Basics of Compounding: Clinical Pharmaceutics, Part 1.
Allen, Loyd V
2016-01-01
Pharmaceutics is relevant far beyond the pharmaceutical industry, compounding, and the laboratory. Pharmaceutics can be used to solve many clinical problems in medication therapy. A pharmacists' knowledge of the physicochemical aspects of drugs and drug products should help the patient, physician, and healthcare professionals resolve issues in the increasingly complex world of modern medicine. Pharmacy is unique as it contains a knowledge base significantly different from that of physicians, nurses, and other health-related practitioners. The separation of the science and the practice of pharmacy have prevented the complete utilization of pharmaceutical sciences in the clinical environment far too long. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Basics of Compounding: Clinical Pharmaceutics, Part 2.
Allen, Loyd V
2016-01-01
This article represents part 2 of a 2-part article on the topic of clinical pharmaceutics. Pharmaceutics is relevant far beyond the pharmaceutical industry, compounding, and the laboratory. Pharmaceutics can be used to solve many clinical problems in medication therapy. A pharmacists' knowledge of the physicochemical aspects of drugs and drug products should help the patient, physician, and healthcare professionals resolve issues in the increasingly complex world of modern medicine. Part 1 of this series of articles discussed incompatibilities which can directly affect a clinical outcome and utilized pharmaceutics case examples of the application and importance of clinical pharmaceutics covering different characteristics. Part 2 continues to illustrate the scientific principles and clinical effects involved in clinical pharmaceutics. Also covered in this article are many of the scientific principles in typical to patient care. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Role of Macrophage-induced Inflammation in Mesothelioma
2012-07-01
inhibitors, either the Plexxikon compound PLX -3397 or currently GW2580, both of which inhibit the CSF1 receptor. We have determined that the PLX - 3397...macrophage inhibition using compounds that are nearing clinical use, non-toxic reagents such as the PLX -3397 or the GW2580 inhibitors of the CSF1...and a more clinically relevant macrophage inhibition regimen, using PLX - 3397. The 40L cells have also been transfected with a luciferase construct
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; De Luca, Filomena; Torosyan, Hayarpi; Docquier, Jean-Denis; Duan, Da; Novati, Beatrice; Prati, Fabio; Colombo, Giorgio; Grazioso, Giovanni
2016-10-01
β-Lactamases are bacterial enzymes conferring resistance to β-lactam antibiotics in clinically-relevant pathogens, and represent relevant drug targets. Recently, the identification of new boronic acids (i.e. RPX7009) paved the way to the clinical application of these molecules as potential drugs. Here, we screened in silico a library of 1400 boronic acids as potential AmpC β-lactamase inhibitors. Six of the most promising candidates were evaluated in biochemical assays leading to the identification of potent inhibitors of clinically-relevant β-lactamases like AmpC, KPC-2 and CTX-M-15. One of the selected compounds showed nanomolar K i value with the clinically-relevant KPC-2 carbapenemase, while another one exhibited broad spectrum inhibition, being also active on Enterobacter AmpC and the OXA-48 class D carbapenemase.
Busetti, Alessandro; Thompson, Thomas P.; Tegazzini, Diana; Megaw, Julianne; Maggs, Christine A.; Gilmore, Brendan F.
2015-01-01
The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC assay. A bioassay-guided fractionation method was developed yielding 10 active fractions from which to perform purification and structural elucidation of clinically-relevant antibiofilm compounds. PMID:26058011
2014-01-01
Background Immunoassays are widely used in clinical laboratories for measurement of plasma/serum concentrations of steroid hormones such as cortisol and testosterone. Immunoassays can be performed on a variety of standard clinical chemistry analyzers, thus allowing even small clinical laboratories to do analysis on-site. One limitation of steroid hormone immunoassays is interference caused by compounds with structural similarity to the target steroid of the assay. Interfering molecules include structurally related endogenous compounds and their metabolites as well as drugs such as anabolic steroids and synthetic glucocorticoids. Methods Cross-reactivity of a structurally diverse set of compounds were determined for the Roche Diagnostics Elecsys assays for cortisol, dehydroepiandrosterone (DHEA) sulfate, estradiol, progesterone, and testosterone. These data were compared and contrasted to package insert data and published cross-reactivity studies for other marketed steroid hormone immunoassays. Cross-reactivity was computationally predicted using the technique of two-dimensional molecular similarity. Results The Roche Elecsys Cortisol and Testosterone II assays showed a wider range of cross-reactivity than the DHEA sulfate, Estradiol II, and Progesterone II assays. 6-Methylprednisolone and prednisolone showed high cross-reactivity for the cortisol assay, with high likelihood of clinically significant effect for patients administered these drugs. In addition, 21-deoxycortisol likely produces clinically relevant cross-reactivity for cortisol in patients with 21-hydroxylase deficiency, while 11-deoxycortisol may produce clinically relevant cross-reactivity in 11β-hydroxylase deficiency or following metyrapone challenge. Several anabolic steroids may produce clinically significant false positives on the testosterone assay, although interpretation is limited by sparse pharmacokinetic data for some of these drugs. Norethindrone therapy may impact immunoassay measurement of testosterone in women. Using two-dimensional similarity calculations, all compounds with high cross-reactivity also showed a high degree of similarity to the target molecule of the immunoassay. Conclusions Compounds producing cross-reactivity in steroid hormone immunoassays generally have a high degree of structural similarity to the target hormone. Clinically significant interactions can occur with structurally similar drugs (e.g., prednisolone and cortisol immunoassays; methyltestosterone and testosterone immunoassays) or with endogenous compounds such as 21-deoxycortisol that can accumulate to very high concentrations in certain disease conditions. Simple similarity calculations can help triage compounds for future testing of assay cross-reactivity. PMID:25071417
Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco
2017-05-18
Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.
HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity
ERIC Educational Resources Information Center
Furge, Laura Lowe; Fletke, Kyle J.
2007-01-01
Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…
[Written pharmaceutical advertising--still unreliable?].
Gladsø, Kristin Haugen; Garberg, Hedda Rosland; Spigset, Olav; Slørdal, Lars
2014-09-02
Marketing by the pharmaceutical industry affects doctors' prescribing habits. All pharmaceutical advertising received by nine doctors in two GP offices over a period of three months was collected. The advertising material was sorted by compound. For each compound, the advert with the highest number of references was selected. The cited references were obtained, and the claims in the adverts were assessed in terms of their consistency with the source data based on the provisions in the Norwegian regulations on pharmaceuticals. The references were also assessed with regard to the incidence of conflicts of interest among authors. The doctors received a total of 270 shipments of advertising for 46 different compounds. Altogether 95% of the 173 references cited in the 46 selected adverts could be obtained. The adverts contained a total of 156 claims. Of these, 56% were assessed as correct when compared to the source data and as having clinical relevance. Altogether 75% of the journal articles reported relevant conflicts of interest for the authors. About half the claims in the adverts were found to be correct and clinically relevant. These results concur with those from a methodologically identical study based on advertising material collected in 2004. The cited literature was of varying quality and often funded by the pharmaceutical companies. The findings indicate that the target group should be sceptical of this type of marketing.
The Cancer Target Discovery and Development (CTD^2) Network was established to accelerate the transformation of "Big Data" into novel pharmacological targets, lead compounds, and biomarkers for rapid translation into improved patient outcomes. It rapidly became clear in this collaborative network that a key central issue was to define what constitutes sufficient computational or experimental evidence to support a biologically or clinically relevant finding.
Novel Approaches to Pulmonary Arterial Hypertension Drug Discovery
Sung, Yon K.; Yuan, Ke; de Jesus Perez, Vinicio A.
2016-01-01
Introduction Pulmonary arterial hypertension (PAH) is a rare disorder associated with abnormally elevated pulmonary pressures that, if untreated, leads to right heart failure and premature death. The goal of drug development for PAH is to develop effective therapies that halt, or ideally, reverse the obliterative vasculopathy that results in vessel loss and obstruction of blood flow to the lungs. Areas Covered This review summarizes the current approach to candidate discovery in PAH and discusses the currently available drug discovery methods that should be implemented to prioritize targets and obtain a comprehensive pharmacological profile of promising compounds with well-defined mechanisms. Expert opinion To improve the successful identification of leading drug candidates, it is necessary that traditional pre-clinical studies are combined with drug screening strategies that maximize the characterization of biological activity and identify relevant off-target effects that could hinder the clinical efficacy of the compound when tested in human subjects. A successful drug discovery strategy in PAH will require collaboration of clinician scientists with medicinal chemists and pharmacologists who can identify compounds with an adequate safety profile and biological activity against relevant disease mechanisms. PMID:26901465
3D molecular descriptors important for clinical success.
Kombo, David C; Tallapragada, Kartik; Jain, Rachit; Chewning, Joseph; Mazurov, Anatoly A; Speake, Jason D; Hauser, Terry A; Toler, Steve
2013-02-25
The pharmacokinetic and safety profiles of clinical drug candidates are greatly influenced by their requisite physicochemical properties. In particular, it has been shown that 2D molecular descriptors such as fraction of Sp3 carbon atoms (Fsp3) and number of stereo centers correlate with clinical success. Using the proteomic off-target hit rate of nicotinic ligands, we found that shape-based 3D descriptors such as the radius of gyration and shadow indices discriminate off-target promiscuity better than do Fsp3 and the number of stereo centers. We have deduced the relevant descriptor values required for a ligand to be nonpromiscuous. Investigating the MDL Drug Data Report (MDDR) database as compounds move from the preclinical stage toward the market, we have found that these shape-based 3D descriptors predict clinical success of compounds at preclinical and phase1 stages vs compounds withdrawn from the market better than do Fsp3 and LogD. Further, these computed 3D molecular descriptors correlate well with experimentally observed solubility, which is among well-known physicochemical properties that drive clinical success. We also found that about 84% of launched drugs satisfy either Shadow index or Fsp3 criteria, whereas withdrawn and discontinued compounds fail to meet the same criteria. Our studies suggest that spherical compounds (rather than their elongated counterparts) with a minimal number of aromatic rings may exhibit a high propensity to advance from clinical trials to market.
Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance.
Dinis-Oliveira, Ricardo Jorge
2017-02-01
Psilocybin and psilocin are controlled substances in many countries. These are the two main hallucinogenic compounds of the "magic mushrooms" and both act as agonists or partial agonists at 5-hydroxytryptamine (5-HT) 2A subtype receptors. During the last few years, psilocybin and psilocin have gained therapeutic relevance but considerable physiological variability between individuals that can influence dose-response and toxicological profile has been reported. This review aims to discuss metabolism of psilocybin and psilocin, by presenting all major and minor psychoactive metabolites. Psilocybin is primarily a pro-drug that is dephosphorylated by alkaline phosphatase to active metabolite psilocin. This last is then further metabolized, psilocin-O-glucuronide being the main urinary metabolite with clinical and forensic relevance in diagnosis.
Staniszewska, Monika; Bondaryk, Małgorzata; Wieczorek, Magdalena; Estrada-Mata, Eine; Mora-Montes, Héctor M.; Ochal, Zbigniew
2016-01-01
We investigated the antifungal activity of novel a 2-bromo-2-chloro-2-(4-chlorophenylsulfonyl)-1-phenylethanone (compound 4). The synthesis of compound 4 was commenced from sodium 4-chlorobenzene sulfinate and the final product was obtained by treatment of α-chloro-β-keto-sulfone with sodium hypobromite. The sensitivity of 63 clinical isolates belonging to the most relevant Candida species toward compound 4 using the method M27-A3 was evaluated. We observed among most of the clinical strains of C. albicans MIC ranging from 0.00195 to 0.0078 μg/mL. Compound 4 at 32 μg/mL exhibited fungicidal activity against nine Candida strains tested using the MFC assay. Compound 4 displayed anti-Candida activity (with clear endpoint) against 22% of clinical strains of Candida. Under compound 4, Candida susceptibility and tolerance, namely paradoxical effect (PG), was found for only two clinical isolates (C. glabrata and C. parapsilosis) and reference strain 14053 using both M27-A3 and MFC method. We found that compound 4 does not induce toxicity in vivo against larvae of Galleria mellonella (≥97% survival) and it displays reduced toxicity on mammalian cells in vitro (< CC20 at 64 μg/mL). Furthermore, XTT assay denoted clear metabolic activity of sessile cells in the presence of compound 4. Thus, the effect of compound 4 on formed C. albicans biofilms was minimal. Moreover, strain 90028 exhibited no defects in hyphal growth on Caco-2 monolayer under compound 4 influence at MIC = 16 μg/mL. The MIC values of compound 4 against C. albicans 90028, in medium with sorbitol did not suggest that compound 4 acts by inhibiting fungal cell wall synthesis. Our findings with compound 4 suggest a general strategy for antifungal agent development that might be useful in limiting the emergence of resistance in Candida strains. PMID:27610100
Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors
Papale, Alessandro; Morella, Ilaria Maria; Indrigo, Marzia Tina; Bernardi, Rick Eugene; Marrone, Livia; Marchisella, Francesca; Brancale, Andrea; Spanagel, Rainer; Brambilla, Riccardo; Fasano, Stefania
2016-01-01
Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI: http://dx.doi.org/10.7554/eLife.17111.001 PMID:27557444
Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production.
Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk; Lee, Sang Yup
2018-01-01
Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical trials in the last decades. A paradigm shift took place when the first whole genome sequences of streptomycetes became available, from which silent or "cryptic" biosynthetic gene clusters (BGCs) were discovered. Cryptic BGCs reveal a so far untapped potential of the microorganisms for the production of novel compounds, which has spurred new efforts in understanding the complex regulation between primary and secondary metabolism. This new trend has been accompanied with development of new computational resources (genome and compound mining tools), generation of various high-quality omics data, establishment of molecular tools, and other strain engineering strategies. They all come together to enable systems metabolic engineering of streptomycetes, allowing more systematic and efficient strain development. In this review, the authors present recent progresses within systems metabolic engineering of streptomycetes for uncovering their hidden potential to produce novel compounds and for the improved production of secondary metabolites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermophilic and alkaliphilic Actinobacteria: biology and potential applications
Shivlata, L.; Satyanarayana, Tulasi
2015-01-01
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937
Olivera, P; Sandborn, W J; Panés, J; Baumann, C; D'Haens, G; Vermeire, S; Danese, S; Peyrin-Biroulet, L
2018-03-01
Several novel compounds are being developed for inflammatory bowel diseases (IBD). In addition, biosimilar drugs are being approved. An increasing number of head-to-head, superiority and non-inferiority trials in patients with IBD are expected in the future. The clinical relevance of the magnitude of the effect size is often debated. To better understand physicians' perspectives on the clinical meaningfulness of IBD trial results. We conducted an online survey among all IOIBD (International Organization for the Study of Inflammatory Bowel Diseases) members, asking their opinion on the clinical relevance of the results of IBD trials. Forty-six IOIBD members responded to the survey (52.3%). In biologic-naïve ulcerative colitis (UC) and Crohn's disease (CD) patients, most of the participants considered a 15% difference with placebo for clinical remission and endoscopic remission to be clinically relevant. In head-to-head trials, most of participants considerer a 10% difference between groups for clinical remission and endoscopic remission to be clinically relevant. Half of respondents considered 10% to be an adequate margin in non-inferiority trials. In bioequivalence studies, most of the participants considered adequate a ± 5% difference between a biosimilar and the originator for pharmacokinetic parameters, efficacy, safety and immunogenicity. Regarding safety, the difference between two drugs considered clinically relevant varied from 1% to 5%, depending on the type of adverse event. This is the first survey exploring how physicians perceive IBD trial results, providing an estimation of the magnitude of the difference between treatment arms that may directly influence clinical practice. © 2018 John Wiley & Sons Ltd.
Beedie, Shaunna L.; Rore, Holly M.; Barnett, Shelby; Chau, Cindy H.; Luo, Weiming; Greig, Nigel H.; Figg, William D.; Vargesson, Neil
2016-01-01
Thalidomide, a drug known for its teratogenic side-effects, is used successfully to treat a variety of clinical conditions including leprosy and multiple myeloma. Intense efforts are underway to synthesize and identify safer, clinically relevant analogs. Here, we conduct a preliminary in vivo screen of a library of new thalidomide analogs to determine which agents demonstrate activity, and describe a cohort of compounds with anti-angiogenic properties, anti-inflammatory properties and some compounds which exhibited both. The combination of the in vivo zebrafish and chicken embryo model systems allows for the accelerated discovery of new, potential therapies for cancerous and inflammatory conditions. PMID:27120781
Jouda, Jean-Bosco; Kusari, Souvik; Lamshöft, Marc; Mouafo Talontsi, Ferdinand; Douala Meli, Clovis; Wandji, Jean; Spiteller, Michael
2014-10-01
Three new polyketides named penialidins A-C (1-3), along with one known compound, citromycetin (4), were isolated from an endophytic fungus, Penicillium sp., harbored in the leaves of the Cameroonian medicinal plant Garcinia nobilis. Their structures were elucidated by means of spectroscopic and spectrometric methods (NMR and HRMS(n)). The antibacterial efficacies of the new compounds (1-3) were tested against the clinically-important risk group 2 (RG2) bacterial strains of Staphylococcus aureus and Escherichia coli. The ecologically imposing strains of E. coli (RG1), Bacillus subtilis and Acinetobacter sp. BD4 were also included in the assay. Compound 3 exhibited pronounced activity against the clinically-relevant S. aureus as well as against B. subtilis comparable to that of the reference standard (streptomycin). Compound 2 was also highly-active against S. aureus. By comparing the structures of the three new compounds (1-3), it was revealed that altering the substitutions at C-10 and C-2 can significantly increase the antibacterial activity of 1. Copyright © 2014 Elsevier B.V. All rights reserved.
Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds
Bounda, Guy-Armel; Feng, YU
2015-01-01
Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment. PMID:26130933
Chowdhury, S F; Villamor, V B; Guerrero, R H; Leal, I; Brun, R; Croft, S L; Goodman, J M; Maes, L; Ruiz-Perez, L M; Pacanowska, D G; Gilbert, I H
1999-10-21
This paper concerns the design, synthesis, and evaluation of inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Initially study was made of the structures of the leishmanial and human enzyme active sites to see if there were significant differences which could be exploited for selective drug design. Then a series of compounds were synthesized based on 5-benzyl-2, 4-diaminopyrimidines. These compounds were assayed against the protozoan and human enzymes and showed selectivity for the protozoan enzymes. The structural data was then used to rationalize the enzyme assay data. Compounds were also tested against the clinically relevant forms of the intact parasite. Activity was seen against the trypanosomes for a number of compounds. The compounds were in general less active against Leishmania. This latter result may be due to uptake problems. Two of the compounds also showed some in vivo activity in a model of African trypanosomiasis.
Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors
Woods, Emily C.; McBride, Shonna M.
2017-01-01
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. PMID:28153747
Licastro, F; Chiappelli, M; Ianni, M; Porcellini, E
2009-01-01
Inhibitors of tumor necrosis factor-alpha have deeply changed the therapy of several inflammatory human diseases. For instance, clinical management of rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis have profoundly benefited after the introduction of new therapeutic tools, such as antagonist of TNF-alpha molecule. These drugs include etanercept, a soluble TNF-alpha receptor antagonist, three anti-TNF-alpha antibodies, adalimumab, infliximab, golimumab and certolizumab a humanized Fab fragment combined with polyethylene glycol. These compounds efficiently inhibit several TNF-alpha biological-mediated effects, however, they have also shown differential clinical efficacy in several trials from different autoimmune diseases. It is of clinical relevance that non-responders to one of these drugs often positively responded to another. Different mechanisms of action and diversity in pharmacokinetics of these three compounds may partially explain different clinical effects. However, partially diverse pathogenetic mechanisms in different diseases also contribute to differential therapeutic responses. Therefore, these apparently homogeneous agents can not be considered equivalent in their clinically efficacy. Differential therapeutic actions of these drugs may be advantageously used in clinical practice and further improve the great potential of individual TNF-alpha inhibitors.
Rotili, Dante; Tarantino, Domenico; Artico, Marino; Nawrozkij, Maxim B; Gonzalez-Ortega, Emmanuel; Clotet, Bonaventura; Samuele, Alberta; Esté, José A; Maga, Giovanni; Mai, Antonello
2011-04-28
Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies.
Oh, Ja-Young; Do, Hyun Jung; Lee, Seungok; Jang, Ja-Hyun; Cho, Eun-Hae; Jang, Dae-Hyun
2016-12-01
Next-generation sequencing, such as whole-genome sequencing, whole-exome sequencing, and targeted panel sequencing have been applied for diagnosis of many genetic diseases, and are in the process of replacing the traditional methods of genetic analysis. Clinical exome sequencing (CES), which provides not only sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to genetic diagnosis. Sequencing of genes with clinical relevance rather than whole exome sequencing might be more suitable for the diagnosis of known hereditary disease with genetic heterogeneity. Here, we present the clinical usefulness of CES for the diagnosis of hereditary spastic paraplegia (HSP). We report a case of patient who was strongly suspected of having HSP based on her clinical manifestations. HSP is one of the diseases with high genetic heterogeneity, the 72 different loci and 59 discovered genes identified so far. Therefore, traditional approach for diagnosis of HSP with genetic analysis is very challenging and time-consuming. CES with TruSight One Sequencing Panel, which enriches about 4,800 genes with clinical relevance, revealed compound heterozygous mutations in SPG11 . One workflow and one procedure can provide the results of genetic analysis, and CES with enrichment of clinically relevant genes is a cost-effective and time-saving diagnostic tool for diseases with genetic heterogeneity, including HSP.
Pollen derived low molecular compounds enhance the human allergen specific immune response in vivo.
Gilles-Stein, S; Beck, I; Chaker, A; Bas, M; McIntyre, M; Cifuentes, L; Petersen, A; Gutermuth, J; Schmidt-Weber, C; Behrendt, H; Traidl-Hoffmann, C
2016-10-01
Besides allergens, pollen release bioactive, low molecular weight compounds that modulate and stimulate allergic reactions. Clinical relevance of these substances has not been investigated to date. To elucidate the effect of a non-allergenic, low molecular weight factors from aqueous birch pollen extracts (Bet-APE < 3 kDa) on the human allergic immune response in vivo. Birch and grass pollen allergic individuals underwent skin prick testing with allergen alone, allergen plus Bet-APE < 3 kDa, or allergen plus pre-identified candidate substances from low molecular pollen fraction. Nasal allergen challenges were performed in non-atopic and pollen allergic individuals using a 3 day repeated threshold challenge battery. Subjects were either exposed to allergen alone or to allergen plus Bet-APE< 3 kDa. Local cytokine levels, nasal secretion weights, nasal congestion and symptom scores were determined. Skin prick test reactions to pollen elicited larger weals when allergens were tested together with the low molecular weight compounds from pollen. Similar results were obtained with candidate pollen-associated lipid mediators. In nasal lining fluids of allergic patients challenged with allergen plus Bet-APE < 3 kDa, IL-8 and IgE was significantly increased as compared to allergen-only challenged patients. These patients also produced increased amounts of total nasal secretion and reported more severe rhinorrhea than the allergen-only challenged group. Low molecular compounds from pollen enhance the allergen specific immune response in the skin and nose. They are therefore of potential clinical relevance in allergic patients. © 2016 John Wiley & Sons Ltd.
Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds.
Hao, Da-Cheng; Ge, Guang-Bo; Xiao, Pei-Gen; Wang, Ping; Yang, Ling
2015-01-01
The wide-reaching distributed angiosperm family Ranunculaceae has approximately 2200 species in around 60 genera. Chemical components of this family include several representative groups: benzylisoquinoline alkaloid (BIA), ranunculin, triterpenoid saponin and diterpene alkaloid, etc. Their extensive clinical utility has been validated by traditional uses of thousands of years and current evidence-based medicine studies. Drug metabolism and pharmacokinetic (DMPK) studies of plant-based natural products are an indispensable part of comprehensive medicinal plant exploration, which could facilitate conservation and sustainable utilization of Ranunculaceae pharmaceutical resources, as well as new chemical entity development with improved DMPK parameters. However, DMPK characteristics of Ranunculaceaederived medicinal compounds have not been summarized. Black cohosh (Cimicifuga) and goldenseal (Hydrastis) raise concerns of herbdrug interaction. DMPK studies of other Ranunculaceae genera, e.g., Nigella, Delphinium, Aconitum, Trollius, and Coptis, are also rapidly increasing and becoming more and more clinically relevant. In this contribution, we highlight the up-to-date awareness, as well as the challenges around the DMPK-related issues in optimization of drug development and clinical practice of Ranunculaceae compounds. Herb-herb interaction of Ranunculaceae herb-containing traditional Chinese medicine (TCM) formula could significantly influence the in vivo pharmacokinetic behavior of compounds thereof, which may partially explain the complicated therapeutic mechanism of TCM formula. Although progress has been made on revealing the absorption, distribution, metabolism, excretion and toxicity (ADME/T) of Ranunculaceae compounds, there is a lack of DMPK studies of traditional medicinal genera Aquilegia, Thalictrum and Clematis. Fluorescent probe compounds could be promising substrate, inhibitor and/or inducer in future DMPK studies of Ranunculaceae compounds. A better understanding of the important herb-drug/herb-herb interactions, bioavailability and metabolomics aspects of Ranunculaceae compounds will bolster future natural product-based drug design and the comprehensive investigation of inter-individual inconsistency of drug metabolism.
Novel ocular antihypertensive compounds in clinical trials
Chen, June; Runyan, Stephen A; Robinson, Michael R
2011-01-01
Introduction: Glaucoma is a multifactorial disease characterized by progressive optic nerve injury and visual field defects. Elevated intraocular pressure (IOP) is the most widely recognized risk factor for the onset and progression of open-angle glaucoma, and IOP-lowering medications comprise the primary treatment strategy. IOP elevation in glaucoma is associated with diminished or obstructed aqueous humor outflow. Pharmacotherapy reduces IOP by suppressing aqueous inflow and/or increasing aqueous outflow. Purpose: This review focuses on novel non-FDA approved ocular antihypertensive compounds being investigated for IOP reduction in ocular hypertensive and glaucoma patients in active clinical trials within approximately the past 2 years. Methods: The mode of IOP reduction, pharmacology, efficacy, and safety of these new agents were assessed. Relevant drug efficacy and safety trials were identified from searches of various scientific literature databases and clinical trial registries. Compounds with no specified drug class, insufficient background information, reformulations, and fixed-combinations of marketed drugs were not considered. Results: The investigational agents identified comprise those that act on the same targets of established drug classes approved by the FDA (ie, prostaglandin analogs and β-adrenergic blockers) as well as agents belonging to novel drug classes with unique mechanisms of action. Novel targets and compounds evaluated in clinical trials include an actin polymerization inhibitor (ie, latrunculin), Rho-associated protein kinase inhibitors, adenosine receptor analogs, an angiotensin II type 1 receptor antagonist, cannabinoid receptor agonists, and a serotonin receptor antagonist. Conclusion: The clinical value of novel compounds for the treatment of glaucoma will depend ultimately on demonstrating favorable efficacy and benefit-to-risk ratios relative to currently approved prostaglandin analogs and β-blockers and/or having complementary modes of action. PMID:21629573
Nenna, Antonio; Nappi, Francesco; Avtaar Singh, Sanjeet Singh; Sutherland, Fraser W; Di Domenico, Fabio; Chello, Massimo; Spadaccio, Cristiano
2015-05-01
Advanced Glycation End-Products (AGEs) are signaling proteins associated to several vascular and neurological complications in diabetic and non-diabetic patients. AGEs proved to be a marker of negative outcome in both diabetes management and surgical procedures in these patients. The reported role of AGEs prompted the development of pharmacological inhibitors of their effects, giving rise to a number of both preclinical and clinical studies. Clinical trials with anti-AGEs drugs have been gradually developed and this review aimed to summarize most relevant reports. Evidence acquisition process was performed using PubMed and ClinicalTrials.gov with manually checked articles. Pharmacological approaches in humans include aminoguanidine, pyridoxamine, benfotiamine, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statin, ALT-711 (alagebrium) and thiazolidinediones. The most recent promising anti-AGEs agents are statins, alagebrium and thiazolidinediones. The role of AGEs in disease and new compounds interfering with their effects are currently under investigation in preclinical settings and these newer anti-AGEs drugs would undergo clinical evaluation in the next years. Compounds with anti-AGEs activity but still not available for clinical scenarios are ALT-946, OPB-9195, tenilsetam, LR-90, TM2002, sRAGE and PEDF. Despite most studies confirm the efficacy of these pharmacological approaches, other reports produced conflicting evidences; in almost any case, these drugs were well tolerated. At present, AGEs measurement has still not taken a precise role in clinical practice, but its relevance as a marker of disease has been widely shown; therefore, it is important for clinicians to understand the value of new cardiovascular risk factors. Findings from the current and future clinical trials may help in determining the role of AGEs and the benefits of anti-AGEs treatment in cardiovascular disease.
The discovery of tropane-derived CCR5 receptor antagonists.
Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine
2006-04-01
The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.
Challenges in Analyzing the Biological Effects of Resveratrol
Erdogan, Cihan Suleyman; Vang, Ole
2016-01-01
The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953
'Nosing Around' the human skin: what information is concealed in skin odour?
Kippenberger, Stefan; Havlíček, Jan; Bernd, August; Thaçi, Diamant; Kaufmann, Roland; Meissner, Markus
2012-09-01
In today's world, natural body odour is mostly considered as being unpleasant and combated by intensive cleansing, deodorants and perfumes. However, there is evidence that volatile body compounds provide the recipient with important information. Here, we present the chemical identity of odorous compounds derived from odourless precursors within sweat and sebum. Moreover, distinct volatile markers may be relevant for the clinical diagnosis of disease. Interestingly, ageing seems to correlate with the appearance of specific compounds that convey the so-called old man smell. Finally, it is discussed if human skin odour has the quality to act as pheromone transmitting information between individuals in terms of major histocompatibility complex type or reproductive status. © 2012 John Wiley & Sons A/S.
Cybastacines A and B: Antibiotic Sesterterpenes from a Nostoc sp. Cyanobacterium.
Cabanillas, Alfredo H; Tena Pérez, Víctor; Maderuelo Corral, Santiago; Rosero Valencia, Diego Fernando; Martel Quintana, Antera; Ortega Doménech, Montserrat; Rumbero Sánchez, Ángel
2018-02-23
Cybastacines A (1) and B (2) were discovered as a novel pentacyclic sesterterpenoid-alkaloid skeleton structure, with a guanidinium group. These molecules were isolated from a Nostoc sp. cyanobacterium collected in the Canary Islands. Their structures were elucidated primarily by a combination of spectroscopic analyses and X-ray diffraction. These compounds showed antibiotic activities against several clinically relevant bacterial strains.
Zarins-Tutt, Joseph S; Abraham, Emily R; Bailey, Christopher S; Goss, Rebecca J M
Nature provides a valuable resource of medicinally relevant compounds, with many antimicrobial and antitumor agents entering clinical trials being derived from natural products. The generation of analogues of these bioactive natural products is important in order to gain a greater understanding of structure activity relationships; probing the mechanism of action, as well as to optimise the natural product's bioactivity and bioavailability. This chapter critically examines different approaches to generating natural products and their analogues, exploring the way in which synthetic and biosynthetic approaches may be blended together to enable expeditious access to new designer natural products.
The uses and abuses of Vitamin D compounds in chronic kidney disease-mineral bone disease (CKD-MBD).
Goldsmith, D J A; Massy, Z A; Brandenburg, V
2014-11-01
Vitamin D is of paramount importance to skeletal development, integrity and health. Vitamin D homeostatis is typically deranged in a number of chronic conditions, of which chronic kidney disease is one of the most important. The use of vitamin D based therapy to target secondary hyperparathyroidism is now several decades old, and there is a large body of clinical practice, experience, guidelines and research to underpin this. However, there are many unknowns, of significant clinical relevance. Amongst which is what "species" of vitamin D we should be using, in what patient, and, under what conditions. Sadly, there has been a real dearth of randomised controlled trials, and trials with outputs of clinical relevance, which means our clinical practice has not developed and refined adequately ove the last 4 decades. This article will discuss the vexed but critical questions of which vitamin D therapies might suit which kidney patients, and will high-light the many important clinical questions which urgently require answering. Copyright © 2014. Published by Elsevier Inc.
Apolipoprotein B synthesis inhibition: results from clinical trials.
Visser, Maartje E; Kastelein, John J P; Stroes, Erik S G
2010-08-01
Mipomersen is a second-generation antisense oligonucleotide developed to inhibit the synthesis of apolipoprotein B-100 in the liver. In this review we will summarize the results of recent preclinical and clinical studies addressing safety and low-density lipoprotein-cholesterol (LDL-c) lowering efficacy of this new compound. In phase 3 clinical trials, mipomersen has been shown to significantly reduce LDL-c in patients with homozygous and heterozygous familial hypercholesterolemia on maximally tolerated lipid-lowering therapy. Injection site reactions, flu-like symptoms and increases in liver transaminases were the main adverse events. A recent safety study, designed to investigate the effects of mipomersen on intrahepatic triglyceride content, failed to show evidence of clinically relevant hepatic steatosis after 13 weeks of treatment. Mipomersen is a new agent to lower LDL-c in patients at increased risk of cardiovascular disease and/or intolerant to statins. Whereas safety concerns have focused on hepatic fat accumulation, to date no evidence of clinically relevant increases of intrahepatic triglyceride content are reported. Ongoing and future studies are eagerly awaited to assess the impact of mipomersen on hepatic triglyceride content after prolonged exposure.
Lara, L S; Moreira, C S; Calvet, C M; Lechuga, G C; Souza, R S; Bourguignon, S C; Ferreira, V F; Rocha, D; Pereira, M C S
2018-01-20
The limited efficacy of benznidazole (Bz) indicated by failures of current Phase II clinical trials emphasizes the urgent need to identify new drugs with improved safety and efficacy for treatment of Chagas disease (CD). Herein, we analyzed the efficacy of a series of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against different Trypanosoma cruzi discrete type units (DTUs) of relevant clinical forms of CD. Cytotoxic and trypanocidal effect of naphthoquinone derivatives were assessed in mammalian cells, trypomastigotes and intracellular amastigotes using, luminescent assays (CellTiter-Glo and T. cruzi Dm28c-luciferase) and/or counting with a light microscope. Reactive oxygen species (ROS) production and intracellular targets of promising compounds were assessed with 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCFDA) probe and ultrastructural analysis, respectively. ADMET properties were analyzed by in silico modeling. Most of the compounds showed low cytotoxic effect. Only two compounds (Compounds 2 and 11) had IC 50 values lower than Bz, showing higher susceptibility of bloodstream trypomastigotes. Compound 2 exhibited greater efficacy against trypomastigotes from different T. cruzi DTUs, even better than Bz against Brazil and CL strains. Ultrastructural analysis revealed changes in intracellular compartments, suggesting autophagy as one possible mechanism of action. Oxidative stress, induced by Compound 2, resulted in elevated level of ROS, leading to parasite death. Compound 2 was also effective against intracellular amastigotes, showing high selectivity index. ADMET analysis predicted good oral bioavailability, reduced drug metabolism and no carcinogenic potential for Compound 2. The data highlight Compound 2 as a hit compound and stimulate further structural and pharmacological optimization to potentiate its trypanocidal activity and selectivity. Copyright © 2017. Published by Elsevier Masson SAS.
Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna
2012-05-01
Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.
Utility of Boron in Dermatology.
Jackson, David G; Cardwell, Leah A; Oussedik, Elias; Feldman, Steven R
2017-08-09
Boron compounds are being investigated as therapies for dermatologic conditions. Several features of boron chemistry make this element an ideal component in dermatologic treatments. We review the published dermatologically-relevant clinical trials and case studies pertaining to boron compounds. PubMed was utilized to query terms boron, chemistry, drug, development, dermatology, atopic dermatitis, psoriasis, onychomycosis, tavaborole, AN 2690, crisaborole, and AN 2728. Clinical trials, case studies, animal studies and in vitro studies. pertaining to atopic dermatitis, psoriasis and onychomycosis were included. Crisaborole 2% topical solution reduced atopic dermatitis lesions by approximately 60% when compared to pre-treatment baseline. Crisaborole maintains its dose-dependent effect in treatment of psoriasis and significantly reduces psoriatic plaques when compared to controls. Adverse effects were mild, frequency of events varied between studies. Crisaborole was well tolerated when applied to sensitive skin. Topical tavaborole significantly reduced or eliminated onychomycosis with minimal side effects compared to placebo. Tavaborole was effective in treating recalcitrant onychomycosis. Boron-based compounds form stable interactions with enzyme targets and are safe medications for the treatment of atopic dermatitis, psoriasis, and onychomycosis. The mild and rare side effects of topical boron-based compounds may make them ideal treatments for individuals with sensitive skin and pediatric populations.
Lowe, Val J.; Graff-Radford, Neill R.; Liesinger, Amanda M.; Cannon, Ashley; Przybelski, Scott A.; Rawal, Bhupendra; Parisi, Joseph E.; Petersen, Ronald C.; Kantarci, Kejal; Ross, Owen A.; Duara, Ranjan; Knopman, David S.; Jack, Clifford R.; Dickson, Dennis W.
2015-01-01
Thal amyloid phase, which describes the pattern of progressive amyloid-β plaque deposition in Alzheimer’s disease, was incorporated into the latest National Institute of Ageing – Alzheimer’s Association neuropathologic assessment guidelines. Amyloid biomarkers (positron emission tomography and cerebrospinal fluid) were included in clinical diagnostic guidelines for Alzheimer’s disease dementia published by the National Institute of Ageing – Alzheimer’s Association and the International Work group. Our first goal was to evaluate the correspondence of Thal amyloid phase to Braak tangle stage and ante-mortem clinical characteristics in a large autopsy cohort. Second, we examined the relevance of Thal amyloid phase in a prospectively-followed autopsied cohort who underwent ante-mortem 11C-Pittsburgh compound B imaging; using the large autopsy cohort to broaden our perspective of 11C-Pittsburgh compound B results. The Mayo Clinic Jacksonville Brain Bank case series (n = 3618) was selected regardless of ante-mortem clinical diagnosis and neuropathologic co-morbidities, and all assigned Thal amyloid phase and Braak tangle stage using thioflavin-S fluorescent microscopy. 11C-Pittsburgh compound B studies from Mayo Clinic Rochester were available for 35 participants scanned within 2 years of death. Cortical 11C-Pittsburgh compound B values were calculated as a standard uptake value ratio normalized to cerebellum grey/white matter. In the high likelihood Alzheimer’s disease brain bank cohort (n = 1375), cases with lower Thal amyloid phases were older at death, had a lower Braak tangle stage, and were less frequently APOE-ε4 positive. Regression modelling in these Alzheimer’s disease cases, showed that Braak tangle stage, but not Thal amyloid phase predicted age at onset, disease duration, and final Mini-Mental State Examination score. In contrast, Thal amyloid phase, but not Braak tangle stage or cerebral amyloid angiopathy predicted 11C-Pittsburgh compound B standard uptake value ratio. In the 35 cases with ante-mortem amyloid imaging, a transition between Thal amyloid phases 1 to 2 seemed to correspond to 11C-Pittsburgh compound B standard uptake value ratio of 1.4, which when using our pipeline is the cut-off point for detection of clear amyloid-positivity regardless of clinical diagnosis. Alzheimer’s disease cases who were older and were APOE-ε4 negative tended to have lower amyloid phases. Although Thal amyloid phase predicted clinical characteristics of Alzheimer’s disease patients, the pre-mortem clinical status was driven by Braak tangle stage. Thal amyloid phase correlated best with 11C-Pittsburgh compound B values, but not Braak tangle stage or cerebral amyloid angiopathy. The 11C-Pittsburgh compound B cut-off point value of 1.4 was approximately equivalent to a Thal amyloid phase of 1–2. PMID:25805643
Lum, Pek Yee; Armour, Christopher D; Stepaniants, Sergey B; Cavet, Guy; Wolf, Maria K; Butler, J Scott; Hinshaw, Jerald C; Garnier, Philippe; Prestwich, Glenn D; Leonardson, Amy; Garrett-Engele, Philip; Rush, Christopher M; Bard, Martin; Schimmack, Greg; Phillips, John W; Roberts, Christopher J; Shoemaker, Daniel D
2004-01-09
Modern medicine faces the challenge of developing safer and more effective therapies to treat human diseases. Many drugs currently in use were discovered without knowledge of their underlying molecular mechanisms. Understanding their biological targets and modes of action will be essential to design improved second-generation compounds. Here, we describe the use of a genome-wide pool of tagged heterozygotes to assess the cellular effects of 78 compounds in Saccharomyces cerevisiae. Specifically, lanosterol synthase in the sterol biosynthetic pathway was identified as a target of the antianginal drug molsidomine, which may explain its cholesterol-lowering effects. Further, the rRNA processing exosome was identified as a potential target of the cell growth inhibitor 5-fluorouracil. This genome-wide screen validated previously characterized targets or helped identify potentially new modes of action for over half of the compounds tested, providing proof of this principle for analyzing the modes of action of clinically relevant compounds.
A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity.
Rabanal, Francesc; Grau-Campistany, Ariadna; Vila-Farrés, Xavier; Gonzalez-Linares, Javier; Borràs, Miquel; Vila, Jordi; Manresa, Angeles; Cajal, Yolanda
2015-05-29
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Antiepileptic Drugs in Clinical Development: Differentiate or Die?
Zaccara, Gaetano; Schmidt, D
2017-01-01
Animal models when carefully selected, designed and conducted, are important parts of any translational drug development strategy. However, research of new compounds for patients with drugresistant epilepsies is still based on animal experiments, mostly in rodents, which are far from being a model of chronic human epilepsy and have failed to differentiate the efficacy of new compounds versus standard drug treatment. The objective was identification and description of compounds in clinical development in 2016. Search was conducted from the website of the U.S. National Institutes of Health and from literature. Identified compounds have been divided in two groups: 1) compounds initially developed for the treatment of diseases other than epilepsy: biperiden, bumetanide, everolimus, fenfluramine, melatonin, minocycline, verapamil. 2) Compounds specifically developed for the treatment of epilepsy: allopregnanolone, cannabidiol, cannabidivarin, ganaxolone, nalutozan, PF-06372865, UCB0942, and cenobamate. Everolimus, and perhaps, fenfluramine are effective in specific epileptic diseases and may be considered as true disease modifying antiepileptic drugs. These are tuberous sclerosis complex for everolimus and Dravet syndrome for fenfluramine. With the exception of a few other compounds such as cannabinidiol, cannabidivarin and minocycline, the vast majority of other compounds had mechanisms of action which are similar to the mechanism of action of the anti-seizure drugs already in the market. Substantial improvements in the efficacy, specifically as pharmacological treatment of drug-resistant epilepsy is regarded, are not expected. New drugs should be developed to specifically target the biochemical alteration which characterizes the underlying disease and also include targets that contribute to epileptogenesis in relevant epilepsy models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fatal barium chloride poisoning: four cases report and literature review.
Ananda, Sunnassee; Shaohua, Zhu; Liang, Liu
2013-06-01
Barium is an alkaline earth metal which has a variety of uses including in the manufacturing industry and in medicine. However, adverse health effects and fatalities occur due to absorption of soluble barium compounds, notably the chloride, nitrate, and hydroxide, which are toxic to humans. Although rare, accidental and suicidal modes of poisoning are sporadically reported in the literature.We describe 4 cases of poisoning due to barium chloride in China. In witnessed cases, severe gastrointestinal symptoms, hypokalemia leading to muscle weakness, cardiac arrhythmias, and respiratory failure were noted. Autopsy showed some nonspecific but common findings, such as subendocardial hemorrhage in the ventricles, visceral petechiae, and fatty changes in the liver. Interestingly, microscopic examination showed degenerative changes and amorphous, flocculent foamy materials in the renal tubules. Toxicology was relevant for barium in blood and tissues. Three of the cases were accidental and 1 homicidal in nature. A round-up of relevant literature on fatal barium compounds poisoning is also provided. Forensic pathologists should be aware of the clinical presentations of barium compound poisoning and especially look for any evidence of hypokalemia. Still, postmortem toxicological and histological studies are essential for an accurate identification of the cause of death.
Benjamin, B; Sahu, M; Bhatnagar, U; Abhyankar, D; Srinivas, N R
2012-04-01
Literature data on the clinical pharmacokinetics of various VEGFR-2 inhibitors along with in vitro potency data were correlated and a linear relationship was established in spite of limited data set. In this work, a model set comprised of axitinib, recentin, sunitinib, pazopanib, and sorafenib were used. The in vitro potencies of the model set compounds were correlated with the published unbound plasma concentrations (Cmax, Cavg, Ctrough). The established linear regression (r2>0.90) equation was used to predict Cmax, Cavg, Ctrough of the 'prediction set' (motesanib, telatinib, CP547632, vatalanib, vandetanib) using in vitro potency and unbound protein free fraction. Cavg and Ctrough of prediction set were closely matched (0.2-1.8 fold of reported), demonstrating the usefulness of such predictions for tracking the target related modulation and/or efficacy signals within the clinically optimized population average. In case of Cmax where correlation was least anticipated, the predicted values were within 0.1-1.1 fold of those reported. Such predictions of appropriate parameters would provide rough estimates of whether or not therapeutically relevant dose(s) have been administered when clinical investigations of novel agents of this class are being performed. Therefore, it may aid in increasing clinical doses to a desired level if safety of the compound does not compromise such dose increases. In conclusion, the proposed model may prospectively guide the dosing strategies and would greatly aid the development of novel compounds in this class. © Georg Thieme Verlag KG Stuttgart · New York.
Craig, Sandra; Gao, Lei; Lee, Irene; Gray, Thomas; Berdis, Anthony J.
2012-01-01
This report describes the design and application of several distinct gold-containing indoles as anti-cancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells. PMID:22289037
[The biological and clinical relevance of estrogen metabolome].
Kovács, Krisztián; Vásárhelyi, Barna; Mészáros, Katalin; Patócs, Attila; Karvaly, Gellért
2017-06-01
Considerable knowledge has been gathered on the physiological role of estrogens. However, fairly little information is available on the role of compounds produced in the breakdown process of estrone and estradiol wich may play a role in various diseases associated with estrogen impact. To date, approximately 15 extragonadal estrogen-related compounds have been identified. These metabolites may exert protective, or, instead, pro-inflammatory and/or pro-oncogenic activity in a tissue-specific manner. Systemic and local estrogen metabolite levels are not necesserily correlated, which may promote the diagnostic significance of the locally produced estrogen metabolites in the future. The aim of the present study is a bibliographic review of the extragonadal metabolome in peripheral tissues, and to highlight the role of the peripheral tissue homeostasis of estrogens as well as the non-hormonal biological activity and clinical significance of the estrogen metabolome. Orv Hetil. 2017; 158(24): 929-937.
Recent advances in herbal medicines treating Parkinson's disease.
Li, Xu-Zhao; Zhang, Shuai-Nan; Liu, Shu-Min; Lu, Fang
2013-01-01
Herbal medicines have attracted considerable attention in recent years, which are used to treat Parkinson's disease (PD) in China based on traditional Chinese medicine or modern pharmacological theories. We summarized and analyzed the anti-Parkinsonian activities of herbal medicines and herbal formulations investigated in PD models and provide future references for basic and clinical investigations. All the herbal medicines and herbal formulations were tested on PD models in vitro and in vivo. The relevant compounds and herbal extracts with anti-Parkinsonian activities were included and analyzed according to their genera or pharmacological activities. A total of 38 herbal medicines and 11 herbal formulations were analyzed. The relevant compounds, herbal extracts and formulations were reported to be effective on PD models by modulating multiple key events or signaling pathways implicated in the pathogenesis of PD. The plant species of these herbal medicines belong to 24 genera and 18 families, such as Acanthopanax, Alpinia and Astragalus, etc. These herbal medicines can be an alternative and valuable source for anti-Parkinsonian drug discovery. The plant species in these genera and families may be the most promising candidates for further investigation and deserve further consideration in clinical trials. Active components in some of the herbal extracts and the compatibility law of herbal formulations remain to be further investigated. Copyright © 2012 Elsevier B.V. All rights reserved.
Deng, Shan; Wong, Chris Kong Chu; Lai, Hung-Cheng; Wong, Alice Sze Tsai
2017-01-01
Chemoresistance is a major clinical problem compromising the successful treatment of cancer. One exciting approach is the eradication of cancer stem/tumor-initiating cells (jointly CSCs), which account for tumor initiation, progression, and drug resistance. Here we show for the first time, with mechanism-based evidence, that ginsenoside-Rb1, a natural saponin isolated from the rhizome of Panax quinquefolius and notoginseng, exhibits potent cytotoxicity on CSCs. Rb1 and its metabolite compound K could effectively suppress CSC self-renewal without regrowth. Rb1 and compound K treatment also sensitized the CSCs to clinically relevant doses of cisplatin and paclitaxel. These effects were associated with the Wnt/β-catenin signaling pathway by downregulating β-catenin/T-cell factor-dependent transcription and expression of its target genes ATP-binding cassette G2 and P-glycoprotein. We also identified reversal of epithelial-to-mesenchymal transition as a new player in the Rb1 and compound K-mediated inhibition of CSCs. Rb1 and compound K treatment also inhibited the self-renewal of CSCs derived from ovarian carcinoma patients as well as in xenograft tumor model. Moreover, we did not observe toxicity in response to doses of Rb1 and compound K that produced an anti-CSC effect. Therefore, Rb1 should be explored further as a promising nutraceutical prototype of treating refractory tumors. PMID:27825116
Amlodipine: One of the main anti-hypertensive drugs in veterinary therapeutics.
Tissier, Renaud; Perrot, Sebastien; Enriquez, Brigitte
2005-05-01
Amlodipine is a dihydropyridine compound and belongs to the pharmacological family of calcium channel blockers. It is one of the main treatments of systemic arterial hypertension in cats and its validity has been confirmed in several reports. Its beneficial effect on the peripheral and coronary vascular bed is due to immediate vasodilation and to a delayed anti-hypertrophic action. The aim of the present review is to highlight the clinically-relevant characteristics of amlodipine, especially regarding its mechanism of action, and to present the main clinical reports supporting its interest in veterinary cardiology.
The Toxicology of New Psychoactive Substances: Synthetic Cathinones and Phenylethylamines.
Tyrkkö, Elli; Andersson, Mikael; Kronstrand, Robert
2016-04-01
New psychoactive substances (NPSs) are substitutes for classical drugs of abuse and there are now compounds available from all groups of classical drugs of abuse. During 2014, the number of synthetic cathinones increased dramatically and, together with phenylethylamines, they dominate the NPS markets in the European Union. In total, 31 cathinones and 9 phenylethylamines were encountered in 2014. The aim of this article was to summarize the existing knowledge about the basic pharmacology, metabolism, and human toxicology of relevant synthetic cathinones and phenylethylamines. Compared with existing reviews, we have also compiled the existing case reports from both fatal and nonfatal intoxications. We performed a comprehensive literature search using bibliographic databases PubMed and Web of Science, complemented with Google Scholar. The focus of the literature search was on original articles, case reports, and previously published review articles published in 2014 or earlier. The rapid increase of NPSs is a growing concern and sets new challenges not only for societies in drug prevention and legislation but also in clinical and forensic toxicology. In vivo and in vitro studies have demonstrated that the pharmacodynamic profile of cathinones is similar to that of other psychomotor stimulants. Metabolism studies show that cathinones and phenylethylamines are extensively metabolized; however, the parent compound is usually detectable in human urine. In vitro studies have shown that many cathinones and phenylethylamines are metabolized by CYP2D6 enzymes. This indicates that these drugs may have many possible drug-drug interactions and that genetic polymorphism may influence their toxicity. However, the clinical and toxicological relevance of CYP2D6 in adverse effects of cathinones and phenylethylamines is questionable, because these compounds are metabolized by other enzymes as well. The toxidromes commonly encountered after ingestion of cathinones and phenylethylamines are mainly of sympathomimetic and hallucinogenic character with a risk of excited delirium and life-threatening cardiovascular effects. The acute and chronic toxicity of many NPSs is unknown or very sparsely investigated. There is a need for evidence-based-treatment recommendations for acute intoxications and a demand for new strategies to analyze these compounds in clinical and forensic cases.
Nenna, Antonio; Spadaccio, Cristiano; Lusini, Mario; Ulianich, Luca; Chello, Massimo; Nappi, Francesco
2015-01-01
Diabetes is a major risk factor for cardiovascular disease, and recent advances in research indicate that a detailed understanding of the pathophysiology of its effects is mandatory to reduce diabetes-related mortality and morbidity. Advanced Glycation End Products (AGEs) play a central role in the genesis and progression of complications of both type 1 and type 2 diabetes mellitus, and have been found to be important even in non-diabetic patients as a marker of cardiovascular disease. AGEs have a profound impact on patient's prognosis regardless of the glycemic control, and therefore pharmacologic approaches against AGEs accumulation have been proposed over the years to treat cardiovascular diseases, parallel to a more detailed understanding of AGEs pathophysiology. Compounds with anti-AGEs effects are currently under investigation in both pre-clinical and clinical scenarios, and many of the drugs previously used to treat specific diseases have been found to have AGE-inhibitory effects. Some products are still in "bench evaluation", whereas others have been already investigated in clinical trials with conflicting evidences. This review aims at summarizing the mechanisms of AGEs formation and accumulation, and the most relevant issues in pre-clinical and clinical experiences in anti-AGEs treatment in cardiovascular research.
Zhou, Jie-Bin; Luo, Rong; Zheng, Ying-Lin; Pang, Ji-Yan
2018-01-01
Numerous studies have indicated that marine natural products are one of the most important sources of the lead compounds in drug discovery for their unique structures, various bioactivities and less side effects. In this review, the marine natural products with cardiovascular pharmacological effects reported after 2000 will be presented. Their structural types, relevant biological activities, origin of isolation and information of strain species will be discussed in detail. Finally, by describing our studies as an example, we also discuss the chances and challenges for translating marine-derived compounds into preclinical or clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Melatonin: Buffering the Immune System
Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.
