Uhlmann, Wendy R; Schwalm, Katie; Raymond, Victoria M
2017-08-01
Obtaining genetic testing insurance authorizations for patients is a complex, time-involved process often requiring genetic counselor (GC) and physician involvement. In an effort to mitigate this complexity and meet the increasing number of genetic testing insurance authorization requests, GCs formed a novel partnership with an industrial engineer (IE) and a patient services associate (PSA) to develop a streamlined work flow. Eight genetics clinics and five specialty clinics at the University of Michigan were surveyed to obtain benchmarking data. Tasks needed for genetic testing insurance authorization were outlined and time-saving work flow changes were introduced including 1) creation of an Excel password-protected shared database between GCs and PSAs, used for initiating insurance authorization requests, tracking and follow-up 2) instituting the PSAs sending GCs a pre-clinic email noting each patients' genetic testing insurance coverage 3) inclusion of test medical necessity documentation in the clinic visit summary note instead of writing a separate insurance letter and 4) PSAs development of a manual with insurance providers and genetic testing laboratories information. These work flow changes made it more efficient to request and track genetic testing insurance authorizations for patients, enhanced GCs and PSAs communication, and reduced tasks done by clinicians.
Describing and Modeling Workflow and Information Flow in Chronic Disease Care
Unertl, Kim M.; Weinger, Matthew B.; Johnson, Kevin B.; Lorenzi, Nancy M.
2009-01-01
Objectives The goal of the study was to develop an in-depth understanding of work practices, workflow, and information flow in chronic disease care, to facilitate development of context-appropriate informatics tools. Design The study was conducted over a 10-month period in three ambulatory clinics providing chronic disease care. The authors iteratively collected data using direct observation and semi-structured interviews. Measurements The authors observed all aspects of care in three different chronic disease clinics for over 150 hours, including 157 patient-provider interactions. Observation focused on interactions among people, processes, and technology. Observation data were analyzed through an open coding approach. The authors then developed models of workflow and information flow using Hierarchical Task Analysis and Soft Systems Methodology. The authors also conducted nine semi-structured interviews to confirm and refine the models. Results The study had three primary outcomes: models of workflow for each clinic, models of information flow for each clinic, and an in-depth description of work practices and the role of health information technology (HIT) in the clinics. The authors identified gaps between the existing HIT functionality and the needs of chronic disease providers. Conclusions In response to the analysis of workflow and information flow, the authors developed ten guidelines for design of HIT to support chronic disease care, including recommendations to pursue modular approaches to design that would support disease-specific needs. The study demonstrates the importance of evaluating workflow and information flow in HIT design and implementation. PMID:19717802
A new specimen management system using RFID technology.
Shim, Hun; Uh, Young; Lee, Seung Hwan; Yoon, Young Ro
2011-12-01
The specimen management system with barcode needs to be improved in order to solve inherent problems in work performance. This study describes the application of Radio Frequency Identification (RFID) which is the solution for the problems associated with specimen labeling and management. A new specimen management system and architecture with RFID technology for clinical laboratory was designed. The suggested system was tested in various conditions such as durability to temperature and aspect of effective utilization of new work flow under a virtual hospital clinical laboratory environment. This system demonstrates its potential application in clinical laboratories for improving work flow and specimen management. The suggested specimen management system with RFID technology has advantages in comparison to the traditional specimen management system with barcode in the aspect of mass specimen processing, robust durability of temperature, humidity changes, and effective specimen tracking.
Electronic decision support for diagnostic imaging in a primary care setting
Reed, Martin H
2011-01-01
Methods Clinical guideline adherence for diagnostic imaging (DI) and acceptance of electronic decision support in a rural community family practice clinic was assessed over 36 weeks. Physicians wrote 904 DI orders, 58% of which were addressed by the Canadian Association of Radiologists guidelines. Results Of those orders with guidelines, 76% were ordered correctly; 24% were inappropriate or unnecessary resulting in a prompt from clinical decision support. Physicians followed suggestions from decision support to improve their DI order on 25% of the initially inappropriate orders. The use of decision support was not mandatory, and there were significant variations in use rate. Initially, 40% reported decision support disruptive in their work flow, which dropped to 16% as physicians gained experience with the software. Conclusions Physicians supported the concept of clinical decision support but were reluctant to change clinical habits to incorporate decision support into routine work flow. PMID:21486884
Voelker, W; Reul, H; Nienhaus, G; Stelzer, T; Schmitz, B; Steegers, A; Karsch, K R
1995-02-15
Valvular resistance and stroke work loss have been proposed as alternative measures of stenotic valvular lesions that may be less flow dependent and, thus, superior over valve area calculations for the quantification of aortic stenosis. The present in vitro study was designed to compare the impacts of valvular resistance, stroke work loss, and Gorlin valve area as hemodynamic indexes of aortic stenosis. In a pulsatile aortic flow model, rigid stenotic orifices in varying sizes (0.5, 1.0, 1.5 and 2.0 cm2) and geometry were studied under different hemodynamic conditions. Ventricular and aortic pressures were measured to determine the mean systolic ventricular pressure (LVSPm) and the transstenotic pressure gradient (delta Pm). Transvalvular flow (Fm) was assessed with an electromagnetic flowmeter. Valvular resistance [VR = 1333.(delta Pm/Fm)] and stroke work loss [SWL = 100.(delta Pm/LVSPm)] were calculated and compared with aortic valve area [AVA = Fm/(50 square root of delta Pm)]. The measurements were performed for a large range of transvalvular flows. At low-flow states, flow augmentation (100-->200 mL/s) increased calculated valvular resistance between 21% (2.0 cm2 orifice) and 66% (0.5-cm2 orifice). Stroke work loss demonstrated an increase from 43% (2.0 cm2) to 100% (1.0 cm2). In contrast, Gorlin valve area revealed only a moderate change from 29% (2.0 cm2) to 5% (0.5 cm2). At physiological flow rates, increase in transvalvular flow (200-->300 mL/s) did not alter calculated Gorlin valve area, whereas valvular resistance and stroke work loss demonstrated a continuing increase. Our experimental results were adopted to interpret the results of three clinical studies in aortic stenosis. The flow-dependent increase of Gorlin valve area, which was found in the cited clinical studies, can be elucidated as true further opening of the stenotic valve but not as a calculation error due to the Gorlin formula. Within the physiological range of flow, calculated aortic valve area was less dependent on hemodynamic conditions than were valvular resistance and stroke work loss, which varied as a function of flow. Thus, for the assessment of the severity of aortic stenosis, the Gorlin valve area is superior over valvular resistance and stroke work loss, which must be indexed for flow to adequately quantify the hemodynamic severity of the obstruction.
Instrument to detect syncope and the onset of shock
NASA Astrophysics Data System (ADS)
McAdams, Daniel R.; Kolodziejski, Noah J.; Stapels, Christopher J.; Fernandez, Daniel E.; Podolsky, Matthew J.; Farkas, Dana; Christian, James F.; Joyner, Michael J.; Johnson, Christopher P.; Paradis, Norman A.
2016-03-01
Currently the diagnosis of hemorrhagic shock is essentially clinical, relying on the expertise of nurses and doctors. One of the first measurable physiological changes that marks the onset of hemorrhagic shock is a decrease in capillary blood flow. Diffuse correlation spectroscopy (DCS) quantifies this decrease. DCS collects and analyzes multiply scattered, coherent, near infrared light to assess relative blood flow. This work presents a preliminary study using a DCS instrument with human subjects undergoing a lower body negative pressure (LBNP) protocol. This work builds on previous successful DCS instrumentation development and we believe it represents progress toward understanding how DCS can be used in a clinical setting.
The radiology digital dashboard: effects on report turnaround time.
Morgan, Matthew B; Branstetter, Barton F; Lionetti, David M; Richardson, Jeremy S; Chang, Paul J
2008-03-01
As radiology departments transition to near-complete digital information management, work flows and their supporting informatics infrastructure are becoming increasingly complex. Digital dashboards can integrate separate computerized information systems and summarize key work flow metrics in real time to facilitate informed decision making. A PACS-integrated digital dashboard function designed to alert radiologists to their unsigned report queue status, coupled with an actionable link to the report signing application, resulted in a 24% reduction in the time between transcription and report finalization. The dashboard was well received by radiologists who reported high usage for signing reports. Further research is needed to identify and evaluate other potentially useful work flow metrics for inclusion in a radiology clinical dashboard.
"Are We hurting ourselves?" What is the prevalence of back pain in anesthesia providers?
Anson, Jonathan A; Mets, Elbert J; Vaida, Sonia J; King, Tonya S; Ochoa, Tim; Gordin, Vitaly
2016-11-01
Back injuries are a highly reported category of occupational injury in the health care setting. The daily clinical activities of an anesthesia provider, including lifting, pushing stretchers, transferring patients, and bending for procedures, are risk factors for developing low back pain. The purpose of this study is to investigate the prevalence of work related low back pain in anesthesia providers. We conducted a cross-sectional survey study of anesthesia providers at an academic institution. The target population included all 141 clinical anesthesia providers employed by the Penn State Milton S. Hershey Medical Center Department of Anesthesia. A survey study was conducted using the Oswestry Disability Index (ODI), a validated scoring system for low back pain. Additional questions related to the daily activities of clinical anesthesia practice were also asked. The survey instrument underwent pretesting and clinical sensibility testing to ensure validity and consistent interpretation. The primary self-reported measures were the prevalence of low back pain in anesthesia providers and an assessment of disability based on the ODI. Secondary functional measures included the impact of low back pain on work flow. Nearly half (46.6%) of respondents suffer from low back pain attributed to clinical practice. In this subset of respondents, 70.1% reported not having back pain prior to their anesthesia training. Of those with low back pain, 44% alter their work flow, and 9.8% reported missing at least one day of work. Six providers (5.3%) required surgical intervention. Using the ODI score interpretation guidelines, 46% of respondents had a "mild disability" and 2% had a "moderate disability." Respondents reporting feeling "burned out" from their job had a significantly higher average ODI score compared to those who did not (6.8 vs 3.3, respectively; P=.01). Nearly half of all anesthesia providers sampled suffer from low back pain subjectively attributed to their clinical practice. This leads to changes in work flow and missed days of work. The results of this study suggest a deficiency in the effectiveness of anesthesia training programs in teaching proper techniques to prevent musculoskeletal injuries. Copyright © 2016 Elsevier Inc. All rights reserved.
Save medical personnel's time by improved user interfaces.
Kindler, H
1997-01-01
Common objectives in the industrial countries are the improvement of quality of care, clinical effectiveness, and cost control. Cost control, in particular, has been addressed through the introduction of case mix systems for reimbursement by social-security institutions. More data is required to enable quality improvement, increases in clinical effectiveness and for juridical reasons. At first glance, this documentation effort is contradictory to cost reduction. However, integrated services for resource management based on better documentation should help to reduce costs. The clerical effort for documentation should be decreased by providing a co-operative working environment for healthcare professionals applying sophisticated human-computer interface technology. Additional services, e.g., automatic report generation, increase the efficiency of healthcare personnel. Modelling the medical work flow forms an essential prerequisite for integrated resource management services and for co-operative user interfaces. A user interface aware of the work flow provides intelligent assistance by offering the appropriate tools at the right moment. Nowadays there is a trend to client/server systems with relational databases or object-oriented databases as repository. The work flows used for controlling purposes and to steer the user interfaces must be represented in the repository.
Wright, N C; Foster, P J; Mudano, A S; Melnick, J A; Lewiecki, M E; Shergy, W J; Curtis, J R; Cutter, G R; Danila, M I; Kilgore, M L; Lewis, E C; Morgan, S L; Redden, D T; Warriner, A H; Saag, K G
2017-08-01
The Effectiveness of Discontinuing Bisphosphonates (EDGE) study is a planned pragmatic clinical trial to guide "drug holiday" clinical decision making. This pilot study assessed work flow and feasibility of such a study. While participant recruitment and treatment adherence were suboptimal, administrative procedures were generally feasible and minimally disrupted clinic flow. The comparative effectiveness of continuing or discontinuing long-term alendronate (ALN) on fractures is unknown. A large pragmatic ALN discontinuation study has potential to answer this question. We conducted a 6-month pilot study of the planned the EDGE study among current long-term ALN users (women aged ≥65 with ≥3 years of ALN use) to determine study work flow and feasibility including evaluating the administrative aspects of trial conduct (e.g., time to contract, institutional review board (IRB) approval), assessing rates of site and participant recruitment, and evaluating post-randomization outcomes, including adherence, bisphosphonate-associated adverse events, and participant and site satisfaction. We assessed outcomes 1 and 6 months after randomization. Nine sites participated, including seven community-based medical practices and two academic medical centers. On average (SD), contract execution took 3.4 (2.3) months and IRB approval took 13.9 (4.1) days. Sites recruited 27 participants (13 to continue ALN and 14 to discontinue ALN). Over follow-up, 22% of participants did not adhere to their randomization assignment: 30.8% in the continuation arm and 14.3% in the discontinuation arm. No fractures or adverse events were reported. Sites reported no issues regarding work flow, and participants were highly satisfied with the study. Administrative procedures of the EDGE study were generally feasible, with minimal disruption to clinic flow. In this convenience sample, participant recruitment was suboptimal across most practice sites. Accounting for low treatment arm adherence, a comprehensive recruitment approach will be needed to effectively achieve the scientific goals of the EDGE study.
Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas
2015-01-01
The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.
2015-01-01
Background The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Methods Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. Results The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. Conclusion The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates. PMID:26192188
Flow Dynamics of Contrast Dispersion in the Aorta
NASA Astrophysics Data System (ADS)
Eslami, Parastou; Seo, Jung-Hee; Chen, Marcus; Mittal, Rajat
2016-11-01
The time profile of the contrast concentration or arterial input function (AIF) has many fundamental clinical implications and is of importance for many imaging modalities and diagnosis such as MR perfusion, CT perfusion and CT angiography (CTA). Contrast dispersion in CTA has been utilized to develop a novel method- Transluminal Attenuation Flow Encoding (TAFE)- to estimate coronary blood flow (CBF). However, in clinical practice, AIF is only available in the descending aorta and is used as a surrogate of the AIF at the coronary ostium. In this work we use patient specific computational models of the complete aorta to investigate the fluid dynamics of contrast dispersion in the aorta. The simulation employs a realistic kinematic model of the aortic valve and the dispersion patterns are correlated with the complex dynamics of the pulsatile flow in the curved aorta. The simulations allow us to determine the implications of using the descending aorta AIF as a surrogate for the AIF at the coronary ostium. PE is supported by the NIH Individual Partnership Program. -/abstract- Category: 4.7.1: Biological fluid dynamics: Physiological - Cardiovasc This work was done at Johns Hopkins University.
recorded simultaneously by auscultation of the brachial artery; and (2) to study the pattern of pressure and flow dynamics during bicycle work at moderate...strenuous and maximal intensities. In most instances systolic pressures measured by auscultation were in close agreement with the directly recorded
Renal hemodynamics: the influence of the renal artery ostium flow diverter
NASA Astrophysics Data System (ADS)
Rossmann, Jenn Stroud; Albert, Scott; Balaban, Robert
2013-11-01
The recently identified renal artery ostium flow diverter may preferentially direct blood flow to the renal arteries, and may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter's position, the flow to the renal arteries may be increased or reduced. The results of simulations also show the diverter's effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.
Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis
Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O
2016-01-01
A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177
Respiratory symptoms among glass bottle workers--cough and airways irritancy syndrome?
Gordon, S B; Curran, A D; Fishwick, D; Morice, A H; Howard, P
1998-10-01
Glass bottle workers have been shown to experience an excess of respiratory symptoms. This work describes in detail the symptoms reported by a cohort of 69 symptomatic glass bottle workers. Symptoms, employment history and clinical investigations including radiology, spirometry and serial peak expiratory flow rate records were retrospectively analyzed from clinical records. The results showed a consistent syndrome of work-related eye, nose and throat irritation followed after a variable period by shortness of breath. The latent interval between starting work and first developing symptoms was typically 4 years (median = 4 yrs; range = 0-28). The interval preceding the development of dysponea was longer and much more variable (median = 16 yrs; range = 3-40). Spirometry was not markedly abnormal in the group but 57% of workers had abnormal serial peak expiratory flow rate charts. Workers in this industry experience upper and lower respiratory tract symptoms consistent with irritant exposure. The long-term functional significance of these symptoms should be formally investigated.
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation
Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.
2015-01-01
Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245
O'Shea, Genevieve; Teuteberg, Jeffrey J; Severyn, Donald A
2013-03-01
Ventricular assist devices provide therapeutic options for patients with severe heart failure who have exhausted available medical therapies. With restoration of organ perfusion with ventricular assist devices, the heart failure resolves and quality of life and functional status improve. The current generation of continuous-flow devices present novel challenges to the clinical assessment of patients by substantially reducing or nearly eliminating any palpable pulse. Patients therefore generally have inadequate arterial pulsatility for most noninvasive monitoring devices such as pulse oximeters or automated blood pressure cuffs to work accurately. This article describes the function of continuous-flow devices and how this function affects common monitoring options, as well as how to clinically assess recipients of continuous-flow devices to promptly identify those whose condition may be deteriorating or who may be receiving inadequate perfusion.
NASA Astrophysics Data System (ADS)
Ko, Seungbin; Song, Simon; Kim, Doosang
2016-11-01
It is remained unknown that the flow characteristics changes between pre- and post-operative severe carotid artery stenosis could affect the long-term patency or failure. However, in-vivo clinical experiments to uncover the flow details are far from bed-side due to limited measurement resolutions, blurring artifact, etc. We studied detailed flow characteristics of more than 75% severe carotid artery stenosis before and after surgical treatments. Real-size flow phantoms for 10 patients, who underwent carotid endarterectomy with patch/no patch closure, were prepared by using a 3D rapid-prototype machine from CT scanned images. The working fluid is a glycerin aqueous solution, and patient-specific pulsatile flows were applied to the phantoms, based on ultrasonic flow rate measurements. The flows were visualized with magnetic resonance velocimetry (MRV). The detailed flow characteristics are presented for both pre- and post-operative carotid arteries along with visualization data of 3 dimensional, 3 component velocity fields. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... blood or tissues can result in obstruction of blood flow or pressure effects. Clinical manifestations of... Tables,(3) Information on related control measures (e.g., engineering controls, work practices, personal...
The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility
2011-01-01
The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its regulation and the effect of alteration in this flow with disease have been studied extensively and are very well understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes regular variations in blood flow into and throughout the brain that are synchronous with the heart beat. Because the brain is contained within the fixed skull, these pulsations in flow and pressure are in turn transferred into brain tissue and all of the fluids contained therein including cerebrospinal fluid. While intracranial pulsatility has not been a primary focus of the clinical community, considerable data have accrued over the last sixty years and new applications are emerging to this day. Investigators have found it a useful marker in certain diseases, particularly in hydrocephalus and traumatic brain injury where large changes in intracranial pressure and in the biomechanical properties of the brain can lead to significant changes in pressure and flow pulsatility. In this work, we review the history of intracranial pulsatility beginning with its discovery and early characterization, consider the specific technologies such as transcranial Doppler and phase contrast MRI used to assess various aspects of brain pulsations, and examine the experimental and clinical studies which have used pulsatility to better understand brain function in health and with disease. PMID:21349153
Webb, R. Chad; Ma, Yinji; Krishnan, Siddharth; Li, Yuhang; Yoon, Stephen; Guo, Xiaogang; Feng, Xue; Shi, Yan; Seidel, Miles; Cho, Nam Heon; Kurniawan, Jonas; Ahad, James; Sheth, Niral; Kim, Joseph; Taylor VI, James G.; Darlington, Tom; Chang, Ken; Huang, Weizhong; Ayers, Joshua; Gruebele, Alexander; Pielak, Rafal M.; Slepian, Marvin J.; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2015-01-01
Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities. PMID:26601309
Designing clinically useful systems: examples from medicine and dentistry.
Koch, S
2003-12-01
Despite promising results in medical informatics research and the development of a large number of different systems, few systems get beyond a prototype state and are really used in practice. Among other factors, the lack of explicit user focus is one main reason. The research projects presented in this paper follow a user-centered system development approach based on extensive work analyses in interdisciplinary working groups, taking into account human cognitive performance. Different medical and health-care specialists, together with researchers in human-computer interaction and medical informatics, specify future clinical work scenarios. Special focus is put on analysis and design of the information and communication flow and on exploration of intuitive visualization and interaction techniques for clinical information. Adequate choice of the technical access device is made depending on the user's work situation. It is the purpose of this paper to apply this method in two different research projects and thereby to show its potential for designing clinically useful systems that do support and not hamper clinical work. These research projects cover IT support for chairside work in dentistry (http://www.dis.uu.se/mdi/research/projects/orquest) and ICT support for home health care of elderly citizens (http://www.medsci.uu.se/mie/project/closecare).
Urschler, Martin; Höller, Johannes; Bornik, Alexander; Paul, Tobias; Giretzlehner, Michael; Bischof, Horst; Yen, Kathrin; Scheurer, Eva
2014-08-01
The increasing use of CT/MR devices in forensic analysis motivates the need to present forensic findings from different sources in an intuitive reference visualization, with the aim of combining 3D volumetric images along with digital photographs of external findings into a 3D computer graphics model. This model allows a comprehensive presentation of forensic findings in court and enables comparative evaluation studies correlating data sources. The goal of this work was to investigate different methods to generate anonymous and patient-specific 3D models which may be used as reference visualizations. The issue of registering 3D volumetric as well as 2D photographic data to such 3D models is addressed to provide an intuitive context for injury documentation from arbitrary modalities. We present an image processing and visualization work-flow, discuss the major parts of this work-flow, compare the different investigated reference models, and show a number of cases studies that underline the suitability of the proposed work-flow for presenting forensically relevant information in 3D visualizations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[Outlook for clinical hemorheology].
Stoltz, J F
1996-01-01
Harvey may be considered to be the precursor of modern hemorheology, but it was not until the pioneering work of Loewenhoeck, Poiseuille, Fahraeus and Copley that the essential role of the hemorheological properties of blood and its cellular components was recognized. Before the advent of modern hemorheology in the 70s, studies were mainly focussed on microcirculation and validation of global hemorheological equations applied to blood circulation. Parallel studies on the microrheological properties (erythrocyte deformability and aggregation) explained analytically the non-Newtonian behavior of blood, and the essential contribution of these parameters to the understanding hyperviscosity syndromes. The development of clinical hemorheology in fact started at the international conferences held in Reykjavik (1966) and Heidelberg (1969), and with the initiation of the periodical European Microcirculation (since Nancy in 1960) and Clinical Hemorheology (since Nancy in 1979) Conferences. The current main avenues of research involve flow modelling, studies of cell-cell interaction mechanisms (aggregation and adhesion), in relation to the associated pathophysiological phenomena, such as cellular activation (platelets and leukocytes in particular), gene expression linked to blood flow (e.g. endothelial cells)... Clinically and therapeutically, it is crucial that pathophysiological studies be undertaken on the relationship existing between rheological parameters and objective clinical data (local flow rates, ischemic markers, hemostatic parameters, tissue oxygen, clinical symptoms,...). The main clinical application fields are cardiovascular diseases, thrombosis, diabetes, hypercholesterolemia... Also, studies on new therapeutics or on biomaterials should also be given priority.
Boutsioukis, C; Lambrianidis, T; Kastrinakis, E
2009-02-01
To study using computer simulation the effect of irrigant flow rate on the flow pattern within a prepared root canal, during final irrigation with a syringe and needle. Geometrical characteristics of a side-vented endodontic needle and clinically realistic flow rate values were obtained from previous and preliminary studies. A Computational Fluid Dynamics (CFD) model was created using FLUENT 6.2 software. Calculations were carried out for five selected flow rates (0.02-0.79 mL sec(-1)) and velocity and turbulence quantities along the domain were evaluated. Irrigant replacement was limited to 1-1.5 mm apical to the needle tip for all flow rates tested. Low-Reynolds number turbulent flow was detected near the needle outlet. Irrigant flow rate affected significantly the flow pattern within the root canal. Irrigation needles should be placed to within 1 mm from working length to ensure fluid exchange. Turbulent flow of irrigant leads to more efficient irrigant replacement. CFD represents a powerful tool for the study of irrigation.
NASA Astrophysics Data System (ADS)
Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda
2017-03-01
Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex phenomena. With larger patient studies planned for the future, and with the possibility of adding more anatomical features into the model framework, the current work demonstrates the potential of patient-specific CFD-models as a tool for quantifying 4D blood flow in the heart.
Augment clinical measurement using a constraint-based esophageal model
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Acharya, Shashank; Kahrilas, Peter; Patankar, Neelesh; Pandolfino, John
2017-11-01
Quantifying the mechanical properties of the esophageal wall is crucial to understanding impairments of trans-esophageal flow characteristic of several esophageal diseases. However, these data are unavailable owing to technological limitations of current clinical diagnostic instruments that instead display esophageal luminal cross sectional area based on intraluminal impedance change. In this work, we developed an esophageal model to predict bolus flow and the wall property based on clinical measurements. The model used the constraint-based immersed-boundary method developed previously by our group. Specifically, we first approximate the time-dependent wall geometry based on impedance planimetry data on luminal cross sectional area. We then fed these along with pressure data into the model and computed wall tension based on simulated pressure and flow fields, and the material property based on the strain-stress relationship. As examples, we applied this model to augment FLIP (Functional Luminal Imaging Probe) measurements in three clinical cases: a normal subject, achalasia, and eosinophilic esophagitis (EoE). Our findings suggest that the wall stiffness was greatest in the EoE case, followed by the achalasia case, and then the normal. This is supported by NIH Grant R01 DK56033 and R01 DK079902.
Blood flow quantification using 1D CFD parameter identification
NASA Astrophysics Data System (ADS)
Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir
2014-03-01
Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.
Swenson, Carolyn J; Appel, Alicia; Sheehan, Moira; Hammer, Anne; Fenner, Zita; Phibbs, Stephanie; Harbrecht, Marjie; Main, Deborah S
2012-01-01
Adult immunizations prevent morbidity and mortality yet coverage remains suboptimal, in part due to missed opportunities. Clinical decision support systems (CDSSs) can improve immunization rates when integrated into routine work flow, implemented wherever care is delivered, and used by staff who can act on the recommendation. An adult immunization improvement project was undertaken in a large integrated, safety-net health care system. A CDSS was developed to query patient records and identify patients eligible for pneumococcal, influenza, or tetanus immunization and then generate a statement that recommends immunization or indicates a previous refusal. A new agency policy authorized medical assistants and nurses in clinics, and nurses in the hospital, to use the CDSS as a standing order. Immunization delivery work flow was standardized, and staff received feedback on immunization rates. The CDSS identified more patients than a typical paper standing order and can be easily modified to incorporate changes in vaccine indications. The intervention led to a 10% improvement in immunization rates in adults 65 years of age or older and in younger adults with diabetes or chronic obstructive pulmonary disease. Overall, the improvements were sustained beyond the project period. The CDSS was expanded to encompass additional vaccines. Interdepartmental collaboration was critical to identify needs, challenges, and solutions. Implementing the standing order policy in clinics and the hospital usually allowed immunizations to be taken out of the hands of clinicians. As an on-demand tool, CDSS must be used at each patient encounter to avoid missed opportunities. Staff retraining accompanied by ongoing assessment of immunization rates, work flow, and missed opportunities to immunize patients are critical to sustain and enhance improvements.
4D flow mri post-processing strategies for neuropathologies
NASA Astrophysics Data System (ADS)
Schrauben, Eric Mathew
4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a double-gated flow acquisition and reconstruction scheme demonstrates respiratory-induced changes in internal jugular vein flow. Finally, a semi-automated intracranial vessel segmentation and flow parameter measurement software tool for fast and consistent 4D flow post-processing analysis is developed, validated, and exhibited an in-vivo.
Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.
Leptomeningeal metastases: a RANO proposal for response criteria
Junck, Larry; Brandsma, Dieta; Soffietti, Riccardo; Rudà, Roberta; Raizer, Jeffrey; Boogerd, Willem; Taillibert, Sophie; Groves, Morris D.; Rhun, Emilie Le; Walker, Julie; van den Bent, Martin; Wen, Patrick Y.; Jaeckle, Kurt A.
2017-01-01
Abstract Leptomeningeal metastases (LM) currently lack standardization with respect to response assessment. A Response Assessment in Neuro-Oncology (RANO) working group with expertise in LM developed a consensus proposal for evaluating patients treated for this disease. Three basic elements in assessing response in LM are proposed: a standardized neurological examination, cerebral spinal fluid (CSF) cytology or flow cytometry, and radiographic evaluation. The group recommends that all patients enrolling in clinical trials undergo CSF analysis (cytology in all cancers; flow cytometry in hematologic cancers), complete contrast-enhanced neuraxis MRI, and in instances of planned intra-CSF therapy, radioisotope CSF flow studies. In conjunction with the RANO Neurological Assessment working group, a standardized instrument was created for assessing the neurological exam in patients with LM. Considering that most lesions in LM are nonmeasurable and that assessment of neuroimaging in LM is subjective, neuroimaging is graded as stable, progressive, or improved using a novel radiological LM response scorecard. Radiographic disease progression in isolation (ie, negative CSF cytology/flow cytometry and stable neurological assessment) would be defined as LM disease progression. The RANO LM working group has proposed a method of response evaluation for patients with LM that will require further testing, validation, and likely refinement with use. PMID:28039364
Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.
Morales, Hernán G; Bonnefous, Odile
2015-02-26
Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Y Kiran; Mehta, Shashi Bhushan; Ramachandra, Manjunath
2017-01-01
The purpose of this work is to provide some validation methods for evaluating the hemodynamic assessment of Cerebral Arteriovenous Malformation (CAVM). This article emphasizes the importance of validating noninvasive measurements for CAVM patients, which are designed using lumped models for complex vessel structure. The validation of the hemodynamics assessment is based on invasive clinical measurements and cross-validation techniques with the Philips proprietary validated software's Qflow and 2D Perfursion. The modeling results are validated for 30 CAVM patients for 150 vessel locations. Mean flow, diameter, and pressure were compared between modeling results and with clinical/cross validation measurements, using an independent two-tailed Student t test. Exponential regression analysis was used to assess the relationship between blood flow, vessel diameter, and pressure between them. Univariate analysis is used to assess the relationship between vessel diameter, vessel cross-sectional area, AVM volume, AVM pressure, and AVM flow results were performed with linear or exponential regression. Modeling results were compared with clinical measurements from vessel locations of cerebral regions. Also, the model is cross validated with Philips proprietary validated software's Qflow and 2D Perfursion. Our results shows that modeling results and clinical results are nearly matching with a small deviation. In this article, we have validated our modeling results with clinical measurements. The new approach for cross-validation is proposed by demonstrating the accuracy of our results with a validated product in a clinical environment.
Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis
Albert, Scott; Balaban, Robert S.; Neufeld, Edward B.; Rossmann, Jenn Stroud
2014-01-01
The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter’s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter’s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter’s effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. PMID:24703300
Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis.
Albert, Scott; Balaban, Robert S; Neufeld, Edward B; Rossmann, Jenn Stroud
2014-05-07
The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter׳s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution; depending on the diverter׳s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter׳s effect on the wall shear stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Utilization of lean management principles in the ambulatory clinic setting.
Casey, Jessica T; Brinton, Thomas S; Gonzalez, Chris M
2009-03-01
The principles of 'lean management' have permeated many sectors of today's business world, secondary to the success of the Toyota Production System. This management method enables workers to eliminate mistakes, reduce delays, lower costs, and improve the overall quality of the product or service they deliver. These lean management principles can be applied to health care. Their implementation within the ambulatory care setting is predicated on the continuous identification and elimination of waste within the process. The key concepts of flow time, inventory and throughput are utilized to improve the flow of patients through the clinic, and to identify points that slow this process -- so-called bottlenecks. Nonessential activities are shifted away from bottlenecks (i.e. the physician), and extra work capacity is generated from existing resources, rather than being added. The additional work capacity facilitates a more efficient response to variability, which in turn results in cost savings, more time for the physician to interact with patients, and faster completion of patient visits. Finally, application of the lean management principle of 'just-in-time' management can eliminate excess clinic inventory, better synchronize office supply with patient demand, and reduce costs.
Mobile Phone Messaging During Unobserved "Home" Induction to Buprenorphine.
Tofighi, Babak; Grossman, Ellie; Sherman, Scott; Nunes, Edward V; Lee, Joshua D
2016-01-01
The deployment of health information technologies promises to optimize clinical outcomes for populations with substance use disorders. Electronic health records, web-based counseling interventions, and mobile phone applications enhance the delivery of evidence-based behavioral and pharmacological treatments, with minimal burden to clinical personnel, infrastructure, and work flows. This clinical case shares a recent experience utilizing mobile phone text messaging between an office-based buprenorphine provider in a safety net ambulatory clinic and a patient seeking buprenorphine treatment for opioid use disorder. The case highlights the use of text message-based physician-patient communication to facilitate unobserved "home" induction onto buprenorphine.
Aronson, Samuel; Babb, Lawrence; Ames, Darren; Gibbs, Richard A; Venner, Eric; Connelly, John J; Marsolo, Keith; Weng, Chunhua; Williams, Marc S; Hartzler, Andrea L; Liang, Wayne H; Ralston, James D; Devine, Emily Beth; Murphy, Shawn; Chute, Christopher G; Caraballo, Pedro J; Kullo, Iftikhar J; Freimuth, Robert R; Rasmussen, Luke V; Wehbe, Firas H; Peterson, Josh F; Robinson, Jamie R; Wiley, Ken; Overby Taylor, Casey
2018-05-31
The eMERGE Network is establishing methods for electronic transmittal of patient genetic test results from laboratories to healthcare providers across organizational boundaries. We surveyed the capabilities and needs of different network participants, established a common transfer format, and implemented transfer mechanisms based on this format. The interfaces we created are examples of the connectivity that must be instantiated before electronic genetic and genomic clinical decision support can be effectively built at the point of care. This work serves as a case example for both standards bodies and other organizations working to build the infrastructure required to provide better electronic clinical decision support for clinicians.
NASA Astrophysics Data System (ADS)
Klavetter, Eric
2005-09-01
An internal assessment was undertaken to understand the flow of patients to ensure comfort and privacy during their health care experience at Mayo Clinic. A number of different prototypes, work flows, and methodologies were utilized and assessed to determine the ``best experience for our patients.'' A number of prototypes ranging from self-check in to personal pagers were assessed along with creating environments that introduced ``passive distractions'' for acoustical and noise management, which can range from fireplaces, to coffee shops to playgrounds to ``tech corridors.'' While a number of these designs are currently being piloted, the over-reaching goal is to make the patient experience ``like no other'' when receiving their care at Mayo Clinic.
2002-10-01
beneficiaries are uti - lized as part of the health care team; how physical space is divided, laid out, and used for various aspects of work flow; what...counselors, family therapists, community pharmacists , dentists, or podiatrists), public or private agencies (e.g., Navy and Marine Corps family services...clinic should have a clinic manager, and each team should have integrated support from: • 0.25 FTE clinical pharmacist • 0.5 FTE behavioral or mental
Reyes-Núñez, Virginia; Galo-Hooker, Evelyn; Pérez-Romano, Beatriz; Duque, Ricardo E; Ruiz-Arguelles, Alejandro; Garcés-Eisele, Javier
2018-01-01
The aim of this work was to simultaneously use multiplex ligation-dependent probe amplification (MLPA) assay and flow cytometric DNA ploidy analysis (FPA) to detect aneuploidy in patients with newly diagnosed acute leukemia. MLPA assay and propidium iodide FPA were used to test samples from 53 consecutive patients with newly diagnosed acute leukemia referred to our laboratory for immunophenotyping. Results were compared by nonparametric statistics. The combined use of both methods significantly increased the rate of detection of aneuploidy as compared to that obtained by each method alone. The limitations of one method are somehow countervailed by the other and vice versa. MPLA and FPA yield different yet complementary information concerning aneuploidy in acute leukemia. The simultaneous use of both methods might be recommended in the clinical setting. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
An introduction to statistical process control in research proteomics.
Bramwell, David
2013-12-16
Statistical process control is a well-established and respected method which provides a general purpose, and consistent framework for monitoring and improving the quality of a process. It is routinely used in many industries where the quality of final products is critical and is often required in clinical diagnostic laboratories [1,2]. To date, the methodology has been little utilised in research proteomics. It has been shown to be capable of delivering quantitative QC procedures for qualitative clinical assays [3] making it an ideal methodology to apply to this area of biological research. To introduce statistical process control as an objective strategy for quality control and show how it could be used to benefit proteomics researchers and enhance the quality of the results they generate. We demonstrate that rules which provide basic quality control are easy to derive and implement and could have a major impact on data quality for many studies. Statistical process control is a powerful tool for investigating and improving proteomics research work-flows. The process of characterising measurement systems and defining control rules forces the exploration of key questions that can lead to significant improvements in performance. This work asserts that QC is essential to proteomics discovery experiments. Every experimenter must know the current capabilities of their measurement system and have an objective means for tracking and ensuring that performance. Proteomic analysis work-flows are complicated and multi-variate. QC is critical for clinical chemistry measurements and huge strides have been made in ensuring the quality and validity of results in clinical biochemistry labs. This work introduces some of these QC concepts and works to bridge their use from single analyte QC to applications in multi-analyte systems. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon
2016-11-01
For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).
Does the use of automated fetal biometry improve clinical work flow efficiency?
Espinoza, Jimmy; Good, Sara; Russell, Evie; Lee, Wesley
2013-05-01
This study was designed to compare the work flow efficiency of manual measurements of 5 fetal parameters with a novel technique that automatically measures these parameters from 2-dimensional sonograms. This prospective study included 200 singleton pregnancies between 15 and 40 weeks' gestation. Patients were randomly allocated to either manual (n = 100) or automatic (n = 100) fetal biometry. The automatic measurement was performed using a commercially available software application. A digital video recorder captured all on-screen activity associated with the sonographic examination. The examination time and number of steps required to obtain fetal measurements were compared between manual and automatic methods. The mean time required to obtain the biometric measurements was significantly shorter using the automated technique than the manual approach (P < .001 for all comparisons). Similarly, the mean number of steps required to perform these measurements was significantly fewer with automatic measurements compared to the manual technique (P < .001). In summary, automated biometry reduced the examination time required for standard fetal measurements. This approach may improve work flow efficiency in busy obstetric sonography practices.
Perry, Ronald D; Goldberg, Jeffrey A; Benchimol, Jacques; Orfanidis, John
2006-10-01
The flow properties and hydrophilicity of an impression material are key factors that affect its performance. This article details in vitro studies comparing these properties in 1 polyether and several vinyl polysiloxane light-body impression materials. The first series of studies examined the materials' flow properties used in a "shark fin" measurement procedure to determine which exhibited superior flow characteristics. The second series of studies reviewed the hydrophilic properties of the materials. Video analysis was used to record contact angle measurements at the early- and late-stage working times. Results showed 1 polyether material to be more hydrophilic. Applying this knowledge to practice, the authors present a clinical case in which a polyether's superior flow and quality of detail were used to make impressions for a patient receiving 8 single-unit zirconia crowns.
Pinched-flow hydrodynamic stretching of single-cells.
Dudani, Jaideep S; Gossett, Daniel R; Tse, Henry T K; Di Carlo, Dino
2013-09-21
Reorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations. Because of the heterogeneity and potential for rare populations in clinical samples, single-cell, high-throughput assays are ideally suited. Hydrodynamic stretching has recently emerged as a powerful method for carrying out mechanical phenotyping. Importantly, this method operates independently of molecular probes, reducing cost and sample preparation time, and yields information-rich signatures of cell populations through significant image analysis automation, promoting more widespread adoption. In this work, we present an alternative mode of hydrodynamic stretching where inertially-focused cells are squeezed in flow by perpendicular high-speed pinch flows that are extracted from the single inputted cell suspension. The pinched-flow stretching method reveals expected differences in cell deformability in two model systems. Furthermore, hydraulic circuit design is used to tune stretching forces and carry out multiple stretching modes (pinched-flow and extensional) in the same microfluidic channel with a single fluid input. The ability to create a self-sheathing flow from a single input solution should have general utility for other cytometry systems and the pinched-flow design enables an order of magnitude higher throughput (65,000 cells s(-1)) compared to our previously reported deformability cytometry method, which will be especially useful for identification of rare cell populations in clinical body fluids in the future.
Lactation in the Human Breast From a Fluid Dynamics Point of View.
Negin Mortazavi, S; Geddes, Donna; Hassanipour, Fatemeh
2017-01-01
This study is a collaborative effort among lactation specialists and fluid dynamic engineers. The paper presents clinical results for suckling pressure pattern in lactating human breast as well as a 3D computational fluid dynamics (CFD) modeling of milk flow using these clinical inputs. The investigation starts with a careful, statistically representative measurement of suckling vacuum pressure, milk flow rate, and milk intake in a group of infants. The results from clinical data show that suckling action does not occur with constant suckling rate but changes in a rhythmic manner for infants. These pressure profiles are then used as the boundary condition for the CFD study using commercial ansys fluent software. For the geometric model of the ductal system of the human breast, this work takes advantage of a recent advance in the development of a validated phantom that has been produced as a ground truth for the imaging applications for the breast. The geometric model is introduced into CFD simulations with the aforementioned boundary conditions. The results for milk intake from the CFD simulation and clinical data were compared and cross validated. Also, the variation of milk intake versus suckling pressure are presented and analyzed. Both the clinical and CFD simulation show that the maximum milk flow rate is not related to the largest vacuum pressure or longest feeding duration indicating other factors influence the milk intake by infants.
Pulsed photoacoustic flow imaging with a handheld system
NASA Astrophysics Data System (ADS)
van den Berg, Pim J.; Daoudi, Khalid; Steenbergen, Wiendelt
2016-02-01
Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging-ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75 mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ˜7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.
Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A
2010-12-15
This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Self-gated golden-angle spiral 4D flow MRI.
Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel
2018-01-17
The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Hoganson, David M; Hinkel, Cameron J; Chen, Xiaomin; Agarwal, Ramesh K; Shenoy, Surendra
2014-01-01
Stenosis in a vascular access circuit is the predominant cause of access dysfunction. Hemodynamic significance of a stenosis identified by angiography in an access circuit is uncertain. This study utilizes computational fluid dynamics (CFD) to model flow through arteriovenous fistula to predict the functional significance of stenosis in vascular access circuits. Three-dimensional models of fistulas were created with a range of clinically relevant stenoses using SolidWorks. Stenoses diameters ranged from 1.0 to 3.0 mm and lengths from 5 to 60 mm within a fistula diameter of 7 mm. CFD analyses were performed using a blood model over a range of blood pressures. Eight patient-specific stenoses were also modeled and analyzed with CFD and the resulting blood flow calculations were validated by comparison with brachial artery flow measured by duplex ultrasound. Predicted flow rates were derived from CFD analysis of a range of stenoses. These stenoses were modeled by CFD and correlated with the ultrasound measured flow rate through the fistula of eight patients. The calculated flow rate using CFD correlated within 20% of ultrasound measured flow for five of eight patients. The mean difference was 17.2% (ranged from 1.3% to 30.1%). CFD analysis-generated flow rate tables provide valuable information to assess the functional significance of stenosis detected during imaging studies. The CFD study can help in determining the clinical relevance of a stenosis in access dysfunction and guide the need for intervention.
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
The PolyScope: a modular design, semidisposable flexible ureterorenoscope system.
Bader, Markus Juergen; Gratzke, Christian; Walther, Sebastian; Schlenker, Boris; Tilki, Derya; Hocaoglu, Yasemin; Sroka, Ronald; Stief, Christian Georg; Reich, Oliver
2010-07-01
To characterize the mechanical and optical properties of the PolyScope endoscope system and to examine the clinical outcome in patients who were undergoing ureteronephroscopy. Mechanical assessment involved measurement of the deflection angle and irrigation flow rate. Optical resolution and distortion, field and angle of view, and light transmission and output formed the optical assessment. Clinical assessment was made in a series of consecutive ureteronephroscopy procedures. The optical cord was disconnected after each procedure, and the image fiber was assessed for damage. The mean value for the angle of maximum active tip deflection with an empty working channel was 265 degrees (261-275 degrees). Deflection was impaired most with insertion of the 3.0 F basket (10% decrease) and least with an indwelling 220 microm laser fiber (2% decrease). Irrigation flow rate was 57 mL/min with an empty working channel. Flow was reduced by 50% and 68%, with the insertion of a 200 microm or 365 microm laser probe, respectively, and by 92.5% with a 3.2F basket. No damage to the image fiber occurred. The PolyScope optics system could identify a target of about 0.125 mm at a distance of 2 to 4 mm, based on 3 line-pairs/mm needed for clear identification. Lithotripsy of renal calculi was performed for 40 stone burdens in 32 patients; the resulting stone-free rate was 87.5%. The novel semidisposable ureteroscope system PolyScope was simple to use, effective, and reliable in this preliminary clinical evaluation. It overcomes the inherent fragility of comparable devices, which renders the need for maintenance unnecessary.
Fast interactive exploration of 4D MRI flow data
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.
2011-03-01
1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.
Georgiou, Andrew; Prgomet, Mirela; Paoloni, Richard; Creswick, Nerida; Hordern, Antonia; Walter, Scott; Westbrook, Johanna
2013-06-01
We undertake a systematic review of the quantitative literature related to the effect of computerized provider order entry systems in the emergency department (ED). We searched MEDLINE, EMBASE, Inspec, CINAHL, and CPOE.org for English-language studies published between January 1990 and May 2011. We identified 1,063 articles, of which 22 met our inclusion criteria. Sixteen used a pre/post design; 2 were randomized controlled trials. Twelve studies reported outcomes related to patient flow/clinical work, 7 examined decision support systems, and 6 reported effects on patient safety. There were no studies that measured decision support systems and its effect on patient flow/clinical work. Computerized provider order entry was associated with an increase in time spent on computers (up to 16.2% for nurses and 11.3% for physicians), with no significant change in time spent on patient care. Computerized provider order entry with decision support systems was related to significant decreases in prescribing errors (ranging from 17 to 201 errors per 100 orders), potential adverse drug events (0.9 per 100 orders), and prescribing of excessive dosages (31% decrease for a targeted set of renal disease medications). There are tangible benefits associated with computerized provider order entry/decision support systems in the ED environment. Nevertheless, when considered as part of a framework of technical, clinical, and organizational components of the ED, the evidence base is neither consistent nor comprehensive. Multimethod research approaches (including qualitative research) can contribute to understanding of the multiple dimensions of ED care delivery, not as separate entities but as essential components of a highly integrated system of care. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan
2018-01-01
Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062
A CLINICAL METHOD FOR MAPPING AND QUANTIFYING BLOOD STASIS IN THE LEFT VENTRICLE
Rossini, Lorenzo; Martinez-Legazpi, Pablo; Vu, Vi; Fernández-Friera, Leticia; del Villar, Candelas Pèrez; Rodríguez-López, Sara; Benito, Yolanda; Borja, María-Guadalupe; Pastor-Escuredo, David; Yotti, Raquel; Ledesma-Carbayo, María J.; Kahn, Andrew M.; Ibáñez, Borja; Fernández-Avilès, Francisco; May-Newman, Karen; Bermejo, Javier; del Álamo, Juan C.
