveness. Further, the combination of newer nuclear imaging techniques providing high sensitivity and spatial resolution such as dual modality imaging with positron emission tomography/computed tomography (PET/CT) and use of nanoscale devices to carry diagnostic and therapeutic radionuclides with high target specificity can enable more accurate detection, staging and therapy planning of cancer. The successful clinical applications of radiolabeled monoclonal antibodies for cancer detection and therapy bode well for the future of nanoscale carrier systems in clinical oncology. Several radiolabeled multifunctional nanocarriers have been effective in detecting and treating cancer in animal models. Nonetheless, further preclinical, clinical and long-term toxicity studies will be required to translate this technology to the care of patients with cancer. The objective of this review is to present a brief but comprehensive overview of the various nuclear imaging techniques and the use of nanocarriers to deliver radionuclides for the diagnosis and therapy of cancer.

  1. High-definition optical coherence tomography - an aid to clinical practice and research in dermatology.

    PubMed

    Cao, Taige; Tey, Hong Liang

    2015-09-01

    At present, beyond clinical assessment, the diagnosis of skin diseases is primarily made histologically. However, skin biopsies have many disadvantages, including pain, scarring, risk of infection, and sampling error. With recent advances in skin imaging technology, the clinical use of imaging methods for the practical management of skin diseases has become an option. The in vivo high-definition optical coherence tomography (HD-OCT) has recently been developed and commercialized (Skintell; Agfa, Belgium). Compared with conventional OCT, it has a higher resolution; compared with reflectance confocal microscopy, it has a shorter time for image acquisition as well as a greater penetration depth and a larger field of view. HD-OCT is promising but much work is still required to develop it from a research tool to a valuable adjunct for the noninvasive diagnosis of skin lesions. Substantial work has been done to identify HD-OCT features in various diseases but interpretation can be time-consuming and tedious. Projects aimed at automating these processes and improving image quality are currently under way. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  2. Ongoing search for diagnostic biomarkers in idiopathic normal pressure hydrocephalus.

    PubMed

    Tarnaris, Andrew; Toma, Ahmed K; Kitchen, Neil D; Watkins, Laurence D

    2009-12-01

    Idiopathic normal pressure hydrocephalus is a syndrome, which typically has a clinical presentation of gait/balance disturbance, often accompanied by cognitive decline and/or urinary incontinence. Its diagnosis is based on relevant history and clinical examination, appropriate imaging findings and physiological testing. The clinical picture of idiopathic normal pressure hydrocephalus may occasionally be difficult to distinguish from that of Alzheimer's dementia, subcortical ischemic vascular dementia and Parkinson's disease. The aim of this article is to systematically review the literature from the last 29 years in order to identify cerebrospinal fluid (CSF) or imaging biomarkers that may aid in the diagnosis of the syndrome. The authors concluded that no CSF or imaging biomarker is currently fulfilling the criteria required to aid in the diagnosis of the condition. However, a few studies have revealed promising CSF and imaging markers that need to be verified by independent groups. The reasons that the progress in this field has been slow so far is also commented on, as well as steps required to apply the current evidence in the design of future studies within the field.

  3. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  4. A comparison of basic deinterlacing approaches for a computer assisted diagnosis approach of videoscope images

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Canto, Marcia; Gorospe, Emmanuel; Almario, Antonio; Münzenmayer, Christian

    2010-03-01

    In the near future, Computer Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support clinical experts in the diagnosis of images derived from imaging modalities such as endoscopy. In the recent past, a few first approaches for computer assisted endoscopy have been presented already. These systems use a video signal as an input that is provided by the endoscopes video processor. Despite the advent of high-definition systems most standard endoscopy systems today still provide only analog video signals. These signals consist of interlaced images that can not be used in a CAD approach without deinterlacing. Of course, there are many different deinterlacing approaches known today. But most of them are specializations of some basic approaches. In this paper we present four basic deinterlacing approaches. We have used a database of non-interlaced images which have been degraded by artificial interlacing and afterwards processed by these approaches. The database contains regions of interest (ROI) of clinical relevance for the diagnosis of abnormalities in the esophagus. We compared the classification rates on these ROIs on the original images and after the deinterlacing. The results show that the deinterlacing has an impact on the classification rates. The Bobbing approach and the Motion Compensation approach achieved the best classification results in most cases.