2013-01-01
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496
Wang, Yedong; Li, Yuan; Lu, Jia; Qi, Huixin; Cheng, Isabel; Zhang, Hongjian
2018-05-16
Compound- 3 is an oral monophosphate prodrug of gemcitabine. Previous data showed that Compound- 3 was more potent than gemcitabine and it was orally active in a tumor xenograft model. In the present study, the metabolism of Compound- 3 was investigated in several well-known in vitro matrices. While relatively stable in human and rat plasma, Compound- 3 demonstrated noticeable metabolism in liver and intestinal microsomes in the presence of NADPH and human hepatocytes. Compound- 3 could also be hydrolyzed by alkaline phosphatase, leading to gemcitabine formation. Metabolite identification using accurate mass- and information-based scan techniques revealed that Compound- 3 was subjected to sequential metabolism, forming alcohol, aldehyde and carboxylic acid metabolites, respectively. Results from reaction phenotyping studies indicated that cytochrome P450 4F2 (CYP4F2) was a key CYP isozyme involved in Compound- 3 metabolism. Interaction assays suggested that CYP4F2 activity could be inhibited by Compound- 3 or an antiparasitic prodrug pafuramidine. Because CYP4F2 is a key CYP isozyme involved in the metabolism of eicosanoids and therapeutic drugs, clinical relevance of drug-drug interactions mediated via CYP4F2 inhibition warrants further investigation.
Carlà, M; Cuomo, M; Arcangeli, A; Olivotto, M
1995-06-01
The interfacial adsorption properties of polar/apolar inducers of cell differentiation (PAIs) were studied on a mercury electrode. This study, on a clean and reproducible charged surface, unraveled the purely physical interactions among these compounds and the surface, apart from the complexity of the biological membrane. The interfacial behavior of two classical inducers, hexamethylenebisacetamide (HMBA) and dimethylsulfoxide, was compared with that of a typical apolar aliphatic compound, 1-octanol, that has a similar hydrophobic moiety as HMBA but a much smaller dipolar moment. Both HMBA and Octanol adsorb flat in contact with the surface because of hydrophobic forces, with a very similar free energy of adsorption. However, the ratio of polar to apolar moieties in PAIs turned out to be crucial to drive the adsorption maximum toward physiological values of surface charge density, where octanol is desorbed. The electrostatic effects in the interfacial region reflected the adsorption properties: the changes in the potential drop across the interfacial region as a function of the surface charge density, in the physiological range, were opposite in PAIs as compared with apolar aliphatic compounds, as exemplified by octanol. This peculiar electrostatic effect of PAIs has far-reaching relevance for the design of inducers with an adequate therapeutic index to be used in clinical trials.
Children with multiple sclerosis should not become therapeutic hostages
Rose, Klaus; Müller, Thomas
2016-01-01
Background: Both the United States (US) Food and Drug Administration (FDA) and the European Union (EU) European Medicines Agency (EMA) order pediatric clinical trials as a condition for approval of new compounds. We evaluate clinical value and likelihood of sufficient recruitment for pediatric multiple sclerosis (pMS) studies and discuss US and EU pediatric legislation with pMS as a paradigm. Methods: We analyzed pMS clinical trials requested by the FDA and the EMA and industry-sponsored pMS studies registered on www.clinicaltrials.gov and www.clinicaltrialsregister.eu. Results: The FDA demands four and the EMA 15 pMS trials Conclusions: pMS is rare. Neither FDA nor EMA prioritize compounds for potential benefit in pMS. The EMA in particular orders multiple pMS studies, which will probably not recruit enough patients. Therefore, it is likely that the pMS trial outcomes will not be relevant for evidence-based medicine analyses, clinical practice and a pMS label for the respective drug. EMA requests for multiple pediatric studies have been described in metastasized adolescent melanoma, another very rare pediatric disease. The terms ‘ghost studies’ and ‘therapeutic hostages’ have been proposed for such trials and children whose parents are lured into permitting study participation. Clinical studies are not ethical if the probability is high that they will not provide reasonable outcomes. For now, pMS clinicians will have to continue to use new MS drugs in children off-label. They might consider a more proactive international coordinating role in prioritizing and testing new MS compounds in children. PMID:27582894
Safety and Antioxidant Efficacy Profiles of Rutin-Loaded Ethosomes for Topical Application.
Cândido, Thalita Marcílio; De Oliveira, Camila Areias; Ariede, Maíra Bueno; Velasco, Maria Valéria Robles; Rosado, Catarina; Baby, André Rolim
2018-05-01
Topical application of dermocosmetics containing antioxidant and/or the intake of antioxidants through diet or supplementation are remarkable tools in an attempt to slow down some of the harmful effects of free radicals. Rutin is a strong antioxidant compound used in food and pharmaceutical industries. It was established that rutin presents a low skin permeation rate, a property that could be considered an inconvenience to the satisfactory action for a dermocosmetic formulation to perform its antioxidant activity onto the skin. Therefore, it is indispensable to improve its delivery, aiming at increasing its antioxidant capacity in deeper layers of the epidermis, being a possibility to associate the rutin to liposomal vesicles, such as ethosomes. Thus, in this work, the pre-clinical safety of rutin-loaded ethosomes was investigated employing an in vitro method, and the clinical safety and efficacy were also assessed. Rutin-loaded ethosomes were efficaciously obtained in a nanoscale dimension with a relevant bioactive compound loading (80.2%) and provided antioxidant in vitro activity in comparison with the blank sample. Pre-clinical and clinical safety assays assured the innocuous profile of the rutin-loaded ethosomes. The ethosomes containing the bioactive compound accomplished a more functional delivery system profile, since in the tape stripping assay, the deeper layers presented higher rutin amounts than the active delivered in its free state. However, the ex vivo antioxidant efficacy test detected no positive antioxidant activity from the rutin-loaded ethosomes, even though the in vitro assay demonstrated an affirmative antioxidant action.
Tortorella, Stephanie; Karagiannis, Tom C
2014-01-01
Anticancer therapeutic research aims to improve clinical management of the disease through the development of strategies that involve currently-relevant treatment options and targeted delivery. Tumour-specific and -targeted delivery of compounds to the site of malignancy allows for enhanced cellular uptake, increased therapeutic benefit with high intratumoural drug concentrations, and decreased systemic exposure. Due to the upregulation of transferrin receptor expression in a wide variety of cancers, its function and its highly efficient recycling pathway, strategies involving the selective targeting of the receptor are well documented. Direct conjugation and immunotoxin studies using the transferrin peptide or anti-transferrin receptor antibodies as the targeting moiety have established the capacity to enhance cellular uptake, cross the blood brain barrier, limit systemic toxicity and reverse multi-drug resistance. Limitations in direct conjugation, including the difficulty in linking an adequate amount of therapeutic compound to the ligand or antibody have identified the requirement to develop novel delivery methods. The application of nanoparticulate theory in the development of functional drug delivery systems has proven to be most promising, with the ability to selectively modify size-dependent properties and surface chemistry. The transferrin modification on a range of nanoparticle formulations enhances selective cellular uptake through transferrin-mediated processes, and increases therapeutic benefit through the ability to encapsulate high concentrations of relevant drug to the tumour site. Although ineffective in crossing the blood brain barrier in its free form, chemotherapeutic compounds including doxorubicin, may be loaded into transferrin-conjugated nanocarriers and impart cytotoxic effects in glioma cells in vitro and in vivo. Additionally, transferrin-targeted nanoparticles may be used in selective diagnostic applications with enhanced selectivity and sensitivity. Four transferrin-modified nano-based drug delivery systems are currently in early phases of human clinical trials. Despite the collective promise, inconsistencies in some studies have exposed some limitations in current formulations and the difficulty in translating preliminary studies into clinically-relevant therapeutic options. The main objective of this review is to investigate the development of transferrin targeted nano-based drug delivery systems in order to establish the use of transferrin as a cancer-targeted moiety, and to ultimately evaluate the progression of cancer therapeutic strategies for future research.
Miyasaki, Yoko; Rabenstein, John D; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M; Kittell, Patricia Emmett; Morgan, Margie A; Nichols, Wesley Stephen; Van Benschoten, M M; Hardy, William David; Liu, George Y
2013-01-01
The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.
Cheepurupalli, Lalitha; Raman, Thiagarajan; Rathore, Sudarshan S.; Ramakrishnan, Jayapradha
2017-01-01
The emergence and spread of multi-drug resistant (MDR) especially carbapenem-resistant Klebsiella pneumoniae is a major emerging threat to public health, leading to excess in mortality rate as high as 50–86%. MDR K. pneumoniae manifests all broad mechanisms of drug resistance, hence development of new drugs to treat MDR K. pneumoniae infection has become a more relevant question in the scientific community. In the present study a potential Streptomyces sp. ASK2 was isolated from rhizosphere soil of medicinal plant. The multistep HPLC purification identified the active principle exhibiting antagonistic activity against MDR K. pneumoniae. The purified compound was found to be an aromatic compound with aliphatic side chain molecule having a molecular weight of 444.43 Da. FT-IR showed the presence of OH and C=O as functional groups. The bioactive compound was further evaluated for drug induced toxicity and efficacy in adult zebrafish infection model. As this is the first study on K. pneumoniae – zebrafish model, the infectious doses to manifest sub-clinical and clinical infection were optimized. Furthermore, the virulence of K. pneumoniae in planktonic and biofilm state was studied in zebrafish. The MTT assay of ex vivo culture of zebrafish liver reveals non-toxic nature of the proposed ASK2 compound at an effective dose. Moreover, significant increase in survival rate of infected zebrafish suggests that ASK2 compound from a new strain of Streptomyces sp. was potent in mitigating MDR K. pneumoniae infection. PMID:28446900
Ouyang, Liang; Cai, Haoyang; Liu, Bo
2016-01-01
Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420
Extemporaneous formulations in Germany - relevance for everyday clinical practice.
Staubach, Petra; Salzmann, Stefan; Peveling-Oberhag, Adriane; Weyer, Veronika; Zimmer, Sebastian; Gradl, Gabriele; Lang, Berenice M
2018-05-01
Extemporaneous formulations broaden the spectrum of therapeutic options for topical treatment in particular and thus improve patient care. The latest amendment to the Regulation on the Operation of Pharmacies issued in 2012 brought about changes in prescribing and manufacturing practices. The aim of the present study was to assess the relevance of extemporaneous formulations in everyday clinical practice. We used data from the German Institute for Drug Use Evaluation (DAPI) to analyze the prescribing practice for compounded preparations in Germany between the fourth quarter of 2011 and the third quarter of 2014. In doing so, we determined the total cost associated with extemporaneous formulations covered by statutory health insurance funds in the outpatient setting. Approximately three out of ten prescriptions (30.54 %) by German dermatologists during the observation period were extemporaneous formulations. While dermatologists make up only 2.7 % of physicians working in the statutory health care system in Germany, they prescribe more than half of all compounded preparations (53.6 %). Each dermatologist prescribed an average of 270.4 formulations per quarter; that number was 13.5 (1.3 %) for all other medical specialties. On average, 1,983,687 extemporaneous formulations overall (1.3 % of all prescriptions) were prescribed per quarter, corresponding to a total cost of € 40,944,982 (0.55 %). Apart from finished medicinal products, extemporaneous formulations play a key role in outpatient care. Based on the principles of evidence-based and patient-oriented medicine, the quality of compounded preparations and the prescribing practice of physicians (standardized vs. individual formulations) should be further investigated to optimize the quality of these preparations. © 2018 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Bouchard, Philippe; Chabbert-Buffet, Nathalie; Fauser, Bart C J M
2011-11-01
To discuss the mechanism of action of selective progesterone receptor modulators (SPRMs) and summarize the preclinical and clinical efficacy and safety data supporting the potential use of these compounds for gynecologic indications. Relevant publications from 2005 onward were identified using a PubMed search. Additional relevant articles were identified from citations within these publications. None. None. None. None. Mifepristone was first developed as a progesterone receptor antagonist and licensed for pregnancy termination because of the unique property of this compound to terminate pregnancy when associated with prostaglandins. Then SPRMs were developed, and among those ulipristal acetate, an efficient emergency contraceptive. Because SPRMs effectively inhibit endometrial proliferation and reduce endometriotic lesions in animal models, this suggests a possible role in the treatment of endometriosis in humans. Finally, a number of double-blind, randomized, placebo-controlled trials have demonstrated the efficacy of asoprisnil, mifepristone, telapristone acetate, and ulipristal acetate in reducing leiomyoma and uterine volume, and suppressing bleeding in women with uterine fibroids. Mifepristone in combination with prostaglandins has been licensed for pregnancy termination because of its unique ability is this area. Ulipristal acetate is available for emergency contraception. Several SPRMs hold further promise as an effective medical therapy for patients suffering from endometriosis and leiomyoma. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
2016-01-01
The Cancer Target Discovery and Development (CTD2) Network was established to accelerate the transformation of “Big Data” into novel pharmacological targets, lead compounds, and biomarkers for rapid translation into improved patient outcomes. It rapidly became clear in this collaborative network that a key central issue was to define what constitutes sufficient computational or experimental evidence to support a biologically or clinically relevant finding. This manuscript represents a first attempt to delineate the challenges of supporting and confirming discoveries arising from the systematic analysis of large-scale data resources in a collaborative work environment and to provide a framework that would begin a community discussion to resolve these challenges. The Network implemented a multi-Tier framework designed to substantiate the biological and biomedical relevance as well as the reproducibility of data and insights resulting from its collaborative activities. The same approach can be used by the broad scientific community to drive development of novel therapeutic and biomarker strategies for cancer. PMID:27401613
Chinnaiyan, Prakash; Thampi, Santosh G; Kumar, Mathava; Mini, K M
2018-04-17
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern and have been detected worldwide in water bodies in trace concentrations. Most of these emerging contaminants are not regulated in water quality standards except a few in the developed countries. In the case of developing countries, research in this direction is at a nascent stage. For the effective management of Pharmaceutical contaminants (PC) in developing countries, the relevance of PCs as an emerging contaminant has to be analyzed followed by regular monitoring of the environment. Considering the resource constraints, this could be accomplished by identifying the priority compounds which is again region specific and dependent on consumption behavior and pattern. In this work, relevance of pharmaceutical compound as emerging contaminant in water for a developing country like India is examined by considering the data pertaining to pharmaceutical consumption data. To identify the critical Pharmaceutical Contaminants to be monitored in the Indian environment, priority compounds from selected prioritization methods were screened with the compounds listed in National List of Essential Medicine (NLEM), India. Further, information on the number of publications on the compound as an emerging contaminant, data on monitoring studies in India and the number of brands marketing the compound in India were also analyzed. It is found that out of 195 compounds from different prioritization techniques, only 77 compounds were found relevant to India based on NLEM sorting.
Hager, S; Ackermann, C J; Joerger, M; Gillessen, S; Omlin, A
2016-06-01
For men with advanced castration-resistant prostate cancer (CRPC), several treatment options are available, including androgen receptor (AR) pathway inhibitors (abiraterone acetate, enzalutamide), taxanes (docetaxel, cabazitaxel) and the radionuclide (radium-223). However, cross-resistance is a clinically relevant problem. Platinum compounds have been tested in a number of clinical trials in molecularly unselected prostate cancer patients. Advances in CRPC molecular profiling have shown that a significant proportion of patients harbour DNA repair defects, which may serve as predictive markers for sensitivity to platinum agents. To systematically identify and analyse clinical trials that have evaluated platinum agents in advanced prostate cancer patients. PubMed was searched to identify published clinical trials of platinum agents in advanced prostate cancer. The PRIMSA statement was followed for the systematic review process. Identified trials are analysed for study design, statistical plan, assessments of anti-tumour activity and the potential value of predictive biomarkers. A total of 163 references were identified by the literature search and 72 publications that met the selection criteria were included in this review; of these 33 used carboplatin, 27 cisplatin, 6 satraplatin, 4 oxaliplatin and 2 other platinum compounds. Overall, anti-tumour activity varies in the range of 10%-40% for objective response and 20%-70% for PSA decline ≥50%. Response seemed highest for the combinations of carboplatin with taxanes or oxaliplatin with gemcitabine. The interpretation of the clinical data is limited by differences in response criteria used and patient populations studied. Platinum compounds have moderate anti-tumour activity in molecularly unselected patients with advanced prostate cancer. Translational evidence of DNA repair deficiency should be leveraged in future studies to select prostate cancer patients most likely to benefit from platinum-based therapy. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Guedes-da-Silva, F. H.; Batista, D. G. J.; da Silva, C. F.; Meuser, M. B.; Simões-Silva, M. R.; de Araújo, J. S.; Ferreira, C. G.; Moreira, O. C.; Britto, C.; Lepesheva, G. I.
2015-01-01
The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD. PMID:26416857
Geary, Richard S; Bradley, JoAnn D; Watanabe, Tanya; Kwon, Younggil; Wedel, Mark; van Lier, Jan J; VanVliet, André A
2006-01-01
ISIS 113715 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that is complementary to the protein tyrosine phosphatase 1B (PTP-1B) messenger RNA and subsequently reduces translation of the PTP-1B protein, a negative regulator of insulin receptor. ISIS 113715 is currently being studied in early phase II clinical studies to determine its ability to improve or restore insulin receptor sensitivity in patients with type 2 diabetes mellitus. Future work will investigate the combination of ISIS 113715 with antidiabetic compounds. In vitro ultrafiltration human plasma protein binding displacement studies and a phase I clinical study were used to characterise the potential for pharmacokinetic interaction of ISIS 113715 and three marketed oral antidiabetic agents. ISIS 113715 was co-incubated with glipizide and rosiglitazone in whole human plasma and tested for increased free drug concentrations. In a phase I clinical study, 23 healthy volunteers received a single oral dose of an antidiabetic compound (either metformin, glipizide or rosiglitazone) both alone and together with subcutaneous ISIS 113715 200 mg in a sequential crossover design. A comparative pharmacokinetic analysis was performed to determine if there were any effects that resulted from coadministration of ISIS 113715 with these antidiabetic compounds. In vitro human plasma protein binding displacement studies showed only minor effects on rosiglitazone and no effect on glipizide when co-incubated with ISIS 113715. The results of the phase I clinical study further indicate that there were no measurable changes in glipizide (5 mg), metformin (500 mg) or rosiglitazone (2 mg) exposure parameters, maximum plasma concentration and the area under the concentration-time curve, or pharmacokinetic parameter, elimination half-life when coadministered with ISIS 113715. Furthermore, there was no effect of ISIS 113715, administered in combination with metformin, on the urinary excretion of metformin. Conversely, there were no observed alterations in ISIS 113715 pharmacokinetics when administered in combination with any of the oral antidiabetic compounds. These data provide evidence that ISIS 113715 exhibits no clinically relevant pharmacokinetic interactions on the disposition and clearance of the oral antidiabetic drugs. The results of these studies support further study of ISIS 113715 in combination with antidiabetic compounds.
The relevance of human stem cell-derived organoid models for epithelial translational medicine
Hynds, Robert E.; Giangreco, Adam
2014-01-01
Epithelial organ remodeling is a major contributing factor to worldwide death and disease, costing healthcare systems billions of dollars every year. Despite this, most fundamental epithelial organ research fails to produce new therapies and mortality rates for epithelial organ diseases remain unacceptably high. In large part, this failure in translating basic epithelial research into clinical therapy is due to a lack of relevance in existing preclinical models. To correct this, new models are required that improve preclinical target identification, pharmacological lead validation, and compound optimization. In this review, we discuss the relevance of human stem cell-derived, three-dimensional organoid models for addressing each of these challenges. We highlight the advantages of stem cell-derived organoid models over existing culture systems, discuss recent advances in epithelial tissue-specific organoids, and present a paradigm for using organoid models in human translational medicine. PMID:23203919
The Chemically Elegant Proton Pump Inhibitors
Roche, Victoria F.
2006-01-01
Medicinal chemistry instruction at Creighton University is designed to provide an in-depth scientifically grounded and clinically relevant learning experience for pharmacy students. Each topic covered in the 2-semester required course sequence is selected based on the general utility of the compounds in question and/or the therapeutic importance of the drugs in treating life-threatening diseases. All lessons provided to campus- and Web-based students by the author are in the form of a descriptive and conversational narrative and course requirements are in place to assure that students read the lesson prior to the class period in which it is discussed. Learning tools and aids are provided to help students more readily discern the most critical aspects of each lesson, to practice required critical thinking and structure analysis skills, and to self-assess competency in meeting specific learning objectives. This manuscript illustrates this approach by sharing a lesson on the chemistry and clinically relevant structure-activity relationships of proton pump inhibitors. PMID:17149430
Romo, Jesus A.; Pierce, Christopher G.; Chaturvedi, Ashok K.; Lazzell, Anna L.; McHardy, Stanton F.
2017-01-01
ABSTRACT Candida albicans remains the main etiologic agent of candidiasis, the most common fungal infection and now the third most frequent infection in U.S. hospitals. The scarcity of antifungal agents and their limited efficacy contribute to the unacceptably high morbidity and mortality rates associated with these infections. The yeast-to-hypha transition represents the main virulence factor associated with the pathogenesis of C. albicans infections. In addition, filamentation is pivotal for robust biofilm development, which represents another major virulence factor for candidiasis and further complicates treatment. Targeting pathogenic mechanisms rather than growth represents an attractive yet clinically unexploited approach in the development of novel antifungal agents. Here, we performed large-scale phenotypic screening assays with 30,000 drug-like small-molecule compounds within ChemBridge’s DIVERSet chemical library in order to identify small-molecule inhibitors of C. albicans filamentation, and our efforts led to the identification of a novel series of bioactive compounds with a common biaryl amide core structure. The leading compound of this series, N-[3-(allyloxy)-phenyl]-4-methoxybenzamide, was able to prevent filamentation under all liquid and solid medium conditions tested, suggesting that it impacts a common core component of the cellular machinery that mediates hypha formation under different environmental conditions. In addition to filamentation, this compound also inhibited C. albicans biofilm formation. This leading compound also demonstrated in vivo activity in clinically relevant murine models of invasive and oral candidiasis. Overall, our results indicate that compounds within this series represent promising candidates for the development of novel anti-virulence approaches to combat C. albicans infections. PMID:29208749
Ansari, Anam; Ali, Abad; Asif, Mohd; Rauf, Mohd Ahmar; Owais, Mohammad; Shamsuzzaman
2018-06-01
A series of steroidal oxazole and thiazole derivatives have been synthesized employing thiosemicarbazide/semicarbazide hydrochloride and ethyl 2-chloroacetoacetate with a simple and facile one-pot multicomponent reaction pathway. The antimicrobial activity of newly synthesized compounds were evaluated against four bacterial strains namely Gram-negative (Escherichia coliand Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in addition to pathogenic fungi (Candida albicans and Cryptococcus neoformans). Bioactivity assay manifested that most of the compounds exhibited good antimicrobial activity. To provide additional insight into antimicrobial activity, the compounds were also tested for their antibiofilm activity against S. aureus biofilm. Moreover, molecular docking study shows binding of compounds with amino acid residues of DNA gyrase and glucosamine-6-phosphate synthase (promising antimicrobial target) through hydrogen bonding interactions. Hemolytic activity have been also investigated to ascertain the effect of compounds over RBC lysis and results indicate good prospects for biocompatibility. The expedient synthesis of steroidal heterocycles, effective antibacterial and antifungal behavior against various clinically relevant human pathogens, promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents. Copyright © 2018 Elsevier Inc. All rights reserved.
GDA, a web-based tool for Genomics and Drugs integrated analysis.
Caroli, Jimmy; Sorrentino, Giovanni; Forcato, Mattia; Del Sal, Giannino; Bicciato, Silvio
2018-05-25
Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines. Genomic and pharmacological data are integrated through a modular architecture that allows users to identify compounds active towards cancer cell lines bearing a specific genomic background and, conversely, the mutational or transcriptional status of cells responding or not-responding to a specific compound. Results are presented through intuitive graphical representations and supplemented with information obtained from public repositories. As both personalized targeted therapies and drug-repurposing are gaining increasing attention, GDA represents a resource to formulate hypotheses on the interplay between genomic traits and drug response in cancer. GDA is freely available at http://gda.unimore.it/.
Compartmental transport model of microbicide delivery by an intravaginal ring
Geonnotti, Anthony R.; Katz, David F.
2010-01-01
Topical antimicrobials, or microbicides, are being developed to prevent HIV transmission through local, mucosal delivery of antiviral compounds. While hydrogel vehicles deliver the majority of current microbicide products, intravaginal rings (IVRs) are an alternative microbicide modality in preclinical development. IVRs provide a long-term dosing alternative to hydrogel use, and might provide improved user adherence. IVR efficacy requires sustained delivery of antiviral compounds to the entire vaginal compartment. A two-dimensional, compartmental vaginal drug transport model was created to evaluate the delivery of drugs from an intravaginal ring. The model utilized MRI-derived ring geometry and location, experimentally defined ring fluxes and vaginal fluid velocities, and biophysically relevant transport theory. Model outputs indicated the presence of potentially inhibitory concentrations of antiviral compounds along the entire vaginal canal within 24 hours following IVR insertion. Distributions of inhibitory concentrations of antiviral compounds were substantially influenced by vaginal fluid flow and production, while showing little change due to changes in diffusion coefficients or ring fluxes. Additionally, model results were predictive of in vivo concentrations obtained in clinical trials. Overall, this analysis initiates a mechanistic computational framework, heretofore missing, to understand and evaluate the potential of IVRs for effective delivery of antiviral compounds. PMID:20222027
Kumari, Daman; Swaroop, Manju; Southall, Noel; Huang, Wenwei; Zheng, Wei; Usdin, Karen
2015-07-01
: Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. ©AlphaMed Press.
Approved and Experimental Small-Molecule Oncology Kinase Inhibitor Drugs: A Mid-2016 Overview.
Fischer, Peter M
2017-03-01
Kinase inhibitor research is a comparatively recent branch of medicinal chemistry and pharmacology and the first small-molecule kinase inhibitor, imatinib, was approved for clinical use only 15 years ago. Since then, 33 more kinase inhibitor drugs have received regulatory approval for the treatment of a variety of cancers and the volume of reports on the discovery and development of kinase inhibitors has increased to an extent where it is now difficult-even for those working in the field-easily to keep an overview of the compounds that are being developed, as currently there are 231 such compounds, targeting 38 different protein and lipid kinases (not counting isoforms), in clinical use or under clinical investigation. The purpose of this review is thus to provide an overview of the biomedical rationales for the kinases being targeted on the one hand, and the design principles, as well as chemical, pharmacological, pharmaceutical, and toxicological kinase inhibitor properties, on the other hand. Two issues that are especially important in kinase inhibitor research, target selectivity and drug resistance, as well as the underlying structural concepts, are discussed in general terms and in the context of relevant kinases and their inhibitors. © 2016 Wiley Periodicals, Inc.
Siles-Lucas, Mar; Casulli, Adriano; Cirilli, Roberto
2018-01-01
Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infections with the larval stages of the cestode parasites Echinococcus granulosus and E. multilocularis, respectively. Both diseases are progressive and chronic, and often fatal if left unattended for E. multilocularis. As a treatment approach, chemotherapy against these orphan and neglected diseases has been available for more than 40 years. However, drug options were limited to the benzimidazoles albendazole and mebendazole, the only chemical compounds currently licensed for treatment in humans. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed, including the identification, development, and assessment of novel compound classes and drug targets. Here is presented a thorough overview of the range of compounds that have been tested against E. granulosus and E. multilocularis in recent years, including in vitro and in vivo data on their mode of action, dosage, administration regimen, therapeutic outcomes, and associated clinical symptoms. Drugs covered included albendazole, mebendazole, and other members of the benzimidazole family and their derivatives, including improved formulations and combined therapies with other biocidal agents. Chemically synthetized molecules previously known to be effective against other infectious and non-infectious conditions such as anti-virals, antibiotics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their increasing relevance, natural occurring compounds derived from plant and fungal extracts are also discussed. Special attention has been paid to the recent application of genomic science on drug discovery and clinical medicine, particularly through the identification of small inhibitor molecules tackling key metabolic enzymes or signalling pathways. PMID:29677189
Wu, Junfang; Gouveia-Figueira, Sandra; Domellöf, Magnus; Zivkovic, Angela M; Nording, Malin L
2016-01-01
The presence of fatty acid derived oxylipins, endocannabinoids and related compounds in human milk may be of importance to the infant. Presently, clinically relevant protocols for storing and handling human milk that minimize error and variability in oxylipin and endocannabinoid concentrations are lacking. In this study, we compared the individual and combined effects of the following storage conditions on the stability of these fatty acid metabolites in human milk: state (fresh or frozen), storage temperature (4 °C, -20 °C or -80 °C), and duration (1 day, 1 week or 3 months). Thirteen endocannabinoids and related compounds, as well as 37 oxylipins were analyzed simultaneously by liquid chromatography coupled to tandem mass spectrometry. Twelve endocannabinoids and related compounds (2-111 nM) and 31 oxylipins (1.2 pM-1242 nM) were detected, with highest levels being found for 2-arachidonoylglycerol and 17(R)hydroxydocosahexaenoic acid, respectively. The concentrations of most endocannabinoid-related compounds and oxylipins were dependent on storage condition, and especially storage at 4 °C introduced significant variability. Our findings suggest that human milk samples should be analyzed immediately after, or within one day of collection (if stored at 4 °C). Storage at -80 °C is required for long-term preservation, and storage at -20 °C is acceptable for no more than one week. These findings provide a protocol for investigating the oxylipin and endocannabinoid metabolome in human milk, useful for future milk-related clinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Yoda, Satoshi; Lin, Jessica J; Lawrence, Michael S; Burke, Benjamin J; Friboulet, Luc; Langenbucher, Adam; Dardaei, Leila; Prutisto-Chang, Kylie; Dagogo-Jack, Ibiayi; Timofeevski, Sergei; Hubbeling, Harper; Gainor, Justin F; Ferris, Lorin A; Riley, Amanda K; Kattermann, Krystina E; Timonina, Daria; Heist, Rebecca S; Iafrate, A John; Benes, Cyril H; Lennerz, Jochen K; Mino-Kenudson, Mari; Engelman, Jeffrey A; Johnson, Ted W; Hata, Aaron N; Shaw, Alice T
2018-06-01
The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibitors. To define the spectrum of ALK mutations that confer lorlatinib resistance, we performed accelerated mutagenesis screening of Ba/F3 cells expressing EML4-ALK. Under comparable conditions, N -ethyl- N -nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib-resistant clones harboring single ALK mutations. In similar screens with EML4-ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients. Seven of 20 samples (35%) harbored compound ALK mutations, including two identified in the ENU screen. Whole-exome sequencing in three cases confirmed the stepwise accumulation of ALK mutations during sequential treatment. These results suggest that sequential ALK inhibitors can foster the emergence of compound ALK mutations, identification of which is critical to informing drug design and developing effective therapeutic strategies. Significance: Treatment with sequential first-, second-, and third-generation ALK inhibitors can select for compound ALK mutations that confer high-level resistance to ALK-targeted therapies. A more efficacious long-term strategy may be up-front treatment with a third-generation ALK inhibitor to prevent the emergence of on-target resistance. Cancer Discov; 8(6); 714-29. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.
Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants.
Demmelmair, Hans; Prell, Christine; Timby, Niklas; Lönnerdal, Bo
2017-07-28
The provision of essential and non-essential amino acids for breast-fed infants is the major function of milk proteins. In addition, breast-fed infants might benefit from bioactivities of milk proteins, which are exhibited in the intestine during the digestive phase and by absorption of intact proteins or derived peptides. For lactoferrin, osteopontin and milk fat globule membrane proteins/lipids, which have not until recently been included in substantial amounts in infant formulas, in vitro experiments and animal models provide a convincing base of evidence for bioactivities, which contribute to the protection of the infant from pathogens, improve nutrient absorption, support the development of the immune system and provide components for optimal neurodevelopment. Technologies have become available to obtain these compounds from cow´s milk and the bovine compounds also exhibit bioactivities in humans. Randomized clinical trials with experimental infant formulas incorporating lactoferrin, osteopontin, or milk fat globule membranes have already provided some evidence for clinical benefits. This review aims to compare findings from laboratory and animal experiments with outcomes of clinical studies. There is good justification from basic science and there are promising results from clinical studies for beneficial effects of lactoferrin, osteopontin and the milk fat globule membrane complex of proteins and lipids. Further studies should ideally be adequately powered to investigate effects on clinically relevant endpoints in healthy term infants.
Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants
Prell, Christine; Timby, Niklas; Lönnerdal, Bo
2017-01-01
The provision of essential and non-essential amino acids for breast-fed infants is the major function of milk proteins. In addition, breast-fed infants might benefit from bioactivities of milk proteins, which are exhibited in the intestine during the digestive phase and by absorption of intact proteins or derived peptides. For lactoferrin, osteopontin and milk fat globule membrane proteins/lipids, which have not until recently been included in substantial amounts in infant formulas, in vitro experiments and animal models provide a convincing base of evidence for bioactivities, which contribute to the protection of the infant from pathogens, improve nutrient absorption, support the development of the immune system and provide components for optimal neurodevelopment. Technologies have become available to obtain these compounds from cow´s milk and the bovine compounds also exhibit bioactivities in humans. Randomized clinical trials with experimental infant formulas incorporating lactoferrin, osteopontin, or milk fat globule membranes have already provided some evidence for clinical benefits. This review aims to compare findings from laboratory and animal experiments with outcomes of clinical studies. There is good justification from basic science and there are promising results from clinical studies for beneficial effects of lactoferrin, osteopontin and the milk fat globule membrane complex of proteins and lipids. Further studies should ideally be adequately powered to investigate effects on clinically relevant endpoints in healthy term infants. PMID:28788066
Condell, Orla; Iversen, Carol; Cooney, Shane; Power, Karen A.; Walsh, Ciara; Burgess, Catherine
2012-01-01
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities. PMID:22367085
Condell, Orla; Iversen, Carol; Cooney, Shane; Power, Karen A; Walsh, Ciara; Burgess, Catherine; Fanning, Séamus
2012-05-01
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds.
Würth, Roberto; Thellung, Stefano; Bajetto, Adriana; Mazzanti, Michele; Florio, Tullio; Barbieri, Federica
2016-01-01
Drug repositioning is gaining increasing attention in drug discovery because it represents a smart way to exploit new molecular targets of a known drug or target promiscuity among diverse diseases, for medical uses different from the one originally considered. In this review, we focus on known non-oncological drugs with new therapeutic applications in oncology, explaining the rationale behind this approach and providing practical evidence. Moving from incompleteness of the knowledge of drug-target interactions, particularly for older molecules, we highlight opportunities for repurposing compounds as cancer therapeutics, underling the biologically and clinically relevant affinities for new targets. Ideal candidates for repositioning can contribute to the therapeutically unmet need for more-efficient anticancer agents, including drugs that selectively target cancer stem cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nelson, Erika D.; Ramberg, Jane E.; Best, Talitha; Sinnott, Robert A.
2012-01-01
Objectives Current research efforts are centered on delineating the novel health benefits of naturally derived saccharides, including growing interest in their abilities to influence neurologic health. We performed a comprehensive review of the literature to consolidate all controlled studies assessing various roles of exogenous saccharide compounds and polysaccharide-rich extracts from plants, fungi, and other natural sources on brain function, with a significant focus on benefits derived from oral intake. Methods Studies were identified by conducting electronic searches on PubMed and Google Scholar. Reference lists of articles were also reviewed for additional relevant studies. Only articles published in English were included in this review. Results Six randomized, double-blind, placebo-controlled clinical studies were identified in which consumption of a blend of plant-derived polysaccharides showed positive effects on cognitive function and mood in healthy adults. A separate controlled clinical study observed improvements in well-being with ingestion of a yeast beta-glucan. Numerous animal and in vitro studies have demonstrated the ability of individual saccharide compounds and polysaccharide-rich extracts to modify behavior, enhance synaptic plasticity, and provide neuroprotective effects. Discussion Although the mechanisms by which exogenous saccharides can influence brain function are not well understood at this time, the literature suggests that certain naturally occurring compounds and polysaccharide-rich extracts show promise, when taken orally, in supporting neurologic health and function. Additional well-controlled clinical studies on larger populations are necessary, however, before specific recommendations can be made. PMID:22417773
Janero, David R
2014-08-01
Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.
Cannabis for Pain and Headaches: Primer.
Kim, Philip S; Fishman, Michael A
2017-04-01
Marijuana has been used both medicinally and recreationally since ancient times and interest in its compounds for pain relief has increased in recent years. The identification of our own intrinsic, endocannabinoid system has laid the foundation for further research. Synthetic cannabinoids are being developed and synthesized from the marijuana plant such as dronabinol and nabilone. The US Food and Drug Administration approved the use of dronabinol and nabilone for chemotherapy-associated nausea and vomiting and HIV (Human Immunodeficiency Virus) wasting. Nabiximols is a cannabis extract that is approved for the treatment of spasticity and intractable pain in Canada and the UK. Further clinical trials are studying the effect of marijuana extracts for seizure disorders. Phytocannabinoids have been identified as key compounds involved in analgesia and anti-inflammatory effects. Other compounds found in cannabis such as flavonoids and terpenes are also being investigated as to their individual or synergistic effects. This article will review relevant literature regarding medical use of marijuana and cannabinoid pharmaceuticals with an emphasis on pain and headaches.
Chemoinformatic expedition of the chemical space of fungal products.
González-Medina, Mariana; Prieto-Martínez, Fernando D; Naveja, J Jesús; Méndez-Lucio, Oscar; El-Elimat, Tamam; Pearce, Cedric J; Oberlies, Nicholas H; Figueroa, Mario; Medina-Franco, José L
2016-08-01
Fungi are valuable resources for bioactive secondary metabolites. However, the chemical space of fungal secondary metabolites has been studied only on a limited basis. Herein, we report a comprehensive chemoinformatic analysis of a unique set of 207 fungal metabolites isolated and characterized in a USA National Cancer Institute funded drug discovery project. Comparison of the molecular complexity of the 207 fungal metabolites with approved anticancer and nonanticancer drugs, compounds in clinical studies, general screening compounds and molecules Generally Recognized as Safe revealed that fungal metabolites have high degree of complexity. Molecular fingerprints showed that fungal metabolites are as structurally diverse as other natural products and have, in general, drug-like physicochemical properties. Fungal products represent promising candidates to expand the medicinally relevant chemical space. This work is a significant expansion of an analysis reported years ago for a smaller set of compounds (less than half of the ones included in the present work) from filamentous fungi using different structural properties.
SAHA-based novel HDAC inhibitor design by core hopping method.
Zang, Lan-Lan; Wang, Xue-Jiao; Li, Xiao-Bo; Wang, Shu-Qing; Xu, Wei-Ren; Xie, Xian-Bin; Cheng, Xian-Chao; Ma, Huan; Wang, Run-Ling
2014-11-01
The catalytic activity of the histone deacetylase (HDAC) is directly relevant to the pathogenesis of cancer, and HDAC inhibitors represented a promising strategy for cancer therapy. SAHA (suberoanilide hydroxamic acid), an effective HDAC inhibitor, is an anti-cancer agent against T-cell lymphoma. However, SAHA has adverse effects such as poor pharmacokinetic properties and severe toxicities in clinical use. In order to identify better HDAC inhibitors, a compound database was established by core hopping of SAHA, which was then docked into HDAC-8 (PDB ID: 1T69) active site to select a number of candidates with higher docking score and better interaction with catalytic zinc ion. Further ADMET prediction was done to give ten compounds. Molecular dynamics simulation of the representative compound 101 was performed to study the stability of HDAC8-inhibitor system. This work provided an approach to design novel high-efficiency HDAC inhibitors with better ADMET properties. Copyright © 2014 Elsevier Inc. All rights reserved.
Intramuscular preparations of antipsychotics: uses and relevance in clinical practice.
Altamura, A Cario; Sassella, Francesca; Santini, Annalisa; Montresor, Clauno; Fumagalli, Sara; Mundo, Emanuela
2003-01-01
Intramuscular formulations of antipsychotics can be sub-divided into two groups on the basis of their pharmacokinetic features: short-acting preparations and long-acting or depot preparations. Short-acting intramuscular formulations are used to manage acute psychotic episodes. On the other hand, long-acting compounds, also called "depot", are administered as antipsychotic maintenance treatment to ensure compliance and to eliminate bioavailability problems related to absorption and first pass metabolism. Adverse effects of antipsychotics have been studied with particular respect to oral versus short- and long-acting intramuscular formulations of the different compounds. For short-term intramuscular preparations the main risk with classical compounds are hypotension and extrapyramidal side effects (EPS). Data on the incidence of EPS with depot formulations are controversial: some studies point out that the incidence of EPS is significantly higher in patients receiving depot preparations, whereas others show no difference between oral and depot antipsychotics. Studies on the strategies for switching patients from oral to depot treatment suggest that this procedure is reasonably well tolerated, so that in clinical practice depot antipsychotic therapy is usually begun while the oral treatment is still being administered, with gradual tapering of the oral dose. Efficacy, pharmacodynamics and clinical pharmacokinetics of haloperidol decanoate, fluphenazine enanthate and decanoate, clopenthixol decanoate, zuclopenthixol decanoate and acutard, flupenthixol decanoate, perphenazine enanthate, pipothiazine palmitate and undecylenate, and fluspirilene are reviewed. In addition, the intramuscular preparations of atypical antipsychotics and clinical uses are reviewed. Olanzapine and ziprasidone are available only as short-acting preparations, while risperidone is to date the only novel antipsychotic available as depot formulation. To date, acutely ill, agitated psychotic patients have been treated with high parenteral doses of typical antipsychotics, which often cause serious EPS, especially dystonic reactions. Intramuscular formulations of novel antipsychotics (olanzapine and ziprasidone), which appear to have a better tolerability profile than typical compounds, showed an equivalent efficacy to parenteral typical agents in the acute treatment of psychoses. However, parenteral or depot formulations of atypical antipsychotics are not yet widely available.
Impact of Drug Metabolism/Pharmacokinetics and Their Relevance upon Taxus-based Drug Development.
Hao, Da-Cheng; Ge, Guang-Bo; Wang, Ping; Yang, Ling
2018-05-22
Drug metabolism and pharmacokinetic (DMPK) studies of Taxus natural products, their semi-synthetic derivatives and analogs are indispensable in the optimization of lead compounds and clinical therapy. These studies can lead to development of new drug entities with improved absorption, distribution, metabolism, excretion and toxicity (ADME/T) profiles. To date, there have been no comprehensive reviews of the DMPK features of Taxus derived medicinal compounds.Natural and semi-synthetic taxanes may cause and could be affected by drug-drug interaction (DDI). Hence ADME/T studies of various taxane-containing formulations are important; to date these studies indicate that the role of cytochrome p450s and drug transporters is more prominent than phase II drug metabolizing enzymes. Mechanisms of taxane DMPK mediated by nuclear receptors, microRNAs, and single nucleotide polymorphisms are being revealed. Herein we review the latest knowledge on these topics, as well as the gaps in knowledge of the DMPK issues of Taxus compounds. DDIs significantly impact the PK/pharmacodynamics performance of taxanes and co-administered chemicals, which may inspire researchers to develop novel formula. While the ADME/T profiles of some taxanes are well defined, DMPK studies should be extended to more Taxus compounds, species, and Taxus -involved formulations, which would be streamlined by versatile omics platforms and computational analyses. Further biopharmaceutical investigations will be beneficial tothe translation of bench findings to the clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Guedes-da-Silva, F H; Batista, D G J; da Silva, C F; Meuser, M B; Simões-Silva, M R; de Araújo, J S; Ferreira, C G; Moreira, O C; Britto, C; Lepesheva, G I; Soeiro, Maria de Nazaré C
2015-12-01
The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
Tarby, Christine M
2004-01-01
Since their discovery, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have become one of the cornerstones of highly active anti-retroviral therapy (HAART). Currently, three NNRTI agents, efavirenz, nevirapine and delavirdine are commercially available. Efavirenz and nevirapine, used in combination with nucleoside reverse transcriptase inhibitors (NRTIs), provide durable regimens with efficacy comparable to protease inhibitor (PI) containing therapies. When virological failure occurs following treatment with an NNRTI, the resistance mutations can confer reduced sensitivity to the entire agent class. Therefore, the strategy for the development of next generation NNRTIs has been to focus on compounds which have improved potencies against the clinically relevant viral mutants. Agents with improved virological profiles and which maintain the ease of administration and favorable safety profiles of the current agents should find use in anti-retroviral naïve patients as well as in components of salvage regimens in the anti-retroviral experienced patient. This review summarizes the recent developments with compounds in clinical trials as of January 2002 as well as to summarize information on new agents appearing in the primary and patent literature between January 2001 and December 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, R. Jason
2016-08-15
Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicitymore » library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.« less
Kanoun, Houda; Jarraya, Faiçal; Maalej, Bayen; Lahiani, Amina; Mahfoudh, Hichem; Makni, Fatma; Hachicha, Jamil; Fakhfakh, Faiza
2017-10-02
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited disorder of glyoxylate metabolism in which excessive oxalates are formed by the liver and excreted by the kidneys. Calcium oxalate crystallizes in the urine, leading to urolithiasis, nephrocalcinosis, and consequent renal failure if treatment is not initiated promptly. Mutations in the AGXT gene which encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase are responsible of PH1. In the present work, we aimed to analyze AGXT gene and in silico investigations performed in four patients with PH1 among two non consanguineous families. Exhaustive gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools were used to predict the impact of AGXT variants on gene expression as well as on the protein structure and function. Direct sequencing of all exons of AGXT gene revealed the emergence of multiple mutations in compound heterozygous state in the two studied families. Two patients were compound heterozygous for the c.731 T > C, c.32C > T, c.1020A > G and c.33_34insC and presented clinically with recurrent urinary tract infection, multiple urolithiasis and nephrocalcinosis under the age of 1 year and a persistent hyperoxaluria at the age of diagnosis. The two other patients presenting a less severe phenotypes were heterozygous for c.731 T > C and homozygous for the c.32C > T and c.1020A > G or compound heterozygous for c.26C > A and c.65A > G variants. In Summary, we provided relevance regarding the compound heterozygous mutations in non consanguineous PH1 families with variable severity.
Fragment-based screening by protein crystallography: successes and pitfalls.
Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J
2012-10-08
Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.
Fragment-Based Screening by Protein Crystallography: Successes and Pitfalls
Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J.
2012-01-01
Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality. PMID:23202926
Younis, Waleed; Ezzat, Hany G.; Peters, Christine E.; AbdelKhalek, Ahmed; Cooper, Bruce; Pogliano, Kit; Pogliano, Joe; Mayhoub, Abdelrahman S.; Seleem, Mohamed N.
2017-01-01
Bacterial resistance to antibiotics remains an imposing global public health challenge. Of the most serious pathogens, methicillin-resistant Staphylococcus aureus (MRSA) is problematic given strains have emerged that exhibit resistance to several antibiotic classes including β-lactams and agents of last resort such as vancomycin. New antibacterial agents composed of unique chemical scaffolds are needed to counter this public health challenge. The present study examines two synthetic diphenylurea compounds 1 and 2 that inhibit growth of clinically-relevant isolates of MRSA at concentrations as low as 4 µg/mL and are non-toxic to human colorectal cells at concentrations up to 128 μg/mL. Both compounds exhibit rapid bactericidal activity, completely eliminating a high inoculum of MRSA within four hours. MRSA mutants exhibiting resistance to 1 and 2 could not be isolated, indicating a low likelihood of rapid resistance emerging to these compounds. Bacterial cytological profiling revealed the diphenylureas exert their antibacterial activity by targeting bacterial cell wall synthesis. Both compounds demonstrate the ability to resensitize vancomycin-resistant Staphylococcus aureus to the effect of vancomycin. The present study lays the foundation for further investigation and development of diphenylurea compounds as a new class of antibacterial agents. PMID:28797064
Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah
2018-02-01
Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.
NASA Astrophysics Data System (ADS)
Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah
2018-02-01
Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.
The chemistry of peroxovanadium compounds relevant to insulin mimesis.
Shaver, A; Ng, J B; Hall, D A; Posner, B I
The inorganic coordination chemistry of peroxovanadium compounds relevant to insulin mimesis is reviewed. The structure and kinetic reactivity of solutions of vanadate anion, vanadyl complexes and peroxovanadate complexes are briefly compared. Peroxovanadium compounds contain an oxo group, one or two peroxo ligands (O2(2-)) and an ancillary ligand which is usually bidentate. These compounds approximate a trigonal bipyramidal structure which can be divided conceptually into a polar 'oxo' half and a relatively non-polar organic half. This presents a number of interesting design variations which are discussed with respect to the development of a rudimentary structure-activity correlation of insulin mimetic ability.
Decarboxylative Fluorination Strategies for Accessing Medicinally-relevant Products
Qiao, Yupu; Zhu, Lingui; Ambler, Brett R.
2014-01-01
Fluorinated organic compounds have a long history in medicinal chemistry, and synthetic methods to access target fluorinated compounds are undergoing a revolution. One powerful strategy for the installation of fluorine-containing functional groups includes decarboxylative reactions. Benefits of decarboxylative approaches potentially include: 1) readily available substrates or reagents 2) mild reaction conditions; 3) simplified purification. This focus review highlights the applications of decarboxylation strategies for fluorination reactions to access compounds with biomedical potential. The manuscript highlights on two general strategies, fluorination by decarboxylative reagents and by decarboxylation of substrates. Where relevant, examples of medicinally useful compounds that can be accessed using these strategies are highlighted. PMID:24484421
Jiang, Jian-kang; Ghoreschi, Kamran; Deflorian, Francesca; Chen, Zhi; Perreira, Melissa; Pesu, Marko; Smith, Jeremy; Nguyen, Dac-Trung; Liu, Eric H.; Leister, William; Costanzi, Stefano; O’Shea, John J.; Thomas, Craig J.
2009-01-01
Here, we examine the significance that stereochemistry plays within the clinically relevant Janus Kinase 3 (Jak3) inhibitor CP-690,550. A synthesis of all four enantiopure stereoisomers of the drug was carried out and an examination of each compound revealed that only the enantiopure 3R, 4R isomer was capable of blocking Stat5 phosphorylation (Jak3 dependent). Each compound was profiled across a panel of over 350 kinases which revealed a high level of selectivity for the Jak family kinases for these related compounds. Each stereoisomer retained a degree of binding to Jak3 and Jak2 and the 3R, 4S and 3S, 4R stereoisomers were further revealed to have binding affinity for selected members of the STE7 and STE20 subfamily of kinases. Finally, an appraisal of the minimum energy conformation of each stereoisomer and molecular docking at Jak3 was performed in an effort to better understand each compounds selectivity and potency profiles. PMID:19053756
The behavioral pharmacology of hallucinogens
Fantegrossi, William E.; Murnane, Aeneas C.; Reissig, Chad J.
2008-01-01
Until very recently, comparatively few scientists were studying hallucinogenic drugs. Nevertheless, selective antagonists are available for relevant serotonergic receptors, the majority of which have now been cloned, allowing for reasonably thorough pharmacological investigation. Animal models sensitive to the behavioral effects of the hallucinogens have been established and exploited. Sophisticated genetic techniques have enabled the development of mutant mice, which have proven useful in the study of hallucinogens. The capacity to study post-receptor signaling events has lead to the proposal of a plausible mechanism of action for these compounds. The tools currently available to study the hallucinogens are thus more plentiful and scientifically advanced than were those accessible to earlier researchers studying the opioids, benzodiazepines, cholinergics, or other centrally active compounds. The behavioral pharmacology of phenethylamine, tryptamine, and ergoline hallucinogens are described in this review, paying particular attention to important structure activity relationships which have emerged, receptors involved in their various actions, effects on conditioned and unconditioned behaviors, and in some cases, human psychopharmacology. As clinical interest in the therapeutic potential of these compounds is once again beginning to emerge, it is important to recognize the wealth of data derived from controlled preclinical studies on these compounds. PMID:17977517
Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke
2014-12-15
Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients.
Alachkar, Houda; Mutonga, Martin B.G.; Metzeler, Klaus H.; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K.; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke
2014-01-01
Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263
Defraine, Valerie; Verstraete, Laure; Van Bambeke, Françoise; Anantharajah, Ahalieyah; Townsend, Eleanor M; Ramage, Gordon; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Fauvart, Maarten; Michiels, Jan
2017-01-01
We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa . This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli . Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa , possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections.
Defraine, Valerie; Verstraete, Laure; Van Bambeke, Françoise; Anantharajah, Ahalieyah; Townsend, Eleanor M.; Ramage, Gordon; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Fauvart, Maarten; Michiels, Jan
2017-01-01
We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections. PMID:29312259
Rapid Parallel Screening for Strain Optimization
2013-08-16
fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can...reporter, and, 2) a yeast TAR cloning shuttle vector for transferring catabolic clusters to E. coli. 15. SUBJECT TERMS NA 16. SECURITY CLASSIFICATION OF... fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can utilize
Rapid Parallel Screening for Strain Optimization
2013-05-16
fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can...reporter, and, 2) a yeast TAR cloning shuttle vector for transferring catabolic clusters to E. coli. 15. SUBJECT TERMS NA 16. SECURITY CLASSIFICATION OF... fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can utilize
Qiao, Xin; Zeitany, Alexandra E; Wright, Marcus W; Essader, Amal S; Levine, Keith E; Kucera, Gregory L; Bierbach, Ulrich
2012-07-01
High-performance liquid chromatography in conjunction with electrospray mass spectrometry (LC-ESMS) was used to structurally characterize the adducts formed by the platinum-acridine agent [PtCl(en)(N-(2-(acridin-9-ylamino)ethyl)-N-methylpropionimidamide)](NO(3))(2) (compound 1) in cell-free DNA. Compound 1 forms monofunctional adducts exclusively with guanine, based on the fragments identified in enzymatic digests (dG*, dGMP*, dApG*, and dTpG*, where the asterisk denotes bound drug). The time course of accumulation and DNA adduct formation of compound 1 and the clinical drug cisplatin in NCI-H460 lung cancer cells at physiologically relevant drug concentrations (0.1 μM) was studied by inductively-coupled plasma mass spectrometry (ICP-MS). Compound 1 accumulates rapidly in cells and reaches intracellular levels of up to 60-fold higher than those determined for cisplatin. The hybrid agent shows unusually high DNA binding levels: while cisplatin adducts form at a maximum frequency of 5 adducts per 10(6) nucleotides, compound 1 produces 25 adducts per 10(6) nucleotides after only 3 h of continuous incubation with the lung cancer cells. The high overall levels of compound 1 in the cells and in cellular DNA over the entire 12-h treatment period translate into a rapid decrease in cell viability. Possible implications of these findings for the mechanism of action of compound 1 and the agent's potential to overcome tumor resistance to cisplatin are discussed.