2015-01-01
In patients at risk of intraventricular thrombosis, the benefits of chronic anticoagulation therapy need to be balanced with the pro-hemorrhagic effects of therapy. Blood stasis in the cardiac chambers is a recognized risk factor for intracardiac thrombosis and potential cardiogenic embolic events. In this work, we present a novel flow image-based method to assess the location and extent of intraventricular stasis regions inside the left ventricle (LV) by digital processing flow-velocity images obtained either by phase-contrast magnetic resonance (PCMR) or 2D color-Doppler velocimetry (echo-CDV). This approach is based on quantifying the distribution of the blood Residence Time (TR) from time-resolved blood velocity fields in the LV. We tested the new method in illustrative examples of normal hearts, patients with dilated cardiomyopathy and one patient before and after the implantation of a left ventricular assist device (LVAD). The method allowed us to assess in-vivo the location and extent of the stasis regions in the LV. Original metrics were developed to integrate flow properties into simple scalars suitable for a robust and personalized assessment of the risk of thrombosis. From a clinical perspective, this work introduces the new paradigm that quantitative flow dynamics can provide the basis to obtain subclinical markers of intraventricular thrombosis risk. The early prediction of LV blood stasis may result in decrease strokes by appropriate use of anticoagulant therapy for the purpose of primary and secondary prevention. It may also have a significant impact on LVAD device design and operation set-up. PMID:26680013
NASA Astrophysics Data System (ADS)
Paliwal, Nikhil; Damiano, Robert; Davies, Jason; Siddiqui, Adnan; Meng, Hui
2015-11-01
Endovascular intervention by Flow Diverter (FD) - a densely woven stent - occludes an aneurysm by inducing thrombosis in the aneurysm sac and reconstructing the vessel. Hemodynamics plays a vital role in the thrombotic occlusion of aneurysms and eventual treatment outcome. CFD analysis of pre- and post-treatment aneurysms not only provides insight of flow modifications by FD, but also allows investigation of interventional strategies and prediction of their outcome. In this study 80 patient-specific aneurysms treated with FDs were retrospectively studied to evaluate the effect of intervention. Out of these cases, 16 required retreatment and thus are considered as having unfavorable outcome. Clinical FD deployment in these cases was simulated using an efficient virtual stenting workflow. CFD analysis was carried out on both pre- and post-treatment cases, and changes in hemodynamic parameters were calculated. Support vector machine algorithm was used to correlate the hemodynamic changes with outcome. Results show that cases having higher flow reduction into the aneurysmal sac have a better likelihood of occlusion. This suggests that changes in hemodynamics can be potentially used to predict the outcome of different clinical intervention strategies in aneurysms. This work was supported by the National Institutes of Health (R01 NS091075).
Zochodne, Douglas W
2018-06-01
Over 3 decades ago, seminal work by Phillip Low and colleagues established exquisite physiology around the measurement of nerve blood flow (NBF). Although not widely explored recently, its connection to the clinic has awaited human methodology. While human studies have not achieved a convincing level of rigour, newer imaging technologies are offering early information. The peripheral nerve trunk has parallel blood flow compartments that include epineurial flow dominated by arteriovenous shunts and downstream endoneurial blood flow (EBF). NBF and EBF have lower values than central nervous system blood flow, lack autoregulation yet have sympathetic and peptidergic neurovascular control. Contrary to expectation, injury to nerves is often associated with rises in NBF rather than ischemia, a finding of biological interest corroborated by human studies. Despite its potential importance, quantitative human measurements of EBF and NBF are not yet available. However, with development, careful NBF analysis may present new insights into nerve disorders. Muscle Nerve 57: 884-895, 2018. © 2017 Wiley Periodicals, Inc.
Blood Flow in the Stenotic Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy
2005-11-01
The carotid artery is prone to atherosclerotic disease and the growth of plaque in the vessel, leading often to severe occlusion or plaque rupture, resulting in emboli and thrombus, and, possibly, stroke. Modeling the flow in stenotic blood vessels can elucidate the influence of the flow on plaque growth and stability. Numerical simulations are carried out to model the complex flows in anatomically realistic, patient-specific geometries constructed from magnetic resonance images. The 3-D unsteady Navier-Stokes equations are solved in a finite-volume formulation, using an iterative pressure-correction algorithm. The flow field computed is highly three-dimensional, with high-speed jets and strong recirculating secondary flows. Sharp spatial and temporal variations of the velocities and shear stresses are observed. The results are in a good agreement with the available experimental and clinical data. The influence of non-Newtonian blood behavior and arterial wall compliance are considered. Transitional and turbulent regimes have been looked at using LES. This work supports the conjecture that numerical simulations can provide a diagnostic tool for assessing plaque stability.
A fluid collection system for dermal wounds in clinical investigations
Klopfer, Michael; Li, G.-P.; Widgerow, Alan; Bachman, Mark
2016-01-01
In this work, we demonstrate the use of a thin, self adherent, and clinically durable patch device that can collect fluid from a wound site for analysis. This device is manufactured from laminated silicone layers using a novel all-silicone double-molding process. In vitro studies for flow and delivery were followed by a clinical demonstration for exudate collection efficiency from a clinically presented partial thickness burn. The demonstrated utility of this device lends itself for use as a research implement used to clinically sample wound exudate for analysis. This device can serve as a platform for future integration of wearable technology into wound monitoring and care. The demonstrated fabrication method can be used for devices requiring thin membrane construction. PMID:27051470
Use of Flowchart for Automation of Clinical Protocols in mHealth.
Dias, Karine Nóra; Welfer, Daniel; Cordeiro d'Ornellas, Marcos; Pereira Haygert, Carlos Jesus; Dotto, Gustavo Nogara
2017-01-01
For healthcare professionals to use mobile applications we need someone who knows software development, provide them. In healthcare institutions, health professionals use clinical protocols to govern care, and sometimes these documents are computerized through mobile applications to assist them. This work aims to present a proposal of an application of flow as a way of describing clinical protocols for automatic generation of mobile applications to assist health professionals. The purpose of this research is to enable health professionals to develop applications from the description of their own clinical protocols. As a result, we developed a web system that automates clinical protocols for an Android platform, and we validated with two clinical protocols used in a Brazilian hospital. Preliminary results of the developed architecture demonstrate the feasibility of this study.
Working in dissonance: experiences of work instability in workers with common mental disorders.
Danielsson, Louise; Bertilsson, Monica; Holmgren, Kristina; Hensing, Gunnel
2017-05-18
Common mental disorders have a negative impact on work functioning, but less is known about the process when the functioning starts to destabilize. This study explores experiences of work instability in workers with common mental disorders. A grounded theory study using a theoretical sampling frame, individual in-depth interviews and a constant comparative analysis conducted by a multidisciplinary research team. The sample involved 27 workers with common mental disorders, currently working full or part time, or being on sick leave not more than 6 months. They were women and men of different ages, representing different occupations and illness severity. A general process of work instability was conceptualized by the core category Working in dissonance: captured in a bubble inside the work stream. The workers described that their ordinary fluency at work was disturbed. They distanced themselves from other people at and outside work, which helped them to regain their flow but simultaneously made them feel isolated. Four categories described sub-processes of the dissonance: Working out of rhythm, Working in discomfort, Working disconnected and Working in a no man's land. The experience of work instability in CMDs was conceptualized as "working in dissonance", suggesting a multifaceted dissonance at work, characterized by a sense of being caught up, as if in a bubble. Focusing on how the worker can re-enter their flow at work when experiencing dissonance is a new approach to explore in occupational and clinical settings.
Bulusu, Kartik V; Plesniak, Michael W
2016-07-19
The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).
NASA Astrophysics Data System (ADS)
Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Suss, Samuel; Bhuiyan, Nadia; Demirli, Kudret; Batist, Gerald
2017-06-01
Outpatient cancer treatment centers can be considered as complex systems in which several types of medical professionals and administrative staff must coordinate their work to achieve the overall goals of providing quality patient care within budgetary constraints. In this article, we use analytical methods that have been successfully employed for other complex systems to show how a clinic can simultaneously reduce patient waiting times and non-value added staff work in a process that has a series of steps, more than one of which involves a scarce resource. The article describes the system model and the key elements in the operation that lead to staff rework and patient queuing. We propose solutions to the problems and provide a framework to evaluate clinic performance. At the time of this report, the proposals are in the process of implementation at a cancer treatment clinic in a major metropolitan hospital in Montreal, Canada.
Herbst, Daniel P.
2017-01-01
Abstract: Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30–70% glycerol–saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another. PMID:28298665
Herbst, Daniel P
2017-03-01
Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.
Efficient 3D multi-region prostate MRI segmentation using dual optimization.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.
Unloading work of breathing during high-frequency oscillatory ventilation: a bench study
van Heerde, Marc; Roubik, Karel; Kopelent, Vitek; Plötz, Frans B; Markhorst, Dick G
2006-01-01
Introduction With the 3100B high-frequency oscillatory ventilator (SensorMedics, Yorba Linda, CA, USA), patients' spontaneous breathing efforts result in a high level of imposed work of breathing (WOB). Therefore, spontaneous breathing often has to be suppressed during high-frequency oscillatory ventilation (HFOV). A demand-flow system was designed to reduce imposed WOB. Methods An external gas flow controller (demand-flow system) accommodates the ventilator fresh gas flow during spontaneous breathing simulation. A control algorithm detects breathing effort and regulates the demand-flow valve. The effectiveness of this system has been evaluated in a bench test. The Campbell diagram and pressure time product (PTP) are used to quantify the imposed workload. Results Using the demand-flow system, imposed WOB is considerably reduced. The demand-flow system reduces inspiratory imposed WOB by 30% to 56% and inspiratory imposed PTP by 38% to 59% compared to continuous fresh gas flow. Expiratory imposed WOB was decreased as well by 12% to 49%. In simulations of shallow to normal breathing for an adult, imposed WOB is 0.5 J l-1 at maximum. Fluctuations in mean airway pressure on account of spontaneous breathing are markedly reduced. Conclusion The use of the demand-flow system during HFOV results in a reduction of both imposed WOB and fluctuation in mean airway pressure. The level of imposed WOB was reduced to the physiological range of WOB. Potentially, this makes maintenance of spontaneous breathing during HFOV possible and easier in a clinical setting. Early initiation of HFOV seems more possible with this system and the possibility of weaning of patients directly on a high-frequency oscillatory ventilator is not excluded either. PMID:16848915
Fraser, Katharine H; Zhang, Tao; Taskin, M Ertan; Griffith, Bartley P; Wu, Zhongjun J
2010-01-01
Cannulation is necessary when blood is removed from the body, for example in hemodialysis, cardiopulmonary bypass, blood oxygenators, and ventricular assist devices. Artificial blood contacting surfaces are prone to thrombosis, especially in the presence of stagnant or recirculating flow. In this work, computational fluid dynamics was used to investigate the blood flow fields in three clinically available cannulae (Medtronic DLP 12, 16 and 24 F), used as drainage for pediatric circulatory support, and to calculate parameters which may be indicative of thrombosis potential. The results show that using the 24 F cannula below flow rates of about 0.75 l/min produces hemodynamic conditions which may increase the risk of blood clotting within the cannula. No reasons are indicated for not using the 12 or 16 F cannulae with flow rates between 0.25 and 3.0 l/min. PMID:20400890
Medication safety and knowledge-based functions: a stepwise approach against information overload.
Patapovas, Andrius; Dormann, Harald; Sedlmayr, Brita; Kirchner, Melanie; Sonst, Anja; Müller, Fabian; Pfistermeister, Barbara; Plank-Kiegele, Bettina; Vogler, Renate; Maas, Renke; Criegee-Rieck, Manfred; Prokosch, Hans-Ulrich; Bürkle, Thomas
2013-09-01
The aim was to improve medication safety in an emergency department (ED) by enhancing the integration and presentation of safety information for drug therapy. Based on an evaluation of safety of drug therapy issues in the ED and a review of computer-assisted intervention technologies we redesigned an electronic case sheet and implemented computer-assisted interventions into the routine work flow. We devised a four step system of alerts, and facilitated access to different levels of drug information. System use was analyzed over a period of 6 months. In addition, physicians answered a survey based on the technology acceptance model TAM2. The new application was implemented in an informal manner to avoid work flow disruption. Log files demonstrated that step I, 'valid indication' was utilized for 3% of the recorded drugs and step II 'tooltip for well-known drug risks' for 48% of the drugs. In the questionnaire, the computer-assisted interventions were rated better than previous paper based measures (checklists, posters) with regard to usefulness, support of work and information quality. A stepwise assisting intervention received positive user acceptance. Some intervention steps have been seldom used, others quite often. We think that we were able to avoid over-alerting and work flow intrusion in a critical ED environment. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.
International Meeting on Simulation in Healthcare
2010-02-01
wounds, burns, and injury . Participants will create reusable moulage items using realistic gel effects materials—designed to work seamlessly with...simulations of injuries and clinical encounters. Such technology provides extremely high levels of perceived realism and encourages suspension of disbelief...trace. The model gives an estimate of the cerebral flow reduction that occurs during early decelerations, including an estimate for vessel diameter
NASA Astrophysics Data System (ADS)
Schiavone, Nicole; Elkins, Christopher; McElhinney, Doff; Eaton, John K.; Marsden, Alison
2017-11-01
Tetralogy of Fallot (ToF), the most common type of cyanotic congenital heart defect, affects 1 in every 2500 newborns annually and typically requires surgical repair of the right ventricular outflow tract (RVOT) and placement of an artificial pulmonary valve. All artificial valves are subject to dysfunction, but their longevity is highly variable. Clinical observation reveals large variations in RVOT anatomy in ToF patients, which may affect longevity. This work aims to experimentally assess the performance of artificial pulmonary valves in anatomically realistic healthy and diseased RVOT geometries using magnetic resonance velocimetry (MRV). With MRV, we can capture 3D, three-component, phase-averaged velocity fields in 3D printed RVOT geometries. The experiment is designed to ensure physiological flow rate and pressure waveforms, while the RVOT geometries are based on anatomies seen clinically in ToF patients. Two models are used in the current work: an idealized RVOT based on healthy subjects aged eleven to thirteen and a diseased geometry with a dilation of 150% in vessel diameter downstream of the pulmonary valve. We will also present preliminary rigid-wall blood flow simulations in each model, towards the ultimate goal of experimental validation of valve simulations.
Clinical Decision Support Systems (CDSS) for preventive management of COPD patients.
Velickovski, Filip; Ceccaroni, Luigi; Roca, Josep; Burgos, Felip; Galdiz, Juan B; Marina, Nuria; Lluch-Ariet, Magí
2014-11-28
The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.
Clinical Decision Support Systems (CDSS) for preventive management of COPD patients
2014-01-01
Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems. PMID:25471545
Pirlich, Nina; Lohse, Jana A; Noppens, Rüdiger R
2017-01-13
A patient's willingness to cooperate is an absolute precondition for successful awake intubation of the trachea. Whilst drug-sedation of patients can jeopardize their spontaneous breathing, topical anesthesia of the airway is a popular technique. The spray-as-you-go technique represents one of the simplest opportunities to anesthetize the airway mucosa. The application of local anesthetic through the working channel of the flexible endoscope is a widespread practice for anesthetists as well as pulmonologists. There is neither need for additional devices nor special training as a pre-requisite to perform this technique. However, a known clinical problem is the coughing and gagging reflex that may occur when the liquid anesthetic strikes the airway mucosa and other sensitive structures like the vocal cords. This can be avoided by the use of oxygen applied through the working channel with the aim of fogging the local anesthetic into finer particles. Furthermore, the oxygen flow provides a higher oxygen supply and contributes to a better view, dispersing mucus secretions and blood away from the lens. Using an atomizer with a high oxygen flow of 10 L/min we maximized these benefits, caused less coughing and had more satisfied and therefore cooperative patients. Possible, but very rare complications of using oxygen flow including gastric insufflation, organ rupture or barotrauma did not arise. We attribute the complication-free use of high oxygen flow to the design of the set, which permits flow and pressure release.
Computational analysis of an aortic valve jet
NASA Astrophysics Data System (ADS)
Shadden, Shawn C.; Astorino, Matteo; Gerbeau, Jean-Frédéric
2009-11-01
In this work we employ a coupled FSI scheme using an immersed boundary method to simulate flow through a realistic deformable, 3D aortic valve model. This data was used to compute Lagrangian coherent structures, which revealed flow separation from the valve leaflets during systole, and correspondingly, the boundary between the jet of ejected fluid and the regions of separated, recirculating flow. Advantages of computing LCS in multi-dimensional FSI models of the aortic valve are twofold. For one, the quality and effectiveness of existing clinical indices used to measure aortic jet size can be tested by taking advantage of the accurate measure of the jet area derived from LCS. Secondly, as an ultimate goal, a reliable computational framework for the assessment of the aortic valve stenosis could be developed.
Dashboard visualizations: Supporting real-time throughput decision-making.
Franklin, Amy; Gantela, Swaroop; Shifarraw, Salsawit; Johnson, Todd R; Robinson, David J; King, Brent R; Mehta, Amit M; Maddow, Charles L; Hoot, Nathan R; Nguyen, Vickie; Rubio, Adriana; Zhang, Jiajie; Okafor, Nnaemeka G
2017-07-01
Providing timely and effective care in the emergency department (ED) requires the management of individual patients as well as the flow and demands of the entire department. Strategic changes to work processes, such as adding a flow coordination nurse or a physician in triage, have demonstrated improvements in throughput times. However, such global strategic changes do not address the real-time, often opportunistic workflow decisions of individual clinicians in the ED. We believe that real-time representation of the status of the entire emergency department and each patient within it through information visualizations will better support clinical decision-making in-the-moment and provide for rapid intervention to improve ED flow. This notion is based on previous work where we found that clinicians' workflow decisions were often based on an in-the-moment local perspective, rather than a global perspective. Here, we discuss the challenges of designing and implementing visualizations for ED through a discussion of the development of our prototype Throughput Dashboard and the potential it holds for supporting real-time decision-making. Copyright © 2017. Published by Elsevier Inc.
3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV
NASA Astrophysics Data System (ADS)
Deplano, Valérie; Guivier-Curien, Carine; Bertrand, Eric
2016-11-01
The present work presents an experimental in vitro three-dimensional analysis of the flow dynamics in an abdominal aortic aneurysm (AAA) through stereoscopic particle image velocimetry (SPIV) measurements. The experimental set-up mimics the pathophysiological context involving a shear thinning blood analogue fluid, compliant AAA and aorto-iliac bifurcation walls and controlled inlet and outlet flow rate and pressure waveforms as well as working fluid temperature. SPIV was carefully calibrated and conducted to assess the three velocity components in the AAA volume. For the first time in the literature, the 3D vortex ring genesis, propagation, and vanishing in the AAA bulge are experimentally described and quantified. In comparison with classical 2-component PIV measurements (2C PIV), the third component of the velocity vector was shown to be of importance in such a geometry, especially, during the deceleration phase of the flow rate. The 3D velocity magnitude reached up more than 20 % of the 2D one showing that 2C PIV are definitively not accurate enough to provide a complete description of flow behaviour in an AAA. In addition to potential clinical implications of a full 3D vortex ring description in AAA evolution, the 3D in vitro experimental quantification of the flow dynamics carried out in the present study offers an interesting tool for the validation of fluid-structure interaction numerical studies dealing with AAA.
Vortex dynamics in ruptured and unruptured intracranial aneurysms
NASA Astrophysics Data System (ADS)
Trylesinski, Gabriel; Varble, Nicole; Xiang, Jianping; Meng, Hui
2013-11-01
Intracranial aneurysms (IAs) are potentially devastating pathological dilations of arterial walls that affect 2-5% of the population. In our previous CFD study of 119 IAs, we found that ruptured aneurysms were correlated with complex flow pattern and statistically predictable by low wall shear stress and high oscillatory shear index. To understand flow mechanisms that drive the pathophysiology of aneurysm wall leading to either stabilization or growth and rupture, we aim at exploring vortex dynamics of aneurysmal flow and provide insight into the correlation between the previous predictive morphological parameters and wall hemodynamic metrics. We adopt the Q-criterion definition of coherent structures (CS) and analyze the CS dynamics in aneurysmal flows for both ruptured and unruptured IA cases. For the first time, we draw relevant biological conclusions concerning aneurysm flow mechanisms and pathophysiological outcome. In pulsatile simulations, the coherent structures are analyzed in these 119 patient-specific geometries obtained using 3D angiograms. The images were reconstructed and CFD were performed. Upon conclusion of this work, better understanding of flow patterns of unstable aneurysms may lead to improved clinical outcome.
Vacuum generation in pneumatic artificial heart drives with a specially designed ejector system.
Schima, H; Huber, L; Spitaler, F
1990-06-01
To improve the filling characteristics of pneumatically driven membrane artificial hearts (AHs), a vacuum is applied during diastole. This paper describes an ejector system for AH-drivers based on the Venturi effect, which was designed for this purpose. It provides vacuums of more than -40 mmHg at flow rates up to 50 l/min requiring a supplying primary gas pressure of less than 150 kPa (1140 mmHg). Under normal working conditions, the necessary supply flow was less than 5l/min. The device is small, cheap, quiet and fail-safe, and has been evaluated successfully in experimental and clinical use.
Magnetic Resonance Imaging with laser polarized 129Xe
NASA Astrophysics Data System (ADS)
Swanson, Scott D.; Rosen, Matthew S.; Agranoff, Bernard W.; Coulter, Kevin P.; Welsh, Robert C.; Chupp, Timothy E.
1998-01-01
Magnetic Resonance Imaging with laser-polarized 129Xe can be utilized to trace blood flow and perfusion in tissue for a variety of biomedical applications. Polarized xenon gas introduced in to the lungs dissolves in the blood and is transported to organs such as the brain where it accumulates in the tissue. Spectroscopic studies combined with imaging have been used to produce brain images of 129Xe in the rat head. This work establishes that nuclear polarization produced in the gas phases survives transport to the brain where it may be imaged. Increases in polarization and delivered volume of 129Xe will allow clinical measurements of regional blood flow.
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-12-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-01-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination. PMID:3069052
Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2013-03-01
Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.
Bosboom, E. Marielle H.; Kroon, Wilco; van der Linden, Wim P. M.; Planken, R. Nils; van de Vosse, Frans N.; Tordoir, Jan H. M.
2012-01-01
Introduction Inadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease. In an effort to reduce these, a patient-specific computational model, capable of predicting postoperative flow, has been developed. The purpose of this study was to determine the accuracy of the patient-specific model and to investigate its feasibility to support decision-making in AVF surgery. Methods Patient-specific pulse wave propagation models were created for 25 patients awaiting AVF creation. Model input parameters were obtained from clinical measurements and literature. For every patient, a radiocephalic AVF, a brachiocephalic AVF, and a brachiobasilic AVF configuration were simulated and analyzed for their postoperative flow. The most distal configuration with a predicted flow between 400 and 1500 ml/min was considered the preferred location for AVF surgery. The suggestion of the model was compared to the choice of an experienced vascular surgeon. Furthermore, predicted flows were compared to measured postoperative flows. Results Taken into account the confidence interval (25th and 75th percentile interval), overlap between predicted and measured postoperative flows was observed in 70% of the patients. Differentiation between upper and lower arm configuration was similar in 76% of the patients, whereas discrimination between two upper arm AVF configurations was more difficult. In 3 patients the surgeon created an upper arm AVF, while model based predictions allowed for lower arm AVF creation, thereby preserving proximal vessels. In one patient early thrombosis in a radiocephalic AVF was observed which might have been indicated by the low predicted postoperative flow. Conclusions Postoperative flow can be predicted relatively accurately for multiple AVF configurations by using computational modeling. This model may therefore be considered a valuable additional tool in the preoperative work-up of patients awaiting AVF creation. PMID:22496816
O'Connor, C; Kiernan, M G; Finnegan, C; O'Hara, M; Power, L; O'Connell, N H; Dunne, C P
2017-05-04
Rapid detection of patients with carbapenemase-producing Enterobacteriaceae (CPE) is essential for the prevention of nosocomial cross-transmission, allocation of isolation facilities and to protect patient safety. Here, we aimed to design a new laboratory work-flow, utilizing existing laboratory resources, in order to reduce time-to-diagnosis of CPE. A review of the current CPE testing processes and of the literature was performed to identify a real-time commercial polymerase chain reaction (PCR) assay that could facilitate batch testing of CPE clinical specimens, with adequate CPE gene coverage. Stool specimens (210) were collected; CPE-positive inpatients (n = 10) and anonymized community stool specimens (n = 200). Rectal swabs (eSwab™) were inoculated from collected stool specimens and a manual DNA extraction method (QIAamp® DNA Stool Mini Kit) was employed. Extracted DNA was then processed on the Check-Direct CPE® assay. The three step process of making the eSwab™, extracting DNA manually and running the Check-Direct CPE® assay, took <5 min, 1 h 30 min and 1 h 50 min, respectively. It was time efficient with a result available in under 4 h, comparing favourably with the existing method of CPE screening; average time-to-diagnosis of 48/72 h. Utilizing this CPE work-flow would allow a 'same-day' result. Antimicrobial susceptibility testing results, as is current practice, would remain a 'next-day' result. In conclusion, the Check-Direct CPE® assay was easily integrated into a local laboratory work-flow and could facilitate a large volume of CPE screening specimens in a single batch, making it cost-effective and convenient for daily CPE testing.
Koueik, Joyce; Rocque, Brandon G; Henry, Jordan; Bragg, Taryn; Paul, Jennifer; Iskandar, Bermans J
2018-02-01
Continuous irrigation is an important adjunct for successful intraventricular endoscopy, particularly for complex cases. It allows better visualization by washing out blood and debris, improves navigation by expanding the ventricles, and assists with tissue dissection. A method of irrigation delivery using a centrifugal pump designed originally for cardiac surgery is presented. The BioMedicus centrifugal pump has the desirable ability to deliver a continuous laminar flow of fluid that excludes air from the system. A series of modifications to the pump tubing was performed to adapt it to neuroendoscopy. Equipment testing determined flow and pressure responses at various settings and simulated clinical conditions. The pump was then studied clinically in 11 endoscopy cases and eventually used in 310 surgical cases. Modifications of the pump tubing allowed for integration with different endoscopy systems. Constant flow rates were achieved with and without surgical instruments through the working ports. Optimal flow rates ranged between 30 and 100 ml/min depending on endoscope size. Intraoperative use was well tolerated with no permanent morbidity and showed consistent flow rates, minimal air accumulation, and seamless irrigation bag replacement during prolonged surgery. Although the pump is equipped with an internal safety mechanism to protect against pressure buildup when outflow obstructions occur, equipment testing revealed that flow cessation is not instantaneous enough to protect against sudden intracranial pressure elevation. A commonly available cardiac pump system was modified to provide continuous irrigation for intraventricular endoscopy. The system alleviates the problems of inconsistent flow rates, air in the irrigation lines, and delays in changing irrigation bags, thereby optimizing patient safety and surgical efficiency. Safe use of the pump requires good ventricular outflow and, clearly, sound surgical judgment.
Monroe-Wise, Aliza; Reisner, Elizabeth; Sherr, Kenneth; Ojakaa, David; Mbau, Lilian; Kisia, Paul; Muhula, Samuel; Farquhar, Carey
2017-12-01
As human immunodeficiency virus (HIV) treatment programs expand in Africa, delivery systems must be strengthened to support patient retention. Clinic characteristics may affect retention, but a relationship between clinic flow and attrition is not established. This project characterized HIV patient experience and flow in an urban Kenyan clinic to understand how these may affect retention. We used Toyota's lean manufacturing principles to guide data collection and analysis. Clinic flow was evaluated using value stream mapping and time and motion techniques. Clinic register data were analyzed. Two focus group discussions were held to characterize HIV patient experience. Results were shared with clinic staff. Wait times in the clinic were highly variable. We identified four main barriers to patient flow: inconsistent patient arrivals, inconsistent staffing, filing system defects, and serving patients out of order. Focus group participants explained how clinic operations affected their ability to engage in care. Clinic staff were eager to discuss the problems identified and identified numerous low-cost potential solutions. Lean manufacturing methodologies can guide efficiency interventions in low-resource healthcare settings. Using lean techniques, we identified bottlenecks to clinic flow and low-cost solutions to improve wait times. Improving flow may result in increased patient satisfaction and retention.
Health level seven interoperability strategy: big data, incrementally structured.
Dolin, R H; Rogers, B; Jaffe, C
2015-01-01
Describe how the HL7 Clinical Document Architecture (CDA), a foundational standard in US Meaningful Use, contributes to a "big data, incrementally structured" interoperability strategy, whereby data structured incrementally gets large amounts of data flowing faster. We present cases showing how this approach is leveraged for big data analysis. To support the assertion that semi-structured narrative in CDA format can be a useful adjunct in an overall big data analytic approach, we present two case studies. The first assesses an organization's ability to generate clinical quality reports using coded data alone vs. coded data supplemented by CDA narrative. The second leverages CDA to construct a network model for referral management, from which additional observations can be gleaned. The first case shows that coded data supplemented by CDA narrative resulted in significant variances in calculated performance scores. In the second case, we found that the constructed network model enables the identification of differences in patient characteristics among different referral work flows. The CDA approach goes after data indirectly, by focusing first on the flow of narrative, which is then incrementally structured. A quantitative assessment of whether this approach will lead to a greater flow of data and ultimately a greater flow of structured data vs. other approaches is planned as a future exercise. Along with growing adoption of CDA, we are now seeing the big data community explore the standard, particularly given its potential to supply analytic en- gines with volumes of data previously not possible.
Making sense: duty hours, work flow, and waste in graduate medical education.
Bush, Roger W; Philibert, Ingrid
2009-12-01
Parsimony, and not industry, is the immediate cause of the increase of capital. Industry, indeed, provides the subject which parsimony accumulates. But whatever industry might acquire, if parsimony did not save and store up, the capital would never be the greater.Adam Smith, The Wealth of Nations, book 2, chapter 31In 2003, the Accreditation Council for Graduate Medical Education implemented resident duty hour limits that included a weekly limit and limits on continuous hours. Recent recommendations for added reductions in resident duty hours have produced concern about concomitant reductions in future graduates' preparedness for independent practice. The current debate about resident hours largely does not consider whether all hours residents spend in the educational and clinical-care environment contribute meaningfully either to residents' learning or to effective patient care. This may distract the community from waste in the current clinical-education model. We propose that use of "lean production" and quality improvement methods may assist teaching institutions in attaining a deeper understanding of work flow and waste. These methods can be used to assign value to patient- and learner-centered activities and outputs and to optimize the competing and synergistic aspects of all desired outcomes to produce the care the Institute of Medicine recommends: safe, effective, efficient, patient-centered, timely, and equitable. Finally, engagement of senior clinical faculty in determining the culture of the care and education system will contribute to an advanced social-learning and care network.
Making Sense: Duty Hours, Work Flow, and Waste in Graduate Medical Education
Bush, Roger W.; Philibert, Ingrid
2009-01-01
Parsimony, and not industry, is the immediate cause of the increase of capital. Industry, indeed, provides the subject which parsimony accumulates. But whatever industry might acquire, if parsimony did not save and store up, the capital would never be the greater. Adam Smith, The Wealth of Nations, book 2, chapter 31 In 2003, the Accreditation Council for Graduate Medical Education implemented resident duty hour limits that included a weekly limit and limits on continuous hours. Recent recommendations for added reductions in resident duty hours have produced concern about concomitant reductions in future graduates' preparedness for independent practice. The current debate about resident hours largely does not consider whether all hours residents spend in the educational and clinical-care environment contribute meaningfully either to residents' learning or to effective patient care. This may distract the community from waste in the current clinical-education model. We propose that use of “lean production” and quality improvement methods may assist teaching institutions in attaining a deeper understanding of work flow and waste. These methods can be used to assign value to patient- and learner-centered activities and outputs and to optimize the competing and synergistic aspects of all desired outcomes to produce the care the Institute of Medicine recommends: safe, effective, efficient, patient-centered, timely, and equitable. Finally, engagement of senior clinical faculty in determining the culture of the care and education system will contribute to an advanced social-learning and care network. PMID:21976000
Moody, Jonathan B; Lee, Benjamin C; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L
2015-10-01
A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized.
[Establish research model of post-marketing clinical safety evaluation for Chinese patent medicine].
Zheng, Wen-ke; Liu, Zhi; Lei, Xiang; Tian, Ran; Zheng, Rui; Li, Nan; Ren, Jing-tian; Du, Xiao-xi; Shang, Hong-cai
2015-09-01
The safety of Chinese patent medicine has become a focus of social. It is necessary to carry out work on post-marketing clinical safety evaluation for Chinese patent medicine. However, there have no criterions to guide the related research, it is urgent to set up a model and method to guide the practice for related research. According to a series of clinical research, we put forward some views, which contained clear and definite the objective and content of clinical safety evaluation, the work flow should be determined, make a list of items for safety evaluation project, and put forward the three level classification of risk control. We set up a model of post-marketing clinical safety evaluation for Chinese patent medicine. Based this model, the list of items can be used for ranking medicine risks, and then take steps for different risks, aims to lower the app:ds:risksrisk level. At last, the medicine can be managed by five steps in sequence. The five steps are, collect risk signal, risk recognition, risk assessment, risk management, and aftereffect assessment. We hope to provide new ideas for the future research.
Echocardiography parameters of clinically normal adult captive chimpanzees (Pan troglodytes).
Sleeper, Meg M; Drobatz, Ken; Lee, D Richard; Lammey, Michael L
2014-04-15
To generate reference ranges for echocardiographic variables in clinically normal adult chimpanzees (Pan troglodytes). Retrospective cohort study. 88 clinically normal adult chimpanzees. Echocardiographic data obtained between 2002 and 2011 from chimpanzees at the Alamogordo Primate Facility were reviewed (263 echocardiograms obtained from 158 individuals). Data from clinically normal individuals (33 females and 55 males) were analyzed. Basic cardiac parameters measured in all individuals included aortic root diameter and left atrial diameter in the short and long axis during diastole. Left ventricular measurements included left ventricular internal diameter in systole and diastole and diastolic septal and posterior wall thickness. The E point to septal separation was also measured. Spectral Doppler measurements included the peak flow velocity of the pulmonary artery and aorta and diastolic transmitral flow. The presence of arrhythmias was also noted. Standard echocardiographic findings for a large group of adult female and male chimpanzees were obtained. Female and male chimpanzees were grouped by age in 10-year blocks, and echocardiographic findings were analyzed statistically by 10-year block. In male chimpanzees, cardiac arrhythmias were noted to increase with age. Cardiovascular disease is an important cause of morbidity and death in captive chimpanzees; however, basic echocardiographic measurements from a large cohort of clinically normal animals have not previously been reported. The number of animals in the present study was insufficient to generate reference ranges; however, data from a large cohort of clinically normal animals are presented. This information will be useful for veterinarians working in clinical and research settings with this species.
Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine
NASA Astrophysics Data System (ADS)
Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi
2011-06-01
Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.
Application of the Toyota Production System improves core laboratory operations.
Rutledge, Joe; Xu, Min; Simpson, Joanne
2010-01-01
To meet the increased clinical demands of our hospital expansion, improve quality, and reduce costs, our tertiary care, pediatric core laboratory used the Toyota Production System lean processing to reorganize our 24-hour, 7 d/wk core laboratory. A 4-month, consultant-driven process removed waste, led to a physical reset of the space to match the work flow, and developed a work cell for our random access analyzers. In addition, visual controls, single piece flow, standard work, and "5S" were instituted. The new design met our goals as reflected by achieving and maintaining improved turnaround time (TAT; mean for creatinine reduced from 54 to 23 minutes) with increased testing volume (20%), monetary savings (4 full-time equivalents), decreased variability in TAT, and better space utilization (25% gain). The project had the unanticipated consequence of eliminating STAT testing because our in-laboratory TAT for routine testing was less than our prior STAT turnaround goal. The viability of this approach is demonstrated by sustained gains and further PDCA (Plan, Do, Check, Act) improvements during the 4 years after completion of the project.
Vorticity dynamics in an intracranial aneurysm
NASA Astrophysics Data System (ADS)
Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis
2008-11-01
Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.
Sunderland, John J; Pan, Xiao-Bo; Declerck, Jerome; Menda, Yusuf
2015-02-01
Recent technological improvements to PET imaging equipment combined with the availability of software optimized to calculate regional myocardial blood flow (MBF) and myocardial flow reserve (MFR) create a paradigm shifting opportunity to provide new clinically relevant quantitative information to cardiologists. However, clinical interpretation of the MBF and MFR is entirely dependent upon knowledge of MBF and MFR values in normal populations and subpopulations. This work reports Rb-82-based MBF and MFR measurements for a series of 49 verified cardiovascularly normal subjects as a preliminary baseline for future clinical studies. Forty-nine subjects (24F/25M, ages 41-69) with low probability for coronary artery disease and with normal exercise stress test were included. These subjects underwent rest/dipyridamole stress Rb-82 myocardial perfusion imaging using standard clinical techniques (40 mCi injection, 6-minute acquisition) using a Siemens Biograph 40 PET/CT scanner with high count rate detector option. List mode data was rehistogrammed into 26 dynamic frames (12 × 5 seconds, 6 × 10 seconds, 4 × 20 seconds, 4 × 40 seconds). Cardiac images were processed, and MBF and MFR calculated using Siemens syngo MBF, PMOD, and FlowQuant software using a single compartment Rb-82 model. Global myocardial blood flow under pharmacological stress for the 24 females as measured by PMOD, syngo MBF, and FlowQuant were 3.10 ± 0.72, 2.80 ± 0.66, and 2.60 ± 0.63 mL·minute(-1)·g(-1), and for the 25 males was 2.60 ± 0.84, 2.33 ± 0.75, 2.15 ± 0.62 mL·minute(-1)·g(-1), respectively. Rest flows for PMOD, syngo MBF, and FlowQuant averaged 1.32 ± 0.42, 1.20 ± 0.33, and 1.06 ± 0.38 mL·minute(-1)·g(-1) for the female subjects, and 1.12 ± 0.29, 0.90 ± 0.26, and 0.85 ± 0.24 mL·minute(-1)·g(-1) for the males. Myocardial flow reserves for PMOD, syngo MBF, and FlowQuant for the female normals were calculated to be 2.50 ± 0.80, 2.53 ± 0.67, 2.71 ± 0.90, and 2.50 ± 1.19, 2.85 ± 1.19, 2.94 ± 1.31 mL·minute(-1)·g(-1) for males. Quantitative normal MBF and MFR values averaged for age and sex have been compiled for three commercial pharmacokinetic software packages. The current collection of data consisting of 49 subjects resulted in several statistically significant conclusions that support the need for a software specific, age, and sex-matched database to aid in interpretation of quantitative clinical myocardial perfusion studies.
Lean six sigma methodologies improve clinical laboratory efficiency and reduce turnaround times.
Inal, Tamer C; Goruroglu Ozturk, Ozlem; Kibar, Filiz; Cetiner, Salih; Matyar, Selcuk; Daglioglu, Gulcin; Yaman, Akgun
2018-01-01
Organizing work flow is a major task of laboratory management. Recently, clinical laboratories have started to adopt methodologies such as Lean Six Sigma and some successful implementations have been reported. This study used Lean Six Sigma to simplify the laboratory work process and decrease the turnaround time by eliminating non-value-adding steps. The five-stage Six Sigma system known as define, measure, analyze, improve, and control (DMAIC) is used to identify and solve problems. The laboratory turnaround time for individual tests, total delay time in the sample reception area, and percentage of steps involving risks of medical errors and biological hazards in the overall process are measured. The pre-analytical process in the reception area was improved by eliminating 3 h and 22.5 min of non-value-adding work. Turnaround time also improved for stat samples from 68 to 59 min after applying Lean. Steps prone to medical errors and posing potential biological hazards to receptionists were reduced from 30% to 3%. Successful implementation of Lean Six Sigma significantly improved all of the selected performance metrics. This quality-improvement methodology has the potential to significantly improve clinical laboratories. © 2017 Wiley Periodicals, Inc.
Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas
2010-04-01
We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.
Computational Hemodynamics Involving Artificial Devices
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)
2001-01-01
This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.
[3D imaging benefits in clinical pratice of orthodontics].
Frèrejouand, Emmanuel
2016-12-01
3D imaging possibilities raised up in the last few years in the orthodontic field. In 2016, it can be used for diagnosis improvement and treatment planning by using digital set up combined to CBCT. It is relevant for orthodontic mechanic updating by creating visible or invisible customised appliances. It forms the basis of numerous scientific researches. The author explains the progress 3D imaging brings to diagnosis and clinics but also highlights the requirements it creates. The daily use of these processes in orthodontic clinical practices needs to be regulated regarding the benefit/risk ratio and the patient satisfaction. The command of the digital work flow created by these technics requires habits modifications from the orthodontist and his staff. © EDP Sciences, SFODF, 2016.
A hydroelastic model of hydrocephalus
NASA Astrophysics Data System (ADS)
Smillie, Alan; Sobey, Ian; Molnar, Zoltan
2005-09-01
We combine elements of poroelasticity and of fluid mechanics to construct a mathematical model of the human brain and ventricular system. The model is used to study hydrocephalus, a pathological condition in which the normal flow of the cerebrospinal fluid is disturbed, causing the brain to become deformed. Our model extends recent work in this area by including flow through the aqueduct, by incorporating boundary conditions that we believe accurately represent the anatomy of the brain and by including time dependence. This enables us to construct a quantitative model of the onset, development and treatment of this condition. We formulate and solve the governing equations and boundary conditions for this model and give results that are relevant to clinical observations.
Visualization of various working fluids flow regimes in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. Amount of heat flux transferred by heat pipe, of course depends on kind of working fluid. The article deal about visualization of various working fluids flow regimes in glass gravity heat pipe by high speed camera and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) filled with water, ethanol and fluorinert FC 72. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Evidence-based practice: attitudes, knowledge and behaviour among allied health care professionals.
Heiwe, Susanne; Kajermo, Kerstin Nilsson; Tyni-Lenné, Raija; Guidetti, Susanne; Samuelsson, Monika; Andersson, Inga-Lena; Wengström, Yvonne
2011-04-01
To explore dieticians', occupational therapists' and physical therapists' attitudes, beliefs, knowledge and behaviour concerning evidence-based practice within a university hospital setting. Cross-sectional survey. University hospital. All dieticians, occupational therapists and physical therapists employed at a Swedish university hospital (n = 306) of whom 227 (74%) responded. Attitudes towards, perceived benefits and limitations of evidence-based practice, use and understanding of clinical practice guidelines, availability of resources to access information and skills in using these resources. Findings showed positive attitudes towards evidence-based practice and the use of evidence to support clinical decision-making. It was seen as necessary. Literature and research findings were perceived as useful in clinical practice. The majority indicated having the necessary skills to be able to interpret and understand the evidence, and that clinical practice guidelines were available and used. Evidence-based practice was not perceived as taking into account the patient preferences. Lack of time was perceived as the major barrier to evidence-based practice. The prerequisites for evidence-based practice were assessed as good, but ways to make evidence-based practice time efficient, easy to access and relevant to clinical practice need to be continuously supported at the management level, so that research evidence becomes linked to work-flow in a way that does not adversely affect productivity and the flow of patients.
HIV-associated salivary gland disease--clinical or imaging diagnosis?
da Silva Rath, Inês Beatriz; Beltrame, Ana Paula C A; Carvalho, Aroldo P; Schaeffer, Marcela B; Almeida, Izabel C S
2015-07-01
This work aimed at studying the salivary gland disease (SGD) as it relates to associated factors, such as persistent generalised lymphadenopathy (PGL), lymphocytic interstitial pneumonia (LIP), clinical and immunological features of AIDS, and salivary flow rate and pH, as well as at exploring the relationship between the clinical diagnosis and the imaging diagnosis by ultrasound (US) examination of the parotid glands. Information regarding the observation of parotid gland enlargement, PGL, LIP, and clinical and immunological features of AIDS was gathered from medical records, and a saliva sample for unstimulated salivary flow rate and pH measurement was collected from 142 children aged 3 through 10 years treated at the Department of Infectious Diseases of Joana de Gusmão Children's Hospital, Florianópolis, SC, Brazil. High-resolution ultrasonography was performed in 58 children. Pearson's chi-square test and t-test were used to evaluate the association between the variables. A significant association was found between SGD and LIP. Ultrasound revealed a 50% higher incidence of SGD that was not reported in the patients' records. US examination proved to be essential for the correct diagnosis and monitoring of the progression of HIV/SGD. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Humaidan, P; Nelson, S M; Devroey, P; Coddington, C C; Schwartz, L B; Gordon, K; Frattarelli, J L; Tarlatzis, B C; Fatemi, H M; Lutjen, P; Stegmann, B J
2016-09-01
What is an objective approach that employs measurable and reproducible physiologic changes as the basis for the classification of ovarian hyperstimulation syndrome (OHSS) in order to facilitate more accurate reporting of incidence rates within and across clinical trials? The OHSS flow diagram is an objective approach that will facilitate consistent capture, classification and reporting of OHSS within and across clinical trials. OHSS is a potentially life-threatening iatrogenic complication of the early luteal phase and/or early pregnancy after ovulation induction (OI) or ovarian stimulation (OS). The clinical picture of OHSS (the constellation of symptoms associated with each stage of the disease) is highly variable, hampering its appropriate classification in clinical trials. Although some degree of ovarian hyperstimulation is normal after stimulation, the point at which symptoms transition from those anticipated to those of a disease state is nebulous. An OHSS working group, comprised of subject matter experts and clinical researchers who have significantly contributed to the field of fertility, was convened in April and November 2014. The OHSS working group was tasked with reaching a consensus on the definition and the classification of OHSS for reporting in clinical trials. The group engaged in targeted discussion regarding the scientific background of OHSS, the criteria proposed for the definition and the rationale for universal adoption. An agreement was reached after discussion with all members. One of the following conditions must be met prior to making the diagnosis of OHSS in the context of a clinical trial: (i) the subject has undergone OS (either controlled OS or OI) AND has received a trigger shot for final oocyte maturation (e.g. hCG, GnRH agonist [GnRHa] or kisspeptin) followed by either fresh transfer or segmentation (cryopreservation of embryos) or (ii) the subject has undergone OS or OI AND has a positive pregnancy test. All study patients who develop symptoms of OHSS should undergo a thorough examination. An OHSS flow diagram was designed to be implemented for all subjects with pelvic or abdominal complaints, such as lower abdominal discomfort or distention, nausea, vomiting and diarrhea, and/or for subjects suspected of having OHSS. The diagnosis of OHSS should be based on the flow diagram. This classification system is primarily intended to address the needs of the clinical investigator undertaking clinical trials in the field of OS and may not be applicable for the use in clinical practice or with OHSS occurring under natural circumstances. The proposed OHSS classification system will enable an accurate estimate of the incidence and severity of OHSS within and across clinical trials performed in women with infertility. Financial support for the advisory group meetings was provided by Merck & Co., Inc., Kenilworth, NJ, USA. P.H. reports unrestricted research grants from MSD, Merck and Ferring, and honoraria for lectures from MSD, Merck and IBSA. S.M.N. reports that he has received fees and grant support from the following companies (in alphabetic order): Beckman Coulter, Besins, EMD Serono, Ferring Pharmaceuticals, Finox, MSD and Roche Diagnostics over the previous 5 years. P.D., C.C.C., J.L.F., H.M.F., and P.L. report no relationships that present a potential conflict of interest. B.C.T. grants and honorarium from Merck Serono; unrestricted research grants, travel grants and honorarium, and participation in a company-sponsored speaker's bureau from Merck Sharp & Dohme; grants, travel grants, honoraria and advisory board membership from IBSA; travel grants from Ferring; and advisory board membership from Ovascience. L.B.S. reports current employment with Merck & Co, Inc., Kenilworth, NJ, USA, and owns stock in the company. K.G. and B.J.S. report prior employment with Merck & Co., Inc., Kenilworth, NJ, USA, and own stock in the company. All reported that competing interests are outside the submitted work. No other relationships or activities exist that could appear to have influenced the submitted work. Not applicable. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Cernelc, S; Vozelj, M
1991-01-01
Authors point out the morbidity of employees working in ventilation systems contaminated with various microorganisms. They analysed 96 workers exposed to air conditioning system (Group A), and 71 workers (Group B) breathing normal ambient air. The workers of both groups were subjected clinically by functionally and immunologically. Preparation of antigens "MMM" (Monday morning miseries) was used as an original method by Ajello et al. for producing antigens from systemic mycotic agents and subsequently modified. The aim of the present study is to evaluate the possibility of using ELISA in clinical practice for respiratory allergy diagnosis, and especially Hypersensitivity pneumonitis. Atopic status was determined by skin prick tests with common airborne allergens including Dermatophagoides pteronyssinus, ragweed, grasses and Aspergillus fumigatus., by Enzygnost--IgE (Behringwerke AG, Marburg) and for specific IgE by RAST technique (Pharmacia, Uppsala). The skin prick tests were performed with "MMM"-antigens. PEFR (Peak Expiratory Flow-Rate) was measured by using a Wright's peak flow meter. PEFR was recorded on Monday (first day at work) and Friday (the end of the working week). Measured values of PEFR in both groups of employees from Monday to Friday were elaborated by the Wilcoxon test. Culture of scrapings from air conditioning vents were obtained and water from the humidifier system also cultured. They were grown: T. vulgaris, Aspergillus fumigatus, Thermoactinomyces vulgaris and others. Results of questionnaires, clinical evaluation and diagnostical procedures in employees of Group A and B are as follows: Thirty eight workers in Group A had a positive clinical history of "Monday illness". In the symptomatic Group A we found in 8 cases abnormal chest roentgenogram. Further, there was no correlation between the presence of antibodies (ELISA) against MMM and pulmonary function abnormalities, as measured by either spirometry or DLCO. Further, we found good agreement between ELISA and prick test results with antigen MMM. Wilcoxon test showed a statistically significant difference between the two groups (0.01). The median or central value of PEFR reduction in Group A is 10.23 per cent, and in Group B 1.49 per cent. A 30 per cent reduction of PEFR was observed in 5.21 per cent of subjects in Group A. Exposure to ventilation systems contaminated with Thermophilic actinomyces may be responsible for increased morbidity and reduced performance of employees working in air conditioning systems. Particularly the main filter should be checked regularly. Moreover, regular microbiologic examinations of dust and water from air preventing chronic obstructive lung diseases in employees working in areas served by contaminated air conditioning systems.