  5. Integrated radiologist's workstation enabling the radiologist as an effective clinical consultant

    NASA Astrophysics Data System (ADS)

    McEnery, Kevin W.; Suitor, Charles T.; Hildebrand, Stan; Downs, Rebecca; Thompson, Stephen K.; Shepard, S. Jeff

    2002-05-01

    Since February 2000, radiologists at the M. D. Anderson Cancer Center have accessed clinical information through an internally developed radiologist's clinical interpretation workstation called RadStation. This project provides a fully integrated digital dictation workstation with clinical data review. RadStation enables the radiologist as an effective clinical consultant with access to pertinent sources of clinical information at the time of dictation. Data sources not only include prior radiology reports from the radiology information system (RIS) but access to pathology data, laboratory data, history and physicals, clinic notes, and operative reports. With integrated clinical information access, a radiologists's interpretation not only comments on morphologic findings but also can enable evaluation of study findings in the context of pertinent clinical presentation and history. Image access is enabled through the integration of an enterprise image archive (Stentor, San Francisco). Database integration is achieved by a combination of real time HL7 messaging and queries to SQL-based legacy databases. A three-tier system architecture accommodates expanding access to additional databases including real-time patient schedule as well as patient medications and allergies.

  6. MO-E-BRB-03: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter, B.

    2016-06-15

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  7. MO-E-BRB-01: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, S.

    2016-06-15

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  8. MO-E-BRB-00: PANEL DISCUSSION: SBRT/SRS Case Studies - Lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms ofmore » (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.« less

  9. NCI Cancer Research Data Ecosystem

    Cancer.gov

    An infographic explaining NCI’s present and future efforts to promote a culture of sharing data—clinical, genomic, proteomic, imaging, patient histories, and outcomes data—among stakeholders to impact cancer care.

  10. Potential uses of terahertz pulse imaging in dentistry: caries and erosion detection

    NASA Astrophysics Data System (ADS)

    Longbottom, Christopher; Crawley, David A.; Cole, Bryan E.; Arnone, Donald D.; Wallace, Vincent P.; Pepper, Michael

    2002-06-01

    TeraHertz Pulse Imaging (TPI) is a relatively new imaging modality for medical and dental imaging. The aim of the present study was to make a preliminary assessment of the potential uses of TPI in clinical dentistry, particularly in relation to caries detection and the detection and monitoring of erosion. Images were obtained in vitro using a new TPI system developed by TeraView Ltd. We present data showing that TPI in vitro images of approximal surfaces of whole teeth demonstrate a distinctive shadowing in the presence of natural carious lesions in enamel. The thickness of this enamel shadowing appears to be related to lesion depth. The use of non-ionizing radiation to image such lesions non-destructively in vitro represents a significant step towards such measurements in vivo. In addition, data is presented which indicates that TPI may have a potential role in the detection and monitoring of enamel erosion. In vitro experiments on whole incisor teeth show that TPI is capable of detecting relatively small artificially induced changes in the buccal or palatal surface of the enamel of these teeth. Imaging of enamel thickness at such a resolution without ionizing radiation would represent a significant breakthrough if applicable in vivo.

  11. Generalised peripheral oedema associated with amlodipine therapy in two dogs.

    PubMed

    Creevy, K E; Scuderi, M A; Ellis, A E

    2013-11-01

    This report details two cases of adverse drug reactions to amlodipine. The first case presented with diffuse peripheral oedema and a history of amlodipine therapy. Haematology, clinical chemistry, endocrine testing, thoracic, abdominal and cardiac imaging revealed no cause for oedema. Amlodipine therapy was discontinued and oedema diminished markedly within 72 hours. The second case presented for bilateral retinal detachments secondary to systemic hypertension. Haematology, clinical chemistry, thoracic and abdominal imaging were unremarkable and amlodipine therapy was begun. Within 72 hours, diffuse peripheral oedema developed that was unresponsive to therapy and the dog was euthanised. Veterinarians should be aware of the potential serious adverse events associated with commonly used drugs; severe, diffuse oedema is a possible adverse drug event in dogs treated with amlodipine. © 2013 British Small Animal Veterinary Association.

  12. Cholesteatoma in the Sellar Region Presenting as Hypopituitarism and Diabetes Insipidus

    PubMed Central

    Kong, Xiangyi; Wu, Huanwen; Ma, Wenbin; Li, Yongning; Xing, Bing; Kong, Yanguo; Wang, Renzhi

    2016-01-01

    Abstract Clinically significant sellar cysts unrelated to pituitary adenomas are uncommon. Intracranial cholesteatomas are also rare and are most common in the middle ear and mastoid region. We report an even rarer case of cholesteatoma in the sellar region—a challenging diagnosis guided by clinical presentations, radiological signs, and biopsy, aiming at emphasize the importance of considering cholesteatoma when making differential diagnoses of sellar lesions. We present a case of cholesteatoma in the sellar region in a 56-year-old man with hypopituitarism, diabetes insipidus, and cystic imaging findings. It was difficult to make an accurate diagnosis before surgery. We present detailed analysis of the patient's disease course and review pertinent literature. The patient underwent a surgical exploration and tumor resection through a transsphenoidal approach. Pathologic results revealed a cholesteatoma. The patient's symptoms improved a lot after surgery, and the postoperative period was uneventful. Taken together, the lesion's imaging appearance, pathological characteristics, and clinical features were all unique features that lead to a diagnosis of cholesteatoma. As we did not see such reports by Pubmed and EMBASE, we believe this is the first reported case of sellar cholesteatoma presenting in this manner. This article emphasized that cholesteatomas, although rare, should be considered part of the differential diagnosis of sellar lesions. PMID:26962793