Porta, M; Kogevinas, M; Zumeta, E; Sunyer, J; Ribas-Fitó, N; Ruiz, Laura; Jariod, Manuel; Vioque, Jesús; Alguacil, Juan; Martín, Piedad; Malats, Núria; Ayude, Daniel
2002-01-01
The contamination by persistent toxic compounds (PTCs) of the general population is a fact of relevance from a public health perspective. It is also relevant to health care professionals, as well as for environmental, food, industrial and economic policies. Though in Spain information on food contamination by PTCs shows large time and geographic gaps, the scarcity of data is even more severe on the concentrations that PTCs have in people: a representative study of a general healthy population living in a wide geographic area has never been conducted in the country. However, the available studies indicate that around 80-100% of the population has detectable concentrations of DDE, PCBs, hexachlorbenzene or lindane. Studies on the effects that PTCs have upon humans are extremely infrequent in Spain. Yet, the international literature suggests that some PTCs may induce significant biological and clinical effects at doses below those traditionally deemed "safe". The mechanism of action of PTCs are not restricted to endocrine disruption. Assessing the clinical and social relevance of the more subtle and long-term effects of PTCs presents interesting challenges and opportunities. Spain and other European countries lack population indicators on the impact that environmental processes have on human health. Several government levels have a role to fulfill in the monitoring of biological levels of PTCs among persons in order to assess the risks of adverse health effects. Along with over a hundred other countries. Spain will soon try to implement the Stockholm treaty on persistent organic pollutants (POPs). This constitutes a new opportunity to develop more efficient policies to control PTC residues in food, humans and the environment. As part of the treaty implementation it is necessary to launch a Report on factors that influence body concentrations of PTCs in the Spain general population.
Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease.
Cui, Xuejun; Trinh, Kien; Wang, Yong-Jun
2010-01-20
Chronic neck pain with radicular signs or symptoms is a common condition. Many patients use complementary and alternative medicine, including traditional Chinese medicine, to address their symptoms. To assess the efficacy of Chinese herbal medicines in treating chronic neck pain with radicular signs or symptoms. We electronically searched CENTRAL (The Cochrane Library 2009, issue 3), MEDLINE, EMBASE, CINAHL and AMED (beginning to October 1, 2009), the Chinese Biomedical Database and related herbal medicine databases in Japan and South Korea (1979 to 2007). We also contacted content experts and handsearched a number of journals published in China. We included randomized controlled trials with adults with a clinical diagnosis of cervical degenerative disc disease, cervical radiculopathy or myelopathy supported by appropriate radiological findings. The interventions were Chinese herbal medicines, defined as products derived from raw or refined plants or parts of plants, minerals and animals that are used for medicinal purposes in any form. The primary outcome was pain relief, measured with a visual analogue scale, numeric scale or other validated tool. The data were independently extracted and recorded by two review authors on a pre-developed form. Risk of bias and clinical relevance were assessed separately by two review authors using the twelve criteria and the five questions recommended by the Cochrane Back Review Group. Disagreements were resolved by consensus. All four included studies were in Chinese; two of which were unpublished. Effect sizes were not clinically relevant and there was low quality evidence for all outcomes due to study limitations and sparse data (single studies). Two trials (680 participants) found that Compound Qishe Tablets relieved pain better in the short-term than either placebo or Jingfukang; one trial (60 participants) found than an oral herbal formula of Huangqi ((Radix Astragali)18 g, Dangshen (Radix Codonopsis) 9 g, Sanqi (Radix Notoginseng) 9 g, Chuanxiong (Rhizoma Chuanxiong)12 g, Lujiao (Cornu Cervi Pantotrichum) 12 g, and Zhimu (Rhizoma Anemarrhenae)12 g) relieved pain better than Mobicox or Methycobal and one trial (360 participants) showed that a topical herbal medicine, Compound Extractum Nucis Vomicae, relieved pain better than Diclofenac Diethylamine Emulgel. There is low quality evidence that an oral herbal medication, Compound Qishe Tablet, reduced pain more than placebo or Jingfukang and a topical herbal medicine, Compound Extractum Nucis Vomicae, reduced pain more than Diclofenac Diethylamine Emulgel. Further research is very likely to change both the effect size and our confidence in the results.
From basic to clinical neuropharmacology: targetophilia or pharmacodynamics?
Green, A Richard; Aronson, Jeffrey K
2012-06-01
Historically, much drug discovery and development in psychopharmacology tended to be empirical. However, over the last 20 years it has primarily been target oriented, with synthesis and selection of compounds designed to act at a specific neurochemical site. Such compounds are then examined in functional animal models of disease. There is little evidence that this approach (which we call 'targetophilia') has enhanced the discovery process and some indications that it may have retarded it. A major problem is the weakness of many animal models in mimicking the disease and the lack of appropriate biochemical markers of drug action in animals and patients. In this review we argue that preclinical studies should be conducted as if they were clinical studies in design, analysis, and reporting, and that clinical pharmacologists should be involved at the earliest stages, to help ensure that animal models reflect as closely as possible the clinical disease. In addition, their familiarity with pharmacokinetic-pharmacodynamic integration (PK-PD) would help ensure that appropriate dosing and drug measurement techniques are applied to the discovery process, thereby producing results with relevance to therapeutics. Better integration of experimental and clinical pharmacologists early in the discovery process would allow observations in animals and patients to be quickly exchanged between the two disciplines. This non-linear approach to discovery used to be the way research proceeded, and it resulted in productivity that has never been bettered. It also follows that occasionally 'look-see' studies, a proven technique for drug discovery, deserve to be reintroduced. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Cyclooxygenase inhibitors: From pharmacology to clinical read-outs.
Patrignani, Paola; Patrono, Carlo
2015-04-01
Acetylsalicylic acid (aspirin) is a prototypic cyclooxygenase (COX) inhibitor. It was synthesized serendipitously from a natural compound, i.e., salicylic acid, with known analgesic activity. This chemical modification, obtained for the first time in an industrial environment in 1897, endowed aspirin with the unique capacity of acetylating and inactivating permanently COX-isozymes. Traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) were developed to mimic the pharmacological effects of aspirin, using aspirin-sensitive experimental models of pain and inflammation as the template for screening new chemical entities. Among the tNSAIDs, some were endowed with moderate COX- selectivity (e.g., diclofenac), but no studies of sufficient size and duration were performed to show any clinically relevant difference between different members of the class. Similarly, no serious attempts were made to unravel the mechanisms involved in the shared therapeutic and toxic effects of tNSAIDs until the discovery of COX-2. This led to characterizing their main therapeutic effects as being COX-2-dependent and their gastrointestinal (GI) toxicity as being COX-1-dependent, and provided a rationale for developing a new class of selective COX-2 inhibitors, the coxibs. This review will discuss the clinical pharmacology of tNSAIDs and coxibs, and the clinical read-outs of COX-isozyme inhibition. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance." Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Russo, Maria; Bevilacqua, Paolo; Netti, Paolo Antonio; Torino, Enza
2016-11-01
Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.
Zaghi, Danny; Maibach, Howard I
2009-01-01
The human maximization test (HMT) is a method to evaluate potency in humans, while the local lymph node assay (LLNA) is a test method that allows for the measuring of the allergic potency of a substance in a rodent. It has been proposed that an EC3 value (the value obtained by the LLNA test, ie, the concentration of an allergen leading to a 3-fold increase of baseline proliferation rate) would be a reliable indicator for a compound's allergic potency in humans. This paper compares the correlation between the EC3 value of a compound and its allergic occurrence in the general population with the correlation between the HMT of the compound and its allergic occurrence in the general population, to determine the relationship to potency. The correlation values when outliers were removed from the sample were -0.56 and -0.71 for LLNA and HMT, respectively, suggesting that there is a possible 20% error margin in LLNA's ability to predict potency. The data also suggest that other factors (such as exposure) could play up to a 30% role in the determination of allergic occurrence in the general population. The potency assays might be made more clinically relevant for predicting allergic frequencies by including a frequency factor and other factors in its dermatotoxicological interpretation.
Tortorella, Stephanie M; Royce, Simon G; Licciardi, Paul V; Karagiannis, Tom C
2015-06-01
Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Why relevant chemical information cannot be exchanged without disclosing structures
NASA Astrophysics Data System (ADS)
Filimonov, Dmitry; Poroikov, Vladimir
2005-09-01
Both society and industry are interested in increasing the safety of pharmaceuticals. Potentially dangerous compounds could be filtered out at early stages of R&D by computer prediction of biological activity and ADMET characteristics. Accuracy of such predictions strongly depends on the quality & quantity of information contained in a training set. Suggestion that some relevant chemical information can be added to such training sets without disclosing chemical structures was generated at the recent ACS Symposium. We presented arguments that such safety exchange of relevant chemical information is impossible. Any relevant information about chemical structures can be used for search of either a particular compound itself or its close analogues. Risk of identifying such structures is enough to prevent pharma industry from relevant chemical information exchange.
May, Brian H; Deng, Shiqiang; Zhang, Anthony L; Lu, Chuanjian; Xue, Charlie C L
2015-09-01
Reviews and meta-analyses of clinical trials identified plants used as traditional medicines (TMs) that show promise for psoriasis. These include Rehmannia glutinosa, Camptotheca acuminata, Indigo naturalis and Salvia miltiorrhiza. Compounds contained in these TMs have shown activities of relevance to psoriasis in experimental models. To further investigate the likely mechanisms of action of the multiple compounds in these TMs, we undertook a computer-based in silico investigation of the proteins known to be regulated by these compounds and their associated biological pathways. The proteins reportedly regulated by compounds in these four TMs were identified using the HIT (Herbal Ingredients' Targets) database. The resultant data were entered into the PANTHER (Protein ANnotation THrough Evolutionary Relationship) database to identify the pathways in which the proteins could be involved. The study identified 237 compounds in the TMs and these retrieved 287 proteins from HIT. These proteins identified 59 pathways in PANTHER with most proteins being located in the Apoptosis, Angiogenesis, Inflammation mediated by chemokine and cytokine, Gonadotropin releasing hormone receptor, and/or Interleukin signaling pathways. All four TMs contained compounds that had regulating effects on Apoptosis regulator BAX, Apoptosis regulator Bcl-2, Caspase-3, Tumor necrosis factor (TNF) or Prostaglandin G/H synthase 2 (COX2). The main proteins and pathways are primarily related to inflammation, proliferation and angiogenesis which are all processes involved in psoriasis. Experimental studies have reported that certain compounds from these TMs can regulate the expression of proteins involved in each of these pathways.
2013-01-01
Integrative understanding of preclinical and clinical data is imperative to enable informed decisions and reduce the attrition rate during drug development. The volume and variety of data generated during drug development have increased tremendously. A new information model and visualization tool was developed to effectively utilize all available data and current knowledge. The Knowledge Plot integrates preclinical, clinical, efficacy and safety data by adding two concepts: knowledge from the different disciplines and protein binding. Internal and public available data were gathered and processed to allow flexible and interactive visualizations. The exposure was expressed as the unbound concentration of the compound and the treatment effect was normalized and scaled by including expert opinion on what a biologically meaningful treatment effect would be. The Knowledge Plot has been applied both retrospectively and prospectively in project teams in a number of different therapeutic areas, resulting in closer collaboration between multiple disciplines discussing both preclinical and clinical data. The Plot allows head to head comparisons of compounds and was used to support Candidate Drug selections and differentiation from comparators and competitors, back translation of clinical data, understanding the predictability of preclinical models and assays, reviewing drift in primary endpoints over the years, and evaluate or benchmark compounds in due diligence comparing multiple attributes. The Knowledge Plot concept allows flexible integration and visualization of relevant data for interpretation in order to enable scientific and informed decision-making in various stages of drug development. The concept can be used for communication, decision-making, knowledge management, and as a forward and back translational tool, that will result in an improved understanding of the competitive edge for a particular project or disease area portfolio. In addition, it also builds up a knowledge and translational continuum, which in turn will reduce the attrition rate and costs of clinical development by identifying poor candidates early. PMID:24098919
Clinical potential of oligonucleotide-based therapeutics in the respiratory system.
Moschos, Sterghios A; Usher, Louise; Lindsay, Mark A
2017-01-01
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition. Copyright © 2016 Elsevier Inc. All rights reserved.
Emerging Drugs and Vaccines for Candidemia
Moriyama, Brad; Gordon, Lori A.; McCarthy, Matthew; Henning, Stacey A.; Walsh, Thomas J.; Penzak, Scott R.
2014-01-01
Summary Candidemia and other forms of invasive candidiasis are important causes of morbidity and mortality. The evolving challenge of antimicrobial resistance among fungal pathogens continues to highlight the need for potent, new antifungal agents. MEDLINE, EMBASE, Scopus, and Web of Science searches (up to January 2014) of the English-language literature were performed with the keywords “Candida” or “Candidemia” or “Candidiasis” and terms describing investigational drugs with activity against Candida spp. Conference abstracts and the bibliographies of pertinent articles were also reviewed for relevant reports. ClinicalTrials.gov was searched for relevant clinical trials. Currently available antifungal agents for the treatment of candidemia are summarized. Investigational antifungal agents with potential activity against Candida bloodstream infections and other forms of invasive candidiasis and vaccines for prevention of Candida infections are also reviewed as are selected antifungal agents no longer in development. Antifungal agents currently in clinical trials include isavuconazole, albaconazole, SCY-078, VT-1161, and T-2307. Further data are needed to determine the role of these compounds in the treatment of candidemia and other forms of invasive candidiasis. The progressive reduction in antimicrobial drug development may result in a decline in antifungal drug discovery. Still there remains a critical need for new antifungal agents to treat and prevent invasive candidiasis and other life-threatening mycoses. PMID:25294098
Turner, Jane; Clavarino, Alexandra; Yates, Patsy; Hargraves, Maryanne; Connors, Veronica; Hausmann, Sue
2008-08-01
Diagnosing and treating young patients with cancer can be stressful for health professionals; however, when the prognosis is poor and the patient has dependent children, even experienced clinicians can feel distressed and helpless. Parents with advanced cancer commonly express anxiety about the impact of the disease on their children, yet health professionals often feel unable to respond constructively because of lack of training, or concern that discussion about such difficult issues will compound parental distress. In response to this problem, an educational manual has been devised to assist oncology staff to better understand the emotional impact of parental advanced cancer, encompassing information about specific reactions of children, including strategies to help children and families cope. This paper describes the development and content of the resource which provides clinically relevant information and evidence-based recommendations to guide supportive care. The manual differs from the more traditional didactic resources in that it examines the very personal impact for professionals working with parents with advanced disease, encouraging reflection and engages the reader in clinical exercises which encourage active learning and application of knowledge into authentic clinical contexts. Although the manual is designed primarily for nurses, it is clear that much of the information is relevant for all health professionals involved in the care of parents with advanced cancer.
Nicholson, K M; Phillips, R M; Shnyder, S D; Bibby, M C
2002-01-01
LS 4477 and LS 4559, two of a series of N-acyl-aminoalkyl phenyl ethers, are rationally designed compounds based on the tubulin binder estramustine. This study investigated their mechanism of action and compared their effectiveness in relation to estramustine in vitro against a panel of human and murine cell lines and in vivo against two murine colon tumour models (MAC). At biologically relevant concentrations, LS 4477 and LS 4559 caused a 59.9 and 56% reduction in tubulin assembly, respectively, compared with a 28.4% reduction in tubulin assembly by estramustine. The analogues were approximately 100 times more potent in chemosensitivity tests in vitro than the parent compound. Both analogues were orally active against the MAC 15A murine tumour model, to a greater extent than estramustine, producing significant growth delays (P<0.01). Significant activity was also shown against the slower growing MAC 26 tumour for LS 4577 (the soluble pro-drug of LS 4559). The results presented in this study suggest these compounds warrant further development with a view to assessing their clinical activity.
Role of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus.
Solini, Anna
2016-12-01
In the last ten years, knowledge on pathophysiology of type 2 diabetes (T2DM) has significantly increased, with multiple failures (decreased incretin effect, increased lipolysis, increased glucagon secretion, neurotransmitters dysfunction) recognized as important contributors, together with decreased insulin secretion and reduced peripheral glucose uptake. As a consequence, the pharmacologic therapy of T2DM has been progressively enriched by several novel classes of drugs, trying to overcome these defects. The last, intriguing compounds come into the market are SGLT2 inhibitors, framing the kidney in a different scenario, not as site of a harmful disease complication, but rather as the means to correct hyperglycemia and fight the disease. This review aims to offer a short, updated overview of the role of these compounds in the treatment of T2DM, focusing on efficacy, ancillary albeit relevant clinical effects, safety, potential cardiovascular protection, positioning in common therapeutic algorithms.
Environmental epigenetics: a role in endocrine disease?
Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A
2012-10-01
Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.
Yamane, Naoe; Tozuka, Zenzaburo; Kusama, Makiko; Maeda, Kazuya; Ikeda, Toshihiko; Sugiyama, Yuichi
2011-08-01
To investigate the potency of LC-MS/MS by means of sensitivity and the applicability for cassette dosing in microdose clinical trials. Thirty one top-selling 31 drugs were spiked to human plasma, extracted, and analyzed by LC-MS/MS. The lower limits of quantification for each drug varied from 0.08 to 50 pg/mL, and were lower than one eighth of the assumed maximum plasma concentration at microdose in all drugs except for losartan, indicating the high performance in acquisition of full pharmacokinetic profiles at microdose. We also succeeded in simultaneous analysis of multiple compounds, assuming a situation of cassette dosing in which multiple drug candidates would be administrated simultaneously. Together with the features of LC-MS/MS, such as immediate verification, the utilization of non-radiolabeled drugs and no special facilities, we suppose that LC-MS/MS analysis would be widely applicable in conducting microdose clinical studies.
The role of cocrystals in pharmaceutical science.
Shan, Ning; Zaworotko, Michael J
2008-05-01
Pharmaceutical cocrystals, a subset of a long known but little-studied class of compounds, represent an emerging class of crystal forms in the context of pharmaceutical science. They are attractive to pharmaceutical scientists because they can significantly diversify the number of crystal forms that exist for a particular active pharmaceutical ingredient (API), and they can lead to improvements in physical properties of clinical relevance. In this article we address pharmaceutical cocrystals from the perspective of design (crystal engineering) and present a series of case studies that demonstrate how they can enhance the solubility, bioavailability, and/or stability of API crystal forms.
Transglutaminase activation in neurodegenerative diseases
Jeitner, Thomas M; Muma, Nancy A; Battaile, Kevin P; Cooper, Arthur JL
2009-01-01
The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds. PMID:20161049
Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong
2016-01-01
The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request. PMID:26955638
Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong
2016-01-01
The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.
Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.
2014-01-01
Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. PMID:24200853
Deveau, A M; Miller-Hope, Z; Lloyd, E; Williams, B S; Bolduc, C; Meader, J M; Weiss, F; Burkholder, K M
2016-05-01
Staphylococcus aureus is a common human bacterial pathogen that causes skin and soft tissue infections. Methicillin-resistant Staph. aureus (MRSA) are increasingly drug-resistant, and thus there is great need for new therapeutics to treat Staph. aureus infections. Attention has focused on potential utility of natural products, such as extracts of marine macroalgae, as a source of novel antimicrobial compounds. The green macroalgae Ulva lactuca produces compounds inhibitory to human pathogens, although the effectiveness of U. lactuca extracts against clinically relevant strains of Staph. aureus is poorly understood. In addition, macroalgae produce secondary metabolites that may be influenced by exogenous factors including lunar phase, but whether lunar phase affects U. lactuca antimicrobial capacity is unknown. We sought to evaluate the antibacterial properties of U. lactuca extracts against medically important Staphylococci, and to determine the effect of lunar phase on antimicrobial activity. We report that U. lactuca methanolic extracts inhibit a range of Staphylococci, and that lunar phase of macrolagae harvest significantly impacts antimicrobial activity, suggesting that antimicrobial properties can be maximized by manipulating time of algal harvest. These findings provide useful parameters for future studies aimed at isolating and characterizing U. lactuca anti-Staphylococcal agents. The growing prevalence of antibiotic-resistant human pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) has intensified efforts towards discovery and development of novel therapeutics. Marine macroalgae like Ulva lactuca are increasingly recognized as potential sources of antimicrobials, but the efficacy of U. lactuca extracts against common, virulent strains of Staph. aureus is poorly understood. We demonstrate that U. lactuca methanolic extracts inhibit a variety of clinically relevant Staphylococcus strains, and that the antimicrobial activity can be maximized by optimizing time of algal harvest. These findings provide potentially useful parameters for future work of isolating and identifying novel antimicrobial agents from macroalgae. © 2016 The Society for Applied Microbiology.
Big Data Mining and Adverse Event Pattern Analysis in Clinical Drug Trials
Federer, Callie; Yoo, Minjae
2016-01-01
Abstract Drug adverse events (AEs) are a major health threat to patients seeking medical treatment and a significant barrier in drug discovery and development. AEs are now required to be submitted during clinical trials and can be extracted from ClinicalTrials.gov (https://clinicaltrials.gov/), a database of clinical studies around the world. By extracting drug and AE information from ClinicalTrials.gov and structuring it into a database, drug-AEs could be established for future drug development and repositioning. To our knowledge, current AE databases contain mainly U.S. Food and Drug Administration (FDA)-approved drugs. However, our database contains both FDA-approved and experimental compounds extracted from ClinicalTrials.gov. Our database contains 8,161 clinical trials of 3,102,675 patients and 713,103 reported AEs. We extracted the information from ClinicalTrials.gov using a set of python scripts, and then used regular expressions and a drug dictionary to process and structure relevant information into a relational database. We performed data mining and pattern analysis of drug-AEs in our database. Our database can serve as a tool to assist researchers to discover drug-AE relationships for developing, repositioning, and repurposing drugs. PMID:27631620
Big Data Mining and Adverse Event Pattern Analysis in Clinical Drug Trials.
Federer, Callie; Yoo, Minjae; Tan, Aik Choon
2016-12-01
Drug adverse events (AEs) are a major health threat to patients seeking medical treatment and a significant barrier in drug discovery and development. AEs are now required to be submitted during clinical trials and can be extracted from ClinicalTrials.gov ( https://clinicaltrials.gov/ ), a database of clinical studies around the world. By extracting drug and AE information from ClinicalTrials.gov and structuring it into a database, drug-AEs could be established for future drug development and repositioning. To our knowledge, current AE databases contain mainly U.S. Food and Drug Administration (FDA)-approved drugs. However, our database contains both FDA-approved and experimental compounds extracted from ClinicalTrials.gov . Our database contains 8,161 clinical trials of 3,102,675 patients and 713,103 reported AEs. We extracted the information from ClinicalTrials.gov using a set of python scripts, and then used regular expressions and a drug dictionary to process and structure relevant information into a relational database. We performed data mining and pattern analysis of drug-AEs in our database. Our database can serve as a tool to assist researchers to discover drug-AE relationships for developing, repositioning, and repurposing drugs.
Alfonso, Jorge Emilio; Berlana, David; Ukleja, Andrew; Boullata, Joseph
2017-09-01
Multichamber bags (MCBs) may offer potential clinical, ergonomic, and economic advantages compared with (hospital) pharmacy compounded bags (COBs) and multibottle systems (MBSs). A systematic literature review was performed to identify and assess the available evidence regarding advantages of MCBs compared with COBs and MBSs. Medline, Embase, the Cochrane Databases, and EconLit were searched for articles reporting clinical, ergonomic, and economic outcomes for MCBs compared with COBs or MBSs. The search was limited to studies conducted in hospitalized patients >2 years of age that were published in English between January 1990 and November 2014. The Population Intervention Comparison Outcomes Study Design (PICOS) framework was used for the analysis. From 1307 unique citations, 74 potentially relevant publications were identified; review of references identified 2 additional publications. Among the 76 publications, 18 published studies met the inclusion criteria. Most were retrospective in design. Ten studies reported clinical outcomes, including 1 prospective randomized trial and multiple retrospective analyses that reported a lower risk of bloodstream infection for MCBs compared with other delivery systems. Sixteen studies reported ergonomic and/or economic outcomes; most reported a potential cost benefit for MCBs, with consistent reports of reduced time and labor compared with other systems. The largest cost benefit was observed in studies evaluating total hospitalization costs. The systematic literature review identified evidence of potential clinical, ergonomic, and economic benefits for MCBs compared with COBs and MBSs; however, methodological factors limited evidence quality. More prospective studies are required to corroborate existing evidence.
Ugolini, Antonio; Kenigsberg, Mireille; Rak, Alexey; Vallée, Francois; Houtmann, Jacques; Lowinski, Maryse; Capdevila, Cécile; Khider, Jean; Albert, Eva; Martinet, Nathalie; Nemecek, Conception; Grapinet, Sandrine; Bacqué, Eric; Roesner, Manfred; Delaisi, Christine; Calvet, Loreley; Bonche, Fabrice; Semiond, Dorothée; Egile, Coumaran; Goulaouic, Hélène; Schio, Laurent
2016-08-11
The HGF/MET pathway is frequently activated in a variety of cancer types. Several selective small molecule inhibitors of the MET kinase are currently in clinical evaluation, in particular for NSCLC, liver, and gastric cancer patients. We report herein the discovery of a series of triazolopyridazines that are selective inhibitors of wild-type (WT) MET kinase and several clinically relevant mutants. We provide insight into their mode of binding and report unprecedented crystal structures of the Y1230H variant. A multiparametric chemical optimization approach allowed the identification of compound 12 (SAR125844) as a development candidate. In this chemical series, absence of CYP3A4 inhibition was obtained at the expense of satisfactory oral absorption. Compound 12, a promising parenteral agent for the treatment of MET-dependent cancers, promoted sustained target engagement at tolerated doses in a human xenograft tumor model. Preclinical pharmacokinetics conducted in several species were predictive for the observed pharmacokinetic behavior of 12 in cancer patients.
Ismail, Maznah; Omar, Abdul Rahman; Ithnin, Hairuszah
2013-01-01
Germinated brown rice (GBR) is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR) on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies. PMID:23671850
Bianco, Antonio C.; Bauer, Andrew J.; Burman, Kenneth D.; Cappola, Anne R.; Celi, Francesco S.; Cooper, David S.; Kim, Brian W.; Peeters, Robin P.; Rosenthal, M. Sara; Sawka, Anna M.
2014-01-01
Background: A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. Methods: Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. Results: We reviewed the following therapeutic categories: (i) levothyroxine therapy, (ii) non–levothyroxine-based thyroid hormone therapies, and (iii) use of thyroid hormone analogs. The second category included thyroid extracts, synthetic combination therapy, triiodothyronine therapy, and compounded thyroid hormones. Conclusions: We concluded that levothyroxine should remain the standard of care for treating hypothyroidism. We found no consistently strong evidence for the superiority of alternative preparations (e.g., levothyroxine–liothyronine combination therapy, or thyroid extract therapy, or others) over monotherapy with levothyroxine, in improving health outcomes. Some examples of future research needs include the development of superior biomarkers of euthyroidism to supplement thyrotropin measurements, mechanistic research on serum triiodothyronine levels (including effects of age and disease status, relationship with tissue concentrations, as well as potential therapeutic targeting), and long-term outcome clinical trials testing combination therapy or thyroid extracts (including subgroup effects). Additional research is also needed to develop thyroid hormone analogs with a favorable benefit to risk profile. PMID:25266247
Jonklaas, Jacqueline; Bianco, Antonio C; Bauer, Andrew J; Burman, Kenneth D; Cappola, Anne R; Celi, Francesco S; Cooper, David S; Kim, Brian W; Peeters, Robin P; Rosenthal, M Sara; Sawka, Anna M
2014-12-01
A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. We reviewed the following therapeutic categories: (i) levothyroxine therapy, (ii) non-levothyroxine-based thyroid hormone therapies, and (iii) use of thyroid hormone analogs. The second category included thyroid extracts, synthetic combination therapy, triiodothyronine therapy, and compounded thyroid hormones. We concluded that levothyroxine should remain the standard of care for treating hypothyroidism. We found no consistently strong evidence for the superiority of alternative preparations (e.g., levothyroxine-liothyronine combination therapy, or thyroid extract therapy, or others) over monotherapy with levothyroxine, in improving health outcomes. Some examples of future research needs include the development of superior biomarkers of euthyroidism to supplement thyrotropin measurements, mechanistic research on serum triiodothyronine levels (including effects of age and disease status, relationship with tissue concentrations, as well as potential therapeutic targeting), and long-term outcome clinical trials testing combination therapy or thyroid extracts (including subgroup effects). Additional research is also needed to develop thyroid hormone analogs with a favorable benefit to risk profile.
Dragovic, Sanja; Vermeulen, Nico P E; Gerets, Helga H; Hewitt, Philip G; Ingelman-Sundberg, Magnus; Park, B Kevin; Juhila, Satu; Snoeys, Jan; Weaver, Richard J
2016-12-01
The current test systems employed by pharmaceutical industry are poorly predictive for drug-induced liver injury (DILI). The 'MIP-DILI' project addresses this situation by the development of innovative preclinical test systems which are both mechanism-based and of physiological, pharmacological and pathological relevance to DILI in humans. An iterative, tiered approach with respect to test compounds, test systems, bioanalysis and systems analysis is adopted to evaluate existing models and develop new models that can provide validated test systems with respect to the prediction of specific forms of DILI and further elucidation of mechanisms. An essential component of this effort is the choice of compound training set that will be used to inform refinement and/or development of new model systems that allow prediction based on knowledge of mechanisms, in a tiered fashion. In this review, we focus on the selection of MIP-DILI training compounds for mechanism-based evaluation of non-clinical prediction of DILI. The selected compounds address both hepatocellular and cholestatic DILI patterns in man, covering a broad range of pharmacologies and chemistries, and taking into account available data on potential DILI mechanisms (e.g. mitochondrial injury, reactive metabolites, biliary transport inhibition, and immune responses). Known mechanisms by which these compounds are believed to cause liver injury have been described, where many if not all drugs in this review appear to exhibit multiple toxicological mechanisms. Thus, the training compounds selection offered a valuable tool to profile DILI mechanisms and to interrogate existing and novel in vitro systems for the prediction of human DILI.
Tardif, Steve; Madamidola, Oladipo A.; Brown, Sean G.; Frame, Lorna; Lefièvre, Linda; Wyatt, Paul G.; Barratt, Christopher L.R.; Martins Da Silva, Sarah J.
2014-01-01
STUDY QUESTION Can we identify compound(s) with reported phosphodiesterase inhibitor (PDEI) activity that could be added to human spermatozoa in vitro to enhance their motility without compromising other sperm functions? SUMMARY ANSWER We have identified several compounds that produce robust and effective stimulation of sperm motility and, importantly, have a positive response on patient samples. WHAT IS KNOWN ALREADY For >20 years, the use of non-selective PDEIs, such as pentoxifylline, has been known to influence the motility of human spermatozoa; however, conflicting results have been obtained. It is now clear that human sperm express several different phosphodiesterases and these are compartmentalized at different regions of the cells. By using type-specific PDEIs, differential modulation of sperm motility may be achieved without adversely affecting other functions such as the acrosome reaction (AR). STUDY DESIGN, SIZE, DURATION This was a basic medical research study examining sperm samples from normozoospermic donors and subfertile patients attending the Assisted Conception Unit (ACU), Ninewells Hospital Dundee for diagnostic semen analysis, IVF and ICSI. Phase 1 screened 43 commercially available compounds with reported PDEI activity to identify lead compounds that stimulate sperm motility. Samples were exposed (20 min) to three concentrations (1, 10 and 100 µM) of compound, and selected candidates (n = 6) progressed to Phase 2, which provided a more comprehensive assessment using a battery of in vitro sperm function tests. PARTICIPANTS/MATERIALS, SETTING, METHODS All healthy donors and subfertile patients were recruited at the Medical Research Institute, University of Dundee and ACU, Ninewells Hospital Dundee (ethical approval 08/S1402/6). In Phase 1, poor motility cells recovered from the 40% interface of the discontinuous density gradient were used as surrogates for patient samples. Pooled samples from three to four different donors were utilized in order to reduce variability and increase the number of cells available for simultaneous examination of multiple compounds. During Phase 2 testing, semen samples from 23 patients attending for either routine diagnostic andrology assessment or IVF/ICSI were prepared and exposed to selected compounds. Additionally, 48 aliquots of prepared samples, surplus to clinical use, were examined from IVF (n = 32) and ICSI (n = 16) patients to further determine the effects of selected compounds under clinical conditions of treatment. Effects of compounds on sperm motility were assessed by computer-assisted sperm analysis. A modified Kremer test using methyl cellulose was used to assess sperm functional ability to penetrate into viscous media. Sperm acrosome integrity and induction of apoptosis were assessed using the acrosomal content marker PSA-FITC and annexin V kit, respectively. MAIN RESULTS AND THE ROLE OF CHANCE In Phase 1, six compounds were found to have a strong effect on poor motility samples with a magnitude of response of ≥60% increase in percentage total motility. Under capacitating and non-capacitating conditions, these compounds significantly (P ≤ 0.05) increased the percentage of total and progressive motility. Furthermore, these compounds enhanced penetration into a cervical mucus substitute (P ≤ 0.05). Finally, the AR was not significantly induced and these compounds did not significantly increase the externalization of phosphatidylserine (P = 0.6, respectively). In general, the six compounds maintained the stimulation of motility over long periods of time (180 min) and their effects were still observed after their removal. In examinations of clinical samples, there was a general observation of a more significant stimulation of sperm motility in samples with lower baseline motility. In ICSI samples, compounds #26, #37 and #38 were the most effective at significantly increasing total motility (88, 81 and 79% of samples, respectively) and progressive motility (94, 93 and 81% of samples, respectively). In conclusion, using a two-phased drug discovery screening approach including the examination of clinical samples, 3/43 compounds were identified as promising candidates for further study. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study and caution must be taken when extrapolating the results. Data for patients were from one assessment and thus the robustness of responses needs to be established. The n values for ICSI samples were relatively small. WIDER IMPLICATIONS OF THE FINDINGS We have systematically screened and identified several compounds that have robust and effective stimulation (i.e. functional significance with longevity and no toxicity) of total and progressive motility under clinical conditions of treatment. These compounds could be clinical candidates with possibilities in terms of assisted reproductive technology options for current or future patients affected by asthenozoospermia or oligoasthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) This study was funded primarily by the MRC (DPFS) but with additional funding from the Wellcome Trust, Tenovus (Scotland), University of Dundee, NHS Tayside and Scottish Enterprise. The authors have no competing interests. A patent (#WO2013054111A1) has been published containing some of the information presented in this manuscript. PMID:25124668
Armijo-Olivo, Susan; Warren, Sharon; Fuentes, Jorge; Magee, David J
2011-12-01
Statistical significance has been used extensively to evaluate the results of research studies. Nevertheless, it offers only limited information to clinicians. The assessment of clinical relevance can facilitate the interpretation of the research results into clinical practice. The objective of this study was to explore different methods to evaluate the clinical relevance of the results using a cross-sectional study as an example comparing different neck outcomes between subjects with temporomandibular disorders and healthy controls. Subjects were compared for head and cervical posture, maximal cervical muscle strength, endurance of the cervical flexor and extensor muscles, and electromyographic activity of the cervical flexor muscles during the CranioCervical Flexion Test (CCFT). The evaluation of clinical relevance of the results was performed based on the effect size (ES), minimal important difference (MID), and clinical judgement. The results of this study show that it is possible to have statistical significance without having clinical relevance, to have both statistical significance and clinical relevance, to have clinical relevance without having statistical significance, or to have neither statistical significance nor clinical relevance. The evaluation of clinical relevance in clinical research is crucial to simplify the transfer of knowledge from research into practice. Clinical researchers should present the clinical relevance of their results. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.
2015-06-01
Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.
Furi, Leonardo; Ciusa, Maria Laura; Knight, Daniel; Di Lorenzo, Valeria; Tocci, Nadia; Cirasola, Daniela; Aragones, Lluis; Coelho, Joana Rosado; Freitas, Ana Teresa; Marchi, Emmanuela; Moce, Laura; Visa, Pilar; Northwood, John Blackman; Viti, Carlo; Borghi, Elisa; Orefici, Graziella
2013-01-01
The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant. PMID:23669380
Herb Medicines against Osteoporosis: Active Compounds & Relevant Biological Mechanisms.
Wu, Lei; Ling, Zhuoyan; Feng, Xueqin; Mao, Caiping; Xu, Zhice
2017-01-01
Osteoporosis is one of common bone disorders, affecting millions of people worldwide. Treatments of osteoporosis consist of pharmacotherapy and non-pharmacological interventions, such as mineral supplementation, lifestyle changes, and exercise programs. Due to the minimum side effects and favorable cost-effective therapeutic effects, herbal medicine has been widely applied in clinical practices for more than 2,000 years in China. Of the many traditional formulas reported for treating bone diseases, 4 single herbs namely (1) Herba Epimedii, (2) Rhizoma Drynariae, (3) Fructus Psoraleae, and (4) Cortex Eucommiae, are considered as the featured "Kidney-Yang" tonics, and frequently and effectively applied for preventing and treating osteoporosis. With the accruing development of modern chemistry, hundreds of active compounds have been identified and isolated for their anti-osteoporotic effects. This review would first sketch the phytochemistry of these featured "Kidney- Yang" tonics and present the pharmacological characteristics of the most abundant and bioactive compounds derived from the herb Herba Epimedii and Rhizoma Drynariae, including icariin and naringin. Then, the cellular and molecular underpinnings under anti-osteoporotic effects of icariin and naringin are discussed. The concerned structure-function relationships of the featured active herbal compounds would also be reviewed so as to pave the way for future drug design in treating osteoporosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.
2015-01-01
Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.
Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.
Crabtree, Gregg W; Park, Alan J; Gordon, Joshua A; Gogos, Joseph A
2016-10-04
Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Analysis of lomustine drug content in FDA-approved and compounded lomustine capsules.
KuKanich, Butch; Warner, Matt; Hahn, Kevin
2017-02-01
OBJECTIVE To determine the lomustine content (potency) in compounded and FDA-approved lomustine capsules. DESIGN Evaluation study. SAMPLE 2 formulations of lomustine capsules (low dose [7 to 11 mg] and high dose [40 to 48 mg]; 5 capsules/dose/source) from 3 compounders and from 1 manufacturer of FDA-approved capsules. PROCEDURES Lomustine content was measured by use of a validated high-pressure liquid chromatography method. An a priori acceptable range of 90% to 110% of the stated lomustine content was selected on the basis of US Pharmacopeia guidelines. RESULTS The measured amount of lomustine in all compounded capsules was less than the stated content (range, 59% to 95%) and was frequently outside the acceptable range (failure rate, 2/5 to 5/5). Coefficients of variation for lomustine content ranged from 4.1% to 16.7% for compounded low-dose capsules and from 1.1% to 10.8% for compounded high-dose capsules. The measured amount of lomustine in all FDA-approved capsules was slightly above the stated content (range, 104% to 110%) and consistently within the acceptable range. Coefficients of variation for lomustine content were 0.5% for low-dose and 2.3% for high-dose FDA-approved capsules. CONCLUSIONS AND CLINICAL RELEVANCE Compounded lomustine frequently did not contain the stated content of active drug and had a wider range of lomustine content variability than did the FDA-approved product. The sample size was small, and larger studies are needed to confirm these findings; however, we recommend that compounded veterinary formulations of lomustine not be used when appropriate doses can be achieved with FDA-approved capsules or combinations of FDA-approved capsules.
Contact allergy to reactive diluents and related aliphatic epoxy resins.
Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Suuronen, Katri
2015-06-01
Diglycidyl ether of bisphenol A resin (DGEBA-R) is the most common sensitizer in epoxy systems, but a minority of patients also develop contact allergy to reactive diluents. To analyse the frequency and clinical relevance of allergic reactions to different epoxy reactive diluents and related aliphatic epoxy resins. Test files (January 1991 to June 2014) were screened, and the clinical records of patients with allergic reactions were analysed for occupation, concomitant allergic reactions, and exposure. A total of 67 patients reacted to at least one of the compounds. The largest numbers of allergic reactions were to phenyl glycidyl ether (PGE; n = 41), 1,4-butanediol diglycidyl ether (BDDGE; n = 34), and p-tert-butylphenyl glycidyl ether (PTBPGE; n = 19). Ten of the patients did not have contact allergy to DGEBA-R. The reactions of 5 of these were related to the use of BDDGE-containing products. We found no significant exposure to PGE or PTBPGE in patients sensitized to them, but some of the patients had used cresyl glycidyl ether-containing products. Allergic reactions to reactive diluents and related aliphatic epoxy resins usually occurred together with reactions to DGEBA-R. BDDGE was the clinically most significant compound, and was the sole cause of occupational allergic contact dermatitis in 3 patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease.
Trinh, Kien; Cui, Xuejun; Wang, Yong-Jun
2010-11-15
Systematic review. To assess the efficacy of Chinese herbal medicines in treating chronic neck pain with radicular signs or symptoms. Chronic neck pain with radicular signs or symptoms is a common condition. Many patients use complementary and alternative medicine, including traditional Chinese medicine, to address their symptoms. We electronically searched CENTRAL, MEDLINE, EMBASE, CINAHL, and AMED (up to 2009), the Chinese Biomedical Database and related herbal medicine databases in Japan and South Korea (up to 2007). We also contacted content experts and hand searched a number of journals published in China.We included randomized controlled trials with adults with a clinical diagnosis of cervical degenerative disc disease, cervical radiculopathy, or myelopathy supported by appropriate radiologic findings. The interventions were Chinese herbal medicines. The primary outcome was pain relief, measured with a visual analogue scale, numerical scale, or other validated tool. All 4 included studies were in Chinese; 2 of which were unpublished. Effect sizes were not clinically relevant and there was low quality evidence for all outcomes due to study limitations and sparse data (single studies). Two trials (680 participants) found that Compound Qishe Tablets relieved pain better in the short-term than either placebo or Jingfukang; one trial (60 participants) found than an oral herbal formula of Huangqi relieved pain better than Mobicox or Methycobal, and another trial (360 participants) showed that a topical herbal medicine, Compound Extractum Nucis Vomicae, relieved pain better than Diclofenac Diethylamine Emulgel. There is low quality evidence that an oral herbal medication, Compound Qishe Tablet, reduced pain more than placebo or Jingfukang and a topical herbal medicine, Compound Extractum Nucis Vomicae, reduced pain more than Diclofenac Diethylamine Emulgel. Further research is very likely to change both the effect size and our confidence in the results.
Tortorella, Stephanie M.; Royce, Simon G.; Licciardi, Paul V.
2015-01-01
Abstract Significance: Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. Critical Issues: In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Future Directions: Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies. Antioxid. Redox Signal. 22, 1382–1424. PMID:25364882
Compositional descriptor-based recommender system for the materials discovery
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao
2018-06-01
Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.
Protein targets for anticancer gold compounds: mechanistic inferences.
Gabbiani, Chiara; Messori, Luigi
2011-12-01
Gold compounds form an interesting class of antiproliferative agents of potential pharmacological use in cancer treatment. Indeed, a number of gold compounds, either gold(III) or gold(I), were recently described and characterised that manifested remarkable cytotoxic properties in vitro against cultured cancer cells; for some of them encouraging in vivo results were also reported toward a few relevant animal models of cancer. The molecular mechanisms through which gold compounds exert their biological effects are still largely unknown and the subject of intense investigations. Recent studies point out that the modes of action of cytotoxic gold compounds are essentially DNA-independent and cisplatin-unrelated, relying -most likely- on gold interactions with a variety of protein targets. Notably, a few cellular proteins playing relevant functional roles were proposed to represent effective targets for cytotoxic gold compounds but these hypotheses need adequate validation. The state of the art of this research area and the perspectives for future studies are herein critically analysed and discussed.
De Colli, Marianna; Tortorella, Paolo; Marconi, Guya Diletta; Agamennone, Mariangela; Campestre, Cristina; Tauro, Marilena; Cataldi, Amelia; Zara, Susi
2016-11-01
Bisphosphonates (BPs) are drugs clinically used in resorptive diseases. It was already proved that some clinically relevant BPs can inhibit a class of enzymes called matrix metalloproteinases (MMPs), required during tissue remodelling. Combining the arylsulfonamide function with the bisphosphonic group, several compounds were synthesized to obtain selective inhibitors of MMPs. The aim of the present study was to compare the effect of zoledronic acid (ZA), the most potent bisphosphonate available as therapy, with new sulfonamide containing BPs in an in vitro model of human gingival fibroblasts (HGFs). Western blot was used to measure procollagen I, β1 integrin MMP-8 and MMP-9, phase contrast and MTT for cell viability; L-lactate-dehydrogenase (LDH) measurement was performed for toxicity evaluation and ELISA for prostaglandin E 2 (PGE 2 ) secretion assessment. When compared with ZA, the treatment with the newly synthesized compounds shows increasing viability, procollagen I expression and decreased expression of β1 integrin in HGFs. Higher levels of released LDH, PGE 2 and MMP-9 expression are recorded in ZA-treated HGFs. Increased levels of MMP-8 are recorded in newly synthesized compounds-treated samples. These findings allowed to conclude that new tested BPs did not affect HGFs viability and adhesion, did not induce cellular toxicity, were not responsible for inflammatory event induction and could preserve the physiological matrix turnover. It could be hypothesized that the new molecules were better tolerated by soft tissues, resulting in lesser side effects.
Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael; Davioud-Charvet, Elisabeth
2016-09-01
Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H.; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael
2016-01-01
Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers—a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum. We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. PMID:27297478
Using a Stem Cell-Based Signature to Guide Therapeutic Selection in Cancer
Shats, Igor; Gatza, Michael L.; Chang, Jeffrey T.; Mori, Seiichi; Wang, Jialiang; Rich, Jeremy; Nevins, Joseph R.
2010-01-01
Given the very substantial heterogeneity of most human cancers, it is likely that most cancer therapeutics will be active in only a small fraction of any population of patients. As such, the development of new therapeutics, coupled with methods to match a therapy with the individual patient, will be critical to achieving significant gains in disease outcome. One such opportunity is the use of expression signatures to identify key oncogenic phenotypes that can serve not only as biomarkers but also as a means of identifying therapeutic compounds that might specifically target these phenotypes. Given the potential importance of targeting tumors exhibiting a stem-like phenotype, we have developed an expression signature that reflects common biological aspects of various stem-like characteristics. The Consensus Stemness Ranking (CSR) signature is upregulated in cancer stem cell enriched samples, at advanced tumor stages and is associated with poor prognosis in multiple cancer types. Using two independent computational approaches we utilized the CSR signature to identify clinically useful compounds that could target the CSR phenotype. In vitro assays confirmed selectivity of several predicted compounds including topoisomerase inhibitors and resveratrol towards breast cancer cell lines that exhibit a high-CSR phenotype. Importantly, the CSR signature could predict clinical response of breast cancer patients to a neoadjuvant regimen that included a CSR-specific agent. Collectively, these results suggest therapeutic opportunities to target the CSR phenotype in a relevant cohort of cancer patients. PMID:21169407
Deng, Yiqi; Zhu, Lingjuan; Cai, Haoyang; Wang, Guan; Liu, Bo
2018-06-01
Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future. © 2017 John Wiley & Sons Ltd.
Martí-Bonmatí, L; Martí-Bonmatí, E
The Spanish Agency for Drugs and Healthcare Products (AEMPS), based on the recommendations of the European Committee for Risk Assessment in Pharmacovigilance, established on 13 March 2017 that linear gadolinium-based MR contrast media, such as MultiHance, Omniscan, Magnevist (currently not marketed) and Optimark (no longer marketed in Spain), the clinical benefits do not outweigh the potential risks derived from their use. AEMPS recommends to suspend its marketing for general use based on the retention of these compounds in the brain. On the other hand, the AEMPS justifies the maintenance of Primovist and MultiHance for liver studies, and Magnevist of intra-articular administration (not commercialized in Spain), and justified the almost exclusive use of macrocyclic structure contrasts (Gadovist, ProHance and Dotarem). However, this retention is known to be different for each of the contrast media. All existing gadolinium contrasts agents have a distribution phase with tissue retention, due to a very slow exchange, in the interstitium of bone, skin, kidney, brain and other organs. The existence of histological effects or clinical symptoms associated with the accumulation of these trace amounts of gadolinium has not been demonstrated. The major toxicological concern with these contrast agents is related to nephrogenic systemic fibrosis (NSF). Since the safety profiles are mainly related to the interstitial retention space in the tissues, it does not seem justified to actually exclude contrast media that do not have cases related to the NSF. Based on all of this, we disagree with the latest AEMPS recommendation suggesting the marketing stoppage of linear agents without considering the individual retention profiles. This recommendation is not based neither on the data nor existing knowledge about the retention, relaxivity and clinical efficiency of the Gd compounds. It is therefore necessary to carry out prospective studies on the histological and clinical relevance of these organic Gd deposits. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Challenges of Translating Basic Research Into Therapeutics: Resveratrol as an Example
Smoliga, James M.; Vang, Ole
2012-01-01
Basic science literature abounds with molecules that promise to ameliorate almost any disease, from curing cancer to slowing the aging process itself. However, most of these compounds will never even be evaluated in humans, let alone proven effective. Here, we use resveratrol as an example to highlight the enormous difficulties in understanding pharmacokinetics, determining side effects, and, ultimately, establishing mechanisms of action for a natural compound. Despite extensive interest and effort, and continuing promising results from basic science groups, very little is known even today about the effects of resveratrol in humans. Part of the problem is the unattractiveness of natural compounds to large, well-funded companies that could run clinical trials because developing their own molecules affords much greater protection for their intellectual property. In fact, selling unpatentable material motivates smaller nutraceutical companies to complicate the scientific problem even more—each creates its own proprietary blend, making it extremely difficult to compare their data with those of other companies, or of academic labs using pure compounds. But even beyond these problems lies a deeper one; resveratrol, and almost every natural compound, is likely to have many clinically relevant targets with different dose–response profiles, tissue distributions, and modifiers. Tackling this type of problem efficiently, and even beginning to address the spectrum of other molecules with claimed benefits, is likely to require the development of new paradigms and approaches. Examples include better molecular modeling to predict interactions, large-scale screens for toxic or other common effects, affinity-based methods to identify drug-interacting proteins, and better synthesis of existing data, including legislation to promote the release of trial results, and tracking of voluntary supplement usage. The evidence for benefits of resveratrol in humans remains too sparse to be conclusive; yet, the limited data that are available, combined with a growing list of animal studies, provide a strong justification for further study. PMID:21746739
The palmitoylethanolamide family: a new class of anti-inflammatory agents?
Lambert, Didier M; Vandevoorde, Severine; Jonsson, Kent-Olov; Fowler, Christopher J
2002-03-01
The discovery of anandamide as an endogenous ligand for the cannabinoid receptors has led to a resurgence of interest in the fatty acid amides. However, N-palmitoylethanolamine (PEA), a shorter and fully saturated analogue of anandamide, has been known since the fifties. This endogenous compound is a member of the N-acylethanolamines, found in most mammalian tissues. PEA is accumulated during inflammation and has been demonstrated to have a number of anti-inflammatory effects, including beneficial effects in clinically relevant animal models of inflammatory pain. It is now engaged in phase II clinical development, and two studies regarding the treatment of chronic lumbosciatalgia and multiple sclerosis are in progress. However, its precise mechanism of action remains debated. In the present review, the biochemical and pharmacological properties of PEA are discussed, in particular with respect to its analgesic and anti-inflammatory properties.
Drug Interactions with Lithium: An Update.
Finley, Patrick R
2016-08-01
Lithium has been used for the management of psychiatric illnesses for over 50 years and it continues to be regarded as a first-line agent for the treatment and prevention of bipolar disorder. Lithium possesses a narrow therapeutic index and comparatively minor alterations in plasma concentrations can have significant clinical sequelae. Several drug classes have been implicated in the development of lithium toxicity over the years, including diuretics and non-steroidal anti-inflammatory compounds, but much of the anecdotal and experimental evidence supporting these interactions is dated, and many newer medications and medication classes have been introduced during the intervening years. This review is intended to provide an update on the accumulated evidence documenting potential interactions with lithium, with a focus on pharmacokinetic insights gained within the last two decades. The clinical relevance and ramifications of these interactions are discussed.
Herold, Karl F; Sanford, R Lea; Lee, William; Andersen, Olaf S; Hemmings, Hugh C
2017-03-21
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10-100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions.