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
Nurses' exhaustion: the role of flow at work between job demands and job resources.
Zito, Margherita; Cortese, Claudio G; Colombo, Lara
2016-01-01
In the light of the job demands-resources model, this study aimed to detect the mediating role of flow at work between job demands and job resources on one side, and exhaustion on the other. In a historical period where it is necessary to reduce the abandonment of nursing profession, flow is a useful tool to investigate the factors that can promote work motivation and prevent psychological distress. A cross-sectional study was conducted in a hospital, and 279 nurses completed a questionnaire. Analyses conducted are descriptive statistics, alphas, correlations and a structural equations model that considers the mediating role of flow at work. Findings show both the central role of job resources in determining flow at work, and the mediating role of flow at work in decreasing exhaustion, starting from job resources, and in decreasing the effect of job demands on exhaustion. Moreover, flow at work directly decreases exhaustion. Results show the relevance of containing job demands and provide job resources to promote positive experiences at work. To promote flow at work, organizations should offer specific resources, such as supervisors' support, job autonomy, and psychological support to manage the emotional charge. © 2015 John Wiley & Sons Ltd.
Photoacoustic cystography using handheld dual modal clinical ultrasound photoacoustic imaging system
NASA Astrophysics Data System (ADS)
Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Austria, Dienzo Rhonnie; Pramanik, Manojit
2018-02-01
Vesicoureteral reflux is the abnormal flow of urine from your bladder back up the tubes (ureters) that connect your kidneys to your bladder. Normally, urine flows only down from your kidneys to your bladder. Vesicoureteral reflux is usually diagnosed in infants and children. The disorder increases the risk of urinary tract infections, which, if left untreated, can lead to kidney damage. X-Ray cystography is used currently to diagnose this condition which uses ionising radiation, making it harmful for patients. In this work we demonstrate the feasibility of imaging the urinary bladder using a handheld clinical ultrasound and photoacoustic dual modal imaging system in small animals (rats). Additionally, we demonstrate imaging vesicoureteral reflux using bladder mimicking phantoms. Urinary bladder imaging is done with the help of contrast agents like black ink and gold nanoparticles which have high optical absorption at 1064 nm. Imaging up to 2 cm was demonstrated with this system. Imaging was done at a framerate of 5 frames per second.
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.
2015-03-01
Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and "on-the-fly" computer-assisted assessment of ejection fraction for cardiac function monitoring.Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and on-the- y" computer-assisted assessment of ejection fraction for cardiac function monitoring.
Yaginuma, T; Oliveira, M S N; Lima, R; Ishikawa, T; Yamaguchi, T
2013-01-01
It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical methodology to detect circulatory diseases.
Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel
Yaginuma, T.; Oliveira, M. S. N.; Lima, R.; Ishikawa, T.; Yamaguchi, T.
2013-01-01
It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical methodology to detect circulatory diseases. PMID:24404073
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
... Defense Federal Acquisition Regulation Supplement; Updates to Wide Area WorkFlow (DFARS Case 2011-D027... Wide Area WorkFlow (WAWF) and TRICARE Encounter Data System (TEDS). WAWF, which electronically... civil emergencies, when access to Wide Area WorkFlow by those contractors is not feasible; (4) Purchases...
Flow and free running speed characterization of dental air turbine handpieces.
Dyson, J E; Darvell, B W
1999-09-01
Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.
Erring and learning in clinical practice.
Hurwitz, Brian
2002-01-01
This paper discusses error type their possible consequences and the doctors who make them. There is no single, all-encompassing typology of medical errors. They are frequently multifactorial in origin and use from the mental processes of individuals; from defects in perception, thinking reasoning planning and interpretation and from failures of team-working omissions and poorly executed actions. They also arise from inadequately designed and operated healthcare systems or procedures. The paper considers error-truth relatedness, the approach of UK courts to medical errors, the learning opportunities which flow from error recognition and the need for personal and professional self awareness of clinical fallibilities. PMID:12389767
Single-scan rest/stress imaging: validation in a porcine model with 18F-Flurpiridaz.
Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Sitek, Arkadiusk; Ruskin, Jeremy; Shoup, Timothy M; Ptaszek, Leon M; El Fakhri, Georges; Alpert, Nathaniel M
2017-08-01
18 F-labeled myocardial flow agents are becoming available for clinical application but the ∼2 hour half-life of 18 F complicates their clinical application for rest-stress measurements. The goal of this work is to evaluate in a pig model a single-scan method which provides quantitative rest-stress blood flow in less than 15 minutes. Single-scan rest-stress measurements were made using 18 F-Flurpiridaz. Nine scans were performed in healthy pigs and seven scans were performed in injured pigs. A two-injection, single-scan protocol was used in which an adenosine infusion was started 4 minutes after the first injection of 18 F-Flurpiridaz and followed either 3 or 6 minutes later by a second radiotracer injection. In two pigs, microsphere flow measurements were made at rest and during stress. Dynamic images were reoriented into the short axis view, and regions of interest (ROIs) for the 17 myocardial segments were defined in bull's eye fashion. PET data were fitted with MGH2, a kinetic model with time varying kinetic parameters, in which blood flow changes abruptly with the introduction of adenosine. Rest and stress myocardial blood flow (MBF) were estimated simultaneously. The first 12-14 minutes of rest-stress PET data were fitted in detail by the MGH2 model, yielding MBF measurement with a mean precision of 0.035 ml/min/cc. Mean myocardial blood flow across pigs was 0.61 ± 0.11 mL/min/cc at rest and 1.06 ± 0.19 mL/min/cc at stress in healthy pigs and 0.36 ± 0.20 mL/min/cc at rest and 0.62 ± 0.24 mL/min/cc at stress in the ischemic area. Good agreement was obtained with microsphere flow measurement (slope = 1.061 ± 0.017, intercept = 0.051 ± 0.017, mean difference 0.096 ± 0.18 ml/min/cc). Accurate rest and stress blood flow estimation can be obtained in less than 15 min of PET acquisition. The method is practical and easy to implement suggesting the possibility of clinical translation.
Sealing performance of a magnetic fluid seal for rotary blood pumps.
Mitamura, Yoshinori; Takahashi, Sayaka; Kano, Kentaro; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya; Higuchi, Taka-Aki
2009-09-01
A magnetic fluid (MF) for a rotary blood pump seal enables mechanical contact-free rotation of the shaft and, hence, has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a "shield" mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Under the condition of continuous flow, the MF seal remained in perfect condition against a pressure of 298 mm Hg (pump flow rate: 3.96 L/min). The seal was also perfect against a pressure of 170 mm Hg in a continuous flow of 3.9 L/min for 275 days. We have developed a MF seal that works in liquid against clinically used pressures. The MF seal is promising as a shaft seal for rotary blood pumps.
Ocular hemodynamics and glaucoma: the role of mathematical modeling.
Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A
2013-01-01
To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.
Bradt, David A; Aitken, Peter; FitzGerald, Gerry; Swift, Roger; O'Reilly, Gerard; Bartley, Bruce
2009-12-01
For more than a decade, emergency medicine (EM) organizations have produced guidelines, training, and leadership for disaster management. However, to date there have been limited guidelines for emergency physicians (EPs) needing to provide a rapid response to a surge in demand. The aim of this project was to identify strategies that may guide surge management in the emergency department (ED). A working group of individuals experienced in disaster medicine from the Australasian College for Emergency Medicine Disaster Medicine Subcommittee (the Australasian Surge Strategy Working Group) was established to undertake this work. The Working Group used a modified Delphi technique to examine response actions in surge situations and identified underlying assumptions from disaster epidemiology and clinical practice. The group then characterized surge strategies from their corpus of experience; examined them through available relevant published literature; and collated these within domains of space, staff, supplies, and system operations. These recommendations detail 22 potential actions available to an EP working in the context of surge, along with detailed guidance on surge recognition, triage, patient flow through the ED, and clinical goals and practices. The article also identifies areas that merit future research, including the measurement of surge capacity, constraints to strategy implementation, validation of surge strategies, and measurement of strategy impacts on throughput, cost, and quality of care.
2012-01-01
Cardiovascular Magnetic Resonance (CMR) is recognised as a valuable clinical tool which in a single scan setting can assess ventricular volumes and function, myocardial fibrosis, iron loading, flow quantification, tissue characterisation and myocardial perfusion imaging. The advent of CMR using extrinsic and intrinsic contrast-enhanced protocols for tissue characterisation have dramatically changed the non-invasive work-up of patients with suspected or known cardiomyopathy. Although the technique initially focused on the in vivo identification of myocardial necrosis through the late gadolinium enhancement (LGE) technique, recent work highlighted the ability of CMR to provide more detailed in vivo tissue characterisation to help establish a differential diagnosis of the underlying aetiology, to exclude an ischaemic substrate and to provide important prognostic markers. The potential application of CMR in the clinical approach of a patient with suspected non-ischaemic cardiomyopathy is discussed in this review. PMID:22857649
Ho, Thai H.; Nateras, Rafael Nunez; Yan, Huihuang; Park, Jin G.; Jensen, Sally; Borges, Chad; Lee, Jeong Heon; Champion, Mia D.; Tibes, Raoul; Bryce, Alan H.; Carballido, Estrella M.; Todd, Mark A.; Joseph, Richard W.; Wong, William W.; Parker, Alexander S.; Stanton, Melissa L.; Castle, Erik P.
2015-01-01
To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25°C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes. PMID:26181416
Davis, Bruce H; Dasgupta, Amar; Kussick, Steven; Han, Jin-Yeong; Estrellado, Annalee
2013-01-01
Flow cytometry and other technologies of cell-based fluorescence assays are as a matter of good laboratory practice required to validate all assays, which when in clinical practice may pass through regulatory review processes using criteria often defined with a soluble analyte in plasma or serum samples in mind. Recently the U.S. Food and Drug Administration (FDA) has entered into a public dialogue in the U.S. regarding their regulatory interest in laboratory developed tests (LDTs) or so-called "home brew" assays performed in clinical laboratories. The absence of well-defined guidelines for validation of cell-based assays using fluorescence detection has thus become a subject of concern for the International Council for Standardization of Haematology (ICSH) and International Clinical Cytometry Society (ICCS). Accordingly, a group of over 40 international experts in the areas of test development, test validation, and clinical practice of a variety of assay types using flow cytometry and/or morphologic image analysis were invited to develop a set of practical guidelines useful to in vitro diagnostic (IVD) innovators, clinical laboratories, regulatory scientists, and laboratory inspectors. The focus of the group was restricted to fluorescence reporter reagents, although some common principles are shared by immunohistochemistry or immunocytochemistry techniques and noted where appropriate. The work product of this two year effort is the content of this special issue of this journal, which is published as 5 separate articles, this being Validation of Cell-based Fluorescence Assays: Practice Guidelines from the ICSH and ICCS - Part II - Preanalytical issues. © 2013 International Clinical Cytometry Society. © 2013 International Clinical Cytometry Society.
2012-02-01
Faced with rising acuity levels and surging demand, Virginia Mason Medical Center modified the Clinical Decision Unit concept used in many EDs, and developed a new Patient Accelerated Care Environment (PACE) to care for observation patients, process patients for discharge, and to prepare patients for admission.The approach is designed to utilize ED beds for initial processing of patients, allowing resuscitative care if needed, and treating and releasing the patients with quick care needs. Using the Virginia Mason Production System, a methodology that is modeled after Toyota production techniques, developers designed an optimal work flow pattern and then built infrastructure to facilitate that process. All patients who present to the ED for care are seen by the ED team through a "team greet" approach. Approximately 35% to 40% of patients who come to the ED for care are transferred to the PACE unit. Patients assigned to the PACE unit typically remain there for 4 to 48 hours, depending on their care needs.
Modernizing an ambulatory care pharmacy in a large multi-clinic institution.
Miller, R F; Herrick, J D
1979-03-01
The steps involved in modernizing an outdated outpatient pharmacy, including the functional planning process, development of a work-flow pattern which makes the patient an integral part of the system, budget considerations and evaluation of the new pharmacy, are described. Objectives of the modernization were to: (1) provide a facility conductive to efficient and high quality services to the ambulatory patient; (2) provide an attractive and comfortable area for patients and staff; (3) provide a work flow which keeps the patient in the system and allows the pharmacist time for instruction and patient education; and (4) establish a patient medication record system. After one year of operation, average overall prescription volume increased by 50%, while average waiting time declined by 74%. Facility and procedural changes allowed the pharmacist to substantially increase patient counseling activity. The application of functional planning and facility design to the renovation and restructuring of an outpatient pharmacy allowed pharmacists to provide efficient, patient-oriented service.
Oxygen and carbon dioxide transport in time-dependent blood flow past fiber rectangular arrays
NASA Astrophysics Data System (ADS)
Zierenberg, Jennifer R.; Fujioka, Hideki; Hirschl, Ronald B.; Bartlett, Robert H.; Grotberg, James B.
2009-03-01
The influence of time-dependent flows on oxygen and carbon dioxide transport for blood flow past fiber arrays arranged in in-line and staggered configurations was computationally investigated as a model for an artificial lung. Both a pulsatile flow, which mimics the flow leaving the right heart and passing through a compliance chamber before entering the artificial lung, and a right ventricular flow, which mimics flow leaving the right heart and directly entering the artificial lung, were considered in addition to a steady flow. The pulsatile flow was modeled as a sinusoidal perturbation superimposed on a steady flow while the right ventricular flow was modeled to accurately depict the period of flow acceleration (increasing flow) and deceleration (decreasing flow) during systole followed by zero flow during diastole. It was observed that the pulsatile flow yielded similar gas transport as compared to the steady flow, while the right ventricular flow resulted in smaller gas transport, with the decrease increasing with Re. The pressure drop across the fiber array (a measure of the resistance), work (an indicator of the work required of the right heart), and shear stress (a measure of potential blood cell activation and damage) are lowest for steady flow, followed by pulsatile flow, and then right ventricular flow. The pressure drop, work, shear stress, and Sherwood numbers (a measure of the gas transport efficiency) decrease with increasing porosity and are smaller for AR <1 as compared to AR >1 (AR is the distance between fibers in the flow direction/distance between fibers in direction perpendicular to flow), although for small porosities the Sherwood numbers are of similar magnitude. In general, for any fiber array geometry, high pressure drop, work, and shear stresses correlate with high Sherwood numbers, and low pressure drop, work, and shear stresses correlate with low Sherwood numbers creating a need for a compromise between pressure drop/work/shear stresses and gas transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N, Gwilliam M; J, Collins D; O, Leach M
Purpose: To assess the feasibility of accurately quantifying the concentration of MRI contrast agent (CA) in pulsatile flowing blood by measuring its T{sub 1}, as is common for the purposes of obtaining a patientspecific arterial input function (AIF). Dynamic contrast enhanced (DCE) - MRI and pharmacokinetic (PK) modelling is widely used to produce measures of vascular function but accurate measurement of the AIF undermines their accuracy. A proposed solution is to measure the T{sub 1} of blood in a large vessel using the Fram double flip angle method during the passage of a bolus of CA. This work expands onmore » previous work by assessing pulsatile flow and the changes in T{sub 1} seen with a CA bolus. Methods: A phantom was developed which used a physiological pump to pass fluid of a known T{sub 1} (812ms) through the centre of a head coil of a clinical 1.5T MRI scanner. Measurements were made using high temporal resolution sequences suitable for DCE-MRI and were used to validate a virtual phantom that simulated the expected errors due to pulsatile flow and bolus of CA concentration changes typically found in patients. Results: : Measured and virtual results showed similar trends, although there were differences that may be attributed to the virtual phantom not accurately simulating the spin history of the fluid before entering the imaging volume. The relationship between T{sub 1} measurement and flow speed was non-linear. T{sub 1} measurement is compromised by new spins flowing into the imaging volume, not being subject to enough excitations to have reached steady-state. The virtual phantom demonstrated a range of recorded T{sub 1} for various simulated T{sub 1} / flow rates. Conclusion: T{sub 1} measurement of flowing blood using standard DCE-MRI sequences is very challenging. Measurement error is non-linear with relation to instantaneous flow speed. Optimising sequence parameters and lowering baseline T{sub 1} of blood should be considered.« less
Implementing mobile devices to reduce non-rostered workload for junior doctors
Plant, Allan; Round, Suzanne; Bourne, Joe
2016-01-01
There is a large body of evidence demonstrating the detrimental effect of long work hours on the performance, mood, and job satisfaction of junior doctors. By extension these effects carry over into the realm of patient safety, compromising the quality of care provision. House officers in the general surgery department of Tauranga Hospital, New Zealand are often required to arrive at work well before their rostered start time of 7.30am to hand write the results of clinical investigations on their patient lists. Baseline measurement demonstrated that each house officer was spending an average of 28 minutes a day of non-rostered time completing this task, increasing to 33 minutes on post-acute days. This quality improvement project trialed the use of a mobile device for accessing clinical results in real-time on surgical ward rounds with the ultimate aim of reducing non-rostered workload by one hour per house officer, per week. A sustainable reduction to a median of 15 minutes non-rostered work per day for each house officer was achieved, translating into 75 minutes less non-rostered work for each house officer every week. Importantly, this result was sustained for more than seven working weeks and spanned a changeover in house officer rotation. Furthermore, the use of the devices was associated with a perceived improvement in the accuracy and timeliness of access to clinical results with no perceived detriment to the speed or flow of the ward round. PMID:27933150
Implementing mobile devices to reduce non-rostered workload for junior doctors.
Plant, Allan; Round, Suzanne; Bourne, Joe
2016-01-01
There is a large body of evidence demonstrating the detrimental effect of long work hours on the performance, mood, and job satisfaction of junior doctors. By extension these effects carry over into the realm of patient safety, compromising the quality of care provision. House officers in the general surgery department of Tauranga Hospital, New Zealand are often required to arrive at work well before their rostered start time of 7.30am to hand write the results of clinical investigations on their patient lists. Baseline measurement demonstrated that each house officer was spending an average of 28 minutes a day of non-rostered time completing this task, increasing to 33 minutes on post-acute days. This quality improvement project trialed the use of a mobile device for accessing clinical results in real-time on surgical ward rounds with the ultimate aim of reducing non-rostered workload by one hour per house officer, per week. A sustainable reduction to a median of 15 minutes non-rostered work per day for each house officer was achieved, translating into 75 minutes less non-rostered work for each house officer every week. Importantly, this result was sustained for more than seven working weeks and spanned a changeover in house officer rotation. Furthermore, the use of the devices was associated with a perceived improvement in the accuracy and timeliness of access to clinical results with no perceived detriment to the speed or flow of the ward round.
How is flow experienced and by whom? Testing flow among occupations.
Llorens, Susana; Salanova, Marisa; Rodríguez, Alma M
2013-04-01
The aims of this paper are to test (1) the factorial structure of the frequency of flow experience at work; (2) the flow analysis model in work settings by differentiating the frequency of flow and the frequency of its prerequisites; and (3) whether there are significant differences in the frequency of flow experience depending on the occupation. A retrospective study among 957 employees (474 tile workers and 483 secondary school teachers) using multigroup confirmatory factorial analyses and multiple analyses of variance suggested that on the basis of the flow analysis model in work settings, (1) the frequency of flow experience has a two-factor structure (enjoyment and absorption); (2) the frequency of flow experience at work is produced when both challenge and skills are high and balanced; and (3) secondary school teachers experience flow more frequently than tile workers. Copyright © 2012 John Wiley & Sons, Ltd.
Method of processing a substrate
Babayan, Steven E [Huntington Beach, CA; Hicks, Robert F [Los Angeles, CA
2008-02-12
The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.
NASA Technical Reports Server (NTRS)
Gouldin, F. C.
1982-01-01
Fluid mechanical effects on combustion processes in steady flow combustors, especially gas turbine combustors were investigated. Flow features of most interest were vorticity, especially swirl, and turbulence. Theoretical analyses, numerical calculations, and experiments were performed. The theoretical and numerical work focused on noncombusting flows, while the experimental work consisted of both reacting and nonreacting flow studies. An experimental data set, e.g., velocity, temperature and composition, was developed for a swirl flow combustor for use by combustion modelers for development and validation work.
[Evaporating Droplet and Imaging Slip Flows
NASA Technical Reports Server (NTRS)
Larson, R. G.
2002-01-01
In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.
Job characteristics, flow, and performance: the moderating role of conscientiousness.
Demerouti, Evangelia
2006-07-01
The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was hypothesized that (a) motivating job characteristics are positively related to flow at work and (b) conscientiousness moderates the relationship between flow and other ratings of (in-role and out-of-role) performance. The hypotheses were tested on a sample of 113 employees from several occupations. Results of moderated structural equation modeling analyses generally supported the hypotheses. Motivating job characteristics were predictive of flow, and flow predicted in-role and extra-role performance, for only conscientious employees.
The Work-Related Flow Inventory: Construction and Initial Validation of the WOLF
ERIC Educational Resources Information Center
Bakker, Arnold B.
2008-01-01
The WOrk-reLated Flow inventory (WOLF) measures flow at work, defined as a short-term peak experience characterized by absorption, work enjoyment, and intrinsic work motivation. Results of Study 1 among 7 samples of employees (total N=1346) from different occupational groups offer support for the factorial validity and reliability of the WOLF.…
Meyer, Raquel M; O'Brien-Pallas, Linda; Doran, Diane; Streiner, David; Ferguson-Paré, Mary; Duffield, Christine
2014-06-01
Increasing role complexity has intensified the work of managers in supporting healthcare teams. This study examined the influence of front-line managers' characteristics and scope of responsibility on teamwork. Scope of responsibility considers the breadth of the manager's role. A descriptive, correlational design was used to collect cross-sectional survey and administrative data in four acute care hospitals. A convenience sample of 754 staff completed the Relational Coordination Scale as a measure of teamwork that focuses on the quality of communication and relationships. Nurses (73.9%), allied health professionals (14.7%) and unregulated staff (11.7%) worked in 54 clinical areas, clustered under 30 front-line managers. Data were analyzed using hierarchical linear modelling. Leadership practices, clinical support roles and compressed operational hours had positive effects on teamwork. Numbers of non-direct report staff and areas assigned had negative effects on teamwork. Teamwork did not vary by span, managerial experience, worked hours, occupational diversity or proportion of full-time employees. Large, acute care teaching hospitals can enable managers to foster teamwork by enhancing managers' leadership practices, redesigning the flow or reporting structure for non-direct reports, optimizing managerial hours relative to operational hours, allocating clinical support roles, reducing number of areas assigned and, potentially, introducing co-manager models. Copyright © 2014 Longwoods Publishing.
Colligan, Lacey; Anderson, Janet E; Potts, Henry W W; Berman, Jonathan
2010-01-07
Many quality and safety improvement methods in healthcare rely on a complete and accurate map of the process. Process mapping in healthcare is often achieved using a sequential flow diagram, but there is little guidance available in the literature about the most effective type of process map to use. Moreover there is evidence that the organisation of information in an external representation affects reasoning and decision making. This exploratory study examined whether the type of process map - sequential or hierarchical - affects healthcare practitioners' judgments. A sequential and a hierarchical process map of a community-based anti coagulation clinic were produced based on data obtained from interviews, talk-throughs, attendance at a training session and examination of protocols and policies. Clinic practitioners were asked to specify the parts of the process that they judged to contain quality and safety concerns. The process maps were then shown to them in counter-balanced order and they were asked to circle on the diagrams the parts of the process where they had the greatest quality and safety concerns. A structured interview was then conducted, in which they were asked about various aspects of the diagrams. Quality and safety concerns cited by practitioners differed depending on whether they were or were not looking at a process map, and whether they were looking at a sequential diagram or a hierarchical diagram. More concerns were identified using the hierarchical diagram compared with the sequential diagram and more concerns were identified in relation to clinical work than administrative work. Participants' preference for the sequential or hierarchical diagram depended on the context in which they would be using it. The difficulties of determining the boundaries for the analysis and the granularity required were highlighted. The results indicated that the layout of a process map does influence perceptions of quality and safety problems in a process. In quality improvement work it is important to carefully consider the type of process map to be used and to consider using more than one map to ensure that different aspects of the process are captured.
Health risks of employees working in pesticide retail shops: An exploratory study.
Kesavachandran, C; Pathak, M K; Fareed, M; Bihari, V; Mathur, N; Srivastava, A K
2009-12-01
Shop keepers dealing with pesticides are exposed to multiple pesticides that include organophosphates, organochlorines, carbamates, pyrethroids. Hence an exploratory health study was conducted on shopkeepers selling pesticides in urban areas of Lucknow and Barabanki District, Uttar Pradesh, India. Detailed information regarding socio-economic status, family history, personal habits and work practices were recorded for 20 subjects and controls by the investigator on a pre-tested questionnaire. Clinical examination including neurological studies of the shopkeepers and control subjects was done. The study revealed significant slowing of motor nerve conduction velocity and low peak expiratory flow rate among shopkeepers as compared to control subjects. Prevalence of significantly higher gastro-intestinal problems was also observed among exposed subjects. Neurological, ocular, cardiovascular and musculo-skeletal symptoms were also found to be higher among shopkeepers. This was not statistically significant. Significantly higher relative risk for sickness related to systems viz., cardio-vasular, genito-urinary, respiratory, nervous and dermal was observed among exposed subjects compared to controls. These findings provide a prima facie evidence of clinical manifestations because of multiple exposures to pesticides and poor safety culture at work place.
Hogan, Barbara; Rasche, Christoph; von Reinersdorff, Andrea Braun
2012-06-01
The number of patients seeking treatment in emergency departments is rising, although many governments are seeking to reduce expenditure on health. Emergency departments must achieve more with the same resources or perform the same functions with fewer resources. Patients demand higher emergency clinical care quality, with low waiting times viewed as a key quality criterion by many patients. The objective of this study was to create an improved working system in emergency departments that cuts patient waiting times for first specialty physician contact. Techniques from industrial flow management were applied to the working process of an emergency department and the concept was named 'First View.' A total of 3269 patient contacts using the First View Concept during a treatment month showed statistical significance. Before introduction, a total 3230 patients in a comparative treatment month had a median waiting time before the first doctor contact of 47.6 min, a first quartile waiting time of 36.1 min, and a third quartile waiting time of 62.7 min. After introduction, 3269 patients had a median waiting time before first specialty physician contact of 11.2 min, a first quartile waiting time of 9.1 min, and a third quartile waiting time of 15.2 min. Industrial flow concepts can achieve significant improvements in emergency department workflows in countries in which sufficient numbers of specialty physicians are available. More attention to the organization of emergency department working processes is needed, especially involving lean management.
Crowdsourcing lung nodules detection and annotation
NASA Astrophysics Data System (ADS)
Boorboor, Saeed; Nadeem, Saad; Park, Ji Hwan; Baker, Kevin; Kaufman, Arie
2018-03-01
We present crowdsourcing as an additional modality to aid radiologists in the diagnosis of lung cancer from clinical chest computed tomography (CT) scans. More specifically, a complete work flow is introduced which can help maximize the sensitivity of lung nodule detection by utilizing the collective intelligence of the crowd. We combine the concept of overlapping thin-slab maximum intensity projections (TS-MIPs) and cine viewing to render short videos that can be outsourced as an annotation task to the crowd. These videos are generated by linearly interpolating overlapping TS-MIPs of CT slices through the depth of each quadrant of a patient's lung. The resultant videos are outsourced to an online community of non-expert users who, after a brief tutorial, annotate suspected nodules in these video segments. Using our crowdsourcing work flow, we achieved a lung nodule detection sensitivity of over 90% for 20 patient CT datasets (containing 178 lung nodules with sizes between 1-30mm), and only 47 false positives from a total of 1021 annotations on nodules of all sizes (96% sensitivity for nodules>4mm). These results show that crowdsourcing can be a robust and scalable modality to aid radiologists in screening for lung cancer, directly or in combination with computer-aided detection (CAD) algorithms. For CAD algorithms, the presented work flow can provide highly accurate training data to overcome the high false-positive rate (per scan) problem. We also provide, for the first time, analysis on nodule size and position which can help improve CAD algorithms.
Barnett, David; Louzao, Raaul; Gambell, Peter; De, Jitakshi; Oldaker, Teri; Hanson, Curtis A
2013-01-01
Flow cytometry and other technologies of cell-based fluorescence assays are as a matter of good laboratory practice required to validate all assays, which when in clinical practice may pass through regulatory review processes using criteria often defined with a soluble analyte in plasma or serum samples in mind. Recently the U.S. Food and Drug Administration (FDA) has entered into a public dialogue in the U.S. regarding their regulatory interest in laboratory developed tests (LDTs) or so-called home brew assays performed in clinical laboratories. The absence of well-defined guidelines for validation of cell-based assays using fluorescence detection has thus become a subject of concern for the International Council for Standardization of Haematology (ICSH) and International Clinical Cytometry Society (ICCS). Accordingly, a group of over 40 international experts in the areas of test development, test validation, and clinical practice of a variety of assay types using flow cytometry and/or morphologic image analysis were invited to develop a set of practical guidelines useful to in vitro diagnostic (IVD) innovators, clinical laboratories, regulatory scientists, and laboratory inspectors. The focus of the group was restricted to fluorescence reporter reagents, although some common principles are shared by immunohistochemistry or immunocytochemistry techniques and noted where appropriate. The work product of this two year effort is the content of this special issue of this journal, which is published as 5 separate articles, this being Validation of Cell-based Fluorescence Assays: Practice Guidelines from the ICSH and ICCS - Part IV - Postanalytic considerations. © 2013 International Clinical Cytometry Society.
Davis, Bruce H; Wood, Brent; Oldaker, Teri; Barnett, David
2013-01-01
Flow cytometry and other technologies of cell-based fluorescence assays are as a matter of good laboratory practice required to validate all assays, which when in clinical practice may pass through regulatory review processes using criteria often defined with a soluble analyte in plasma or serum samples in mind. Recently the U.S. Food and Drug Administration (FDA) has entered into a public dialogue in the U.S. regarding their regulatory interest in laboratory developed tests (LDTs) or so-called "home brew" assays performed in clinical laboratories. The absence of well-defined guidelines for validation of cell-based assays using fluorescence detection has thus become a subject of concern for the International Council for Standardization of Haematology (ICSH) and International Clinical Cytometry Society (ICCS). Accordingly, a group of over 40 international experts in the areas of test development, test validation, and clinical practice of a variety of assay types using flow cytometry and/or morphologic image analysis were invited to develop a set of practical guidelines useful to in vitro diagnostic (IVD) innovators, clinical laboratories, regulatory scientists, and laboratory inspectors. The focus of the group was restricted to fluorescence reporter reagents, although some common principles are shared by immunohistochemistry or immunocytochemistry techniques and noted where appropriate. The work product of this two year effort is the content of this special issue of this journal, which is published as 5 separate articles, this being Validation of Cell-based Fluorescence Assays: Practice Guidelines from the ICSH and ICCS - Part I - Rationale and aims. © 2013 International Clinical Cytometry Society. © 2013 International Clinical Cytometry Society.
Schneiderhan, Wilhelm; Grundt, Alexander; Wörner, Stefan; Findeisen, Peter; Neumaier, Michael
2013-11-01
Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.
Laurent, Christophe; Beaucourt, Luc
2005-01-01
A hard- and software solution has been conceived, realized, produced and used to gather clinical information about disaster victims in the field in such a way that it makes the different efforts made by mass casualty incident management managers and first responders work more efficient, ergonomic, safe and useful for further scientific and statistic analysis.
Loeffert, Sophie Tiphaine; Melloul, Elise; Dananché, Cédric; Hénaff, Laetitia; Bénet, Thomas; Cassier, Pierre; Dupont, Damien; Guillot, Jacques; Botterel, Françoise; Wallon, Martine; Gustin, Marie-Paule; Vanhems, Philippe
2017-01-01
Introduction Monitoring fungal aerocontamination is an essential measure to prevent severe invasive aspergillosis (IA) infections in hospitals. One central block among 32 blocks of Edouard Herriot Hospital (EHH) was entirely demolished in 2015, while care activities continued in surrounding blocks. The main objective was to undertake broad environmental monitoring and clinical surveillance of IA cases to document fungal dispersion during major deconstruction work and to assess clinical risk. Methods and analysis A daily environmental survey of fungal loads was conducted in eight wards located near the demolition site. Air was collected inside and outside selected wards by agar impact samplers. Daily spore concentrations were monitored continuously by volumetric samplers at a flow rate of 10 L.min-1. Daily temperature, wind direction and speed as well as relative humidity were recorded by the French meteorological station Meteociel. Aspergillus fumigatus strains stored will be genotyped by multiple-locus, variable-number, tandem-repeat analysis. Antifungal susceptibility will be assessed by E-test strips on Roswell Park Memorial Institute medium supplemented with agar. Ascertaining the adequacy of current environmental monitoring techniques in hospital is of growing importance, considering the rising impact of fungal infections and of curative antifungal costs. The present study could improve the daily management of IA risk during major deconstruction work and generate new data to ameliorate and redefine current guidelines. Ethics and dissemination This study was approved by the clinical research and ethics committees of EHH. PMID:29175886
Electronic workflow for imaging in clinical research.
Hedges, Rebecca A; Goodman, Danielle; Sachs, Peter B
2014-08-01
In the transition from paper to electronic workflow, the University of Colorado Health System's implementation of a new electronic health record system (EHR) forced all clinical groups to reevaluate their practices including the infrastructure surrounding clinical trials. Radiological imaging is an important piece of many clinical trials and requires a high level of consistency and standardization. With EHR implementation, paper orders were manually transcribed into the EHR, digitizing an inefficient work flow. A team of schedulers, radiologists, technologists, research personnel, and EHR analysts worked together to optimize the EHR to accommodate the needs of research imaging protocols. The transition to electronic workflow posed several problems: (1) there needed to be effective communication throughout the imaging process from scheduling to radiologist interpretation. (2) The exam ordering process needed to be automated to allow scheduling of specific research studies on specific equipment. (3) The billing process needed to be controlled to accommodate radiologists already supported by grants. (4) There needed to be functionality allowing exams to finalize automatically skipping the PACS and interpretation process. (5) There needed to be a way to alert radiologists that a specialized research interpretation was needed on a given exam. These issues were resolved through the optimization of the "visit type," allowing a high-level control of an exam at the time of scheduling. Additionally, we added columns and fields to work queues displaying grant identification numbers. The build solutions we implemented reduced the mistakes made and increased imaging quality and compliance.
O'Muircheartaigh, Jonathan; Marquand, Andre; Hodkinson, Duncan J; Krause, Kristina; Khawaja, Nadine; Renton, Tara F; Huggins, John P; Vennart, William; Williams, Steven C R; Howard, Matthew A
2015-02-01
Recent reports of multivariate machine learning (ML) techniques have highlighted their potential use to detect prognostic and diagnostic markers of pain. However, applications to date have focussed on acute experimental nociceptive stimuli rather than clinically relevant pain states. These reports have coincided with others describing the application of arterial spin labeling (ASL) to detect changes in regional cerebral blood flow (rCBF) in patients with on-going clinical pain. We combined these acquisition and analysis methodologies in a well-characterized postsurgical pain model. The principal aims were (1) to assess the classification accuracy of rCBF indices acquired prior to and following surgical intervention and (2) to optimise the amount of data required to maintain accurate classification. Twenty male volunteers, requiring bilateral, lower jaw third molar extraction (TME), underwent ASL examination prior to and following individual left and right TME, representing presurgical and postsurgical states, respectively. Six ASL time points were acquired at each exam. Each ASL image was preceded by visual analogue scale assessments of alertness and subjective pain experiences. Using all data from all sessions, an independent Gaussian Process binary classifier successfully discriminated postsurgical from presurgical states with 94.73% accuracy; over 80% accuracy could be achieved using half of the data (equivalent to 15 min scan time). This work demonstrates the concept and feasibility of time-efficient, probabilistic prediction of clinically relevant pain at the individual level. We discuss the potential of ML techniques to impact on the search for novel approaches to diagnosis, management, and treatment to complement conventional patient self-reporting. © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Nielsen, Karina; Cleal, Bryan
2010-04-01
Flow (a state of consciousness where people become totally immersed in an activity and enjoy it intensely) has been identified as a desirable state with positive effects for employee well-being and innovation at work. Flow has been studied using both questionnaires and Experience Sampling Method (ESM). In this study, we used a newly developed 9-item flow scale in an ESM study combined with a questionnaire to examine the predictors of flow at two levels: the activities (brainstorming, planning, problem solving and evaluation) associated with transient flow states and the more stable job characteristics (role clarity, influence and cognitive demands). Participants were 58 line managers from two companies in Denmark; a private accountancy firm and a public elder care organization. We found that line managers in elder care experienced flow more often than accountancy line managers, and activities such as planning, problem solving, and evaluation predicted transient flow states. The more stable job characteristics included in this study were not, however, found to predict flow at work. Copyright 2010 APA, all rights reserved.
Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn
2014-05-01
In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (P<0·001) and soleus fibre size was reduced by 8·5 ± 13% (P = 0·016). However, WoRPD remained unaffected as indicated by an unchanged loss of relative plantar flexor power between pre- and postexperiments (P = 0·88). Blood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Halperin, Mitchell L; Cheema-Dhadli, Surinder; Lin, Shih-Hua; Kamel, Kamel S
2006-09-01
The PO2 at this site where erythropoietin release is regulated should vary only when the hemoglobin concentration changes in capillary blood. The kidney cortex is an ideal location for this O2 sensor for four reasons. First, it extracts a small proportion of the oxygen that is delivered in each liter of blood; this makes the PO2 signal easier to recognize. Second, there is a constant ratio of the work performed (consumption of O2) to the renal blood flow rate (delivery of O2). Third, the high renal blood flow rate improves diffusion of O2 from capillaries to this O2 receptor. Fourth, a high renal cortical PCO2 prevents an additional shift of the O2:hemoglobin dissociation curve by other factors from being a confounding variable. This suggests that the GFR and the renal blood flow rate should be examined in patients with unexplained anemia or erythrocytosis.
Point-of-care optical tool to detect early stage of hemorrhage and shock
NASA Astrophysics Data System (ADS)
Gurjar, Rajan S.; Riccardi, Suzannah L.; Johnson, Blair D.; Johnson, Christopher P.; Paradis, Norman A.; Joyner, Michael J.; Wolf, David E.
2014-02-01
There is a critical unmet clinical need for a device that can monitor and predict the onset of shock: hemorrhagic shock or bleeding to death, septic shock or systemic infection, and cardiogenic shock or blood flow and tissue oxygenation impairment due to heart attack. Together these represent 141 M patients per year. We have developed a monitor for shock based on measuring blood flow in peripheral (skin) capillary beds using diffuse correlation spectroscopy, a form of dynamic light scattering, and have demonstrated proof-of-principle both in pigs and humans. Our results show that skin blood flow measurement, either alone or in conjunction with other hemodynamic properties such as heart rate variability, pulse pressure variability, and tissue oxygenation, can meet this unmet need in a small self-contained patch-like device in conjunction with a hand-held processing unit. In this paper we describe and discuss the experimental work and the multivariate statistical analysis performed to demonstrate proof-of-principle of the concept.
García-Isla, Guadalupe; Olivares, Andy Luis; Silva, Etelvino; Nuñez-Garcia, Marta; Butakoff, Constantine; Sanchez-Quintana, Damian; G Morales, Hernán; Freixa, Xavier; Noailly, Jérôme; De Potter, Tom; Camara, Oscar
2018-05-08
The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients. Copyright © 2018 John Wiley & Sons, Ltd.
Improving the quality of palliative care for ambulatory patients with lung cancer
von Plessen, Christian; Aslaksen, Aslak
2005-01-01
Problem Most patients with advanced lung cancer currently receive much of their health care, including chemotherapy, as outpatients. Patients have to deal with the complex and time consuming logistics of ambulatory cancer care. At the same time, members of staff often waste considerable time and energy in organisational aspects of care that could be better used in direct interaction with patients. Design Quality improvement study using direct observation and run and flow charts, and focus group meetings with patients and families regarding perceptions of the clinic and with staff regarding satisfaction with working conditions. Setting Thoracic oncology outpatient clinic at a Norwegian university hospital where patients receive chemotherapy and complementary palliative care. Key measures for improvement Waiting time and time wasted during consultations; calmer working situation at the clinic; satisfaction among patients. Strategies for change Rescheduled patients' appointments, automated retrieval of blood test results, systematic reporting in patients' files, design of an information leaflet, and refurnishing of the waiting area at the clinic. Effects of change Interventions resulted in increased satisfaction for patients and staff, reduced waiting time, and reduced variability of waiting time. Lessons learnt Direct observation, focus groups, questionnaires on patients' satisfaction, and measurement of process time were useful in systematically improving care in this outpatient clinic. The description of this experience can serve as an example for the improvement of a microsystem, particularly in other settings with similar problems. PMID:15933354
Cerebral hemodynamics before and after shunting in normal pressure hydrocephalus.
Bakker, S L M; Boon, A J W; Wijnhoud, A D; Dippel, D W J; Delwel, E J; Koudstaal, P J
2002-09-01
To study the relationship between cerebral hemodynamics and clinical performance in normal pressure hydrocephalus (NPH), before and after surgery. Ten patients were studied prospectively before and 3 months after shunt surgery by means of transcranial Doppler (TCD). Clinical performance was scored by means of an NPH scale and the modified Rankin scale. Peak systolic and mean cerebral blood flow velocity (MCV) were lower and cerebrovascular CO2 reactivity was higher after shunt surgery. The three patients with clinical improvement had higher preoperative end diastolic cerebral blood flow velocity and MCV. All postoperative cerebral blood flow velocities were higher in patients with clinical improvement. Our data suggest that higher cerebral blood flow velocity before surgery in patients with NPH is related to clinical improvement after shunt surgery. Cerebral hemodynamic parameters may develop into predictors of successful shunt surgery in patients with normal pressure hydrocephalus.
Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.
2015-01-01
Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980
Multi-modality molecular imaging: pre-clinical laboratory configuration
NASA Astrophysics Data System (ADS)
Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.
2006-02-01
In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.
What can vortices tell us about vocal fold vibration and voice production.
Khosla, Sid; Murugappan, Shanmugam; Gutmark, Ephraim
2008-06-01
Much clinical research on laryngeal airflow has assumed that airflow is unidirectional. This review will summarize what additional knowledge can be obtained about vocal fold vibration and voice production by studying rotational motion, or vortices, in laryngeal airflow. Recent work suggests two types of vortices that may strongly contribute to voice quality. The first kind forms just above the vocal folds during glottal closing, and is formed by flow separation in the glottis; these flow separation vortices significantly contribute to rapid closing of the glottis, and hence, to producing loudness and high frequency harmonics in the acoustic spectrum. The second is a group of highly three-dimensional and coherent supraglottal vortices, which can produce sound by interaction with structures in the vocal tract. Present work is also described that suggests that certain laryngeal pathologies, such as asymmetric vocal fold tension, will significantly modify both types of vortices, with adverse impact on sound production: decreased rate of glottal closure, increased broadband noise, and a decreased signal to noise ratio. Recent research supports the hypothesis that glottal airflow contains certain vortical structures that significantly contribute to voice quality.
Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.
2008-01-01
Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
A Scalable, Open Source Platform for Data Processing, Archiving and Dissemination
2016-01-01
Object Oriented Data Technology (OODT) big data toolkit developed by NASA and the Work-flow INstance Generation and Selection (WINGS) scientific work...to several challenge big data problems and demonstrated the utility of OODT-WINGS in addressing them. Specific demonstrated analyses address i...source software, Apache, Object Oriented Data Technology, OODT, semantic work-flows, WINGS, big data , work- flow management 16. SECURITY CLASSIFICATION OF
James, Pam; Bebee, Patty; Beekman, Linda; Browning, David; Innes, Mathew; Kain, Jeannie; Royce-Westcott, Theresa; Waldinger, Marcy
2011-11-01
Quantifying data management and regulatory workload for clinical research is a difficult task that would benefit from a robust tool to assess and allocate effort. As in most clinical research environments, The University of Michigan Comprehensive Cancer Center (UMCCC) Clinical Trials Office (CTO) struggled to effectively allocate data management and regulatory time with frequently inaccurate estimates of how much time was required to complete the specific tasks performed by each role. In a dynamic clinical research environment in which volume and intensity of work ebbs and flows, determining requisite effort to meet study objectives was challenging. In addition, a data-driven understanding of how much staff time was required to complete a clinical trial was desired to ensure accurate trial budget development and effective cost recovery. Accordingly, the UMCCC CTO developed and implemented a Web-based effort-tracking application with the goal of determining the true costs of data management and regulatory staff effort in clinical trials. This tool was developed, implemented, and refined over a 3-year period. This article describes the process improvement and subsequent leveling of workload within data management and regulatory that enhanced the efficiency of UMCCC's clinical trials operation.
Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.
Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William
2017-11-01
What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the WOB increased locomotor blood flow. Oxygen uptake was not different during the control and resistor trials (3.8 ± 0.9 versus 3.7 ± 0.8 l min -1 , P > 0.05), but was lower on the proportional assist ventilator trial (3.4 ± 0.7 l min -1 , P < 0.05) compared with control. Our findings support the concept that respiratory muscle work significantly influences the distribution of blood flow to both respiratory and locomotor muscles. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENNINGS, T.L.