  13. Atypical presentations of subacute sclerosing panencephalitis in two neurologically handicapped cases.

    PubMed

    Demir, E; Ozcelik, A; Arhan, E; Serdaroglu, A; Gucuyener, K

    2009-08-01

    Subacute sclerosing panencephalitis (SSPE) is a neurodegenerative disorder caused by persistent measles infection. Here, we report two neurologically handicapped cases presenting with atypical features of SSPE. Patient 1 who had mild mental retardation manifested acute encephalopathy with partial seizures and hemiplegia, mimicking encephalitis. He showed a fulminant course without myoclonia or a periodic electroencephalogram complex. Although SSPE is usually associated with an increased diffusion pattern, diffusion-weighted imaging of our patient showed decreased diffusion in the right hippocampus. Patient 2 with infantile hemiparesis presented with secondary generalized seizures, followed by asymettrical myoclonias involving the side contralateral to the hemiparesis. A periodic electroencephalogram complex was absent on the previously damaged brain regions. Our findings show that preexisting neurological disorders may modify the clinical or electrophysiological findings of SSPE, leading to atypical presentations. SSPE should be considered in the differential diagnosis of acute encephalopathy with lateralizing signs or unidentified seizures. Decreased diffusion resolution in diffusion-weighted-imaging may correlate with rapid clinical progression in SSPE. Georg Thieme Verlag KG Stuttgart New York.

  14. Longitudinal evaluation of patients with oral potentially malignant disorders using optical imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard A.; Pierce, Mark C.; Mondrik, Sharon; Gao, Wen; Quinn, Mary K.; Bhattar, Vijayashree; Williams, Michelle D.; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Richards-Kortum, Rebecca

    2012-02-01

    Dysplastic and cancerous alterations in oral tissue can be detected noninvasively in vivo using optical techniques including autofluorescence imaging, high-resolution imaging, and spectroscopy. Interim results are presented from a longitudinal study in which optical imaging and spectroscopy were used to evaluate the progression of lesions over time in patients at high risk for development of oral cancer. Over 100 patients with oral potentially malignant disorders have been enrolled in the study to date. Areas of concern in the oral cavity are measured using widefield autofluorescence imaging and depth-sensitive optical spectroscopy during successive clinical visits. Autofluorescence intensity patterns and autofluorescence spectra are tracked over time and correlated with clinical observations. Patients whose lesions progress and who undergo surgery are also measured in the operating room immediately prior to surgery using autofluorescence imaging and spectroscopy, with the addition of intraoperative high-resolution imaging to characterize nuclear size, nuclear crowding, and tissue architecture at selected sites. Optical measurements are compared to histopathology results from biopsies and surgical specimens collected from the measured sites. Autofluorescence imaging and spectroscopy measurements are continued during post-surgery followup visits. We examined correlations between clinical impression and optical classification over time with an average followup period of 4 months. The data collected to date suggest that multimodal optical techniques may aid in noninvasive monitoring of the progression of oral premalignant lesions, biopsy site selection, and accurate delineation of lesion extent during surgery.

  15. Incorporation of a clinical history into the interpretation process in a PACS environment

    NASA Astrophysics Data System (ADS)

    Cooperstein, Lawrence A.; Good, Barbara C.; Miketic, Linda M.; Tabor, Ellen K.; Yousem, Samuel A.; King, Jill L.; Gennari, Rose C.; Felice, Marc A.; Sidorovich, Kathleen

    1990-08-01

    In a large-scale, multi-reader study to investigate questions surrounding the issue of the implementation of picture archiving and communications systems (PACS) into the modern radiology environment, we examined the effect that the incorporation of a clinical history into the reading process would have on levels of diagnostic accuracy. Because we wanted to test the inclusion of the clinical history in an environment as close to that of the clinical situation as possible, we defined "history" to be a concise, objective, and potentially computer-extractable version of what appears in the patient records, including a statement from the referring physician when this is available. In a series of studies, four radiologists interpreted 247 posteroanterior normal and abnormal chest images on conventional film both with and without accompanying patient histories; five radiologists read the same number of images presented on a high-resolution video workstation with and without clinical histories. There were no significant differences (p = .05) in diagnostic accuracy rates with or without clinical history for either the film or the workstation in cases of interstitial disease, nodules, or pneumothorax. Diagnostic accuracy for the radiologists as a group was not affected by the presence of the clinical history. We concluded that for the interpretation of these abnormalities, the incorporation of clinical history with images in the PACS environment should not be a major goal.