Kesisoglou, Filippos; Hermans, Andre; Neu, Colleen; Yee, Ka Lai; Palcza, John; Miller, Jessica
2015-09-01
Although in vitro-in vivo correlations (IVIVCs) are commonly pursued for modified-release products, there are limited reports of successful IVIVCs for immediate-release (IR) formulations. This manuscript details the development of a Multiple Level C IVIVC for the amorphous solid dispersion formulation of suvorexant, a BCS class II compound, and its application to establishing dissolution specifications and in-process controls. Four different 40 mg batches were manufactured at different tablet hardnesses to produce distinct dissolution profiles. These batches were evaluated in a relative bioavailability clinical study in healthy volunteers. Although no differences were observed for the total exposure (AUC) of the different batches, a clear relationship between dissolution and Cmax was observed. A validated Multiple Level C IVIVC against Cmax was developed for the 10, 15, 20, 30, and 45 min dissolution time points and the tablet disintegration time. The relationship established between tablet tensile strength and dissolution was subsequently used to inform suitable tablet hardness ranges within acceptable Cmax limits. This is the first published report for a validated Multiple Level C IVIVC for an IR solid dispersion formulation demonstrating how this approach can facilitate Quality by Design in formulation development and help toward clinically relevant specifications and in-process controls. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Graefe-Mody, Ulrike; Rose, Peter; Ring, Arne; Zander, Kerstin; Iovino, Mario; Woerle, Hans-Juergen
2011-01-01
The aim of this study was to investigate the effect of the dipeptidyl peptidase-4 inhibitor linagliptin on the pharmacokinetics of glyburide (a CYP2C9 and CYP3A4 substrate) and vice versa. This randomized, open-label, three-period, two-way crossover study examined the effects of co-administration of multiple oral doses of linagliptin (5 mg/day × 6 days) and single doses of glyburide (1.75 mg/day × 1 day) on the relative bioavailability of either compound in healthy subjects (n = 20, age 18-55 years). Coadministration of glyburide did not alter the steady-state pharmacokinetics of linagliptin. Geometric mean ratios (GMRs) [90% CI] for (linagliptin + glyburide)/linagliptin AUC(τ,ss) and C(max,ss) were 101.7% [97.7-105.8%] and 100.8% [89.0-114.3%], respectively. For glyburide, there was a slight reduction in exposure of ∼14% when coadministered with linagliptin (GMRs [90% CI] for (glyburide + linagliptin)/glyburide AUC(0-∞) and C(max) were 85.7% [79.8-92.1%] and 86.2% [79.6-93.3%], respectively). However, this was not seen as clinically relevant due to the absence of a reliable dose-response relationship and the known large pharmacokinetic interindividual variability of glyburide. These results further support the assumption that linagliptin is not a clinically relevant inhibitor of CYP2C9 or CYP3A4 in vivo. Coadministration of linagliptin and glyburide had no clinically relevant effect on the pharmacokinetics of linagliptin or glyburide. Both agents were well tolerated and can be administered together without the need for dosage adjustments.
Marine Natural Products with P-Glycoprotein Inhibitor Properties
Lopez, Dioxelis; Martinez-Luis, Sergio
2014-01-01
P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193
The potentiality of medicinal plants as the source of new contraceptive principles in males
Ogbuewu, Ifeanyi Princewill; Unamba-Oparah, Ihemdirim Chukwuma; Odoemenam, Victor Udodirim; Etuk, Idorenyin Friday; Okoli, Ifeanyi Charles
2011-01-01
Rising human population throughout the world especially in developing and underdeveloped countries has detrimental effects on life supporting system on earth. Traditionally, plants have been used to treat different kinds of ailments. The growing importance of phytochemicals in males has been reported. Contraceptive ability of plants has been reported in several animal models. The reversibility of the anti-fertility effects of plants and its active compounds are of potential clinical relevance in the development of male contraceptive. This review attempts to discuss the latest reports on the potentiality of medicinal plants as the source of new contraceptive principles in males. PMID:22540095
Optimizing biologically targeted clinical trials for neurofibromatosis
Gutmann, David H; Blakeley, Jaishri O; Korf, Bruce R; Packer, Roger J
2014-01-01
Introduction The neurofibromatoses (neurofibromatosis type 1, NF1 and neurofibromatosis type 2, NF2) comprise the most common inherited conditions in which affected children and adults develop tumors of the central and peripheral nervous system. In this review, the authors discuss how the establishment of the Neurofibromatosis Clinical Trials Consortium (NFCTC) has positively impacted on the design and execution of treatment studies for individuals with NF1 and NF2. Areas covered Using an extensive PUBMED search in collaboration with select NFCTC members expert in distinct NF topics, the authors discuss the clinical features of NF1 and NF2, the molecular biology of the NF1 and NF2 genes, the development and application of clinically relevant Nf1 and Nf2 genetically engineered mouse models and the formation of the NFCTC to enable efficient clinical trial design and execution. Expert opinion The NFCTC has resulted in a more seamless integration of mouse preclinical and human clinical trials efforts. Leveraging emerging enabling resources, current research is focused on identifying subtypes of tumors in NF1 and NF2 to deliver the most active compounds to the patients most likely to respond to the targeted therapy. PMID:23425047
Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M
2016-10-01
The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.
KuKanich, Kate; KuKanich, Butch; Slead, Tanner; Warner, Matt
2017-10-01
OBJECTIVE To determine drug content (potency) of compounded doxycycline formulations for veterinary use and of US FDA-approved doxycycline formulations for human use < 24 hours after receipt (day 1) and after 21 days of storage under recommended conditions (day 21). DESIGN Evaluation study. SAMPLE FDA-approved doxycycline tablets (100 mg), capsules (100 mg), and liquid suspension (10 mg/mL) and compounded doxycycline formulations from 3 pharmacies (tablets [25, 100, and 150 mg; 1 product/source], chews [100 mg; 1 product/source], and liquid suspensions or solution [6 mg/mL {2 sources} and 50 mg/mL {1 source}]). PROCEDURES Doxycycline content was measured in 5 samples of each tablet, chew, or capsule formulation and 5 replicates/bottle of liquid formulation on days 1 and 21 by liquid chromatography and compared with US Pharmacopeia acceptable ranges. RESULTS All FDA-approved formulations had acceptable content on days 1 and 21. On day 1, mean doxycycline content for the 3 compounded tablet formulations was 89%, 98%, and 116% (3/5, 5/5, and 1/5 samples within acceptable ranges); day 21 content range was 86% to 112% (1/5, 5/5, and 4/5 samples within acceptable ranges). Day 1 content of chews was 81%, 78%, and 98% (0/5, 0/5, and 5/5 samples within acceptable ranges), and that of compounded liquids was 50%, 52%, and 85% (no results within acceptable ranges). No chews or compounded liquid formulations met USP standards on day 21. CONCLUSIONS AND CLINICAL RELEVANCE FDA-approved doxycycline should be prescribed when possible. Whole tablets yielded the most consistent doxycycline content for compounded formulations.
Giavina-Bianchi, Pedro; Galvão, Violeta Régnier; Picard, Matthieu; Caiado, Joana; Castells, Mariana C
Rapid drug desensitization (RDD) has become a cornerstone in the management of immediate drug hypersensitivity reactions (DHRs) to chemotherapeutic agents. Because of the inherent risk of anaphylaxis during RDD, biomarkers to predict patients at risk of developing such severe reactions are needed. The basophil activation test (BAT) has been used in DHRs as a diagnostic tool. We evaluated basophil CD63 and CD203c expression (BAT) as a biomarker to assess the safety and effectiveness of RDD in platinum compounds-allergic patients. Patients allergic to platinum compounds (n = 15) undergoing RDD were assessed through clinical history, skin testing, serum tryptase levels, and BAT. BAT was performed immediately before RDD, assessing CD203c and CD63 expression on basophils. BAT was also performed in 6 patients tolerant to platinum compounds and in 6 healthy volunteers. BAT was positive to CD203c or CD63 in 11 out of 15 patients allergic to platinum compounds (73%), with increased expression of CD203c and CD63 in 11 (73%) and 6 (40%) patients, respectively. Increased CD63 expression tended to be associated with more severe initial reactions. All controls had negative test results. Reactions during RDD were associated with BAT positivity and increased tryptase levels. Only 1 of 4 patients with negative BAT had a mild reaction during RDD. BAT remained positive in multiple sequential RDD. BAT identified patients allergic to platinum compounds with an increased risk of reactions during desensitization and higher CD63 expression was observed in severe reactions. Multiple RDDs to platinum compounds did not induce persistent hyporesponsiveness on basophils. BAT is a potential biomarker for RDD. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián
2016-01-01
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.
Obniska, Jolanta; Rapacz, Anna; Rybka, Sabina; Góra, Małgorzata; Kamiński, Krzysztof; Sałat, Kinga; Żmudzki, Paweł
2016-04-15
This paper describes the synthesis of the library of 22 new 3-methyl- and 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetamides as potential anticonvulsant agents. The maximal electroshock (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models were used for screening all the compounds. The 6 Hz model of pharmacoresistant limbic seizures was applied for studying selected derivatives. Six amides were chosen for pharmacological characterization of their antinociceptive activity in the formalin model of tonic pain as well as local anesthetic activity was assessed in mice. The pharmacological data indicate on the broad spectra of activity across the preclinical seizure models. Compounds 10 (ED50=32.08 mg/kg, MES test) and 9 (ED50=40.34 mg/kg, scPTZ test) demonstrated the highest potency. These compounds displayed considerably better safety profiles than clinically relevant antiepileptic drugs phenytoin, ethosuximide, or valproic acid. Several molecules showed antinociceptive and local anesthetic properties. The in vitro radioligand binding studies demonstrated that the influence on the sodium and calcium channels may be one of the essential mechanisms of action. Copyright © 2016. Published by Elsevier Ltd.
Cuozzo, John W; Centrella, Paolo A; Gikunju, Diana; Habeshian, Sevan; Hupp, Christopher D; Keefe, Anthony D; Sigel, Eric A; Soutter, Holly H; Thomson, Heather A; Zhang, Ying; Clark, Matthew A
2017-05-04
We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co-crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile-based selection strategies using DNA-encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ibarguren, Carolina; Raya, Raúl R; Apella, María C; Audisio, M Carina
2010-02-01
Four Enterococcus faecium strains, isolated from honeycombs (C1 and M2d strains) and feral combs (Mori1 and M1b strains) secreted antimicrobial substances active against fourteen different Listeria spp. strains. The antimicrobial compound(s) present in the cell free supernatant were highly thermostable (121 degrees C for 15 min) and inactivated by proteolytic enzymes, but not by alpha-amylase and lipase, thus suggesting a peptidic nature. Since the structural bacteriocin gene determinants of enterocins A and B were PCR amplified from the four E. faecium isolates, only the bacteriocin produced by strain C1 was further characterized: it showed a broad band of approximately 4.0-7.0 kDa in SDS-PAGE and was bactericidal (4 log decrease) against L. monocytogenes 99/287. L. monocytogenes 99/287R, a clone spontaneously resistant to the enterocin produced by E. avium DSMZ17511 (ex PA1), was not inhibited by the enterocin-like compounds produced by strain C1. However, it was inhibited in mixed culture fermentations by E. faecium C1 and a bacteriostatic effect was observed. The bacteriocin-producer Enterococcus strains were not haemolytic; gelatinase negative and sensitive to vancomycin and other clinically relevant antibiotics.
Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.
Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L
2016-08-01
Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. © The Author(s) 2016.
Tackling ALK in non-small cell lung cancer: the role of novel inhibitors
Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia
2016-01-01
Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712
Cichon, Morgan J; Riedl, Ken M; Schwartz, Steven J
2017-08-01
Juices from the traditional red tomato and a unique tangerine tomato variety are being investigated as health promoting foods in human clinical trials. However, it is unknown how the tangerine and red tomato juices differ in biologically relevant phytochemicals beyond carotenoids. Here liquid-chromatography high-resolution mass spectrometry metabolomics was used to evaluate broadly the similarities and differences in carotenoids and other phytochemicals between red and tangerine tomato juices intended for clinical interventions. This untargeted approach was successful in the rapid detection and extensive characterization of phytochemicals belonging to various compound classes. The tomato juices were found to differ significantly in a number of phytochemicals, including carotenoids, chlorophylls, neutral lipids, and cinnamic acid derivatives. The largest differences were in carotenoids, including lycopene, phytoene, phytofluene, neurosporene, and ζ-carotene. Smaller, but significant, differences were observed in polar phytochemicals, such as chlorogenic acid, hydroxyferulic acid, phloretin-di-C-glycoside, and isopropylmalic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biomedically relevant circuit-design strategies in mammalian synthetic biology
Bacchus, William; Aubel, Dominique; Fussenegger, Martin
2013-01-01
The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design. PMID:24061539
Timm, David E.; Benveniste, Morris; Weeks, Autumn M.; Nisenbaum, Eric S.
2011-01-01
At the dimer interface of the extracellular ligand-binding domain of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1–3′,2′)1,3-oxazino(6′,5′-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine 1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; 2) whether these compounds are splice isoform-selective; and 3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously. PMID:21543522
St Charles, Frank Kelley; McAughey, John; Shepperd, Christopher J
2013-06-01
Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10(-5) Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10(-7) Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker.
PPARγ and its ligands: therapeutic implications in cardiovascular disease
Villacorta, Luis; Schopfer, Francisco J.; Zhang, Jifeng; Freeman, Bruce A.; Chen, Y. Eugene
2009-01-01
The relevance of peroxisome proliferator-activated receptor-γ (PPARγ) as an important therapeutic target for the treatment of diabetes arises from its hypoglycemic effects in diabetic patients and also from the critical role in the regulation of cardiovascular functions. From a clinical perspective, differences between currently FDA-approved PPARγ drugs have been observed in terms of atherosclerosis, cardiac and stroke events. The adverse effects of PPARγ-specific treatments that hamper their cardiovascular protective roles, affirm the strong need to evaluate the efficacy of the current drugs. Therefore, active research is directed towards high-throughput screening and pharmacologic testing of a plethora of newly identified natural or synthetic compounds. Here we describe the rationale behind drug design strategies targeting PPARγ, based on current knowledge regarding the effects of such drugs in experimental animal models as well as in the clinical practice. Regarding endogenous PPARγ ligands, several fatty acid derivatives bind PPARγ with different affinity, though the physiological relevance of these interactions is not always evident. Recently, nitric oxide-derived unsaturated fatty acids were found to be potent agonists of PPARs, with preferential affinity for PPARγ, compared to oxidized fatty acid derivatives. Nitroalkenes exert important bioactivities of relevance for the cardiovascular system including anti-inflammatory and anti-platelet actions and are important mediators of vascular tone. A new generation of insulin sensitizers with PPARγ function for the treatment of diabetes, may serve to limit patients from the increased cardiovascular burden of this disease. PMID:19118492
Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R; Rago, Carlo; Bhunia, Anil K; Hossain, M Zulfiquer; Paun, Bogdan C; Ren, Yunzhao R; Iacobuzio-Donahue, Christine A; Azad, Nilofer A; Kern, Scott E
2014-01-01
Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Walker, Natasha; Filis, Panagiotis; Soffientini, Ugo; Bellingham, Michelle; O’Shaughnessy, Peter J; Fowler, Paul A
2017-01-01
Abstract The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ. PMID:28339967
Semantics vs Pragmatics of a Compound Word
ERIC Educational Resources Information Center
Smirnova, Elena A.; Biktemirova, Ella I.; Davletbaeva, Diana N.
2016-01-01
This paper is devoted to the study of correlation between semantic and pragmatic potential of a compound word, which functions in informal speech, and the mechanisms of secondary nomination, which realizes the potential of semantic-pragmatic features of colloquial compounds. The relevance and the choice of the research question is based on the…
Ried, Karin; Fakler, Peter
2014-01-01
Garlic supplements have shown promise in the treatment of uncontrolled hypertension, lowering blood pressure (BP) by about 10 mmHg systolic and 8 mmHg diastolic, similar to standard BP medication. Aged garlic extract, which contains S-allylcysteine as the bioactive sulfur compound, in particular is standardizable and highly tolerable, with little or no known harmful interaction when taken with other BP-reducing or blood-thinning medication. Here we describe biologically plausible mechanisms of garlic’s BP-lowering effect. Garlic-derived polysulfides stimulate the production of the vascular gasotransmitter hydrogen sulfide (H2S) and enhance the regulation of endothelial nitric oxide (NO), which induce smooth muscle cell relaxation, vasodilation, and BP reduction. Several dietary and genetic factors influence the efficiency of the H2S and NO signaling pathways and may contribute to the development of hypertension. Sulfur deficiency might play a part in the etiology of hypertension, and could be alleviated with supplementation of organosulfur compounds derived from garlic. PMID:25525386
Gibson, Gary E.; Karuppagounder, Saravanan S.; Shi, Qingli
2009-01-01
Considerable data supports the hypothesis that mitochondrial abnormalities link gene defects and/or environmental insults to the neurodegenerative process The interaction of oxidants with calcium and the mitochondrial enzymes of the tricarboxylic acid (TCA) cycle are central to that relationship. Abnormalities that were discovered in brains or fibroblasts from patients with Alzheimer's Disease (AD) have been modeled in vitro and in vivo to assess their pathophysiological importance and to determine how they might be reversed. The conclusions are consistent with the hypothesis that the AD-related abnormalities result from oxidative stress. The selection of compounds for reversal is complex because the actions of the relevant compounds vary under different conditions such as cell redox states and acute vs chronic changes. However, the models that have been developed are useful for testing the effectiveness of the potential medications. The results suggest that the reversal of the mitochondrial deficits and a reduction in oxidative stress will reduce the clinical and pathological changes and benefit patients. PMID:19076444
Barneche, Stephanie; Alborés, Silvana; Borthagaray, Graciela; Cerdeiras, María Pía; Vázquez, Alvaro
2017-01-01
Despite the great advances in chemotherapeutics, infectious diseases are still one of the leading causes of death worldwide. Among some of the clinically relevant pathogens, methicillin-resistant Staphylococcus aureus (MRSA) ranks as one of the most difficult bacteria to treat. It is a common cause of skin, soft-tissue, and endovascular infections, as well as pneumonia, septic arthritis, endocarditis, osteomyelitis, and sepsis. The research on Basidiomycota is extensive; many species show a broad spectrum of pharmacological activities, including antimicrobial activity. The vast majority of the literature to date generally focuses on screening the antibacterial properties of mushroom extracts. A gap still exists in the identification of the individual compounds responsible for these properties, and few low molecular weight compounds have been described. Gymnopilus junonius, the big laughter mushroom, grows wild in Uruguay, especially on Eucalyptus spp. plantations; it is known as the "eucalyptus fungus." In this work, we report the bioguided isolation, structural elucidation, and antistaphylococcal activity of the main antimicrobial components of fresh basidiocarps of G. junonius.
NASA Astrophysics Data System (ADS)
Pasparakis, George; Manouras, Theodore; Vamvakaki, Maria; Argitis, Panagiotis
2014-04-01
Light-controlled drug delivery systems constitute an appealing means to direct and confine drug release spatiotemporally at the site of interest with high specificity. However, the utilization of light-activatable systems is hampered by the lack of suitable drug carriers that respond sharply to visible light stimuli at clinically relevant wavelengths. Here, a new class of self-assembling, photo- and pH-degradable polymers of the polyacetal family is reported, which is combined with photochemical internalization to control the intracellular trafficking and release of anticancer compounds. The polymers are synthesized by simple and scalable chemistries and exhibit remarkably low photolysis rates at tunable wavelengths over a large range of the spectrum up to the visible and near infrared regime. The combinational pH and light mediated degradation facilitates increased therapeutic potency and specificity against model cancer cell lines in vitro. Increased cell death is achieved by the synergistic activity of nanoparticle-loaded anticancer compounds and reactive oxygen species accumulation in the cytosol by simultaneous activation of porphyrin molecules and particle photolysis.
Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Akdemir, Atilla; Isik, Semra; Lanzi, Cecilia; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T
2015-05-15
A new series of dithiocarbamates (DTCs) was prepared from primary/secondary amines incorporating amino/hydroxyl-alkyl, mono- and bicyclic aliphatic ring systems based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, and carbon disulfide. The compounds were investigated for the inhibition of four mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, that is, the human (h) hCA I, II, IX and XII, drug targets for antiglaucoma (hCA II and XII) or antitumor (hCA IX/XII) agents. The compounds were moderate or inefficient hCA I inhibitors (off-target isoform for both applications), efficiently inhibited hCA II, whereas some of them were low nanomolar/subnanomolar hCA IX/XII inhibitors. One DTC showed excellent intraocular pressure (IOP) lowering properties in an animal model of glaucoma, with a two times better efficiency compared to the clinically used sulfonamide dorzolamide. Copyright © 2015 Elsevier Ltd. All rights reserved.
21 CFR 862.1185 - Compound S (11-deoxycortisol) test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...-dioxycortisol) test system is a device intended to measure the level of compound S (11-dioxycortisol) in plasma. Compound S is a steroid intermediate in the biosynthesis of the adrenal hormone cortisol. Measurements of...
Clinical relevance in anesthesia journals.
Lauritsen, Jakob; Møller, Ann M
2006-04-01
The purpose of this review is to present the latest knowledge and research on the definition and distribution of clinically relevant articles in anesthesia journals. It will also discuss the importance of the chosen methodology and outcome of articles. In the last few years, more attention has been paid to evidence-based medicine in anesthesia. Several articles on the subject have focused on the need to base clinical decisions on sound research employing both methodological rigor and clinically relevant outcomes. The number of systematic reviews in anesthesia literature is increasing as well as the focus on diminishing the number of surrogate outcomes. It has been shown that the impact factor is not a valid measure of establishing the level of clinical relevance to a journal. This review presents definitions of clinically relevant anesthesia articles. A clinically relevant article employs both methodological rigor and a clinically relevant outcome. The terms methodological rigor and clinical outcomes are fully discussed in the review as well as problems with journal impact factors.
Botanicals With Dermatologic Properties Derived From First Nations Healing: Part 1-Trees.
Colantonio, Sophia; Rivers, Jason K
First Nations people have a long history of working with medicinal plants used to treat skin diseases. The purpose was to assess the dermatologic therapeutic potential of western red cedar, white spruce, birch, balsam poplar, and black spruce. Based on expert recommendations, 5 trees were selected that were used in First Nations medicine for cutaneous healing and have potential and/or current application to dermatology today. We searched several databases up to June 12, 2014. Western red cedar's known active principal compound, β-thujaplicin, has been studied in atopic dermatitis. White spruce's known active principal compound, 7-hydroxymatairesinol, has anti-inflammatory activity, while phase II clinical trials have been completed on a birch bark emulsion for the treatment of actinic keratoses, epidermolysis bullosa, and the healing of split thickness graft donor sites. Balsam poplar has been used clinically as an anti-aging remedy. Black spruce bark contains higher amounts of the anti-oxidant trans-resveratrol than red wine. North American traditional medicine has identified important botanical agents that are potentially relevant to both cosmetic and medical dermatology. This study is limited by the lack of good quality evidence contributing to the review. The article is limited to 5 trees, a fraction of those used by First Nations with dermatological properties.
Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul
2016-05-01
The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Freitas Junior, Luciano Mamede; de Almeida Jr, Eduardo B
2017-01-01
Obesity is a global epidemic that has shown a steady increase in morbimortality indicators; it is considered a social problem and entails serious health risks. One of the alternatives in the treatment of obesity is the traditional use of medicinal plants, which supports the research and development of obesity phytotherapy. In this article, we provide information about ethnopharmacological species used to treat obesity, through an electronic search of the periodical databases Web of Science, Scopus, PubMed and Scielo, considering the period 1996-2015 and using the descriptors “plants for obesity”, “ethnopharmacology for obesity” and “anti-obesity plants” in both Portuguese and English. We analyzed and organized data on 76 plant species, cataloged per the taxonomy, geographic distribution, botanical aspects, popular use, and chemical and biological studies of the listed plants. The anti-obesity effect of the cataloged species was reported, describing actions on the delay of fat absorption, suppression of enzymatic activities, mediation of lipid levels and increase of lipolytic effects, attributed mainly to phenolic compounds. Given these findings, ethnopharmacological approaches are relevant scientific tools in the selection of plant species for studies that demonstrate anti-obesity action. Deeper botanical, chemical, pre-clinical and clinical studies are particularly necessary for species that present phenolic compounds in their chemical structure. PMID:28559960
Pinto, Eugénia; Gonçalves, Maria-José; Cavaleiro, Carlos; Salgueiro, Lígia
2017-09-22
The composition of the essential oil (EO) of Thapsia villosa (Apiaceae), isolated by hydrodistillation from the plant's aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5%) and methyleugenol (35.9%), were evaluated against clinically relevant yeasts ( Candida spp., Cryptococcus neoformans and Malassezia furfur ) and moulds ( Aspergillus spp. and dermatophytes). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI). The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration) values against Candida spp., Cryptococcus neoformans , dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast-mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL) and their major compounds in Candida albicans . Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses.
Zhou, Yue; Zhang, Na; Qi, Xiaoqian; Tang, Shan; Sun, Guohui; Zhao, Lijiao; Zhong, Rugang; Peng, Yongzhen
2018-01-01
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2.
Tran, Tung; Chiem, Kevin; Jani, Saumya; Arivett, Brock A; Lin, David L; Lad, Rupali; Jimenez, Verónica; Farone, Mary B; Debevec, Ginamarie; Santos, Radleigh; Giulianotti, Marc; Pinilla, Clemencia; Tolmasky, Marcelo E
2018-05-01
The aminoglycoside, 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most widely distributed enzyme among AAC(6')-I-producing Gram-negative pathogens and confers resistance to clinically relevant aminoglycosides, including amikacin. This enzyme is therefore an ideal target for enzymatic inhibitors that could overcome resistance to aminoglycosides. The search for inhibitors was carried out using mixture-based combinatorial libraries, the scaffold ranking approach, and the positional scanning strategy. A library with high inhibitory activity had pyrrolidine pentamine scaffold and was selected for further analysis. This library contained 738,192 compounds with functionalities derived from 26 different amino acids (R1, R2 and R3) and 42 different carboxylic acids (R4) in four R-group functionalities. The most active compounds all contained S-phenyl (R1 and R3) and S-hydromethyl (R2) functionalities at three locations and differed at the R4 position. The compound containing 3-phenylbutyl at R4 (compound 206) was a robust enzymatic inhibitor in vitro, in combination with amikacin it potentiated the inhibition of growth of three resistant bacteria in culture, and it improved survival when used as treatment of Galleria mellonella infected with aac(6')-Ib-harboring Klebsiella pneumoniae and Acinetobacter baumannii strains. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Zhou, Yue; Zhang, Na; Qi, Xiaoqian; Tang, Shan; Zhao, Lijiao; Zhong, Rugang; Peng, Yongzhen
2018-01-01
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2. PMID:29301250
Goyal, Navin; Mohamed, Khadeeja; Rolfe, Katie; Sahota, Satty; Ernest, Terry; Duparc, Stephan; Taylor, Maxine; Casillas, Linda; Koh, Gavin C K W
2018-06-04
Bioavailability/bioequivalence studies supporting clinical drug development or commercial supply of drug formulations are often time, cost, and resource intensive. The drug's pharmacokinetic (PK) variability, systemic half-life, and safety issues may pose additional challenges. The stable isotope label (SIL) approach provides a useful tool to significantly reduce the study size in clinical PK studies. Tafenoquine (TQ) is an 8-aminoquinoline under development for preventing Plasmodium vivax malaria relapse. This SIL study assessed the impact of differences in the in vitro dissolution profiles on in vivo exposure of TQ tablets. Fourteen healthy volunteers received a single dose of 300 mg TQ Intermediate Aged or 300 mg TQ Control formulations in this single-center, two-arm, randomized, open-label, parallel-group study. Endpoints included the geometric means ratio of the area under the concentration-time curve (AUC (0-t) and AUC (0-∞) ; primary endpoint) and maximum plasma concentration (C max ) for Intermediate Aged versus Control TQ; correlation of PK parameters for venous versus peripheral (via microsample) blood samples; and safety and tolerability endpoints. Geometric mean ratios for PK parameters (AUC and C max ) and their 90% confidence intervals fell well within standard bioequivalence limits (0.80-1.25). Only one mild adverse event (skin abrasion) was reported. In summary, this SIL methodology-based study demonstrates that the observed differences in the in vitro dissolution profiles between the Control and Intermediate Aged TQ tablets have no clinically relevant effect on systemic TQ exposure. The SIL approach was successfully implemented to enable the setting of a clinically relevant dissolution specification. This study (GSK study number 201780) is registered at clinicaltrials.gov with identifier NCT02751294.
Oggioni, Marco R; Coelho, Joana Rosado; Furi, Leonardo; Knight, Daniel R; Viti, Carlo; Orefici, Graziella; Martinez, Jose-Luis; Freitas, Ana Teresa; Coque, Teresa M; Morrissey, Ian
2015-01-01
There is a growing concern by regulatory authorities for the selection of antibiotic resistance caused by the use of biocidal products. We aimed to complete the detailed information on large surveys by investigating the relationship between biocide and antibiotic susceptibility profiles of a large number of Staphylococcus aureus isolates using four biocides and antibiotics commonly used in clinical practice. The minimal inhibitory concentration (MIC) for most clinically-relevant antibiotics was determined according to the standardized methodology for over 1600 clinical S. aureus isolates and compared to susceptibility profiles of benzalkonium chloride, chlorhexidine, triclosan, and sodium hypochlorite. The relationship between antibiotic and biocide susceptibility profiles was evaluated using non-linear correlations. The main outcome evidenced was an absence of any strong or moderate statistically significant correlation when susceptibilities of either triclosan or sodium hypochlorite were compared for any of the tested antibiotics. On the other hand, correlation coefficients for MICs of benzalkonium chloride and chlorhexidine were calculated above 0.4 for susceptibility to quinolones, beta-lactams, and also macrolides. Our data do not support any selective pressure for association between biocides and antibiotics resistance and furthermore do not allow for a defined risk evaluation for some of the compounds. Importantly, our data clearly indicate that there does not involve any risk of selection for antibiotic resistance for the compounds triclosan and sodium hypochlorite. These data hence infer that biocide selection for antibiotic resistance has had so far a less significant impact than feared.
Nutrigenomics in cancer: Revisiting the effects of natural compounds.
Braicu, Cornelia; Mehterov, Nikolay; Vladimirov, Boyan; Sarafian, Victoria; Nabavi, Seyed Mohammad; Atanasov, Atanas G; Berindan-Neagoe, Ioana
2017-10-01
Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Features of Pharmaceutical Compounding in the Republic of Tajikistan.
Alfred-Ugbenbo, D S; Valiev, A H; Zdoryk, O A; Georgiyants, V A
2017-01-01
Despite the deep assortment of finished pharmaceutical products and the reduction in the number of compounding and hospital pharmacies in the Republic of Tajikistan, the need for extemporal medicinal products is still preserved and remains relevant. This article discusses the practice of compounding in the Republic of Tajikistan. History, laws, limits, regulatory institutions, protocols for compounding pharmacy set up, challenges, equipment, extemporaneous formulations, quality control, and storage within regulatory framework are discussed. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
[Ibogaine - structure, influence on human body, clinical relevance].
Zdrojewicz, Zygmunt; Kuszczak, Bartłomiej; Olszak, Natalia
2016-07-29
Ibogaine is a natural chemical compound, which belongs to the indole alkaloid family. It can be naturally found within the root bark of african plant Tabernanthe iboga. Ibogaine plays a significant role among tribal cultures. Ibogaine, in small amount, causes reduction of hunger, thirst and exhaustion. In bigger amount, however, it can cause intensive visions. Other effects include reduction or complete disappearance of absitnence symptoms visible in people addicted to the nicotine, alcohol, methamphetamine, cocaine or opioids, what has been scientifically proven after the tests on animals and small groups of people. After oral application, 80% of ibogaine is subjected to the Odemethylation into noribogaine; main catalyzing enzyme is cytochrome CYP2D6. Research suggests, that ibogaine acts in many places within central nervous system. NMDA receptors seem to play main role in its anti-addiction properties. It is important to mention the side effects of the compound, which are cardiotoxicity and neurotoxicity, what makes it harder to use its beneficial properties. Because of this, Ibogaine is included among the dangerous substance. However, there are a few clinics in the world which specializes in the use of the compound in order to interrupt the sypmtoms acute opioid withdrawal syndrome as well as a substance benficial in curing other addictions. There is more hope with synthetic derivatives of ibogaine, which although are less toxic still keep their anti-addiction properties. The aim is to collect the available knowledge related to the structure and effects on human body of alkaloid Tabernanthe iboga and consider the possibility of commercial medical use. © 2016 MEDPRESS.
Henao-Mejia, Jorge; Góez, Yenny; Patiño, Pablo; Rugeles, Maria T
2006-06-01
Since the human immunodeficiency virus was identified as etiological agent of the acquired immunodeficiency syndrome, great advances have been accomplished in the therapeutic field leading to reduced morbidity and mortality among infected patients. However, the high mutation rate of the viral genome generates strains resistant to multiple drugs, pointing to the importance of finding new therapeutic targets. Among the HIV structural genes, the POL gene codes for three essential enzymes: reverse transcriptase, protease, and integrase; nineteen of the twenty drugs currently approved by the Food and Drug Administration to treat this viral infection, inhibit the reverse transcriptase and the protease. Although intense research has been carried out in this area during the last 10 years, HIV integrase inhibitors are not yet approved for clinical use; however the fact that presence of this enzyme is a sine qua non for a productive HIV life cycle joined to its unique properties makes it a promissory target for anti-HIV therapy. Many compounds have been claimed to inhibit integrase in vitro; however, few of them have proven to have antiviral activity and low cytotoxicity in cell systems. Diketoacid derivatives are the most promising integrase inhibitors so far reported. Initially discovered independently by Shionogi & Co. and the Merck Research Laboratories, these compounds are highly specific for the integrase with potent antiviral activity in vitro and in vivo, and low cytotoxicity in cell cultures. Some of these compounds have recently entered clinical trials. Due to the high relevance of integrase inhibitors, and specifically of diketoacid derivatives, we review the latest findings and patents in this important field of research.
Ameye, Laurent G; Chee, Winnie SS
2006-01-01
The scientific and medical community remains skeptical regarding the efficacy of nutrition for osteoarthritis despite their broad acceptation by patients. In this context, this paper systematically reviews human clinical trials evaluating the effects of nutritional compounds on osteoarthritis. We searched the Medline, Embase, and Biosis databases from their inception to September 2005 using the terms random, double-blind method, trial, study, placebo, and osteoarthritis. We selected all peer-reviewed articles reporting the results of randomised human clinical trials (RCTs) in osteoarthritis that investigated the effects of oral interventions based on natural molecules. Studies on glucosamine and chondroitin sulfate were excluded. The quality of the RCTs was assessed with an osteoarthritic-specific standardised set of 12 criteria and a validated instrument. A best-evidence synthesis was used to categorise the scientific evidence behind each nutritional compound as good, moderate, or limited. A summary of the most relevant in vitro and animal studies is used to shed light on the potential mechanisms of action. Inclusion criteria were met by 53 RCTs out of the 2,026 identified studies. Good evidence was found for avocado soybean unsaponifiables. Moderate evidence was found for methylsulfonylmethane and SKI306X, a cocktail of plant extracts. Limited evidence was found for the Chinese plant extract Duhuo Jisheng Wan, cetyl myristoleate, lipids from green-lipped mussels, and plant extracts from Harpagophytum procumbens. Overall, scientific evidence exists for some specific nutritional interventions to provide symptom relief to osteoarthritic patients. It remains to be investigated whether nutritional compounds can have structure-modifying effects. PMID:16859534
Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic): A Review.
Foroutan-Rad, Masoud; Tappeh, Khosrow Hazrati; Khademvatan, Shahram
2017-01-01
Leishmaniasis is caused by an obligate intracellular protozoa belonging to Leishmania genus. The current drugs for treatment of leishmaniasis possess many disadvantages; therefore, researchers are continuously looking for the more effective and safer drugs. The aim of this study is to review the effectiveness, toxicities, and possible mechanisms of pharmaceutical actions of different garlic extracts and organosulfur compounds isolated from garlic against Leishmania spp. in a variety of in vitro, in vivo and clinical trials reports. All relevant databases were searched using the terms "Allium sativum," "Garlic," "Allicin," "Ajoene," "Leishmania," "in vitro," "in vivo," and "clinical trial," alone or in combination from 5 English databases (Web of Science, PubMed, Science Direct, Scopus, Google Scholar) and 3 Persian databases (Scientific Information Database, Iran Medex, and Magiran) from 1990 to 2014. In summary, garlic with immunomodulatory effects and apoptosis induction contributes to the treatment of leishmaniasis. © The Author(s) 2015.
Novel formulations of taxanes: a review. Old wine in a new bottle?
Hennenfent, K L; Govindan, R
2006-05-01
Over the past two decades, the taxanes have played a significant role in the treatment of various malignancies. However, the poor solubility of these compounds necessitates the inclusion of surfactant vehicles in their commercial formulations. Cremophor EL and polysorbate 80 have long comprised the standard solvent system for paclitaxel and docetaxel, respectively. A number of pharmacologic and biologic effects related to both of these drug formulations have been described, including clinically relevant acute hypersensitivity reactions and peripheral neuropathy. In addition, these solvents affect the disposition of intravenously administered solubilized drugs and leach plasticizers from polyvinylchloride infusion sets. A number of strategies to develop formulations of surfactant-free taxanes have been developed. They include albumin nanoparticles, polyglutamates, taxane analogs and prodrugs, emulsions, and lipsomes. An overview of these novel formulations of taxanes, their mechanisms of action, pharmacokinetics, dose and administration, adverse effects, and clinical efficacy will be discussed.
Gangjee, Aleem; Pavana, Roheeth Kumar; Ihnat, Michael A; Thorpe, Jessica E; Disch, Bryan C; Bastian, Anja; Bailey-Downs, Lora C; Hamel, Ernest; Bai, Rouli
2014-05-08
Antiangiogenic agents (AA) are cytostatic, and their utility in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of vascular endothelial growth factor receptor-2 (VEGFR2) inhibitors with antitubulin agents have been particularly successful. We have discovered a novel, potentially important analogue, that combines potent VEGFR2 inhibitory activity (comparable to that of sunitinib) with potent antitubulin activity (comparable to that of combretastatin A-4 (CA)) in a single molecule, with GI50 values of 10(-7) M across the entire NCI 60 tumor cell panel. It potently inhibited tubulin assembly and circumvented the most clinically relevant tumor resistance mechanisms (P-glycoprotein and β-III tubulin expression) to antimicrotubule agents. The compound is freely water-soluble as its HCl salt and afforded excellent antitumor activity in vivo, superior to docetaxel, sunitinib, or Temozolomide, without any toxicity.
Ferroptosis and Cell Death Analysis by Flow Cytometry.
Chen, Daishi; Eyupoglu, Ilker Y; Savaskan, Nicolai
2017-01-01
Cell death and its recently discovered regulated form ferroptosis are characterized by distinct morphological, electrophysiological, and pharmacological features. In particular ferroptosis can be induced by experimental compounds and clinical drugs (i.e., erastin, sulfasalazine, sorafenib, and artesunate) in various cell types and cancer cells. Pharmacologically, this cell death process can be inhibited by iron chelators and lipid peroxidation inhibitors. Relevance of this specific cell death form has been found in different pathological conditions such as cancer, neurotoxicity, neurodegeneration, and ischemia. Distinguishing cell viability and cell death is essential for experimental and clinical applications and a key component in flow cytometry experiments. Dead cells can compromise the integrity of the data by nonspecific binding of antibodies and dyes. Therefore it is essential that dead cells are robustly and reproducibly identified and characterized by means of cytometry application. Here we describe a procedure to detect and quantify cell death and its specific form ferroptosis based on standard flow cytometry techniques.
β-Lactam Ring Opening: A Useful Entry to Amino Acids and Relevant Nitrogen-Containing Compounds
NASA Astrophysics Data System (ADS)
Palomo, C.; Oiarbide, M.
The main strategies for the ring opening of β-lactams by chemical means are described. The discovery of each approach is put into context, sometimes in connection to processes occurring in biological systems, and the synthetic opportunities each approach offers are shown. Thus, this β-lactam route affords a number of synthetically relevant building-blocks, including α-amino acids, β-amino acids, their derived peptides, and other nitrogen containing heterocycles and open chain molecules. The content, which encompases references to initial work, further major development, and the most relevant recent literature contributions, is categorized according to the ring bond cleavaged (N 1-C 2, C 2-C 3, C 3 -C 4 , N 1-C 4), to finish with ring opening strategies leading to large heterocyclic compounds. Within each category, distinction has been made according to the type of nucleophilic agent employed, principally O-, N-, and C-nucleophiles. Also, a variety of applications of the strategy to the synthesis of interesting target compounds are shown.
Kim, Jonghoon; Kim, Heejun; Park, Seung Bum
2014-10-22
In the search for new therapeutic agents for currently incurable diseases, attention has turned to traditionally "undruggable" targets, and collections of drug-like small molecules with high diversity and quality have become a prerequisite for new breakthroughs. To generate such collections, the diversity-oriented synthesis (DOS) strategy was developed, which aims to populate new chemical space with drug-like compounds containing a high degree of molecular diversity. The resulting DOS-derived libraries have been of great value for the discovery of various bioactive small molecules and therapeutic agents, and thus DOS has emerged as an essential tool in chemical biology and drug discovery. However, the key challenge has become how to design and synthesize drug-like small-molecule libraries with improved biological relevancy as well as maximum molecular diversity. This Perspective presents the development of privileged substructure-based DOS (pDOS), an efficient strategy for the construction of polyheterocyclic compound libraries with high biological relevancy. We envisioned the specific interaction of drug-like small molecules with certain biopolymers via the incorporation of privileged substructures into polyheterocyclic core skeletons. The importance of privileged substructures such as benzopyran, pyrimidine, and oxopiperazine in rigid skeletons was clearly demonstrated through the discovery of bioactive small molecules and the subsequent identification of appropriate target biomolecule using a method called "fluorescence difference in two-dimensional gel electrophoresis". Focusing on examples of pDOS-derived bioactive compounds with exceptional specificity, we discuss the capability of privileged structures to serve as chemical "navigators" toward biologically relevant chemical spaces. We also provide an outlook on chemical biology research and drug discovery using biologically relevant compound libraries constructed by pDOS, biology-oriented synthesis, or natural product-inspired DOS.
Alzheimer disease therapy--moving from amyloid-β to tau.
Giacobini, Ezio; Gold, Gabriel
2013-12-01
Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis--which places amyloid plaques at the heart of AD pathogenesis--does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.
HEALTH EFFECTS ASSESSMENT FOR VANADIUM AND COMPOUNDS
The report summarizes and evaluates information relevant to a preliminary interim assessment of adverse health effects associated with specific chemicals or compounds. The Office of Emergency and Remedial Response (Superfund) uses these documents in preparing cost-benefit analyse...
Toxicogenomics in the 3T3-L1 cell line, a new approach for screening of obesogenic compounds.
Pereira-Fernandes, Anna; Vanparys, Caroline; Vergauwen, Lucia; Knapen, Dries; Jorens, Philippe Germaines; Blust, Ronny
2014-08-01
The obesogen hypothesis states that together with an energy imbalance between calories consumed and calories expended, exposure to environmental compounds early in life or throughout lifetime might have an influence on obesity development. In this work, we propose a new approach for obesogen screening, i.e., the use of transcriptomics in the 3T3-L1 pre-adipocyte cell line. Based on the data from a previous study of our group using a lipid accumulation based adipocyte differentiation assay, several human-relevant obesogenic compounds were selected: reference obesogens (Rosiglitazone, Tributyltin), test obesogens (Butylbenzyl phthalate, butylparaben, propylparaben, Bisphenol A), and non-obesogens (Ethylene Brassylate, Bis (2-ethylhexyl)phthalate). The high stability and reproducibility of the 3T3-L1 gene transcription patterns over different experiments and cell batches is demonstrated by this study. Obesogens and non-obesogen gene transcription profiles were clearly distinguished using hierarchical clustering. Furthermore, a gradual distinction corresponding to differences in induction of lipid accumulation could be made between test and reference obesogens based on transcription patterns, indicating the potential use of this strategy for classification of obesogens. Marker genes that are able to distinguish between non, test, and reference obesogens were identified. Well-known genes involved in adipocyte differentiation as well as genes with unknown functions were selected, implying a potential adipocyte-related function of the latter. Cell-physiological lipid accumulation was well estimated based on transcription levels of the marker genes, indicating the biological relevance of omics data. In conclusion, this study shows the high relevance and reproducibility of this 3T3-L1 based in vitro toxicogenomics tool for classification of obesogens and biomarker discovery. Although the results presented here are promising, further confirmation of the predictive value of the set of candidate biomarkers identified as well as the validation of their clinical role will be needed. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The ToxCast program has generated a great wealth of in vitro high throughput screening (HTS) data on a large number of compounds, providing a unique resource of information on the bioactivity of these compounds. However, analysis of these data are ongoing, and interpretation and ...
Genome-wide identification of the mechanism of action (MoA) of small-molecule compounds characterizing their targets, effectors, and activity modulators represents a highly relevant yet elusive goal, with critical implications for assessment of compound efficacy and toxicity. Current approaches are labor intensive and mostly limited to elucidating high-affinity binding target proteins.
Publications in anesthesia journals: quality and clinical relevance.
Lauritsen, Jakob; Moller, Ann M
2004-11-01
Clinicians performing evidence-based anesthesia rely on anesthesia journals for clinically relevant information. The objective of this study was to analyze the proportion of clinically relevant articles in five high impact anesthesia journals. We evaluated all articles published in Anesthesiology, Anesthesia & Analgesia, British Journal of Anesthesia, Anesthesia, and Acta Anaesthesiologica Scandinavica from January to June, 2000. Articles were assessed and classified according to type, outcome, and design; 1379 articles consisting of 5468 pages were evaluated and categorized. The most common types of article were animal and laboratory research (31.2%) and randomized clinical trial (20.4%). A clinically relevant article was defined as an article that used a statistically valid method and had a clinically relevant end-point. Altogether 18.6% of the pages had as their subject matter clinically relevant trials. We compared the Journal Impact Factor (a measure of the number of citations per article in a journal) and the proportion of clinically relevant pages and found that they were inversely proportional to each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, Casey C.; Palani, Anandan; Chang, Wei
Studies directed at developing a broadly acting non-nucleoside inhibitor of HCV NS5B led to the discovery of a novel structural class of 5-aryl benzofurans that simultaneously interact with both the palm I and palm II binding regions. An initial candidate was potent in vitro against HCV GT1a and GT1b replicons, and induced multi-log reductions in HCV viral load when orally dosed to chronic GT1 infected chimpanzees. However, in vitro potency losses against clinically relevant GT1a variants prompted a further effort to develop compounds with sustained potency across a broader array of HCV genotypes and mutants. Ultimately, a biology and medicinalmore » chemistry collaboration led to the discovery of the development candidate MK-8876. MK-8876 demonstrated a pan-genotypic potency profile and maintained potency against clinically relevant mutants. It demonstrated moderate bioavailability in rats and dogs, but showed low plasma clearance characteristics consistent with once-daily dosing. Herein we describe the efforts which led to the discovery of MK-8876, which advanced into Phase 1 monotherapy studies for evaluation and characterization as a component of an all-oral direct-acting drug regimen for the treatment of chronic HCV infection.« less
Mitochondrial Targets for Pharmacological Intervention in Human Disease
2015-01-01
Over the past several years, mitochondrial dysfunction has been linked to an increasing number of human illnesses, making mitochondrial proteins (MPs) an ever more appealing target for therapeutic intervention. With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs) having known interactions with small molecules, MPs appear to be highly targetable. Yet, despite these targeted proteins functioning in a range of biological processes (including induction of apoptosis, calcium homeostasis, and metabolism), very few of the compounds targeting MPs find clinical use. Recent work has greatly expanded the number of proteins known to localize to the mitochondria and has generated a considerable increase in MP 3D structures available in public databases, allowing experimental screening and in silico prediction of mitochondrial drug targets on an unprecedented scale. Here, we summarize the current literature on clinically active drugs that target MPs, with a focus on how existing drug targets are distributed across biochemical pathways and organelle substructures. Also, we examine current strategies for mitochondrial drug discovery, focusing on genetic, proteomic, and chemogenomic assays, and relevant model systems. As cell models and screening techniques improve, MPs appear poised to emerge as relevant targets for a wide range of complex human diseases, an eventuality that can be expedited through systematic analysis of MP function. PMID:25367773
Henrotin, Y; Lambert, C; Couchourel, D; Ripoll, C; Chiotelli, E
2011-01-01
The aim of this first global systematic review on selected nutraceuticals was to synthesize and evaluate scientific relevant data available in the literature. Evidences that can support health, physiological or functional benefit on osteoarthritis (OA) were gathered and the level of evidence relative to each of these ingredients was highlighted. Relevant scientific data (positive or not) regarding OA were searched for five groups of compounds (avocado/soybean unsaponifiables (ASU), n-3 polyunsaturated fatty acids, collagen hydrosylates (CHs), vitamin D, polyphenols) within preclinical (in vitro and in vivo), epidemiological, and clinical studies. The following criteria were evaluated to assess the methodology quality of each study: (1) study question; (2) study population; (3) primary endpoint; (4) study design (randomization, control, blinding, duration of follow up); (5) data analysis and interpretation. A scientific consensus was determined for all studied nutraceuticals to evaluate their efficacy in OA. The studied compounds demonstrated different potencies in preclinical studies. Most of them have demonstrated anti-catabolic and anti-inflammatory effects by various inhibitory activities on different mediators. Vitamin D showed a pro-catabolic effect in vitro and the polyphenol, Genistein, had only anti-inflammatory potency. The evaluation of the clinical data showed that ASU was the only one of the studied ingredients to present a good evidence of efficacy, but the efficient formulation was considered as a drug in some countries. Pycnogenol showed moderate evidence of efficacy, and vitamin D and collagen hydrolysate demonstrated a suggestive evidence of efficacy, whereas curcumin, epigallocatechin-3-gallate (EGCG) and resveratrol had only preclinical evidence of efficacy due to the lack of clinical data. The literature gathered for n-3 PUFA, nobiletin and genistein was insufficient to conclude for their efficacy in OA. Additional data are needed for most of the studied nutraceuticals. Studies of good quality are needed to draw solid conclusions regarding their efficacy but nutraceuticals could represent good alternates for OA management. Their use should be driven by any recommendations. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kelly, Patrick M; Keely, Niall O; Bright, Sandra A; Yassin, Bassem; Ana, Gloria; Fayne, Darren; Zisterer, Daniela M; Meegan, Mary J
2017-08-31
Nuclear receptors such as the estrogen receptors (ERα and ERβ) modulate the effects of the estrogen hormones and are important targets for design of innovative chemotherapeutic agents for diseases such as breast cancer and osteoporosis. Conjugate and bifunctional compounds which incorporate an ER ligand offer a useful method of delivering cytotoxic drugs to tissue sites such as breast cancers which express ERs. A series of novel conjugate molecules incorporating both the ER ligands endoxifen and cyclofenil-endoxifen hybrids covalently linked to the antimitotic and tubulin targeting agent combretastatin A-4 were synthesised and evaluated as ER ligands. A number of these compounds demonstrated pro-apoptotic effects, with potent antiproliferative activity in ER-positive MCF-7 breast cancer cell lines and low cytotoxicity. These conjugates displayed binding affinity towards ERα and ERβ isoforms at nanomolar concentrations e.g., the cyclofenil-amide compound 13e is a promising lead compound of a clinically relevant ER conjugate with IC 50 in MCF-7 cells of 187 nM, and binding affinity to ERα (IC 50 = 19 nM) and ERβ (IC 50 = 229 nM) while the endoxifen conjugate 16b demonstrates antiproliferative activity in MCF-7 cells (IC 50 = 5.7 nM) and binding affinity to ERα (IC 50 = 15 nM) and ERβ (IC 50 = 115 nM). The ER binding effects are rationalised in a molecular modelling study in which the disruption of the ER helix-12 in the presence of compounds 11e , 13e and 16b is presented These conjugate compounds have potential application for further development as antineoplastic agents in the treatment of ER positive breast cancers.
Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates.
Cabrera-Benítez, Nuria E; Pérez-Roth, Eduardo; Ramos-Nuez, Ángela; Sologuren, Ithaisa; Padrón, José M; Slutsky, Arthur S; Villar, Jesús
2016-06-01
Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.
Sesquiterpene Lactones from Gynoxys verrucosa and their Anti-MRSA Activity
Ordóñez, Paola E.; Quave, Cassandra L.; Reynolds, William F.; Varughese, Kottayil I.; Berry, Brian; Breen, Philip J.; Malagón, Omar; Smeltzer, Mark S.; Compadre, Cesar M.
2011-01-01
Ethnopharmacological relevance Because of its virulence and antibiotic resistance, Staphylococcus aureus is a more formidable pathogen now than at any time since the pre-antibiotic era. In an effort to identify and develop novel antimicrobial agents with activity against this pathogen, we have examined Gynoxys verrucosa Wedd (Asteraceae), an herb used in traditional medicine in southern Ecuador for the treatment and healing of wounds. Materials and Methods The sesquiterpene lactones leucodine (1) and dehydroleucodine (2) were extracted and purified from the aerial parts of G. verrucosa, and their structure was elucidated by spectroscopic methods and single-crystal X-ray analysis. The in vitro anti-microbial activity of G. verrucosa extracts and its purified constituents was determined against six clinical isolates including S. aureus and Staphylococcus epidermidis strains with different drug-resistance profiles, using the microtiter broth method. Results Compound 1 has very low activity, while compound 2 has moderate activity with MIC50s between 49 and195 μg/mL. The extract of G. verrucosa has weak activity with MIC50s between 908 and 3290 μg/mL. Conclusions We are reporting the full assignment of the 1H-NMR and 13C-NMR of both compounds, and the crystal structure of compound 2, for the first time. Moreover, the fact that compound 2 has antimicrobial activity and compound 1 does not, demonstrates that the exocyclic conjugated methylene in the lactone ring is essential for the antimicrobial activity of these sesquiterpene lactones. However, the weak activity observed for the plants extracts, does not explain the use of G. verrucosa in traditional medicine for the treatment of wounds and skin infections. PMID:21782013
Risinger, April L; Jackson, Evelyn M; Polin, Lisa A; Helms, Gregory L; LeBoeuf, Desiree A; Joe, Patrick A; Hopper-Borge, Elizabeth; Ludueña, Richard F; Kruh, Gary D; Mooberry, Susan L
2008-11-01
The taccalonolides are a class of structurally and mechanistically distinct microtubule-stabilizing agents isolated from Tacca chantrieri. A crucial feature of the taxane family of microtubule stabilizers is their susceptibility to cellular resistance mechanisms including overexpression of P-glycoprotein (Pgp), multidrug resistance protein 7 (MRP7), and the betaIII isotype of tubulin. The ability of four taccalonolides, A, E, B, and N, to circumvent these multidrug resistance mechanisms was studied. Taccalonolides A, E, B, and N were effective in vitro against cell lines that overexpress Pgp and MRP7. In addition, taccalonolides A and E were highly active in vivo against a doxorubicin- and paclitaxel-resistant Pgp-expressing tumor, Mam17/ADR. An isogenic HeLa-derived cell line that expresses the betaIII isotype of tubulin was generated to evaluate the effect of betaIII-tubulin on drug sensitivity. When compared with parental HeLa cells, the betaIII-tubulin-overexpressing cell line was less sensitive to paclitaxel, docetaxel, epothilone B, and vinblastine. In striking contrast, the betaIII-tubulin-overexpressing cell line showed greater sensitivity to all four taccalonolides. These data cumulatively suggest that the taccalonolides have advantages over the taxanes in their ability to circumvent multiple drug resistance mechanisms. The ability of the taccalonolides to overcome clinically relevant mechanisms of drug resistance in vitro and in vivo confirms that the taccalonolides represent a valuable addition to the family of microtubule-stabilizing compounds with clinical potential.