The Work Flow analysis Report will be used to facilitate the requirements for implementing the Work Control module of Passport. The report consists of workflow integration processes for Work Management, Preventative Maintenance, Materials and Equipment
Stime, Katrina J; Garrett, Nigel; Sookrajh, Yukteshwar; Dorward, Jienchi; Dlamini, Ntuthu; Olowolagba, Ayo; Sharma, Monisha; Barnabas, Ruanne V; Drain, Paul K
2018-05-11
Many clinics in Southern Africa have long waiting times. The implementation of point-of-care (POC) tests to accelerate diagnosis and improve clinical management in resource-limited settings may improve or worsen clinic flow and waiting times. The objective of this study was to describe clinic flow with special emphasis on the impact of POC testing at a large urban public healthcare clinic in Durban, South Africa. We used time and motion methods to directly observe patients and practitioners. We created patient flow maps and recorded individual patient waiting and consultation times for patients seeking STI, TB, or HIV care. We conducted semi-structured interviews with 20 clinic staff to ascertain staff opinions on clinic flow and POC test implementation. Among 121 observed patients, the total number of queues ranged from 4 to 7 and total visit times ranged from 0:14 (hours:minutes) to 7:38. Patients waited a mean of 2:05 for standard-of-care STI management, and approximately 4:56 for STI POC diagnostic testing. Stable HIV patients who collected antiretroviral therapy refills waited a mean of 2:42 in the standard queue and 2:26 in the fast-track queue. A rapid TB test on a small sample of patients with the Xpert MTB/RIF assay and treatment initiation took a mean of 6:56, and 40% of patients presenting with TB-related symptoms were asked to return for an additional clinic visit to obtain test results. For all groups, the mean clinical assessment time with a nurse or physician was 7 to 9 min, which accounted for 2 to 6% of total visit time. Staff identified poor clinic flow and personnel shortages as areas of concern that may pose challenges to expanding POC tests in the current clinic environment. This busy urban clinic had multiple patient queues, long clinical visits, and short clinical encounters. Although POC testing ensured patients received a diagnosis sooner, it more than doubled the time STI patients spent at the clinic and did not result in same-day diagnosis for all patients screened for TB. Further research on implementing POC testing efficiently into care pathways is required to make these promising assays a success.
Benítez, Francisco Moreno; Camacho, Antonio Letrán; Del Cuvillo Bernal, Alfonso; de Medina, Pedro Lobatón Sánchez; Cózar, Francisco J García; Romeu, Ma Luisa Espinazo
2013-07-10
Background: There is an increase in the incidence of pollen related allergy, thus information on pollen schedules would be a great asset for physicians to improve the clinical care of patients. Like cypress pollen sensitization shows a high prevalence among the causes of allergic rhinitis, and therefore it is of interest to use it like a model of study, distinguishing cypress pollen, pollen count and allergenic load level. In this work, we use a flow cytometry based technique to obtain both Cupressus arizonica pollen count and allergenic load, using specific rabbit polyclonal antibody Cup a1 and its comparison with optical microscopy technique measurement. Methods: Airborne samples were collected from Burkard Spore-Trap and Burkard Cyclone Cupressus arizonica pollen was studied using specific rabbit polyclonal antibody Cup a1, labelled with AlexaFluor ® 488 or 750 and analysed by Flow Cytometry in both an EPICS XL and Cyan ADP cytometers (Beckman Coulter ® ). Optical microscopy study was realized with a Leica optical microscope. Bland & Altman was used to determine agreement between both techniques measured. Results: We can identify three different populations based on rabbit polyclonal antibody Cup a1 staining. The main region (44.5%) had 97.3% recognition, a second region (25%) with 28% and a third region (30.5%) with 68% respectively. Immunofluorescence and confocal microscopy showed that main region corresponds to whole pollen grains, the second region are pollen without exine and the third region is constituted by smaller particles with allergenic properties. Pollen schedule shows a higher correlation measured by optical microscopy and flow cytometry in the pollen count with a p-value: 0.0008E -2 and 0.0002 with regard to smaller particles, so the Bland & Altman measurement showed a good correlation between them, p-value: 0,0003. Conclusion: Determination of pollen count and allergenic load by flow cytometry represents an important tool in the determination of airborne respiratory allergens. We showed that not only whole pollen but also smaller particles could induce allergic sensitization. This is the first study where flow cytometry is used for calculating pollen counts and allergenic load. © 2013 Clinical Cytometry Society. Copyright © 2013 Clinical Cytometry Society.
NASA Astrophysics Data System (ADS)
Kowalski, William J.; Teslovich, Nikola C.; Chen, Chia-Yuan; Keller, Bradley B.; Pekkan, Kerem
2014-03-01
Experimental and clinical data indicate that hemodynamic forces within the embryo provide critical biomechanical cues for cardiovascular morphogenesis, growth, and remodeling and that perturbed flow is a major etiology of congenital heart disease. However, embryonic flow-growth relationships are largely qualitative and poorly defined. In this work, we provide a quantitative analysis of in vivo flow and growth trends in the chick embryo using optical coherence tomography (OCT) to acquire simultaneous velocity and structural data of the right vitelline artery continuously over a ten hour period beginning at stage 16 (hour 54). We obtained 3D vessel volumes (15 μm lateral, 4.3 μm axial resolutions, 6 μm slice spacing) at 60 minute intervals, taking a B-scan time series totaling one cardiac cycle at each slice. Embryos were maintained at a constant 37°C and 60% humidity during the entire acquisition period through an inhouse built chamber. The 3D vessel lumen geometries were reconstructed manually to assess growth. Blood flow velocity was computed from the central B-scan using red blood cell particle image velocimetry. The use of extended OCT imaging as a non-invasive method for continuous and simultaneous flow and structural data can enhance our understanding of the biomechanical regulation of critical events in morphogenesis. Data acquired will be useful to validate predictive finite-element 3D growth models.
Provider and patient satisfaction with the integration of ambulatory and hospital EHR systems.
Meyerhoefer, Chad D; Sherer, Susan A; Deily, Mary E; Chou, Shin-Yi; Guo, Xiaohui; Chen, Jie; Sheinberg, Michael; Levick, Donald
2018-05-16
The installation of EHR systems can disrupt operations at clinical practice sites, but also lead to improvements in information availability. We examined how the installation of an ambulatory EHR at OB/GYN practices and its subsequent interface with an inpatient perinatal EHR affected providers' satisfaction with the transmission of clinical information and patients' ratings of their care experience. We collected data on provider satisfaction through 4 survey rounds during the phased implementation of the EHR. Data on patient satisfaction were drawn from Press Ganey surveys issued by the healthcare network through a standard process. Using multivariable models, we determined how provider satisfaction with information transmission and patient satisfaction with their care experience changed as the EHR system allowed greater information flow between OB/GYN practices and the hospital. Outpatient OB/GYN providers became more satisfied with their access to information from the inpatient perinatal triage unit once system capabilities included automatic data flow from triage back to the OB/GYN offices. Yet physicians were generally less satisfied with how the EHR affected their work processes than other clinical and non-clinical staff. Patient satisfaction dropped after initial EHR installation, and we find no evidence of increased satisfaction linked to system integration. Dissatisfaction of providers with an EHR system and difficulties incorporating EHR technology into patient care may negatively impact patient satisfaction. Care must be taken during EHR implementations to maintain good communication with patients while satisfying documentation requirements.
Work loss associated with increased menstrual loss in the United States.
Côté, Isabelle; Jacobs, Philip; Cumming, David
2002-10-01
To estimate the effect of increased menstrual flow on the loss of work. Heavy or otherwise abnormal menstrual bleeding is a common problem among women in the reproductive age range. Until now, there has been no evidence of its effect on absences from work. We used data from the National Health Interview Survey 1999, a personal interview household survey using a nationwide representative sample of the civilian noninstitutionalized population of the United States. Participants were 3133 women aged between 18 and 64 years who reported having a natural menstrual period in the last 12 months and in the last 3 months, never having taken medication containing estrogen (except past use of oral contraceptives), and never having been told that they had reproductive cancer. Analysis was performed using data from 2805 women, 373 having self-described heavy flow and 2432 having normal flow. The main outcome measure was work loss associated with the degree of menstrual flow. Using binary logistic regression, age, marital status, education, family size, perception of health, and flow of menstrual periods are associated with work losses (P <.05). The odds ratio of 0.72 (95% confidence interval 0.56, 0.92) indicates that women who have a heavier flow are 72% as likely to be working as are women who have a lighter or normal flow. Menstrual bleeding has significant economic implications for women in the workplace: work loss from increased blood flow is estimated to be $1692 annually per woman.
Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.
Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.
1994-01-01
OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680
Implementation of a Diabetes Management Flow Sheet in a Long-Term Care Setting.
Williams, Evelyn; Curtis, Ashley
2015-08-01
Physicians lack clear guidance about adaptation of clinical practice guidelines for elderly institutionalized patients with diabetes. In a large long-term care facility, a diabetes management flow sheet was trialed to determine which clinical parameters were found useful by clinicians in the management of diabetes in that setting. Clinical practice guidelines for diabetes management were reviewed with attending physicians. Diabetes management flow sheets were distributed for all patients coded as having diabetes on their most recent minimum data sets. After a period of 14 months, flow sheet completion rates were ascertained and physicians were surveyed regarding the utility of the flow sheet. Initial flow sheet data were completed in full or in part for only 57% of the 121 study subjects; 39% of the subjects died within 14 months. Quarterly follow-up data were completed for 58% of the flow sheets. The diabetes management flow sheet was not found to be useful by attending physicians as a chronic-disease management tool. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Schmit, Ryan
2010-01-01
To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).
Chemotherapy and treatment scheduling: the Johns Hopkins Oncology Center Outpatient Department.
Majidi, F.; Enterline, J. P.; Ashley, B.; Fowler, M. E.; Ogorzalek, L. L.; Gaudette, R.; Stuart, G. J.; Fulton, M.; Ettinger, D. S.
1993-01-01
The Chemotherapy and Treatment Scheduling System provides integrated appointment and facility scheduling for very complex procedures. It is fully integrated with other scheduling systems at The Johns Hopkins Oncology Center and is supported by the Oncology Clinical Information System (OCIS). It provides a combined visual and textual environment for the scheduling of events that have multiple dimensions and dependencies on other scheduled events. It is also fully integrated with other clinical decision support and ancillary systems within OCIS. The system has resulted in better patient flow through the ambulatory care areas of the Center. Implementing the system required changes in behavior among physicians, staff, and patients. This system provides a working example of building a sophisticated rule-based scheduling system using a relatively simple paradigm. It also is an example of what can be achieved when there is total integration between the operational and clinical components of patient care automation. PMID:8130453
A CMOS camera-based system for clinical photoplethysmographic applications
NASA Astrophysics Data System (ADS)
Humphreys, Kenneth; Markham, Charles; Ward, Tomas E.
2005-06-01
In this work an image-based photoplethysmography (PPG) system is developed and tested against a conventional finger-based system as commonly used in clinical practise. A PPG is essentially an optical instrument consisting of a near infrared (NIR) source and detector that is capable of tracking blood flow changes in body tissue. When used with a number of wavelengths in the NIR band blood oxygenation changes as well as other blood chemical signatures can be ascertained yielding a very useful device in the clinical realm. Conventionally such a device requires direct contact with the tissue under investigation which eliminates the possibility of its use for applications like wound management where the tissue oxygenation measurement could be extremely useful. To circumnavigate this shortcoming we have developed a CMOS camera-based system, which can successfully extract the PPG signal without contact with the tissue under investigation. A comparison of our results with conventional techniques has yielded excellent results.
Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise.
Militello, Laura G; Saleem, Jason J; Borders, Morgan R; Sushereba, Christen E; Haverkamp, Donald; Wolf, Steven P; Doebbeling, Bradley N
2016-03-01
Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration's EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability.
Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise
Militello, Laura G.; Saleem, Jason J.; Borders, Morgan R.; Sushereba, Christen E.; Haverkamp, Donald; Wolf, Steven P.; Doebbeling, Bradley N.
2016-01-01
Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration’s EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability. PMID:26973441
Greening, S E; Grohs, D H; Guidos, B J
1997-01-01
Providing effective training, retraining and evaluation programs, including proficiency testing programs, for cytoprofessionals is a challenge shared by many academic and clinical educators internationally. In cytopathology the quality of training has immediately transferable and critically important impacts on satisfactory performance in the clinical setting. Well-designed interactive computer-assisted instruction and testing programs have been shown to enhance initial learning and to reinforce factual and conceptual knowledge. Computer systems designed not only to promote diagnostic accuracy but to integrate and streamline work flow in clinical service settings are candidates for educational adaptation. The AcCell 2000 system, designed as a diagnostic screening support system, offers technology that is adaptable to educational needs during basic and in-service training as well as testing of screening proficiency in both locator and identification skills. We describe the considerations, approaches and applications of the AcCell 2000 system in education programs for both training and evaluation of gynecologic diagnostic screening proficiency.
Sohng, Hee Yon; Kuniyuki, Alan; Edelson, Jane; Weir, Rosy Chang; Song, Hui; Tu, Shin-Ping
2013-01-01
Understanding and enhancing change capabilities, including Practice Adaptive Reserve (PAR), of Community Health Centers (CHCs) may mitigate cancer-related health disparities. Using stratified random sampling, we recruited 232 staff from seven CHCs serving Asian Pacific Islander communities to complete a self-administered survey. We performed multilevel regression analyses to examine PAR composite scores by CHC, position type, and number of years worked at their clinic. The mean PAR score was 0.7 (s.d. 0.14). Higher scores were associated with a greater perceived likelihood that clinic staff would participate in an evidence-based intervention (EBI). Constructs such as communication, clinic flow, sensemaking, change valence, and resource availability were positively associated with EBI implementation or trended toward significance. PAR scores are positively associated with perceived likelihood of clinic staff participation in cancer screening EBI. Future research is needed to determine PAR levels most conducive to implementing change and to developing interventions that enhance Adaptive Reserve.
Falk, Markus; Donaldsson, Snorri; Drevhammar, Thomas
2018-01-01
Access to inexpensive respiratory support to newborn infants improves survival in low-income countries. Standard bubble continuous positive airway pressure (CPAP) has been extensively used worldwide for more than 30 years. One project aimed at providing affordable CPAP is the Pumani system developed by Rice 360°. Compared to standard bubble CPAP the system has an unconventional design. The aim was to compare the Pumani system with two traditional bubble CPAP systems, focusing on in-vitro performance and safety. The Pumani system was compared to traditional bubble CPAP from Fisher & Paykel (Auckland, New Zealand) and Diamedica (Devon, United Kingdom). The systems were tested using static flow resistance and simulated breathing for a range of fresh gas flows and submersion levels. There were large differences between the Pumani CPAP and the conventional bubble CPAP systems. The Pumani system was not pressure stable, had high resistance and high imposed work of breathing. It was not possible to use submersion depth to adjust CPAP without accounting for fresh gas flow. The Pumani design is novel and not similar to any previously described CPAP system. The main mechanism for CPAP generation was resistance, not submersion depth. The system should therefore not be referred to as bubble CPAP. The clinical consequences of its pressure instability and high imposed work of breathing are not known and trials on outcome and safety are needed.
Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems
NASA Astrophysics Data System (ADS)
Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.
2001-05-01
The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.
Fluid Dynamics in Rotary Piston Blood Pumps.
Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas
2017-03-01
Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.
Vortex-based spatiotemporal characterization of nonlinear flows
NASA Astrophysics Data System (ADS)
Byrne, Gregory A.
Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are most conducive to rupture. Flows that form multiple vortices and undergo large-scale structural changes over the cardiac cycle are found to pose the most significant risk to patients. Concepts from dynamical systems are then applied to explain the formation of large-scale vortical flow structures in cerebral aneurysms. This is done by investigating the role of critical points along vortex core lines. We provide evidence that critical points are created and destroyed in saddle-node bifurcations during the cardiac cycle and that these bifurcations are responsible for changing the large-scale flow structure inside the aneurysm. Uncovering and understanding these mechanisms is the first step towards individualized treatments designed to suppress the creation of specific blood flow patterns that are known to present a risk of rupture. A simple differential dynamical system is used to illustrate the dynamical systems related concepts. Two examples illustrating the use of vortex-based methods in other domains are highlighted at the end of this work. The first example uses realistic CFD modeling of air flow through subway tunnels and stations to study the spread of accidental or planned release of airborne chemical or biological contaminants. Quantities from the vortex-based characterizations are shown to provide clear signatures that correlate to the dispersion and transport of pollutants though the stations. The second example examines swirling flow structures in the phase space of dynamical systems. Descriptions of vortices and their properties are extended to higher dimensions within the special class of differential dynamical systems.
Design Optimization of Vena Cava Filters: An application to dual filtration devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M A; Wang, S L; Diachin, D P
Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of trapped modelmore » thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.« less
Morris, Rebecca L; Blakeman, Tom; Ashcroft, Darren M
2017-01-01
Objectives To examine the role of individual and collective cognitive work in managing medicines for acute kidney injury (AKI), this being an example of a clinical scenario that crosses the boundaries of care organisations and specialties. Design Qualitative design, informed by a realist perspective and using semistructured interviews as the data source. The data were analysed using template analysis. Setting Primary, secondary and intermediate care in England. Participants 12 General practitioners, 10 community pharmacists, 7 hospital doctors and 7 hospital pharmacists, all with experience of involvement in preventing or treating AKI. Results We identified three main themes concerning participants' experiences of managing medicines in AKI. In the first theme, challenges arising from the clinical context, AKI is identified as a technically complex condition to identify and treat, often requiring judgements to be made about renal functioning against the context of the patient's general well-being. In the second theme, challenges arising from the organisational context, the crossing of professional and organisational boundaries is seen to introduce problems for the coordination of clinical activities, for example by disrupting information flows. In the third theme, meeting the challenges, participants identify ways in which they overcome the challenges they face in order to ensure effective medicines management, for example by adapting their work practices and tools. Conclusions These themes indicate the critical role of cognitive work on the part of healthcare practitioners, as individuals and as teams, in ensuring effective medicines management during AKI. Our findings suggest that the capabilities underlying this work, for example decision-making, communication and team coordination, should be the focus of training and work design interventions to improve medicines management for AKI or for other conditions. PMID:28100559
Vykoukal, Jody; Vykoukal, Daynene M.; Freyberg, Susanne; Alt, Eckhard U.; Gascoyne, Peter R. C.
2009-01-01
We have applied the microfluidic cell separation method of dielectrophoretic field-flow fractionation (DEP-FFF) to the enrichment of a putative stem cell population from an enzyme-digested adipose tissue derived cell suspension. A DEP-FFF separator device was constructed using a novel microfluidic-microelectronic hybrid flex-circuit fabrication approach that is scaleable and anticipates future low-cost volume manufacturing. We report the separation of a nucleated cell fraction from cell debris and the bulk of the erythrocyte population, with the relatively rare (<2% starting concentration) NG2-positive cell population (pericytes and/or putative progenitor cells) being enriched up to 14-fold. This work demonstrates a potential clinical application for DEP-FFF and further establishes the utility of the method for achieving label-free fractionation of cell subpopulations. PMID:18651083
DICOM-compatible format for analytical cytology data
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Leif, Suzanne B.
1998-04-01
The addition of a list mode data type to the Digital Imaging and Communications in Medicine standard, DICOM will enhance the storage and transmission of digital microscopy data and extend DICOM to include flow cytometry data. This would permit the present International Society for analytical Cytology Flow Cytometry Standard to be retired. DICOM includes: image graphics objects, specifications for describing: studies, reports, the acquisition of the data, work list management, and the individuals involved (physician, patient, etc.) The glossary of terms (objects) suitable for use with DICOM has been extended to include the collaborative effort of Logical Observation Identifier Names and Codes (LOINC) and Systematized Nomenclature of Human and Veterinary Medicine (SNOMED) to create a consistent, unambiguous clinical reference terminology. It also appears that DICOM will be a significant part of the Common Object Request Broker Architecture, CORBA.
Igarashi, M; Nakae, Y; Ichimiya, N; Watanabe, H; Iwasaki, H; Namiki, A
1993-02-01
Many anesthesiologists are now interested in low flow, closed circuit anesthesia from an economical and environmental point of view. In order to evaluate clinically a newly developed electronically controlled anesthesia machine Engström's ELSA, we compared low flow, closed circuit anesthesia on 38 ASA I-II patients using ELSA, with high flow anesthesia on 12 ASA I-II patients using a conventional anesthesia machine. The results were as follows; 1. We could perform safe and economical low flow, closed circuit anesthesia using ELSA's injection vaporizer and accurate monitoring devices for O2, N2O, CO2 and concentrations of various volatile anesthetic agents. 2. Under low flow anesthesia, isoflurane consumption was 5.3 +/- 1.1 ml.h-1 x Vol.%-1 (mean +/- SE) with ELSA, which is about one fourth of the high flow anesthesia consumption (22.6 +/- 2.1 ml.h-1 x Vol.%-1 (mean +/- SE). 3. Low flow closed circuit anesthesia could maintain significantly higher temperature and humidity compared with high flow anesthesia. 4. Under low flow anesthesia of more than 7hrs, color of soda lime becomes blue, but this does not affect FIO2 nor PaCO2, and the method is clinically safe for patients.
The evolving role of MRI in the assessment of coronary artery disease.
Blackwell, G G; Pohost, G M
1995-04-13
Magnetic resonance imaging (MRI) methods are positioned to make a major impact in the care of patients with ischemic heart disease. Further advances are to be expected in the area of myocardial perfusion imaging and noninvasive MRI coronary "angiography." Work also continues in determining quantitative flow via MRI. Although expensive, the unique ability of MRI methods to provide multiple pieces of information in a single examination may make this technology cost effective. The concept of a "one-step shop" is progressing steadily toward a clinical reality.
Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E
2016-01-01
Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist's work station (caused by a preference for microbiological testing prior to CSF chemistry). A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction.
NASA Astrophysics Data System (ADS)
Yambe, Kiyoyuki; Saito, Hidetoshi
2017-12-01
When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
Ono, Hideaki; Inoue, Tomohiro; Tanishima, Takeo; Tamura, Akira; Saito, Isamu; Saito, Nobuhito
2018-04-01
High-flow bypass followed by ligation of the internal carotid artery (ICA) is an effective treatment, but the impact of abrupt occlusion of the ICA is unpredictable, especially on postoperative cognitive function. The present study evaluated the clinical results as well as cognitive performances after high-flow bypass using radial artery graft (RAG) with supportive superficial temporal artery (STA)-middle cerebral artery (MCA) bypass, followed by ICA ligation. Ten consecutive patients underwent high-flow bypass surgery for large or giant ICA aneurysms of cavernous or cervical portion. Demographics, clinical information, magnetic resonance (MR) imaging, computed tomography, digital subtraction angiography (DSA), intraoperative somatosensory evoked potentials, neuropsychological examinations including the Wechsler Adult Intelligence Scale-Third Edition and the Wechsler Memory Scale-Revised (WMS-R), and follow-up data were analyzed. The aneurysm was located on the cavernous segment in eight cases and cervical segment in two cases, and mean aneurysm size was 27.9 mm. Postoperative DSA demonstrated robust bypass flow from the external carotid artery to MCA via the RAG, and no anterograde flow into the aneurysm. No patient showed new symptoms after the operation. Follow-up clinical study and MR imaging were performed in nine patients and showed no additional ischemic lesion compared with preoperative imaging. Seven patients completed neuropsychological examinations before and after surgery. All postoperative scores except WMS-R composite memory score slightly improved. High-flow bypass followed by ICA ligation can achieve good clinical outcomes. Successful high-flow bypass using RAG with supportive STA-MCA bypass and ICA ligation does not adversely affect postoperative cognitive function.
Wei, Zhenglun Alan; Trusty, Phillip M; Tree, Mike; Haggerty, Christopher M; Tang, Elaine; Fogel, Mark; Yoganathan, Ajit P
2017-01-04
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cytobank: providing an analytics platform for community cytometry data analysis and collaboration.
Chen, Tiffany J; Kotecha, Nikesh
2014-01-01
Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.
Moreno, Jaime Hernán Rodríguez; Romero Vergara, Antonio José; De Moya, Danilo De Jesús De Alba; Jaramillo Rojas, Hernán Javier; Díaz Rojas, Claudia Milena; Ciapponi, Agustín
2017-05-25
Determine the acceptability, perceived usefulness, and adoption of implementation tools and technical assistance provided by the Health Technology Assessment Institute (IETS) in hospitals in two regions of Colombia. Assistance was provided for implementation of clinical practice guidelines (CPGs) in 24 hospitals (17 in Antioquia and seven in Cundinamarca) in areas with high prevalence of sexually transmitted infections, and for use of the implementation tools. Health professionals were given surveys and medical specialists were interviewed. Overall, 86% of respondents are familiar with the GPGs, 86% with the tracer recommendations, 79% with the interactive flow charts, and 82% with the evidence sheets, while 41% never used the implementation tools. Of the respondents who used the tools, 55% did so on their work computer, while 24% used their personal telephone. The most useful tools were the evidence sheets and flow charts (98%) and the tracer recommendations (92%). The least useful were the budgetary impact tools (81%). The implementation tools and technical assistance provided in hospitals in two regions of Colombia are perceived as useful and acceptable, although the degree of implementation is low. The findings of this research will help the different actors, such as the Ministry of Health and Social Protection, the IETS, and the Administrative Department of Science, Technology and Innovation (Colciencias), among others, improve their programs for the implementation of clinical practice guidelines.
Rademakers, Kevin; Drake, Marcus J; Gammie, Andrew; Djurhuus, Jens C; Rosier, Peter F W M; Abrams, Paul; Harding, Christopher
2017-04-01
The diagnosis of bladder outlet obstruction (BOO) in the male is dependent on measurements of pressure and flow made during urodynamic studies. The procedure of urodynamics and the indices used to delineate BOO are well standardized largely as a result of the work of the International Continence Society. The clinical utility of the diagnosis of BOO is however, less well defined and there are several shortcomings and gaps in the currently available medical literature. Consequently the International Consultation on Incontinence Research Society (ICI-RS) held a think tank session in 2015 entitled "Male bladder outlet obstruction: Time to re-evaluate the definition and reconsider our diagnostic pathway?" This manuscript details the discussions that took place within that think tank setting out the pros and cons of the current definition of BOO and exploring alternative clinical tests (alone or in combination) which may be useful in the future investigation of male patients with lower urinary tract symptoms. The think tank panel concluded that pressure-flow studies remain the diagnostic gold-standard for BOO although there is still a lack of high quality evidence. Newer, less invasive, investigations have shown promise in terms of diagnostic accuracy for BOO but similar criticisms can be levelled against these tests. Therefore, the think tank suggests further research with regard to these alternative indicators to determine their clinical utility. © 2017 Wiley Periodicals, Inc.
Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.
2013-01-01
We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.
2000-01-01
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.
Layout and flow of dermatology clinics: principles from operations management.
Wang, Jordan V
2018-04-15
Dermatology is a medical specialty that experiences high patient demand and long patient wait times. Dermatology clinics should look for ways to improve efficiency through the incorporation of principles from operations management. Addressing the layout and flow of a clinic can lead to operational efficiency. An ideal layout may lead to increased patient volume, satisfaction, and retention.
Bringsén, Asa; Ejlertsson, Göran; Andersson, Ingemar H
2011-02-02
Nursing is a constant balance between strain and stimulation and work and health research with a positive reference point has been recommended. A health-promoting circumstance for subjective experience is flow, which is a psychological state, when individuals concurrently experience happiness, motivation and cognitive efficiency. Flow situations can be identified through individuals' estimates of perceived challenge and skills. There is, to the best of our knowledge, no published study of flow among health care staff. The aim of this study was to identify flow-situations and study work-related activities and individual factors associated with flow situations, during everyday practice at a medical emergency ward in Sweden, in order to increase the knowledge on salutogenic health-promoting factors. The respondents consisted of 17 assistant nurses and 14 registered nurses, who randomly and repeatedly answered a small questionnaire, through an experience sampling method, during everyday nursing practice. The study resulted in 497 observations. Flow situations were defined as an exact match between a high challenge and skill estimation and logistic regression models were used to study different variables association to flow situations. The health care staff spent most of its working time in individual nursing care and administrative and communicative duties. The assistant nurses were more often occupied in individual nursing care, while the registered nurses were more involved in medical care and administrative and communicative duties. The study resulted in 11.5% observations of flow situations but the relative number of flow situations varied between none to 55% among the participants. Flow situations were positively related to medical care activities and individual cognitive resources. Taking a break was also positively associated with flow situations among the assistant nurses. The result showed opportunities for work-related interventions, with an adherent increase in flow situations, opportunity for experience of flow and work-related health among the nursing staff in general and among the assistant nurses in particular.
Hewlin, Rodward L; Kizito, John P
2018-03-01
The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques. The experimental and digital arterial models used in the present study are the first 3-D systems reported in literature to incorporate the major arterial vessels that deliver blood from the heart to the cranial and femoral arteries. These models are also the first reported in literature to be used for flow parameter assessment via medical drug delivery and orthostatic postural change studies. The present work addresses the design of the experimental and digital arterial model in addition to the design of measuring tools used to measure hemodynamic parameters. The experimental and digital arterial model analyzed in the present study was developed from patient specific computed tomography angiography (CTA) scans and simplified geometric data. Segments such as the aorta (ascending and descending) and carotid bifurcation arteries of the experimental and digital arterial model was created from online available patient-specific CTA scan data provided by Charite' Clinical and Research Hospital. The cranial and coronary arteries were simplified arterial geometries developed from dimensional specification data used in previous work. For the patient specific geometries, a MATLAB code was written to upload the CTA scans of each artery, calculate the centroids, and produce surface splines at each discrete cross section along the lumen centerline to create the patient specific arterial geometries. The MATLAB code worked in conjunction with computer aided software (CAD) Solidworks to produce solid models of the patient specific geometries and united them with the simplified geometries to produce the full arterial model (CAD model). The CAD model was also used as a blueprint to fabricate the experimental model which was used for flow visualization via particle imaging velocimetry (PIV) and postural change studies. A custom pulse duplicator (pulsatile pump) was also designed and developed for the present work. The pulse duplicator is capable of producing patient-specific volumetric waveforms for inlet flow to the experimental arterial model. A simple fluid structure interaction (FSI) study was also conducted via optical techniques to establish the magnitude of vessel diameter change due to the pulsatile flow. A medical drug delivery (dye dispersion and tracing) case was simulated via a dye being dispersed into the pulsatile flow stream to measure the transit time of the dye front. Pressure waveforms for diseased cases (hypertension & stenotic cases) were also obtained from the experimental arterial model during postural changes from bedrest (0°) to upright position (90°). The postural changes were simulated via attaching the experimental model to a tile table the can transition from 0° to 90°. The PIV results obtained from the experimental model provided parametric data such as velocity and wall shear stress data. The medical drug delivery simulations (experimental and numerical) studies produce time dependent data which is useful for predicting flow trajectory and transit time of medical drug dispersion. In the case of postural change studies, pressure waveforms were obtained from the common carotid artery and the femoral sections to yield pressure difference data useful for orthostatic hypotension analysis. Flow parametric data such as vorticity (flow reversal), wall shear stress, normal stress, and medical drug transit data was also obtained from the digital arterial model CFD simulations. Although the present work is preliminary work, the experimental and digital models proves to be useful in providing flow parametric data of interest such as: (1) normal stress which is useful for predicting the magnitude of forces which could promote arterial rupture or dislodging of medical implants, (2) wall shear stress which is useful for analyzing the magnitude of drug transport at the arterial wall, (3) vorticity which is useful for predicting the magnitude of flow reversal, and (4) arterial compliance in the case of the experimental model which could be useful in the efforts of developing FSI numerical simulations that incorporates compliance which realistically models the flow in the arterial system.
Ngiam, Jinghao Nicholas; Tan, Benjamin Yong-Qiang; Sia, Ching-Hui; Lee, Glenn K M; Kong, William K F; Chan, Yiong-Huak; Poh, Kian-Keong
2017-05-01
In severe aortic stenosis (AS), deterioration of left ventricular ejection fraction (LVEF) to <50% is an AHA/ACC class I indication for valve replacement, regardless of symptoms. Controversy surrounds prognosis of low-flow AS compared to normal-flow, and no study has examined LVEF deterioration. We compared factors associated with LVEF deterioration (to <50%) and clinical outcomes. Consecutive subjects with low-flow (stroke volume index <35 mL/m 2 , n=56) and normal-flow (n=72) severe AS (aortic valve area <1 cm 2 ) with preserved LVEF (>50%) and with paired echocardiography were studied. Univariate and multivariate analyses identified factors associated with LVEF deterioration. Clinical outcomes were determined on follow-up for more than 5 years. Significant LVEF deterioration (to <50%) was seen in 18% of low-flow (initial LVEF 63±8% to 32±9%) and 18% of normal-flow AS (61±7% to 31±12%). Independent factors in low-flow AS were hypertension (OR: 30.7, 95% CI: 2.0-467.6, P=.014) and higher end-systolic wall stress (OR: 1.086, 95% CI: 1.022-1.153, P=.008), compared to normal-flow, which were hypertension (OR: 15.9, 95% CI: 3.1-81.9, P=.001), higher septal E/E' ratio (OR: 1.16, 95% CI: 1.01-1.35, P=.043), lower septal S' velocity (OR: 0.204, 95% CI: 0.061-0.682, P=.010), and higher end-systolic wall stress (OR: 1.051, 95% CI: 1.001-1.104, P=.047). Overall, a third of the cohort experienced MACE, regardless of flow (log-rank 0.048, P=.827). However, aortic valve replacement (AVR) rates were lower in low-flow AS (20% vs 43%, P=.005). Low-flow AS despite normal LVEF appears similar to normal-flow in terms of LVEF deterioration and clinical outcomes in our Asian population. AVR rate was lower even though low-flow may not reflect less severe disease. © 2017, Wiley Periodicals, Inc.
Berry, Colin; Corcoran, David; Hennigan, Barry; Watkins, Stuart; Layland, Jamie; Oldroyd, Keith G.
2015-01-01
Coronary artery disease (CAD) is a leading global cause of morbidity and mortality, and improvements in the diagnosis and treatment of CAD can reduce the health and economic burden of this condition. Fractional flow reserve (FFR) is an evidence-based diagnostic test of the physiological significance of a coronary artery stenosis. Fractional flow reserve is a pressure-derived index of the maximal achievable myocardial blood flow in the presence of an epicardial coronary stenosis as a ratio to maximum achievable flow if that artery were normal. When compared with standard angiography-guided management, FFR disclosure is impactful on the decision for revascularization and clinical outcomes. In this article, we review recent developments with FFR in patients with stable CAD and recent myocardial infarction. Specifically, we review novel developments in our understanding of CAD pathophysiology, diagnostic applications, prognostic studies, clinical trials, and clinical guidelines. PMID:26038588
He, Shan; Botkin, Jeffrey R; Hurdle, John F
2015-02-01
The clinical research landscape has changed dramatically in recent years in terms of both volume and complexity. This poses new challenges for Institutional Review Boards' (IRBs) review efficiency and quality, especially at large academic medical centers. This article discusses the technical facets of IRB modernization. We analyzed the information technology used by IRBs in large academic institutions across the United States. We found that large academic medical centers have a high electronic IRB adoption rate; however, the capabilities of electronic IRB systems vary greatly. We discuss potential use-cases of a fully exploited electronic IRB system that promise to streamline the clinical research work flow. The key to that approach utilizes a structured and standardized information model for the IRB application. © The Author(s) 2014.
Hydrocarbon fluid, ejector refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less
RchyOptimyx: Cellular Hierarchy Optimization for Flow Cytometry
Aghaeepour, Nima; Jalali, Adrin; O’Neill, Kieran; Chattopadhyay, Pratip K.; Roederer, Mario; Hoos, Holger H.; Brinkman, Ryan R.
2013-01-01
Analysis of high-dimensional flow cytometry datasets can reveal novel cell populations with poorly understood biology. Following discovery, characterization of these populations in terms of the critical markers involved is an important step, as this can help to both better understand the biology of these populations and aid in designing simpler marker panels to identify them on simpler instruments and with fewer reagents (i.e., in resource poor or highly regulated clinical settings). However, current tools to design panels based on the biological characteristics of the target cell populations work exclusively based on technical parameters (e.g., instrument configurations, spectral overlap, and reagent availability). To address this shortcoming, we developed RchyOptimyx (cellular hieraRCHY OPTIMization), a computational tool that constructs cellular hierarchies by combining automated gating with dynamic programming and graph theory to provide the best gating strategies to identify a target population to a desired level of purity or correlation with a clinical outcome, using the simplest possible marker panels. RchyOptimyx can assess and graphically present the trade-offs between marker choice and population specificity in high-dimensional flow or mass cytometry datasets. We present three proof-of-concept use cases for RchyOptimyx that involve 1) designing a panel of surface markers for identification of rare populations that are primarily characterized using their intracellular signature; 2) simplifying the gating strategy for identification of a target cell population; 3) identification of a non-redundant marker set to identify a target cell population. PMID:23044634
In vitro performance and principles of anti-siphoning devices.
Freimann, Florian Baptist; Kimura, Takaoki; Stockhammer, Florian; Schulz, Matthias; Rohde, Veit; Thomale, Ulrich-Wilhelm
2014-11-01
Anti-siphon devices (ASDs) of various working principles were developed to overcome overdrainage-related complications associated with ventriculoperitoneal shunting. We aimed to provide comparative data on the pressure and flow characteristics of six different types of ASDs (gravity-assisted, membrane-controlled, and flow-regulated) in order to achieve a better understanding of these devices and their potential clinical application. We analyzed three gravity-dependent ASDs (ShuntAssistant [SA], Miethke; Gravity Compensating Accessory [GCA], Integra; SiphonX [SX], Sophysa), two membrane-controlled ASDs (Anti-Siphon Device [IASD], Integra; Delta Chamber [DC], Medtronic), and one flow-regulated ASD (SiphonGuard [SG], Codman). Defined pressure conditions within a simulated shunt system were generated (differential pressure 10-80 cmH2O), and the specific flow and pressure characteristics were measured. In addition, the gravity-dependent ASDs were measured in defined spatial positions (0-90°). The flow characteristics of the three gravity-assisted ASDs were largely dependent upon differential pressure and on their spatial position. All three devices were able to reduce the siphoning effect, but each to a different extent (flow at inflow pressure: 10 cmH2O, siphoning -20 cmH2O at 0°/90°: SA, 7.1 ± 1.2*/2.3 ± 0.5* ml/min; GCA, 10.5 ± 0.8/3.4 ± 0.4* ml/min; SX, 9.5 ± 1.2*/4.7 ± 1.9* ml/min, compared to control, 11.1 ± 0.4 ml/min [*p < 0.05]). The flow characteristics of the remaining ASDs were primarily dependent upon the inflow pressure effect (flow at 10 cmH2O, siphoning 0 cmH2O/ siphoning -20cmH2O: DC, 2.6 ± 0.1/ 4 ± 0.3* ml/min; IASD, 2.5 ± 0.2/ 0.8 ± 0.4* ml/min; SG, 0.8 ± 0.2*/ 0.2 ± 0.1* ml/min [*p < 0.05 vs. control, respectively]). The tested ASDs were able to control the siphoning effect within a simulated shunt system to differing degrees. Future comparative trials are needed to determine the type of device that is superior for clinical application.
Accurate motion parameter estimation for colonoscopy tracking using a regression method
NASA Astrophysics Data System (ADS)
Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.
2010-03-01
Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.
Hoofnagle, Andrew N; Whiteaker, Jeffrey R; Carr, Steven A; Kuhn, Eric; Liu, Tao; Massoni, Sam A; Thomas, Stefani N; Townsend, R Reid; Zimmerman, Lisa J; Boja, Emily; Chen, Jing; Crimmins, Daniel L; Davies, Sherri R; Gao, Yuqian; Hiltke, Tara R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Meyer, Matthew R; Qian, Wei-Jun; Schoenherr, Regine M; Scott, Mitchell G; Shi, Tujin; Whiteley, Gordon R; Wrobel, John A; Wu, Chaochao; Ackermann, Brad L; Aebersold, Ruedi; Barnidge, David R; Bunk, David M; Clarke, Nigel; Fishman, Jordan B; Grant, Russ P; Kusebauch, Ulrike; Kushnir, Mark M; Lowenthal, Mark S; Moritz, Robert L; Neubert, Hendrik; Patterson, Scott D; Rockwood, Alan L; Rogers, John; Singh, Ravinder J; Van Eyk, Jennifer E; Wong, Steven H; Zhang, Shucha; Chan, Daniel W; Chen, Xian; Ellis, Matthew J; Liebler, Daniel C; Rodland, Karin D; Rodriguez, Henry; Smith, Richard D; Zhang, Zhen; Zhang, Hui; Paulovich, Amanda G
2016-01-01
For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care. © 2015 American Association for Clinical Chemistry.
Luzzi, R; Belcaro, G; Hu, S; Dugall, M; Hosoi, M; Cacchio, M; Ippolito, E; Corsi, M
2014-06-01
The aim of this supplement registry was to evaluate the efficacy of the Pycnogenol® in improving cochlear flow and symptoms in a 6-month follow-up for patients with Meniere's disease (MD), tinnitus and cochlear hypoperfusion. Main signs/symptoms were considered: Spontaneous vertigo, positional vertigo, hearing loss, tinnitus, pressure in the ear, unsteady gait, associated clinical problems, alterations in daily life. All subjects were managed with the best available management (BM); one group used the supplement Pycnogenol (150 mg/day). Cochlear flow and tinnitus were also evaluated. Out of 120 patients incuded in the registry, 55 used Pycnogenol and 52 (controls) were managed only with BM. There was a more significant improvement in all registry items at 3 and 6 months in the Pycnogenol group (P<0.05). The number of lost working days was lower in the Pycnogenol group. At 3 months, 45.4% of subjects using Pycnogenol were completely asymptomatic in comparison with 23.07% of controls. At 6 months 87.3% of the Pycnogenol subjects were asymptomatic compared with 34.6% of controls. Cochlear flow velocity was significantly better (higher flow, higher diastolic component) in the Pycnogenol group (P<0.05). The subjective tinnitus scale decreased in both groups (P<0.05); the decrease was more significant in Pycnogenol subjects (P<0.05) at 3 and 6 months. Symptoms of Meniere's disease, flow at cochlear level and tinnitus improved in Pycnogenol subjects in comparison with best management.
System Design Verification for Closed Loop Control of Oxygenation With Concentrator Integration.
Gangidine, Matthew M; Blakeman, Thomas C; Branson, Richard D; Johannigman, Jay A
2016-05-01
Addition of an oxygen concentrator into a control loop furthers previous work in autonomous control of oxygenation. Software integrates concentrator and ventilator function from a single control point, ensuring maximum efficiency by placing a pulse of oxygen at the beginning of the breath. We sought to verify this system. In a test lung, fraction of inspired oxygen (FIO2) levels and additional data were monitored. Tests were run across a range of clinically relevant ventilator settings in volume control mode, for both continuous flow and pulse dose flow oxygenation. Results showed the oxygen concentrator could maintain maximum pulse output (192 mL) up to 16 breaths per minute. Functionality was verified across ranges of tidal volumes and respiratory rates, with and without positive end-expiratory pressure, in continuous flow and pulse dose modes. For a representative test at respiratory rate 16 breaths per minute, tidal volume 550 mL, without positive end-expiratory pressure, pulse dose oxygenation delivered peak FIO2 of 76.83 ± 1.41%, and continuous flow 47.81 ± 0.08%; pulse dose flow provided a higher FIO2 at all tested setting combinations compared to continuous flow (p < 0.001). These tests verify a system that provides closed loop control of oxygenation while integrating time-coordinated pulse-doses from an oxygen concentrator. This allows the most efficient use of resources in austere environments. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Electroosmotic Mixing in Nanochannels
NASA Astrophysics Data System (ADS)
Conlisk, A. T.; Chen, Lei
2004-11-01
Electroosmotic flow in nanochannels is characterized by low Reynolds number in which flow mixing is difficult because of the dominance of molecular diffusion. Previous work shows that heterogenerous surface potential could generate a circulation region within the bulk flow near the surface. But all of this work requires that the ionic species be pairs of ions of equal and opposite valence and the distribution of ions is not considered. In the present work the electroosmotic flow in a rectangular channel with non-uniform zeta potential is examined. A model for the two dimensional electroosmotic flow problem is established. The distributions of potential, velocity and mole fractions are calculated numerically. Vortex formation is observed within the bulk flow near the the region of non-uniform zeta potential which suggests mixing can be induced.
Traffic flow characteristic and capacity in intelligent work zones.
DOT National Transportation Integrated Search
2009-10-15
Intellgent transportation system (ITS) technologies are utilized to manage traffic flow and safety in : highway work zones. Traffic management plans for work zones require queuing analyses to determine : the anticipated traffic backups, but the predi...
Simulations of the flow past a cylinder using an unsteady double wake model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-García, N.; Sarlak, H.; Andersen, S. J.
2016-06-08
In the present work, the in-house UnSteady Double Wake Model (USDWM) is used to simulate flows past a cylinder at subcritical, supercritical, and transcritical Reynolds numbers. The flow model is a two-dimensional panel method which uses the unsteady double wake technique to model flow separation and its dynamics. In the present work the separation location is obtained from experimental data and fixed in time. The highly unsteady flow field behind the cylinder is analyzed in detail, comparing the vortex shedding charactericts under the different flow conditions.
Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Gunawan
The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. Thismore » paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.« less
Quality control management and communication between radiologists and technologists.
Nagy, Paul G; Pierce, Benjamin; Otto, Misty; Safdar, Nabile M
2008-06-01
The greatest barrier to quality control (QC) in the digital imaging environment is the lack of communication and documentation between those who interpret images and those who acquire them. Paper-based QC methods are insufficient in a digital image management system. Problem work flow must be incorporated into reengineering efforts when migrating to a digital practice. The authors implemented a Web-based QC feedback tool to document and facilitate the communication of issues identified by radiologists. The goal was to promote a responsive and constructive tool that contributes to a culture of quality. The hypothesis was that by making it easier for radiologists to submit quality issues, the number of QC issues submitted would increase. The authors integrated their Web-based quality tracking system with a clinical picture archiving and communication system so that radiologists could report quality issues without disrupting clinical work flow. Graphical dashboarding techniques aid supervisors in using this database to identify the root causes of different types of issues. Over the initial 12-month rollout period, starting in the general section, the authors recorded 20 times more QC issues submitted by radiologists, accompanied by a rise in technologists' responsiveness to QC issues. For technologists with high numbers of QC issues, the incorporation of data from this tracking system proved useful in performance appraisals and in driving individual improvement. This tool is an example of the types of information technology innovations that can be leveraged to support QC in the digital imaging environment. Initial data suggest that the result is not only an improvement in quality but higher levels of satisfaction for both radiologists and technologists.
Optical tweezers for measuring the interaction of the two single red blood cells in flow condition
NASA Astrophysics Data System (ADS)
Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander
2017-03-01
Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)
Clinical learning environments: place, artefacts and rhythm.
Sheehan, Dale; Jowsey, Tanisha; Parwaiz, Mariam; Birch, Mark; Seaton, Philippa; Shaw, Susan; Duggan, Alison; Wilkinson, Tim
2017-10-01
Health care practitioners learn through experience in clinical environments in which supervision is a key component, but how that learning occurs outside the supervision relationship remains largely unknown. This study explores the environmental factors that inform and support workplace learning within a clinical environment. An observational study drawing on ethnographic methods was undertaken in a general medicine ward. Observers paid attention to interactions among staff members that involved potential teaching and learning moments that occurred and were visible in the course of routine work. General purpose thematic analysis of field notes was undertaken. A total of 376 observations were undertaken and documented. The findings suggest that place (location of interaction), rhythm (regularity of activities occurring in the ward) and artefacts (objects and equipment) were strong influences on the interactions and exchanges that occurred. Each of these themes had inherent tensions that could promote or inhibit engagement and therefore learning opportunities. Although many learning opportunities were available, not all were taken up or recognised by the participants. We describe and make explicit how the natural environment of a medical ward and flow of work through patient care contribute to the learning architecture, and how this creates or inhibits opportunities for learning. Awareness of learning opportunities was often tacit and not explicit for either supervisor or learner. We identify strategies through which tensions inherent within space, artefacts and the rhythms of work can be resolved and learning opportunities maximised. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Mobile task management tool that improves workflow of an acute general surgical service.