  16. TU-E-BRB-00: Deformable Image Registration: Is It Right for Your Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Deformable image registration (DIR) is developing rapidly and is poised to substantially improve dose fusion accuracy for adaptive and retreatment planning and motion management and PET fusion to enhance contour delineation for treatment planning. However, DIR dose warping accuracy is difficult to quantify, in general, and particularly difficult to do so on a patient-specific basis. As clinical DIR options become more widely available, there is an increased need to understand the implications of incorporating DIR into clinical workflow. Several groups have assessed DIR accuracy in clinically relevant scenarios, but no comprehensive review material is yet available. This session will alsomore » discuss aspects of the AAPM Task Group 132 on the Use of Image Registration and Data Fusion Algorithms and Techniques in Radiotherapy Treatment Planning official report, which provides recommendations for DIR clinical use. We will summarize and compare various commercial DIR software options, outline successful clinical techniques, show specific examples with discussion of appropriate and inappropriate applications of DIR, discuss the clinical implications of DIR, provide an overview of current DIR error analysis research, review QA options and research phantom development and present TG-132 recommendations. Learning Objectives: Compare/contrast commercial DIR software and QA options Overview clinical DIR workflow for retreatment To understand uncertainties introduced by DIR Review TG-132 proposed recommendations.« less

  17. Radiology image perception and observer performance: How does expertise and clinical information alter interpretation? Stroke detection explored through eye-tracking

    NASA Astrophysics Data System (ADS)

    Cooper, Lindsey; Gale, Alastair; Darker, Iain; Toms, Andoni; Saada, Janak

    2009-02-01

    Historically, radiology research has been dominated by chest and breast screening. Few studies have examined complex interpretative tasks such as the reading of multidimensional brain CT or MRI scans. Additionally, no studies at the time of writing have explored the interpretation of stroke images; from novices through to experienced practitioners using eye movement analysis. Finally, there appears a lack of evidence on the clinical effects of radiology reports and their influence on image appraisal and clinical diagnosis. A computer-based, eye-tracking study was designed to assess diagnostic accuracy and interpretation in stroke CT and MR imagery. Eight predetermined clinical cases, five images per case, were presented to participants (novices, trainee, and radiologists; n=8). The presence or absence of abnormalities was rated on a five-point Likert scale and their locations reported. Half cases of the cases were accompanied by clinical information; half were not, to assess the impact of information on observer performance. Results highlight differences in visual search patterns amongst novice, trainee and expert observers; the most marked differences occurred between novice readers and experts. Experts spent more time in challenging areas of interest (AOI) than novices and trainee, and were more confident unless a lesion was large and obvious. The time to first AOI fixation differed by size, shape and clarity of lesion. 'Time to lesion' dropped significantly when recognition appeared to occur between slices. The influence of clinical information was minimal.

  18. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  19. Imaging of acute ischemic stroke.

    PubMed

    El-Koussy, Marwan; Schroth, Gerhard; Brekenfeld, Caspar; Arnold, Marcel

    2014-01-01

    Over 80% of strokes result from ischemic damage to the brain due to an acute reduction in the blood supply. Around 25-35% of strokes present with large vessel occlusion, and the patients in this category often present with severe neurological deficits. Without early treatment, the prognosis is poor. Stroke imaging is critical for assessing the extent of tissue damage and for guiding treatment. This review focuses on the imaging techniques used in the diagnosis and treatment of acute ischemic stroke, with an emphasis on those involving the anterior circulation. Key Message: Effective and standardized imaging protocols are necessary for clinical decision making and for the proper design of prospective studies on acute stroke. Each minute without treatment spells the loss of an estimated 1.8 million neurons ('time is brain'). Therefore, stroke imaging must be performed in a fast and efficient manner. First, intracranial hemorrhage and stroke mimics should be excluded by the use of computed tomography (CT) or magnetic resonance imaging (MRI). The next key step is to define the extent and location of the infarct core (values of >70 ml, >1/3 of the middle cerebral artery (MCA) territory or an ASPECTS score ≤ 7 indicate poor clinical outcome). Penumbral imaging is currently based on the mismatch concept. It should be noted that the penumbra is a dynamic zone and can be sustained in the presence of good collateral circulation. A thrombus length of >8 mm predicts poor recanalization after intravenous thrombolysis. © 2014 S. Karger AG, Basel.

  20. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

Top