Herold, Karl F.; Sanford, R. Lea; Lee, William; Andersen, Olaf S.; Hemmings, Hugh C.
2017-01-01
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10–100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions. PMID:28265069
Method for measuring changes in light absorption of highly scattering media
Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.
2002-01-01
The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.
Pasireotide in the treatment of neuroendocrine tumors: a review of the literature.
Vitale, Giovanni; Dicitore, Alessandra; Sciammarella, Concetta; Di Molfetta, Sergio; Rubino, Manila; Faggiano, Antongiulio; Colao, Annamaria
2018-06-01
Somatostatin analogs have an important role in the medical therapy of neuroendocrine tumors (NETs). Octreotide and lanreotide, both somatostatin analogs binding with high affinity for the somatostatin receptor (SSTR)2, can control symptoms in functional NETs. In addition, these compounds, because of their antiproliferative effects, can stabilize growth of well-differentiated NETs. Pasireotide is a novel multireceptor-targeted somatostatin analog with high affinity for SSTR1, 2, 3, and 5. This review provides an overview of the state of the art of pasireotide in the treatment of NETs, with the aim of addressing clinical relevance and future perspectives for this molecule in the management of NETs. © 2018 Society for Endocrinology.
Valdivieso, Elizabeth; Mejías, Fabiola; Torrealba, Carlos; Benaim, Gustavo; Kouznetsov, Vladimir V; Sojo, Felipe; Rojas-Ruiz, Fernando A; Arvelo, Francisco; Dagger, Francehuli
2018-07-01
The present study evaluates in vitro the effect of two synthetic compounds of the 7-chloro-4-aryloxyquinoline series, QI (C 17 H 12 ClNO 3 ) and QII (C 18 H 15 ClN 4 O 2 S), on Leishmania donovani parasites. The results obtained demonstrate that these compounds are able to inhibit the proliferation of L. donovani promastigotes in a dose-dependent way (QI IC 50 = 13.03 ± 3.4 and QII IC 50 = 7.90 ± 0.6 μM). Likewise, these compounds significantly reduced the percentage of macrophage infection by amastigotesand the number of amastigotes within macrophage phagolysosomes, the clinical relevant phase of these parasites. Compound QI showed an IC 50 value of 0.66 ± 0.2 μM, while for derivative QII, the corresponding IC 50 was 1.02 ± 0.17 μM. Interestingly, the amastigotes were more susceptible to the drug treatment when compared to promastigotes. Furthermore, no cytotoxic effect of these compounds was observed on the macrophage cell line at the concentrations tested. The combination of these compounds with miltefosine and amphotericin B on both parasite morphotypes was evaluated. The isobolograms showed a synergistic effect for both combinations; with a Fractional Inhibitory Concentration (FIC) Index lower than 1 for promastigotes and less than 0.3 for intracellular amastigotes. The effect of QI and QII on mitochondrial membrane potential was also studied. The combination of quinolone derivatives compounds with miltefosine and amphotericin B showed 5-8-fold stronger depolarization of membrane mitochondrial potential when compared to drugs alone. The present work validates the combination of drugs as an effective alternative to potentiate the action of anti-Leishmania agents and points to the quinoline compounds studied here as possible leishmanicidal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
McAughey, John; Shepperd, Christopher J.
2013-01-01
Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10−5 Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10−7 Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker. PMID:23742081
Bech, Christine Flagstad; Frederiksen, Tine; Villesen, Christine Tilsted; Højsted, Jette; Nielsen, Per Rotbøll; Kjeldsen, Lene Juel; Nørgaard, Lotte Stig; Christrup, Lona Louring
2018-02-01
Background Disagreement among healthcare professionals on the clinical relevance of drug-related problems can lead to suboptimal treatment and increased healthcare costs. Elderly patients with chronic non-cancer pain and comorbidity are at increased risk of drug related problems compared to other patient groups due to complex medication regimes and transition of care. Objective To investigate the agreement among healthcare professionals on their classification of clinical relevance of drug-related problems in elderly patients with chronic non-cancer pain and comorbidity. Setting Multidisciplinary Pain Centre, Rigshospitalet, Copenhagen, Denmark. Method A pharmacist performed medication review on elderly patients with chronic non-cancer pain and comorbidity, identified their drug-related problems and classified these problems in accordance with an existing categorization system. A five-member clinical panel rated the drug-related problems' clinical relevance in accordance with a five-level rating scale, and their agreement was compared using Fleiss' κ. Main outcome measure Healthcare professionals' agreement on clinical relevance of drug related problems, using Fleiss' κ. Results Thirty patients were included in the study. A total of 162 drug related problems were identified, out of which 54% were of lower clinical relevance (level 0-2) and 46% of higher clinical relevance (level 3-4). Only slight agreement (κ = 0.12) was found between the panellists' classifications of clinical relevance using a five-level rating scale. Conclusion The clinical pharmacist identified drug related problems of lower and higher clinical relevance. Poor overall agreement on the severity of the drug related problems was found among the panelists.
CASE STUDY ON AN IPILIMUMAB COST-CONTAINMENT STRATEGY IN AN ITALIAN HOSPITAL.
Russi, Alberto; Chiarion-Sileni, Vanna; Damuzzo, Vera; Di Sarra, Francesca; Pigozzo, Jacopo; Palozzo, Angelo Claudio
2017-01-01
Ipilimumab is the first licensed immune checkpoint inhibitor for treatment of melanoma. The promising results of the registration clinical study need confirmation in real practice and its clinical success comes together with a relevant budget impact due to the high price of this drug. The aim of this work is to describe a new model of economical sustainability of ipilimumab developed in an Italian reference center for melanoma treatment. This retrospective, observational, and monocentric study was carried out at the Veneto Institute of Oncology. Ipilimumab was administered to fifty-seven patients with advanced melanoma. Overall survival, progression free survival, and toxicity were evaluated. A local management procedure was evaluated together with the cost-saving strategies implemented by the Italian Medicines Agency (AIFA). We demonstrated that the use of ipilimumab for metastatic melanoma in real practice had an efficacy and toxicity similar to that reported in the literature. In this scenario, our management model (centralization of compounding + drug-day) permitted savings up to the 11.1 percent of the gross cost for the drug (calculated assuming that no cost saving procedures were applied) while the policy of cost containment designed by AIFA produced an additional 6.2 percent of savings. In real practice conditions, the centralized administration of ipilimumab allows to replicate the results of clinical studies and in the meantime to contain the cost associated with this drug. The local strategy of management can be readily applied to most of the high cost drugs compounded in the hospital pharmacy. Impact of findings on practice: (i) We describe a new model of economic sustainability (drug-day, centralization of compounding, payback systems) of an expensive and innovative drug, ipilimumab, for treatment of melanoma within an Italian cancer center. (ii) This pivotal study demonstrated that a cost containment strategy is feasible and it needs the cooperation of all healthcare providers (oncologists, pharmacists, nurses, and technicians) to guarantee the full efficiency of the process.
Li, Guanhong; Cai, Linli; Jiang, Hongli; Dong, Shoujin; Fan, Tao; Liu, Wei; Xie, Li; Mao, Bing
2015-01-01
The common cold is one of the most frequent acute illnesses of the respiratory tract, affecting all age groups. The compound formulas of traditional Chinese medicine (TCM) are frequently used to treat the common cold in China and other parts of the world. Until now, however, the efficacy and safety of compound formulas of TCM for the common cold, studied in comparison with placebos, have not been systematically reviewed. This literature review intended to assess existing evidence of the effectiveness and safety of compound formulas of TCM for the common cold. Randomized, controlled trials (RCTs) comparing compound formulas of TCM with placebos in treating the common cold were included, regardless of publication status. The research team searched the Cochrane Library, PubMed, Embase, the Chinese Biomedical Literature Database, the Chinese Scientific and Technological Periodical Database, the Chinese National Knowledge Infrastructure and the Wangfang Database from their inceptions to December 2013. The team also searched Web sites listing ongoing trials and contacted experts in the field and relevant pharmaceutical companies to locate unpublished materials. Two review authors independently extracted data and assessed the methodological quality of included studies, using the Cochrane risk of bias tool. A total of 6 randomized, double-blind, placebo-controlled trials involving 1502 participants were included. Most trials had a low risk of bias. Five were conducted in mainland China and 1 in Hong Kong; 5 were multicenter clinical trials and 1 was a single-center trial; 4 were published in Chinese and 2 were published in English. Compound formulas of TCM were superior to placebos in reducing disease symptoms, inducing recovery from a TCM syndrome, and increasing quality of life. In addition, the formulas were superior in shortening the duration of the main symptoms, the amount of time for a decline in temperature of at least 0.5°C to occur, and the duration of any fever. The team did not perform a summary meta-analysis due to clinical heterogeneity. No serious adverse event (AE) occurred in either the treatment or the control groups. This systematic review indicated that compound formulas of TCM, compared with placebo, can provide benefits to patients with the common cold, with no serious side effects having been identified in the included trials. However, due to the small number of included studies and of participants and the unclear risk of some biases in the included studies, more high-quality, large-scale RCTs are still warranted to clarify fully the effectiveness and safety of compound formulas of TCM in treating the common cold.
The Survival of Meteorite Organic Compounds with Increasing Impact Pressure
NASA Technical Reports Server (NTRS)
Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.
Trenkwalder, Teresa; Lahmann, Anna Lena; Nowicka, Magdalena; Pellegrini, Costanza; Rheude, Tobias; Mayr, N Patrick; Voss, Stephanie; Bleiziffer, Sabine; Lange, Rüdiger; Joner, Michael; Kasel, Albert M; Kastrati, Adnan; Schunkert, Heribert; Husser, Oliver; Hadamitzky, Martin; Hengstenberg, Christian
2018-02-21
Multislice computed tomography (MSCT) has emerged as the mainstay in patients planned for transcatheter aortic valve implantation (TAVI). Incidental findings (IF) in MSCT are common. However, the exact incidence, clinical relevance and further consequences of IF are unclear and it is controversial whether IF adversely affect patients' outcome. We analyzed MSCT data of 1050 patients screened for TAVI between January 2011 and December 2014. Median follow-up of patients was 20 months. In total, 3194 IF were identified, which were classified into clinically non-relevant IF (2872, 90%) and clinically relevant IF (322, 10%). In 25% of patients (258/1050) at least one clinically relevant IF was present. Age (80 ± 7 vs. 80 ± 7 years; p = 0.198) and EuroSCORE II (3.6% [2.1-5.7] vs. 3.6% [2.1-5.9]; p = 0.874) was similar between patients with and without a clinically relevant IF. TAVI was performed less frequently in patients with a clinically relevant IF (76% vs. 85%; p < 0.001), with more patients receiving surgical aortic valve replacement in that group (14% vs. 11%; p = 0.042), possibly due to the high rate of incidental aneurysms of the ascending aorta (n = 48). If TAVI was performed mortality did not differ (30-days: 4% vs. 3%; p = 0.339, 1-year: 11% vs. 14%; p = 0.226) between patients with and without a clinically relevant IF. Our study is the largest study to analyze prevalence, clinical relevance and therapeutic consequences of IF during screening for TAVI. IF in pre-procedural MSCT are common and clinically relevant in one-quarter of patients. However, these findings had no impact on overall mortality.
Yu, Lingjun; Su, Wei; Fey, Paul D; Liu, Fengquan; Du, Liangcheng
2018-01-19
The cyclic lipodepsipeptides WAP-8294A are antibiotics with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). One member of this family, WAP-8294A2 (Lotilibcin), was in clinical trials due to its high activity and distinct chemistry. However, WAP-8294A compounds are produced in a very low yield by Lysobacter and only under very stringent conditions. Improving WAP-8294A yield has become very critical for research and application of these anti-MRSA compounds. Here, we report a strategy to increase WAP-8294A production. We first used the CRISPR/dCas9 system to increase the expression of five cotranscribed genes (orf1-5) in the WAP gene cluster, by fusing the omega subunit of RNA polymerase with dCas9 that targets the operon's promoter region. This led to the transcription of the genes increased by 5-48 folds in strain dCas9-ω3. We then refactored four putative self-protection genes (orf6, orf7, orf9 and orf10) by reorganizing them into an operon under the control of a strong Lysobacter promoter, P HSAF . The refactored operon was introduced into strain dCas9-ω3, and the transcription of the self-protection genes increased by 20-60 folds in the resultant engineered strains. The yield of the three main WAP-8294A compounds, WAP-8294A1, WAP-8294A2, and WAP-8294A4, increased by 6, 4, and 9 folds, respectively, in the engineered strains. The data also showed that the yield increase of WAP-8294A compounds was mainly due to the increase of the extracellular distribution. WAP-8294A2 exhibited potent (MIC 0.2-0.8 μg/mL) and specific activity against S. aureus among a battery of clinically relevant Gram-positive pathogens (54 isolates).
Moradi-Afrapoli, Fahimeh; Ebrahimi, Samad Nejad; Smiesko, Martin; Hamburger, Matthias
2017-05-26
Gamma-aminobutyric acid type A (GABA A ) receptors are major inhibitory neurotransmitter receptors in the central nervous system and a target for numerous clinically important drugs used to treat anxiety, insomnia, and epilepsy. A series of allosteric GABA A receptor agonists was identified previously with the aid of HPLC-based activity profiling, whereby activity was tracked with an electrophysiological assay in Xenopus laevis oocytes. To accelerate the discovery process, an approach has been established for HPLC-based profiling using a larval zebrafish (Danio rerio) seizure model induced by pentylenetetrazol (PTZ), a pro-convulsant GABA A receptor antagonist. The assay was validated with the aid of representative GABAergic plant compounds and extracts. Various parameters that are relevant for the quality of results obtained, including PTZ concentration, the number of larvae, the incubation time, and the data analysis protocol, were optimized. The assay was then translated into an HPLC profiling protocol, and active compounds were tracked in extracts of Valeriana officinalis and Magnolia officinalis. For selected compounds the effects in the zebrafish larvae model were compared with data from in silico blood-brain barrier (BBB) permeability predictions, to validate the use for discovery of BBB-permeable natural products.
Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián
2016-01-01
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420
Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications
2015-01-01
Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574
Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy.
Zhang, Jin; Wang, Guan; Zhou, Yuxin; Chen, Yi; Ouyang, Liang; Liu, Bo
2018-05-01
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Harris, Kate; Aylott, Mike; Cui, Yi; Louttit, James B; McMahon, Nicholas C; Sridhar, Arun
2013-08-01
Human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are a potential source to develop assays for predictive electrophysiological safety screening. Published studies show that the relevant physiology and pharmacology exist but does not show the translation between stem cell cardiomyocyte assays and other preclinical safety screening assays, which is crucial for drug discovery and safety scientists and the regulators. Our studies are the first to show the pharmacology of ion channel blockade and compare them with existing functional cardiac electrophysiology studies. Ten compounds (a mixture of pure hERG [E-4031 and Cisapride], hERG and sodium [Flecainide, Mexiletine, Quinidine, and Terfenadine], calcium channel blockers [Nifedipine and Verapamil], and two proprietary compounds [GSK A and B]) were tested, and results from hiPSC-CMs studied on multielectrode arrays (MEA) were compared with other preclincial models and clinical drug concentrations and effects using integrated risk assessment plots. All ion channel blockers produced (1) functional effects on repolarization and depolarization around the IC25 and IC50 values and (2) excessive blockade of hERG and/or blockade of sodium current precipitated arrhythmias. Our MEA data show that hiPSC-CMs demonstrate relevant pharmacology and show excellent correlations to current functional cardiac electrophysiological studies. Based on these results, MEA assays using iPSC-CMs offer a reliable, cost effective, and surrogate to preclinical in vitro testing, in addition to the 3Rs (refine, reduce, and replace animals in research) benefit.
MDPV and α-PVP use in humans: The twisted sisters.
Karila, Laurent; Lafaye, Geneviève; Scocard, Amandine; Cottencin, Olivier; Benyamina, Amine
2018-05-15
The new psychoactive substances phenomenon continues to represent a considerable public health challenge. Synthetic cathinones are β-keto amphetamine analogues, also known as legal highs, research chemicals, bath salts. These drugs have surfaced as a popular alternative to other illicit drugs of abuse, such as cocaine, MDMA, and methamphetamine, due to their potent psychostimulant and empathogenic effects. Pyrovalerone cathinones (a-pyrrolidinophenones) form a distinct group of designer cathinones, such as MDPV. After being listed as an illegal product, "second generation" compounds such as α-PVP, sharing a very similar chemical structure with MDPV, were developed. Clinical effects of these compounds are individual, dose- and route of administration-dependent. Both of them have been involved in an increased number of, not only acute intoxications but also fatalities over the past few years, raising concerns in the medical field. In this paper, we will review the available data regarding the use and effects of MDPV and α-PVP in humans in order to highlight their impact on public health. Health actors and general population need to be clearly informed of potential risks and consequences of these 2 novel psychoactive substances spread and use. The literature search conducted led to the identification of potentially 83 relevant articles. All articles were screened from their abstracts to determine their relevance in the framework of the current review. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten
2015-04-01
One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148. Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.F. (2009): Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2, 479-483. Pöschl, U. (2003): Aerosol particle analysis: challanges and progress. Analytical and Bioanalytical Chemistry, 375, 30-32.
Andreol, Federico; Barbosa, Arménio Jorge Moura; Daniele Parenti, Marco; Rio, Alberto Del
2013-01-01
Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails are also likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of small-molecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives. PMID:23016851
Antidiabetic Properties of Germinated Brown Rice: A Systematic Review
Bhanger, Muhammad Iqbal; Ismail, Norsharina; Ismail, Maznah
2012-01-01
Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR) for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA), γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease. PMID:23304216
Harrill, Alison H; Desmet, Kristina D; Wolf, Kristina K; Bridges, Arlene S; Eaddy, J Scott; Kurtz, C Lisa; Hall, J Ed; Paine, Mary F; Tidwell, Richard R; Watkins, Paul B
2012-12-01
DB289 is the first oral drug shown in clinical trials to have efficacy in treating African trypanosomiasis (African sleeping sickness). Mild liver toxicity was noted but was not treatment limiting. However, development of DB289 was terminated when several treated subjects developed severe kidney injury, a liability not predicted from preclinical testing. We tested the hypothesis that the kidney safety liability of DB289 would be detected in a mouse diversity panel (MDP) comprised of 34 genetically diverse inbred mouse strains. MDP mice received 10 days of oral treatment with DB289 or vehicle and classical renal biomarkers blood urea nitrogen (BUN) and serum creatinine (sCr), as well as urine biomarkers of kidney injury were measured. While BUN and sCr remained within reference ranges, marked elevations were observed for kidney injury molecule-1 (KIM-1) in the urine of sensitive mouse strains. KIM-1 elevations were not always coincident with elevations in alanine aminotransferase (ALT), suggesting that renal injury was not linked to hepatic injury. Genome-wide association analyses of KIM-1 elevations indicated that genes participating in cholesterol and lipid biosynthesis and transport, oxidative stress, and cytokine release may play a role in DB289 renal injury. Taken together, the data resulting from this study highlight the utility of using an MDP to predict clinically relevant toxicities, to identify relevant toxicity biomarkers that may translate into the clinic, and to identify potential mechanisms underlying toxicities. In addition, the sensitive mouse strains identified in this study may be useful in screening next-in-class compounds for renal injury.
Contextual modulation of attention in human category learning.
George, David N; Kruschke, John K
2012-12-01
In a category-learning experiment, we assessed whether participants were able to selectively attend to different components of a compound stimulus in two distinct contexts. The participants were presented with stimulus compounds for which they had to learn categorical labels. Each compound comprised one feature from each of two dimensions, and on different trials the compound was presented in two contexts, X and Y. In Context X, Dimension A was relevant to the solution of the categorization task and Dimension B was irrelevant, whereas in Context Y, Dimension A was irrelevant and Dimension B was relevant. The results of transfer tests to novel stimuli suggested that people learned to attend selectively to Dimension A in Context X and Dimension B in Context Y. These findings contribute to the growing body of evidence that people can learn to selectively attend to particular dimensions of stimuli dependent on the context in which the stimuli are presented. Furthermore, the findings demonstrate that context-dependent changes in attention transfer to other categorization tasks involving novel stimuli.
Charting Biologically Relevant Spirocyclic Compound Space.
Müller, Gerhard; Berkenbosch, Tim; Benningshof, Jorg C J; Stumpfe, Dagmar; Bajorath, Jürgen
2017-01-12
Spirocycles frequently occur in natural products and experience increasing interest in drug discovery, given their richness in sp 3 centers and distinct three-dimensionality. We have systematically explored chemical space populated with currently available bioactive spirocycles. Compounds containing spiro systems were classified and their scaffolds and spirocyclic ring combinations analyzed. Nearly 47 000 compounds were identified that contained spirocycles in different structural contexts and were active against roughly 200 targets, among which several pharmaceutically relevant members of the G protein-coupled receptor (GPCR) family were identified. Spirocycles and corresponding compounds displayed notable scaffold diversity but contained only limited numbers of combinations of differently sized rings. These observations indicate that there should be significant potential to further expand spirocyclic chemical space for drug discovery, exploiting the privileged substructure concept. Inspired by those findings, we embarked on the design and chemical synthesis of three distinct novel spirocyclic scaffolds that qualify for downstream library synthesis, thus exploring principally new chemical space with high potential for pharmaceutical research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lim, Maria A; Louie, Brenton; Ford, Daniel; Heath, Kyle; Cha, Paulyn; Betts-Lacroix, Joe; Lum, Pek Yee; Robertson, Timothy L; Schaevitz, Laura
2017-01-01
Despite a broad spectrum of anti-arthritic drugs currently on the market, there is a constant demand to develop improved therapeutic agents. Efficient compound screening and rapid evaluation of treatment efficacy in animal models of rheumatoid arthritis (RA) can accelerate the development of clinical candidates. Compound screening by evaluation of disease phenotypes in animal models facilitates preclinical research by enhancing understanding of human pathophysiology; however, there is still a continuous need to improve methods for evaluating disease. Current clinical assessment methods are challenged by the subjective nature of scoring-based methods, time-consuming longitudinal experiments, and the requirement for better functional readouts with relevance to human disease. To address these needs, we developed a low-touch, digital platform for phenotyping preclinical rodent models of disease. As a proof-of-concept, we utilized the rat collagen-induced arthritis (CIA) model of RA and developed the Digital Arthritis Index (DAI), an objective and automated behavioral metric that does not require human-animal interaction during the measurement and calculation of disease parameters. The DAI detected the development of arthritis similar to standard in vivo methods, including ankle joint measurements and arthritis scores, as well as demonstrated a positive correlation to ankle joint histopathology. The DAI also determined responses to multiple standard-of-care (SOC) treatments and nine repurposed compounds predicted by the SMarTR TM Engine to have varying degrees of impact on RA. The disease profiles generated by the DAI complemented those generated by standard methods. The DAI is a highly reproducible and automated approach that can be used in-conjunction with standard methods for detecting RA disease progression and conducting phenotypic drug screens.
Pharmacological Inhibitors of NAD Biosynthesis as Potential An ticancer Agents.
Lucas, Stephanie; Soave, Claire; Nabil, Ghazal; Ahmed, Zainab Sabry Othman; Chen, Guohua; El-Banna, Hossny Awad; Dou, Q Ping; Wang, Jian
2017-01-01
Alteration of cellular metabolism is a hallmark of cancer, which underlies exciting opportunities to develop effective, anti-cancer therapeutics through inhibition of cancer metabolism. Nicotinamide Adenine Dinucleotide (NAD+), an essential coenzyme of energy metabolism and a signaling molecule linking cellular energy status to a spectrum of molecular regulation, has been shown to be in high demand in a variety of cancer cells. Depletion of NAD+ by inhibition of its key biosynthetic enzymes has become an attractive strategy to target cancer. The main objective of this article is to review the recent patents which develop and implicate the chemical inhibitors of the key NAD+ biosynthetic enzymes for cancer treatment. We first discuss the biological principles of NAD+ metabolism in normal and malignant cells, with a focus on the feasibility of selectively targeting cancer cells by pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT) and indoleamine/tryptophan 2,3-dioxygenases (IDO/TDO), the rate-limiting salvage and de novo NAD+ biosynthetic enzymes, respectively. We then analyze a series of recent patents on development and optimization of chemical scaffolds for inhibiting NAMPT or IDO/TDO enzymes as potential anticancer drugs. Conclusion and Results: We have reviewed 16 relevant patents published since 2015, and summarized the chemical properties, mechanisms of action and proposed applications of the patented compounds. Without a better understanding of the properties of these compounds, their utility for further optimization and clinical use is unknown. For the compounds that have been tested using cell and mouse models of cancer, results look promising and clinical trials are currently ongoing to see if these results translate to improved cancer treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Akhoun, Idrick; McKay, Colette; El-Deredy, Wael
2015-01-15
Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.
Wardell, Suzanne E; Nelson, Erik R; Chao, Christina A; McDonnell, Donald P
2013-05-01
There is compelling evidence to suggest that drugs that function as pure estrogen receptor (ER-α) antagonists, or that downregulate the expression of ER-α, would have clinical use in the treatment of advanced tamoxifen- and aromatase-resistant breast cancer. Although such compounds are currently in development, we reasoned, based on our understanding of ER-α pharmacology, that there may already exist among the most recently developed selective estrogen receptor modulators (SERM) compounds that would have usage as breast cancer therapeutics. Thus, our objective was to identify among available SERMs those with unique pharmacologic activities and to evaluate their potential clinical use with predictive models of advanced breast cancer. A validated molecular profiling technology was used to classify clinically relevant SERMs based on their impact on ER-α conformation. The functional consequences of these observed mechanistic differences on (i) gene expression, (ii) receptor stability, and (iii) activity in cellular and animal models of advanced endocrine-resistant breast cancer were assessed. The high-affinity SERM bazedoxifene was shown to function as a pure ER-α antagonist in cellular models of breast cancer and effectively inhibited the growth of both tamoxifen-sensitive and -resistant breast tumor xenografts. Interestingly, bazedoxifene induced a unique conformational change in ER-α that resulted in its proteasomal degradation, although the latter activity was dispensable for its antagonist efficacy. Bazedoxifene was recently approved for use in the European Union for the treatment of osteoporosis and thus may represent a near-term therapeutic option for patients with advanced breast cancer. ©2013 AACR.
Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins
Walsh, Dustin R.; Nolin, Thomas D.
2015-01-01
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975
Méndez Álvarez, Nelson; Angulo Ortíz, Alberto; Contreras Martínez, Orfa
2016-09-01
Bacterial resistance is a growing health problem worldwide that has serious economic and social impacts, compromising public health, and the therapeutic action of current antibiotics. Therefore, the search for new compounds with antimicrobial properties is relevant in modern studies, particularly against bacteria of clinical interest. In the present study, in vitro antibacterial activity of the ethanol extract and essential oil of Curcuma longa (Zingiberaceae) was evaluated against nosocomial bacteria, using the microdilution method. Escherichia coli strains, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus sp. were used, Salmonella sp. and Bacillus sp., isolated from nosocomial infections in a hospital in the city of Monteria and reference strains of S. aureus ATCC 43300, S. aureus ATCC 29213, S. aureus ATCC 25923, P. aeruginosa ATCC 27853, E. coli ATCC 25922 and K. pneumonia ATCC 700603. The ethanol extract antibacterial profile was more efficient at higher concentrations (1 000 ppm), obtaining significant percentages of reduction of more than 50 % against K. pneumoniae ATCC 700603 and a clinical isolate of E. coli; while compared to Bacillus clinical isolate, was more active than the essential oil. For the rest of microorganisms, the reduction percentages obtained at a concentration of 1 000 ppm varied between 17 and 42 % with ethanolic extract, and 8 to 43 % with essential oil. At concentrations of 100 and 500 ppm antibacterial activity of the extracts was lower. The results indicated that the ethanolic extract and essential oil of C. longa rhizomes have active compounds with antibacterial properties that could be used in future research as a therapeutic alternative for the treatment of infections caused by nosocomial pathogens.
Curcumin as a potential protective compound against cardiac diseases.
Jiang, Shuai; Han, Jing; Li, Tian; Xin, Zhenlong; Ma, Zhiqiang; Di, Wencheng; Hu, Wei; Gong, Bing; Di, Shouyin; Wang, Dongjin; Yang, Yang
2017-05-01
Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Research and development on efficacy of Chinese herbal compound].
Liu, Jian-Xun; Ren, Jian-Xun; Lin, Cheng-Ren
2016-03-01
The efficacy not only is summarized by clinical effect of Chinese herbal compound on theory of traditional Chinese medicine, but also is manifested to clinical effect by interaction of many intricate chemical substances. The efficacy of Chinese herbal compound is current research focus in field of traditional Chinese medicine. By currently knowing in different aspects which included the progression in efficacy of Chinese herbal compound, symptomatic efficacy of Chinese herbal compound, the relationship between the efficacy and pharmacologic effect of Chinese herbal compound, the efficacy related pharmacodynamic substance and the evaluation of efficacy, it had been summarized mainly problems and methods in research and development process of the efficacy of Chinese herbal compound in this paper. Paper also elucidated problems that need to pay attention in research of efficacy in order to provide references for clinical and experimental studies of efficacy in Chinese herbal compound, boost research and development level of new traditional Chinese drug and facilitate modernization of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.
The open literature, Federal publications, industrial reports, and other sources published between 1975 and 1980 were reviewed for information relevant to personal air samplers potentially useful in sampling organic compounds at ambient levels (50-200 ppt). Seventy one references...
Germain, M A; Hatton, A; Williams, S; Matthews, J B; Stone, M H; Fisher, J; Ingham, E
2003-02-01
Concern over polyethylene wear particle induced aseptic loosening of metal-on-polyethylene hip prostheses has led to renewed interest in alternative materials such as metal-on-metal and alumina ceramic-on-alumina ceramic for total hip replacement. This study compared the effects of clinically relevant cobalt-chromium and alumina ceramic wear particles on the viability of U937 histiocytes and L929 fibroblasts in vitro. Clinically relevant cobalt-chromium wear particles were generated using a flat pin-on-plate tribometer. The mean size of the clinically relevant metal particles was 29.5+/-6.3 nm (range 5-200 nm). Clinically relevant alumina ceramic particles were generated in the Leeds MkII anatomical hip simulator from a Mittelmieier prosthesis using micro-separation motion. This produced particles with a bimodal size distribution. The majority (98%) of the clinically relevant alumina ceramic wear debris was 5-20 nm in size. The cytotoxicity of the clinically relevant wear particles was compared to commercially available cobalt-chromium (9.87 microm+/-5.67) and alumina ceramic (0.503+/-0.19 microm) particles. The effects of the particles on the cells over a 5 day period at different particle volume (microm(3)) to cell number ratios were tested and viability determined using ATP-Lite(TM). Clinically relevant cobalt-chromium particles 50 and 5 microm(3) per cell reduced the viability of U937 cells by 97% and 42% and reduced the viability of L929 cells by 95% and 73%, respectively. At 50 microm(3) per cell, the clinically relevant ceramic particles reduced U937 cell viability by 18%. None of the other concentrations of the clinically relevant particles were toxic. The commercial cobalt-chromium and alumina particles did not affect the viability of either the U937 histiocytes or the L929 fibroblasts.Thus at equivalent particle volumes the clinically relevant cobalt-chromium particles were more toxic then the alumina ceramic particles. This study has emphasised the fact that the nature, size and volume of particles are important in assessing biological effects of wear debris on cells in vitro.
Ghasemi, Farhad; Black, Morgan; Sun, Ren X; Vizeacoumar, Frederick; Pinto, Nicole; Ruicci, Kara M; Yoo, John; Fung, Kevin; MacNeil, Danielle; Palma, David A; Winquist, Eric; Mymryk, Joe S; Ailles, Laurie A; Datti, Alessandro; Barrett, John W; Boutros, Paul C; Nichols, Anthony C
2018-05-25
Head and neck squamous cell carcinoma (HNSCC) is a common cancer diagnosis worldwide. Despite advances in treatment, HNSCC has very poor survival outcomes, emphasizing an ongoing need for development of improved therapeutic options. The distinct tumor characteristics of human papillomavirus (HPV)-positive vs . HPV-negative disease necessitate development of treatment strategies tailored to tumor HPV-status. High-throughput robotic screening of 1,433 biologically and pharmacologically relevant compounds at a single dose (4 μM) was carried out against 6 HPV-positive and 20 HPV-negative HNSCC cell lines for preliminary identification of therapeutically relevant compounds. Statistical analysis was further carried out to differentiate compounds with preferential activity against cell lines stratified by the HPV-status. These analyses yielded 57 compounds with higher activity in HPV-negative cell lines, and 34 with higher-activity in HPV-positive ones. Multi-point dose-response curves were generated for six of these compounds (Ryuvidine, MK-1775, SNS-032, Flavopiridol, AZD-7762 and ARP-101), confirming Ryuvidine to have preferential potency against HPV-negative cell lines, and MK-1775 to have preferential potency against HPV-positive cell lines. These data comprise a valuable resource for further investigation of compounds with therapeutic potential in the HNSCC.
Patel, Manish V; Patel, Kalapi B; Gupta, Shivenarain; Michalsen, Andreas; Stapelfeldt, Elmar; Kessler, Christian S
2015-01-01
Hepatic cirrhosis is one of the leading causes of death worldwide, especially if complicated by ascites. This chronic condition can be related to the classical disease entity jalodara in Traditional Indian Medicine (Ayurveda). The present paper aims to evaluate the general potential of Ayurvedic therapy for overall clinical outcomes in hepatic cirrhosis complicated by ascites (HCcA). In form of a nonrandomized, uncontrolled, single group, open-label observational clinical study, 56 patients fulfilling standardized diagnostic criteria for HCcA were observed during their treatment at the P. D. Patel Ayurveda Hospital, Nadiad, India. Based on Ayurvedic tradition, a standardized treatment protocol was developed and implemented, consisting of oral administration of single and compound herbal preparations combined with purificatory measures as well as dietary and lifestyle regimens. The outcomes were assessed by measuring liver functions through specific clinical features and laboratory parameters and by evaluating the Child-Pugh prognostic grade score. After 6 weeks of treatment and a follow-up period of 18 weeks, the outcomes showed statistically significant and clinically relevant improvements. Further larger and randomized trials on effectiveness, safety, and quality of the Ayurvedic approach in the treatment of HCcA are warranted to support these preliminary findings.
Peters, Frank T; Remane, Daniela
2012-06-01
In the last decade, liquid chromatography coupled to (tandem) mass spectrometry (LC-MS(-MS)) has become a versatile technique with many routine applications in clinical and forensic toxicology. However, it is well-known that ionization in LC-MS(-MS) is prone to so-called matrix effects, i.e., alteration in response due to the presence of co-eluting compounds that may increase (ion enhancement) or reduce (ion suppression) ionization of the analyte. Since the first reports on such matrix effects, numerous papers have been published on this matter and the subject has been reviewed several times. However, none of the existing reviews has specifically addressed aspects of matrix effects of particular interest and relevance to clinical and forensic toxicology, for example matrix effects in methods for multi-analyte or systematic toxicological analysis or matrix effects in (alternative) matrices almost exclusively analyzed in clinical and forensic toxicology, for example meconium, hair, oral fluid, or decomposed samples in postmortem toxicology. This review article will therefore focus on these issues, critically discussing experiments and results of matrix effects in LC-MS(-MS) applications in clinical and forensic toxicology. Moreover, it provides guidance on performance of studies on matrix effects in LC-MS(-MS) procedures in systematic toxicological analysis and postmortem toxicology.
Coelho, Tatiane S.; Cantos, Jessica B.; Bispo, Marcelle L.F.; Gonçalves, Raoni S.B.; Lima, Camilo H.S.; da Silva, Pedro E.A.; Souza, Marcus V. N.
2012-01-01
A series of twenty-three N-acylhydrazones derived from isoniazid (INH 1-23) have been evaluated for their in vitro antibacterial activity against INH- susceptible strain of M. tuberculosis (RG500) and three INH-resistant clinical isolates (RG102, RG103 and RG113). In general, derivatives 4, 14, 15 and 16 (MIC=1.92, 1.96, 1.96 and 1.86 µM, respectively) showed relevant activities against RG500 strain, while the derivative 13 (MIC=0.98 µM) was more active than INH (MIC=1.14 µM). However, these derivatives were inactive against RGH102, which displays a mutation in the coding region of inhA. These results suggest that the activities of these compounds depend on the inhibition of this enzyme. However, the possibility of other mechanisms of action cannot be excluded, since compounds 2, 4, 6, 7, 12–17, 19, 21 and 23 showed good activities against katG-resistant strain RGH103, being more than 10-fold more active than INH. PMID:24470920
Perna canaliculus and the Intestinal Microbiome.
Saltzman, Emma Tali; Thomsen, Michael; Hall, Sean; Vitetta, Luis
2017-06-30
Natural medicines are often an attractive option for patients diagnosed with chronic conditions. Three main classes of bioactives that have been reported from marine mussel extracts include proteins, lipids and carbohydrates. Commercially, the most relevant species of marine mollusks belong to two genera, Perna and Mytilus. Specifically, the Perna canaliculus species has been repeatedly demonstrated to harbor anti-inflammatory compounds such as omega-3 polyunsaturated fatty acids ( ω -3 PUFAs) that can ameliorate pro-inflammatory conditions, or proteins that can promote thrombin inhibitory activity. Recent clinical studies have posited that extracts from green-lipped mussels may lead to prebiotic activity in the intestinal microbiome that in turn has been reported to improve symptoms of osteoarthritis of the knee. Prebiotics have been reported to favorably interact with the intestinal microbiome through the proliferation of beneficial bacteria in the gut, suppressing exogenous and endogenous intestinal infections and promoting homeostasis by balancing local pro- and anti-inflammatory actions. Bioactive compounds from Perna canaliculus are functional foods and, in this regard, may positively interact with the intestinal microbiome and provide novel therapeutic solutions for intra-intestinal and extra-intestinal inflammatory conditions.
Plant polyphenols as natural drugs for the management of Down syndrome and related disorders.
Vacca, Rosa Anna; Valenti, Daniela; Caccamese, Salvatore; Daglia, Maria; Braidy, Nady; Nabavi, Seyed Mohammad
2016-12-01
Polyphenols are secondary metabolites of plants largely found in fruits, vegetables, cereals and beverages, and therefore represent important constituents of the human diet. Increasing studies have demonstrated the potential beneficial effects of polyphenols on human health. Extensive reviews have discussed the protective effects of polyphenols against a series of diseases such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders. Limited studies have investigated the potential therapeutic effects of these natural compounds on neurodevelopmental disorders associated with intellectual disability, such as Down syndrome (DS), for which mitochondrial dysfunctions and oxidative stress are hallmarks and contribute to the deleterious symptoms and cognitive decline. This review, starting from the structure, source, bioavailability and pharmacokinetics of relevant polyphenols, highlights recent studies on the effect and potential molecular mechanism(s) of action of the phenolic compounds epigallocatechin-3-gallate, resveratrol and hydroxytyrosol in restoring mitochondrial energy deficit and in reversing phenotypical alteration in DS. The clinical implications of plant polyphenol dietary supplements as therapeutic tools in managing DS and other intellectual disability-related diseases, is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ranilla, Lena Galvez; Apostolidis, Emmanouil; Genovese, Maria Ines; Lajolo, Franco Maria; Shetty, Kalidas
2009-08-01
The health-relevant functionality of 10 thermally processed Peruvian Andean grains (five cereals, three pseudocereals, and two legumes) was evaluated for potential type 2 diabetes-relevant antihyperglycemia and antihypertension activity using in vitro enzyme assays. Inhibition of enzymes relevant for managing early stages of type 2 diabetes such as hyperglycemia-relevant alpha-glucosidase and alpha-amylase and hypertension-relevant angiotensin I-converting enzyme (ACE) were assayed along with the total phenolic content, phenolic profiles, and antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl radical assay. Purple corn (Zea mays L.) (cereal) exhibited high free radical scavenging-linked antioxidant activity (77%) and had the highest total phenolic content (8 +/- 1 mg of gallic acid equivalents/g of sample weight) and alpha-glucosidase inhibitory activity (51% at 5 mg of sample weight). The major phenolic compound in this cereal was protocatechuic acid (287 +/- 15 microg/g of sample weight). Pseudocereals such as Quinoa (Chenopodium quinoa Willd) and Kañiwa (Chenopodium pallidicaule Aellen) were rich in quercetin derivatives (1,131 +/- 56 and 943 +/- 35 microg [expressed as quercetin aglycone]/g of sample weight, respectively) and had the highest antioxidant activity (86% and 75%, respectively). Andean legumes (Lupinus mutabilis cultivars SLP-1 and H-6) inhibited significantly the hypertension-relevant ACE (52% at 5 mg of sample weight). No alpha-amylase inhibitory activity was found in any of the evaluated Andean grains. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals, and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension and provides the rationale for animal and clinical studies.
Bonini, Marcelo G.; Stadler, Krisztian; de Oliveira Silva, Sueli; Corbett, Jean; Dore, Michael; Petranka, John; Fernandes, Denise C.; Tanaka, Leonardo Y.; Duma, Danielle; Laurindo, Francisco R. M.; Mason, Ronald P.
2008-01-01
The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major source of NO responsible for low-dose (1–10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals. PMID:18562300
van Gerven, Joop; Cohen, Adam
2018-01-30
The first administration of a new compound in humans is an important milestone. A major source of information for the researcher is the investigator's brochure (IB). Such a document, has a size of several hundred pages. The IB should enable investigators or regulators to independently assess the risk-benefit of the proposed trial but the size and complexity makes this difficult. This article offers a practical tool for the integration and subsequent communication of the complex information from the IB or other relevant data sources. This paper is accompanied by an accessible software tool to construct a single page colour-coded overview of preclinical and clinical data. © 2018 The British Pharmacological Society.
"Seeing is believing": perspectives of applying imaging technology in discovery toxicology.
Xu, Jinghai James; Dunn, Margaret Condon; Smith, Arthur Russell
2009-11-01
Efficiency and accuracy in addressing drug safety issues proactively are critical in minimizing late-stage drug attritions. Discovery toxicology has become a specialty subdivision of toxicology seeking to effectively provide early predictions and safety assessment in the drug discovery process. Among the many technologies utilized to select safer compounds for further development, in vitro imaging technology is one of the best characterized and validated to provide translatable biomarkers towards clinically-relevant outcomes of drug safety. By carefully applying imaging technologies in genetic, hepatic, and cardiac toxicology, and integrating them with the rest of the drug discovery processes, it was possible to demonstrate significant impact of imaging technology on drug research and development and substantial returns on investment.
Banholzer, Maria Longauer; Wandel, Christoph; Barrow, Paul; Mannino, Marie; Schmitt, Georg; Guérard, Melanie; Müller, Lutz; Greig, Gerard; Amemiya, Kenjie; Peck, Richard; Singer, Thomas; Doessegger, Lucette
2016-12-01
This is an update to our 2012 publication on clinical trial considerations on male contraception and collection of pregnancy information from female partner, after critical review of recent (draft) guidances released by the International Council for Harmonisation [ICH] the Clinical Trial Facilitation Group [CTFG] and the US Food & Drug Administration [FDA]. Relevant aspects of the new guidance documents are discussed in the context of male contraception and pregnancy reporting from female partner in clinical trials and the approach is updated accordingly. Genotoxicity The concept of a threshold is introduced using acceptable daily intake/permissible daily exposure to define genotoxicity requirements, hence highly effective contraception in order to avoid conception. The duration for highly effective contraception has been extended from 74 to 90 days from the end of relevant systemic exposure. Teratogenicity Pharmacokinetic considerations to estimate safety margins have been contextualized with regard to over- and underestimation of the risk of teratogenicity transmitted by a vaginal dose. The duration of male contraception after the last dose takes into account the end of relevant systemic exposure if measured, or a default period of five half-lives after last dose for small molecules and two half-lives for immunoglobulins (mAbs). Measures to prevent exposure of the conceptus via a vaginal dose apply to reproductively competent or vasectomized men, unless measurements fail to detect the compound in seminal fluid. Critical review of new guidance documents provides a comparison across approaches and resulted in an update of our previous publication. Separate algorithms for small molecules and monoclonal antibodies are proposed to guide the recommendations for contraception for male trial participants and pregnancy reporting from female partners. No male contraception is required if the dose is below a defined threshold for genotoxic concern applicable to small molecules. For men treated with teratogenic mAbs, condom use to prevent exposure of a potentially pregnant partner is unlikely to be recommended because of the minimal female exposure anticipated following a vaginal dose. The proposed safety margins for teratogenicity may evolve with further knowledge.
Developing treatments for cognitive deficits in schizophrenia: The challenge of translation
Young, J.W.; Geyer, M.A.
2015-01-01
Schizophrenia is a life-long debilitating mental disorder affecting tens of millions of people worldwide. The serendipitous discovery of antipsychotics focused pharmaceutical research on developing a better antipsychotic. Our understanding of the disorder has advanced however, with the knowledge that cognitive enhancers are required for patients in order to improve their everyday lives. Whilst antipsychotics treat psychosis, they do not enhance cognition and hence are not antischizophrenics. Developing pro-cognitive therapeutics has been extremely difficult however, especially when no approved treatment exists. In lieu of stumbling on an efficacious treatment, developing targeted compounds can be facilitated by understanding the neural mechanisms underlying altered cognitive functioning in patients. Equally importantly, these cognitive domains will need to be measured similarly in animals and humans so that novel targets can be tested prior to conducting expensive clinical trials. To date, the limited similarity of testing across species has resulted in a translational bottleneck. In this review, we emphasize that schizophrenia is a disorder characterized by abnormal cognitive behavior. Quantifying these abnormalities using tasks having cross-species validity would enable the quantification of comparable processes in rodents. This approach would increase the likelihood that the neural substrates underlying relevant behaviors will be conserved across species. Hence, we detail cross-species tasks which can be used to test the effects of manipulations relevant to schizophrenia and putative therapeutics. Such tasks offer the hope of providing a bridge between non-clinical and clinical testing that will eventually lead to treatments developed specifically for patients with deficient cognition. PMID:25516372
Suspect Screening and Non-Targeted Analysis of Drinking Water Using Point-Of-Use Filters
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort t...
Suspect screening and non-targeted analysis of drinking water using point-of-use filters.
Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J
2018-03-01
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.
Arasaradnam, R P; Covington, J A; Harmston, C; Nwokolo, C U
2014-04-01
The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians. © 2014 John Wiley & Sons Ltd.
Scheff, Stephen W; Ansari, Mubeen A
2017-04-15
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Epidemiology of dietary nutrient intake in ESRD.
Kovesdy, Csaba P; Shinaberger, Christian S; Kalantar-Zadeh, Kamyar
2010-01-01
Protein-energy wasting (PEW) is one of the strongest risk factors of adverse outcomes in patients with chronic kidney disease including those with end-stage renal disease (ESRD) who undergo maintenance dialysis treatment. One important determinant of PEW in this patient population is an inadequate amount of protein and energy intake. Compounding the problem are the many qualitative nutritional deficiencies that arise because of the altered dietary habits of dialysis patients. Many of these alterations are iatrogenically induced, and albeit well intentioned, they could induce unintended harmful effects. In order to determine the best possible diet in ESRD patients, one must first understand the complex interplay between the quantity and quality of nutrient intake in these patients, and their impact on relevant clinical outcomes. We review available studies examining the association of nutritional intake with clinical outcomes in ESRD, stressing the complicated and often difficult-to-study inter-relationship between quantitative and qualitative aspects of nutrient intake in nutritional epidemiology. The currently recommended higher protein intake of 1.2 g/kg/day may be associated with a higher phosphorus and potassium burden and with worsening hyperphosphatemia and hyperkalemia, whereas dietary control of phosphorus and potassium by restricting protein intake may increase the risk of PEW. We assess the relevance of associative studies by examining the biologic plausibility of underlying mechanisms of action and emphasize areas in need of further research.
Fransson, Bo; Silberg, Debra G; Niazi, Mohammad; Miller, Frank; Ruth, Magnus; Holmberg, Ann Aurell
2012-04-01
The novel Type B gamma-aminobutyric acid (GABAB)-receptor agonist lesogaberan (AZD3355) has been evaluated as an add-on to proton pump inhibitor treatment for gastroesophageal reflux disease, but the effect of food on the bioavailability of this compound has not been assessed. In this openlabel crossover study, healthy males received single 100 mg doses of lesogaberan (oral solution (A) or oral modified release (MR) capsules with a dissolution rate of 50% (B) or 100% (C) over 4 h) with and without food. Blood plasma concentrations of lesogaberan were assessed over 48 h. A log-transformed geometric mean Cmax and AUC ratio within the 90% confidence interval (CI) range (0.80 - 1.25) was defined as excluding a clinically relevant food effect. Overall, 57 subjects completed the study. Only the oral lesogaberan solution had a fed/fasting Cmax ratio outside the 90% CI range (Cmax ratio: 0.76). AUC ratios were within the 90% CI limits for all three lesogaberan formulations. The only substantial change in tmax associated with food intake was observed for the oral solution (1.0 h without food, 1.8 h with food). In conclusion, a clinically relevant food effect could be excluded for the lesogaberan MR formulations, but not for the oral lesogaberan solution.
Modeling fragile X syndrome in the Fmr1 knockout mouse
Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.
2014-01-01
Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362
Bracke, Marc E; Roman, Bart I; Stevens, Christian V; Mus, Liselot M; Parmar, Virinder S; De Wever, Olivier; Mareel, Marc M
2015-06-06
The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account immunological contributions to cancer invasion.
Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen
2017-08-01
Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.
Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.
Liu, Juan; Jung, Jee H; Liu, Yonghong
2016-01-01
It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.
Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic)
Foroutan-Rad, Masoud; Tappeh, Khosrow Hazrati; Khademvatan, Shahram
2015-01-01
Leishmaniasis is caused by an obligate intracellular protozoa belonging to Leishmania genus. The current drugs for treatment of leishmaniasis possess many disadvantages; therefore, researchers are continuously looking for the more effective and safer drugs. The aim of this study is to review the effectiveness, toxicities, and possible mechanisms of pharmaceutical actions of different garlic extracts and organosulfur compounds isolated from garlic against Leishmania spp. in a variety of in vitro, in vivo and clinical trials reports. All relevant databases were searched using the terms “Allium sativum,” “Garlic,” “Allicin,” “Ajoene,” “Leishmania,” “in vitro,” “in vivo,” and “clinical trial,” alone or in combination from 5 English databases (Web of Science, PubMed, Science Direct, Scopus, Google Scholar) and 3 Persian databases (Scientific Information Database, Iran Medex, and Magiran) from 1990 to 2014. In summary, garlic with immunomodulatory effects and apoptosis induction contributes to the treatment of leishmaniasis. PMID:26721553
Septic encephalopathy and septic encephalitis.
Tauber, Simone C; Eiffert, Helmut; Brück, Wolfgang; Nau, Roland
2017-02-01
During the last two decades, septic encephalopathy (SE) was recognized as a clinically relevant problem with a high prevalence in patients at admission and during their hospital stay. SE is a condition associated with increased mortality and morbidity such as long-term cognitive impairment. Areas covered: This review illustrates the pathophysiology of sepsis-associated encephalopathy and encephalitis involving blood-brain-barrier dysfunction and neuroinflammation caused by endothelial and microglial activation by endogenous or pathogen-derived compounds, hypoxia by impaired microvascular regulation and septic shock as well as imbalance of neurotransmitters. The continuum between septic-embolic and septic-metastatic encephalitis and SE is underlined by histological findings. The options of technical examinations and biomarkers to diagnose SE are discussed together with established therapeutic options as well as current experimental approaches. Expert commentary: An outlook for clinicians is provided including promising diagnostic approaches by means of new imaging techniques. Clinical trials with drugs already established for other indications such as statins, erythropoietin and minocycline are warranted in the future.
Bidirectional interactions between indomethacin and the murine intestinal microbiota
Liang, Xue; Bittinger, Kyle; Li, Xuanwen; Abernethy, Darrell R; Bushman, Frederic D; FitzGerald, Garret A
2015-01-01
The vertebrate gut microbiota have been implicated in the metabolism of xenobiotic compounds, motivating studies of microbe-driven metabolism of clinically important drugs. Here, we studied interactions between the microbiota and indomethacin, a nonsteroidal anti-inflammatory drug (NSAID) that inhibits cyclooxygenases (COX) -1 and -2. Indomethacin was tested in both acute and chronic exposure models in mice at clinically relevant doses, which suppressed production of COX-1- and COX-2-derived prostaglandins and caused small intestinal (SI) damage. Deep sequencing analysis showed that indomethacin exposure was associated with alterations in the structure of the intestinal microbiota in both dosing models. Perturbation of the intestinal microbiome by antibiotic treatment altered indomethacin pharmacokinetics and pharmacodynamics, which is probably the result of reduced bacterial β-glucuronidase activity. Humans show considerable inter-individual differences in their microbiota and their responses to indomethacin — thus, the drug-microbe interactions described here provide candidate mediators of individualized drug responses. DOI: http://dx.doi.org/10.7554/eLife.08973.001 PMID:26701907
Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders.