Foo, Elizabeth; McDonald, Rod; Savage, Earle; Floyd, Richard; Butler, Anthony; Rumball-Smith, Alistair; Connor, Saxon
2015-10-01
Understanding and being able to measure constraints within a health system is crucial if outcomes are to be improved. Current systems lack the ability to capture decision making with regard to tasks performed within a patient journey. The aim of this study was to assess the impact of a mobile task management tool on clinical workflow within an acute general surgical service by analysing data capture and usability of the application tool. The Cortex iOS application was developed to digitize patient flow and provide real-time visibility over clinical decision making and task performance. Study outcomes measured were workflow data capture for patient and staff events. Usability was assessed using an electronic survey. There were 449 unique patient journeys tracked with a total of 3072 patient events recorded. The results repository was accessed 7792 times. The participants reported that the application sped up decision making, reduced redundancy of work and improved team communication. The mode of the estimated time the application saved participants was 5-9 min/h of work. Of the 14 respondents, nine discarded their analogue methods of tracking tasks by the end of the study period. The introduction of a mobile task management system improved the working efficiency of junior clinical staff. The application allowed capture of data not previously available to hospital systems. In the future, such data will contribute to the accurate mapping of patient journeys through the health system. © 2015 Royal Australasian College of Surgeons.
A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.
Tian, Heqiang; Wang, Chenchen; Dang, Xiaoqing; Sun, Lining
2017-12-01
Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.
A feeling of flow: exploring junior scientists' experiences with dictation of scientific articles.
Spanager, Lene; Danielsen, Anne Kjaergaard; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob
2013-08-10
Science involves publishing results, but many scientists do not master this. We introduced dictation as a method of producing a manuscript draft, participating in writing teams and attending a writing retreat to junior scientists in our department. This study aimed to explore the scientists' experiences with this process. Four focus group interviews were conducted and comprised all participating scientists (n = 14). Each transcript was transcribed verbatim and coded independently by two interviewers. The coding structure was discussed until consensus and from this the emergent themes were identified. Participants were 7 PhD students, 5 scholarship students and 2 clinical research nurses. Three main themes were identified: 'Preparing and then letting go' indicated that dictating worked best when properly prepared. 'The big dictation machine' described benefits of writing teams when junior scientists got feedback on both content and structure of their papers. 'Barriers to and drivers for participation' described flow-like states that participants experienced during the dictation. Motivation and a high level of preparation were pivotal to be able to dictate a full article in one day. The descriptions of flow-like states seemed analogous to the theoretical model of flow which is interesting, as flow is usually deemed a state reserved to skilled experts. Our findings suggest that other academic groups might benefit from using the concept including dictation of manuscripts to encourage participants' confidence in their writing skills.
Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider.
Zhang, ZhiGuo; Fan, YuBo; Deng, XiaoYan; Wang, GuiXue; Zhang, He; Guidoin, Robert
2008-10-01
Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the velocity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.
A new framing approach in guideline development to manage different sources of knowledge.
Lukersmith, Sue; Hopman, Katherine; Vine, Kristina; Krahe, Lee; McColl, Alexander
2017-02-01
Contemporary guideline methodology struggles to consider context and information from different sources of knowledge besides quantitative research. Return to work programmes involve multiple components and stakeholders. If the guideline is to be relevant and practical for a complex intervention such as return to work, it is essential to use broad sources of knowledge. This paper reports on a new method in guideline development to manage different sources of knowledge. The method used framing for the return-to-work guidance within the Clinical Practice Guidelines for the Management of Rotator Cuff Syndrome in the Workplace. The development involved was a multi-disciplinary working party of experts including consumers. The researchers considered a broad range of research, expert (practice and experience) knowledge, the individual's and workplace contexts, and used framing with the International Classification of Functioning, Disability and Health. Following a systematic database search on four clinical questions, there were seven stages of knowledge management to extract, unpack, map and pack information to the ICF domains framework. Companion graded recommendations were developed. The results include practical examples, user and consumer guides, flow charts and six graded or consensus recommendations on best practice for return to work intervention. Our findings suggest using framing in guideline methodology with internationally accepted frames such as the ICF is a reliable and transparent framework to manage different sources of knowledge. Future research might examine other examples and methods for managing complexity and using different sources of knowledge in guideline development. © 2016 John Wiley & Sons, Ltd.
A Novel Macroscale Acoustic Device for Blood Filtration.
Dutra, Brian; Carmen Mora, Maria; Gerhardson, Tyler I; Sporbert, Brianna; Dufresne, Alexandre; Bittner, Katharine R; Lovewell, Carolanne; Rust, Michael J; Tirabassi, Michael V; Masi, Louis; Lipkens, Bart; Kennedy, Daniel R
2018-03-01
Retransfusion of a patient's own shed blood during cardiac surgery is attractive since it reduces the need for allogeneic transfusion, minimizes cost, and decreases transfusion related morbidity. Evidence suggests that lipid micro-emboli associated with the retransfusion of the shed blood are the predominant causes of the neurocognitive disorders. We have developed a novel acoustophoretic filtration system that can remove lipids from blood at clinically relevant flow rates. Unlike other acoustophoretic separation systems, this ultrasound technology works at the macroscale, and is therefore able to process larger flow rates than typical micro-electromechanical system (MEMS) scale acoustophoretic separation devices. In this work, we have first demonstrated the systematic design of the acoustic device and its optimization, followed by examining the feasibility of the device to filter lipids from the system. Then, we demonstrate the effects of the acoustic waves on the shed blood; examining hemolysis using both haptoglobin formation and lactate dehydrogenase release, as well as the potential of platelet aggregation or inflammatory cascade activation. Finally, in a porcine surgical model, we determined the potential viability of acoustic trapping as a blood filtration technology, as the animal responded to redelivered blood by increasing both systemic and mean arterial blood pressure.
The effect of resting blood flow occlusion on exercise tolerance and W'.
Broxterman, Ryan M; Craig, Jesse C; Ade, Carl J; Wilcox, Samuel L; Barstow, Thomas J
2015-09-15
It has previously been postulated that the anaerobic work capacity (W') may be utilized during resting blood flow occlusion in the absence of mechanical work. We tested the hypothesis that W' would not be utilized during an initial range of time following the onset of resting blood flow occlusion, after which W' would be utilized progressively more. Seven men completed blood flow occlusion constant power severe intensity handgrip exercise to task failure following 0, 300, 600, 900, and 1,200 s of resting blood flow occlusion. The work performed above critical power (CP) was not significantly different between the 0-, 300-, and 600-s conditions and was not significantly different from the total W' available. Significantly less work was performed above CP during the 1,200-s condition than the 900-s condition (P < 0.05), while both conditions were significantly less than the 0-, 300-, and 600-s conditions (P < 0.05). The work performed above CP during these conditions was significantly less than the total W' available (P < 0.05). The utilization of W' during resting blood flow occlusion did not begin until 751 ± 118 s, after which time W' was progressively utilized. The current findings demonstrate that W' is not utilized during the initial ∼751 s of resting blood flow occlusion, but is progressively utilized thereafter, despite no mechanical work being performed. Thus, the utilization of W' is not exclusive to exercise, and a constant amount of work that can be performed above CP is not the determining mechanism of W'. Copyright © 2015 the American Physiological Society.
Liu, Guang-Mao; Jin, Dong-Hai; Jiang, Xi-Hang; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Hu, Sheng-Shou; Gui, Xing-Min
The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.
A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid
NASA Astrophysics Data System (ADS)
Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya
A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a 'shield' mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. The seal was perfect against a pressure of 150 mmHg in a continuous flow of 4.0 L/min for 275 days and against a pressure of 175 mmHg in a continuous flow of 3.9 L/min for 217 days. We have developed a MF seal that works in liquid against pressure mostly used clinically. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
CytometryML with DICOM and FCS
NASA Astrophysics Data System (ADS)
Leif, Robert C.
2018-02-01
Abstract: Flow Cytometry Standard, FCS, and Digital Imaging and Communications in Medicine standard, DICOM, are based on extensive, superb domain knowledge, However, they are isolated systems, do not take advantage of data structures, require special programs to read and write the data, lack the capability to interoperate or work with other standards and FCS lacks many of the datatypes necessary for clinical laboratory data. The large overlap between imaging and flow cytometry provides strong evidence that both modalities should be covered by the same standard. Method: The XML Schema Definition Language, XSD 1.1 was used to translate FCS and/or DICOM objects. A MIFlowCyt file was tested with published values. Results: Previously, a significant part of an XML standard based upon a combination of FCS and DICOM has been implemented and validated with MIFlowCyt data. Strongly typed translations of FCS keywords have been constructed in XML. These keywords contain links to their DICOM and FCS equivalents.
Jamiolkowski, Megan A.; Pedersen, Drake D.; Wu, Wei-Tao; Antaki, James F.; Wagner, William R.
2016-01-01
The blood flow pathway within a device, together with the biomaterial surfaces and status of the patient’s blood, are well-recognized factors in the development of thrombotic deposition and subsequent embolization. Blood flow patterns are of particular concern for devices such as blood pumps (i.e. ventricular assist devices, VADs) where shearing forces can be high, volumes are relatively large, and the flow fields can be complex. However, few studies have examined the effect of geometric irregularities on thrombus formation on clinically relevant opaque materials under flow. The objective of this study was to quantify human platelet deposition onto Ti6Al4V alloys, as well as positive and negative control surfaces, in the region of defined crevices (~50–150 µm in width) that might be encountered in many VADs or other cardiovascular devices. To achieve this, reconstituted fresh human blood with hemoglobin-depleted red blood cells (to achieve optical clarity while maintaining relevant rheology), long working optics, and a custom designed parallel plate flow chamber were employed. The results showed that the least amount of platelet deposition occurred in the largest crevice size examined, which was counterintuitive. The greatest levels of deposition occurred in the 90 µm and 53 µm crevices at the lower wall shear rate. The results suggest that while crevices may be unavoidable in device manufacturing, the crevice size might be tailored, depending on the flow conditions, to reduce the risk of thromboembolic events. Further, these data might be used to improve the accuracy of predictive models of thrombotic deposition in cardiovascular devices to help optimize the blood flow path and reduce device thrombogenicity. PMID:27156141
Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto
2018-02-08
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling Flow Past a Tilted Vena Cava Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M A; Wang, S L
Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside amore » model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.« less
Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S
2012-01-10
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.
Min, James K; Taylor, Charles A; Achenbach, Stephan; Koo, Bon Kwon; Leipsic, Jonathon; Nørgaard, Bjarne L; Pijls, Nico J; De Bruyne, Bernard
2015-10-01
Fractional flow reserve derived from coronary computed tomography angiography enables noninvasive assessment of the hemodynamic significance of coronary artery lesions and coupling of the anatomic severity of a coronary stenosis with its physiological effects. Since its initial demonstration of feasibility of use in humans in 2011, a significant body of clinical evidence has developed to evaluate the diagnostic performance of coronary computed tomography angiography-derived fractional flow reserve compared with an invasive fractional flow reserve reference standard. The purpose of this paper was to describe the scientific principles and to review the clinical data of this technology recently approved by the U.S. Food and Drug Administration. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Multispectral imaging approach for simplified non-invasive in-vivo evaluation of gingival erythema
NASA Astrophysics Data System (ADS)
Eckhard, Timo; Valero, Eva M.; Nieves, Juan L.; Gallegos-Rueda, José M.; Mesa, Francisco
2012-03-01
Erythema is a common visual sign of gingivitis. In this work, a new and simple low-cost image capture and analysis method for erythema assessment is proposed. The method is based on digital still images of gingivae and applied on a pixel-by-pixel basis. Multispectral images are acquired with a conventional digital camera and multiplexed LED illumination panels at 460nm and 630nm peak wavelength. An automatic work-flow segments teeth from gingiva regions in the images and creates a map of local blood oxygenation levels, which relates to the presence of erythema. The map is computed from the ratio of the two spectral images. An advantage of the proposed approach is that the whole process is easy to manage by dental health care professionals in clinical environment.
Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A
2014-07-01
X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.
Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua
2014-01-01
Purpose. This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. Methods. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. Results. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. Conclusions. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. PMID:24876284
Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua
2014-05-29
This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Benítez, Francisco Moreno; Camacho, Antonio Letrán; del Cuvillo Bernal, Alfonso; de Medina, Pedro Lobatón Sánchez; García Cózar, Francisco J; Romeu, Marisa Espinazo
2014-01-01
There is an increase in the incidence of pollen related allergy, thus information on pollen schedules would be a great asset for physicians to improve the clinical care of patients. Like cypress pollen sensitization shows a high prevalence among the causes of allergic rhinitis, and therefore it is of interest to use it like a model of study, distinguishing cypress pollen, pollen count, and allergenic load level. In this work, we use a flow cytometry based technique to obtain both Cupressus arizonica pollen count and allergenic load, using specific rabbit polyclonal antibody Cup a1 and its comparison with optical microscopy technique measurement. Airborne samples were collected from Burkard Spore-Trap and Burkard Cyclone Cupressus arizonica pollen was studied using specific rabbit polyclonal antibody Cup a1, labeled with AlexaFluor(®) 488 or 750 and analysed by Flow Cytometry in both an EPICS XL and Cyan ADP cytometers (Beckman Coulter(®) ). Optical microscopy study was realized with a Leica optical microscope. Bland and Altman was used to determine agreement between both techniques measured. We can identify three different populations based on rabbit polyclonal antibody Cup a1 staining. The main region (44.5%) had 97.3% recognition, a second region (25%) with 28% and a third region (30.5%) with 68% respectively. Immunofluorescence and confocal microscopy showed that main region corresponds to whole pollen grains, the second region are pollen without exine and the third region is constituted by smaller particles with allergenic properties. Pollen schedule shows a higher correlation measured by optical microscopy and flow cytometry in the pollen count with a P-value: 0.0008 E(-2) and 0.0002 with regard to smaller particles, so the Bland and Altman measurement showed a good correlation between them, P-value: 0.0003. Determination of pollen count and allergenic load by flow cytometry represents an important tool in the determination of airborne respiratory allergens. We showed that not only whole pollen but also smaller particles could induce allergic sensitization. This is the first study where flow cytometry is used for calculating pollen counts and allergenic load. Copyright © 2013 Clinical Cytometry Society.
Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.
2011-01-01
Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328
rCBF-SPECT in brain infarction: When does it predict outcome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limburg, M.; van Royen, E.A.; Hijdra, A.
1991-03-01
We prospectively studied 26 patients with ischemic stroke within 24 hr, after 2 wk, and after 6 mo with thallium-201-diethyldithiocarbamate single-photon emission computed tomography (SPECT) and neurologic and functional assessments. The admission flow deficits correlated with outcome. The admission and 6-mo scores correlated with clinical conditions at each time. At 2 wk, the flow deficits were smaller and did not correlate with clinical parameters. Nor did the presence or absence of hyperfixation of the radiopharmaceutical. Six months after the infarct, the flow defect had decreased in 9 of 15 patients in whom three serial scans were available, with better clinicalmore » improvement than in the remaining six whose flow deficits increased. More patients in the first group had been treated randomly with the calcium-entry blocker flunarizine. SPECT imaging of rCBF within 24 hr after stroke correlates with clinical outcome and condition, whereas rCBF imaging at 2 wk after the stroke shows no clinical correlation.« less
Gewirtz, Henry
2017-12-01
This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.
Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui; Hu, Guohua
2017-01-01
Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation.
Automatic Emboli Detection System for the Artificial Heart
NASA Astrophysics Data System (ADS)
Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.
In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less
Flow accelerated organic coating degradation
NASA Astrophysics Data System (ADS)
Zhou, Qixin
Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as well as promotes the migration of coating materials from the coating into the working fluid, where coatings experience more severe deterioration in their barrier property under flowing conditions. Pure water has shown to be a much more aggressive working fluid than electrolyte solutions. The flowing fluid over the coating surface could be used as an effective acceleration method.
Chiu, Jeng-Jiann; Chien, Shu
2013-01-01
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions. PMID:21248169
Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E
2016-01-01
Introduction Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. Materials and methods A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. Results A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist’s work station (caused by a preference for microbiological testing prior to CSF chemistry). Conclusion A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction. PMID:27346964
2014-01-01
Background In the attempt to reduce waiting times in emergency departments, various national health services have used benchmarking and the optimisation of patient flows. The aim of this study was to examine staff attitudes and experience of providing emergency care following the introduction of a 4 hour wait target, focusing on clinical, organisational and spatial issues. Methods A qualitative research design was used and semi-structured interviews were conducted with 28 clinical, managerial and administrative staff members working in an inner-city emergency department. A thematic analysis method was employed and NVivo 8 qualitative data analysis software was used to code and manage the emerging themes. Results The wait target came to regulate the individual and collective timescales of healthcare work. It has compartmentalised the previous unitary network of emergency department clinicians and their workspace. It has also speeded up clinical performance and patient throughput. It has disturbed professional hierarchies and facilitated the development of new professional roles. A new clinical information system complemented these reconfigurations by supporting advanced patient tracking, better awareness of time, and continuous, real-time management of emergency department staff. The interviewees had concerns that this target-oriented way of working forces them to have a less personal relationship with their patients. Conclusions The imposition of a wait-target in response to a perceived “crisis” of patients’ dissatisfaction led to the development of a new and sophisticated way of working in the emergency department, but with deep and unintended consequences. We show that there is a dynamic interrelation of the social and the technical in the complex environment of the ED. While the 4 hour wait target raised the profile of the emergency department in the hospital, the added pressure on clinicians has caused some concerns over the future of their relationships with their patients and colleagues. To improve the sustainability of such sudden changes in policy direction, it is important to address clinicians’ experience and satisfaction. PMID:24927819
Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing
2016-01-01
Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.
[Postgraduate training program in laboratory medicine at a clinical teaching hospital].
Matsuo, Shuji
2003-04-01
The Tenri Hospital resident system was introduced in 1976 and the training program for laboratory medicine began in 1982. Thus, the author proposes goals for the the future on the basis of experience. It is appropriate that trainees study emergency tests, blood transfusion and microbiology(particularly Gram's stain and sputum culture) as practical matters, and in addition to these, learn how to reply to consultations from physicians, learn the laboratory flow(so-called laboratory system), and announce interpretations of laboratory data at reversed clinical pathological conference(R-CPC). The objectives of these training programs are to gain skills for appropriate laboratory utilization and interpretation, and develop communications and consultations with clinical pathologists and medical technologists. The key points of success in the training are close cooperation of the laboratory and teaching divisions. Particularly, cooperation with medical technologists is necessary, and it is essential medical practice for trainees because they will have to work with them in future. Finally it should be emphasized that there training has a limited effect because of the short duration. It is thus important to communicate and discuss clinical matters regularly in medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCafferty, Ian, E-mail: ian.mccafferty@uhb.nhs.uk
This review article aims to give an overview of the current state of imaging, patient selection, agents and techniques used in the management of low-flow vascular malformations. The review includes the current classifications for low-flow vascular malformations including the 2014 updates. Clinical presentation and assessment is covered with a detailed section on the common sclerosant agents used to treat low-flow vascular malformations, including dosing and common complications. Imaging is described with a guide to a simple stratification of the use of imaging for diagnosis and interventional techniques.
Eye-related pain induced by visually demanding computer work.
Thorud, Hanne-Mari Schiøtz; Helland, Magne; Aarås, Arne; Kvikstad, Tor Martin; Lindberg, Lars Göran; Horgen, Gunnar
2012-04-01
Eye strain during visually demanding computer work may include glare and increased squinting. The latter may be related to elevated tension in the orbicularis oculi muscle and development of muscle pain. The aim of the study was to investigate the development of discomfort symptoms in relation to muscle activity and muscle blood flow in the orbicularis oculi muscle during computer work with visual strain. A group of healthy young adults with normal vision was randomly selected. Eye-related symptoms were recorded during a 2-h working session on a laptop. The participants were exposed to visual stressors such as glare and small font. Muscle load and blood flow were measured by electromyography and photoplethysmography, respectively. During 2 h of visually demanding computer work, there was a significant increase in the following symptoms: eye-related pain and tiredness, blurred vision, itchiness, gritty eyes, photophobia, dry eyes, and tearing eyes. Muscle load in orbicularis oculi was significantly increased above baseline and stable at 1 to 1.5% maximal voluntary contraction during the working sessions. Orbicularis oculi muscle blood flow increased significantly during the first part of the working sessions before returning to baseline. There were significant positive correlations between eye-related tiredness and orbicularis oculi muscle load and eye-related pain and muscle blood flow. Subjects who developed eye-related pain showed elevated orbicularis oculi muscle blood flow during computer work, but no differences in muscle load, compared with subjects with minimal pain symptoms. Eyestrain during visually demanding computer work is related to the orbicularis oculi muscle. Muscle pain development during demanding, low-force exercise is associated with increased muscle blood flow, possible secondary to different muscle activity pattern, and/or increased mental stress level in subjects experiencing pain compared with subjects with minimal pain.
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
2007-01-01
the Hounsfield - unit ranges established by Gattinoni et al. [23] (air: hyperinflated, normal, poorly aerated, and non-aerated lung). The fraction of...T. J., Wolf S. E., 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Army...Abnormally low V/Q is ɘ.1 and abnormally high is V/Q > 10. Shunt is specified as blood flow in units with V/Q < 0.005 and dead space as ventilation
Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations
NASA Astrophysics Data System (ADS)
Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik
2017-02-01
The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.
Funds Flow in the Era of Value-Based Health Care.
Itri, Jason N; Mithqal, Ayman; Krishnaraj, Arun
2017-06-01
Health care reform is creating significant challenges for hospital systems and academic medical centers (AMCs), requiring a new operating model to adapt to declining reimbursement, diminishing research funding, market consolidation, payers' focus on higher quality and lower cost, and greater cost sharing by patients. Maintaining and promoting the triple mission of clinical care, research, and education will require AMCs to be system-based with strong alignment around governance, operations, clinical care, and finances. Funds flow is the primary mechanism whereby an AMC maintains the triple mission through alignment of the hospital, physician practices, school of medicine, undergraduate university, and other professional schools. The purpose of this article is to discuss challenges with current funds flow models, impact of funds flow on academic and private practice radiology groups, and strategies that can increase funds flow to support radiology practices achieving clinical, research, and teaching missions in the era of value-based health care. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
START: an advanced radiation therapy information system.
Cocco, A; Valentini, V; Balducci, M; Mantello, G
1996-01-01
START is an advanced radiation therapy information system (RTIS) which connects direct information technology present in the devices with indirect information technology for clinical, administrative, information management integrated with the hospital information system (HIS). The following objectives are pursued: to support decision making in treatment planning and functional and information integration with the rest of the hospital; to enhance organizational efficiency of a Radiation Therapy Department; to facilitate the statistical evaluation of clinical data and managerial performance assessment; to ensure the safety and confidentiality of used data. For its development a working method based on the involvement of all operators of the Radiation Therapy Department, was applied. Its introduction in the work activity was gradual, trying to reuse and integrate the existing information applications. The START information flow identifies four major phases: admission, visit of admission, planning, therapy. The system main functionalities available to the radiotherapist are: clinical history/medical report linking function; folder function; planning function; tracking function; electronic mail and banner function; statistical function; management function. Functions available to the radiotherapy technician are: the room daily list function; management function: to the nurse the following functions are available: patient directing function; management function. START is a departmental client (pc-windows)-server (unix) developed on an integrated database of all information of interest (clinical, organizational and administrative) coherent with the standard and with a modular architecture which can evolve with additional functionalities in subsequent times. For a more thorough evaluation of its impact on the daily activity of a radiation therapy facility, a prolonged clinical validation is in progress.
The Development of Patient Scheduling Groups for an Effective Appointment System
2016-01-01
Summary Background Patient access to care and long wait times has been identified as major problems in outpatient delivery systems. These aspects impact medical staff productivity, service quality, clinic efficiency, and health-care cost. Objectives This study proposed to redesign existing patient types into scheduling groups so that the total cost of clinic flow and scheduling flexibility was minimized. The optimal scheduling group aimed to improve clinic efficiency and accessibility. Methods The proposed approach used the simulation optimization technique and was demonstrated in a Primary Care physician clinic. Patient type included, emergency/urgent care (ER/UC), follow-up (FU), new patient (NP), office visit (OV), physical exam (PE), and well child care (WCC). One scheduling group was designed for this physician. The approach steps were to collect physician treatment time data for each patient type, form the possible scheduling groups, simulate daily clinic flow and patient appointment requests, calculate costs of clinic flow as well as appointment flexibility, and find the scheduling group that minimized the total cost. Results The cost of clinic flow was minimized at the scheduling group of four, an 8.3% reduction from the group of one. The four groups were: 1. WCC, 2. OV, 3. FU and ER/UC, and 4. PE and NP. The cost of flexibility was always minimized at the group of one. The total cost was minimized at the group of two. WCC was considered separate and the others were grouped together. The total cost reduction was 1.3% from the group of one. Conclusions This study provided an alternative method of redesigning patient scheduling groups to address the impact on both clinic flow and appointment accessibility. Balance between them ensured the feasibility to the recognized issues of patient service and access to care. The robustness of the proposed method on the changes of clinic conditions was also discussed. PMID:27081406
NASA Astrophysics Data System (ADS)
Rajchl, Martin; Abhari, Kamyar; Stirrat, John; Ukwatta, Eranga; Cantor, Diego; Li, Feng P.; Peters, Terry M.; White, James A.
2014-03-01
Multi-center trials provide the unique ability to investigate novel techniques across a range of geographical sites with sufficient statistical power, the inclusion of multiple operators determining feasibility under a wider array of clinical environments and work-flows. For this purpose, we introduce a new means of distributing pre-procedural cardiac models for image-guided interventions across a large scale multi-center trial. In this method, a single core facility is responsible for image processing, employing a novel web-based interface for model visualization and distribution. The requirements for such an interface, being WebGL-based, are minimal and well within the realms of accessibility for participating centers. We then demonstrate the accuracy of our approach using a single-center pacemaker lead implantation trial with generic planning models.
Clinical use of Heliox in asthma and COPD.
Valli, G; Paoletti, P; Savi, D; Martolini, D; Palange, P
2007-09-01
Heliox is a low density gas mixture of helium and oxygen commonly used in deep diving (> 6 ATM). This mixture has been also used for clinical purposes, particularly in the critical care setting. Due to of its physical proprieties, Heliox breathing reduces air flow resistances within the bronchial tree; in patients with obstructive lung diseases Heliox may also reduce the work of breathing and improve pulmonary gas exchange efficiency. Beneficial effects have been documented in severe asthma attacks and in patients with chronic obstructive pulmonary disease. A reduction in WOB during mechanical ventilation and an increase in exercise endurance capacity have also been described in COPD. Heliox has been also used in the treatment of upper airways obstruction, bronchiolitis and bronchopulmonary dysplasia. Despite the encouraging results, Heliox use in routine practice remains controversial because of technical implications and high costs.
Roy, Christopher L; Rothschild, Jeffrey M; Dighe, Anand S; Schiff, Gordon D; Graydon-Baker, Erin; Lenoci-Edwards, Jennifer; Dwyer, Cheryl; Khorasani, Ramin; Gandhi, Tejal K
2013-11-01
The failure of providers to communicate and follow up clinically significant test results (CSTR) is an important threat to patient safety. The Massachusetts Coalition for the Prevention of Medical Errors has endorsed the creation of systems to ensure that results can be received and acknowledged. In 2008 a task force was convened that represented clinicians, laboratories, radiology, patient safety, risk management, and information systems in a large health care network with the goals of providing recommendations and a road map for improvement in the management of CSTR and of implementing this improvement plan during the sub-force sequent five years. In drafting its charter, the task broadened the scope from "critical" results to "clinically significant" ones; clinically significant was defined as any result that requires further clinical action to avoid morbidity or mortality, regardless of the urgency of that action. The task force recommended four key areas for improvement--(1) standardization of policies and definitions, (2) robust identification of the patient's care team, (3) enhanced results management/tracking systems, and (4) centralized quality reporting and metrics. The task force faced many challenges in implementing these recommendations, including disagreements on definitions of CSTR and on who should have responsibility for CSTR, changes to established work flows, limitations of resources and of existing information systems, and definition of metrics. This large-scale effort to improve the communication and follow-up of CSTR in a health care network continues with ongoing work to address implementation challenges, refine policies, prepare for a new clinical information system platform, and identify new ways to measure the extent of this important safety problem.
A novel patient-specific model to compute coronary fractional flow reserve.
Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo
2014-09-01
The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.
Dynamic Characteristics of The DSI-Type Constant-Flow Valves
NASA Astrophysics Data System (ADS)
Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han
Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.
Exhaust bypass flow control for exhaust heat recovery
Reynolds, Michael G.
2015-09-22
An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.
Modeling systolic pressure variation due to positive pressure ventilation.
Messerges, Joanne
2006-01-01
Although many clinical techniques have been proposed to assess blood volume none have been established as an undisputed standard practice, Volume studies suggest systolic pressure variation (SPV) as a promising volume indicator but underlying influences on SPV are not well understood. Successful modeling of SPV will reveal the major SPV influencers, guide algorithm development to accommodate these influencers, and potentially lead to a more clinically relevant interpretation of SPV values, thus improving upon current clinical methods for assessing blood volume. This study takes a first step towards identifying SPV influencers by investigating three variations of an existing pressure-flow cardiovascular model. Each successive version introduces an additional modification in attempt to model SPV under normovolemic and hypovolemic conditions, where the last model accounts for positive pressure ventilation, venous compression, and a rightward septum shift. Under normovolemic conditions, each model yields SPV values of 5.8, 6.4, and 6.7 mmHg, respectively. Under hypovolemic conditions the results do not agree with clinical findings, suggesting these three mechanisms alone do not dictate the clinical SPV response to a decrease in volume. Model results are used to suggest improvements for future work.
Bassani, Mariana Almada; Caldas, Jamil Pedro Siqueira; Netto, Abimael Aranha; Marba, Sérgio Tadeu Martins
2016-06-01
To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. This is an intervention study, which included 40 preterm infants (≤34 weeks) aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5minutes. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50), the end diastolic flow velocity (p=0.17), the mean flow velocity (p=0.07), the resistance index (p=0.41) and the pulsatility index (p=0.67) over time. The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Chambers, Brian; Chambers, Jayne; Churilov, Leonid; Cameron, Heather; Macdonell, Richard
2014-09-01
We evaluated internal jugular vein and vertebral vein volume flow using ultrasound, in patients with clinically isolated syndrome or mild multiple sclerosis and controls, to determine whether volume flow was different between the two groups. In patients and controls, internal jugular vein volume flow increased from superior to inferior segments, consistent with recruitment from collateral veins. Internal jugular vein and vertebral vein volume flow were greater on the right in supine and sitting positions. Internal jugular vein volume flow was higher in the supine posture. Vertebral vein volume flow was higher in the sitting posture. Regression analyses of cube root transformed volume flow data, adjusted for supine/sitting, right/left and internal jugular vein/vertebral vein, revealed no significant difference in volume flow in patients compared to controls. Our findings further refute the concept of venous obstruction as a causal factor in the pathogenesis of multiple sclerosis. Control volume flow data may provide useful normative reference values. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Dreha-Kulaczewski, Steffi; Joseph, Arun A; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens
2017-03-01
CSF flux is involved in the pathophysiology of neurodegenerative diseases and cognitive impairment after traumatic brain injury, all hallmarked by the accumulation of cellular metabolic waste. Its effective disposal via various CSF routes has been demonstrated in animal models. In contrast, the CSF dynamics in humans are still poorly understood. Using novel real-time MRI, forced inspiration has been identified recently as a main driving force of CSF flow in the human brain. Exploiting technical advances toward real-time phase-contrast MRI, the current work analyzed directions, velocities, and volumes of human CSF flow within the brain aqueduct as part of the internal ventricular system and in the spinal canal during respiratory cycles. A consistent upward CSF movement toward the brain in response to forced inspiration was seen in all subjects at the aqueduct, in 11/12 subjects at thoracic level 2, and in 4/12 subjects at thoracic level 5. Concomitant analyses of CSF dynamics and cerebral venous blood flow, that is, in epidural veins at cervical level 3, uniquely demonstrated CSF and venous flow to be closely communicating cerebral fluid systems in which inspiration-induced downward flow of venous blood due to reduced intrathoracic pressure is counterbalanced by an upward movement of CSF. The results extend our understanding of human CSF flux and open important clinical implications, including concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and idiopathic intracranial hypertension. SIGNIFICANCE STATEMENT Effective disposal of brain cellular waste products via CSF has been demonstrated repeatedly in animal models. However, CSF dynamics in humans are still poorly understood. A novel quantitative real-time MRI technique yielded in vivo CSF flow directions, velocities, and volumes in the human brain and upper spinal canal. CSF moved upward toward the head in response to forced inspiration. Concomitant analysis of brain venous blood flow indicated that CSF and venous flux act as closely communicating systems. The finding of a human CSF-venous network with upward CSF net movement opens new clinical concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and ideopathic intracranial hypertension. Copyright © 2017 the authors 0270-6474/17/372395-08$15.00/0.
Designing Biomedical Informatics Infrastructure for Clinical and Translational Science
ERIC Educational Resources Information Center
La Paz Lillo, Ariel Isaac
2009-01-01
Clinical and Translational Science (CTS) rests largely on information flowing smoothly at multiple levels, in multiple directions, across multiple locations. Biomedical Informatics (BI) is seen as a backbone that helps to manage information flows for the translation of knowledge generated and stored in silos of basic science into bedside…
Kinno, Ryuta; Shiromaru, Azusa; Mori, Yukiko; Futamura, Akinori; Kuroda, Takeshi; Yano, Satoshi; Murakami, Hidetomo; Ono, Kenjiro
2017-01-01
The Wechsler Memory Scale-Revised (WMS-R) is one of the internationally well-known batteries for memory assessment in a general memory clinic setting. Several factor structures of the WMS-R for patients aged under 74 have been proposed. However, little is known about the factor structure of the WMS-R for patients aged over 75 years and its neurological significance. Thus, we conducted exploratory factor analysis to determine the factor structure of the WMS-R for patients aged over 75 years in a memory clinic setting. Regional cerebral blood flow (rCBF) was calculated from single-photon emission computed tomography data. Cortical thickness and cortical fractal dimension, as the marker of cortical complexity, were calculated from high resolution magnetic resonance imaging data. We found that the four factors appeared to be the most appropriate solution to the model, including recognition memory, paired associate memory, visual-and-working memory, and attention as factors. Patients with mild cognitive impairments showed significantly higher factor scores for paired associate memory, visual-and-working memory, and attention than patients with Alzheimer's disease. Regarding the neuroimaging data, the factor scores for paired associate memory positively correlated with rCBF in the left pericallosal and hippocampal regions. Moreover, the factor score for paired associate memory showed most robust correlations with the cortical thickness in the limbic system, whereas the factor score for attention correlated with the cortical thickness in the bilateral precuneus. Furthermore, each factor score correlated with the cortical fractal dimension in the bilateral frontotemporal regions. Interestingly, the factor scores for the visual-and-working memory and attention selectively correlated with the cortical fractal dimension in the right posterior cingulate cortex and right precuneus cortex, respectively. These findings demonstrate that recognition memory, paired associate memory, visual-and-working memory, and attention can be crucial factors for interpreting the WMS-R results of elderly patients aged over 75 years in a memory clinic setting. Considering these findings, the results of WMS-R in elderly patients aged over 75 years in a memory clinic setting should be cautiously interpreted.
Clinical evaluation of flowable resins in non-carious cervical lesions: two-year results.
Celik, Cigdem; Ozgünaltay, Gül; Attar, Nuray
2007-01-01
This study evaluated the two-year clinical performance of one microhybrid composite and three different types of flowable resin materials in non-carious cervical lesions. A total of 252 noncarious cervical lesions were restored in 37 patients (12 male, 25 female) with Admira Flow, Dyract Flow, Filtek Flow and Filtek Z250, according to manufacturers' instructions. All the restorations were placed by one operator, and two other examiners evaluated the restorations clinically within one week after placement and after 6, 12, 18 and 24 months, using modified USPHS criteria. At the end of 24 months, 172 restorations were evaluated in 26 patients, with a recall rate of 68%. Statistical analysis was completed using the Pearson Chi-square and Fisher-Freeman-Halton tests (p < 0.05). Additionally, survival rates were analyzed with the Kaplan-Meier estimator and the Log-Rank test (p < 0.05). The Log-Rank test indicated statistically significant differences between the survival rates of Dyract Flow/Admira Flow and Dyract Flow/Filtek Z250 (p < 0.05). While there was a statistically significant difference between Dyract Flow and the other materials for color match at 12 and 18 months, no significant difference was observed among all of the materials tested at 24 months. Significant differences were revealed between Filtek Z250 and the other materials for marginal adaptation at 18 and 24 months (p < 0.05). With respect to marginal discoloration, secondary caries, surface texture and anatomic form, no significant differences were found between the resin materials (p > 0.05). It was concluded that different types of resin materials demonstrated acceptable clinical performance in non-carious cervical lesions, except for the retention rates of the Dyract Flow restorations.
Hydrogeology of the vicinity of Homestake mine, South Dakota, USA
NASA Astrophysics Data System (ADS)
Murdoch, Larry C.; Germanovich, Leonid N.; Wang, Herb; Onstott, T. C.; Elsworth, Derek; Stetler, Larry; Boutt, David
2012-02-01
The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage.
NASA Astrophysics Data System (ADS)
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
Murray, A K; Moore, T L; Griffiths, C E M; Herrick, A L
2009-07-01
Superficial telangiectases associated with systemic sclerosis may be more responsive to treatment than those deeper in the dermis. We investigated whether dual-wavelength laser Doppler imaging (LDI) is sufficiently sensitive to ascertain the distribution of blood flow within telangiectases and whether blood flow relates to telangiectatic diameter. The perfusion and diameter of 20 telangiectases were measured in superficial and deeper layers of the skin using dual-wavelength LDI. Of 20 telangiectases, 18 had higher blood flow in the red (representing deeper blood flow), rather than the green (representing superficial blood flow) wavelength images. Clinically apparent diameters correlated with those of the superficial (r = 0.61, P = 0.01), but not with the deeper blood flow images. Hence, the apparent size of telangiectases at the skin surface does not predict blood flow through the microvessel(s) at deeper levels, and thus clinically apparent size is unlikely to predict treatment response. Dual-wavelength LDI may help predict treatment response.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Preoperative computer simulation for planning of vascular access surgery in hemodialysis patients.
Zonnebeld, Niek; Huberts, Wouter; van Loon, Magda M; Delhaas, Tammo; Tordoir, Jan H M
2017-03-06
The arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients. Unfortunately, 20-40% of all constructed AVFs fail to mature (FTM), and are therefore not usable for hemodialysis. AVF maturation importantly depends on postoperative blood volume flow. Predicting patient-specific immediate postoperative flow could therefore support surgical planning. A computational model predicting blood volume flow is available, but the effect of blood flow predictions on the clinical endpoint of maturation (at least 500 mL/min blood volume flow, diameter of the venous cannulation segment ≥4 mm) remains undetermined. A multicenter randomized clinical trial will be conducted in which 372 patients will be randomized (1:1 allocation ratio) between conventional healthcare and computational model-aided decision making. All patients are extensively examined using duplex ultrasonography (DUS) during preoperative assessment (12 venous and 11 arterial diameter measurements; 3 arterial volume flow measurements). The computational model will predict patient-specific immediate postoperative blood volume flows based on this DUS examination. Using these predictions, the preferred AVF configuration is recommended for the individual patient (radiocephalic, brachiocephalic, or brachiobasilic). The primary endpoint is FTM rate at six weeks in both groups, secondary endpoints include AVF functionality and patency rates at 6 and 12 months postoperatively. ClinicalTrials.gov (NCT02453412), and ToetsingOnline.nl (NL51610.068.14).
Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow
Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.
2015-01-01
A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321
NASA Technical Reports Server (NTRS)
Kogan, M. N.
1994-01-01
Recent progress in both the linear and nonlinear aspects of stability theory has highlighted the importance of the receptivity problem. One of the most unclear aspects of receptivity study is the receptivity of boundary-layer flow normal to vortical disturbances. Some experimental and theoretical results permit the proposition that quasi-steady outer-flow vortical disturbances may trigger by-pass transition. In present work such interaction is investigated for vorticity normal to a leading edge. The interest in these types of vortical disturbances arise from theoretical work, where it was shown that small sinusoidal variations of upstream velocity along the spanwise direction can produce significant variations in the boundary-layer profile. In the experimental part of this work, such non-uniform flow was created and the laminar-turbulent transition in this flow was investigated. The experiment was carried out in a low-turbulence direct-flow wind tunnel T-361 at the Central Aerohydrodynamic Institute (TsAGI). The non-uniform flow was produced by laminar or turbulent wakes behind a wire placed normal to the plate upstream of the leading edge. The theoretical part of the work is devoted to studying the unstable disturbance evolution in a boundary layer with strongly non-uniform velocity profiles similar to that produced by outer-flow vorticity. Specifically, the Tollmien-Schlichting wave development in the boundary layer flow with spanwise variations of velocity is investigated.
A novel diagram and complement to the CONSORT chart for presenting multimodal clinical trials.
Schuller, Jan C; Mayer, Michael; Lanz, Doris; Schmitz, Shu-Fang Hsu; Brauchli, Peter; Leupin, Nicolas
2009-05-01
We developed a novel diagram to depict patient flow and outcomes in clinical trials. In contrast to flow diagrams such as the CONSORT chart, our diagram enables individual patient histories to be traced and depicts important patterns of treatment administration and outcomes, such as response and adverse events. Also, it is particularly useful for multimodal treatments or a sequence of different therapies where the CONSORT flow chart is less informative and can be confusing.
Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai
2016-12-01
There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts. Copyright © 2016 the American Physiological Society.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2017-01-04
As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2mmHg is consistent with reported data. We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Qinglin; Liu, Houming; Ye, Feidi; Xiang, Guangxin; Shan, Wanshui; Xing, Wanli
2017-12-01
To definitively diagnose active pulmonary Tuberculosis (TB), Mycobacterium tuberculosis complex (MTBC) bacilli must be identified within clinical specimens from patients. In this study, we introduced a rapid and visual detection method of MTBC using recombinase polymerase amplification (RPA) combined with lateral flow (LF) strips. The LF-RPA assay, read results with naked eyes, could detect as few as 5 genome copies of M. tuberculosis H37Rv (ATCC 27294) per reaction and had no cross-reactions with other control bacteria even using excessive amount of template DNA. The system could work well at a broad range of temperature 25-45 °C and reach detectable level even within 5 min. When testing a total of 137 clinical specimens, the sensitivity and specificity of the LF-RPA assay were 100% (95% CI: 95.94%-100%) and 97.92% (95% CI: 88.93%-99.95%), respectively, compared to culture identification method. Therefore, the LF-RPA system we have demonstrated is a rapid, simple, robust method for MTBC detection which, subject to the availability of a suitable sample extraction method, has the potentiality to diagnose TB at the point-of-care testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Home oxygen therapy: re-thinking the role of devices.
Melani, Andrea S; Sestini, Piersante; Rottoli, Paola
2018-03-01
A range of devices are available for delivering and monitoring home oxygen therapy (HOT). Guidelines do not give indications for the choice of the delivery device but recommend the use of an ambulatory system in subjects on HOT whilst walking. Areas covered: We provide a clinical overview of HOT and review traditional and newer delivery and monitoring devices for HOT. Despite relevant technology advancements, clinicians, faced with many challenges when they prescribe oxygen therapy, often remain familiar to traditional devices and continuous flow delivery of oxygen. Some self-filling delivery-less devices could increase the users' level of independence with ecological advantage and, perhaps, reduced cost. Some newer portable oxygen concentrators are being available, but more work is needed to understand their performances in different diseases and clinical settings. Pulse oximetry has gained large diffusion worldwide and some models permit long-term monitoring. Some closed-loop portable monitoring devices are also able to adjust oxygen flow automatically in accordance with the different needs of everyday life. This might help to improve adherence and the practice of proper oxygen titration that has often been omitted because difficult to perform and time-consuming. Expert commentary: The prescribing physicians should know the characteristics of newer devices and use technological advancements to improve the practice of HOT.
Falk, Markus; Donaldsson, Snorri; Jonsson, Baldvin; Drevhammar, Thomas
2017-11-01
Medijet nasal continuous positive airway pressure (CPAP) generators are a family of devices developed from the Benveniste valve. Previous studies have shown that the in vitro performance of the Medijet disposable generator was similar to the Neopuff resistor system. We hypothesised that resistance would be the main mechanism of CPAP generation in the Medijet disposable generator. The in vitro performance of the Medijet reusable and disposable systems, the Neopuff resistor system and the Benveniste and Infant Flow nonresistor systems were investigated using static and dynamic bench tests. Large differences in performance were found between the different systems. The disposable Medijet demonstrated high resistance, low pressure stability and high imposed work of breathing. The results also showed that encapsulating the Benveniste valve changed it into a resistor system. The main mechanism of CPAP generation for the disposable Medijet generator was resistance. The Medijet device family showed increasing resistance with each design generation. The high resistance of the Medijet disposable generator could be of great value when examining the clinical importance of pressure stability. Our results suggest that this device should be used cautiously in patients where pressure-stable CPAP is believed to be clinically important. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.
2014-03-01
Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.
Reliability of vascular geometry factors derived from clinical MRA
NASA Astrophysics Data System (ADS)
Bijari, Payam B.; Antiga, Luca; Steinman, David A.
2009-02-01
Recent work from our group has demonstrated that the amount of disturbed flow at the carotid bifurcation, believed to be a local risk factor for carotid atherosclerosis, can be predicted from luminal geometric factors. The next step along the way to a large-scale retrospective or prospective imaging study of such local risk factors for atherosclerosis is to investigate whether these geometric features are reproducible and accurate from routine 3D contrast-enhanced magnetic resonance angiography (CEMRA) using a fast and practical method of extraction. Motivated by this fact, we examined the reproducibility of multiple geometric features that are believed important in atherosclerosis risk assessment. We reconstructed three-dimensional carotid bifurcations from 15 clinical study participants who had previously undergone baseline and repeat CEMRA acquisitions. Certain geometric factors were extracted and compared between the baseline and the repeat scan. As the spatial resolution of the CEMRA data was noticeably coarse and anisotropic, we also investigated whether this might affect the measurement of the same geometric risk factors by simulating the CEMRA acquisition for 15 normal carotid bifurcations previously acquired at high resolution. Our results show that the extracted geometric factors are reproducible and faithful, with intra-subject uncertainties well below inter-subject variabilities. More importantly, these geometric risk factors can be extracted consistently and quickly for potential use as disturbed flow predictors.
Flow and Jamming of Granular Materials in a Two-dimensional Hopper
NASA Astrophysics Data System (ADS)
Tang, Junyao
Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .
Border information flow architecture
DOT National Transportation Integrated Search
2006-04-01
This brochure describes the Border Information Flow Architecture (BIFA). The Transportation Border Working Group, a bi-national group that works to enhance coordination and planning between the United States and Canada, identified collaboration on th...
Shang, Yu; Li, Ting; Yu, Guoqiang
2017-01-01
Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219
Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow
Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina
2015-01-01
A wide range of diseases and conditions are monitored or diagnosed from blood plasma, but the ability to analyze a whole blood sample with the requirements for a point-of-care device, such as robustness, user-friendliness, and simple handling, remains unmet. Microfluidics technology offers the possibility not only to work fresh thumb-pricked whole blood but also to maximize the amount of the obtained plasma from the initial sample and therefore the possibility to implement multiple tests in a single cartridge. The microfluidic design presented in this paper is a combination of cross-flow filtration with a reversible electroosmotic flow that prevents clogging at the filter entrance and maximizes the amount of separated plasma. The main advantage of this design is its efficiency, since from a small amount of sample (a single droplet ∼10 μl) almost 10% of this (approx 1 μl) is extracted and collected with high purity (more than 99%) in a reasonable time (5–8 min). To validate the quality and quantity of the separated plasma and to show its potential as a clinical tool, the microfluidic chip has been combined with lateral flow immunochromatography technology to perform a qualitative detection of the thyroid-stimulating hormone and a blood panel for measuring cardiac Troponin and Creatine Kinase MB. The results from the microfluidic system are comparable to previous commercial lateral flow assays that required more sample for implementing fewer tests. PMID:26396660
Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto
2016-01-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076
Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto
2016-05-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.
Shay, Jonathan
2010-10-01
Philosophic conclusions drawn from work with psychologically and morally injured combat veterans include that brain, mind, society, and culture "co-evolved." The four encompass the complete human phenomenon, but not all are reducible to the physical brain. None of the four are "ontologically prior" to the others, when viewed over the entire lifecycle. All four are what I call "each other's environments," with obligatory cross-boundary flows--each with each in both directions. Rigorous, but nonreductionist interdisciplinary research, in the vein of "evo-devo" in embryology, is called for in the study of the human phenomena. On the basis of these conclusions, I offer a few practical comments on clinical work with psychologically and morally injured combat veterans. © 2010 Association for Research in Nervous and Mental Disease.
A novel approach to cardiac troponins to improve the diagnostic work-up in chest pain patients.
Eggers, Kai M; Jaffe, Allan S; Svennblad, Bodil; Lindahl, Bertil
2012-12-01
In patients with acute chest pain, current guidelines recommend serial measurements of cardiac troponins at predefined and partly late time points. Consequently, diagnostic assessment in these patients tends to be lengthy and often results in unnecessary admissions. We, therefore, evaluated whether an approach integrating troponin results into the clinical context provided by the individual patient's presentation might facilitate the early diagnostic work-up. In 197 chest pain patients, cardiac troponin I (cTnI; Stratus CS) was measured serially within 12 hours after hospital admission. In patient cohorts with different chances of having myocardial infarction (MI) according to clinical data, electrocardiographic findings, and admission biomarker results, pretest probabilities for MI were calculated and compared with posttest probabilities derived from subsequent cTnI results after admission. Elevated cTnI levels at 1 to 2 hours after admission revealed ≥95.0% posttest probabilities for MI in cohorts with intermediate or high chances of having MI. The posttest probabilities for the absence of MI were 94.7% to 98.2% in cohorts with low or intermediate chances of having MI when cTnI was negative at 2 hours. Troponin testing considering the individual patient's pretest probability of MI seems, in conclusion, to provide clinically useful information already 1 to 2 hours after admission. Such an approach has the potential to identify both patient cohorts in whom early discharge or admittance for further evaluation would be appropriate. This could facilitate the early diagnostic work-up of chest pain patients, thereby improving patient flow and reducing overcrowding in healthcare facilities.
Drag Reduction of an Airfoil Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, Chiyu; Sun, Anzhu; Marcus, Philip
2017-11-01
We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.
The Development of a Factorizable Multigrid Algorithm for Subsonic and Transonic Flow
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.
2001-01-01
The factorizable discretization of Sidilkover for the compressible Euler equations previously demonstrated for channel flows has been extended to external flows.The dissipation of the original scheme has been modified to maintain stability for moderately stretched grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Unlike the earlier work ordering the grid vertices in the flow direction has been found to be unnecessary. Solutions for essential incompressible flow (Mach 0.01) and supercritical flows have obtained for a Karman-Trefftz airfoil with it conformally mapped grid,as well as a NACA 0012 on an algebraically generated grid. The current work demonstrates nearly 0(n) convergence for subsonic and slightly transonic flows.
Hegde, Vikas; Hickerson, Robyn P; Nainamalai, Sitheswaran; Campbell, Paul A; Smith, Frances J D; McLean, W H Irwin; Pedrioli, Deena M Leslie
2014-12-28
Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Van den Poel, Bea; Kochuyt, Anne-Marie; Del Biondo, Elke; Dewaele, Barbara; Lierman, Els; Tousseyn, Thomas; de Hertogh, Gert; Vandenberghe, Peter; Boeckx, Nancy
2017-04-01
Mastocytosis is a heterogeneous disease caused by excessive mast cell (MC) proliferation. Diagnosis of systemic mastocytosis (SM) is based on the presence of major and minor criteria defined by the World Health Organization. Symptoms of MC activation can also occur in patients without SM or without allergic or inflammatory disease. These MC activation syndromes (MCAS) can be divided into primary (monoclonal) MCAS (MMAS) vs. secondary and idiopathic MCAS. In this single center study, the diagnostic work-up of 38 patients with a clinical suspicion of SM and/or with elevated basic tryptase levels is presented. Clinical symptoms, biochemical parameters, results of bone marrow investigation, flow cytometric immunophenotyping, and molecular analysis were retrospectively reviewed. Twenty-three patients were found to have a monoclonal MC disorder of which 19 were diagnosed with SM and 4 with MMAS. In 13/19 SM patients, multifocal MC infiltrates in the bone marrow were found (major criterion), while in 6 the diagnosis was based on the presence of ≥3 minor criteria. Flow cytometric analysis of bone marrow showed CD25 expression of MCs in all patients with SM and MMAS (range: 0.002-0.3% of cells). In bone marrow, the KIT D816V mutation was detected in all SM patients but in only 2 patients with MMAS (range: 0.007-9% mutated cells). Basic tryptase elevation was demonstrated in 16/19 patients with SM but also in 9/19 patients without SM. Our study reveals the heterogeneity of primary MC disorders and the importance of sensitive assays in patients suspected of having SM.
Work Flow Analysis Report Action Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
PETERMANN, M.L.
The Work Flow Analysis Report will be used to facilitate the requirements for implementing the further deployment of the Action Tracking module of Passport. The report consists of workflow integration processes for Action Tracking.
An investigation of multitasking information behavior and the influence of working memory and flow
NASA Astrophysics Data System (ADS)
Alexopoulou, Peggy; Hepworth, Mark; Morris, Anne
2015-02-01
This study explored the multitasking information behaviour of Web users and how this is influenced by working memory, flow and Personal, Artefact and Task characteristics, as described in the PAT model. The research was exploratory using a pragmatic, mixed method approach. Thirty University students participated; 10 psychologists, 10 accountants and 10 mechanical engineers. The data collection tools used were: pre and post questionnaires, a working memory test, a flow state scale test, audio-visual data, web search logs, think aloud data, observation, and the critical decision method. All participants searched information on the Web for four topics: two for which they had prior knowledge and two more without prior knowledge. Perception of task complexity was found to be related to working memory. People with low working memory reported a significant increase in task complexity after they had completed information searching tasks for which they had no prior knowledge, this was not the case for tasks with prior knowledge. Regarding flow and task complexity, the results confirmed the suggestion of the PAT model (Finneran and Zhang, 2003), which proposed that a complex task can lead to anxiety and low flow levels as well as to perceived challenge and high flow levels. However, the results did not confirm the suggestion of the PAT model regarding the characteristics of web search systems and especially perceived vividness. All participants experienced high vividness. According to the PAT model, however, only people with high flow should experience high levels of vividness. Flow affected the degree of change of knowledge of the participants. People with high flow gained more knowledge for tasks without prior knowledge rather than people with low flow. Furthermore, accountants felt that tasks without prior knowledge were less complex at the end of the web seeking procedure than psychologists and mechanical engineers. Finally, the three disciplines appeared to differ regarding the multitasking information behaviour characteristics such as queries, web search sessions and opened tabs/windows.
NASA Astrophysics Data System (ADS)
Koirala, Nischal; Setser, Randolph M.; Bullen, Jennifer; McLennan, Gordon
2017-03-01
Blood flow rate is a critical parameter for diagnosing dialysis access function during fistulography where a flow rate of 600 ml/min in arteriovenous graft or 400-500 ml/min in arteriovenous fistula is considered the clinical threshold for fully functioning access. In this study, a flow rate computational model for calculating intra-access flow to evaluate dialysis access patency was developed and validated in an in vitro set up using digital subtraction angiography. Flow rates were computed by tracking the bolus through two regions of interest using cross correlation (XCOR) and mean arrival time (MAT) algorithms, and correlated versus an in-line transonic flow meter measurement. The mean difference (mean +/- standard deviation) between XCOR and in-line flow measurements for in vitro setup at 3, 6, 7.5 and 10 frames/s was 118+/-63 37+/-59 31+/-31 and 46+/-57 ml/min respectively while for MAT method it was 86+/-56 57+/-72 35+/-85 and 19+/-129 ml/min respectively. The result of this investigation will be helpful for selecting candidate algorithms while blood flow computational tool is developed for clinical application.
Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
St Clair, Joshua R; Ramirez, David; Passman, Samantha; Benninger, Richard K P
2018-05-01
In type 1 diabetes (T1D), immune-cell infiltration into the islets of Langerhans (insulitis) and β-cell decline occurs many years before diabetes clinically presents. Non-invasively detecting insulitis and β-cell decline would allow the diagnosis of eventual diabetes, and provide a means to monitor therapeutic intervention. However, there is a lack of validated clinical approaches for specifically and non-invasively imaging disease progression leading to T1D. Islets have a denser microvasculature that reorganizes during diabetes. Here we apply contrast-enhanced ultrasound measurements of pancreatic blood-flow dynamics to non-invasively and predictively assess disease progression in T1D pre-clinical models. STZ-treated mice, NOD mice, and adoptive-transfer mice demonstrate altered islet blood-flow dynamics prior to diabetes onset, consistent with islet microvasculature reorganization. These assessments predict both time to diabetes onset and future responders to antiCD4-mediated disease prevention. Thus contrast-enhanced ultrasound measurements of pancreas blood-flow dynamics may provide a clinically deployable predictive marker for disease progression in pre-symptomatic T1D and therapeutic reversal.
Achieving low anastomotic leak rates utilizing clinical perfusion assessment.
Kream, Jacob; Ludwig, Kirk A; Ridolfi, Timothy J; Peterson, Carrie Y
2016-10-01
Anastomotic leak after colorectal resection increases morbidity, mortality, and in the setting of cancer, increases recurrences rates and reduces survival odds. Recent reports suggest that fluorescence evaluation of perfusion after colorectal anastomosis creation is associated with low anastomotic leak rates (1.4%). The purpose of this work was to evaluate whether a similar low anastomotic leak rate after left-sided colorectal resections could be achieved using standard assessment of blood flow to the bowel ends. We performed a retrospective chart review at an academic tertiary referral center, evaluating 317 consecutive patients who underwent a pelvic anastomosis after sigmoid colectomy, left colectomy, or low anterior resection. All operations were performed by a single surgeon from March 2008 to January 2015 with only standard clinical measures used to assess perfusion to the bowel ends. The primary outcome measure was the anastomotic leak rate as diagnosed by clinical symptoms, exam, or routine imaging. The average patient age was 59.7 years with an average body mass index of 28.8 kg/m(2). Rectal cancer (128, 40.4%) was the most common indication for operation while hypertension (134, 42.3%) was the most common comorbidity. In total, 177 operations were laparoscopic (55.8%), 13 were reoperative resections (4.1%), and 108 were protected with a loop ileostomy (34.1%). Preoperative chemotherapy was administered to 25 patients (7.9%) while preoperative chemo/radiation was administered to 64 patients (20.2%). The anastomotic leak rate was 1.6% (5/317). Our data suggests that standard, careful evaluation of adequate blood flow via inspection and confirmation of pulsatile blood flow to the bowel ends and meticulous construction of the colorectal or coloanal anastomoses can result in very low leak rates, similar to the rate reported when intraoperative imaging is used to assess perfusion. Copyright © 2016 Elsevier Inc. All rights reserved.
An Analysis of the Loads on and Dynamic Response of a Floating Flexible Tube in Waves and Currents
2014-05-09
the tube about 4.57 meters. The CFD code associated with the SolidWorks Flow Simulation tool was applied for this application. Flow Simulation uses...Liquid-Filled Membrane Structure in Waves," Journal of Fluids and Structures, no. 9, pp. 937-956, 1995. [16] SolidWorks , " Flow Simulation 2012...influence of Reynolds number on the drag coefficient. Simulations were performed with the 100% full (solid) model with flow velocities that yielded
Flow Experience in Design Thinking and Practical Synergies with Lego Serious Play
ERIC Educational Resources Information Center
Primus, Dirk J.; Sonnenburg, Stephan
2018-01-01
The flow experience can be an important precursor to high levels of creativity and innovation. Prior work has identified and conceptualized the key elements of the flow experience in cocreative activities as individual flow corridor, individual flow feeling, and group flow. Surprisingly, the flow experience is underrepresented in theory and…
Better Gas-Gap Thermal Switches For Sorption Compressors
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Rodriguez, Jose
1995-01-01
Gas-gap thermal switches associated with sorption compressors of some heat pumps and cryogenic systems designed for higher performance, according to proposal, by introducing controlled turbulent flows into gas gaps. Utilizes convection in turbulent flow to transfer heat at greater rate. Design takes advantage of flow of working fluid. Working fluid also serve as heat transfer medium in gas gap.
Towards a virtual health record for mobile home care of elderly citizens.
Koch, Sabine; Hägglund, Maria; Scandurra, Isabella; Moström, Dennis
2004-01-01
Mobile work situations within home care of the elderly require immediate and ubiquitous access to patient-oriented data. The ongoing Swedish research project "Technical support for Mobile CloseCare" focuses on the development and evaluation of work-scenario oriented ICT support for enhanced home care of elderly citizens. The aim of the project is to provide a seamless and consistent information flow between different health care providers and to give intuitive access to information services for the elderly and their relatives. For that purpose, different independent software components are connected through a mobile communication platform. Flexible access to prioritized information for different users in different work situations will be given through a virtual health record. In order to obtain both usable and clinically relevant results, a user centered system development approach is followed. Evaluation of the project results will be based on usability tests and quasi-experimental studies on how system implementation influences quality of care and job- and life satisfaction for care providers, patients and relatives.
Lean sigma--will it work for healthcare?
Bahensky, James A; Roe, Janet; Bolton, Romy
2005-01-01
The manufacturing industry has been using Lean Sigma for years in pursuit of continuous improvement to obtain a competitive advantage. The objectives of these efforts are to use the Lean techniques for reducing cycle times and the Six Sigma concepts for reducing product defects. The Iowa Business Council with several advocates worked with the University of Iowa Hospital and Clinics (UIHC) and two other Iowa hospitals to determine whether Lean Sigma is adaptable in healthcare. A team of 15 people at UIHC used the Kaizen Breakthrough Methodology over a five-day period in an aggressive identification and elimination of non-value added activities in Radiology CT scanning. The results exceeded the initial project objectives and indicated that Lean Sigma is applicable in healthcare. Overall, the Lean Sigma project increased revenue by approximately $750,000 per year. The Kaizen process proved to be successful and interesting. Within three days, the team installed new work flow processes. This implementation-oriented approach is what differentiates Lean Sigma from other quality improvement processes.
NASA Astrophysics Data System (ADS)
Moult, Eric M.; Ploner, Stefan A.; Choi, WooJhon; Lee, ByungKun; Husvogt, Lennart A.; Lu, Chen D.; Novais, Eduardo; Cole, Emily D.; Potsaid, Benjamin M.; Duker, Jay S.; Hornegger, Joachim; Meier, Andreas K.; Waheed, Nadia K.; Fujimoto, James G.
2017-02-01
OCT angiography (OCTA) has recently garnered immense interest in clinical ophthalmology, permitting ocular vasculature to be viewed in exquisite detail, in vivo, and without the injection of exogenous dyes. However, commercial OCTA systems provide little information about actual erythrocyte speeds; instead, OCTA is typically used to visualize the presence and/or absence of vasculature. This is an important limitation because in many ocular diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), alterations in blood flow, but not necessarily only the presence or absence of vasculature, are thought to be important in understanding pathogenesis. To address this limitation, we have developed an algorithm, variable interscan time analysis (VISTA), which is capable of resolving different erythrocyte speeds. VISTA works by acquiring >2 repeated B-scans, and then computing multiple OCTA signals corresponding to different effective interscan times. The OCTA signals corresponding to different effective interscan times contain independent information about erythrocyte speed. In this study we provide a theoretical overview of VISTA, and investigate the utility of VISTA in studying blood flow alterations in ocular disease. OCTA-VISTA images of eyes with choroidal neovascularization, geographic atrophy, and diabetic retinopathy are presented.
Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility
NASA Astrophysics Data System (ADS)
McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto
2012-11-01
Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.
Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E; Yang, Li; Snyder, Beth A; Cai, Zhaohui; Heil, Marintha L; Cosford, Nicholas D P
2017-12-01
Continuous flow (microfluidic) chemistry was employed to prepare a small focused library of dihydropyrimidinone (DHPM) derivatives. Compounds in this class have been reported to exhibit activity against the human immunodeficiency virus (HIV), but their molecular target had not been identified. We tested the initial set of DHPMs in phenotypic assays providing a hit (1i) that inhibited the replication of the human immunodeficiency virus HIV in cells. Flow chemistry-driven optimization of 1i led to the identification of HIV replication inhibitors such as 1l with cellular potency comparable with the clinical drug nevirapine (NVP). Mechanism of action (MOA) studies using cellular and biochemical assays coupled with 3D fingerprinting and in silico modeling demonstrated that these drug-like probe compounds exert their effects by inhibiting the viral reverse transcriptase polymerase (RT). This led to the design and synthesis of the novel DHPM 1at that inhibits the replication of drug resistant strains of HIV. Our work demonstrates that combining flow chemistry-driven analogue refinement with phenotypic assays, in silico modeling and MOA studies is a highly effective strategy for hit-to-lead optimization applicable to the discovery of future therapeutic agents. Copyright © 2017. Published by Elsevier Ltd.
McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman
1998-01-01
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.
McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.
1998-06-23
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.
Flow regimes in a T-mixer operating with a binary mixture
NASA Astrophysics Data System (ADS)
Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria
2015-11-01
Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.
Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material
NASA Astrophysics Data System (ADS)
Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz
2018-02-01
The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
Work at the Uddevalla Volvo Plant from the Perspective of the Demand-Control Model
ERIC Educational Resources Information Center
Lottridge, Danielle
2004-01-01
The Uddevalla Volvo plant represents a different paradigm for automotive assembly. In parallel-flow work, self-managed work groups assemble entire automobiles with comparable productivity as conventional series-flow assembly lines. From the perspective of the demand-control model, operators at the Uddevalla plant have low physical and timing…
Doting, M H E; Weel, J; Niesters, H G M; Riezebos-Brilman, A; Brandenburg, A
2017-09-01
Hepatitis E virus (HEV) genotype 3 is endemic in Europe and an underdiagnosed and emerging (public) health issue. In recent years commercial enzyme immunoassays (EIAs) that detect antibodies to HEV more adequately, became available. We investigated the added value of this HEV serology in the diagnostic work flow to detect viral causes of recent hepatitis. During a 2-year period (May 2013 to May 2015), HEV serology was added to the hepatitis work flow, consisting of serological detection of hepatitis viruses A, B and C (HAV, HBV, HCV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV). Samples positive for HEV IgM were also analysed using PCR to detect HEV RNA. If positive, HEV sequencing was performed for genotyping purposes. In 235 out of 2521 patients (9.3%), a viral cause for hepatitis was found. Recent HAV, HBV, HCV, EBV or CMV infections were serologically diagnosed in 3, 34, 10, 69 and 42 patients, respectively. Seventy-eight patients (3.1%) had a recent HEV infection. In 49 of them, sufficient HEV RNA was present for genotyping. All patients were infected with HEV genotype 3. In our region, an HEV infection is the most frequently diagnosed viral cause for recent hepatitis. These results indicate that, in a country where HEV is endemic, serological HEV diagnostics should be added to the standard work-up for viral hepatitis. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner
NASA Astrophysics Data System (ADS)
Bücking, Thore M.; van den Berg, Pim J.; Balabani, Stavroula; Steenbergen, Wiendelt; Beard, Paul C.; Brunker, Joanna
2018-02-01
Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580 μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25 mm / s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability.
Cardiovascular control during whole body exercise
Secher, Niels H.
2016-01-01
It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min−1·100 g−1), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure. PMID:27311439
Cardiovascular control during whole body exercise.
Volianitis, Stefanos; Secher, Niels H
2016-08-01
It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min(-1)·100 g(-1)), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure. Copyright © 2016 the American Physiological Society.
Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.
2014-01-01
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414
Point-of-Care-Testing in Acute Stroke Management: An Unmet Need Ripe for Technological Harvest
Eltzov, Evgeni; Seet, Raymond C. S.; Marks, Robert S.; Tok, Alfred I. Y.
2017-01-01
Stroke, the second highest leading cause of death, is caused by an abrupt interruption of blood to the brain. Supply of blood needs to be promptly restored to salvage brain tissues from irreversible neuronal death. Existing assessment of stroke patients is based largely on detailed clinical evaluation that is complemented by neuroimaging methods. However, emerging data point to the potential use of blood-derived biomarkers in aiding clinical decision-making especially in the diagnosis of ischemic stroke, triaging patients for acute reperfusion therapies, and in informing stroke mechanisms and prognosis. The demand for newer techniques to deliver individualized information on-site for incorporation into a time-sensitive work-flow has become greater. In this review, we examine the roles of a portable and easy to use point-of-care-test (POCT) in shortening the time-to-treatment, classifying stroke subtypes and improving patient’s outcome. We first examine the conventional stroke management workflow, then highlight situations where a bedside biomarker assessment might aid clinical decision-making. A novel stroke POCT approach is presented, which combines the use of quantitative and multiplex POCT platforms for the detection of specific stroke biomarkers, as well as data-mining tools to drive analytical processes. Further work is needed in the development of POCTs to fulfill an unmet need in acute stroke management. PMID:28771209
Cardiorespiratory effects of inelastic chest wall restriction.
Miller, Jordan D; Beck, Kenneth C; Joyner, Michael J; Brice, A Glenn; Johnson, Bruce D
2002-06-01
We examined the effects of chest wall restriction (CWR) on cardiorespiratory function at rest and during exercise in healthy subjects in an attempt to approximate the cardiorespiratory interactions observed in clinical conditions that result in restrictive lung and/or chest wall changes and a reduced intrathoracic space. Canvas straps were applied around the thorax and abdomen so that vital capacity was reduced by >35%. Data were acquired at rest and during cycle ergometry at 25 and 45% of peak workloads. CWR elicited significant increases in the flow-resistive work performed on the lung (160%) and the gastric pressure-time integral (>400%) at the higher workload, but it resulted in a decrease in the elastic work performed on the lung (56%) compared with control conditions. With CWR, heart rate increased and stroke volume (SV) fell, resulting in >10% fall in cardiac output at rest and during exercise at matched workloads (P < 0.05). Blood pressure and catecholamines were significantly elevated during CWR exercise conditions (P < 0.05). We conclude that CWR significantly impairs SV during exercise and that a compensatory increase in heart rate does not prevent a significant reduction in cardiac output. O(2) consumption appears to be maintained via increased extraction and a redistribution of blood flow via sympathetic activation.
Turbulent structures in cylindrical density currents in a rotating frame of reference
NASA Astrophysics Data System (ADS)
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
Improved panels for clinical immune phenotyping: Utilization of the violet laser.
Ryherd, Mark; Plassmeyer, Matthew; Alexander, Connor; Eugenio, Ines; Kleschenko, Yuliya; Badger, Ariel; Gupta, Raavi; Alpan, Oral; Sønder, Søren Ulrik
2017-05-10
Clinical diagnostic laboratories are subject to numerous regulations imposed by government agencies. Laboratory developed tests for flow cytometry panels are essentially restricted to the use of analyte-specific reagents (ASR) antibodies. With the advances in clinical flow cytometry systems, there is a trend toward the utilization of blue/red/violet laser flow systems and 8 to 10-color panels. Currently, the selection of commercially available ASR antibodies for the violet laser is very limited. The market is dominated by Brilliant Violet 421 (BV421) manufactured by BD Biosciences and Pacific Blue (PB) manufactured by Beckman Coulter. In this study, we compare BV421 and PB conjugated ASR antibodies. Whole blood was stained and acquired on a Gallios flow cytometer system. For single color staining, the stain index (SI) was calculated. For the two panels, the compensation matrix was calculated and the performance of the antibody cocktails analyzed in FCS Express. The results show that five out of six tested BV421 conjugated antibodies have significantly higher SI than their PB counterparts. Furthermore, BV421 antibodies require less compensation for spillover than PB. Finally, BV421 conjugated antibodies give better separation between negative and positive populations in the context of an 8 and 10 color panel without affecting the intensity of the other dyes. Overall, using BV421 conjugated antibodies results in better separation between populations compared to PB conjugated antibodies without negatively affecting other fluorochromes in our panels. We conclude that the BV421 conjugated ASR antibodies are currently the better available option for clinical flow panels. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
Positron-emitting myocardial blood flow tracers and clinical potential.
Schindler, Thomas H
2015-01-01
Positron-emitting myocardial flow radiotracers such as (15)O-water, (13)N-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of (15)O-water and (13)N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.
Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow.
van Osch, Matthias Jp; Teeuwisse, Wouter M; Chen, Zhensen; Suzuki, Yuriko; Helle, Michael; Schmid, Sophie
2017-01-01
With the publication in 2015 of the consensus statement by the perfusion study group of the International Society for Magnetic Resonance in Medicine (ISMRM) and the EU-COST action 'ASL in dementia' on the implementation of arterial spin labelling MRI (ASL) in a clinical setting, the development of ASL can be considered to have become mature and ready for clinical prime-time. In this review article new developments and remaining issues will be discussed, especially focusing on quantification of ASL as well as on new technological developments of ASL for perfusion imaging and flow territory mapping. Uncertainty of the achieved labelling efficiency in pseudo-continuous ASL (pCASL) as well as the presence of arterial transit time artefacts, can be considered the main remaining challenges for the use of quantitative cerebral blood flow (CBF) values. New developments in ASL centre around time-efficient acquisition of dynamic ASL-images by means of time-encoded pCASL and diversification of information content, for example by combined 4D-angiography with perfusion imaging. Current vessel-encoded and super-selective pCASL-methodology have developed into easily applied flow-territory mapping methods providing relevant clinical information with highly similar information content as digital subtraction angiography (DSA), the current clinical standard. Both approaches seem therefore to be ready for clinical use.
Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects
Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L
2004-01-01
Aims/background: To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. Methods: The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. Results: None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. Conclusions: These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency. PMID:15031172
Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects.
Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L
2004-04-01
To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency.
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
2001-01-01
The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.
Computer Aided Dosimetry and Verification of Exposure to Radiation
NASA Astrophysics Data System (ADS)
Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise
2002-06-01
In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)
Family Health Conversations: How Do They Support Health?
Benzein, Eva
2014-01-01
Research shows that living with illness can be a distressing experience for the family and may result in suffering and reduced health. To meet families' needs, family systems intervention models are developed and employed in clinical contexts. For successful refinement and implementation it is important to understand how these models work. The aim of this study was therefore to describe the dialogue process and possible working mechanisms of one systems nursing intervention model, the Family Health Conversation model. A descriptive evaluation design was applied and 15 transcribed conversations with five families were analyzed within a hermeneutic tradition. Two types of interrelated dialogue events were identified: narrating and exploring. There was a flow between these events, a movement that was generated by the interaction between the participants. Our theoretically grounded interpretation showed that narrating, listening, and reconsidering in interaction may be understood as supporting family health by offering the families the opportunity to constitute self-identity and identity within the family, increasing the families' understanding of multiple ways of being and acting, to see new possibilities and to develop meaning and hope. Results from this study may hopefully contribute to the successful implementation of family systems interventions in education and clinical praxis. PMID:24800068
In Search of Joy in Practice: A Report of 23 High-Functioning Primary Care Practices
Sinsky, Christine A.; Willard-Grace, Rachel; Schutzbank, Andrew M.; Sinsky, Thomas A.; Margolius, David; Bodenheimer, Thomas
2013-01-01
We highlight primary care innovations gathered from high-functioning primary care practices, innovations we believe can facilitate joy in practice and mitigate physician burnout. To do so, we made site visits to 23 high-performing primary care practices and focused on how these practices distribute functions among the team, use technology to their advantage, improve outcomes with data, and make the job of primary care feasible and enjoyable as a life’s vocation. Innovations identified include (1) proactive planned care, with previsit planning and previsit laboratory tests; (2) sharing clinical care among a team, with expanded rooming protocols, standing orders, and panel management; (3) sharing clerical tasks with collaborative documentation (scribing), nonphysician order entry, and streamlined prescription management; (4) improving communication by verbal messaging and in-box management; and (5) improving team functioning through co-location, team meetings, and work flow mapping. Our observations suggest that a shift from a physician-centric model of work distribution and responsibility to a shared-care model, with a higher level of clinical support staff per physician and frequent forums for communication, can result in high-functioning teams, improved professional satisfaction, and greater joy in practice. PMID:23690328
Linking Guidelines to Electronic Health Record Design for Improved Chronic Disease Management
Barretto, Sistine A.; Warren, Jim; Goodchild, Andrew; Bird, Linda; Heard, Sam; Stumptner, Markus
2003-01-01
The promise of electronic decision support to promote evidence based practice remains elusive in the context of chronic disease management. We examine the problem of achieving a close relationship of Electronic Health Record (EHR) content to other components of a clinical information system (guidelines, decision support and work-flow), particularly linking the decisions made by providers back to the guidelines. We use the openEHR architecture, which allows extension of a core Reference Model via Archetypes to refine the detailed information recording options for specific classes of encounter. We illustrate the use of openEHR for tracking the relationship of a series of clinical encounters to a guideline via a case study of guideline-compliant treatment of hypertension in diabetes. This case study shows the contribution guideline content can have on problem-specific EHR structure and demonstrates the potential for a constructive interaction of electronic decision support and the EHR. PMID:14728135
Gadon, M E; Melius, J M; McDonald, G J; Orgel, D
1994-06-01
Through a leak in the steam heating system, the anticorrosive agent 2-diethylaminoethanol was released into the air of a large office building. Irritative symptoms were experienced by most of the 2500 employees, and 14 workers developed asthma within 3 months of exposure. This study was undertaken to review clinical characteristics of these asthmatics. Environmental exposure monitoring data and medical records were reviewed. Seven of 14 cases were defined as "confirmed" and 7 of 14 as "suspect," using the National Institute for Occupational Safety and Health surveillance case definition of occupational asthma. Spirometry was positive in 4 of 14 of the cases and peak flow testing in 10 of 14. Three cases were diagnosed on the basis of work-related symptoms and physical examination alone. The study suggests that acute exposure to the irritating steam additive 2-diethylaminoethanol was a contributing factor in the development of clinical asthma in this population.
De Gregorio, A; Pedrotti, E; Stevan, G; Bertoncello, A; Morselli, S
2018-01-01
The recent development of new devices that are significantly less invasive, collectively termed minimally invasive glaucoma surgery, offers new perspective of intraocular pressure reduction with less risk, short operating times, and rapid recovery. The aim of this work is to provide a panoramic review of the currently published clinical data to assess the potential role of XEN gel stent (Allergan PLC, Irvine, CA, USA) in the management of glaucoma, which is the only filtering minimally invasive glaucoma surgery device that allows the subconjunctival filtration. The ab interno placement of the XEN gel stent offers an alternative for lowering intraocular pressure in refractory glaucoma as a final step, and in patients intolerant to medical therapy as an early surgical approach with minimum conjunctival tissue disruption, restricted flow to avoid hypotony, and long-term safety.
[Measurement of air leak volume after lung surgery using web-camera].
Onuki, Takamasa; Matsumoto, T
2005-05-01
Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.
De Gregorio, A; Pedrotti, E; Stevan, G; Bertoncello, A; Morselli, S
2018-01-01
The recent development of new devices that are significantly less invasive, collectively termed minimally invasive glaucoma surgery, offers new perspective of intraocular pressure reduction with less risk, short operating times, and rapid recovery. The aim of this work is to provide a panoramic review of the currently published clinical data to assess the potential role of XEN gel stent (Allergan PLC, Irvine, CA, USA) in the management of glaucoma, which is the only filtering minimally invasive glaucoma surgery device that allows the subconjunctival filtration. The ab interno placement of the XEN gel stent offers an alternative for lowering intraocular pressure in refractory glaucoma as a final step, and in patients intolerant to medical therapy as an early surgical approach with minimum conjunctival tissue disruption, restricted flow to avoid hypotony, and long-term safety. PMID:29750009
Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David
2011-01-01
The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui
2017-01-01
Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation. PMID:29084241
Spiral blood pump: conception, development and clinical application of the original project.
Dinkhuysen, Jarbas J; de Andrade, Aron José Pazin; Manrique, Ricardo; Saito, Claudia Sanches Medina; Leme, Juliana; Biscegli, Francisco
2007-01-01
This paper addresses an original project that encompasses the conception, development and clinical application of a helical bypass pump called the Spiral Pump, that uses the association of centrifugal and axial propulsion forces based de the Archimedes principle. This project has obtained a Brazilian Patent and an International Preliminary Report, defining it as an invention. The aim of this work was to evaluate the hemodynamic capacity and the impact of its application on blood cells by means of experimental in vitro tests, including hydrodynamic efficiency, effect on hemolysis and flow visualization. Moreover, in vivo experimental tests were carried out on lambs that were submitted to cardiopulmonary bypass for six hours and in 43 patients submitted to heart bypass surgery using the Spiral Pump. When the rotor-plastic casing gap was 1.5mm, the flow generated was nearly 9 L/min, the pressure was greater than 400 mmHg at 1500 rpm, and the normalized hemolytic indexes were not greater than 0.0375 g/100L in high-flow and pressure conditions. Additionally, by the flow visualization techniques, stagnation was not seen inside the pump nor was turbulence identified at the entrance or exit of the pump, or at the ends of the spindles. In the in vivo tests using cardiopulmonary bypasses for 6 hours in lambs, the pump maintained adequate pressure rates and the free hemoglobin levels ranged between 16.36 mg% and 44.90 mg%. Evaluating the results of the 43 patients who used this pump in heart bypass operations we observed that the free hemoglobin ranged from 9.34 mg% before to 44.16 mg% after surgery, the serum fibrinogen was from 236.65 mg% to 547.26mg%, platelet blood count from 152,465 to 98,139 and the lactic dehydrogenase from 238.12mg% to 547.26mg%. The Activated Coagulation Time was close to 800 seconds during the bypass. The Spiral Pump was very effective in generating adequate flow and pressure and caused no excessive harm to the blood cells.
Lannering, Christina; Ernsth Bravell, Marie; Johansson, Linda
2017-05-01
A structured and systematic care process for preventive work, aimed to reduce falls, pressure ulcers and malnutrition among older people, has been developed in Sweden. The process involves risk assessment, team-based interventions and evaluation of results. Since development, this structured work process has become web-based and has been implemented in a national quality registry called 'Senior Alert' and used countrywide. The aim of this study was to describe nursing staff's experience of preventive work by using the structured preventive care process as outlined by Senior Alert. Eight focus group interviews were conducted during 2015 including staff from nursing homes and home-based nursing care in three municipalities. The interview material was subjected to qualitative content analysis. In this study, both positive and negative opinions were expressed about the process. The systematic and structured work flow seemed to only partly facilitate care providers to improve care quality by making better clinical assessments, performing team-based planned interventions and learning from results. Participants described lack of reliability in the assessments and varying opinions about the structure. Furthermore, organisational structures limited the preventive work. © 2016 John Wiley & Sons Ltd.
Modelling of Seismic and Resistivity Responses during the Injection of CO2 in Sandstone Reservoir
NASA Astrophysics Data System (ADS)
Omar, Muhamad Nizarul Idhafi Bin; Almanna Lubis, Luluan; Nur Arif Zanuri, Muhammad; Ghosh, Deva P.; Irawan, Sonny; Regassa Jufar, Shiferaw
2016-07-01
Enhanced oil recovery plays vital role in production phase in a producing oil field. Initially, in many cases hydrocarbon will naturally flow to the well as respect to the reservoir pressure. But over time, hydrocarbon flow to the well will decrease as the pressure decrease and require recovery method so called enhanced oil recovery (EOR) to recover the hydrocarbon flow. Generally, EOR works by injecting substances, such as carbon dioxide (CO2) to form a pressure difference to establish a constant productive flow of hydrocarbon to production well. Monitoring CO2 performance is crucial in ensuring the right trajectory and pressure differences are established to make sure the technique works in recovering hydrocarbon flow. In this paper, we work on computer simulation method in monitoring CO2 performance by seismic and resistivity model, enabling geoscientists and reservoir engineers to monitor production behaviour as respect to CO2 injection.
Study of the propagation of a plane turbulent jet in flow-through chamber workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laigna, K.Yu.; Potter, E.A.
1988-05-01
The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less
Theoretical investigation of operation modes of MHD generators for energy-bypass engines
NASA Astrophysics Data System (ADS)
Tang, Jingfeng; Li, Nan; Yu, Daren
2014-12-01
A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.
Bennett, Mark J; Rajakaruna, Cha; Bazerbashi, Samer; Webb, Gerry; Gomez-Cano, Mayam; Lloyd, Clinton
2013-06-01
To investigate the combined influence of blood flow and haemodilution with either a miniaturized (Mini-CPB) or a conventional cardiopulmonary bypass (C-CPB) circuit on average oxygen delivery during bypass. The influence of this on clinical outcome, particularly renal dysfunction after routine coronary artery bypass surgery (CABG), was measured. Retrospective analysis in two groups of 160 patients based on the surgeon's preference for bypass circuit. We compared consecutive patients undergoing isolated CABG surgery by two surgeons using Mini-CPB with a matched cohort of patients, from the same period, undergoing isolated CABG surgery by four other surgeons using a C-CPB. No trial-related intervention occurred. Data on bypass circuit parameters and clinical outcomes were acquired from routinely collected data sources. Average cardiopulmonary bypass pump flow was significantly lower with Mini-CPB compared with C-CPB. Mini-CPB resulted in significantly less haemodilution. The resultant calculated average oxygen delivery provided by the two systems was the same. Percentage change in plasma creatinine was significantly and inversely related to the oxygen delivery during CPB. There was no difference in percentage change in plasma creatinine between groups. The risk of having Acute Kidney Injury Network (AKIN) score ≥ 1 increased 1% for every 1 ml min(-1) m(-2) decrease in oxygen delivery (P = 0.0001, OR 0.990, 95% CI 0.984-0.995). Despite aiming for the same target pump flow, periodic limitations of venous return to the pump resulted in a significant reduction in average flow delivered to the patient by Mini-CPB. Less haemodilution compensated for this reduction, so that the average oxygen delivery was the same. The association between oxygen delivery and postoperative change in plasma creatinine was evident in both groups. Further work to understand whether there is a particular cohort of patients who benefit (or are put at risk) by one method of CPB vs the other is warranted.
A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping
NASA Astrophysics Data System (ADS)
Saad, Ashraf A.; Shapiro, Linda G.
2008-03-01
Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.
[Implementation of a new electronic patient record in surgery].
Eggli, S; Holm, J
2001-12-01
The increasing amount of clinical data, intensified interest of patients in medical information, medical quality management and the recent cost explosion in health care systems have forced medical institutions to improve their strategy in handling medical data. In the orthopedic department (3,600 surgeries, 75 beds, 14,000 consultations) software application for comprehensive patient data management has been developed. When implementing the electronic patient history following criteria were evaluated: 1. software evaluation, 2. implementation, 3. work flow, 4. data security/system stability. In the first phase the functional character was defined. Implementation required 3 months after parametrization. The expense amounted to 130,000 DM (30 clients). The training requirements were one afternoon for the secretaries and a 2-h session for the residents. The access speed on medically relevant data averaged under 3 s. The average saving in working hours was approximately 5 h/week for the secretaries and 4 h/week for the residents. The saving in paper amounted to 36,000 sheets/year. In 3 operational years there were 3 server breakdowns. Evaluation of the saving on working hours showed that such a system can amortize within a year. The latest improvements in hardware and software technology made the electronic medical record with integrated quality-control practicable without massive expenditure. The system supplies an extensive platform of information for patient treatment and an instrument to evaluate the efficiency of therapy strategies independent of the clinical field.
Optical multichannel monitoring of skin blood pulsations for cardiovascular assessment
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Erts, Renars; Ozols, Maris
2004-07-01
Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for cardiovascular assessment. The multichannel PPG concept has been developed and clinically verified in this work. Simultaneous data flow from several body locations allows to study the heartbeat pulse wave propagation in real time and to evaluate the vascular resistance. Portable two- and four-channel PPG monitoring devices and special software have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions.
Pre-equilibrium Longitudinal Flow in the IP-Glasma Framework for Pb+Pb Collisions at the LHC
NASA Astrophysics Data System (ADS)
McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles
2017-08-01
In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame-work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.
Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.
2002-01-01
A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.
Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!
Sciagrà, Roberto
2012-01-01
In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760
Bouquin, V; L'Her, E; Moriconi, M; Jobic, Y; Maheu, B; Guillo, P; Paris, A; Pennec, P Y; Boles, J M; Blanc, J J
1998-10-01
New equipment facilitating the use of spontaneous ventilation with positive expiratory pressure (PEP) has become available in France since January 1996. This technique was applied in 38 patients with severe cardiogenic pulmonary oedema and persistent respiratory distress despite high flow classical oxygen therapy and standard treatment. After 1 hour of ventilation with a flow of 220 l/min of 100% oxygen with an average PEP of 7.7 cm H20, a significant improvement of clinical (heart and respiratory rate) and biological parameters (arterial gases) was observed. There were no side effects. Four patients died during the hospital period and only 1 was intubated. Spontaneous ventilation with PEP is a simple technique for coronary care units and, compared with conventional oxygen therapy, it rapidly improves arterial oxygenation, reduces respiratory work and improves conditions of cardiac load. Acute severe cardiogenic pulmonary oedema seems to be an indication of choice, especially in the elderly, where it may help avoid an often controversial intubation.
Huettig, Fabian; Chekhani, Usama; Klink, Andrea; Said, Fadi; Rupp, Frank
2018-06-08
The shark-fin test was modified to convey the clinical application of a single-step/double-mix technique assessing the behavior of two viscosities applied at one point in time. A medium and light body polyether (PE), a medium and light body polyvinylsiloxane (PVS), and a medium as well as heavy and light body vinyl polyether silicone (PVXE) impression material were analyzed solely, and in a layered mixture of 1:1 and 3:1 at working times of 50, 80, and 120 s. The fin heights were measured with a digital ruler. The wettability was measured 50 and 80 s after mixing by drop shape analysis. The results showed a synergistic effect of the medium and light body PE. This was not observed in PVXE and PVS. Interestingly, PVXE showed an antagonistic flow behavior in 3:1 mixture with medium body. PVXE was more hydrophilic than PE and PVS. Future rheological studies should clarify the detected flow effects.
Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas
2006-06-21
The pressure drop-flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 - 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the location and length of the flow reversal zones in dependence on the severity of the disease. The described boundary layer method can be used to simulate frictional forces and wall shear stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions.
Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas
2006-01-01
Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the location and length of the flow reversal zones in dependence on the severity of the disease. Conclusion The described boundary layer method can be used to simulate frictional forces and wall shear stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions. PMID:16790065
Couturier, Brianne A.; Jensen, Ryan; Arias, Nora; Heffron, Michael; Gubler, Elyse; Case, Kristin; Gowans, Jason
2015-01-01
Microscopic examination of feces is a standard laboratory method for diagnosing gastrointestinal parasite infections. In North America, the ovum and parasite (O&P) examination is typically performed using stool that is chemically fixed in polyvinyl alcohol (PVA) and formalin, after which the stool is concentrated by filtration to enhance sensitivity. Mini Parasep solvent-free (SF) tubes allow collection and concentration within a single collection vial. The goal of the study was to determine whether consolidated processing and concentration with the Parasep tubes using an alcohol-based fixative (Alcorfix) provide O&P examinations equivalent to or better than those done by processing of PVA-formalin-fixed stool using a SpinCon concentration device. Parasep tubes revealed filtration performance equivalent to that of the SpinCon concentration device using PVA-formalin-fixed stool containing protozoa. Specimens cocollected in Parasep tubes containing PVA-formalin and Alcorfix revealed comparable morphology and staining for various protozoa. Alcorfix effectively fixed live Cryptosporidium and microsporidia such that morphology and staining were conserved for modified acid-fast and modified trichrome stains. A work flow analysis revealed significant time savings for batches of 10 or 30 O&P specimens in tubes with Alcorfix compared to the amount of time that it took to analyze the same number of specimens in tubes with PVA-formalin. The direct hands-on time savings with Mini Parasep tubes were 17 min and 41 s and 32 min and 1 s for batches of 10 and 30 specimens, respectively. Parasep tubes containing Alcorfix provide significant work flow advantages to laboratories that process medium to high volumes of O&P specimens by streamlining processing and converting to a single tube. These improvements in work flow, reduction of the amount of formalin used in the laboratory, and equivalent microscopy results are attractive advancements in O&P testing for North American diagnostic parasitology laboratories. PMID:26019199
Couturier, Brianne A; Jensen, Ryan; Arias, Nora; Heffron, Michael; Gubler, Elyse; Case, Kristin; Gowans, Jason; Couturier, Marc Roger
2015-08-01
Microscopic examination of feces is a standard laboratory method for diagnosing gastrointestinal parasite infections. In North America, the ovum and parasite (O&P) examination is typically performed using stool that is chemically fixed in polyvinyl alcohol (PVA) and formalin, after which the stool is concentrated by filtration to enhance sensitivity. Mini Parasep solvent-free (SF) tubes allow collection and concentration within a single collection vial. The goal of the study was to determine whether consolidated processing and concentration with the Parasep tubes using an alcohol-based fixative (Alcorfix) provide O&P examinations equivalent to or better than those done by processing of PVA-formalin-fixed stool using a SpinCon concentration device. Parasep tubes revealed filtration performance equivalent to that of the SpinCon concentration device using PVA-formalin-fixed stool containing protozoa. Specimens cocollected in Parasep tubes containing PVA-formalin and Alcorfix revealed comparable morphology and staining for various protozoa. Alcorfix effectively fixed live Cryptosporidium and microsporidia such that morphology and staining were conserved for modified acid-fast and modified trichrome stains. A work flow analysis revealed significant time savings for batches of 10 or 30 O&P specimens in tubes with Alcorfix compared to the amount of time that it took to analyze the same number of specimens in tubes with PVA-formalin. The direct hands-on time savings with Mini Parasep tubes were 17 min and 41 s and 32 min and 1 s for batches of 10 and 30 specimens, respectively. Parasep tubes containing Alcorfix provide significant work flow advantages to laboratories that process medium to high volumes of O&P specimens by streamlining processing and converting to a single tube. These improvements in work flow, reduction of the amount of formalin used in the laboratory, and equivalent microscopy results are attractive advancements in O&P testing for North American diagnostic parasitology laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ribera, Jordi; Zamora, Lurdes; Juncà, Jordi; Rodríguez, Inés; Marcé, Silvia; Cabezón, Marta; Millá, Fuensanta
2013-07-25
In up to 5-15% of studies of lymphoproliferative disorders (LPD) flow cytometry (FCM) or immunomorphologic methods cannot discriminate malignant from reactive processes. The aim of this work was to determine the usefulness of PCR for solving these diagnostic uncertainties. We analyzed IGH and TCRγ genes by PCR in 106 samples with inconclusive FCM results. A clonal result was registered in 36/106 studies, with a LPD being confirmed in 27 (75%) of these cases. Specifically, 9/9 IGH clonal and 16/25 TCRγ clonal results were finally diagnosed with LPD. Additionally, 2 clonal TCRγ samples with suspicion of undefined LPD were finally diagnosed with T LPD. Although polyclonal results were obtained in 47 of the cases studied (38 IGH and 9 TCRγ), hematologic neoplasms were diagnosed in 4/38 IGH polyclonal and in 1/9 TCRγ polyclonal studies. There were also 14 PCR polyclonal results (4 IGH, 10 TCRγ), albeit non-conclusive. Of these, 2/4 were eventually diagnosed with B-cell lymphoma and 3/10 with T-cell LPD. In 8 IGH samples the results of PCR techniques were non-informative but in 3/8 cases a B lymphoma was finally confirmed. We concluded that PCR is a useful technique to identify LPD when FCM is inconclusive. A PCR clonal B result is indicative of malignancy but IGH polyclonal and non-conclusive results do not exclude lymphoid neoplasms. Interpretation of T-cell clonality should be based on all the available clinical and analytical data. © 2013 Clinical Cytometry Society. Copyright © 2013 Clinical Cytometry Society.