Peyrol, Julien; Riva, Catherine; Amiot, Marie Josèphe
2017-03-20
Virgin olive oil (VOO) constitutes the main source of fat in the Mediterranean diet. VOO is rich in oleic acid, displaying health-promoting properties, but also contains minor bioactive components, especially phenolic compounds. Hydroxytyrosol (HT), the main polyphenol of olive oil, has been reported to be the most bioactive component. This review aims to compile the results of clinical, animal and cell culture studies evaluating the effects of HT on the features of Metabolic Syndrome (MetS) (body weight/adiposity, dyslipidemia, hypertension, and hyperglycemia/insulin resistance) and associated complications (oxidative stress and inflammation). HT was able to improve the lipid profile, glycaemia, and insulin sensitivity, and counteract oxidative and inflammatory processes. Experimental studies identified multiple molecular targets for HT conferring its beneficial effect on health in spite of its low bioavailability. However, rodent experiments and clinical trials with pure HT at biologically relevant concentrations are still lacking. Moreover, the roles of intestine and its gut microbiota have not been elucidated.
Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders
Peyrol, Julien; Riva, Catherine; Amiot, Marie Josèphe
2017-01-01
Virgin olive oil (VOO) constitutes the main source of fat in the Mediterranean diet. VOO is rich in oleic acid, displaying health-promoting properties, but also contains minor bioactive components, especially phenolic compounds. Hydroxytyrosol (HT), the main polyphenol of olive oil, has been reported to be the most bioactive component. This review aims to compile the results of clinical, animal and cell culture studies evaluating the effects of HT on the features of Metabolic Syndrome (MetS) (body weight/adiposity, dyslipidemia, hypertension, and hyperglycemia/insulin resistance) and associated complications (oxidative stress and inflammation). HT was able to improve the lipid profile, glycaemia, and insulin sensitivity, and counteract oxidative and inflammatory processes. Experimental studies identified multiple molecular targets for HT conferring its beneficial effect on health in spite of its low bioavailability. However, rodent experiments and clinical trials with pure HT at biologically relevant concentrations are still lacking. Moreover, the roles of intestine and its gut microbiota have not been elucidated. PMID:28335507
Biosimilars in inflammatory bowel disease: A review of post-marketing experience.
Deiana, Simona; Gabbani, Tommaso; Annese, Vito
2017-01-14
Biologic compounds are obtained from living organisms or cell cultures by means of biotechnology methods. A similar biologic drug, commonly called biosimilar, is a product copied by a native approved biologic drug whose license has expired. Biosimilar drugs usually are marketed at a lower price and provide important financial savings for public healthcare systems. Some differences between biosimilars and original biologic drugs might exist but they are acceptable if they fall within defined "boundaries of tolerance": differences in some features between the two molecules are considered important only if clinical relevant. Considering that the efficacy of the innovator biologic drug has already been established, the clinical studies required for approval of a biosimilar could be reduced compared with those required for the approval of the originator. In this review, real life data available in inflammatory bowel disease patients treated with biosimilars are reported, documenting in general satisfactory outcomes, sustained efficacy and no sign of increased immunogenicity, although, further controlled data are awaited.
Clinical and economic burden of fractures in patients with renal osteodystrophy.
Schumock, G T; Sprague, S M
2007-04-01
Renal osteodystrophy is a key cause of fractures in patients with chronic kidney disease (CKD). This article reviews the clinical and economic burden of fractures and explores the types of studies that need to be conducted in order to fully understand the impact of fractures in renal osteodystrophy. We also discuss the role that active vitamin D compounds and calcimimetics play in treating secondary hyperparathyroidism. Medline was searched for relevant articles on renal osteodystrophy and fractures. CKD-related fractures are the source of significant morbidity and costs. Extensive osteoporosis research has been utilized to guide fracture prevention and improve disease management, but further costs and outcomes analyses are needed for renal osteodystrophy. Recent research regarding newer, present-day treatment paradigms has suggested that distinct cost savings and improved patient outcomes are possible. In order to realize such economic and human benefits, the medical community must first have sufficient pathologic, pharmacoeconomic and epidemiologic data to properly understand, manage and prevent renal osteodystrophy and fractures.
Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition
NASA Astrophysics Data System (ADS)
Brem, Jürgen; van Berkel, Sander S.; Aik, Weishen; Rydzik, Anna M.; Avison, Matthew B.; Pettinati, Ilaria; Umland, Klaus-Daniel; Kawamura, Akane; Spencer, James; Claridge, Timothy D. W.; McDonough, Michael A.; Schofield, Christopher J.
2014-12-01
The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including 19F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.
Zabriskie, Matthew S.; Eide, Christopher A.; Tantravahi, Srinivas K.; Vellore, Nadeem A.; Estrada, Johanna; Nicolini, Franck E.; Khoury, Hanna J.; Larson, Richard A.; Konopleva, Marina; Cortes, Jorge E.; Kantarjian, Hagop; Jabbour, Elias J.; Kornblau, Steven M.; Lipton, Jeffrey H.; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J.; Press, Richard D.; Chuah, Charles; Goldberg, Stuart L.; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R.; Heaton, William L.; Eiring, Anna M.; Pomicter, Anthony D.; Khorashad, Jamshid S.; Kelley, Todd W.; Baron, Riccardo; Druker, Brian J.; Deininger, Michael W.; O'Hare, Thomas
2014-01-01
Summary Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph+) leukemia, including the recalcitrant BCR-ABL1T315I mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph+ leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. PMID:25132497
21 CFR 1271.75 - How do I screen a donor?
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Risk factors for, and clinical evidence of, relevant communicable disease agents and diseases... risk factors for and clinical evidence of relevant cell-associated communicable disease agents and... having either of the following: (1) A risk factor for or clinical evidence of any of the relevant...
Domitrović, Robert; Potočnjak, Iva
2016-01-01
Hepatoprotective effects of natural compounds have been frequently attributed to their antioxidant properties and the ability to mobilize endogenous antioxidant defense system. Because of involvement of oxidative stress in virtually all mechanisms of liver injury, it is a reasonable presumption that antioxidant properties of these compounds may play a key role in the mechanism of their hepatoprotective activity. Nevertheless, growing evidence suggests that other pharmacological activities of natural compounds distinct from antioxidant are responsible for their therapeutic effects. In this review, we discussed currently known molecular mechanisms of the hepatoprotective activity of 27 most intensively studied phytochemicals. These compounds have been shown to possess anti-inflammatory, antisteatotic, antiapoptotic, cell survival and antiviral activity through interference with multiple molecular targets and signaling pathways. Additionally, antifibrotic properties of phytochemicals have been closely associated with apoptosis of hepatic stellate cells and stimulation of extracellular matrix degradation. However, although these compounds exhibit a pronounced hepatoprotective effects in animal and cell culture models, the lack of clinical studies remains a bottleneck for their official acceptance by medical experts and physicians. Therefore, controlled clinical trials have an imperative in confirmation of the therapeutic activity of potentially hepatoprotective compounds. Understanding the principles of the hepatoprotective activity of phytochemicals could guide future drug development and help prevention of clinical trial failure. Also, the use of new delivery systems that enhances bioavailability of poorly water soluble compounds may improve the results already obtained. Most importantly, available data suggest that phytochemicals possess a various degree of modulation of specific signaling pathways, pointing out a need for usage of combinations of several hepatoprotective compounds in both experimental studies and clinical trials.
Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence
Kotecha, Ritesh; Takami, Akiyoshi; Espinoza, J. Luis
2016-01-01
Cancer chemoprevention involves the use of different natural or biologic agents to inhibit or reverse tumor growth. Epidemiological and pre-clinical data suggest that various natural phytochemicals and dietary compounds possess chemopreventive properties, and in-vitro and animal studies support that these compounds may modulate signaling pathways involved in cell proliferation and apoptosis in transformed cells, enhance the host immune system and sensitize malignant cells to cytotoxic agents. Despite promising results from experimental studies, only a limited number of these compounds have been tested in clinical trials and have shown variable results. In this review, we summarize the data regarding select phytochemicals including curcumin, resveratrol, lycopene, folates and tea polyphenols with emphasis on the clinical evidence supporting the efficacy of these compounds in high-risk populations. PMID:27232756
Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence.
Kotecha, Ritesh; Takami, Akiyoshi; Espinoza, J Luis
2016-08-09
Cancer chemoprevention involves the use of different natural or biologic agents to inhibit or reverse tumor growth. Epidemiological and pre-clinical data suggest that various natural phytochemicals and dietary compounds possess chemopreventive properties, and in-vitro and animal studies support that these compounds may modulate signaling pathways involved in cell proliferation and apoptosis in transformed cells, enhance the host immune system and sensitize malignant cells to cytotoxic agents. Despite promising results from experimental studies, only a limited number of these compounds have been tested in clinical trials and have shown variable results. In this review, we summarize the data regarding select phytochemicals including curcumin, resveratrol, lycopene, folates and tea polyphenols with emphasis on the clinical evidence supporting the efficacy of these compounds in high-risk populations.
A partial hearing animal model for chronic electro-acoustic stimulation
NASA Astrophysics Data System (ADS)
Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.
2014-08-01
Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual hearing following cochlear implantation. The ability to record CAPs via the CI has clinical direct relevance for obtaining objective measures of residual hearing.
Humus-reducing microorganisms and their valuable contribution in environmental processes.
Martinez, Claudia M; Alvarez, Luis H; Celis, Lourdes B; Cervantes, Francisco J
2013-12-01
Humus constitutes a very abundant class of organic compounds that are chemically heterogeneous and widely distributed in terrestrial and aquatic environments. Evidence accumulated during the last decades indicating that humic substances play relevant roles on the transport, fate, and redox conversion of organic and inorganic compounds both in chemically and microbially driven reactions. The present review underlines the contribution of humus-reducing microorganisms in relevant environmental processes such as biodegradation of recalcitrant pollutants and mitigation of greenhouse gases emission in anoxic ecosystems, redox conversion of industrial contaminants in anaerobic wastewater treatment systems, and on the microbial production of nanocatalysts and alternative energy sources.
Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten
2011-11-01
We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.
Bioavailability of antioxidants in extruded products prepared from purple potato and dry pea flours
USDA-ARS?s Scientific Manuscript database
Measuring antioxidant activity using biological relevant assay is unique to understand the role of phytochemicals in vivo than common chemical assays. Cellular antioxidant activity assay could provide more biological relevant information on bioactive compounds in the raw as well as processed food pr...
Mobile phone interference with medical equipment and its clinical relevance: a systematic review.
Lawrentschuk, Nathan; Bolton, Damien M
2004-08-02
To conduct a systematic review of studies on clinically relevant digital mobile phone electromagnetic interference with medical equipment. MEDLINE and SUMSEARCH were searched for the period 1966-2004. The Cochrane Library and Database of Abstracts of Reviews of Effects were also searched for systematic reviews. Studies were eligible if published in a peer-reviewed journal in English, and if they included testing of digital mobile phones for clinically relevant interference with medical equipment used to monitor or treat patients, but not implantable medical devices. As there was considerable heterogeneity in medical equipment studied and the conduct of testing, results were summarised rather than subjected to meta-analysis. Clinically relevant electromagnetic interference (EMI) secondary to mobile phones potentially endangering patients occurred in 45 of 479 devices tested at 900 MHz and 14 of 457 devices tested at 1800 MHz. However, in the largest studies, the prevalence of clinically relevant EMI was low. Most clinically relevant EMI occurred when mobile phones were used within 1 m of medical equipment. Although testing was not standardised between studies and equipment tested was not identical, it is of concern that at least 4% of devices tested in any study were susceptible to clinically relevant EMI. All studies recommend some type of restriction of mobile phone use in hospitals, with use greater than 1 m from equipment and restrictions in clinical areas being the most common.
[Impact of microdose clinical trials in the preclinical stage].
Kim, Soonih
2014-01-01
A microdose clinical trial may be useful as a safe early-phase exploratory study using doses as low as 100 μg or less for determination of the disposition of a candidate compound in humans in a short period of time. This may increase confidence in candidate compounds, especially those for which it is difficult to predict disposition based on the results of in vitro or preclinical studies. In this study, we examined microdose trials performed in the preclinical stage for two first-in-class compounds with a new mechanism of action. These compounds showed species difference in first pass metabolism in the digestive tract and liver, causing uncertainty in prediction of disposition in humans. For this reason, first-in-human microdose clinical trials were performed. The results showed that the two compounds had effective blood concentrations after oral administration at a dose of 100 mg qd. Administration of an extremely small dose of one (14)C-labeled compound permitted identification of major metabolites. No toxic metabolites were detected. The preclinical toxic dose was determined based on prediction of blood exposure at the estimated maximum clinical dose. For the other candidate compound, the findings of the microdose trial indicated a high bioavailability after oral administration and low hepatic clearance after intravenous administration. These results suggested only a small risk of a change in disposition in patients with hepatic disorder. The data obtained for the two compounds suggest that microdose clinical trials can be useful for improving the process of candidate selection in the preclinical stage.
Buřič, M; Grabicová, K; Kubec, J; Kouba, A; Kuklina, I; Kozák, P; Grabic, R; Randák, T
2018-05-14
Environmental pollution by pharmaceutically active compounds, used in quantities similar to those of pesticides and other organic micropollutants, is increasingly recognized as a major threat to the aquatic environment. These compounds are only partly removed from wastewaters and, despite their low concentrations, directly and indirectly affect behaviour of freshwater organisms in natural habitats. The aim of this study was to behaviourally assess the effects of an opioid painkiller (tramadol) and antidepressant drug (citalopram) on behaviour patterns of a clonal model species, marbled crayfish. Animals exposed to environmentally relevant concentrations of both tested compounds (∼1 μg l -1 ) exhibited significantly lower velocity and shorter distance moved than controls. Crayfish exposed to tramadol spent more time in shelters. Results were obtained by a simple and rapid method recommended as suitable for assessment of behaviour in aquatic organisms exposed to single pollutants and combinations. Copyright © 2018 Elsevier B.V. All rights reserved.
Teaching Compound Nouns in ESP: Insights from Cognitive Semantics
ERIC Educational Resources Information Center
Fries, Marie-Hélène
2017-01-01
The objective of this chapter is to explore the relevance of cognitive linguistics for teaching [noun] + [noun] constructions to French learners of English for Specific Purposes (ESP), and more specifically, for process engineering. After a review of research on Compound Nouns (CNs) and explicit versus implicit learning, three basic tenets of…
Broeckhoven, K.; Cabooter, D.; Desmet, G.
2012-01-01
The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with these particles are discussed. The performance of the newly introduced 5 μm superficially porous particles is evaluated and compared to 2.7 μm superficially porous and 3.5 and 5 μm fully porous columns using typical test compounds (alkylphenones) and a relevant pharmaceutical compound (impurity of amoxicillin). The 5 μm superficially porous particles provide a superior kinetic performance compared to both the 3.5 and 5 μm fully porous particles over the entire relevant range of separation conditions. The performance of the superficially porous particles, however, appears to depend strongly on retention and analyte properties, emphasizing the importance of comparing different columns under realistic conditions (high enough k) and using the compound of interest. PMID:29403833
Kulkarni-Almeida, Asha; Shah, Meet; Jadhav, Mahesh; Hegde, Bindu; Trivedi, Jacqueline; Mishra, Prabhu D; Mahajan, Girish B; Dadarkar, Shruta; Gupte, Ravindra; Dagia, Nilesh
2016-04-01
Rheumatoid arthritis (RA), an autoimmune-inflammatory disease is characterized by dysregulation of signal transduction pathways, increased production of pro-inflammatory cytokines, enhanced leukocyte infiltration into synovial microvascular endothelium, extensive formation of hyper proliferative pannus, degradation of cartilage and bone erosion. Several compounds that abrogate cytokine production demonstrate a therapeutic effect in experimental models of arthritis. In this study, we report that a novel semi-synthetic natural product (Compound A) being a preferential IL-6 inhibitor, is efficacious in a murine model of arthritis. In vitro evaluations of pro-inflammatory cytokine production reveal that Compound A preferentially inhibits induced production of IL-6 and not TNF-α from THP-1 cells and isolated human monocytes. Furthermore, Compound A robustly inhibits the spontaneous production of IL-6 from pathologically relevant synovial tissue cells isolated from patients with active RA. In a physiologically relevant assay, Compound A selectively inhibits the activated T cell contact-mediated production of IL-6 from human monocytes. Compound A, at pharmacologically efficacious concentrations, does not significantly curtail the LPS-induced activation of p38 MAPKs. In the collagen-induced arthritis (CIA) mouse model (i) macroscopic observations demonstrate that Compound A, administered subcutaneously in a therapeutic regimen, significantly and dose-dependently inhibits disease associated increases in articular index and paw thickness; (ii) histological analyses of paw tissues reveal that Compound A prominently diminishes joint destruction, hyperproliferative pannus formation and infiltration of inflammatory cells. Collectively, these results provide direct evidence that Compound A, a novel preferential IL-6 inhibitor, suppresses collagen-induced arthritis, and may be a potential therapeutic for treating patients with active RA. Copyright © 2016. Published by Elsevier B.V.
A modified physiological BCS for prediction of intestinal absorption in drug discovery.
Zaki, Noha M; Artursson, Per; Bergström, Christel A S
2010-10-04
In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.
Kim, Marlene; Sedykh, Alexander; Chakravarti, Suman K.; Saiakhov, Roustem D.; Zhu, Hao
2014-01-01
Purpose Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time -consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process. Methods We employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation. Results The external predictivity of %F values was poor (R2=0.28, n=995, MAE=24), but was improved (R2=0.40, n=362, MAE=21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F<50% as “low”, %F≥50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%. Conclusions In this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models. PMID:24306326
21 CFR 862.1185 - Compound S (11-deoxycortisol) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Compound S (11-deoxycortisol) test system. 862.1185 Section 862.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1185 - Compound S (11-deoxycortisol) test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Compound S (11-deoxycortisol) test system. 862.1185 Section 862.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1185 - Compound S (11-deoxycortisol) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Compound S (11-deoxycortisol) test system. 862.1185 Section 862.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1185 - Compound S (11-deoxycortisol) test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Compound S (11-deoxycortisol) test system. 862.1185 Section 862.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
Chemical investigation of predator-deterred macroalgae from the Antarctic peninsula.
Ankisetty, Sridevi; Nandiraju, Santhisree; Win, Hla; Park, Young Chul; Amsler, Charles D; McClintock, James B; Baker, Jill A; Diyabalanage, Thushara K; Pasaribu, Albert; Singh, Maya P; Maiese, William M; Walsh, Rosa D; Zaworotko, Michael J; Baker, Bill J
2004-08-01
Chemical investigation of five Antarctic macroalgae whose tissues and crude extracts displayed ecologically relevant feeding deterrence in field bioassays was performed. Eleven compounds were characterized from the three red algae studied, of which four (1-3 and 9) were previously unreported, and four compounds were found from two brown algae, two (12 and 14) of which are new natural products. Several of these pure compounds have been individually investigated in ecological and/or pharmacological bioassays.
A Method for Finding Metabolic Pathways Using Atomic Group Tracking.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi
2017-01-01
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.
A Method for Finding Metabolic Pathways Using Atomic Group Tracking
Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi
2017-01-01
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354
Kamiński, Krzysztof; Rapacz, Anna; Filipek, Barbara; Obniska, Jolanta
2016-07-01
The focused library of 21 new N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide, 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)propanamide, and 2-(2,5-dioxopyrrolidin-1-yl)butanamide derivatives as potential new hybrid anticonvulsant agents was synthesized. These hybrid molecules were obtained as close analogs of previously described N-benzyl derivatives and fuse the chemical fragments of clinically relevant antiepileptic drugs such as ethosuximide, levetiracetam, and lacosamide. The initial anticonvulsant screening was performed in mice (ip) using the 'classical' maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests, as well as in the six-Hertz (6Hz) model of pharmacoresistant limbic seizures. Applying the rotarod test, the acute neurological toxicity was determined. The broad spectra of activity across the preclinical seizure models in mice (ip) displayed compounds 4, 5, 11, and 19. The most favorable anticonvulsant properties demonstrated 4 (ED50 MES=96.9mg/kg, ED50scPTZ=75.4mg/kg, ED50 6Hz=44.3mg/kg) which showed TD50=335.8mg/kg in the rotarod test that yielded satisfying protective indexes (PI MES=3.5, PI scPTZ=4.4, PI 6Hz=7.6). Consequently, compound 4 revealed comparable or better safety profile than model antiepileptic drugs (AEDs): ethosuximide, lacosamide, and valproic acid. In the in vitro assays, compound 4 was observed as relatively effective binder to the neuronal voltage-sensitive sodium and diltiazem site of L-type calcium channels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H
2012-01-01
Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.
Clinical relevance of findings in trials of CBT for depression.
Lepping, P; Whittington, R; Sambhi, R S; Lane, S; Poole, R; Leucht, S; Cuijpers, P; McCabe, R; Waheed, W
2017-09-01
Cognitive behavioural therapy (CBT) is beneficial in depression. Symptom scores can be translated into Clinical Global Impression (CGI) scale scores to indicate clinical relevance. We aimed to assess the clinical relevance of findings of randomised controlled trials (RCTs) of CBT in depression. We identified RCTs of CBT that used the Hamilton Rating Scale for Depression (HAMD). HAMD scores were translated into Clinical Global Impression - Change scale (CGI-I) scores to measure clinical relevance. One hundred and seventy datasets from 82 studies were included. The mean percentage HAMD change for treatment arms was 53.66%, and 29.81% for control arms, a statistically significant difference. Combined active therapies showed the biggest improvement on CGI-I score, followed by CBT alone. All active treatments had better than expected HAMD percentage reduction and CGI-I scores. CBT has a clinically relevant effect in depression, with a notional CGI-I score of 2.2, indicating a significant clinical response. The non-specific or placebo effect of being in a psychotherapy trial was a 29% reduction of HAMD. Copyright © 2017. Published by Elsevier Masson SAS.
Use of calcium channel blockers in hypertension.
Conlin, P R; Williams, G H
1998-01-01
During the past 20 years the number of subclasses of calcium channel blockers has increased from one to four. Three classes have only a single clinically approved compound: verapamil, diltiazem, and mibefradil. The fourth class, dihydropyridines, contains numerous compounds. All agents are effective in lowering blood pressure in short-term studies, and side effects that trouble the patient are infrequent. Long-term studies in hypertensive patients are limited. Short-acting agents such as nifedipine have been associated with an increased cardiovascular risk in some, but not all studies. These agents also probably create a compliance problem for hypertensive patients because of the need for multiple daily doses and their unpleasant side effects, e.g., ankle edema, palpitations, and flushing. Therefore, they are not useful or indicated for the treatment of hypertensive patients. No data have suggested that long-acting dihydropyridines or nondihydropyridine calcium channel blockers share the same fate. Indeed, several lines of evidence suggest the opposite: they have a cardioprotective effect. However, definitive information will require the completion of several long-term trials, including ALLHAT, CONVINCE, HOT, INSIGHT and NORDIL. Finally, it is important to reflect on the lessons learned from the controversy associated with the potential risks of calcium channel blockers. First, disagreements are common when one uses case-controlled studies and are reflective of the poor precision of the methods used. What is statistically relevant in one study may not hold true for another and may have no clinical relevance, particularly if the relative risk is less than 2. Investigators need to temper their enthusiasm to reflect this reality. Second, at the cutting edge of science there is probably relatively little agreement about what is correct among equally competent scientists. All have bias in their positions and should both recognize and admit so to themselves and their colleagues. Inferring that those who disagree have an unstated secondary agenda that will bring personal financial rewards or government accolades is inappropriate and counterproductive. Third, the randomized clinical trial, despite all its imperfections, is still the best tool to establish common ground on controversial issues. Finally, what may seem best from the public health perspective may not be in the best interest of the individual patient--a possibility that physicians have to constantly consider. For example, no public health benefit occurs if patients remain hypertensive because they fail to take their medications, no matter what the medication.
Sun, Jian-Ning; Sun, Wen-Yan; Dong, Shi-Fen
2017-03-01
The Chinese herbal compound formula preparation was made based on theory of Chinese medicine, which was confirmed by long period clinical application, and with multi-compound and multi-target characteristics. During the exploitation process of innovation medicine of Chinese herbal compound formula, selecting and speeding up the research development of drugs with clinical value shall be paid more attention, and as request of rules involved in new drug research and development, the whole process management should be carried out, including project evaluation, manufacturing process determination, establishment of quality control standards, evaluation for pharmacological and toxic effect, as well as new drug application process. This reviews was aimed to give some proposals for pharmacodynamics research methods involved in exploration of Chinese herbal compound formula preparation, including: ①the endpoint criteria should meet the clinical attribution of new drugs; ②the pre-clinical pharmacodynamics evaluation should be carried on appropriate animal models according to the characteristics of diagnosis and therapy of Chinese medicine and observation indexes; ③during the innovation of drug for infants and children, information on drug action conforming to physiological characteristics of infants and children should be supplied, and the pharmacodynamics and toxicology research shall be conducted in immature rats according to the body weight of children. In a summary, the clinical application characteristics are the important criteria for evaluation of pharmacological effect of innovation medicine of Chinese herbal compound formula. Copyright© by the Chinese Pharmaceutical Association.
Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation
Chain, Anne SY; Dubois, Vincent FS; Danhof, Meindert; Sturkenboom, Miriam CJM; Della Pasqua, Oscar
2013-01-01
Aims Given the similarities in QTc response between dogs and humans, dogs are used in pre-clinical cardiovascular safety studies. The objective of our investigation was to characterize the PKPD relationships and identify translational gaps across species following the administration of three compounds known to cause QTc interval prolongation, namely cisapride, d, l-sotalol and moxifloxacin. Methods Pharmacokinetic and pharmacodynamic data from experiments in conscious dogs and clinical trials were included in this analysis. First, pharmacokinetic modelling and deconvolution methods were applied to derive drug concentrations at the time of each QT measurement. A Bayesian PKPD model was then used to describe QT prolongation, allowing discrimination of drug-specific effects from other physiological factors known to alter QT interval duration. A threshold of ≥10 ms was used to explore the probability of prolongation after drug administration. Results A linear relationship was found to best describe the pro-arrhythmic effects of cisapride, d,l-sotalol and moxifloxacin both in dogs and in humans. The drug-specific parameter (slope) in dogs was statistically significantly different from humans. Despite such differences, our results show that the probability of QTc prolongation ≥10 ms in dogs nears 100% for all three compounds at the therapeutic exposure range in humans. Conclusions Our findings indicate that the slope of PKPD relationship in conscious dogs may be used as the basis for the prediction of drug-induced QTc prolongation in humans. Furthermore, the risk of QTc prolongation can be expressed in terms of the probability associated with an increase ≥10 ms, allowing direct inferences about the clinical relevance of the pro-arrhythmic potential of a molecule. PMID:23351036
Drug development in neuropsychopharmacology.
Fritze, Jürgen
2008-03-01
Personalized medicine is still in its infancy concerning drug development in neuropsychopharmacology. Adequate biomarkers with clinical relevance to drug response and/or tolerability and safety largely remain to be identified. Possibly, this kind of personalized medicine will first gain clinical relevance in the dementias. The clinical relevance of the genotyping of drug-metabolizing enzymes as suggested by drug licensing authorities for the pharmacokinetic evaluation of medicinal products needs to be proven in sound clinical trials.
Machrouhi, Fouzia; Ouhamou, Nouara; Laderoute, Keith; Calaoagan, Joy; Bukhtiyarova, Marina; Ehrlich, Paula J.; Klon, Anthony E.
2010-01-01
We have designed and synthesized analogues of compound C, a non-specific inhibitor of 5’-AMP-activated protein kinase (AMPK), using a computational fragment-based drug design (FBDD) approach. Synthesizing only twenty-seven analogues yielded a compound that was equipotent to compound C in the inhibition of the human AMPK (hAMPK) α2 subunit in the heterotrimeric complex in vitro, exhibited significantly improved selectivity against a subset of relevant kinases, and demonstrated enhanced cellular inhibition of AMPK. PMID:20932747
Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry
Alatraktchi, Fatima AlZahra’a; Breum Andersen, Sandra; Krogh Johansen, Helle; Molin, Søren; Svendsen, Winnie E.
2016-01-01
Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients. PMID:27007376
Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry.
Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh; Molin, Søren; Svendsen, Winnie E
2016-03-19
Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between -1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58-0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R² value of 0.991 across the clinically relevant concentration range of 2-100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients.
Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins.
Tiedeken, Erin Jo; Stout, Jane C; Stevenson, Philip C; Wright, Geraldine A
2014-05-01
Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l(-1)); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations.
Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf
2009-06-01
An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.
Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins
Tiedeken, Erin Jo; Stout, Jane C.; Stevenson, Philip C.; Wright, Geraldine A.
2014-01-01
Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l−1); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations. PMID:24526720
Ranilla, Lena Galvez; Kwon, Young-In; Apostolidis, Emmanouil; Shetty, Kalidas
2010-06-01
Traditionally used medicinal plants, herbs and spices in Latin America were investigated to determine their phenolic profiles, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension. High phenolic and antioxidant activity-containing medicinal plants and spices such as Chancapiedra (Phyllantus niruri L.), Zarzaparrilla (Smilax officinalis), Yerba Mate (Ilex paraguayensis St-Hil), and Huacatay (Tagetes minuta) had the highest anti-hyperglycemia relevant in vitro alpha-glucosidase inhibitory activities with no effect on alpha-amylase. Molle (Schinus molle), Maca (Lepidium meyenii Walp), Caigua (Cyclanthera pedata) and ginger (Zingiber officinale) inhibited significantly the hypertension relevant angiotensin I-converting enzyme (ACE). All evaluated pepper (Capsicum) genus exhibited both anti-hyperglycemia and anti-hypertension potential. Major phenolic compounds in Matico (Piper angustifolium R.), Guascas (Galinsoga parviflora) and Huacatay were chlorogenic acid and hydroxycinnamic acid derivatives. Therefore, specific medicinal plants, herbs and spices from Latin America have potential for hyperglycemia and hypertension prevention associated with Type 2 diabetes. (c) 2010 Elsevier Ltd. All rights reserved.
Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas
2014-09-08
Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. Copyright © 2014 Elsevier Inc. All rights reserved.
In vitro avarol does affect the growth of Candida sp.
Pejin, Boris; Ciric, Ana; Markovic, Dejan; Tommonaro, Giuseppina; Sokovic, Marina
2016-09-01
This work extends in vitro screening of antimicrobial activity of avarol, the marine natural product firstly isolated from the Mediterranean sponge Dysidea avara. Its anticandidial activity was evaluated by microdilution method against eight Candida strains, two ATCC and six clinical ones. At a different extent this compound was proven to be active against all the strains tested (MIC 0.8-6.0 μg/mL and MFC 1.6-12.0 μg/mL, respectively). According to the best of our knowledge, this is the first report on avarol activity towards any yeast strain which may be of relevance for Alzheimer's disease. Indeed, avarol derivatives showing moderate AChE activity should be screened for anticandidial activity both in vitro and in vivo.
Major depressive disorder: new clinical, neurobiological, and treatment perspectives
Kupfer, David J; Frank, Ellen; Phillips, Mary L
2012-01-01
In this Seminar we discuss developments from the past 5 years in the diagnosis, neurobiology, and treatment of major depressive disorder. For diagnosis, psychiatric and medical comorbidity have been emphasised as important factors in improving the appropriate assessment and management of depression. Advances in neurobiology have also increased, and we aim to indicate genetic, molecular, and neuroimaging studies that are relevant for assessment and treatment selection of this disorder. Further studies of depression-specific psychotherapies, the continued application of antidepressants, the development of new treatment compounds, and the status of new somatic treatments are also discussed. We address two treatment-related issues: suicide risk with selective serotonin reuptake inhibitors, and the safety of antidepressants in pregnancy. Although clear advances have been made, no fully satisfactory treatments for major depression are available. PMID:22189047
Designed multiple ligands in metabolic disease research: from concept to platform.
Gattrell, W; Johnstone, C; Patel, S; Smith, C Sambrook; Scheel, A; Schindler, M
2013-08-01
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and drug monotherapy typically results in unsatisfactory treatment outcomes for patients. Even when used in combination, existing therapies lack efficacy in the long term. Designed multiple ligands (DMLs) are compounds developed to modulate multiple targets relevant to a disease. DMLs offer the potential to yield greater efficacy over monotherapies, either by modulating different biological pathways, or by boosting a single one. However, examples of DMLs progressing into clinical trials, or onto the market are rare; DML drug discovery is challenging, and perceived by some to be almost impossible. Nevertheless, with the judicious selection of biological targets, both from a biological and chemical perspective, it is possible to develop drug-like DMLs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.
Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis
2015-12-05
The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Giraldo, N A; Amariles, P; Monsalve, M; Faus, M J
Highly active antiretroviral therapy has extended the expected lifespan of patients with HIV/AIDS. However, the therapeutic benefits of some drugs used simultaneously with highly active antiretroviral therapy may be adversely affected by drug interactions. The goal was to design and develop a free software to facilitate analysis, assessment, and clinical decision making according to the clinical relevance of drug interactions in patients with HIV/AIDS. A comprehensive Medline/PubMed database search of drug interactions was performed. Articles that recognized any drug interactions in HIV disease were selected. The publications accessed were limited to human studies in English or Spanish, with full texts retrieved. Drug interactions were analyzed, assessed, and grouped into four levels of clinical relevance according to gravity and probability. Software to systematize the information regarding drug interactions and their clinical relevance was designed and developed. Overall, 952 different references were retrieved and 446 selected; in addition, 67 articles were selected from the citation lists of identified articles. A total of 2119 pairs of drug interactions were identified; of this group, 2006 (94.7%) were drug-drug interactions, 1982 (93.5%) had an identified pharmacokinetic mechanism, and 1409 (66.5%) were mediated by enzyme inhibition. In terms of clinical relevance, 1285 (60.6%) drug interactions were clinically significant in patients with HIV (levels 1 and 2). With this information, a software program that facilitates identification and assessment of the clinical relevance of antiretroviral drug interactions (SIMARV ® ) was developed. A free software package with information on 2119 pairs of antiretroviral drug interactions was designed and developed that could facilitate analysis, assessment, and clinical decision making according to the clinical relevance of drug interactions in patients with HIV/AIDS. Copyright © 2016 Elsevier Inc. All rights reserved.
Bender, Andreas; Scheiber, Josef; Glick, Meir; Davies, John W; Azzaoui, Kamal; Hamon, Jacques; Urban, Laszlo; Whitebread, Steven; Jenkins, Jeremy L
2007-06-01
Preclinical Safety Pharmacology (PSP) attempts to anticipate adverse drug reactions (ADRs) during early phases of drug discovery by testing compounds in simple, in vitro binding assays (that is, preclinical profiling). The selection of PSP targets is based largely on circumstantial evidence of their contribution to known clinical ADRs, inferred from findings in clinical trials, animal experiments, and molecular studies going back more than forty years. In this work we explore PSP chemical space and its relevance for the prediction of adverse drug reactions. Firstly, in silico (computational) Bayesian models for 70 PSP-related targets were built, which are able to detect 93% of the ligands binding at IC(50) < or = 10 microM at an overall correct classification rate of about 94%. Secondly, employing the World Drug Index (WDI), a model for adverse drug reactions was built directly based on normalized side-effect annotations in the WDI, which does not require any underlying functional knowledge. This is, to our knowledge, the first attempt to predict adverse drug reactions across hundreds of categories from chemical structure alone. On average 90% of the adverse drug reactions observed with known, clinically used compounds were detected, an overall correct classification rate of 92%. Drugs withdrawn from the market (Rapacuronium, Suprofen) were tested in the model and their predicted ADRs align well with known ADRs. The analysis was repeated for acetylsalicylic acid and Benperidol which are still on the market. Importantly, features of the models are interpretable and back-projectable to chemical structure, raising the possibility of rationally engineering out adverse effects. By combining PSP and ADR models new hypotheses linking targets and adverse effects can be proposed and examples for the opioid mu and the muscarinic M2 receptors, as well as for cyclooxygenase-1 are presented. It is hoped that the generation of predictive models for adverse drug reactions is able to help support early SAR to accelerate drug discovery and decrease late stage attrition in drug discovery projects. In addition, models such as the ones presented here can be used for compound profiling in all development stages.
Fluorine Compounds and Dental Health: Applications of General Chemistry Topics
ERIC Educational Resources Information Center
Pinto, Gabriel
2009-01-01
An example about the use of everyday phenomena in teaching general chemistry is given. Students have a greater appreciation of the principles of chemistry if they can see the relevance to their lives. Fluorine compounds in dental applications (as topical or as systemic use) provide an excellent context in which to review core content of general…
Song, B G; Min, Y W; Lee, H; Min, B-H; Lee, J H; Rhee, P-L; Kim, J J
2018-03-01
Integrated relaxation pressure (IRP) is a key metric for diagnosing esophagogastric junction outflow obstruction (EGJOO). However, its normal value might be different according to the manufacturer of high-resolution manometry (HRM). This study aimed to investigate optimal value of IRP for diagnosing EGJOO in Sandhill HRM and to find clinicomanometric variables to segregate clinically relevant EGJOO. We analyzed 262 consecutive subjects who underwent HRM between June 2011 and December 2016 showing elevated median IRP (> 15 mm Hg) but did not satisfy criteria for achalasia. Clinically relevant subjects were defined as follows: (i) subsequent HRM met achalasia criteria during follow-up (early achalasia); (ii) Eckardt score was decreased at least two points without exceeding a score of 3 after pneumatic dilatation (variant achalasia); and (iii) significant passage disturbance on esophagogram without structural abnormality (possible achalasia). Seven subjects were clinically relevant, including two subjects with early achalasia, four subjects with variant achalasia, and one subject with possible achalasia. All clinically relevant subjects had IRP 20 mm Hg or above. Among subjects (n = 122) with IRP 20 mm Hg or more, clinically relevant group (n = 7) had significantly higher rate of dysphagia (100% vs 24.3%, P < .001) and compartmentalized pressurization (85.7% vs 21.7%, P = .001) compared to clinically non-relevant group (n = 115). Our results suggest that IRP of 20 mm Hg or higher could segregate clinically relevant subjects showing EGJOO in Sandhill HRM. Additionally, if subjects have both dysphagia and compartmentalized pressurization, careful follow-up is essential. © 2017 John Wiley & Sons Ltd.
Scotece, Morena; Conde, Javier; Abella, Vanessa; Lopez, Veronica; Pino, Jesús; Lago, Francisca; Smith, Amos B; Gómez-Reino, Juan J; Gualillo, Oreste
2015-04-01
Extra-virgin olive oil (EVOO), a principal component of the Mediterranean diet (Med diet), is one of the most ancient known foods and has long been associated with health benefits. Many phenolic compounds extracted from Olea europea L. have attracted attention since their discovery. Among these phenolic constituents, oleocanthal has recently emerged as a potential therapeutic molecule for different diseases, showing relevant pharmacological properties in various pathogenic processes, including inflammation, cancers and neurodegenerative diseases. Here, we discuss and summarize the most recent pharmacological evidence for the medical relevance of oleocanthal, focusing our attention on its anti-inflammatory and chemotherapeutic roles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hong, Yu-Jue; Huang, Yen-Ching; Lee, I-Long; Chiang, Che-Ming; Lin, Chitsan; Jeng, Hueiwang Anna
2015-01-01
This study was conducted to assess (1) levels of volatile organic compounds (VOCs) and particulate matter (PM) in a dental clinic in southern Taiwan and (2) dental care personnel's health risks associated with due to chronic exposure to VOCs. An automatic, continuous sampling system and a multi-gas monitor were employed to quantify the air pollutants, along with environmental comfort factors, including temperature, CO2, and relative humidity at six sampling sites in the clinic over eight days. Specific VOC compounds were identified and their concentrations were quantified. Both non-carcinogenic and carcinogenic VOC compounds were assessed based on the US Environmental Protection Agency's Principles of Health Risk Assessment in terms of whether those indoor air pollutants increased health risks for the full-time dental care professionals at the clinic. Increased levels of VOCs were recorded during business hours and exceeded limits recommended by the Taiwan Environmental Protection Agency. A total of 68 VOC compounds were identified in the study area. Methylene methacrylate (2.8 ppm) and acetone (0.176 ppm) were the only two non-carcinogenic compounds that posed increased risks for human health, yielding hazard indexes of 16.4 and 4.1, respectively. None of the carcinogenic compounds increased cancer risk. All detected PM10 levels ranged from 20 to 150 μg/m(3), which met the Taiwan EPA and international limits. The average PM10 level during business hours was significantly higher than that during non-business hours (P = 0.04). Improved ventilation capacity in the air conditioning system was recommended to reduce VOCs and PM levels.
Joerger, M; Hess, D; Delmonte, A; Gallerani, E; Fasolo, A; Gianni, L; Cresta, S; Barbieri, P; Pace, S; Sessa, C
2015-01-01
Aims Namitecan is a new camptothecan compound undergoing early clinical development. This study was initiated to build an integrated pharmacokinetic (PK) and pharmacodynamic (PD) population model of namitecan to guide future clinical development. Methods Plasma concentration–time data, neutrophils and thrombocytes were pooled from two phase 1 studies in 90 patients with advanced solid tumours, receiving namitecan as a 2 h infusion on days 1 and 8 every 3 weeks (D1,8) (n = 34), once every 3 weeks (D1) (n = 29) and on 3 consecutive days (D1–3) (n = 27). A linear three compartment PK model was coupled to a semiphysiological PD-model for neutrophils and thrombocytes. Data simulations were used to interrogate various dosing regimens and give dosing recommendations. Results Clearance was estimated to be 0.15 l h–1, with a long terminal half-life of 48 h. Body surface area was not associated with clearance, supporting flat-dosing of namitecan. A significant and clinically relevant association was found between namitecan area under the concentration–time curve (AUC) and the percentage drop of neutrophils (r2 = 0.51, P < 10−4) or thrombocytes (r2 = 0.49, P < 10−4). With a target for haematological dose-limiting toxicity of <20%, the recommended dose was defined as 12.5 mg for the D1,8 regimen, 23 mg for the once every 3 week regimen and 7 mg for the D1–3 regimen. Conclusion This is the first integrated population PK–PD analysis of the new hydrophilic topoisomerase I inhibitor namitecan, that is currently undergoing early clinical development. A distinct relationship was found between drug exposure and haematological toxicity, supporting flat-dosing once every 3 weeks as the most adequate dosing regimen. PMID:25580946
MalaCards: an integrated compendium for diseases and their annotation
Rappaport, Noa; Nativ, Noam; Stelzer, Gil; Twik, Michal; Guan-Golan, Yaron; Iny Stein, Tsippi; Bahir, Iris; Belinky, Frida; Morrey, C. Paul; Safran, Marilyn; Lancet, Doron
2013-01-01
Comprehensive disease classification, integration and annotation are crucial for biomedical discovery. At present, disease compilation is incomplete, heterogeneous and often lacking systematic inquiry mechanisms. We introduce MalaCards, an integrated database of human maladies and their annotations, modeled on the architecture and strategy of the GeneCards database of human genes. MalaCards mines and merges 44 data sources to generate a computerized card for each of 16 919 human diseases. Each MalaCard contains disease-specific prioritized annotations, as well as inter-disease connections, empowered by the GeneCards relational database, its searches and GeneDecks set analyses. First, we generate a disease list from 15 ranked sources, using disease-name unification heuristics. Next, we use four schemes to populate MalaCards sections: (i) directly interrogating disease resources, to establish integrated disease names, synonyms, summaries, drugs/therapeutics, clinical features, genetic tests and anatomical context; (ii) searching GeneCards for related publications, and for associated genes with corresponding relevance scores; (iii) analyzing disease-associated gene sets in GeneDecks to yield affiliated pathways, phenotypes, compounds and GO terms, sorted by a composite relevance score and presented with GeneCards links; and (iv) searching within MalaCards itself, e.g. for additional related diseases and anatomical context. The latter forms the basis for the construction of a disease network, based on shared MalaCards annotations, embodying associations based on etiology, clinical features and clinical conditions. This broadly disposed network has a power-law degree distribution, suggesting that this might be an inherent property of such networks. Work in progress includes hierarchical malady classification, ontological mapping and disease set analyses, striving to make MalaCards an even more effective tool for biomedical research. Database URL: http://www.malacards.org/ PMID:23584832
Qi, Yanyu; Xu, Wenjun; Kang, Rui; Ding, Nannan; Wang, Yelei; He, Gang; Fang, Yu
2018-02-21
This work reports a conceptual sensor array for the highly discriminative analysis of 20 clinically and environmentally relevant volatile small organic molecules (VSOMs), including saturated alkanes and common solvents, in the air at room temperature. For the construction of the sensor array, a four coordinated, non-planar mono-boron complex and four relevant polymers are synthesized. Based on the polymers and the use of different substrates, 8 fluorescent films have been fabricated. Integration of the film-based sensors results in the sensor array, which demonstrates unprecedented discriminating capability toward the VSOMs. Moreover, for the signal molecule of lung cancer, n -pentane, the response time is less than 1 s, the experimental detection limit is lower than 3.7 ppm, and after repeating the tests over 50 times no observable degradation was observed. The superior sensing performance is partially ascribed to the tetrahedral structure of the boron centers in the polymers as it may produce molecular channels in the films, which are a necessity for fast and reversible sensing. In addition, the polarity of the micro-channels may endow the films with additional selectivity towards the analytes. The design as demonstrated provides an effective strategy to improve the sensing performance of fluorescent films to very challenging analytes, such as saturated alkanes.
Vasquez, Amber M; Lake, Jason; Ngai, Stephanie; Halbrook, Megan; Vallabhaneni, Snigdha; Keckler, M Shannon; Moulton-Meissner, Heather; Lockhart, Shawn R; Lee, Christopher T; Perkins, Kiran; Perz, Joseph F; Antwi, Mike; Moore, Miranda S; Greenko, Jane; Adams, Eleanor; Haas, Janet; Elkind, Sandra; Berman, Marjorie; Zavasky, Dani; Chiller, Tom; Ackelsberg, Joel
2016-11-18
On May 24, 2016, the New York City Department of Health and Mental Hygiene notified CDC of two cases of Exophiala dermatitidis bloodstream infections among patients with malignancies who had received care from a single physician at an outpatient oncology facility (clinic A). Review of January 1-May 31, 2016 microbiology records identified E. dermatitidis bloodstream infections in two additional patients who also had received care at clinic A. All four patients had implanted vascular access ports and had received intravenous (IV) medications, including a compounded IV flush solution containing saline, heparin, vancomycin, and ceftazidime, compounded and administered at clinic A.
Carboplatin: the clinical spectrum to date.
Canetta, R; Rozencweig, M; Carter, S K
1985-09-01
The existing literature data base on carboplatin updated to June, 1985 has been reviewed. The compound seems to retain the same spectrum of activity as cisplatin, and a definite set of efficacy data is available for ovarian cancer of epithelial origin, small cell carcinoma of the lung and epidermoid carcinoma of the head and neck. A yet unpublished toxicity data base on carboplatin suggests that the compound has an improved therapeutic index over the parent compound, cisplatin, and that it does not seem inferior to another platinum coordination compound currently in clinical trials, iproplatin.
Froimowitz, M; Cody, V
1997-08-01
This study is an attempt to incorporate the butyrophenones, an important class of nontricyclic antipsychotic drugs, into a previously proposed pharmacophore model of tricyclic dopamine D2 receptor antagonist ligands. Conformational energy calculations were performed using the MM3-92 program on spiperone, as a representative butyrophenone, and milenperone and R48455, as related compounds with more limited conformational freedom. Twenty seven conformers were evaluated for spiperone with MM3-92 calculations and nine of these were within 1.1 kcal/mole of the global minima indicating the flexibility of the compound. A conformational analysis of twenty crystal structures of butyrophenones was also performed and six distinct conformers were represented. All of the energy minimized conformers of spiperone were superimposed in a least squares sense onto loxapine as a relatively rigid, typical D2 antagonist and a pair of mirror image conformers, which are observed in one crystal structure of spiperone, were found to be the best fit. However, it was not possible to discriminate between these two conformers since they fit the pharmacophore model equally well. The para-fluoro and carbonyl group of the butyrophenones were found to correspond best to the oxygen and chlorine atoms of loxapine, respectively. The conformations of milenperone and R48455 were also consistent with the two putative biologically active forms of spiperone and the pharmacophore model. Conformational energy calculations were also performed on molindone, an antipsychotic drug in clinical use, which can be related to the butyrophenones since both have a carbonyl group adjacent to an aromatic ring. A putative biologically active form was proposed for molindone and this was related to the structure of piquindone, a rigid analog of molindone. All of the compounds were found to be entirely consistent with the pharmacophore model. However, as previously found, there is great variability in the distance between the ammonium nitrogen and the center of the relevant aromatic ring with the most extreme case in the present study being R48455 where the distance is 7.2 A. The results of the present study should also be relevant to the structures of novel, atypical antipsychotic drugs such as risperidone which appear to be analogs of the butyrophenones.
Trustworthiness and relevance in web-based clinical question answering.
Cruchet, Sarah; Boyer, Célia; van der Plas, Lonneke
2012-01-01
Question answering systems try to give precise answers to a user's question posed in natural language. It is of utmost importance that the answers returned are relevant to the user's question. For clinical QA, the trustworthiness of answers is another important issue. Limiting the document collection to certified websites helps to improve the trustworthiness of answers. On the other hand, limited document collections are known to harm the relevancy of answers. We show, however, in a comparative evaluation, that promoting trustworthiness has no negative effect on the relevance of the retrieved answers in our clinical QA system. On the contrary, the answers found are in general more relevant.
From Traditional Usage to Pharmacological Evidence: Systematic Review of Gunnera perpensa L.
2016-01-01
Gunnera perpensa is the only species of the genus Gunnera that has been recorded in Africa. Its leaves, rhizomes, roots, and stems are reported to possess diverse medicinal properties and used to treat or manage various human and animal diseases and ailments. Gunnera perpensa is an ingredient in many herbal concoctions and prescriptions which have been used to induce or augment labour, postnatal medication, to treat parasitic diseases, urinary complaints, kidney problems, general body pains, sexually transmitted infections, and many other diseases. Several classes of phytochemicals including alkaloids, benzoquinones, ellagic acids, flavonoids, phenols, proanthocyanidins, tannins, and minerals have been isolated from G. perpensa. Scientific studies on G. perpensa indicate that it has a wide range of pharmacological activities including acetylcholinesterase, anthelmintic, antibacterial, antifungal, antinociceptive, anti-inflammatory, antioxidant, antitumour, lactogenic, and uterotonic. Gunnera perpensa has a lot of potential as a possible source of pharmaceutical products for the treatment of a wide range of both human and animal diseases and ailments. Some of the chemical compounds isolated from G. perpensa have demonstrated various biological activities when investigated in in vitro assays. Future research should focus on the mechanisms of action of the isolated compounds, their efficacy, toxicity, and clinical relevance. PMID:28053640
Kamiński, Krzysztof; Zagaja, Mirosław; Łuszczki, Jarogniew J; Rapacz, Anna; Andres-Mach, Marta; Latacz, Gniewomir; Kieć-Kononowicz, Katarzyna
2015-07-09
The library of 27 new 1-(4-phenylpiperazin-1-yl)- or 1-(morpholin-4-yl)-(2,5-dioxopyrrolidin-1-yl)propanamides and (2,5-dioxopyrrolidin-1-yl)butanamides as potential new hybrid anticonvulsant agents was synthesized. These hybrid molecules join the chemical fragments of well-known antiepileptic drugs (AEDs) such as ethosuximide, levetiracetam, and lacosamide. Compounds 5, 10, 11, and 24 displayed the broad spectra of activity across the preclinical seizure models, namely, the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (scPTZ) test, and the six-hertz (6 Hz) model of pharmacoresistant limbic seizures. The highest protection was demonstrated by 11 (ED50 MES = 88.4 mg/kg, ED50 scPTZ = 59.9 mg/kg, ED50 6 Hz = 21.0 mg/kg). This molecule did not impair the motor coordination of animals in the chimney test even at high doses (TD50 > 1500 mg/kg), yielding superb protective indexes (PI MES > 16.97, PI PTZ > 25.04, PI 6 Hz > 71.43). As a result, 11 displayed distinctly better safety profile than clinically relevant AEDs ethosuximide, lacosamide, or valproic acid.
Between pharmaceutical patents and European patients: is a compromise still possible?
Garattini, Livio; Padula, Anna
2017-10-01
Pharmaceutical regulation has always attempted to balance the public health objective to make safe and effective drugs available for patients while providing commercial incentives through patents. Here we discuss whether it is still possible to find a balance between the incentives on the supply side and the regulatory framework on the demand side. Areas covered: The current regulatory framework on pharmaceutical exclusivity has been harshly criticized by many experts, arguing about whether it is still fit for public purposes and needs. Here we envisage a different scenario without 'revolutionizing' the whole present system. The main radical change should concern the present management of pharmaceutical patents by introducing a specific agency dedicated to them. Secondly, specific pharmaceutical patents could be restricted to compounds for one (or more) declared indication(s). Thirdly, pharmaceutical patents should be kept only for compounds that start a first clinical trial within five years from the granting date. Expert opinion: We think it is time to reconsider the regulation of pharmaceutical patents in the light of their relevance in terms of public health. New models of enhancing research investments are required for long-term sustainability of public pharmaceutical expenditure and the EU can still play a leading role.
Natural product-based nanomedicine: recent advances and issues
Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin
2015-01-01
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M
2018-01-01
Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.