Hoonakker, Peter L T; Carayon, Pascale; Cartmill, Randi S
2017-04-01
Secure messaging is a relatively new addition to health information technology (IT). Several studies have examined the impact of secure messaging on (clinical) outcomes but very few studies have examined the impact on workflow in primary care clinics. In this study we examined the impact of secure messaging on workflow of clinicians, staff and patients. We used a multiple case study design with multiple data collections methods (observation, interviews and survey). Results show that secure messaging has the potential to improve communication and information flow and the organization of work in primary care clinics, partly due to the possibility of asynchronous communication. However, secure messaging can also have a negative effect on communication and increase workload, especially if patients send messages that are not appropriate for the secure messaging medium (for example, messages that are too long, complex, ambiguous, or inappropriate). Results show that clinicians are ambivalent about secure messaging. Secure messaging can add to their workload, especially if there is high message volume, and currently they are not compensated for these activities. Staff is -especially compared to clinicians- relatively positive about secure messaging and patients are overall very satisfied with secure messaging. Finally, clinicians, staff and patients think that secure messaging can have a positive effect on quality of care and patient safety. Secure messaging is a tool that has the potential to improve communication and information flow. However, the potential of secure messaging to improve workflow is dependent on the way it is implemented and used. Copyright © 2017 Elsevier B.V. All rights reserved.
Berry, Scott A; Laam, Leslie A; Wary, Andrea A; Mateer, Harry O; Cassagnol, Hans P; McKinley, Karen E; Nolan, Ruth A
2011-05-01
Geisinger Health System (GHS) has applied its ProvenCare model to demonstrate that a large integrated health care delivery system, enabled by an electronic health record (EHR), could reengineer a complicated clinical process, reduce unwarranted variation, and provide evidence-based care for patients with a specified clinical condition. In 2007 GHS began to apply the model to a more complicated, longer-term condition of "wellness"--perinatal care. ADAPTING PROVENCARE TO PERINATAL CARE: The ProvenCare Perinatal initiative was more complex than the five previous ProvenCare endeavors in terms of breadth, scope, and duration. Each of the 22 sites created a process flow map to depict the current, real-time process at each location. The local practice site providers-physicians and mid-level practitioners-reached consensus on 103 unique best practice measures (BPMs), which would be tracked for every patient. These maps were then used to create a single standardized pathway that included the BPMs but also preserved some unique care offerings that reflected the needs of the local context. A nine-phase methodology, expanded from the previous six-phase model, was implemented on schedule. Pre- to postimplementation improvement occurred for all seven BPMs or BPM bundles that were considered the most clinically relevant, with five statistically significant. In addition, the rate of primary cesarean sections decreased by 32%, and birth trauma remained unchanged as the number of vaginal births increased. Preliminary experience suggests that integrating evidence/guideline-based best practices into work flows in inpatient and outpatient settings can achieve improvements in daily patient care processes and outcomes.
Gewirtz, Henry; Dilsizian, Vasken
2016-05-31
In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.
Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow.
Matula, C; Rössler, K; Reddy, M; Schindler, E; Koos, W T
1998-01-01
Image-guided surgery is currently considered to be of undisputed value in microsurgical and endoscopical neurosurgery, but one of its major drawbacks is the degradation of accuracy during frameless stereotactic neuronavigation due to brain and/or lesion shift. A computed tomography (CT) scanner system (Philips Tomoscan M) developed for the operating room was connected to a pointer device navigation system for image-guided surgery (Philips EasyGuide system) in order to provide an integrated solution to this problem, and the advantages of this combination were evaluated in 20 cases (15 microsurgical and 5 endoscopic). The integration of the scanner into the operating room setup was successful in all procedures. The patients were positioned on a specially developed scanner table, which permitted movement to a scanning position then back to the operating position at any time during surgery. Contrast-enhanced preoperative CCTs performed following positioning and draping were of high quality in all cases, because a radiolucent head fixation technique was used. The accuracy achieved with this combination was significantly better (1.6:1.22.2). The overall concept is one of working in a closed system where everything is done in the same room, and the efficiency of this is clearly proven in different ways. The most important fact is the time saved in the overall treatment process (about 55 h for one operating room over a 6-month period). The combination of an intraoperative CCT scanner with the pointer device neuronavigation system permits not only the intraoperative control of resection of brain tumors, but also (in about 20% of cases) the identification of otherwise invisible residual tumor tissue by intraoperative update of the neuronavigation data set. Additionally, an image update solves the problem of intraoperative brain and/or tumor shifts during image-guided resection. Having the option of making an intraoperative quality check at any time leads to significantly increased efficiency, improves the operating work flow because of the closed-system concept, and offers an integrated solution for improved patient work flow and clinical outcome.
Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin
2010-03-01
Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.
Møller-Helgestad, Ole K; Poulsen, Christian B; Christiansen, Evald H; Lassen, Jens F; Ravn, Hanne B
2015-01-15
Cardiogenic shock as a complication to an acute myocardial infarction has an unacceptably high death rate that has not changed for the last 15years. Mortality is partly related to organ hypoperfusion and mechanical assist devices are used for the most severe cases but we do not know which assist device is the best option. Therefore, we have investigated how an IABP and an Impella®-pump influenced blood flow to the brain, heart and kidneys, in a closed-chest porcine model of severe left ventricular failure. 13 pigs were anesthetised and left ventricular failure was induced by occluding the proximal LAD for 45min followed by 30min of reperfusion. Blood flow was measured in the carotid artery, the LAD, and the renal artery. The Impella® and IABP were inserted via the femoral arteries, and the two devices were tested individually and combined after induction of heart failure. Carotid- (p=0.01) and renal blood flow (p=0.045) were higher on Impella®-support, compared to no support. None of the devices altered the blood flow in the LAD. Cardiac power output (p<0.005) and left ventricular work (p<0.00) were also higher on Impella®-support compared to no support. Haemodynamics and blood flow to the brain and kidneys were significantly better on Impella®-support, suggesting that the Impella® is superior to the IABP in a state of ischaemia induced left ventricular failure. These data, however, needs to be confirmed in a proper clinical trial with patients in cardiogenic shock. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anaya, A. A.; Padilla, I. Y.; Macchiavelli, R. E.
2011-12-01
Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are chlorinated organic contaminants and phthalates derived from industrial solvents and plastic by-products. These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the development of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes. Multidimensional, laboratory-scale Geo-Hydrobed models were developed and tested for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entailed making a series of point injections in wells while monitoring the hydraulic response in other wells. Statistical mixed models were applied to spatial probabilities of hydraulic response and weighted injected volume data, and were used to determinate the best spatial correlation structure to represent paths of preferential flow in the limestone units under different groundwater flow regimes. Preliminary testing of the karstified models show that the system can be used to represent the variable transport regime characterized by conduit and diffuses flow in the karst systems. Initial hydraulic characterization indicates a highly heterogeneous system resulting in large preferential flow components. Future works involve characterization of dual porosity system using conservative tracers, fate and transport experiments using phthalates and chlorinated solvents, geo-temporal statistical modeling, and the testing of "green" remediation technologies in karst groundwater. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).
Harle, Christopher A; Listhaus, Alyson; Covarrubias, Constanza M; Schmidt, Siegfried Of; Mackey, Sean; Carek, Peter J; Fillingim, Roger B; Hurley, Robert W
2016-01-01
In this case report, the authors describe the implementation of a system for collecting patient-reported outcomes and integrating results in an electronic health record. The objective was to identify lessons learned in overcoming barriers to collecting and integrating patient-reported outcomes in an electronic health record. The authors analyzed qualitative data in 42 documents collected from system development meetings, written feedback from users, and clinical observations with practice staff, providers, and patients. Guided by the Unified Theory on the Adoption and Use of Information Technology, 5 emergent themes were identified. Two barriers emerged: (i) uncertain clinical benefit and (ii) time, work flow, and effort constraints. Three facilitators emerged: (iii) process automation, (iv) usable system interfaces, and (v) collecting patient-reported outcomes for the right patient at the right time. For electronic health record-integrated patient-reported outcomes to succeed as useful clinical tools, system designers must ensure the clinical relevance of the information being collected while minimizing provider, staff, and patient burden. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of flow rate on the migration of different plasticizers from PVC infusion medical devices
Eljezi, Teuta; Clauson, Hélène; Lambert, Céline; Bouattour, Yassine; Chennell, Philip; Pereira, Bruno; Sautou, Valérie
2018-01-01
Infusion medical devices (MDs) used in hospitals are often made of plasticized polyvinylchloride (PVC). These plasticizers may leach out into infused solutions during clinical practice, especially during risk-situations, e.g multiple infusions in Intensive Care Units and thus may enter into contact with the patients. The migrability of the plasticizers is dependent of several clinical parameters such as temperature, contact time, nature of the simulant, etc… However, no data is available about the influence of the flow rate at which drug solutions are administrated. In this study, we evaluated the impact of different flow rates on the release of the different plasticizers during an infusion procedure in order to assess if they could expose the patients to more toxic amounts of plasticizers. Migration assays with different PVC infusion sets and extension lines were performed with different flow rates that are used in clinical practice during 1h, 2h, 4h, 8h and 24h, using a lipophilic drug simulant. From a clinical point of view, the results showed that, regardless of the plasticizer, the faster the flow rate, the higher the infused volume and the higher the quantities of plasticizers released, both from infusion sets and extension lines, leading to higher patient exposure. However, physically, there was no significant difference of the migration kinetics linked to the flow rate for a same medical device, reflecting complex interactions between the PVC matrix and the simulant. The migration was especially dependent on the nature and the composition of the medical device. PMID:29474357
Clinical Investigation Program.
1979-10-01
It has been established by a series of dog experiments using the-e-e-ctromagnetic flow meter that the blood flow in the inferior vena cava between...by thermodilution. Hepatic vein blood flow could be estimated by subtraction of the blood flow in the vena cava at the level of the renal veins from...the vena cava blood flow at the level of the diaphragm. This should be liver blood flow. It should be possible to sample pure hepatic vein blood by
Andrew, Nadine E; Sundararajan, Vijaya; Thrift, Amanda G; Kilkenny, Monique F; Katzenellenbogen, Judith; Flack, Felicity; Gattellari, Melina; Boyd, James H; Anderson, Phil; Grabsch, Brenda; Lannin, Natasha A; Johnston, Trisha; Chen, Ying; Cadilhac, Dominique A
2016-10-01
To describe the challenges of obtaining state and nationally held data for linkage to a non-government national clinical registry. We reviewed processes negotiated to achieve linkage between the Australian Stroke Clinical Registry (AuSCR), the National Death Index, and state held hospital data. Minutes from working group meetings, national workshop meetings, and documented communications with health department staff were reviewed and summarised. Time from first application to receipt of data was more than two years for most state data-sets. Several challenges were unique to linkages involving identifiable data from a non-government clinical registry. Concerns about consent, the re-identification of data, duality of data custodian roles and data ownership were raised. Requirements involved the development of data flow methods, separating roles and multiple governance and ethics approvals. Approval to link death data presented the fewest barriers. To our knowledge, this is the first time in Australia that person-level data from a clinical quality registry has been linked to hospital and mortality data across multiple Australian jurisdictions. Implications for Public Health: The administrative load of obtaining linked data makes projects such as this burdensome but not impossible. An improved national centralised strategy for data linkage in Australia is urgently needed. © 2016 Public Health Association of Australia.
Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong
2016-01-01
Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both “stiff” and “flexible” materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to “stiff” materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to “flexible” materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped “flexible” piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor. PMID:27739484
Chen, Yu; Mu, Xiaojing; Wang, Tao; Ren, Weiwei; Yang, Ya; Wang, Zhong Lin; Sun, Chengliang; Gu, Alex Yuandong
2016-10-14
Here, we report a stable and predictable aero-elastic motion in the flow-driven energy harvester, which is different from flapping and vortex-induced-vibration (VIV). A unified theoretical frame work that describes the flutter phenomenon observed in both "stiff" and "flexible" materials for flow driven energy harvester was presented in this work. We prove flutter in both types of materials is the results of the coupled effects of torsional and bending modes. Compared to "stiff" materials, which has a flow velocity-independent flutter frequency, flexible material presents a flutter frequency that almost linearly scales with the flow velocity. Specific to "flexible" materials, pre-stress modulates the frequency range in which flutter occurs. It is experimentally observed that a double-clamped "flexible" piezoelectric P(VDF-TrFE) thin belt, when driven into the flutter state, yields a 1,000 times increase in the output voltage compared to that of the non-fluttered state. At a fixed flow velocity, increase in pre-stress level of the P(VDF-TrFE) thin belt up-shifts the flutter frequency. In addition, this work allows the rational design of flexible piezoelectric devices, including flow-driven energy harvester, triboelectric energy harvester, and self-powered wireless flow speed sensor.
Enacting Work Space in the Flow: Sensemaking about Mobile Practices and Blurring Boundaries
ERIC Educational Resources Information Center
Davis, Loni
2013-01-01
An increasing portion of the contemporary workforce is using mobile devices to create new kinds of work-space flows characterized by emergence, liquidity, and the blurring of all kinds of boundaries. This changes the traditional notion of the term "workplace." The present study focuses on how people enact and make sense of new work space…
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Automatic-Control System for Safer Brazing
NASA Technical Reports Server (NTRS)
Stein, J. A.; Vanasse, M. A.
1986-01-01
Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Impact of High-Flow Nasal Cannula Use on Neonatal Respiratory Support Patterns and Length of Stay.
Hoffman, Suma B; Terrell, Natalie; Driscoll, Colleen Hughes; Davis, Natalie L
2016-10-01
Heated humidified high-flow nasal cannula (HFNC) is thought to be comparable with nasal CPAP. The effect of multimodality mid-level respiratory support use in the neonatal ICU is unknown. The objective of this work was to evaluate the effect of introducing HFNC on length of respiratory support and stay. A chart review was conducted on subjects at 24-32 weeks gestation requiring mid-level support (HFNC/nasal CPAP) 1 y before and after HFNC implementation. The 2 groups were compared for clinical and demographic data using t test or chi-square analysis. Further, multivariate linear and logistic regression was done to determine significant risk factors for outcomes controlling for covariates. Eighty subjects were eligible in the pre-HFNC group, and 83 were eligible in the post-HFNC group. Subjects were similar in their baseline characteristics. In clinical outcomes, the post-HFNC group had higher rates of retinopathy of prematurity (P = .02) and a trend toward higher bronchopulmonary dysplasia rates (P = .063). The post-HFNC subjects had longer duration of mid-level support and were older at the time they were weaned to stable low-flow nasal cannula (P < .05). Although the length of respiratory support and stay and corrected gestational age at discharge were similar, those in the pre-HFNC period were more likely to be receiving full oral feeds and be discharged home versus being transferred to an intermediate care facility (P < .05). HFNC introduction was significantly associated with a longer duration of mid-level respiratory support, decrease in oral feeding at discharge, increased retinopathy of prematurity rates, and higher use of intermediate care facilities, leading us to examine our noninvasive ventilation and weaning strategies. Copyright © 2016 by Daedalus Enterprises.
Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels
Nivedita, Nivedita; Ligrani, Phillip; Papautsky, Ian
2017-01-01
A wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude. In this work, we investigate these secondary flows in low aspect ratio spiral rectangular microchannels and define their development with respect to the channel aspect ratio and Dean number. This work is the first to experimentally and numerically investigate Dean flows in microchannels for Re > 100, and show presence of secondary Dean vortices beyond a critical Dean number. We further demonstrate the impact of these multiple vortices on particle and cell focusing. Ultimately, this work offers new insights into secondary flow instabilities for low-aspect ratio, spiral microchannels, with improved flow models for design of more precise and efficient microfluidic devices for applications such as cell sorting and micromixing. PMID:28281579
Sobczynski, Daniel J; Eniola-Adefeso, Omolola
2017-06-01
The high abundance of immunoglobulins (Igs) in the plasma protein corona on poly(lactic-co-glycolic) acid (PLGA)-based vascular-targeted carriers (VTCs) has previously been shown to reduce their adhesion to activated endothelial cells (aECs) in human blood flow. However, the relative role of individual Ig classes (e.g., IgG, IgA, and IgM) in causing adhesion reduction remains largely unknown. Here, we characterized the influence of specific Ig classes in prescribing the binding efficiency of PLGA nano-sized VTCs in blood flow. Specifically, we evaluated the flow adhesion to aECs of PLGA VTCs with systematic depletion of various Igs in their corona. Adhesion reduction was largely eliminated for PLGA VTCs when all Igs were removed from the corona. Furthermore, re-addition of IgA or IgM to the Igs-depleted corona reinstated the low adhesion of PLGA VTCs, as evidenced by ∼40-70% reduction relative to particles with an Igs-deficient corona. However, re-addition of a high concentration of IgG to the Igs-depleted corona did not cause significant adhesion reduction. Overall, the presented results reveal that PLGA VTC adhesion reduction in blood flows is primarily driven by high adsorption of IgA and IgM in the particle corona. Pre-coating of albumin on PLGA VTCs mitigated the extent of adhesion reduction in plasma for some donors but was largely ineffective in general. Overall, this work may shed light into effective control of protein corona composition, thereby enhancing VTC functionality in vivo for eventual clinical use.
Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree
NASA Astrophysics Data System (ADS)
Mauroy, Benjamin; Fausser, Christian; Pelca, Dominique; Merckx, Jacques; Flaud, Patrice
2011-10-01
Mucociliary clearance and cough are the two main natural mucus draining methods in the bronchial tree. If they are affected by a pathology, they can become insufficient or even ineffective, then therapeutic draining of mucus plays a critical role to keep mucus levels in the lungs acceptable. The manipulations of physical therapists are known to be very efficient clinically but they are mostly empirical since the biophysical mechanisms involved in these manipulations have never been studied. We develop in this work a model of mucus clearance in idealized rigid human bronchial trees and focus our study on the interaction between (1) tree geometry, (2) mucus physical properties and (3) amplitude of flow rate in the tree. The mucus is considered as a Bingham fluid (gel-like) which is moved upward in the tree thanks to its viscous interaction with air flow. Our studies point out the important roles played both by the geometry and by the physical properties of mucus (yield stress and viscosity). More particularly, the yield stress has to be overcome to make mucus flow. Air flow rate and yield stress determine the maximal possible mucus thickness in each branch of the tree at equilibrium. This forms a specific distribution of mucus in the tree whose characteristics are strongly related to the multi-scaled structure of the tree. The behavior of any mucus distribution is then dependent on this distribution. Finally, our results indicate that increasing air flow rates ought to be more efficient to drain mucus out of the bronchial tree while minimizing patient discomfort.
Mauri, Tommaso; Galazzi, Alessandro; Binda, Filippo; Masciopinto, Laura; Corcione, Nadia; Carlesso, Eleonora; Lazzeri, Marta; Spinelli, Elena; Tubiolo, Daniela; Volta, Carlo Alberto; Adamini, Ileana; Pesenti, Antonio; Grasselli, Giacomo
2018-05-09
The high-flow nasal cannula (HFNC) delivers up to 60 l/min of humidified air/oxygen blend at a temperature close to that of the human body. In this study, we tested whether higher temperature and flow decrease patient comfort. In more severe patients, instead, we hypothesized that higher flow might be associated with improved comfort. A prospective, randomized, cross-over study was performed on 40 acute hypoxemic respiratory failure (AHRF) patients (PaO 2 /FiO 2 ≤ 300 + pulmonary infiltrates + exclusion of cardiogenic edema) supported by HFNC. The primary outcome was the assessment of patient comfort during HFNC delivery at increasing flow and temperature. Two flows (30 and 60 l/min), each combined with two temperatures (31 and 37 °C), were randomly applied for 20 min (four steps per patient), leaving clinical FiO 2 unchanged. Toward the end of each step, the following were recorded: comfort by Visual Numerical Scale ranging between 1 (extreme discomfort) and 5 (very comfortable), together with respiratory parameters. A subgroup of more severe patients was defined by clinical FiO 2 ≥ 45%. Patient comfort was reported as significantly higher during steps at the lower temperature (31 °C) in comparison to 37 °C, with the HFNC set at both 30 and 60 l/min (p < 0.0001). Higher flow, however, was not associated with poorer comfort. In the subgroup of patients with clinical FiO 2 ≥ 45%, both lower temperature (31 °C) and higher HFNC flow (60 l/min) led to higher comfort (p < 0.01). HFNC temperature seems to significantly impact the comfort of AHRF patients: for equal flow, lower temperature could be more comfortable. Higher flow does not decrease patient comfort; at variance, it improves comfort in the more severely hypoxemic patient.
NASA Technical Reports Server (NTRS)
Wilkinson, John; Johnson, Earl
1991-01-01
The work flow assistant (WFA) is an advanced technology project under the shuttle processing data management system (SPDMS) at Kennedy Space Center (KSC). It will be utilized for short range scheduling, controlling work flow on the floor, and providing near real-time status for all major space transportation systems (STS) work centers at KSC. It will increase personnel and STS safety and improve productivity through deeper active scheduling that includes tracking and correlation of STS and ground support equipment (GSE) configuration and work. It will also provide greater accessibility to this data. WFA defines a standards concept for scheduling data which permits both commercial off-the-shelf (COTS) scheduling tools and WFA developed applications to be reused. WFA will utilize industry standard languages and workstations to achieve a scalable, adaptable, and portable architecture which may be used at other sites.
Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.
2013-01-01
Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000
Bactericidal effects of bioactive glasses on clinically important aerobic bacteria.
Munukka, Eveliina; Leppäranta, Outi; Korkeamäki, Mika; Vaahtio, Minna; Peltola, Timo; Zhang, Di; Hupa, Leena; Ylänen, Heimo; Salonen, Jukka I; Viljanen, Matti K; Eerola, Erkki
2008-01-01
Bioactive glasses (BAGs) have been studied for decades for clinical use, and they have found many dental and orthopedic applications. BAGs have also been shown to have an antibacterial effect e.g., on some oral microorganisms. In this extensive work we show that six powdered BAGs and two sol-gel derived materials have a clear antibacterial effect on 29 clinically important bacterial species. We also incorporated a rapid and accurate flow cytometric (FCM) method to calculate and standardize the numbers of viable bacteria inoculated in the suspensions used in the tests for antibacterial activity. In all materials tested growth inhibition could be demonstrated, although the concentration and time needed for the effect varied depending on the BAG. The most effective glass was S53P4, which had a clear growth-inhibitory effect on all pathogens tested. The sol-gel derived materials CaPSiO and CaPSiO II also showed a strong antibacterial effect. In summary, BAGs were found to clearly inhibit the growth of a wide selection of bacterial species causing e.g., infections on the surfaces of prostheses in the body after implantation.
Information technology model for evaluating emergency medicine teaching
NASA Astrophysics Data System (ADS)
Vorbach, James; Ryan, James
1996-02-01
This paper describes work in progress to develop an Information Technology (IT) model and supporting information system for the evaluation of clinical teaching in the Emergency Medicine (EM) Department of North Shore University Hospital. In the academic hospital setting student physicians, i.e. residents, and faculty function daily in their dual roles as teachers and students respectively, and as health care providers. Databases exist that are used to evaluate both groups in either academic or clinical performance, but rarely has this information been integrated to analyze the relationship between academic performance and the ability to care for patients. The goal of the IT model is to improve the quality of teaching of EM physicians by enabling the development of integrable metrics for faculty and resident evaluation. The IT model will include (1) methods for tracking residents in order to develop experimental databases; (2) methods to integrate lecture evaluation, clinical performance, resident evaluation, and quality assurance databases; and (3) a patient flow system to monitor patient rooms and the waiting area in the Emergency Medicine Department, to record and display status of medical orders, and to collect data for analyses.
Shapiro, M; Ollenschleger, M D; Baccin, C; Becske, T; Spiegel, G R; Wang, Y; Song, X; Raz, E; Zumofen, D; Potts, M B; Nelson, P K
2015-11-01
Foreign material emboli following cerebral, cardiac, and peripheral catheterizations have been reported since the mid-1990s. Catheter coatings have been frequently implicated. The most recent surge of interest in this phenomenon within the neurointerventional community is associated with procedures using flow-diversion devices for the treatment of cerebral aneurysms. Following coil-supported Pipeline embolization in 4 cases and stent-supported coiling in 1, 5 patients developed multiple subcentimeter enhancing lesions, usually with surrounding edema and variable magnetic susceptibility in the vascular territories of the treated aneurysms. Conventional angiography findings were unrevealing. Laboratory work-up showed mild CSF protein elevation with no leukocytosis. Brain biopsy in 2 cases revealed granulomatous angiitis encasing foreign material, identical in stain appearance to a polyvinylpyrrolidone catheter coating. Corticosteroid administration typically produced clinical improvement. A heterogeneous radiographic and clinical course was noted, with rise and fall in the number of enhancing lesions in 2 patients and persistence in others. The etiology may be related to widespread adoption of increasingly sophisticated catheterization techniques. © 2015 by American Journal of Neuroradiology.
Timely response to secure messages from primary care patients.
Rohrer, James E; North, Frederick; Angstman, Kurt B; Oberhelman, Sara S; Meunier, Matthew R
2013-01-01
To assess delays in response to patient secure e-mail messages in primary care. Secure electronic messages are initiated by primary care patients. Timely response is necessary for patient safety and quality. A database of secure messages. A random sample of 353 secure electronic messages initiated by primary care patients treated in 4 clinics. Message not opened after 12 hours or messages not responded to after 36 hours. A total of 8.5% of electronic messages were not opened within 12 hours, and 17.6% did not receive a response in 36 hours. Clinic location, being a clinic employee, and patient sex were not related to delays. Patients older than 50 years were more likely to receive a delayed response (25.7% delayed, P = .013). The risk of both kinds of delays was higher on weekends (P < .001 for both). The e-mail message system resulted in high rates of delayed response. Delays were concentrated on weekends (Friday-Sunday). Reducing delayed responses may require automatic rerouting of messages to message centers staffed 24-7 or other mechanisms to manage this after-hours work flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron
2010-12-14
A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least amore » portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.« less
Nocke, H; Meyer, F; Lessmann, V
2014-10-01
To be able to evaluate properly a vascular problem, basic concepts of vascular physiology need to be considered, as they have been taught in physiology for a long time. This article deals with selected definitions and laws of passive vascular mechanics, subdivided into parameters of vascular filling and parameters of vascular flow. PARAMETERS OF VASCULAR FILLING: During vascular filling the transmural pressure distends the vascular wall until it is balanced by the wall tension. The extent of this distension up to the point of balance depends on the elasticity of the wall. Transmural pressure, wall tension and elasticity are defined, and their respective importance is described by clinical examples, e.g. aneurysm and varix. PARAMETERS OF VASCULAR FLOW: The vascular flow can be divided into stationary and pulsating components. Both components are relevant for the bloodstream. Since the blood flow is directed in the circuit, it can be understood in first approximation as stationary ("direct current").The direct current model uses only the average values of the pulsating variables. The great advantage of the direct current model is that it can be described with simple laws, which are not valid without reservation, but often allow a first theoretical approach to a vascular problem: Ohm's law, driving pressure, flow resistance, Hagen-Poiseuille law, wall shear stress, law of continuity, Bernoulli's equation and Reynold's number are described and associated with clinical examples.The heart is a pressure-suction pump and produces a pulsating flow, the pulse. The pulse runs with pulse wave velocity, which is much larger than the blood flow velocity, through the arterial vascular system. During propagation, the pulse has to overcome the wave resistance (impedance). Wherever the wave resistance changes, e.g., at vascular bifurcations and in the periphery, it comes to reflections. The incident (forward) and reflected (backward) waves are superimposed to yield the resulting pulse wave. This pulse wave allows one to distinguish pressure and flow pulse by measurement. Both are described separately, and their respective clinical meaning is illustrated by appropriate examples, e.g., arterial stiffness and pre-/postocclusive high/low resistance flow, respectively. Georg Thieme Verlag KG Stuttgart · New York.
Higher-level simulations of turbulent flows
NASA Technical Reports Server (NTRS)
Ferziger, J. H.
1981-01-01
The fundamentals of large eddy simulation are considered and the approaches to it are compared. Subgrid scale models and the development of models for the Reynolds-averaged equations are discussed as well as the use of full simulation in testing these models. Numerical methods used in simulating large eddies, the simulation of homogeneous flows, and results from full and large scale eddy simulations of such flows are examined. Free shear flows are considered with emphasis on the mixing layer and wake simulation. Wall-bounded flow (channel flow) and recent work on the boundary layer are also discussed. Applications of large eddy simulation and full simulation in meteorological and environmental contexts are included along with a look at the direction in which work is proceeding and what can be expected from higher-level simulation in the future.
NASA Astrophysics Data System (ADS)
Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.
2017-11-01
A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.
Hudson, John M; Williams, Ross; Milot, Laurent; Wei, Qifeng; Jago, James; Burns, Peter N
2017-03-01
The goal of this study was to evaluate the accuracy of a non-invasive C-plane Doppler estimation of pulsatile blood flow in the lower abdominal vessels of a porcine model. Doppler ultrasound measurements from a matrix array transducer system were compared with invasive volume flow measurements made on the same vessels with a surgically implanted ultrasonic transit-time flow probe. For volume flow rates ranging from 60 to 750 mL/min, agreement was very good, with a Pearson correlation coefficient of 0.97 (p < 0.0001) and a mean bias of -4.2%. The combination of 2-D matrix array technology and fast processing gives this Doppler method clinical potential, as many of the user- and system-dependent parameters of previous methods, including explicit vessel angle and diameter measurements, are eliminated. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
LEAN SIX SIGMA TECHNIQUES TO IMPROVE OPHTHALMOLOGY CLINIC EFFICIENCY.
Ciulla, Thomas A; Tatikonda, Mohan V; ElMaraghi, Yehya A; Hussain, Rehan M; Hill, Amanda L; Clary, Julie M; Hattab, Eyas
2017-07-18
Ophthalmologists serve an increasing volume of a growing elderly population undergoing increasingly complex outpatient medical care, including extensive diagnostic testing and treatment. The resulting prolonged patient visit times ("patient flow times") limit quality, patient and employee satisfaction, and represent waste. Lean Six Sigma process improvement was used in a vitreoretinal practice to decrease patient flow time, demonstrating that this approach can yield significant improvement in health care. Process flow maps were created to determine the most common care pathways within clinic. Three months' visits from the electronic medical record system, which tracks patient task times at each process step in the office were collected. Care tasks and care pathways consuming the greatest time and variation were identified and modified. Follow-up analysis from 6 weeks' visits was conducted to assess improvement. Nearly all patients took one of five paths through the office. Patient flow was redesigned to reduce waiting room time by having staff members immediately start patients into one of those five paths; staffing was adjusted to address high demand tasks, and scheduling was optimized around derived predictors of patient flow times. Follow-up analysis revealed a statistically significant decline in mean patient flow time by 18% and inpatient flow time SD by 4.6%. Patient and employee satisfaction scores improved. Manufacturing industry techniques, such as Lean and Six Sigma, can be used to improve patient care, minimize waste, and enhance patient and staff satisfaction in outpatient clinics.
1983-06-01
PANEL WORKING GROUP 14 on SUITABLE AVERAGING TECHNIQUES IN NON-UNIFORM INTERNAL FLOWS Edited by M.Pianko Office National d’Etudes et de...d’Etudes et de Recherches Aerospatiales Pratt and Whitney Government Products Division Rocketdyne Division of Rockwell International , Inc. Teledyne CAE...actions exerted by individual components on the gas flow must be known. These specific component effects are distributed internally within the
Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed
NASA Technical Reports Server (NTRS)
Tian, Ye; Song, Qi; Cattafesta, Louis
2005-01-01
This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.
Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi
2015-01-01
Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.
True color blood flow imaging using a high-speed laser photography system
NASA Astrophysics Data System (ADS)
Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi
2012-10-01
Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.
Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models
NASA Astrophysics Data System (ADS)
Anaya, A. A.; Padilla, I. Y.
2012-12-01
Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes indicates a highly heterogeneous system resulting in large preferential flow components. The distributions are highly correlated with statistically-developed spatial flow models. High degree of tailing in breakthrough curves indicate significant amount of mass limitations, particularly in diffuse flow regions. Higher flow rates in the system result in increasing preferential flow region volumes, but lower mass transfer limitations. Future work will involve experiments with non-aqueous phase liquid TCE, DEHP, and a mixture of these, and geo-temporal statistical modeling. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).
Coggins, Marie A; Healy, Catherine B; Lee, Taekhee; Harper, Martin
2014-01-01
Restoration stone work regularly involves work with high-silica-content materials (e.g., sandstone), but low-silica-content materials (<2 % quartz) such as limestone and lime mortar are also used. A combination of short sample duration and low silica content makes the quantification of worker exposure to respirable crystalline silica (RCS) difficult. This problem will be further compounded by the introduction of lower occupational exposure standards for RCS. The objective of this work was to determine whether higher-flow samplers might be an effective tool in characterizing lower RCS concentrations. A short study was performed to evaluate the performance of three high-flow samplers (FSP10, CIP10-R, and GK2.69) using side-by-side sampling with low-flow samplers (SIMPEDS and 10-mm nylon cyclones) for RCS exposure measurement at a restoration stonemasonry field site. A total of 19 side-by-side sample replicates for each high-flow and low-flow sampler pair were collected from work tasks involving limestone and sandstone. Most of the RCS (quartz) masses collected with the high-flow-rate samplers were above the limit of detection (62 % to 84 %) relative to the low-flow-rate samplers (58 % to 78 %). The average of the respirable mass concentration ratios for CIP10-R/SIMPEDS, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs and the range of the quartz concentration ratios for the CIP10-R/SIMPEDS, CIP10-R/10-mm nylon, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs included unity with an average close to unity, indicating no likely difference between the reported values for each sampler. Workers reported problems related to the weight of the sampling pumps for the high-flow-rate samplers. Respirable mass concentration data suggest that the high-flow-rate samplers evaluated would be appropriate for sampling respirable dust concentrations during restoration stone work. Results from the comparison of average quartz concentration ratios between high-and low-flow samplers suggest that the higher mass collected by the high-flow-rate samplers did not interfere with the quartz measurement. A sig-nificant portion of the data collected with the high-flow-rate samplers (>82 %) were greater than the limit of detection, which indicates that these samplers are suitable for quantifying exposures, even with low-quartz materials.
[Feasibility Study on Digital Signal Processor and Gear Pump of Uroflowmeter Calibration Device].
Yuan, Qing; Ji, Jun; Gao, Jiashuo; Wang, Lixin; Xiao, Hong
2016-08-01
It will cause hidden trouble on clinical application if the uroflowmeter is out of control.This paper introduces a scheme of uroflowmeter calibration device based on digital signal processor(DSP)and gear pump and shows studies of its feasibility.According to the research plan,we analyzed its stability,repeatability and linearity by building a testing system and carried out experiments on it.The flow test system is composed of DSP,gear pump and other components.The test results showed that the system could produce a stable water flow with high precision of repeated measurement and different flow rate.The test system can calibrate the urine flow rate well within the range of 9~50mL/s which has clinical significance,and the flow error is less than 1%,which meets the technical requirements of the calibration apparatus.The research scheme of uroflowmeter calibration device on DSP and gear pump is feasible.
Does the medical diagnosis of occupational asthma coincide with the legal diagnosis?
Çelebi Sözener, Zeynep; Aydın, Ömür; Demirel, Yavuz Selim; Soyyiğit, Şadan; Çerçi, Pamir; Kendirlinan, Reşat; Bavbek, Sevim; Çelik, Gülfem Elif; Misirligil, Zeynep; Sin, Betül Ayşe; Keleşoğlu, Arif; Mungan, Dilşad
2017-11-01
The incidence of occupational asthma (OA) is increasing worldwide. In this study, we first aimed to document the rate of diagnosis of OA among patients who were referred to our clinic from the Social Security Institution and the factors that affected diagnosis; secondly, we aimed to assess the consistency of the medical and legal diagnoses. The study involved 132 consecutive patients who were referred to our clinic for the evaluation of OA between 2010 and 2015. Detailed workplace history, the tools used in the diagnosis such as peak expiratory flow (PEF) monitoring and bronchial provocation tests, and the final medical diagnosis were recorded from case files. Asthma was diagnosed in 75% (n = 99) of the patients. Among them, 22.2% were diagnosed as having OA. The diagnosis was confirmed by serial PEF measurements, non-specific bronchial hyperreactivity assessment or both of the tests both at work and off-work periods. OA diagnosis was mostly established in active workers (72.7%). The legal diagnosis period was completed in 54.5% of these 22 patients, and 50% (n = 11) were officially diagnosed as having OA with a 91.6% concordance with medical diagnosis. This study verifies the importance of diagnosing asthma correctly as a first step in the evaluation of OA. Diagnostic tests other than specific provocation tests could be preferential in patients who still work in the same field. We believe that cooperation with the patient's occupational physician and adequate recognition of the work environment will improve the consistency of legal and medical diagnoses.
Marangoni flow in an evaporating water droplet
NASA Astrophysics Data System (ADS)
Xu, Xuefeng; Luo, Jianbin
2007-09-01
Marangoni effect has been observed in many liquids, but its existence in pure water is still a debated problem. In the present work, the Marangoni flow in evaporating water droplets has been observed by using fluorescent nanoparticles. Flow patterns indicate that a stagnation point where the surface flow, the surface tension gradient, and the surface temperature gradient change their directions exists at the droplet surface. The deduced nonmonotonic variation of the droplet surface temperature, which is different from that in some previous works, is explained by a heat transfer model considering the adsorbed thin film of the evaporating liquid droplet.
Investigation of chemically-reacting supersonic internal flows
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1985-01-01
This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.
Lagrangian turbulence near walls: Structures and mixing in admissible model flows
NASA Astrophysics Data System (ADS)
Ottino, J. M.
1989-05-01
The general objective of work during this period was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: a perturbed Kelvin cat eyes flow, and prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: production flows capable of producing complex distributions of vorticity, and constructed flow fields, based on solutions of the Navier Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence.
Smith, Steven G; Smits, Kaatje; Joosten, Simone A; van Meijgaarden, Krista E; Satti, Iman; Fletcher, Helen A; Caccamo, Nadia; Dieli, Francesco; Mascart, Francoise; McShane, Helen; Dockrell, Hazel M; Ottenhoff, Tom H M
2015-01-01
Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.
Guo, Jinhong; Chen, Liang; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming
2015-03-01
Portable diagnostic devices have emerged as important tools in various biomedical applications since they can provide an effective solution for low-cost and rapid clinical diagnosis. In this paper, we present a micropore-based resistive cytometer for the detection and enumeration of biological cells. The proposed device was fabricated on a silicon wafer by a standard microelectromechanical system processing technology, which enables a mass production of the proposed chip. The working principle of this cytometer is based upon a bias potential modulated pulse, originating from the biological particle's physical blockage of the micropore. Polystyrene particles of different sizes (7, 10, and 16 μm) were used to test and calibrate the proposed device. A finite element simulation was developed to predict the bias potential modulated pulse (peak amplitude vs. pulse bandwidth), which can provide critical insight into the design of this microfluidic flow cytometer. Furthermore, HeLa cells (a type of tumor cell lines) spiked in a suspension of blood cells, including red blood cells and white blood cells, were used to assess the performance for detecting and counting tumor cells. The proposed microfluidic flow cytometer is able to provide a promising platform to address the current unmet need for point-of-care clinical diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
... This typically occurs when people exercise heavily or work in a hot, humid place where body fluids are lost through heavy sweating. Blood flow to the skin increases, causing blood flow to decrease to the vital organs. This ... cool the body, stops working. The body temperature can rise so high that ...
NASA Astrophysics Data System (ADS)
Cucchiaro, Sara; Beinat, Alberto; Calsamiglia, Aleix; Cavalli, Marco; Cazorzi, Federico; Crema, Stefano; Marchi, Lorenzo
2017-04-01
The Moscardo Torrent (eastern Italian Alps) is a small rugged catchment (drainage area 4.1 km2, range in elevation between 890 and 2043 m) frequently affected by debris flows that deliver large amounts of sediment to the receiving stream, and cause concerns for infrastructures located on the alluvial fan and near the confluence. Over the last decades, hydraulic control works were implemented in the main channel to limit bed erosion and to stabilize channel banks. Although the objectives of training works have been only partly achieved, check dams and hillslope stabilization works have affected the sediment transfer from hillslopes to the channels and along the main channel. The effects of hydraulic control works were investigated by means of multi-temporal Structure from Motion (SfM) surveys based on images taken from the ground and UAV. The ground and air based surveys were carried out over a channel reach in which two check dams have recently been built. SfM surveys were taken before and after three debris-flow events (occurred between June and July 2016), allowing the generation of four high-resolution Digital Elevation Models (DEMs). Geomorphic changes caused by the debris-flow events have been assessed in order to produce the DEM of Differences (DoDs with a 0.2 m spatial resolution) that allowed estimating erosion and deposition volumes in the study area. Furthermore a debris-flow monitoring system has been in operation in the Moscardo Torrent; the analysis of the videos and of the hydrographs recorded by ultrasonic sensors permitted to assess the debris-flow volumes. These estimates were used to characterize the magnitude of events in support of the topographic analysis. By examining the changing pattern of erosion and deposition over time it was possible to understand the check dams' effects on sediment dynamics. The results show that the new check dams effectively stored sediment transported by the three debris flows. However, once the check dams have been completely filled, they lost their functionality, letting sediment flow downstream along paths drawn accidentally by the torrent control works and by the morphology of debris-flow deposits. Moreover, debris-flow lobes deposited upstream of the check dams could act as sediment sources further increasing downstream debris-flow magnitude.
Applying gene flow science to environmental policy needs: a boundary work perspective.
Ridley, Caroline E; Alexander, Laurie C
2016-08-01
One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.
Flow cytometry shows added value in diagnosing lymphoma in brain biopsies.
van der Meulen, Matthijs; Bromberg, Jacoline E C; Lam, King H; Dammers, Ruben; Langerak, Anton W; Doorduijn, Jeanette K; Kros, Johan M; van den Bent, Martin J; van der Velden, Vincent H J
2018-05-10
To assess the sensitivity, specificity and turnaround time of flow cytometric analysis on brain biopsies compared to histology plus immunohistochemistry analysis in tumors with clinical suspicion of lymphoma. All brain biopsies performed between 2010 and 2015 at our institution and analyzed by both immunohistochemistry and flow cytometry were included in this retrospective study. Immunohistochemistry was considered the gold standard. In a total of 77 biopsies from 71 patients, 49 lymphomas were diagnosed by immunohistochemistry, flow cytometry results were concordant in 71 biopsies (92,2%). We found a specificity and sensitivity of flow cytometry of 100% and 87,8%, respectively. The time between the biopsy and reporting the result (turnaround time) was significantly shorter for flow cytometry, compared to immunohistochemistry (median: 1 versus 5 days). Flow cytometry has a high specificity and can confirm the diagnosis of a lymphoma significantly faster than immunohistochemistry. This allows for rapid initiation of treatment in this highly aggressive tumor. However, since its sensitivity is less than 100%, we recommend to perform histology plus immunohistochemistry in parallel to flow cytometry. This article is protected by copyright. All rights reserved. © 2018 International Clinical Cytometry Society.
Terrestrial analogues for lunar impact melt flows
NASA Astrophysics Data System (ADS)
Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.
2017-01-01
Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.
Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M
2017-04-01
Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation. Copyright © 2017 the American Physiological Society.
ZAP-70 staining in chronic lymphocytic leukemia.
Villamor, Neus
2005-05-01
Chronic lymphocytic leukemia (CLL) is the most common chronic leukemia in Western countries. The disease has an extremely variable clinical course, and several prognostic features have been identified to assess individual risk. The configuration of the immunoglobulin variable heavy-chain gene (IgV(H)) is a strong predictor of the outcome. CLL patients with unmutated IgV(H) status have an aggressive clinical course and a short survival. Unfortunately, analysis of IgV(H) gene configuration is not available in most clinical laboratories. A small number of genes are differentially expressed between unmutated IgV(H) and mutated IgV(H) clinical forms of CLL. One of these genes is ZAP-70, which is detected in leukemic cells from patients with the unmutated IgV(H) form of CLL. Flow cytometry presents advantages over other methods to detect ZAP-70, and its quantification by flow cytometry has proved its predictive value. This unit focuses on protocols to quantify ZAP-70 by flow cytometry in CLL.
Matz, Paul G; Meagher, R J; Lamer, Tim; Tontz, William L; Annaswamy, Thiru M; Cassidy, R Carter; Cho, Charles H; Dougherty, Paul; Easa, John E; Enix, Dennis E; Gunnoe, Bryan A; Jallo, Jack; Julien, Terrence D; Maserati, Matthew B; Nucci, Robert C; O'Toole, John E; Rosolowski, Karie; Sembrano, Jonathan N; Villavicencio, Alan T; Witt, Jens-Peter
2016-03-01
The North American Spine Society's (NASS) Evidence-Based Clinical Guideline for the Diagnosis and Treatment of Degenerative Lumbar Spondylolisthesis features evidence-based recommendations for diagnosing and treating degenerative lumbar spondylolisthesis. The guideline updates the 2008 guideline on this topic and is intended to reflect contemporary treatment concepts for symptomatic degenerative lumbar spondylolisthesis as reflected in the highest quality clinical literature available on this subject as of May 2013. The NASS guideline on this topic is the only guideline on degenerative lumbar spondylolisthesis included in the Agency for Healthcare Research and Quality's National Guideline Clearinghouse (NGC). The purpose of this guideline is to provide an evidence-based educational tool to assist spine specialists when making clinical decisions for patients with degenerative lumbar spondylolisthesis. This article provides a brief summary of the evidence-based guideline recommendations for diagnosing and treating patients with this condition. A systematic review of clinical studies relevant to degenerative spondylolisthesis was carried out. This NASS spondyolisthesis guideline is the product of the Degenerative Lumbar Spondylolisthesis Work Group of NASS' Evidence-Based Guideline Development Committee. The methods used to develop this guideline are detailed in the complete guideline and technical report available on the NASS website. In brief, a multidisciplinary work group of spine care specialists convened to identify clinical questions to address in the guideline. The literature search strategy was developed in consultation with medical librarians. Upon completion of the systematic literature search, evidence relevant to the clinical questions posed in the guideline was reviewed. Work group members used the NASS evidentiary table templates to summarize study conclusions, identify study strengths and weaknesses, and assign levels of evidence. Work group members participated in webcasts and in-person recommendation meetings to update and formulate evidence-based recommendations and incorporate expert opinion when necessary. The draft guidelines were submitted to an internal peer review process and ultimately approved by the NASS Board of Directors. Upon publication, the Degenerative Lumbar Spondylolisthesis guideline was accepted into the NGC and will be updated approximately every 5 years. Twenty-seven clinical questions were addressed in this guideline update, including 15 clinical questions from the original guideline and 12 new clinical questions. The respective recommendations were graded by strength of the supporting literature, which was stratified by levels of evidence. Twenty-one new or updated recommendations or consensus statements were issued and 13 recommendations or consensus statements were maintained from the original guideline. The clinical guideline was created using the techniques of evidence-based medicine and best available evidence to aid practitioners in the care of patients with degenerative lumbar spondylolisthesis. The entire guideline document, including the evidentiary tables, literature search parameters, literature attrition flow chart, suggestions for future research, and all of the references, is available electronically on the NASS website at https://www.spine.org/Pages/ResearchClinicalCare/QualityImprovement/ClinicalGuidelines.aspx and will remain updated on a timely schedule. Copyright © 2016 Elsevier Inc. All rights reserved.
From video to computation of biological fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.
2016-04-01
This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.