Ginger-Mechanism of action in chemotherapy-induced nausea and vomiting: A review.
Marx, Wolfgang; Ried, Karin; McCarthy, Alexandra L; Vitetta, Luis; Sali, Avni; McKavanagh, Daniel; Isenring, Liz
2017-01-02
Despite advances in antiemetic therapy, chemotherapy-induced nausea and vomiting (CINV) still poses a significant burden to patients undergoing chemotherapy. Nausea, in particular, is still highly prevalent in this population. Ginger has been traditionally used as a folk remedy for gastrointestinal complaints and has been suggested as a viable adjuvant treatment for nausea and vomiting in the cancer context. Substantial research has revealed ginger to possess properties that could exert multiple beneficial effects on chemotherapy patients who experience nausea and vomiting. Bioactive compounds within the rhizome of ginger, particularly the gingerol and shogaol class of compounds, interact with several pathways that are directly implicated in CINV in addition to pathways that could play secondary roles by exacerbating symptoms. These properties include 5-HT 3 , substance P, and acetylcholine receptor antagonism; antiinflammatory properties; and modulation of cellular redox signaling, vasopressin release, gastrointestinal motility, and gastric emptying rate. This review outlines these proposed mechanisms by discussing the results of clinical, in vitro, and animal studies both within the chemotherapy context and in other relevant fields. The evidence presented in this review indicates that ginger possesses multiple properties that could be beneficial in reducing CINV.
Grant, Claire; Ewart, Lorna; Muthas, Daniel; Deavall, Damian; Smith, Simon A; Clack, Glen; Newham, Pete
2016-04-01
Nausea and vomiting are components of a complex mechanism that signals food avoidance and protection of the body against the absorption of ingested toxins. This response can also be triggered by pharmaceuticals. Predicting clinical nausea and vomiting liability for pharmaceutical agents based on pre-clinical data can be problematic as no single animal model is a universal predictor. Moreover, efforts to improve models are hampered by the lack of translational animal and human data in the public domain. AZD3514 is a novel, orally-administered compound that inhibits androgen receptor signaling and down-regulates androgen receptor expression. Here we have explored the utility of integrating data from several pre-clinical models to predict nausea and vomiting in the clinic. Single and repeat doses of AZD3514 resulted in emesis, salivation and gastrointestinal disturbances in the dog, and inhibited gastric emptying in rats after a single dose. AZD3514, at clinically relevant exposures, induced dose-responsive "pica" behaviour in rats after single and multiple daily doses, and induced retching and vomiting behaviour in ferrets after a single dose. We compare these data with the clinical manifestation of nausea and vomiting encountered in patients with castration-resistant prostate cancer receiving AZD3514. Our data reveal a striking relationship between the pre-clinical observations described and the experience of nausea and vomiting in the clinic. In conclusion, the emetic nature of AZD3514 was predicted across a range of pre-clinical models, and the approach presented provides a valuable framework for predicition of clinical nausea and vomiting. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Richard, Pierre; Zhang, W.-L.; Wu, S.-F.; van Roekeghem, A.; Zhang, P.; Miao, H.; Qian, T.; Nie, S.-M.; Chen, G.-F.; Ding, H.; Xu, N.; Biermann, S.; Capan, C.; Fisk, Z.; Saparov, B. I.; Sefat, A. S.
2015-03-01
It is widely believed that the key ingredients for high-temperature superconductivity are already present in the non-superconducting parent compounds. With its ability to probe the single-particle electronic structure directly in the momentum space, ARPES is a very powerful tool to determine which parameters of the electronic structure are possibly relevant for promoting superconductivity. Here we report ARPES studies on the parent compounds of the 122 family of Fe-based superconductors and their 3 d transition metal pnictide cousins. In particular, we show that the Fe-compound exhibits the largest electronic correlations, possibly a determining factor for unconventional superconductivity.
Gas-liquid chromatography in lunar organic analysis.
NASA Technical Reports Server (NTRS)
Gehrke, C. W.
1972-01-01
Gas-liquid chromatography (GLC) is a powerful and sensitive method for the separation and detection of organic compounds at nanogram levels. The primary requirement for successful analyses is that the compounds of interest must be volatile under the chromatographic conditions employed. Nonvolatile organic compounds must be converted to volatile derivatives prior to analysis. The derivatives of choice must be both amenable to chromatographic separation and be relatively stable. The condition of volatility necessitates the development of efficient derivatization reactions for important groups of compounds as amino acids, carbohydrates, nucleosides, etc. Trimethylsilylation and trifluoroacetylation represent specific areas of recent prominence. Some relevant practical aspects of GLC are discussed.
MMP Inhibitors: Past, present and future.
Cathcart, Jillian M; Cao, Jian
2015-06-01
Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.
Knöbel, Melanie; Busser, Frans J M; Rico-Rico, Angeles; Kramer, Nynke I; Hermens, Joop L M; Hafner, Christoph; Tanneberger, Katrin; Schirmer, Kristin; Scholz, Stefan
2012-09-04
The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).
Drewes, J E; Anderson, P; Denslow, N; Olivieri, A; Schlenk, D; Snyder, S A; Maruya, K A
2013-01-01
This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound.
NASA Astrophysics Data System (ADS)
Rauh, Cornelia; Delgado, Antonio
2010-12-01
High pressures of up to several hundreds of MPa are utilized in a wide range of applications in chemical, bio-, and food engineering, aiming at selective control of (bio-)chemical reactions. Non-uniformity of process conditions may threaten the safety and quality of the resulting products because processing conditions such as pressure, temperature, and treatment history are crucial for the course of (bio-)chemical reactions. Therefore, thermofluid-dynamical phenomena during the high pressure process have to be examined, and numerical tools to predict process uniformity and to optimize the processes have to be developed. Recently applied mathematical models and numerical simulations of laboratory and industrial scale high pressure processes investigating the mentioned crucial phenomena are based on continuum balancing models of thermofluid dynamics. Nevertheless, biological systems are complex fluids containing the relevant (bio-)chemical compounds (enzymes and microorganisms). These compounds are particles that interact with the surrounding medium and between each other. This contribution deals with thermofluid-dynamical interactions of the relevant particulate (bio-)chemical compounds (enzymes and microorganisms) with the surrounding fluid. By consideration of characteristic time and length scales and particle forces, the motion of the (bio-)chemical compounds is characterized.
Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E
2010-10-01
The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted. 2010 Elsevier GmbH. All rights reserved.
Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H
2015-01-01
The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Kai; Zhang, Liqiang; Zhu, Liang; Zhu, Xifeng
2017-06-01
The cornstalk and chlorella were selected as the representative of lignocelulosic and algal biomass, and the pyrolysis experiments of them were carried out using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The physicochemical properties of samples and the pyrolytic product distribution were presented. And then the compositional differences between the two kinds of pyrolytic products were studied, the relevant pyrolysis mechanisms were analyzed systematically. Pyrolytic vapor from lignocellulosic biomass contained more phenolic and carbonyl compounds while that from algal biomass contained more long-chain fatty acids, nitrogen-containing compounds and fewer carbonyl compounds. Maillard reaction is conducive to the conversion of carbonyl compounds to nitrogenous heterocyclic compounds with better thermal stability. Copyright © 2017 Elsevier Ltd. All rights reserved.
SIFT-MS analysis of Iberian hams from pigs reared under different conditions.
Carrapiso, Ana I; Noseda, Bert; García, Carmen; Reina, Raquel; Sánchez Del Pulgar, José; Devlieghere, Frank
2015-06-01
The aim of this study was to investigate the usefulness of a Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) equipment to tentatively quantify relevant volatile compounds of dry-cured Iberian ham, and to differentiate Iberian hams from pigs reared at four different conditions yielding different commercial grades. The SIFT-MS analysis allowed the rapid quantification of 39 Iberian ham volatile compounds, 16 of them being significantly affected by the rearing conditions of pigs. The full spectra SIFT-MS data allowed the correct classification of 79.2% of hams according to diet, which is a smaller percentage than that obtained using intramuscular fatty acid data (95.8%) obtained by using a gas chromatograph-flame ionization detector after lipid extraction and transesterification. Therefore, the SIFT-MS analysis would be a rapid tool to tentatively quantify some relevant volatile compounds, and also would provide a rapid but rough classification of Iberian ham according to the rearing conditions of pigs. Copyright © 2015 Elsevier Ltd. All rights reserved.
2016-03-07
and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the...broad spectrum of toxic industrial compounds rapidly (within an hour) at concentrations relevant to human health , that the device be field-portable...laboratory setting and was able to detect potential water contaminants at concentrations that are relevant to human health . The portability and
Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...
Clinical applications of bioactive milk components
Newburg, David S.
2015-01-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications. PMID:26011900
Clinical applications of bioactive milk components.
Hill, David R; Newburg, David S
2015-07-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications.
Reflections on relevance: Psychotherapy and Psychosomatics in 2004.
Balon, Richard
2005-01-01
Relevance of an article is a highly desirable yet hardly predictable quality at the time of its publication. Article relevance is frequently measured by the impact factor of the journal where the article is published. Furthermore, impact factor, citation index and citation analysis are used as a measure of research progress and scientific wealth of a nation. The wisdom and significance of this approach to relevance is debatable and thus discussed here. In 2004, Psychotherapy and Psychosomatics published a variety of articles which, in the author's view, are clinically relevant. Several selected clinically relevant issues reviewed in this article include: the conceptualization of fibromyalgia as a stress disorder; the psychosocial impact and psychosocial interventions in cancer; the impact of alexithymia on patient care; the possible relationship between depression and nutrition (namely intake of folate and pyridoxal phosphate); the significance of hypercoagulability in panic-like anxiety; the questionable value of single isomer drugs, and the relevance and adequacy of clinimetrics versus psychometrics in clinical research. The reviewed issues seem to be relevant to clinical practice, research or both, but also to our critical thinking, and the critical review of the developments in psychiatry and psychology. Copyright 2005 S. Karger AG, Basel.
Lebwohl, D; Canetta, R
1998-09-01
The vast amount of basic research on platinum coordination complexes has produced, over the past 25 years, several thousand new molecules for preclinical screening and 28 compounds which have entered clinical development. The goals of these research activities have been to identify compounds with superior efficacy, reduced toxicity, lack of cross-resistance or improved pharmacological characteristics as compared with the parent compound, cisplatin. After the remarkable therapeutic effects of cisplatin had been established, only a few other platinum compounds succeeded in reaching general availability. Whereas carboplatin is an analogue with an improved therapeutic index (mostly driven by reduced organ toxicity) over that of cisplatin, new compounds clearly more active than or non-cross-resistant with cisplatin have not yet been identified. The platinum analogues that remain under investigation are focusing on expanding the utilisation of platinum therapy to tumour types not usually treated with, or responsive to, cisplatin or carboplatin. In addition, novel routes of administration constitute another avenue of research. The clinical development of platinum coordination complexes, with emphasis on those compounds still under active development, is reviewed.
Induction of cellular and molecular immunomodulatory pathways by vitamin A and Flavonoids
Patel, Sapna; Vajdy, Michael
2016-01-01
Introduction A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. Areas Covered Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of Vitamin A and select flavonoids in induction of innate and adaptive B and T cell responses, including TH1, TH2 and Treg. Expert Opinion While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immuno-modulatory compounds. PMID:26185959
Hahn, Christian; Erb, Klaus Joseph
2008-06-01
Identifying and developing novel chemical entities (NCE) for the treatment of asthma is a time-consuming process and liabilities that endanger the successful progression of a compound from research into the patient are found throughout all phases of drug discovery. In particular the failure of advanced compounds in clinical studies due to lack of efficacy and/or safety concerns is tremendously costly. Therefore, in order to try and reduce the failure rate in clinical trials various in vitro and in vivo tests are performed during preclinical development, to rapidly identify liabilities, eliminate high risk compounds and promote promising potential drug candidates. To achieve this objective, numerous prerequisites have to be met regarding the physico-chemical properties of the compound, and bioactivity or model systems are needed to rate the therapeutic potential of new compounds. Drug liabilities such as target and species specificity, formulation issues, pharmacokinetics as well as pharmacodynamics and the toxic potential of the compound have to be analyzed in great detail before a compound can enter a clinical trial. A particularly challenging aspect of developing novel NCEs for the treatment of asthma is choosing and setting up in vivo models believed to be predictive for human disease. Numerous companies have in the past and are currently developing NCEs targeting many different pathways and cells with the aim to treat asthma. However, currently the only NCE having a significant market share are long-acting beta-agonists (LABA), inhaled and orally active steroids and leukotriene receptor antagonists. In the past many novel NCE for the treatment of asthma were effective in animal models but failed in the clinic. In this review we outline the prerequisites of novel NCE needed for clinical development.
Diagnostic value of clinical tests for degenerative rotator cuff disease in medical practice.
Lasbleiz, S; Quintero, N; Ea, K; Petrover, D; Aout, M; Laredo, J D; Vicaut, E; Bardin, T; Orcel, P; Beaudreuil, J
2014-06-01
To assess the diagnostic value of clinical tests for degenerative rotator cuff disease (DRCD) in medical practice. Patients with DRCD were prospectively included. Eleven clinical tests of the rotator cuff have been done. One radiologist performed ultrasonography (US) of the shoulder. Results of US were expressed as normal tendon, tendinopathy or full-thickness tear (the reference). For each clinical test and each US criteria, sensitivity, specificity, negative predictive value and positive predictive value, accuracy, negative likelihood ratio (NLR) and positive likelihood ratio (PLR) were calculated. Clinical relevance was defined as PLR ≥2 and NLR ≤0.5. For 35 patients (39 shoulders), Jobe (PLR: 2.08, NLR: 0.31) and full-can (2, 0.5) test results were relevant for diagnosis of supraspinatus tears and resisted lateral rotation (2.42, 0.5) for infraspinatus tears, with weakness as response criteria. The lift-off test (8.50, 0.27) was relevant for subscapularis tears with lag sign as response criteria. Yergason's test (3.7, 0.41) was relevant for tendinopathy of the long head of the biceps with pain as a response criterion. There was no relevant clinical test for diagnosis of tendinopathy of supraspinatus, infraspinatus or subscapularis. Five of 11 clinical tests were relevant for degenerative rotator cuff disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter
2016-01-01
Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967
Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk.
Cizmas, Leslie; Sharma, Virender K; Gray, Cole M; McDonald, Thomas J
2015-12-01
Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies.
Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk
Sharma, Virender K.; Gray, Cole M.; McDonald, Thomas J.
2016-01-01
Pharmaceuticals and personal care products (PPCP) are compounds with special physical and chemical properties that address the care of animal and human health. PPCP have been detected in surface water and wastewater in the ng/L to µg/L concentration range worldwide. PPCP ecotoxicity has been studied in a variety of organisms, and multiple methods have been used to assess the risk of PPCP in the environment to ecological health. Here we review the occurrence, effects, and risk assessment of PPCP in aquatic systems, as well as the sustainability of current methods for managing PPCP contamination in aquatic systems. The major points are the following: (1) a number of PPCP present potential concerns at environmentally relevant concentrations. PPCP mixtures may produce synergistic toxicity. (2) Various methods have been used for the ecological risk assessment of PPCP in aquatic systems. There are similarities in these methods, but no consensus has emerged regarding best practices for the ecological risk assessment of these compounds. (3) Human health risk assessments of PPCP contamination in aquatic systems have generally indicated little cause for concern. However, there is a lack of information regarding whether antibiotic contamination in wastewater and aquatic systems could lead to an increase in clinically relevant antibiotic-resistant bacteria and antibiotic-resistant genes. (4) Over the next century, the combination of increasing global population size and potential droughts may result in reduced water availability, increased need for water reuse, and increasing concentrations of PPCP in wastewaters. The current wastewater treatment methods do not remove all PPCP effectively. This, coupled with the possibility that antibiotics may promote the development of antibiotic-resistant bacteria and antibiotic-resistant genes, leads to concerns about the sustainability of global water supplies. PMID:28592954
Cosmetic Preservatives as Therapeutic Corneal and Scleral Tissue Cross-Linking Agents
Babar, Natasha; Kim, MiJung; Cao, Kerry; Shimizu, Yukari; Kim, Su-Young; Takaoka, Anna; Trokel, Stephen L.; Paik, David C.
2015-01-01
Purpose. Previously, aliphatic β-nitroalcohols (BNAs) have been studied as a means to chemically induce tissue cross-linking (TXL) of cornea and sclera. There are a number of related and possibly more potent agents, known as formaldehyde releasers (FARs), that are in commercial use as preservatives in cosmetics and other personal care products. The present study was undertaken in order to screen such compounds for potential clinical utility as therapeutic TXL agents. Methods. A chemical registry of 62 FARs was created from a literature review and included characteristics relevant to TXL such as molecular weight, carcinogenicity/mutagenicity, toxicity, hydrophobicity, and commercial availability. From this registry, five compounds [diazolidinyl urea (DAU), imidazolidinyl urea (IMU), sodium hydroxymethylglycinate (SMG), DMDM hydantoin (DMDM), 5-Ethyl-3,7-dioxa-1-azabicyclo [3.3.0] octane (OCT)] were selected for efficacy screening using two independent systems, an ex vivo rabbit corneal cross-linking simulation setup and incubation of cut scleral tissue pieces. Treatments were conducted at pH 7.4 or 8.5 for 30 minutes. Efficacy was evaluated using thermal denaturation temperature (Tm), and cell toxicity was studied using the trypan blue exclusion method. Results. Cross-linking effects in the five selected FARs were pH and concentration dependent. Overall, the Tm shifts were in agreement with both cornea and sclera. By comparison with BNAs previously reported upon, the FARs identified in this study were significantly more potent but with similar or better cytotoxicity. Conclusions. The FARs, a class of compounds well known to the cosmetic industry, may have utility as therapeutic TXL agents. The compounds studied thus far show promise and will be further tested. PMID:25634979
Mertens-Talcott, Susanne U; De Castro, Whocely Victor; Manthey, John A; Derendorf, Hartmut; Butterweck, Veronika
2007-04-04
Many studies investigating drug interactions with citrus compounds focus on the major grapefruit furanocoumarins bergamottin, dihydroxybergamottin, and the flavonoid naringenin. This study evaluated the influence of polymethoxylated flavones (PMFs), tangeretin, nobiletin, 3,5,6,7,8,3,4'-heptamethoxyflavone, and sinensetin, as well as other minor occurring citrus phenols, hesperetin, limettin, 7-OH-coumarin, 7-geranyloxycoumarin, and eriodictyol, on P-glycoprotein-mediated transport of the beta-blocker talinolol using the Caco-2 cell monolayer model and was used to determine the structure-function aspects of the interaction. The transport of talinolol across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of the calcium-channel blocker verapamil (a known inhibitor of P-glycoprotein) and citrus compounds. A sigmoid dose-response model was used to fit the data and to estimate the IC50 values of the potential inhibitors. Results from this study show that PMFs significantly decreased talinolol transport from the basolateral to apical side, where tangeretin had the lowest IC50 of 3.2 micromol/L, followed by nobiletin, heptamethoxyflavone, and sinensetin with IC50 values of 3.5, 3.8, and 3.9 micromol/L, respectively. However, the efficacy of the compounds did not appear to be dependent on the number of methoxy groups. Other citrus compounds did not have any significant effect on the transport of talinolol. This study suggests that PMFs have a high potential in the interaction with P-gp-mediated talinolol transport in Caco-2 cells. Based on their relatively low concentrations (< or =3 microg/mL) in citrus, the clinical relevance of these interactions needs to be further elucidated in in vivo studies.
Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin
2016-07-20
The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.
Natural product and natural product derived drugs in clinical trials.
Butler, Mark S; Robertson, Avril A B; Cooper, Matthew A
2014-11-01
There are a significant number of natural product (NP) drugs in development. We review the 100 NP and NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) with a NP-derived cytotoxic component being evaluated in clinical trials or in registration at the end of 2013. 38 of these compounds and 33 ADCs are being investigated as potential oncology treatments, 26 as anti-infectives, 19 for the treatment of cardiovascular and metabolic diseases, 11 for inflammatory and related diseases and 6 for neurology. There was a spread of the NP and NP-derived compounds through the different development phases (17 in phase I, 52 in phase II, 23 in phase III and 8 NDA and/or MAA filed), while there were 23 ADCs in phase I and 10 in phase II. 50 of these 100 compounds were either NPs or semi-synthetic (SS) NPs, which indicated the original NP still plays an important role. NP and NP-derived compounds for which clinical trials have been halted or discontinued since 2008 are listed in the Supplementary Information. The 25 NP and NP-derived drugs launched since 2008 are also reviewed, and late stage development candidates and new NP drug pharmacophores analysed. The short term prospect for new NP and NP-derived drug approvals is bright, with 31 compounds in phase III or in registration, which should ensure a steady stream of approvals for at least the next five years. However, there could be future issues for new drug types as only five new drug pharmacophores discovered in the last 15 years are currently being evaluated in clinical trials. The next few years will be critical for NP-driven lead discovery, and a concerted effort is required to identify new biologically active pharmacophores and to progress these and existing compounds through pre-clinical drug development into clinical trials.
Lokker, Cynthia; Haynes, R Brian; Wilczynski, Nancy L; McKibbon, K Ann; Walter, Stephen D
2011-01-01
Clinical Queries filters were developed to improve the retrieval of high-quality studies in searches on clinical matters. The study objective was to determine the yield of relevant citations and physician satisfaction while searching for diagnostic and treatment studies using the Clinical Queries page of PubMed compared with searching PubMed without these filters. Forty practicing physicians, presented with standardized treatment and diagnosis questions and one question of their choosing, entered search terms which were processed in a random, blinded fashion through PubMed alone and PubMed Clinical Queries. Participants rated search retrievals for applicability to the question at hand and satisfaction. For treatment, the primary outcome of retrieval of relevant articles was not significantly different between the groups, but a higher proportion of articles from the Clinical Queries searches met methodologic criteria (p=0.049), and more articles were published in core internal medicine journals (p=0.056). For diagnosis, the filtered results returned more relevant articles (p=0.031) and fewer irrelevant articles (overall retrieval less, p=0.023); participants needed to screen fewer articles before arriving at the first relevant citation (p<0.05). Relevance was also influenced by content terms used by participants in searching. Participants varied greatly in their search performance. Clinical Queries filtered searches returned more high-quality studies, though the retrieval of relevant articles was only statistically different between the groups for diagnosis questions. Retrieving clinically important research studies from Medline is a challenging task for physicians. Methodological search filters can improve search retrieval.
Duarte, Iola F; Lamego, Ines; Marques, Joana; Marques, M Paula M; Blaise, Benjamin J; Gil, Ana M
2010-11-05
In the present study, (1)H HRMAS NMR spectroscopy was used to assess the changes in the intracellular metabolic profile of MG-63 human osteosarcoma (OS) cells induced by the chemotherapy agent cisplatin (CDDP) at different times of exposure. Multivariate analysis was applied to the cells spectra, enabling consistent variation patterns to be detected and drug-specific metabolic effects to be identified. Statistical recoupling of variables (SRV) analysis and spectral integration enabled the most relevant spectral changes to be evaluated, revealing significant time-dependent alterations in lipids, choline-containing compounds, some amino acids, polyalcohols, and nitrogenated bases. The metabolic relevance of these compounds in the response of MG-63 cells to CDDP treatment is discussed.
Is the full potential of the biopharmaceutics classification system reached?
Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders
2014-06-16
In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. Copyright © 2013 Elsevier B.V. All rights reserved.
Clinical relevance of diagnosing COPD by fixed ratio or lower limit of normal: a systematic review.
van Dijk, Wouter D; Gupta, Nisha; Tan, Wan C; Bourbeau, Jean
2014-02-01
Different spirometric criteria in diagnosing COPD have been advocated by different groups, debilitating adequate diagnosis and treatment of COPD. We reviewed the clinical relevance of fixed ratio and lower limit of normal (LLN) in diagnosing COPD and explored if modifying factors may affect their clinical relevance. Two reviewers independently searched PubMed and Embase for papers that compared both criteria on any clinically relevant outcome, published before June 1st, 2012, without any language restriction. Two reviewers independently extracted the study characteristics, including study design, population characteristics and diagnostic criteria used, and summarized the results of clinical relevance. Study quality was assessed by scoring forms for bias and level of evidence. Of 394 studies retrieved, 11 studies were included, with a median of 1,258 participants. Although both criteria appeared related with various clinically relevant outcomes, we were unable to prefer one criterion over the other, with various performances of the criteria for different outcomes. Should the criteria disagree on diagnosis, an alternative diagnosis should be suspected, in particular in those (elderly) with less severe airflow limitation for whom the LLN appears a better criterion. The fixed ratio appears to perform better in subjects with more severe airflow limitation. In diagnosing COPD, severity of airflow limitation appears an important factor for choosing whether the fixed ratio or LLN. Disagreement between the criteria is suggestive for an alternative diagnosis. Future studies on clinical relevance should further reveal the criterion of choice, in order to improve adequate diagnosis and consequent treatments.
Towards functional selectivity for α6β3γ2 GABAA receptors: a series of novel pyrazoloquinolinones
Treven, Marco; Siebert, David C B; Holzinger, Raphael; Bampali, Konstantina; Fabjan, Jure; Varagic, Zdravko; Wimmer, Laurin; Steudle, Friederike; Scholze, Petra; Schnürch, Michael; Mihovilovic, Marko D
2017-01-01
Background and Purpose The GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones. Experimental Approach Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method. Key Results We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces. Conclusion and Implications These results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms. PMID:29127702
Carbon Monoxide: An Essential Signalling Molecule
NASA Astrophysics Data System (ADS)
Mann, Brian E.
Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).
Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio
2014-01-01
Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.
Gupta, Rakesh Kumar; Patel, Amit Kumar
2013-01-01
Morinda citrifolia, also known as Great Morinda, Indian Mulberry, or Noni, is a plant belonging to the family Rubiaceae. A number of major chemical compounds have been identified in the leaves, roots, and fruits of Noni plant. The fruit juice is in high demand in alternative medicine for different kinds for illnesses such as arthritis, diabetes, high blood pressure, muscle ached and pains, menstrual difficulties, headache, heart diseases, AIDS, gastric ulcer, sprains, mental depression, senility, poor digestion, arteriosclerosis, blood vessel problems, and drug addiction. Several studies have also demonstrated the anti-inflammatory, antioxidant and apoptosis-inducing effect of Noni in various cancers. Based on a toxicological assessment, Noni juice was considered as safe. Though a large number of in vitro, and, to a certain extent, in vivo studies demonstrated a range of potentially beneficial effects, clinical data are essentially lacking. To what extent the findings from experimental pharmacological studies are of potential clinical relevance is not clear at present and this question needs to be explored in detail before an recommendations can be made.
Cardiac ion channel modulation by the hypoglycaemic agent rosiglitazone.
Hancox, J C
2011-06-01
The hypoglycaemic thiazolidinedione rosiglitazone is used clinically in the treatment of type 2 diabetes. However, in 2010, information relating to rosiglitazone-associated increased cardiovascular risk led the European Medicines Agency to recommend suspension of marketing authorizations for rosiglitazone-containing anti-diabetes drugs, while the US Food and Drug Administration recommended significant restriction on the agent's use. Two timely studies in this issue of the British Journal of Phrarmacology provide new information regarding modification of cardiac cellular electrophysiology by rosiglitazone. Szentandrássy et al. demonstrate canine ventricular action potential modification and concentration-dependent suppression of L-type Ca current and of transient outward and rapid delayed rectifier K currents. Jeong et al. demonstrate concentration-dependent inhibition of recombinant K(v) 4.3 channels, providing mechanistic insight into the likely molecular basis of transient outward K current inhibition by the compound. Further studies using diabetic models would be of value to determine whether, in a diabetic setting, rosiglitazone modification of these channels could affect the risk of arrhythmia at clinically relevant drug concentrations. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Schramm, E; Mühlberger, F; Mitschke, S; Reichardt, G; Schulte-Ladbeck, R; Pütz, M; Zimmermann, R
2008-02-01
Several ionization potentials (IPs) of security relevant substances were determined with single photon ionization time of flight mass spectrometry (SPI-TOFMS) using monochromatized synchrotron radiation from the "Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung" (BESSY). In detail, the IPs of nine explosives and related compounds, seven narcotics and narcotics precursors, and one chemical warfare agent (CWA) precursor were determined, whereas six IPs already known from the literature were verified correctly. From seven other substances, including one CWA precursor, the IP could not be determined as the molecule ion peak could not be detected. For these substances the appearance energy (AE) of a main fragment was determined. The analyzed security-relevant substances showed IPs significantly below the IPs of common matrix compounds such as nitrogen and oxygen. Therefore, it is possible to find photon energies in between, whereby the molecules of interest can be detected with SPI in very low concentrations due to the shielding of the matrix. All determined IPs except the one of the explosive EGDN were below 10.5 eV. Hence, laser-generated 118 nm photons can be applied for detecting almost all security-relevant substances by, e.g., SPI-TOFMS.
Insights from clinical research completed during the west Africa Ebola virus disease epidemic
Rojek, Amanda; Horby, Peter; Dunning, Jake
2018-01-01
The west Africa Ebola virus disease (EVD) epidemic was extraordinary in scale. Now that the epidemic has ended, it is a relevant time to examine published studies with direct relevance to clinical care and, more broadly, to examine the implications of the clinical research response mounted. Clinically relevant research includes literature detailing risk factors for and clinical manifestations of EVD, laboratory and other investigation findings in patients, experimental vaccine and therapeutic clinical trials, and analyses of survivor syndrome. In this Review, we discuss new insights from patient-oriented research completed during the west Africa epidemic, identify ongoing knowledge gaps, and suggest priorities for future research. PMID:28461209
Characterization of Covalent-Reversible EGFR Inhibitors
2017-01-01
Within the spectrum of kinase inhibitors, covalent-reversible inhibitors (CRIs) provide a valuable alternative approach to classical covalent inhibitors. This special class of inhibitors can be optimized for an extended drug-target residence time. For CRIs, it was shown that the fast addition of thiols to electron-deficient olefins leads to a covalent bond that can break reversibly under proteolytic conditions. Research groups are just beginning to include CRIs in their arsenal of compound classes, and, with that, the understanding of this interesting set of chemical warheads is growing. However, systems to assess both characteristics of the covalent-reversible bond in a simple experimental setting are sparse. Here, we have developed an efficient methodology to characterize the covalent and reversible properties of CRIs and to investigate their potential in targeting clinically relevant variants of the receptor tyrosine kinase EGFR.
Antifungal activity of synthetic di(hetero)arylamines based on the benzo[b]thiophene moiety.
Pinto, Eugénia; Queiroz, Maria-João R P; Vale-Silva, Luís A; Oliveira, João F; Begouin, Agathe; Begouin, Jeanne-Marie; Kirsch, Gilbert
2008-09-01
The antifungal activity of several di(hetero)arylamine derivatives of the benzo[b]thiophene system was evaluated against clinically relevant Candida, Aspergillus, and dermatophyte species by a broth macrodilution test based on CLSI (formerly NCCLS) guidelines. The most active compound showed a broad spectrum of activity (against all tested fungal strains, including fluconazole-resistant fungi), with particularly low MICs for dermatophytes. Results from the inhibition of the dimorphic transition in Candida albicans and flow cytometry studies further confirmed their biological activity. With this study it was possible to establish some structure-activity relationships (SARs). The hydroxy groups proved to be essential for the activity in the aryl derivatives. Furthermore, the spectrum of activity in the pyridine derivatives was broadened by the absence of the ester group on position 2 of the benzo[b]thiophene system.
Secondary metabolites from marine-derived microorganisms.
Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu
2014-01-01
In the search for novel and bioactive molecules for drug discovery, marine-derived natural resources, especially marine microorganisms are becoming an important and interesting research area. This study covers the literature published after 2008 on secondary metabolites of marine-derived microorganisms. The emphasis was on new compounds with the relevant biological activities, strain information, and country of origin. New compounds without biological activity were not included.
Developing a novel dual PI3K–mTOR inhibitor from the prodrug of a metabolite
Zhou, Yan; Zhang, Genyan; Wang, Feng; Wang, Jin; Ding, Yanwei; Li, Xinyu; Shi, Chongtie; Li, Jiakui; Shih, Chengkon; You, Song
2017-01-01
This study presents a process of developing a novel PI3K–mTOR inhibitor through the prodrug of a metabolite. The lead compound (compound 1) was identified with similar efficacy as that of NVP-BEZ235 in a tumor xenograft model, but the exposure of compound 1 was much lower than that of NVP-BEZ235. After reanalysis of the blood sample, a major metabolite (compound 2) was identified. Compound 2 exerted similar in vitro activity as compound 1, which indicated that compound 2 was an active metabolite and that the in vivo efficacy in the animal model came from compound 2 instead of compound 1. However, compound 1 was metabolized into compound 2 predominantly in the liver microsomes of mouse, but not in the liver microsomes of rat, dog, or human. In order to translate the efficacy in the animal model into clinical development or predict the pharmacokinetic/pharmacodynamic parameters in the clinical study using a preclinical model, we developed the metabolite (compound 2) instead of compound 1. Due to the low bioavailability of compound 2, its prodrug (compound 3) was designed and synthesized to improve the solubility. The prodrug was quickly converted to compound 2 through both intravenous and oral administrations. Because the prodrug (compound 3) did not improve the oral exposure of compound 2, developing compound 3 as an intravenous drug was considered by our team, and the latest results will be reported in the future. PMID:29118584
Rangarajan, Srinivas; Mavrikakis, Manos
2016-04-07
The adsorption of 20 nitrogen-/sulfur-containing and hydrocarbon compounds on the sulfur edge of cobalt-promoted molybdenum sulfide (CoMoS) catalyst was studied using density functional theory, accounting for van der Waals interactions, to elicit comparative structure–property trends across different classes of molecules relevant to hydrotreating. Unhindered organosulfur compounds preferentially adsorb on a “CUS-like” site formed by the dimerization of two neighboring sulfur atoms on the edge to create a vacancy. Nitrogen-containing compounds and 4,6-dimethyldibenzothiophene, however, prefer the brim sites. Binding energy trends indicate that nitrogen-containing compounds will inhibit hydrodesulfurization on the brim sites and, relatively weakly, on the CUS-like sites. Edge vacanciesmore » are,thus, likely to be essential for hydrodesulfurization of unhindered organosulfur compounds. Furthermore, van der Waals forces contribute significantly to the binding energy of compounds (up to 1.0 eV for large compounds such as alkyl-substituted acridines) on CoMoS.« less
Kamiński, Krzysztof; Zagaja, Mirosław; Rapacz, Anna; Łuszczki, Jarogniew J; Andres-Mach, Marta; Abram, Michał; Obniska, Jolanta
2016-02-15
The purpose of this study was to synthetize the focused library of 34 new piperazinamides of 3-methyl- and 3,3-dimethyl-(2,5-dioxopyrrolidin-1-yl)propanoic or butanoic acids as potential new hybrid anticonvulsants. These hybrid molecules join the chemical fragments of well-known antiepileptic drugs (AEDs) such as ethosuximide, levetiracetam, and lacosamide. Compounds 5-38 were prepared in a coupling reaction of the 3-methyl- or 3,3-dimethyl-2-(2,5-dioxopyrrolidin-1-yl)propanoic (1, 2) or butanoic acids (3, 4) with the appropriately substituted secondary amines in the presence of the N,N-carbonyldiimidazole reagent. The initial anticonvulsant screening was performed in mice (ip) using the 'classical' maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests as well as in the six-Hertz (6Hz) model of pharmacoresistant limbic seizures. The acute neurological toxicity was determined applying the chimney test. The broad spectra of activity across the preclinical seizure models in mice ip displayed compounds 7, 15, and 36. The most favorable anticonvulsant properties demonstrated 15 (ED50 MES=74.8mg/kg, ED50scPTZ=51.6mg/kg, ED50 6Hz=16.8mg/kg) which showed TD50=213.3mg/kg in the chimney test that yielded satisfying protective indexes (PI MES=2.85, PI scPTZ=4.13, PI 6Hz=12.70) at time point of 0.5h. As a result, compound 15 displayed comparable or better safety profile than clinically relevant AEDs: ethosuximide, lacosamide or valproic acid. In the in vitro assays compound 15 was observed as relatively effective binder to the neuronal voltage-sensitive sodium and L-type calcium channels. Beyond the anticonvulsant properties, 6 compounds diminished the pain responses in the formalin model of tonic pain in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa
2017-01-01
Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, K i of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted K i values from the proposed model show a strong coefficient of determination, R 2 =0.996, to experimental K i values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low K i values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted K i should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low K i . Copyright © 2016 Elsevier Inc. All rights reserved.
Quantifying exploratory low dose compounds in humans with AMS
Dueker, Stephen R.; Vuong, Le T.; Lohstroh, Peter N.; Giacomo, Jason A.; Vogel, John S.
2010-01-01
Accelerator Mass Spectrometry is an established technology whose essentiality extends beyond simply a better detector for radiolabeled molecules. Attomole sensitivity reduces radioisotope exposures in clinical subjects to the point that no population need be excluded from clinical study. Insights in human physiochemistry are enabled by the quantitative recovery of simplified AMS processes that provide biological concentrations of all labeled metabolites and total compound related material at non-saturating levels. In this paper, we review some of the exploratory applications of AMS 14C in toxicological, nutritional, and pharmacological research. This body of research addresses the human physiochemistry of important compounds in their own right, but also serves as examples of the analytical methods and clinical practices that are available for studying low dose physiochemistry of candidate therapeutic compounds, helping to broaden the knowledge base of AMS application in pharmaceutical research. PMID:21047543
Identifying Opportunities for Vertical Integration of Biochemistry and Clinical Medicine.
Wendelberger, Karen J.; Burke, Rebecca; Haas, Arthur L.; Harenwattananon, Marisa; Simpson, Deborah
1998-01-01
Objectives: Retention of basic science knowledge, as judged by National Board of Medical Examiners' (NBME) data, suffers due to lack of apparent relevance and isolation of instruction from clinical application, especially in biochemistry. However, the literature reveals no systematic process for identifying key biochemical concepts and associated clinical conditions. This study systematically identified difficult biochemical concepts and their common clinical conditions as a critical step towards enhancing relevance and retention of biochemistry.Methods: A multi-step/ multiple stakeholder process was used to: (1) identify important biochemistry concepts; (2) determine students' perceptions of concept difficulty; (3) assess biochemistry faculty, student, and clinical teaching scholars' perceived relevance of identified concepts; and (4) identify associated common clinical conditions for relevant and difficult concepts. Surveys and a modified Delphi process were used to gather data, subsequently analyzed using SPSS for Windows.Results: Sixteen key biochemical concepts were identified. Second year medical students rated 14/16 concepts as extremely difficult while fourth year students rated nine concepts as moderately to extremely difficult. On average, each teaching scholar generated common clinical conditions for 6.2 of the 16 concepts, yielding a set of seven critical concepts and associated clinical conditions.Conclusions: Key stakeholders in the instructional process struggle to identify biochemistry concepts that are critical, difficult to learn and associated with common clinical conditions. However, through a systematic process beginning with identification of concepts and associated clinical conditions, relevance of basic science instruction can be enhanced.
Burger-Kentischer, Anke; Finkelmeier, Doris; Keller, Petra; Bauer, Jörg; Eickhoff, Holger; Kleymann, Gerald; Abu Rayyan, Walid; Singh, Anurag; Schröppel, Klaus; Lemuth, Karin; Wiesmüller, Karl-Heinz; Rupp, Steffen
2011-01-01
Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules. PMID:21746957
A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers.
Okour, Malek; Derimanov, Geo; Barnett, Rodger; Fernandez, Esther; Ferrer, Santiago; Gresham, Stephanie; Hossain, Mohammad; Gamo, Francisco-Javier; Koh, Gavin; Pereira, Adrian; Rolfe, Katie; Wong, Deborah; Young, Graeme; Rami, Harshad; Haselden, John
2018-03-01
GSK3191607, a novel inhibitor of the Plasmodium falciparum ATP4 (PfATP4) pathway, is being considered for development in humans. However, a key problem encountered during the preclinical evaluation of the compound was its inconsistent pharmacokinetic (PK) profile across preclinical species (mouse, rat and dog), which prevented reliable prediction of PK parameters in humans and precluded a well-founded assessment of the potential for clinical development of the compound. Therefore, an open-label microdose (100 μg, six subjects) first time in humans study was conducted to assess the human PK of GSK3191607 following intravenous administration of [14C]-GSK3191607. A human microdose study was conducted to investigate the clinical PK of GSK3191607 and enable a Go/No Go decision on further progression of the compound. The PK disposition parameters estimated from the microdose study, combined with preclinical in vitro and in vivo pharmacodynamic parameters, were all used to estimate the potential efficacy of various oral dosing regimens in humans. The PK profile, based on the microdose data, demonstrated a half-life (~17 h) similar to other antimalarial compounds currently in clinical development. However, combining the microdose data with the pharmacodynamic data provided results that do not support further clinical development of the compound for a single dose cure. The information generated by this study provides a basis for predicting the expected oral PK profiles of GSK3191607 in man and supports decisions on the future clinical development of the compound. © 2017 The British Pharmacological Society.
Srinivas, Nuggehally R
2006-05-01
The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.
How to Prepare SMC and BMC-like Compounds to Perform Relevant Rheological Experiments?
NASA Astrophysics Data System (ADS)
Guiraud, Olivier; Dumont, Pierre J. J.; Orgéas, Laurent
2013-04-01
The study of the rheology of injected or compression moulded compounds like SMC or BMC is made particularly difficult by the high content and the intricate arrangement of their fibrous reinforcement. For these two types of compounds, inappropriate rheological testing protocols and rheometers are often used, which leads to a very large scatter of the experimental data. This study describes specific sampling and specimen's preparation methods, as well as dedicated rheometry devices to test their rheology. Following the proposed protocols, it is possible to obtain rheological measurements showing low scatter of the recorded stress values: about ±10% for SMC and about ±15% for BMC-like compounds.
Inhibitory Mechanisms of Human CYPs by Three Alkaloids Isolated from Traditional Chinese Herbs.
Zhao, Yong; Hellum, Bent Håvard; Liang, Aihua; Nilsen, Odd Georg
2015-06-01
The three purified herbal compounds tetrahydropalmatine (Tet), neferine and berberine (Ber) were explored in vitro for basic inhibition mechanisms towards recombinant human CYP1A2, CYP2D6 and CYP3A4 metabolic activities. Phenacetin, dextromethorphan and testosterone, respectively, were used as CYP1A2, CYP2D6 and CYP3A4 substrates, and their metabolites were determined by validated HPLC methodologies. Positive inhibition controls were used. Mechanism-based (irreversible) inhibition was assessed by time-dependent and nicotinamide adenine dinucleotide phosphate-dependent and reversible inhibition by Lineweaver-Burk plot assessments. Inhibition mechanisms were also assessed by computerized interaction prediction by using the Discovery Studio CDOCKER software (Accelrys, San Diego, CA, USA). Tetrahydropalmatine showed a mechanism-based inhibition of both CYP1A2 and CYP2D6, and Ber of CYP2D6. Neferine and Ber both showed a nonmechanistic inhibition of CYP1A2. All compounds showed a similar and significant mechanism-based inhibition of CYP3A4. Tetrahydropalmatine and Ber demonstrated both reversible and irreversible inhibition of CYP2D6 and CYP3A4. Tetrahydropalmatine and Ber displayed H-bond and several Pi-bond connections with specific amino acid residues of CYP1A2, CYP2D6 and CYP3A4, giving further knowledge to the identified reversible and irreversible herb-drug interactions. Tetrahydropalmatine and Ber should be considered for herb-drug interactions in clinical therapy until relevant clinical studies are available. Copyright © 2015 John Wiley & Sons, Ltd.
Pharmacology and Clinical Drug Candidates in Redox Medicine
Casas, Ana I.; Maghzal, Ghassan J.; Seredenina, Tamara; Kaludercic, Nina; Robledinos-Anton, Natalia; Di Lisa, Fabio; Stocker, Roland; Ghezzi, Pietro; Jaquet, Vincent; Cuadrado, Antonio
2015-01-01
Abstract Significance: Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful. Recent Advances: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is, up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not for indications based on oxidative stress, and repurposing seems to be a viable option. Critical Issues: For all other targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study, specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. Future Directions: The current promising data based on new targets, drugs, and drug repurposing are mainly a result of academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near future, possibly leading towards a new era of redox medicine. Antioxid. Redox Signal. 23, 1113–1129. PMID:26415051
2013-01-01
Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron
2014-03-01
Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.
Detecting clinically relevant new information in clinical notes across specialties and settings.
Zhang, Rui; Pakhomov, Serguei V S; Arsoniadis, Elliot G; Lee, Janet T; Wang, Yan; Melton, Genevieve B
2017-07-05
Automated methods for identifying clinically relevant new versus redundant information in electronic health record (EHR) clinical notes is useful for clinicians and researchers involved in patient care and clinical research, respectively. We evaluated methods to automatically identify clinically relevant new information in clinical notes, and compared the quantity of redundant information across specialties and clinical settings. Statistical language models augmented with semantic similarity measures were evaluated as a means to detect and quantify clinically relevant new and redundant information over longitudinal clinical notes for a given patient. A corpus of 591 progress notes over 40 inpatient admissions was annotated for new information longitudinally by physicians to generate a reference standard. Note redundancy between various specialties was evaluated on 71,021 outpatient notes and 64,695 inpatient notes from 500 solid organ transplant patients (April 2015 through August 2015). Our best method achieved at best performance of 0.87 recall, 0.62 precision, and 0.72 F-measure. Addition of semantic similarity metrics compared to baseline improved recall but otherwise resulted in similar performance. While outpatient and inpatient notes had relatively similar levels of high redundancy (61% and 68%, respectively), redundancy differed by author specialty with mean redundancy of 75%, 66%, 57%, and 55% observed in pediatric, internal medicine, psychiatry and surgical notes, respectively. Automated techniques with statistical language models for detecting redundant versus clinically relevant new information in clinical notes do not improve with the addition of semantic similarity measures. While levels of redundancy seem relatively similar in the inpatient and ambulatory settings in the Fairview Health Services, clinical note redundancy appears to vary significantly with different medical specialties.
Histamine and H1-antihistamines: celebrating a century of progress.
Simons, F Estelle R; Simons, Keith J
2011-12-01
In this review we celebrate a century of progress since the initial description of the physiologic and pathologic roles of histamine and 70 years of progress since the introduction of H(1)-antihistamines for clinical use. We discuss histamine and clinically relevant information about the molecular mechanisms of action of H(1)-antihistamines as inverse agonists (not antagonists or blockers) with immunoregulatory effects. Unlike first (old)-generation H(1)-antihistamines introduced from 1942 to the mid-1980s, most of the second (new)-generation H(1)-antihistamines introduced subsequently have been investigated extensively with regard to clinical pharmacology, efficacy, and safety; moreover, they are relatively free from adverse effects and not causally linked with fatalities after overdose. Important advances include improved nasal and ophthalmic H(1)-antihistamines with rapid onset of action (in minutes) for allergic rhinitis and allergic conjunctivitis treatment, respectively, and effective and safe use of high (up to 4-fold) doses of oral second-generation H(1)-antihistamines for chronic urticaria treatment. New H(1)-antihistamines introduced for clinical use include oral formulations (bilastine and rupatadine), and ophthalmic formulations (alcaftadine and bepotastine). Clinical studies of H(3)-antihistamines with enhanced decongestant effects have been conducted in patients with allergic rhinitis. Additional novel compounds being studied include H(4)-antihistamines with anti-inflammatory effects in allergic rhinitis, atopic dermatitis, and other diseases. Antihistamines have a storied past and a promising future. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Ontology-based content analysis of US patent applications from 2001-2010.
Weber, Lutz; Böhme, Timo; Irmer, Matthias
2013-01-01
Ontology-based semantic text analysis methods allow to automatically extract knowledge relationships and data from text documents. In this review, we have applied these technologies for the systematic analysis of pharmaceutical patents. Hierarchical concepts from the knowledge domains of chemical compounds, diseases and proteins were used to annotate full-text US patent applications that deal with pharmacological activities of chemical compounds and filed in the years 2001-2010. Compounds claimed in these applications have been classified into their respective compound classes to review the distribution of scaffold types or general compound classes such as natural products in a time-dependent manner. Similarly, the target proteins and claimed utility of the compounds have been classified and the most relevant were extracted. The method presented allows the discovery of the main areas of innovation as well as emerging fields of patenting activities - providing a broad statistical basis for competitor analysis and decision-making efforts.
ERIC Educational Resources Information Center
Downing, Steven M.; Maatsch, Jack L.
To test the effect of clinically relevant multiple-choice item content on the validity of statistical discriminations of physicians' clinical competence, data were collected from a field test of the Emergency Medicine Examination, test items for the certification of specialists in emergency medicine. Two 91-item multiple-choice subscales were…
Van den Bergh, An; Van Hemelryck, Sandy; Bevernage, Jan; Van Peer, Achiel; Brewster, Marcus; Mackie, Claire; Mannaert, Erik
2018-06-11
The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( F abs,sol ) and relative ( F rel, susp/sol ) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having F rel,susp/sol and F abs,sol in both rat and dog at doses around 10 and 5 mg/kg, respectively. The bioavailability outcomes in the dog aligned well with a BCS-like classification based upon the solubility of the active pharmaceutical ingredient (API) in biorelevant media, while the alignment was less clear for the bioavailability data in the rat. A retrospective analysis on the clinically tested formulations for a set of 12 Janssen compounds confirmed that the previously proposed animal bioavailability-based decision tree facilitated decisions on the oral formulation type, with the dog as the most discriminative species. Furthermore, the analysis showed that based on a Do for a standard human dose of 100 mg in aqueous and/or biorelevant media, a similar formulation type would have been selected compared to the one suggested by the animal data. However, the concept of a Do did not distinguish between solubility enhancing or enabling formulations and does not consider the API permeability, and hence, it produces the risk of slow and potentially incomplete oral absorption of an API with poor intestinal permeability. In cases where clinical dose estimations are available early in development, the preclinical bioavailability studies and dose number calculations, used to guide formulation selection, may be performed at more relevant doses instead of the proposed standard human dose. It should be noted, however, that unlike in late development, there is uncertainty on the clinical dose estimated in the early clinical phases because that dose is usually only based on in vitro and/or in vivo animal pharmacology models, or early clinical biomarker information. Therefore, formulation strategies may be adjusted based on emerging data supporting clinical doses. In summary, combined early information on in vitro-assessed API solubility and permeability, preclinical suspension/solution bioavailability data in relation to the intravenous clearance, and metabolic pathways of the API can strengthen formulation decisions. However, these data may not always fully distinguish between conventional (e.g., to be taken with food), enhancing, and enabling formulations. Therefore, to avoid overinvestment in complex and expensive enabling technologies, it is useful to evaluate a conventional and solubility (and/or permeability) enhancing formulation under fasted and fed conditions, as part of a first-in-human study or in a subsequent early human bioavailability study, for compounds with high Do, a low animal F rel,susp/sol , or low F abs,sol caused by precipitation of the solubilized API.
Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects
Gal, Yoav; Mazor, Ohad; Falach, Reut; Sapoznikov, Anita; Kronman, Chanoch; Sabo, Tamar
2017-01-01
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations. PMID:28972558
Thinking small: towards microRNA-based therapeutics for anxiety disorders.
Scott, Karen A; Hoban, Alan E; Clarke, Gerard; Moloney, Gerard M; Dinan, Timothy G; Cryan, John F
2015-04-01
Anxiety disorders are the most frequently diagnosed psychiatric conditions, negatively affecting quality of life and creating a significant economic burden. These complex disorders are extremely difficult to treat, and there is a great need for novel therapeutics with greater efficacy and minimal adverse side effects. In this review, the authors describe the role that microribonucleic acids (microRNA or miRNA) play in the development of anxiety disorders and their potential to serve as biomarkers of disease as well as targets for pharmacological treatment. Furthermore, the authors discuss the current state of miRNA research, including both preclinical and clinical studies of anxiety disorders. There is mounting evidence that circulating miRNA may serve as biomarkers of disease and play a role in the development of disease, including psychiatric conditions such as anxiety disorders. Great strides have been made in cancer research, with miRNA-based therapies already in use in clinical studies. However, the use of miRNA for the treatment of neurological disorders, and psychiatric disorders in particular, is still in its nascent stage. The development of safe compounds that are able to cross the blood-brain barrier and target specific cell populations, which are relevant to anxiety-related neurocircuitry, is paramount for the emergence of novel, efficacious miRNA-based therapies in clinical settings.
A critical evaluation of developmental and reproductive toxicology in nonhuman primates.
Faqi, Ali S
2012-02-01
The nonhuman primates (NHPs) are used in many areas of biomedical research where their similarities to humans make them exclusively valuable animal models. The use of NHPs in pre-clinical testing is expected to increase due to the increase in the development of biological compounds for therapeutic uses. The regulatory agencies around the world including Food and Drug Administration (FDA) generally requires developmental and reproductive toxicity (DART) testing of all new drugs to be used by women of childbearing age or men of reproductive potential. NHPs are most frequently used for DART testing when commonly used rodents and/or rabbits are not pharmacologically relevant species. Animal studies are unique in that assessment of reproduction and development as DART studies are not performed in controlled clinical trials; therefore, pre-clinical safety assessment forms the basis for risk assessment for marketed drug products. This paper provides a critical evaluation of developmental and reproductive toxicity studies in NHPs. The manuscript will focus on species selection, limitation of International Conference for Harmonization stages (A-F) using NHPs as a test system, study designs, logistical/technical challenges, and strength, and limitations. It will also pinpoint confounding factors inherent to the test system that may complicate the interpretation of the NHP DART data.
Hepatic fibrosis: Concept to treatment.