Lee, Daniel C; Markl, Michael; Dall'Armellina, Erica; Han, Yuchi; Kozerke, Sebastian; Kuehne, Titus; Nielles-Vallespin, Sonia; Messroghli, Daniel; Patel, Amit; Schaeffter, Tobias; Simonetti, Orlando; Valente, Anne Marie; Weinsaft, Jonathan W; Wright, Graham; Zimmerman, Stefan; Schulz-Menger, Jeanette
2018-01-31
The purpose of this work is to summarize cardiovascular magnetic resonance (CMR) research trends and highlights presented at the annual Society for Cardiovascular Magnetic Resonance (SCMR) scientific sessions over the past 20 years. Scientific programs from all SCMR Annual Scientific Sessions from 1998 to 2017 were obtained. SCMR Headquarters also provided data for the number and the country of origin of attendees and the number of accepted abstracts according to type. Data analysis included text analysis (key word extraction) and visualization by 'word clouds' representing the most frequently used words in session titles for 5-year intervals. In addition, session titles were sorted into 17 major subject categories to further evaluate research and clinical CMR trends over time. Analysis of SCMR annual scientific sessions locations, attendance, and number of accepted abstracts demonstrated substantial growth of CMR research and clinical applications. As an international field of study, significant growth of CMR was documented by a strong increase in SCMR scientific session attendance (> 500%, 270 to 1406 from 1998 to 2017, number of accepted abstracts (> 700%, 98 to 701 from 1998 to 2018) and number of international participants (42-415% increase for participants from Asia, Central and South America, Middle East and Africa in 2004-2017). 'Word clouds' based evaluation of research trends illustrated a shift from early focus on 'MRI technique feasibility' to new established techniques (e.g. late gadolinium enhancement) and their clinical applications and translation (key words 'patient', 'disease') and more recently novel techniques and quantitative CMR imaging (key words 'mapping', 'T1', 'flow', 'function'). Nearly every topic category demonstrated an increase in the number of sessions over the 20-year period with 'Clinical Practice' leading all categories. Our analysis identified three growth areas 'Congenital', 'Clinical Practice', and 'Structure/function/flow'. The analysis of the SCMR historical archives demonstrates a healthy and internationally active field of study which continues to undergo substantial growth and expansion into new and emerging CMR topics and clinical application areas.
[Multimodal document management in radiotherapy].
Fahrner, H; Kirrmann, S; Röhner, F; Schmucker, M; Hall, M; Heinemann, F
2013-12-01
After incorporating treatment planning and the organisational model of treatment planning in the operating schedule system (BAS, "Betriebsablaufsystem"), complete document qualities were embedded in the digital environment. The aim of this project was to integrate all documents independent of their source (paper-bound or digital) and to make content from the BAS available in a structured manner. As many workflow steps as possible should be automated, e.g. assigning a document to a patient in the BAS. Additionally it must be guaranteed that at all times it could be traced who, when, how and from which source documents were imported into the departmental system. Furthermore work procedures should be changed that the documentation conducted either directly in the departmental system or from external systems can be incorporated digitally and paper document can be completely avoided (e.g. documents such as treatment certificate, treatment plans or documentation). It was a further aim, if possible, to automate the removal of paper documents from the departmental work flow, or even to make such paper documents superfluous. In this way patient letters for follow-up appointments should automatically generated from the BAS. Similarly patient record extracts in the form of PDF files should be enabled, e.g. for controlling purposes. The available document qualities were analysed in detail by a multidisciplinary working group (BAS-AG) and after this examination and assessment of the possibility of modelling in our departmental workflow (BAS) they were transcribed into a flow diagram. The gathered specifications were implemented in a test environment by the clinical and administrative IT group of the department of radiation oncology and subsequent to a detailed analysis introduced into clinical routine. The department has succeeded under the conditions of the aforementioned criteria to embed all relevant documents in the departmental workflow via continuous processes. Since the completion of the concepts and the implementation in our test environment 15,000 documents were introduced into the departmental workflow following routine approval. Furthermore approximately 5000 appointment letters for patient aftercare per year were automatically generated by the BAS. In addition patient record extracts in the form of PDF files for the medical services of the healthcare insurer can be generated.
External and Turbomachinery Flow Control Working Group
NASA Technical Reports Server (NTRS)
Ahmadi, G.; Alstrom, B.; Colonius, T.; Dannenhoffer, J.; Glauser, M.; Helenbrook, B.; Higuchi, H.; Hodson, H.; Jha, R.; Kabiri, P.;
2010-01-01
Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity).
A Dual-Plane PIV Study of Turbulent Heat Transfer Flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.
2016-01-01
Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
NASA Astrophysics Data System (ADS)
Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin
2018-01-01
This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.
NASA Astrophysics Data System (ADS)
Doihara, R.; Shimada, T.; Cheong, K. H.; Terao, Y.
2017-06-01
A flow calibration facility based on the gravimetric method using a double-wing diverter for hydrocarbon flows from 0.1 m3 h-1 to 15 m3 h-1 was constructed as a national measurement standard in Japan. The original working liquids were kerosene and light oil. The calibration facility was modified to calibrate flowmeters with two additional working liquids, industrial gasoline (flash point > 40 °C) and spindle oil, to achieve calibration over a wide viscosity range at the same calibration test rig. The kinematic viscosity range is 1.2 mm2 s-1 to 24 mm2 s-1. The contributions to the measurement uncertainty due to different types of working liquids were evaluated experimentally in this study. The evaporation error was reduced by using a seal system at the weighing tank inlet. The uncertainty due to droplets from the diverter wings was reduced by a modified diverter operation. The diverter timing errors for all types of working liquids were estimated. The expanded uncertainties for the calibration facility were estimated to be 0.020% for mass flow and 0.030% for volumetric flow for all considered types of liquids. Internal comparisons with other calibration facilities were also conducted, and the agreement was confirmed to be within the claimed expanded uncertainties.
Kerényi, Adrienne; Beke Debreceni, Ildikó; Oláh, Zsolt; Ilonczai, Péter; Bereczky, Zsuzsanna; Nagy, Béla; Muszbek, László; Kappelmayer, János
2017-09-01
Heparin-induced thrombocytopenia (HIT) is a severe side effect of heparin treatment caused by platelet activating IgG antibodies generated against the platelet factor 4 (PF4)-heparin complex. Thrombocytopenia and thrombosis are the leading clinical symptoms of HIT. The clinical pretest probability of HIT was evaluated by the 4T score system. Laboratory testing of HIT was performed by immunological detection of antibodies against PF4-heparin complex (EIA) and two functional assays. Heparin-dependent activation of donor platelets by patient plasma was detected by flow cytometry. Increased binding of Annexin-V to platelets and elevated number of platelet-derived microparticles (PMP) were the indicators of platelet activation. EIA for IgG isotype HIT antibodies was performed in 405 suspected HIT patients. Based on negative EIA results, HIT was excluded in 365 (90%) of cases. In 40 patients with positive EIA test result functional tests were performed. Platelet activating antibodies were detected in 17 cases by Annexin V binding. PMP count analysis provided nearly identical results. The probability of a positive flow cytometric assay result was higher in patients with elevated antibody titer. 71% of patients with positive EIA and functional assay had thrombosis. EIA is an important first line laboratory test in the diagnosis of HIT; however, HIT must be confirmed by a functional test. Annexin V binding and PMP assays using flow cytometry are functional HIT tests convenient in a clinical diagnostic laboratory. The positive results of functional assays may predict the onset of thrombosis. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.
Doppler optical coherence tomography of retinal circulation.
Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David
2012-09-18
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
An Active, Collaborative Approach to Learning Skills in Flow Cytometry
ERIC Educational Resources Information Center
Fuller, Kathryn; Linden, Matthew D.; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N.; Röhrig, Kimberley J.
2016-01-01
Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow…
Facilitating Naval Knowledge Flow
2001-07-01
flow theory and its application to very-large enterprises such as the Navy. Without such basic understanding, one cannot expect to design effective...understanding knowledge flow? Informed by advances in knowledge-flow theory , this work can propel knowledge management toward the methods and tools...address the phenomenology of knowledge flow well, nor do we have the benefit of knowledge-flow theory and its application to very-large enterprises
Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Smith, C. Frederic
1990-01-01
Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.
Electroosmotic flow in a microcavity with nonuniform surface charges.
Halpern, David; Wei, Hsien-Hung
2007-08-28
In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
Red blood cell microparticles and blood group antigens: an analysis by flow cytometry
Canellini, Giorgia; Rubin, Olivier; Delobel, Julien; Crettaz, David; Lion, Niels; Tissot, Jean-Daniel
2012-01-01
Background The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. Material and methods Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. Results The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. Discussion We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies. PMID:22890266
Esposito, Simone; Colicchia, Sonia; de la Torre, Xavier; Donati, Francesco; Mazzarino, Monica; Botrè, Francesco
2017-02-01
This work presents an analytical procedure for the identification and characterization of liposome-entrapped haemoglobins, based on flow cytofluorimetry. Flow cytofluorimetric detection is carried out following labelling by two distinct fluorescent reagents, an anti-haemoglobin antibody, fluorescein isothiocyanate conjugated, and an anti-poly(ethylene glycol) antibody, streptavidin-phycoerythrin conjugated. This experimental strategy allows the detection of liposome-entrapped haemoglobins in aqueous media, including plasma; the efficacy of the proposed approach has been verified on whole blood samples added with the liposomal formulation (ex-vivo). Additionally, the proposed technique allows the characterization of several key parameters in the study of liposomal haemoglobins, including, for instance (1) the determination of the degree of haemoglobin entrapment by liposomes; (2) the poly(ethylene glycol) insertion efficiency; and (3) the evaluation of liposome-entrapped haemoglobins stability following storage at 4 °C, allowing to follow both the process of haemoglobin loss from liposomes and the liposome degradation. The procedure is proposed for the detection and characterization of liposome-entrapped haemoglobin formulations to control their misuse in sport, but is also suggested for further applications in biological and clinical laboratory investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lander, Bryn; Atkinson-Grosjean, Janet
2011-02-01
Innovation systems (IS) and science policy scholarship predominantly focus on linkages between universities and industry, and the commercial translation of academic discoveries. Overlooked in such analyses are important connections between universities and academic hospitals, and the non-commercial aspects of translational science. The two types of institutions tend to be collapsed into a single entity-'the university'-and relational flows are lost. Yet the distinctions and flows between the two are crucial elements of translational science and the biomedical innovation system. This paper explores what has been called the 'hidden research system' that connects hospitals, universities, and their resources, with the clinical and scientific actors who make the linkages possible. Then, using a novel conceptual model of translational science, we examine the individual interactions and dynamics involved in a particular example of the biomedical innovation system at work: the diagnosis of IRAK-4 deficiency, a rare immunological disorder, and the translational flows that result. Contra to conventional IS analyses, we are able to point to the strong role of public-sector institutions, and the weak role of the private-sector, in the translational processes described here. Our research was conducted within a Canadian network of scientists and clinician-scientists studying the pathogenomics of immunological disorders and innate immunity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Optical coherence tomography angiography in the management of age-related macular degeneration.
Schneider, Eric W; Fowler, Samuel C
2018-05-01
Optical coherence tomography angiography (OCT-A) provides rapid, flow-based imaging of the retinal and choroidal vasculature in a noninvasive manner. This review contrasts this novel technique with conventional angiography and discusses its current uses and limitations in the management of age-related macular degeneration (AMD). Initial work with OCT-A has focused on its ability to identify choriocapillaris flow alterations in dry AMD and to sensitively detect choroidal neovascular membranes (CNVs) in neovascular AMD. Reduced choriocapillaris flow beyond the borders of geographic atrophy seen on OCT-A suggests a primary vascular cause in geographic atrophy. Longitudinal OCT-A analysis of CNV morphology has demonstrated the transition from an immature to mature CNV phenotype following treatment. Current clinical applications of OCT-A include identification of asymptomatic CNV and monitoring for CNV development in the setting of an acquired vitelliform lesion. OCT-A remains a promising diagnostic tool but one still very much in evolution. Larger studies will be needed to more accurately describe its sensitivity and specificity for CNV detection and to better characterize longitudinal CNV morphologic changes. Anticipated hardware and software updates including swept-source light sources, automated montaging, and manual adjustment of interscan timing should enhance the capabilities of OCT-A in the management of AMD.
Assessment of the viability of skin grafts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahner, H.W.
1988-07-01
A number of tests are available to monitor the blood flow in free and distant pedicle skin grafts. The information from these tests aids in the development of measures to enhance vascularization and is occasionally needed to make clinical decisions in patients with distant pedicle grafts. Measurements of the disappearance of an intradermally injected small amount of /sup 133/Xe allows determination of a clearance rate and blood flow before and after clamping the original blood supply through the base. With /sup 99m/Tc, which is generally more readily available, a flow index and block index can be determined. Clinically both proceduresmore » give equally good results in determining a safe time for pedicle base separation. The fluorescein test allows assessment of regional blood flow distribution within the pedicle.« less
Modeling of milk flow in mammary ducts in lactating human female breast.
Mortazavi, S Negin; Geddes, Donna; Hassanipour, Fatemeh
2014-01-01
A transient laminar Newtonian three-dimensional CFD simulation has been studied for milk flow in a phantom model of the 6-generations human lactating breast branching system. Milk is extracted by the cyclic pattern of suction from the alveoli through the duct and to the nipple. The real negative (suction) pressure data are applied as an outlet boundary condition in nipple. In this study, the commercial CFD code (Fluent Inc., 2004) is employed for the numerical solution of the milk flow. The milk intake flow rate from simulation is compared to the real clinical data from published paper. The results are in good agreement. It is believed that the methodology of the lactating human breast branching modeling proposed here can provide potential guidelines for further clinical and research application.
Collection, Storage, and Preparation of Human Blood Cells
Dagur, Pradeep K.; McCoy, J. Philip
2015-01-01
Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177
NASA Astrophysics Data System (ADS)
Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming
2017-09-01
A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.
Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator
NASA Astrophysics Data System (ADS)
Park, Inmyong; Jeong, Sangkwon
2015-12-01
The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.
COMIS -- an international multizone air-flow and contaminant transport model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1998-08-01
A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less
Is the work flow model a suitable candidate for an observatory supervisory control infrastructure?
NASA Astrophysics Data System (ADS)
Daly, Philip N.; Schumacher, Germán.
2016-08-01
This paper reports on the early investigation of using the work flow model for observatory infrastructure software. We researched several work ow engines and identified 3 for further detailed, study: Bonita BPM, Activiti and Taverna. We discuss the business process model and how it relates to observatory operations and identify a path finder exercise to further evaluate the applicability of these paradigms.
Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K
2017-06-28
Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization backend), as well as the workflow of imaging flow cytometry based on ATOM, using human cells and micro-algae as the examples.
Terra, Sandra Marlene; Byrne, Amanda
2016-01-01
This article reviews the various types of technical and clinical denials that are usually "written off" and proposes strategies to prevent this loss. For purposes of this writing, avoidable technical and clinical denial write-offs are defined as revenue lost from "first-pass" denials rejections. For example, a procedure that requires an authorization is performed without having had an authorization obtained. After appeals and attempts to recoup the revenue, often unsuccessful, the organization ultimately "writes off" the revenue as not collectable. The question to ask is: Are these claims really not collectable or can actionable steps be taken to conserve these dollars and improve the bottom line? Acute care hospitals, physician offices, and clinics. In today's environment, the need to manage costs is ubiquitous. Cost management is on the priority list of all savvy health care executives, even if margins are healthy, revenue is under pressure, and the magnitude of cost reduction needed is greater than what past efforts have achieved. As hospitals and physician clinics prioritize areas for improvement, reduction in lost revenue-especially avoidable lost revenue-should be at the top of the list. Attentively managing claim denial write-offs will significantly reduce lost revenue. There is significant interface between case management and the revenue cycle. Developing core competencies for reducing clinical and technical denials should be a critical imperative in overall cost management strategy. Case managers are well placed to prevent these unnecessary losses through accurate status determination and clinical documentation review. These clinical professionals can also provide insight into work flow and other processes inherent in the preauthorization process.
Exercise Ventilatory Limitation: The Role Of Expiratory Flow Limitation
Babb, Tony G.
2012-01-01
Ventilatory limitation to exercise remains an important unresolved clinical issue; as a result, many individuals misinterpret the effects of expiratory flow limitation as an all-or-nothing phenomenon. Expiratory flow limitation is not all-or-none; approaching maximal expiratory flow can have important effects not only on ventilatory capacity but also on breathing mechanics, ventilatory control, and possibly exertional dyspnea and exercise intolerance. PMID:23038244
ERIC Educational Resources Information Center
Rice, Michael
1969-01-01
Describes four different styles of working exhibited by four different children as they worked with water flow. Each of the four children's approaches varied substantially, but each learned in his own way about water flow. The author believes that each child should be encouraged to follow his own style of learning. (BR)
School Improvement Processes in Career Education.
ERIC Educational Resources Information Center
Smey, Barbara A.
This manual is designed to review those topics which should be considered when initiating a school improvement effort in career education. These materials, representing a one-day workshop, consist of seven activities. Topics covered in the activities are an overview of the workshop, work flow and a work-flow diagram, needs assessment, career…
Patient-specific analysis of blood stasis in the left atrium
NASA Astrophysics Data System (ADS)
Flores, Oscar; Gonzalo, Alejandro; Garcia-Villalba, Manuel; Rossini, Lorenzo; Hsiao, Albert; McVeigh, Elliot; Kahn, Andrew M.; Del Alamo, Juan C.
2016-11-01
Atrial fibrillation (AF) is a common arrhythmia in which the left atrium (LA) beats rapidly and irregularly. Patients with AF are at increased risk of thromboembolic events (TE), particularly stroke. Anticoagulant therapy can reduce the risk of TE in AF, but it can also increase the risks of adverse events such as internal bleeding. The current lack of tools to predict each patient's risk of LA thrombogenesis makes it difficult to decide whether to anticoagulate patients with AF. The aim of this work is to evaluate blood stasis in patient-specific models of the LA, because stasis is a known thrombogenesis risk factor. To achieve our aim, we performed direct numerical simulations of left atrial flow using an immersed boundary solver developed at the UC3M, coupled to a 0D model for the pulmonary circulation. The LA geometry is obtained from time-resolved CT scans and the parameters of the 0D model are found by fitting pulmonary vein flow data obtained by 4D phase contrast MRI. Blood stasis is evaluated from the flow data by computing blood residence time together with other kinematic indices of the velocity field (e.g. strain and kinetic energy). We focus on the flow in the left atrial appendage, including a sensitivity analysis of the effect of the parameters of the 0D model. Funded by the Spanish MECD, the Clinical and Translational Research Institute at UCSD and the American Heart Association.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A two-phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates zero-g conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-g which became bubbly, slug, or annular flow regimes on 0-g. A portion of this work is the analysis of adiabatic flow regimes. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes.
Optical non-invasive monitoring of skin blood pulsations
NASA Astrophysics Data System (ADS)
Spīgulis, Jānis
2005-08-01
Time resolved detection and analysis of the skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. The single- and multi-channel PPG concepts are discussed in this work. Simultaneous data flow from several body locations allows one to study the heartbeat pulse wave propagation in real time and evaluate the vascular resistance. Portable single-, dual- and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The clinical studies confirmed their potential in the monitoring of heart arrhythmias, drug tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions.
Monteverdi, B
2001-01-01
The explosive growth of handheld personal digital assistants (PDAs) in health care has been nothing short of amazing. What applications--business and clinical--do these devices have in medicine, and what is their potential? PDAs are simple and intuitive; their applications require minimal interaction time, so they have minimal impact on work flow: the investment is small; and the lightweight form is relatively nonintrusive during a patient encounter. The devices are being used to capture charges for medical services at the point of care. Encounter capture, online prescription writing and other applications will soon come on the scene. This article discusses current and possible future uses for PDAs in health care, interfaces with other technologies and security concerns.
Tudela, Pere; Mòdol, Josep Maria
2003-05-17
Overuse of hospital emergency rooms (HERs) is parallel to their controversy. To understand this problem, some concepts should be first clarified. In HERs, there are some intrinsic aspects which are directly related to the emergency itself and thus cannot be modified (intermittent patient flow, need to prioritize, difficulty to achieve a rapid diagnosis, influence of time on treatment, value of clinical follow up, patient's expectations, impact of HER on the overall hospital working dynamics). On the other hand, there are some extrinsic aspects which indeed are not related to HER itself but are rather historically associated with it (precarious structure, delay on admission, lack of privacy, inadequate triage of cases, lack of professionalization); these latter aspects may be potentially modified and should be reconsidered.
Complete recovery of the heart following exposure to profound hypothermia.
Shragge, B W; Digerness, S B; Blackstone, E H
1981-03-01
Cold injury has been suggested as a potential limitation to the use of temperatures below 10 degrees to 15 degrees C in clinical myocardial preservation. The isolated effects of profound hypothermia on myocardial function and energy metabolism were studied in the working rat heart preparation. Each heart was isolated and stabilized; then initial aortic flow, coronary flow, and heart rate were measured. The heart then was perfused in the Langendorf mode with oxygenated Krebs-Henseleit buffer for 20 minutes at 0.5 degree, 4 degrees, 10 degrees, 15 degrees, or 20 degrees C. After being rewarmed to 37 degrees C, the heart was returned to the working mode for final functional measurements. In a control group, the perfusion was kept at 37 degrees C. Recovery of function in hearts exposed to hypothermic perfusion was not significantly different from that observed in the hearts kept at 37 degrees C. When cold exposure time to 0.5 degree C perfusion was extended to 2 hours, heart function still returned to the same level as that of control hearts maintained at 37 degrees C, and adenosine triphosphate (ATP) and glycogen levels were higher than those in the control group. Thus, under these conditions, cold exposure per se, even for 2 hours at temperatures near 0 degree C, has no deleterious effect upon myocardial function and energy metabolism.
Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin
2014-12-01
Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.
LaDisa, John F.; Taylor, Charles A.; Feinstein, Jeffrey A.
2010-01-01
Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest otherwise as life expectancies are decades less than in the average population and substantial morbidity often exists. What follows is an expanded version of collective work conducted by the authors’ and numerous collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital Heart Disease pertaining to recent advances for CoA. The work begins by focusing on what is known about blood flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy from both clinical imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented for these patient populations. Finally, recent work from a representative experimental animal model of CoA that may offer insight into proposed mechanisms of long-term morbidity in CoA is presented. PMID:21152106
Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Campbell, J. F.
1983-01-01
The importance of leadingedge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.
Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Campbell, J. F.
1983-01-01
The importance of leading edge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.
Separation of metal ions from aqueous solutions
Almon, Amy C.
1994-01-01
A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.
Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine
NASA Astrophysics Data System (ADS)
Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah
2015-12-01
In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.
A double-gaussian, percentile-based method for estimating maximum blood flow velocity.
Marzban, Caren; Illian, Paul R; Morison, David; Mourad, Pierre D
2013-11-01
Transcranial Doppler sonography allows for the estimation of blood flow velocity, whose maximum value, especially at systole, is often of clinical interest. Given that observed values of flow velocity are subject to noise, a useful notion of "maximum" requires a criterion for separating the signal from the noise. All commonly used criteria produce a point estimate (ie, a single value) of maximum flow velocity at any time and therefore convey no information on the distribution or uncertainty of flow velocity. This limitation has clinical consequences especially for patients in vasospasm, whose largest flow velocities can be difficult to measure. Therefore, a method for estimating flow velocity and its uncertainty is desirable. A gaussian mixture model is used to separate the noise from the signal distribution. The time series of a given percentile of the latter, then, provides a flow velocity envelope. This means of estimating the flow velocity envelope naturally allows for displaying several percentiles (e.g., 95th and 99th), thereby conveying uncertainty in the highest flow velocity. Such envelopes were computed for 59 patients and were shown to provide reasonable and useful estimates of the largest flow velocities compared to a standard algorithm. Moreover, we found that the commonly used envelope was generally consistent with the 90th percentile of the signal distribution derived via the gaussian mixture model. Separating the observed distribution of flow velocity into a noise component and a signal component, using a double-gaussian mixture model, allows for the percentiles of the latter to provide meaningful measures of the largest flow velocities and their uncertainty.
NASA Astrophysics Data System (ADS)
Richards, Lisa M.; Kazmi, S. M. S.; Olin, Katherine E.; Waldron, James S.; Fox, Douglas J.; Dunn, Andrew K.
2017-03-01
Monitoring cerebral blood flow (CBF) during neurosurgery is essential for detecting ischemia in a timely manner for a wide range of procedures. Multiple clinical studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable, label-free CBF monitoring technique during neurosurgery. LSCI is an optical imaging method that provides blood flow maps with high spatiotemporal resolution requiring only a coherent light source, a lens system, and a camera. However, the quantitative accuracy and sensitivity of LSCI is limited and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study (n = 7) recorded multiple exposure times from the same cortical tissue area, and demonstrates that shorter exposure times (≤1 ms) provide the highest dynamic range and sensitivity for sampling flow rates in human neurovasculature. This study also combined exposure times using the MESI model, demonstrating high correlation with proper image calibration and acquisition. The physiological accuracy of speckle-estimated flow was validated using conservation of flow analysis on vascular bifurcations. Flow estimates were highly conserved in MESI and 1 ms exposure LSCI, with percent errors at 6.4% ± 5.3% and 7.2% ± 7.2%, respectively, while 5 ms exposure LSCI had higher errors at 21% ± 10% (n = 14 bifurcations). Results from this study demonstrate the importance of exposure time selection for LSCI, and that intraoperative MESI can be performed with high quantitative accuracy.
Potisek, Nicholas M; Malone, Robb M; Shilliday, Betsy Bryant; Ives, Timothy J; Chelminski, Paul R; DeWalt, Darren A; Pignone, Michael P
2007-01-15
Patients with chronic conditions require frequent care visits. Problems can arise during several parts of the patient visit that decrease efficiency, making it difficult to effectively care for high volumes of patients. The purpose of the study is to test a method to improve patient visit efficiency. We used Patient Flow Analysis to identify inefficiencies in the patient visit, suggest areas for improvement, and test the effectiveness of clinic interventions. At baseline, the mean visit time for 93 anticoagulation clinic patient visits was 84 minutes (+/- 50 minutes) and the mean visit time for 25 chronic pain clinic patient visits was 65 minutes (+/- 21 minutes). Based on these data, we identified specific areas of inefficiency and developed interventions to decrease the mean time of the patient visit. After interventions, follow-up data found the mean visit time was reduced to 59 minutes (+/-25 minutes) for the anticoagulation clinic, a time decrease of 25 minutes (t-test 39%; p < 0.001). Mean visit time for the chronic pain clinic was reduced to 43 minutes (+/- 14 minutes) a time decrease of 22 minutes (t-test 34 %; p < 0.001). Patient Flow Analysis is an effective technique to identify inefficiencies in the patient visit and efficiently collect patient flow data. Once inefficiencies are identified they can be improved through brief interventions.
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Spidlen, Josef; Brinkman, Ryan R.
2008-02-01
Introduction: The International Society for Analytical Cytology, ISAC, is developing a new combined flow and image Analytical Cytometry Standard (ACS). This standard needs to serve both the research and clinical communities. The clinical medicine and clinical research communities have a need to exchange information with hospital and other clinical information systems. Methods: 1) Prototype the standard by creating CytometryML and a RAW format for binary data. 2) Join the ISAC Data Standards Task Force. 3) Create essential project documentation. 4) Cooperate with other groups by assisting in the preparation of the DICOM Supplement 122: Specimen Module and Pathology Service-Object Pair Classes. Results: CytometryML has been created and serves as a prototype and source of experience for the following: the Analytical Cytometry Standard (ACS) 1.0, the ACS container, Minimum Information about a Flow Cytometry Experiment (MIFlowCyt), and Requirements for a Data File Standard Format to Describe Flow Cytometry and Related Analytical Cytology Data. These requirements provide a means to judge the appropriateness of design elements and to develop tests for the final ACS. The requirements include providing the information required for understanding and reproducing a cytometry experiment or clinical measurement, and for a single standard for both flow and digital microscopic cytometry. Schemas proposed by other members of the ISAC Data Standards Task Force (e.g, Gating-ML) have been independently validated and have been integrated with CytometryML. The use of netCDF as an element of the ACS container has been proposed by others and a suggested method of its use is proposed.
Klinge, Petra M; Brooks, David J; Samii, Amir; Weckesser, Eva; van den Hoff, Jörg; Fricke, Harald; Brinker, Thomas; Knapp, Wolfram H; Berding, Georg
2008-04-01
Findings in local cerebral blood flow (rCBF) in Normal pressure hydrocephalus (NPH) have always been challenged by the variable and inconsistent relation to clinical symptoms before and after shunt treatment. [(15)O]H(2)O PET data from a consecutive cohort of 65 idiopathic NPH patients were retrospectively analyzed questioning whether the functional status before and after shunt treatment might correlate with local blood flow. Using statistical parametric mapping (SPM99, Wellcome Department of Cognitive Neurology, London), the [(15)O]H(2)O uptake was correlated with the preoperative clinical scores, graded according to a modified Stein and Langfitt score. Furthermore, differences in the uptake in the pre-and post-shunt treatment study after seven to 10 days in patients with and without clinical improvement were studied. A higher clinical score significantly correlated with a reduced tracer uptake in mesial frontal (k=1,239 voxel, Z=4.41) and anterior temporal (k=469, Z=4.07) areas. In the mesial frontal areas, tracer uptake showed significant reciprocal changes in the clinically improved vs. the unimproved patients. Matched with the existing literature, the regional blood flow alterations are suggested relevant to the NPH syndrome and to post-treatment functional changes. The present rCBF findings warrant prospective studies on the accuracy of neuroimaging studies as they may provide a more specific insight into disease mechanisms.
Peak expiratory flow rate of children working in lock factories.
Singhal, S; Singhal, A; Singh, P N; Agarwal, D K; Gulati, R
2006-01-01
Peak expiratory flow rate (PEFR) of 106 children working in different units of lock factory was measured and compared with age and sex matched control group of same socio-economic status children. All the children worked for about ten hours per day. It was observed that there was a significant decrease in PEFR of children working in the different units of lock factories i.e. Hand press, Polishing, Lock fitting, Lock packing units as compared to control group (P>0.001). The reduction percentage of PEFR was maximum in children working in polishing unit (25.48%).
Extreme-value statistics of work done in stretching a polymer in a gradient flow.
Vucelja, M; Turitsyn, K S; Chertkov, M
2015-02-01
We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the large deviation function (LDF) of the work in the full range of appropriate parameters by combining analytical and numerical tools. The LDF shows two distinct asymptotes: "near tails" are linear in work and dominated by coiled polymer configurations, while "far tails" are quadratic in work and correspond to preferentially fully stretched polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition.
NASA Astrophysics Data System (ADS)
Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.
2017-10-01
We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.
ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)
The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...
Nurses' Experiences of End-of-life Photography in NICU Bereavement Support.
Martel, Sara; Ives-Baine, Lori
2018-06-07
To qualitatively explore neonatal intensive care nurses' experiences with end-of-life photography as part of their bereavement support work with families. An Interpretive Phenomenological Analysis with data collected through a focus group (n = 6) and one semi-structured interview (n = 1) with neonatal nurses from a Level 3/4 NICU in a Canadian pediatric hospital. Participants' comfort with EOL photography developed over time through exposure to bereavement scenarios and positive experiences with families. Participants' experienced a feeling of pressure to balance the photography with clinical responsibilities and find the right time to introduce photography while being sensitive to family experiences. Participants experienced EOL photography as something tangible to give families and were satisfied knowing the images might play an important role in the family's healing after the NICU. All participants had come to value EOL photography as a positive and meaningful part of their work with bereaved families. Identified challenges related to balancing the practice with the unpredictable flow and demands of critical care and to developing an appreciation for and comfort with the photography as part of their healing and the families' healing. Findings contribute insight into care-provider experience that can inform best practices, training, and staff support for palliative and bereavement work in neonatal and pediatric settings. The findings suggest a need to support nurses emotionally and clinically in carrying out this photography as part of their care for families. Copyright © 2018 Elsevier Inc. All rights reserved.
Comprehensive computerized diabetes registry. Serving the Cree of Eeyou Istchee (eastern James Bay).
Dannenbaum, D.; Verronneau, M.; Torrie, J.; Smeja, H.; Robinson, E.; Dumont, C.; Kovitch, I.; Webster, T.
1999-01-01
PROBLEM BEING ADDRESSED: Diabetes is rapidly evolving as a major health concern in the Cree population of eastern James Bay (Eeyou Istchee). The Cree Board of Health and Social Services of James Bay (CBHSSJB) diabetes registry was the initial phase in the development of a comprehensive program for diabetes in this region. OBJECTIVE OF PROGRAM: The CBHSSJB diabetes registry was developed to provide a framework to track the prevalence of diabetes and the progression of diabetic complications. The database will also identify patients not receiving appropriate clinical and laboratory screening for diabetic complications, and will provide standardized clinical flow sheets for routine patient management. MAIN COMPONENTS OF PROGRAM: The CBHSSJB diabetes registry uses a system of paper registration forms and clinical flow sheets kept in the nine community clinics. Information from these sheets is entered into a computer database annually. The flow sheets serve as a guideline for appropriate management of patients with diabetes, and provide a one-page summary of relevant clinical and laboratory information. CONCLUSIONS: A diabetes registry is vital to follow the progression of diabetes and diabetic complications in the region served by the CBHSSJB. The registry system incorporates both a means for regional epidemiologic monitoring of diabetes mellitus and clinical tools for managing patients with the disease. PMID:10065310
Kaplan, Metin; Erol, Fatih Serhat; Bozgeyik, Zülküf; Koparan, Mehmet
2007-07-01
In the present study, the clinical effectiveness of a surgical procedure in which no draining tubes are installed following simple burr hole drainage and saline irrigation is investigated. 10 patients, having undergone operative intervention for unilateral chronic subdural hemorrhage, having a clinical grade of 2 and a hemorrhage thickness of 2 cm, were included in the study. The cerebral blood flow rates of middle cerebral artery were evaluated bilaterally with Doppler before and after the surgery. All the cases underwent the operation using the simple burr hole drainage technique without the drain and consequent saline irrigation. Statistical analysis was performed by Wilcoxon signed rank test (p<0.05). There was a pronounced decrease in the preoperative MCA blood flow in the hemisphere the hemorrhage had occurred (p=0.008). An increased PI value on the side of the hemorrhage drew our attention (p=0.005). Postoperative MCA blood flow measurements showed a statistically significant improvement (p=0.005). Furthermore, the PI value showed normalization (p<0.05). The paresis and the level of consciousness improved in all cases. Simple burr hole drainage technique is sufficient for the improvement of cerebral blood flow and clinical recovery in patients with chronic subdural hemorrhage.
Wood, Brent L; Arroz, Maria; Barnett, David; DiGiuseppe, Joseph; Greig, Bruce; Kussick, Steven J; Oldaker, Teri; Shenkin, Mark; Stone, Elizabeth; Wallace, Paul
2007-01-01
Immunophenotyping by flow cytometry has become standard practice in the evaluation and monitoring of patients with hematopoietic neoplasia. However, despite its widespread use, considerable variability continues to exist in the reagents used for evaluation and the format in which results are reported. As part of the 2006 Bethesda Consensus conference, a committee was formed to attempt to define a consensus set of reagents suitable for general use in the diagnosis and monitoring of hematopoietic neoplasms. The committee included laboratory professionals from private, public, and university hospitals as well as large reference laboratories that routinely operate clinical flow cytometry laboratories with an emphasis on lymphoma and leukemia immunophenotyping. A survey of participants successfully identified the cell lineage(s) to be evaluated for each of a variety of specific medical indications and defined a set of consensus reagents suitable for the initial evaluation of each cell lineage. Elements to be included in the reporting of clinical flow cytometric results for leukemia and lymphoma evaluation were also refined and are comprehensively listed. The 2006 Bethesda Consensus conference represents the first successful attempt to define a set of consensus reagents suitable for the initial evaluation of hematopoietic neoplasia. Copyright 2007 Clinical Cytometry Society.
The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
Telyshev, Dmitry; Denisov, Maxim; Pugovkin, Alexander; Selishchev, Sergey; Nesterenko, Igor
2018-04-01
In this work, the study results of an implantable pediatric rotary blood pump (PRBP) are presented. They show the results of the numerical simulation of fluid flow rates in the pump. The determination method of the backflows and stagnation regions is represented. The operating points corresponding to fluid flow rates of 1, 3, and 5 L/min for 75-80 mm Hg pressure head are investigated. The study results have shown that use of the pump in the 1 L/min operating point can potentially lead to the appearance of backflows and stagnation regions. In the case of using pumps in fluid flow rates ranging from 3 to 5 L/min, the number of stagnation regions decreases and the fluid flow rate changes marginally. Using the pump in this flow rate range is considered judicious. The study shows an increase in shear stress with an increase in fluid flow rates, while there is no increase in shear stress above the critical condition of 150 Pa (which does not allow us to reliably speak about the increased risk of blood cell damage). The aim of this work was to design, prototype, and study interaction of the Sputnik PRBP with the cardiovascular system. A three-dimensional model of Sputnik PRBP was designed with the following geometrical specifications: flow unit length of 51.5 mm, flow unit diameter of 10 mm, and spacing between the rotor and housing of 0.1 mm. Computational fluid dynamics studies were used to calculate head pressure-flow rate (H-Q) curves at rotor speeds ranging from 10 000 to 14 000 rpm (R 2 = 0.866 between numerical simulation and experiment) and comparing flow patterns at various points of the flow rate operating range (1, 3, and 5 L/min) for operating pressures ranging from 75 to 80 mm Hg. It is noted that when fluid flow rate changes from 1 L/min to 3 L/min, significant changes are observed in the distribution of zero flow zones. At the inlet and outlet of the pump, when going to the operating point of 3 L/min, zones of stagnation become minuscule. The shear stress distribution was calculated along the pump volume. The volume in which shear stress exceed 150 Pa is less than 0.38% of the total pump volume at flow rates of 1, 3, and 5 L/min. In this study, a mock circulatory system (MCS) allowing simulation of physiological cardiovascular characteristics was used to investigate the interaction of the Sputnik PRBP with the cardiovascular system. MCS allows reproducing the Frank-Starling autoregulation mechanism of the heart. PRBP behavior was tested in the speed range of 6 000 to 15 000 rpm. Decreased contractility can be expressed in a stroke volume decrease approximately from 18 to 4 mL and ventricle systolic pressure decrease approximately from 92 to 20 mm Hg. The left ventricle becomes fully supported at a pump speed of 10 000 rpm. At a pump speed of 14 000 rpm, the left ventricle goes into a suction state in which fluid almost does not accumulate in the ventricle and only passes through it to the pump. The proposed PRBP showed potential for improved clinical outcomes in pediatric patients with a body surface area greater than 0.6 m 2 and weight greater than 12 kg. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, K; Rose, K; Jung, B
2008-03-27
Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric fieldmore » transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, thus allowing channels with larger dimensions (> 100 {micro}m) and high throughputs (10-100 {micro}L/min) necessary to process real-world volumes (1 mL). Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries. We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation pressure forces no longer transport biological particles. Figure 1 shows images of E.Coli ({approx}1 {micro}m) and yeast ({approx}4-5 {micro}m) flowing in a microchannel (200 {micro}m deep, 500 {micro}m wide) at a flow rate of 10 {micro}L/min. The E.Coli does not focus in the acoustic field while the yeast focuses at the channel centerline. This result suggests the acoustic size-cutoff for biological particles in our device lies between 2 and 3 {micro}m. Transverse electrophoresis has been explored extensively in electric field flow fractionation [6] and isoelectric focusing devices [7]. We demonstrated transverse electrophoretic transport of a wide variety of negatively-charged species, including fluorophores, beads, viruses, E.Coli, and yeast. Figure 2 shows the electromigration of a fluorescently labeled RNA virus (MS2) from the lower half of the channel to the upper half region with continuous flow. We demonstrated the effectiveness of our electrophoretically assisted acoustic focusing device by separating virus-like particles (40 nm fluorescent beads, selected to aid in visualization) from a high background concentration of yeast contaminants (see Figure 3). Our device allows for the efficient recovery of virus into a pre-selected purified buffer while background contaminants are acoustically captured and removed. We also tested the device using clinical nasopharyngeal samples, both washes and lavages, and demonstrated removal of unknown particulates (>2 ?m size) from the sample. Our future research direction includes spiking known amounts of bacteria and viruses into clinical samples and performing quantitative off-chip analysis (real-time PCR and flow cytometry).« less
Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong
2018-01-01
Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P <0.01). However, there was no significant difference in resting CEC levels between healthy subjects and cancer patients ( P =0.193). We integrated and comprehensively addressed significant technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.
Civil construction work: The unseen contributor to the occupational and global disease burden
Sitalakshmi, R.; Saikumar, P.; Jeyachandran, P.; Manoharan; Thangavel; Thomas, Jayakar
2016-01-01
Background: Construction industry is the second largest employment giving industry in India with many semi-skilled or unskilled workers taking up the occupation for livelihood without any training and proper guidance. Aim: To evaluate the pathogenic association of cement exposure to occupational contact dermatoses as evidenced by immune markers and to correlate their pulmonary functions with years of exposure to cement. Setting and Design: This was a cross-sectional study conducted among randomly selected cement workers. Methods and material: Evaluation of socioeconomic status (SES) and years of exposure of cement workers was done using a questionnaire. Clinical examination of skin lesions and strip patch test with application of potassium dichromate on unexposed skin was performed. Results were interpreted after 48 hours. Absolute eosinophil count (AEC) and IgE levels measured, and spirometric evaluation was performed. Statistical Analysis: Analysis of variance and Pearson's correlation test were used for data analysis. P < 0.05 was considered to be statistically significant. Results: Clinically, skin lesions were noticed in 51%, elevated AEC in 47%, and raised Anti IgE in 73%. Two participants developed positive reactions to the skin strip patch test. Duration of exposure to cement and SES were compared with clinical skin lesions. Spirometry result was normal in 81%, obstruction in 8%, restriction in 10%, and mixed pattern in 1%. Forced expiratory volume at 1.0 second, forced expiratory flow (25–75%), and (PEFR) Peak Expiratory Flow Rate were markedly reduced with years of exposure. Workers who had greater skin lesions and with increase in exposure had increased AEC and IgE levels, although statistically not significant. Conclusions: Exposure to cement and poor SES is strongly correlated to increased prevalence of skin lesions and reduced pulmonary functions. PMID:28194084
Civil construction work: The unseen contributor to the occupational and global disease burden.
Sitalakshmi, R; Saikumar, P; Jeyachandran, P; Manoharan; Thangavel; Thomas, Jayakar
2016-01-01
Construction industry is the second largest employment giving industry in India with many semi-skilled or unskilled workers taking up the occupation for livelihood without any training and proper guidance. To evaluate the pathogenic association of cement exposure to occupational contact dermatoses as evidenced by immune markers and to correlate their pulmonary functions with years of exposure to cement. This was a cross-sectional study conducted among randomly selected cement workers. Methods and material: Evaluation of socioeconomic status (SES) and years of exposure of cement workers was done using a questionnaire. Clinical examination of skin lesions and strip patch test with application of potassium dichromate on unexposed skin was performed. Results were interpreted after 48 hours. Absolute eosinophil count (AEC) and IgE levels measured, and spirometric evaluation was performed. Analysis of variance and Pearson's correlation test were used for data analysis. P < 0.05 was considered to be statistically significant. Clinically, skin lesions were noticed in 51%, elevated AEC in 47%, and raised Anti IgE in 73%. Two participants developed positive reactions to the skin strip patch test. Duration of exposure to cement and SES were compared with clinical skin lesions. Spirometry result was normal in 81%, obstruction in 8%, restriction in 10%, and mixed pattern in 1%. Forced expiratory volume at 1.0 second, forced expiratory flow (25-75%), and (PEFR) Peak Expiratory Flow Rate were markedly reduced with years of exposure. Workers who had greater skin lesions and with increase in exposure had increased AEC and IgE levels, although statistically not significant. Exposure to cement and poor SES is strongly correlated to increased prevalence of skin lesions and reduced pulmonary functions.
NASA Astrophysics Data System (ADS)
Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.
2018-01-01
Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
NETL Crosscutting Research Video Series: Multiphase Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Vaidheeswaran, Avinash
For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.
Study of two-phase flow in helical and spiral coils
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Yan, AN; Omrani, Adel
1990-01-01
The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.
A Modified Collagen Gel Enhances Healing Outcome in a Pre-Clinical Swine Model of Excisional Wounds
Elgharably, Haytham; Roy, Sashwati; Khanna, Savita; Abas, Motaz; DasGhatak, Piya; Das, Amitava; Mohammed, Kareem; Sen, Chandan K.
2013-01-01
Collagen-based dressings are of great interest in wound care. However, evidence supporting their mechanism of action in a wound setting in vivo is scanty. This work providesfirst results from a pre-clinical swine model of excisional wounds elucidating the mechanism of action of a modified collagen gel (MCG) dressing. Following wounding, wound-edge tissue was collected at specific time intervals (3, 7, 14, and 21 days post-wounding). On day 7, histological analysis showed significant increase in the length of rete ridges suggesting improved biomechanical properties of the healing wound tissue. Rapid and transient mounting of inflammation is necessary for efficient healing. MCG significantly accelerated neutrophil and macrophages recruitment to the wound site on day 3 and day 7 with successful resolution of inflammation on day 21. MCG induced MCP-1 expression in neutrophil-like HL-60 cells in vitro. In vivo, MCG treated wound tissue displayed elevated VEGF expression. Consistently, MCG-treated wounds displayed significantly higher abundance of endothelial cells with increased blood flow to the wound area indicating improved vascularization. This observation was explained by the finding that MCG enhanced proliferation of wound-site endothelial cells. In MCG-treated wound tissue, Masson’s Trichrome and Picrosirius red staining showed higher abundance of collagen and increased collagen type I:III ratio. This work presents first evidence from a pre-clinical experimental setting explaining how a collagen-based dressing may improve wound closure by targeting multiple key mechanisms as compared to standard of care i.e., Tegadem treated wounds. The current findings warrant additional studies to determine whether the responses to the MCG are different from other modified or unmodified collagen based products used in clinical setting. PMID:23607796
Nguyen, Yen Ngoc; Ismail, Munirah; Kabinejadian, Foad; Tay, Edgar Lik Wui; Leo, Hwa Liang
2018-04-01
Intra-ventricular flow dynamics has recently emerged as an important evaluation and diagnosis tool in different cardiovascular conditions. The formation of vortex pattern during the cardiac cycle has been suggested to play important epigenetic and energy-modulation roles in cardiac remodelling, adaptations and mal-adaptations. In this new perspective, flow alterations due to different cardiovascular procedures can affect the long-term outcome of those procedures. Especially, repairs and replacements performed on atrioventricular valves are likely to exert direct impact on intra-ventricular flow pattern. In this review, current consensus around the roles of vortex dynamics in cardiac function is discussed. An overview of physiological vortex patterns found in healthy left and right ventricles as well as post-operative ventricular flow phenomenon owing to different atrioventricular valvular procedures are reviewed, followed by the summary of different vortex identification schemes used to characterise intraventricular flow. This paper also emphasises on future research directions towards a comprehensive understanding of intra-cardiac flow and its clinical relevance. The knowledge could encourage more effective pre-operative planning and better outcomes for current clinical practices. Copyright © 2018. Published by Elsevier Ltd.
Individualized Human CAD Models: Anthropmetric Morphing and Body Tissue Layering
2014-07-31
Part Flow Chart of the Interaction among VBA Macros, Excel® Spreadsheet, and SolidWorks Front View of the Male and Female Soldier CAD Model...yellow highlighting. The spreadsheet is linked to the CAD model by macros created with the Visual Basic for Application ( VBA ) editor in Microsoft Excel...basically three working parts to the anthropometric morphing that are all interconnected ( VBA macros, Excel spreadsheet, and SolidWorks). The flow