Trautwein, Christian; Friedman, Scott L; Schuppan, Detlef; Pinzani, Massimo
2015-04-01
Understanding the molecular mechanisms underlying liver fibrogenesis is fundamentally relevant to developing new treatments that are independent of the underlying etiology. The increasing success of antiviral treatments in blocking or reversing the fibrogenic progression of chronic liver disease has unearthed vital information about the natural history of fibrosis regression, and has established important principles and targets for antifibrotic drugs. Although antifibrotic activity has been demonstrated for many compounds in vitro and in animal models, none has been thoroughly validated in the clinic or commercialized as a therapy for fibrosis. In addition, it is likely that combination therapies that affect two or more key pathogenic targets and/or pathways will be needed. To accelerate the preclinical development of these combination therapies, reliable single target validation is necessary, followed by the rational selection and systematic testing of combination approaches. Improved noninvasive tools for the assessment of fibrosis content, fibrogenesis and fibrolysis must accompany in vivo validation in experimental fibrosis models, and especially in clinical trials. The rapidly changing landscape of clinical trial design for liver disease is recognized by regulatory agencies in the United States (FDA) and Western Europe (EMA), who are working together with the broad range of stakeholders to standardize approaches to testing antifibrotic drugs in cohorts of patients with chronic liver diseases. Copyright © 2015. Published by Elsevier B.V.
Boizard, Franck; Brunchault, Valérie; Moulos, Panagiotis; Breuil, Benjamin; Klein, Julie; Lounis, Nadia; Caubet, Cécile; Tellier, Stéphanie; Bascands, Jean-Loup; Decramer, Stéphane; Schanstra, Joost P; Buffin-Meyer, Bénédicte
2016-10-03
Although capillary electrophoresis coupled to mass spectrometry (CE-MS) has potential application in the field of metabolite profiling, very few studies actually used CE-MS to identify clinically useful body fluid metabolites. Here we present an optimized CE-MS setup and analysis pipeline to reproducibly explore the metabolite content of urine. We show that the use of a beveled tip capillary improves the sensitivity of detection over a flat tip. We also present a novel normalization procedure based on the use of endogenous stable urinary metabolites identified in the combined metabolome of 75 different urine samples from healthy and diseased individuals. This method allows a highly reproducible comparison of the same sample analyzed nearly 130 times over a range of 4 years. To demonstrate the use of this pipeline in clinical research we compared the urinary metabolome of 34 newborns with ureteropelvic junction (UPJ) obstruction and 15 healthy newborns. We identified 32 features with differential urinary abundance. Combination of the 32 compounds in a SVM classifier predicted with 76% sensitivity and 86% specificity UPJ obstruction in a separate validation cohort of 24 individuals. Thus, this study demonstrates the feasibility to use CE-MS as a tool for the identification of clinically relevant urinary metabolites.
Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects.
Gal, Yoav; Mazor, Ohad; Falach, Reut; Sapoznikov, Anita; Kronman, Chanoch; Sabo, Tamar
2017-10-03
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet
2012-01-01
Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932
Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening.
Lu, Hong Fang; Leong, Meng Fatt; Lim, Tze Chiun; Chua, Ying Ping; Lim, Jia Kai; Du, Chan; Wan, Andrew C A
2017-05-11
Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies. Cardiac tissues were fabricated via cellular self-assembly of human transgene-free induced pluripotent stem cells-derived cardiomyocytes in pre-fabricated polydimethylsiloxane molds. The formed tissue constructs expressed cardiomyocyte-specific proteins, exhibited robust production of extracellular matrix components such as laminin, collagen and fibronectin, aligned sarcomeric organization, and stable spontaneous contractions for up to 2 months. Functional characterization revealed that the cardiac cells cultured in 3D tissues exhibited higher contraction speed and rate, and displayed a significantly different drug response compared to cells cultured in age-matched 2D monolayer. A panel of clinically relevant compounds including antibiotic, antidiabetic and anticancer drugs were tested in this study. Compared to conventional viability assays, our functional contractility-based assays were more sensitive in predicting drug-induced cardiotoxic effects, demonstrating good concordance with clinical observations. Thus, our 3D cardiac tissue model shows great potential to be used for early safety evaluation in drug development and drug efficiency testing for personalized therapy.
Sacubitril/Valsartan in an Elderly Patient with Heart Failure: A Case Report.
Cameli, Matteo; Pastore, Maria Concetta; Pagliaro, Antonio; Di Tommaso, Cristina; Reccia, Rosanna; Curci, Valeria; Mandoli, Giulia Elena; Mondillo, Sergio
2017-01-01
Sacubitril/valsartan has recently been approved for the treatment of heart failure with reduced ejection fraction. Given its recent introduction in the armamentarium for the treatment of heart failure (HF), "field-practice" evidence is required to deepen the clinical management of sacubitril/valsartan therapy. We report a relevant case of an elderly patient who achieved major clinical benefits after only 3 months of sacubitril/valsartan therapy. Importantly, in our assessment, we employed speckle tracking echocardiography (STE), a recent echocardiography technique that is non-Doppler and not angle dependent, which analyzes deformations of heart chambers from standard images and allows a fast, reliable, and reproducible assessment of heart function. After 3 months of therapy, NHYA class decreased from III to I-II and hypertension was controlled. Echocardiography examination also showed a marked improvement, with a reduction of left ventricular diameter, improved diastolic function (E = 0.39 m/s; A 0.69 m/s; E/A 0.55), normalized diastolic function index (E/E' TDI = 6.93), normalized atrial volume (63 mL), and improved atrial strain (15.44%). This case report documents the fast clinical and symptom improvement with sacubitril/valsartan in an elderly patient with HF; comprehensive echocardiographic assessment, including STE, also revealed a marked functional improvement with this compound. © 2017 S. Karger AG, Basel.
Russo, Maria; Russo, Gian Luigi
2018-07-01
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape. Copyright © 2018 Elsevier Inc. All rights reserved.
DISCRETE COMPOUND POISSON PROCESSES AND TABLES OF THE GEOMETRIC POISSON DISTRIBUTION.
A concise summary of the salient properties of discrete Poisson processes , with emphasis on comparing the geometric and logarithmic Poisson processes . The...the geometric Poisson process are given for 176 sets of parameter values. New discrete compound Poisson processes are also introduced. These...processes have properties that are particularly relevant when the summation of several different Poisson processes is to be analyzed. This study provides the
Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling.
Reflection spectra of solids of planetary interest
NASA Technical Reports Server (NTRS)
Sill, G. T.
1973-01-01
The spectra of solids are reproduced which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra are included of various sulfides, some at low temperature, relevant to the planet Jupiter. Meteorite and coal abstracts are also included, to illustrate dark carbon compounds.
Reflection spectra of solids of planetary interest
NASA Technical Reports Server (NTRS)
Sill, G. T.; Carm, O.
1973-01-01
This paper reproduces the spectra of solids which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra (some at low temperature) are included for various sulfides relevant to the planet Jupiter. Meteorite and coal spectra are also included to illustrate dark carbon compounds.
Construction of an Exploratory List of Chemicals to Initiate the Search for Halon Alternatives
1991-06-01
of owne-depletion effectiveness is based on atmospheric modeling. The only experimental work is the determination of possible reaction paths and...results, and additional relevant comments. These compounds should be tested in a selective series of experiments based on the insights used in the...will generate initial information with regard to the relative ordering of the compounds in terms of screen properties. Careful experimentation will
Metabolic PathFinding: inferring relevant pathways in biochemical networks.
Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques
2005-07-01
Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).
Martín-Rodríguez, Alberto J.; Babarro, Jose M. F.; Lahoz, Fernando; Sansón, Marta; Martín, Víctor S.; Norte, Manuel; Fernández, José J.
2015-01-01
‘Onium’ compounds, including ammonium and phosphonium salts, have been employed as antiseptics and disinfectants. These cationic biocides have been incorporated into multiple materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphenylphosphonium salts, differing mainly in the length and functionalization of their alkyl chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed new light on their potential applications, beyond their classic use as broad-spectrum biocides. In this regard, we demonstrate for the first time that these compounds are also able to act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobacterium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovincialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase) is characterized. An analysis of the structure-activity relationships of these compounds for antifouling purposes is provided, which may result useful in the design of targeted antifouling solutions with these molecules. Altogether, the findings reported herein provide a different perspective on the biological activities of phosphonium compounds that is particularly focused on, but, as the reader will realize, is not limited to their use as antifouling agents. PMID:25897858
An assessment of the genetic toxicology of novel boron-containing therapeutic agents.
Ciaravino, Vic; Plattner, Jacob; Chanda, Sanjay
2013-06-01
Boron-containing compounds are being studied as potential therapeutic agents. As part of the safety assessment of these therapeutic agents, a battery of genetic toxicology studies was conducted. The battery included a bacterial reverse mutation (Ames) assay, an in vitro chromosome aberration assay in peripheral human lymphocytes, and an in vivo rat micronucleus study. The following compounds represent some of the boron-containing compounds that have been advanced to human clinical trials in various therapeutic areas. The borinic picolinate, AN0128, is an antibacterial compound with anti-inflammatory activity that has been studied in clinical trials for acne and the treatment of mild to moderate atopic dermatitis. AN2690 (tavaborole) is a benzoxaborole in Phase 3 clinical trials for the topical treatment of onychomycosis, a fungal infection of the toenails and fingernails. Another benzoxaborole derivative, AN2728, a phosphodiesterase-4 (PDE4) inhibitor, is in Phase 2 clinical trials for the treatment of atopic dermatitis. AN2898, also a PDE4 inhibitor, has been studied in clinical trials for atopic dermatitis and psoriasis. AN3365 is a leucyl-tRNA synthetase inhibitor that has been in clinical development for the treatment of various Gram-negative bacterial infections. These five representative compounds were negative in the three genotoxicity assays. Furthermore, AN2690 has been studied in mouse and rat 2-year bioassays and was not found to have any carcinogenic potential. These results demonstrate that it is possible to design boron-based therapeutic agents with no genetic toxicology liabilities. Copyright © 2013 Wiley Periodicals, Inc.
Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio
2018-01-01
This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4 L mol -1 cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3 mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Bazeley, Peter S; Prithivi, Sridevi; Struble, Craig A; Povinelli, Richard J; Sem, Daniel S
2006-01-01
Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.
Geochemical Fate and Transport of Sildenafil and Vardenafil
NASA Astrophysics Data System (ADS)
Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.
2015-12-01
The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.
Natural products as modulator of autophagy with potential clinical prospects.
Wang, Peiqi; Zhu, Lingjuan; Sun, Dejuan; Gan, Feihong; Gao, Suyu; Yin, Yuanyuan; Chen, Lixia
2017-03-01
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Comparison and Enumeration of Chemical Graphs
Akutsu, Tatsuya; Nagamochi, Hiroshi
2013-01-01
Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697
Functionalization of P4 through Direct P-C Bond Formation.
Borger, Jaap E; Ehlers, Andreas W; Slootweg, J Chris; Lammertsma, Koop
2017-09-04
Research on chlorine-free conversions of P 4 into organophosphorus compounds (OPCs) has a long track record, but methods that allow desirable, direct P-C bond formations have only recently emerged. These include the use of metal organyls, carbenes, carboradicals, and photochemical approaches. The versatile product scope enables the preparation of both industrially relevant organophosphorus compounds, as well as a broad range of intriguing new compound classes. Herein we provide a concise overview of recent breakthroughs and outline the acquired fundamental insights to aid future developments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang
2012-01-01
Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778
Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang
2012-01-01
Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Claire, E-mail: claire.grant@astrazeneca.com; Ewart, Lorna; Muthas, Daniel
Nausea and vomiting are components of a complex mechanism that signals food avoidance and protection of the body against the absorption of ingested toxins. This response can also be triggered by pharmaceuticals. Predicting clinical nausea and vomiting liability for pharmaceutical agents based on pre-clinical data can be problematic as no single animal model is a universal predictor. Moreover, efforts to improve models are hampered by the lack of translational animal and human data in the public domain. AZD3514 is a novel, orally-administered compound that inhibits androgen receptor signaling and down-regulates androgen receptor expression. Here we have explored the utility ofmore » integrating data from several pre-clinical models to predict nausea and vomiting in the clinic. Single and repeat doses of AZD3514 resulted in emesis, salivation and gastrointestinal disturbances in the dog, and inhibited gastric emptying in rats after a single dose. AZD3514, at clinically relevant exposures, induced dose-responsive “pica” behaviour in rats after single and multiple daily doses, and induced retching and vomiting behaviour in ferrets after a single dose. We compare these data with the clinical manifestation of nausea and vomiting encountered in patients with castration-resistant prostate cancer receiving AZD3514. Our data reveal a striking relationship between the pre-clinical observations described and the experience of nausea and vomiting in the clinic. In conclusion, the emetic nature of AZD3514 was predicted across a range of pre-clinical models, and the approach presented provides a valuable framework for predicition of clinical nausea and vomiting. - Highlights: • Integrated pre-clinical data can be used to predict clinical nausea and vomiting. • Data integrated from standard toxicology studies is sufficient to make a prediction. • The use of the nausea algorithm developed by Parkinson (2012) aids the prediction. • Additional pre-clinical studies can be used to confirm and quantify the risk.« less
Edafe, Ovie; Brooks, William S; Laskar, Simone N; Benjamin, Miles W; Chan, Philip
2016-03-20
This study examines the perceived impact of a novel clinical teaching method based on FAIR principles (feedback, activity, individuality and relevance) on students' learning on clinical placement. This was a qualitative research study. Participants were third year and final year medical students attached to one UK vascular firm over a four-year period (N=108). Students were asked to write a reflective essay on how FAIRness approach differs from previous clinical placement, and its advantages and disadvantages. Essays were thematically analysed and globally rated (positive, negative or neutral) by two independent researchers. Over 90% of essays reported positive experiences of feedback, activity, individuality and relevance model. The model provided multifaceted feedback; active participation; longitudinal improvement; relevance to stage of learning and future goals; structured teaching; professional development; safe learning environment; consultant involvement in teaching. Students perceived preparation for tutorials to be time intensive for tutors/students; a lack of teaching on medical sciences and direct observation of performance; more than once weekly sessions would be beneficial; some issues with peer and public feedback, relevance to upcoming exam and large group sizes. Students described negative experiences of "standard" clinical teaching. Progressive teaching programmes based on the FAIRness principles, feedback, activity, individuality and relevance, could be used as a model to improve current undergraduate clinical teaching.
Warrier, Thulasi; Martinez-Hoyos, Maria; Marin-Amieva, Manuel; Colmenarejo, Gonzalo; Porras-De Francisco, Esther; Alvarez-Pedraglio, Ana Isabel; Fraile-Gabaldon, Maria Teresa; Torres-Gomez, Pedro Alfonso; Lopez-Quezada, Landys; Gold, Ben; Roberts, Julia; Ling, Yan; Somersan-Karakaya, Selin; Little, David; Cammack, Nicholas; Nathan, Carl; Mendoza-Losana, Alfonso
2015-12-11
Identification of compounds that target metabolically diverse subpopulations of Mycobacterium tuberculosis (Mtb) may contribute to shortening the course of treatment for tuberculosis. This study screened 270,000 compounds from GlaxoSmithKline's collection against Mtb in a nonreplicating (NR) state imposed in vitro by a combination of four host-relevant stresses. Evaluation of 166 confirmed hits led to detailed characterization of 19 compounds for potency, specificity, cytotoxicity, and stability. Compounds representing five scaffolds depended on reactive nitrogen species for selective activity against NR Mtb, and two were stable in the assay conditions. Four novel scaffolds with activity against replicating (R) Mtb were also identified. However, none of the 19 compounds was active against Mtb in both NR and R states. There was minimal overlap between compounds found active against NR Mtb and those previously identified as active against R Mtb, supporting the hypothesis that NR Mtb depends on distinct metabolic pathways for survival.
Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine
2012-12-01
Recent studies have demonstrated the presence of trace-level pharmaceutically active compounds (PhACs) and endocrine disrupting compounds (EDCs) in a number of finished drinking waters (DWs). Since there is sparse knowledge currently available on the potential effects on human health associated with the chronic exposure to trace levels of these Emerging Contaminants (ECs) through routes such as DW, it is suggested that the most appropriate criterion is a treatment criterion in order to prioritize ECs to be monitored during DW preparation. Hence, only the few ECs showing the lowest removals towards a given DW Treatment (DWT) process would serve as indicators of the overall efficiency of this process and would be relevant for DW quality monitoring. In addition, models should be developed for estimating the removal of ECs in DWT processes, thereby overcoming the practical difficulties of experimentally assessing each compound. Therefore, the present review has two objectives: (1) to provide an overview of the recent scientific surveys on the occurrence of PhACs and EDCs in finished DWs; and (2) to propose the potential of Quantitative-Structure-Activity-Relationship-(QSAR)-like models to rank ECs found in environmental waters, including parent compounds, metabolites and transformation products, in order to select the most relevant compounds to be considered as indicators for monitoring purposes in DWT systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.
2018-04-01
Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.
Zhao, Yingke; Liu, Yue; Chen, Keji
Tetramethylpyrazine, a natural compound from Ligusticum wallichii ( Chuan Xiong ), has been extensively used in China for cardiovascular and cerebrovascular diseases for about 40 years. Because of its effectiveness in multisystems, especially in cardiovascular, its pharmacological action, clinical application, and the structural modification have attracted broad attention. In this paper its mechanisms of action, the clinical status, and synthetic derivatives will be reviewed briefly.
Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E
2013-08-01
Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.
A review on usnic acid, an interesting natural compound
NASA Astrophysics Data System (ADS)
Cocchietto, Moreno; Skert, Nicola; Nimis, Pier Luigi; Sava, Gianni
2002-03-01
Lichens are a world-widespread consortium of fungal and photosynthetic partners. Usnic acid is one of the most common and abundant lichen metabolites, well known as an antibiotic, but also endowed with several other interesting properties. This review summarises the most relevant studies on usnic acid, focusing on a number of biological activities in different fields. On the basis of the existing literature, usnic acid seems to be an exclusive lichen product. No synthetic derivatives more effective than the natural form are known. Both the (+) and (-) enantiomers of usnic acid are effective against a large variety of Gram-positive (G+) bacterial strains, including strains from clinical isolates, irrespective of their resistant phenotype. Of particular relevance is the inhibition of growth of multi-resistant strains of Streptococcus aureus, enterococci and mycobacteria. The (+)-usnic acid enantiomer appears to be selective against Streptococcus mutans without inducing perturbing side effects on the oral saprophyte flora. On the other hand, the (-)-usnic acid enantiomer is a selective natural herbicide because of its blocking action against a specific key plant enzyme. Other recognised characteristics of usnic acid are ultraviolet absorption and preserving properties. The toxicology, the in vitro anti-inflammatory effects and the mechanism of action of usnic acid need to be investigated in greater detail in order to reach clinical trials and to allow further applications. Furthermore, more research is needed to make possible intensive lichen culture, in order to produce large quantities of lichen substances for pharmaceutical, cosmetic and agricultural purposes. Some biological aspects, i.e. the possible biological roles of usnic acid, are discussed.
Müller, Thomas
2013-08-01
Recent experimental and clinical research has shown that A2A adenosine receptor antagonism can bring about an improvement in the motor behavior of patients with Parkinson's disease. Istradefylline , a xanthine derivative, has the longest half-life of all the currently available A2A adenosine receptor antagonists; it can successfully permeate through the blood-brain barrier and has a high human A2A adenosine receptor affinity. In this article, the author discusses the potential role of A2A adenosine receptor antagonists in the treatment of Parkinson's disease through the evaluation of istradefylline. Specifically, the article reviews the clinical and pharmacokinetic information available to elucidate its therapeutic potential. A2A adenosine receptor antagonists are efficacious in combination with l-dopa. l-dopa has a complex pharmacokinetic behavior and causes long-term behavioral and metabolic side effects. Future research on A2A adenosine receptor antagonism should consider compounds like istradefylline as l-dopa and/or dopamine agonist-sparing treatment alternatives, since their clinical handling, safety and side-effect profile are superior to l-dopa and/or dopamine agonists. The current focus to demonstrate a specific dyskinesia-ameliorating efficacy of A2A adenosine receptor antagonism in clinical trials is risky, since the presentation of dyskinesia varies on a day-to-day basis and is considerably influenced by peripheral l-dopa metabolism. The demonstration of an antidyskinetic effect may convince authorities, but this is far less relevant in clinical practice as patients generally better tolerate dyskinesia than other phenomena and dopaminergic side effects.
Peng, Hui; Saunders, David M V; Sun, Jianxian; Jones, Paul D; Wong, Chris K C; Liu, Hongling; Giesy, John P
2016-12-06
Characterization of toxicological profiles by use of traditional targeted strategies might underestimate the risk of environmental mixtures. Unbiased identification of prioritized compounds provides a promising strategy for meeting regulatory needs. In this study, untargeted screening of brominated compounds in house dust was conducted using a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) approach, which used data-independent acquisition (DIA) and a chemometric strategy to detect peaks and align precursor ions. A total of 1008 brominated compound peaks were identified in 23 house dust samples. Precursor ions and formulas were identified for 738 (73%) of the brominated compounds. A correlation matrix was used to cluster brominated compounds; three large groups were found for the 140 high-abundance brominated compounds, and only 24 (17%) of these compounds were previously known flame retardants. The predominant class of unknown brominated compounds was predicted to consist of nitrogen-containing compounds. Following further validation by authentic standards, these compounds (56%) were determined to be novel brominated azo dyes. The mutagenicity of one major component was investigated, and mutagenicity was observed at environmentally relevant concentrations. Results of this study demonstrated the existence of numerous unknown brominated compounds in house dust, with mutagenic azo dyes unexpectedly being identified as the predominant compounds.
Wiechmann, Warren; Kwan, Daniel; Bokarius, Andrew; Toohey, Shannon L
2016-03-01
The use of personal mobile devices in the medical field has grown quickly, and a large proportion of physicians use their mobile devices as an immediate resource for clinical decision-making, prescription information and other medical information. The iTunes App Store (Apple, Inc.) contains approximately 20,000 apps in its "Medical" category, providing a robust repository of resources for clinicians; however, this represents only 2% of the entire App Store. The App Store does not have strict criteria for identifying content specific to practicing physicians, making the identification of clinically relevant content difficult. The objective of this study is to quantify the characteristics of existing medical applications in the iTunes App Store that could be used by emergency physicians, residents, or medical students. We found applications related to emergency medicine (EM) by searching the iTunes App Store for 21 terms representing core content areas of EM, such as "emergency medicine," "critical care," "orthopedics," and "procedures." Two physicians independently reviewed descriptions of these applications in the App Store and categorized each as the following: Clinically Relevant, Book/Published Source, Non-English, Study Tools, or Not Relevant. A third physician reviewer resolved disagreements about categorization. Descriptive statistics were calculated. We found a total of 7,699 apps from the 21 search terms, of which 17.8% were clinical, 9.6% were based on a book or published source, 1.6% were non-English, 0.7% were clinically relevant patient education resources, and 4.8% were study tools. Most significantly, 64.9% were considered not relevant to medical professionals. Clinically relevant apps make up approximately 6.9% of the App Store's "Medical" Category and 0.1% of the overall App Store. Clinically relevant apps represent only a small percentage (6.9%) of the total App volume within the Medical section of the App Store. Without a structured search-and-evaluation strategy, it may be difficult for the casual user to identify this potentially useful content. Given the increasing adoption of devices in healthcare, national EM associations should consider curating these resources for their members.
Johann, Susana; Sá, Nívea P; Lima, Luciana A R S; Cisalpino, Patricia S; Cota, Betania B; Alves, Tânia M A; Siqueira, Ezequias P; Zani, Carlos L
2010-10-12
The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds.
Hemkens, Lars G; Hilden, Kristian M; Hartschen, Stephan; Kaiser, Thomas; Didjurgeit, Ulrike; Hansen, Roland; Bender, Ralf; Sawicki, Peter T
2008-08-01
In addition to the metrological quality of international normalized ratio (INR) monitoring devices used in patients' self-management of long-term anticoagulation, the effectiveness of self-monitoring with such devices has to be evaluated under real-life conditions with a focus on clinical implications. An approach to evaluate the clinical significance of inaccuracies is the error-grid analysis as already established in self-monitoring of blood glucose. Two anticoagulation monitors were compared in a real-life setting and a novel error-grid instrument for oral anticoagulation has been evaluated. In a randomized crossover study 16 patients performed self-management of anticoagulation using the INRatio and the CoaguChek S system. Main outcome measures were clinically relevant INR differences according to established criteria and to the error-grid approach. A lower rate of clinically relevant disagreements according to Anderson's criteria was found with CoaguChek S than with INRatio without statistical significance (10.77% vs. 12.90%; P = 0.787). Using the error-grid we found principally consistent results: More measurement pairs with discrepancies of no or low clinical relevance were found with CoaguChek S, whereas with INRatio we found more differences with a moderate clinical relevance. A high rate of patients' satisfaction with both of the point of care devices was found with only marginal differences. A principal appropriateness of the investigated point-of-care devices to adequately monitor the INR is shown. The error-grid is useful for comparing monitoring methods with a focus on clinical relevance under real-life conditions beyond assessing the pure metrological quality, but we emphasize that additional trials using this instrument with larger patient populations are needed to detect differences in clinically relevant disagreements.
21 CFR 862.2860 - Mass spectrometer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory... clinical use is a device intended to identify inorganic or organic compounds (e.g., lead, mercury, and...
21 CFR 862.2860 - Mass spectrometer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory... clinical use is a device intended to identify inorganic or organic compounds (e.g., lead, mercury, and...
21 CFR 862.2860 - Mass spectrometer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory... clinical use is a device intended to identify inorganic or organic compounds (e.g., lead, mercury, and...
21 CFR 862.2860 - Mass spectrometer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory... clinical use is a device intended to identify inorganic or organic compounds (e.g., lead, mercury, and...
21 CFR 862.2860 - Mass spectrometer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory... clinical use is a device intended to identify inorganic or organic compounds (e.g., lead, mercury, and...
Markedly lowering the viscosity of aqueous solutions of DNA by additives.
Elkin, Igor; Weight, Alisha K; Klibanov, Alexander M
2015-10-15
Aqueous solutions of DNAs, while relevant in drug delivery and as a target of therapies, are often very viscous making them difficult to use. Since less viscous solutions could enable targeted drug delivery and/or therapies, the purpose of the present work was to explore compounds capable of "thinning" such DNA solutions under pharmaceutically relevant conditions. To this end, viscosities of aqueous solutions of DNAs and model polyanions were examined at 25 °C in the absence and presence of a number of bulky organic salts (and related compounds) previously found to substantially lower the viscosities of concentrated protein solutions. Out of two dozen compounds tested, only three were found to be effective; the FDA-approved local anesthetics lidocaine, mepivacaine, and prilocaine at near-isotonic concentrations and pH 6.4 lowered solution viscosity of three different DNAs up to about 20 fold. The observed multi-fold viscosity reductions appear to be due to these bulky organic salts' structure-specific non-covalent binding to nucleotide bases resulting in denaturation (unwinding) to, and stabilization of, single-stranded DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.
Ammann, Adrian A
2007-04-01
Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.
Physiology, ecology and industrial applications of aroma formation in yeast
Dzialo, Maria C; Park, Rahel; Steensels, Jan; Lievens, Bart; Verstrepen, Kevin J
2017-01-01
Abstract Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. PMID:28830094
Merglen, Arnaud; Courvoisier, Delphine S; Combescure, Christophe; Garin, Nicolas; Perrier, Arnaud; Perneger, Thomas V
2012-01-01
Background Clinicians perform searches in PubMed daily, but retrieving relevant studies is challenging due to the rapid expansion of medical knowledge. Little is known about the performance of search strategies when they are applied to answer specific clinical questions. Objective To compare the performance of 15 PubMed search strategies in retrieving relevant clinical trials on therapeutic interventions. Methods We used Cochrane systematic reviews to identify relevant trials for 30 clinical questions. Search terms were extracted from the abstract using a predefined procedure based on the population, interventions, comparison, outcomes (PICO) framework and combined into queries. We tested 15 search strategies that varied in their query (PIC or PICO), use of PubMed’s Clinical Queries therapeutic filters (broad or narrow), search limits, and PubMed links to related articles. We assessed sensitivity (recall) and positive predictive value (precision) of each strategy on the first 2 PubMed pages (40 articles) and on the complete search output. Results The performance of the search strategies varied widely according to the clinical question. Unfiltered searches and those using the broad filter of Clinical Queries produced large outputs and retrieved few relevant articles within the first 2 pages, resulting in a median sensitivity of only 10%–25%. In contrast, all searches using the narrow filter performed significantly better, with a median sensitivity of about 50% (all P < .001 compared with unfiltered queries) and positive predictive values of 20%–30% (P < .001 compared with unfiltered queries). This benefit was consistent for most clinical questions. Searches based on related articles retrieved about a third of the relevant studies. Conclusions The Clinical Queries narrow filter, along with well-formulated queries based on the PICO framework, provided the greatest aid in retrieving relevant clinical trials within the 2 first PubMed pages. These results can help clinicians apply effective strategies to answer their questions at the point of care. PMID:22693047
Agoritsas, Thomas; Merglen, Arnaud; Courvoisier, Delphine S; Combescure, Christophe; Garin, Nicolas; Perrier, Arnaud; Perneger, Thomas V
2012-06-12
Clinicians perform searches in PubMed daily, but retrieving relevant studies is challenging due to the rapid expansion of medical knowledge. Little is known about the performance of search strategies when they are applied to answer specific clinical questions. To compare the performance of 15 PubMed search strategies in retrieving relevant clinical trials on therapeutic interventions. We used Cochrane systematic reviews to identify relevant trials for 30 clinical questions. Search terms were extracted from the abstract using a predefined procedure based on the population, interventions, comparison, outcomes (PICO) framework and combined into queries. We tested 15 search strategies that varied in their query (PIC or PICO), use of PubMed's Clinical Queries therapeutic filters (broad or narrow), search limits, and PubMed links to related articles. We assessed sensitivity (recall) and positive predictive value (precision) of each strategy on the first 2 PubMed pages (40 articles) and on the complete search output. The performance of the search strategies varied widely according to the clinical question. Unfiltered searches and those using the broad filter of Clinical Queries produced large outputs and retrieved few relevant articles within the first 2 pages, resulting in a median sensitivity of only 10%-25%. In contrast, all searches using the narrow filter performed significantly better, with a median sensitivity of about 50% (all P < .001 compared with unfiltered queries) and positive predictive values of 20%-30% (P < .001 compared with unfiltered queries). This benefit was consistent for most clinical questions. Searches based on related articles retrieved about a third of the relevant studies. The Clinical Queries narrow filter, along with well-formulated queries based on the PICO framework, provided the greatest aid in retrieving relevant clinical trials within the 2 first PubMed pages. These results can help clinicians apply effective strategies to answer their questions at the point of care.
Gravato, Carlos; Almeida, Joana R; Silva, Carlos; Oliveira, Cristiana; Soares, Amadeu M V M
2014-04-01
Polycyclic aromatic hydrocarbons (PAHs) are recognised as one of the main groups of contaminants that assume more importance in the marine environment, enhancing the need of studies concerning their adverse effects and more efficient and ecologically relevant tools for environmental monitoring purposes. This study aims to apply an integrated approach including several multi-level biological responses (accumulation levels, biochemical responses important for different physiological functions and behavioural alterations) to assess the ecological relevance of the effects induced by sub-lethal concentrations of anthracene (ANT) in Palaemon serratus (common prawn). ANT accumulation was assessed by measuring the levels of ANT-type compounds in prawn digestive gland, muscle and eye; biochemical responses were determined using biomarkers involved in biotransformation, oxidative damage, energy production and neurotransmission processes; and behavioural alterations through swimming performance after 96 h exposure bioassay (ANT:16-1,024 μg/L). The rationale behind this approach is to assess the ecologically relevant effects induced by ANT in prawn, given by the association between behavioural alterations with biochemical responses, in search for more efficient tools for environmental risk assessment. Results show a significant decrease of swimming velocity (LOEC=128 μg/L) along with increased levels of ANT-type compounds in digestive gland (LOEC=128 μg/L), muscle (LOEC=256 μg/L) and eye (LOEC=32 μg/L) in prawn exposed to ANT. Increased activities of glutathione peroxidase (GPx) and catalase (CAT), involved in anti-oxidant defence system, were also observed (LOEC=256 μg/L; 1024μg/L, respectively) in the digestive gland of prawn, induction of oxidative damage in lipids (LPO) also occurred (LOEC=32 μg/L). The inhibition of swimming velocity showed a correlation with some biochemical parameters measured, including the levels of ANT-type compounds in tissues and LPO, and thus these may be considered sensitive and ecologically relevant criteria as well as early warning endpoints for assessing polycyclic aromatic compounds exposure effects on marine organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Sahn, James J; Granger, Brett A; Martin, Stephen F
2014-10-21
A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
Scientific Assessment of Stratospheric Ozone: 1989, volume 2. Appendix: AFEAS Report
NASA Technical Reports Server (NTRS)
1990-01-01
The results are presented of the Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), which was organized to evaluate the potential effects on the environment of alternate compounds targeted to replace fully halogenated chlorofluorocarbons (CFCs). All relevant current scientific information to determine the environmental acceptability of the alternative fluorocarbons. Special emphasis was placed on: the potential of the compounds to affect stratospheric ozone; their potential to affect tropospheric ozone; their potential to contribute to model calculated global warming; the atmospheric degradation mechanisms of the compounds, in order to identify their products; and the potential environmental effects of the decomposition products. The alternative compounds to be studied were hydrofluorocarbons (HFCs) with one or two carbon atoms and one or more each of fluorine and hydrogen.
Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.
2014-01-01
In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733
Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen
2014-01-01
Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623
Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C
2014-10-29
In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.
Quintero, Catherine; Kariv, Ilona
2009-06-01
To meet the needs of the increasingly rapid and parallelized lead optimization process, a fully integrated local compound storage and liquid handling system was designed and implemented to automate the generation of assay-ready plates directly from newly submitted and cherry-picked compounds. A key feature of the system is the ability to create project- or assay-specific compound-handling methods, which provide flexibility for any combination of plate types, layouts, and plate bar-codes. Project-specific workflows can be created by linking methods for processing new and cherry-picked compounds and control additions to produce a complete compound set for both biological testing and local storage in one uninterrupted workflow. A flexible cherry-pick approach allows for multiple, user-defined strategies to select the most appropriate replicate of a compound for retesting. Examples of custom selection parameters include available volume, compound batch, and number of freeze/thaw cycles. This adaptable and integrated combination of software and hardware provides a basis for reducing cycle time, fully automating compound processing, and ultimately increasing the rate at which accurate, biologically relevant results can be produced for compounds of interest in the lead optimization process.
Dinkova-Kostova, Albena T; Talalay, Paul; Sharkey, John; Zhang, Ying; Holtzclaw, W David; Wang, Xiu Jun; David, Emilie; Schiavoni, Katherine H; Finlayson, Stewart; Mierke, Dale F; Honda, Tadashi
2010-10-29
The Keap1/Nrf2/ARE pathway controls a network of cytoprotective genes that defend against the damaging effects of oxidative and electrophilic stress, and inflammation. Induction of this pathway is a highly effective strategy in combating the risk of cancer and chronic degenerative diseases, including atherosclerosis and neurodegeneration. An acetylenic tricyclic bis(cyano enone) bearing two highly electrophilic Michael acceptors is an extremely potent inducer in cells and in vivo. We demonstrate spectroscopically that both cyano enone functions of the tricyclic molecule react with cysteine residues of Keap1 and activate transcription of cytoprotective genes. Novel monocyclic cyano enones, representing fragments of rings A and C of the tricyclic compound, reveal that the contribution to inducer potency of the ring C Michael acceptor is much greater than that of ring A, and that potency is further enhanced by spatial proximity of an acetylenic function. Critically, the simultaneous presence of two cyano enone functions in rings A and C within a rigid three-ring system results in exceptionally high inducer potency. Detailed understanding of the structural elements that contribute to the reactivity with the protein sensor Keap1 and to high potency of induction is essential for the development of specific and selective lead compounds as clinically relevant chemoprotective agents.
Perfluoroalkyl acids: recent research highlights | Science ...
Perfluorinated compounds are organic chemicals in which all hydrogen molecules of the carbon-chain are substituted by fluorine molecules. Generally, there are two types of perfluorinated compounds, the perfluoroalkanes that are primarily used clinically for oxygenation and respiratory ventilation, and the perfluoroalkyl acids (PFAAs). Environmentally relevant PFAAs are a family of about 30 chemicals that consist of a carbon backbone typically 4-14 molecules in length and a charged functional group composed of either sulfonates, carboxylates or phosphonates (and to a lesser extent, phosphinates). While many (>100) derivatives ofPFAAs (such as alcohols, amides, esters and acids) are used for industrial and consumer applications, they can be degraded or metabolized to PFAAs as end-stage products. Thus, PFAAs, rather than their intermediates or derivatives, have drawn the most public attention and research interest. The most widely known PFAAs are the eight-carbon (C8) sulfonate (perfluorooctane sulfonate, PFOS) and carboxylate (perfluorooctanoic acid, PFOA), although the C4 (perfluorobutane) and C6 (perfluorohexane) sulfonates, as well as the C4, C6 and C9 (perfluorononanoic) carboxylates have also been used in commerce. The perfluoroalkyl phosphonates (PFPAs) are fairly new entities for this class ofchemicals. They are typically used as leveling and wetting agents, and defoaming additives in the production of pesticides. They were considered biologically inert by
Lesterhuis, W Joost; Punt, Cornelis J A; Hato, Stanleyson V; Eleveld-Trancikova, Dagmar; Jansen, Bastiaan J H; Nierkens, Stefan; Schreibelt, Gerty; de Boer, Annemiek; Van Herpen, Carla M L; Kaanders, Johannes H; van Krieken, Johan H J M; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M
2011-08-01
Tumor microenvironments feature immune inhibitory mechanisms that prevent T cells from generating effective antitumor immune responses. Therapeutic interventions aimed at disrupting these inhibitory mechanisms have been shown to enhance antitumor immunity, but they lack direct cytotoxic effects. Here, we investigated the effect of cytotoxic cancer chemotherapeutics on immune inhibitory pathways. We observed that exposure to platinum-based chemotherapeutics markedly reduced expression of the T cell inhibitory molecule programmed death receptor-ligand 2 (PD-L2) on both human DCs and human tumor cells. Downregulation of PD-L2 resulted in enhanced antigen-specific proliferation and Th1 cytokine secretion as well as enhanced recognition of tumor cells by T cells. Further analysis revealed that STAT6 controlled downregulation of PD-L2. Consistent with these data, patients with STAT6-expressing head and neck cancer displayed enhanced recurrence-free survival upon treatment with cisplatin-based chemoradiation compared with patients with STAT6-negative tumors, demonstrating the clinical relevance of platinum-induced STAT6 modulation. We therefore conclude that platinum-based anticancer drugs can enhance the immunostimulatory potential of DCs and decrease the immunosuppressive capability of tumor cells. This dual action of platinum compounds may extend their therapeutic application in cancer patients and provides a rationale for their use in combination with immunostimulatory compounds.
Wang, Ning; Feng, Yibin
2015-01-01
Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.
Erythrocyte antioxidant protection of rose hips (Rosa spp.).
Widén, C; Ekholm, A; Coleman, M D; Renvert, S; Rumpunen, K
2012-01-01
Rose hips are popular in health promoting products as the fruits contain high content of bioactive compounds. The aim of this study was to investigate whether health benefits are attributable to ascorbic acid, phenols, or other rose-hip-derived compounds. Freeze-dried powder of rose hips was preextracted with metaphosphoric acid and the sample was then sequentially eluted on a C(18) column. The degree of amelioration of oxidative damage was determined in an erythrocyte in vitro bioassay by comparing the effects of a reducing agent on erythrocytes alone or on erythrocytes pretreated with berry extracts. The maximum protection against oxidative stress, 59.4 ± 4.0% (mean ± standard deviation), was achieved when incubating the cells with the first eluted meta-phosphoric extract. Removal of ascorbic acid from this extract increased the protection against oxidative stress to 67.9 ± 1.9%. The protection from the 20% and 100% methanol extracts was 20.8 ± 8.2% and 5.0 ± 3.2%, respectively. Antioxidant uptake was confirmed by measurement of catechin by HPLC-ESI-MS in the 20% methanol extract. The fact that all sequentially eluted extracts studied contributed to protective effects on the erythrocytes indicates that rose hips contain a promising level of clinically relevant antioxidant protection.
Fundamental understanding of drug absorption from a parenteral oil depot.
Kalicharan, Raween W; Schot, Peter; Vromans, Herman
2016-02-15
Oil depots are parenteral drug formulations meant for sustained release of lipophilic compounds. Until now, a comprehensive understanding of the mechanism of drug absorption from oil depots is lacking. The aim of this paper was to fill this gap. A clinical study with healthy volunteers was conducted. An oil depot with nandrolone decanoate and benzyl alcohol was subcutaneously administered in the upper arm of female volunteers. Pharmacokinetic profiles of both substances were related to each other and to literature data. Benzyl alcohol absorbs much more rapidly than nandrolone. In detail, it appears that benzyl alcohol enters the central compartment directly, while nandrolone decanoate is recovered in serum after a lag time. This lag time is also seen in literature data, although not reported explicitly. The absorption of nandrolone is enhanced by the presence of benzyl alcohol. This is most likely an effect of altered oil viscosity and partition coefficient between the oil and aqueous phase. The absorption rate constant of compounds is found to be related to the logP of the solubilized prodrug. The absorption rate is however not only determined by the physico-chemical properties of the formulation but also by the tissue properties. Here, it is argued that lymphatic flow must be considered as a relevant parameter. Copyright © 2015 Elsevier B.V. All rights reserved.
An insight into the ecology, diversity and adaptations of Gordonia species.
Sowani, Harshada; Kulkarni, Mohan; Zinjarde, Smita
2018-08-01
The bacterial genus Gordonia encompasses a variety of versatile species that have been isolated from a multitude of environments. Gordonia was described as a genus about 20 years ago, and to date, 39 different species have been identified. Gordonia is recognized for symbiotic associations with multiple hosts, including aquatic (marine and fresh water) biological forms and terrestrial invertebrates. Some Gordonia species isolated from clinical specimens are known to be opportunistic human pathogens causing secondary infections in immunocompromised and immunosuppressive individuals. They are also predominant in mangrove ecosystems and terrestrial sites. Members of the genus Gordonia are ecologically adaptable and show marked variations in their properties and products. They generate diverse bioactive compounds and produce a variety of extracellular enzymes. In addition, production of surface active compounds and carotenoid pigments allows this group of microorganisms to grow under different conditions. Several isolates from water and soil have been implicated in bioremediation of different environments and plant associated species have been explored for agricultural applications. This review highlights the prevalence of the members of this versatile genus in diverse environments, details its associations with living forms, summarizes the biotechnologically relevant products that can be obtained and discusses the salient genomic features that allow this Actinomycete to survive in different ecological niches.
The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes.
Saladino, Raffaele; Botta, Lorenzo; Di Mauro, Ernesto
2018-02-22
Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth's tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.
Banerjee, Bubun
2017-03-01
Heterocycles are the backbone of organic compounds. Specially, N- &O-containing heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last decade has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of ultrasound in organic synthesis is fulfilling some of the goals of 'green and sustainable chemistry' as it has some advantages over the traditional thermal methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Therefore the synthesis of biologically relevant heterocycles using one-pot multi-component technique coupled with the application of ultrasound is one of the thrusting areas in the 21st Century among the organic chemists. The present review deals with the "up to date" developments on ultrasound assisted one-pot multi-component synthesis of biologically relevant heterocycles reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Swarthout, R.; Rossell, R.; Sive, B. C.; Zhou, Y.; Reddy, C. M.; Valentine, D. L.; Cox, D.
2017-12-01
Marine cyanobacteria are abundant primary producers that can have a major influence on the oceanic biogeochemical cycles. In particular, the prominent cyanobacterial genera Prochlorococcus, Synechococcus, and Trichodesmium can impact the air-sea flux of volatile organic compounds (VOCs) including reactive compounds, such as isoprene, that control the oxidative capacity of the atmosphere and climate-relevant compounds, such as dimethyl sulfide. These groups of cyanobacteria have been estimated to increase in abundance by up to 29% by the end of the century as a result of rising sea surface temperatures and dissolved carbon dioxide concentrations. Given their current and predicted future abundance, understanding the role of different cyanobacterial populations on VOC emissions from the ocean is critical in understanding the future oxidative capacity of the remote atmosphere and climate feedback cycles. During the May 2017 Phosphorus, Hydrocarbons, and Transcriptomics cruise aboard the R/V Neil Armstrong, 160 whole air canister samples were collected along a transect through the North Atlantic from Woods Hole, MA to Bermuda and back with 24-hour stops at nine stations encompassing different nutrient regimes and cyanobacterial populations. At each station, a diurnal time series of samples was collected and higher frequency sampling was conducted during transits of the north wall. Canister samples were analyzed on a five-detector gas chromatography system for over 80 individual VOCs including biogenics, aromatics, chlorinated and brominated compounds, and sulfur containing compounds. Trends in reactive and climate-relevant VOCs will be discussed as a function of the predominant cyanobacterial populations at each sample location. These data provide increased information on the spatial and diurnal variability of trace gases associated with these globally important photosynthetic cyanobacteria.
Lemieux, George A; Keiser, Michael J; Sassano, Maria F; Laggner, Christian; Mayer, Fahima; Bainton, Roland J; Werb, Zena; Roth, Bryan L; Shoichet, Brian K; Ashrafi, Kaveh
2013-11-01
Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.
Wang, Wenyi; Kim, Marlene T.; Sedykh, Alexander
2015-01-01
Purpose Experimental Blood–Brain Barrier (BBB) permeability models for drug molecules are expensive and time-consuming. As alternative methods, several traditional Quantitative Structure-Activity Relationship (QSAR) models have been developed previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB permeability models by employing relevant public bio-assay data in the modeling process. Methods We compiled a BBB permeability database consisting of 439 unique compounds from various resources. The database was split into a modeling set of 341 compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow was employed on the modeling set to develop various QSAR models. A five-fold cross-validation approach was used to validate the developed models, and the resulting models were used to predict the external validation set compounds. Furthermore, we used previously published membrane transporter models to generate relevant transporter profiles for target compounds. The transporter profiles were used as additional biological descriptors to develop hybrid QSAR BBB models. Results The consensus QSAR models have R2=0.638 for fivefold cross-validation and R2=0.504 for external validation. The consensus model developed by pooling chemical and transporter descriptors showed better predictivity (R2=0.646 for five-fold cross-validation and R2=0.526 for external validation). Moreover, several external bio-assays that correlate with BBB permeability were identified using our automatic profiling tool. Conclusions The BBB permeability models developed in this study can be useful for early evaluation of new compounds (e.g., new drug candidates). The combination of chemical and biological descriptors shows a promising direction to improve the current traditional QSAR models. PMID:25862462
NASA Astrophysics Data System (ADS)
Dickson, Bradley M.; de Waal, Parker W.; Ramjan, Zachary H.; Xu, H. Eric; Rothbart, Scott B.
2016-10-01
In this communication we introduce an efficient implementation of adaptive biasing that greatly improves the speed of free energy computation in molecular dynamics simulations. We investigated the use of accelerated simulations to inform on compound design using a recently reported and clinically relevant inhibitor of the chromatin regulator BRD4 (bromodomain-containing protein 4). Benchmarking on our local compute cluster, our implementation achieves up to 2.5 times more force calls per day than plumed2. Results of five 1 μs-long simulations are presented, which reveal a conformational switch in the BRD4 inhibitor between a binding competent and incompetent state. Stabilization of the switch led to a -3 kcal/mol improvement of absolute binding free energy. These studies suggest an unexplored ligand design principle and offer new actionable hypotheses for medicinal chemistry efforts against this druggable epigenetic target class.
Jayakumar, Thanasekaran; Hsieh, Cheng-Ying; Lee, Jie-Jen; Sheu, Joen-Rong
2013-01-01
Andrographis paniculata (Burm. F) Nees, generally known as “king of bitters,” is an herbaceous plant in the family Acanthaceae. In China, India, Thailand, and Malaysia, this plant has been widely used for treating sore throat, flu, and upper respiratory tract infections. Andrographolide, a major bioactive chemical constituent of the plant, has shown anticancer potential in various investigations. Andrographolide and its derivatives have anti-inflammatory effects in experimental models asthma, stroke, and arthritis. In recent years, pharmaceutical chemists have synthesized numerous andrographolide derivatives, which exhibit essential pharmacological activities such as those that are anti-inflammatory, antibacterial, antitumor, antidiabetic, anti-HIV, antifeedant, and antiviral. However, what is noteworthy about this paper is summarizing the effects of andrographolide against cardiovascular disease, platelet activation, infertility, and NF-κB activation. Therefore, this paper is intended to provide evidence reported in relevant literature on qualitative research to assist scientists in isolating and characterizing bioactive compounds. PMID:23634174
Screening of a Drug Library Identifies Inhibitors of Cell Intoxication by CNF1.
Mahtal, Nassim; Brewee, Clémence; Pichard, Sylvain; Visvikis, Orane; Cintrat, Jean-Christophe; Barbier, Julien; Lemichez, Emmanuel; Gillet, Daniel
2018-04-06
Cytotoxic necrotizing factor 1 (CNF1) is a toxin produced by pathogenic strains of Escherichia coli responsible for extra-intestinal infections. CNF1 deamidates Rac1, thereby triggering its permanent activation and worsening inflammatory reactions. Activated Rac1 is prone to proteasomal degradation. There is no targeted therapy against CNF1, despite its clinical relevance. In this work we developed a fluorescent cell-based immunoassay to screen for inhibitors of CNF1-induced Rac1 degradation among 1120 mostly approved drugs. Eleven compounds were found to prevent CNF1-induced Rac1 degradation, and five also showed a protective effect against CNF1-induced multinucleation. Finally, lasalocid, monensin, bepridil, and amodiaquine protected cells from both diphtheria toxin and CNF1 challenges. These data highlight the potential for drug repurposing to fight several bacterial infections and Rac1-based diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clinical relevance of drug binding to plasma proteins
NASA Astrophysics Data System (ADS)
Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana
2014-12-01
Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.
Convection-Enhanced Delivery for the Treatment of Pediatric Neurologic Disorders
Song, Debbie K.; Lonser, Russell R.
2013-01-01
Direct perfusion of specific regions of the central nervous system by convection-enhanced delivery is becoming more widely used for the delivery of compounds in the research and treatment of various neural disorders. In contrast to other currently available central nervous system delivery techniques, convection-enhanced delivery relies on bulk flow for distribution of solute. This allows for safe, targeted, reliable, and homogeneous delivery of small- and large-molecular-weight substances over clinically relevant volumes in a manner that bypasses the blood-central nervous system barrier. Recent studies have also shown that coinfused imaging surrogate tracers can be used to monitor and control the convective distribution of therapeutic agents in vivo. The unique features of convection-enhanced delivery, including the ability to monitor distribution in real-time, provide an opportunity to develop new research and treatment paradigms for pediatric patients with a variety of intrinsic central nervous system disorders. PMID:18952590
Dickson, Bradley M.; Ramjan, Zachary H.; Xu, H. Eric
2016-01-01
In this communication we introduce an efficient implementation of adaptive biasing that greatly improves the speed of free energy computation in molecular dynamics simulations. We investigated the use of accelerated simulations to inform on compound design using a recently reported and clinically relevant inhibitor of the chromatin regulator BRD4 (bromodomain-containing protein 4). Benchmarking on our local compute cluster, our implementation achieves up to 2.5 times more force calls per day than plumed2. Results of five 1 μs-long simulations are presented, which reveal a conformational switch in the BRD4 inhibitor between a binding competent and incompetent state. Stabilization of the switch led to a −3 kcal/mol improvement of absolute binding free energy. These studies suggest an unexplored ligand design principle and offer new actionable hypotheses for medicinal chemistry efforts against this druggable epigenetic target class. PMID:27782467
Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics.
Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2015-09-01
The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of ethanolamine and 12 salts of ethanolamine as used in cosmetics. Ethanolamine functions as a pH adjuster. The majority of the salts are reported to function as surfactants, and the others are reported to function as pH adjusters, hair fixatives, or preservatives. The Panel reviewed available animal and clinical data, as well as information from previous relevant CIR reports. Because data were not available for each individual ingredient and because the salts dissociate freely in water, the Panel extrapolated from those previous reports to support safety. The Panel concluded that these ingredients are safe in the present practices of use and concentrations (rinse-off products only) when formulated to be nonirritating, and these ingredients should not be used in cosmetic products in which N-nitroso compounds may be formed. © The Author(s) 2015.
Leflunomide counter akt s cardiac hypertrophy.
Pescatore, Luciana A; Laurindo, Francisco R M
2018-05-31
Cardiac hypertrophy (CH) is a major independent risk factor for heart failure and mortality. However, therapeutic interventions that target hypertrophy signaling in a load-independent way are unavailable. In a recent issue of Clinical Science (vol. 132, issue 6, 685-699), Ma et al. describe that the anti-inflammatory drug leflunomide markedly antagonized CH, dysfunction, and fibrosis induced by aortic banding or angiotensin-II in mice or by agonists in cultured cells. Unexpectedly, this occurred not via anti-inflammatory mechanisms but rather via inhibtion of Akt (protein kinase B, PKB) signaling. We further discuss the mechanisms underlying Akt activation and its effects on CH and review possible mechanisms of leflunomide effects. Despite some caveats, the availability of such a newly repurposed compound to treat CH can be a relevant advance. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Bianchi, Nicoletta; Chiarabelli, Cristiano; Zuccato, Cristina; Lampronti, Ilaria; Borgatti, Monica; Amari, Gabriele; Delcanale, Maurizio; Chiavilli, Francesco; Prus, Eugenia; Fibach, Eitan; Gambari, Roberto
2015-04-05
Several investigations have demonstrated a mild clinical status in patients with β-globin disorders and congenital high persistence of foetal haemoglobin. This can be mimicked by a pharmacological increase of foetal γ-globin genes expression and foetal haemoglobin production. Our goal was to apply a multistep assay including few screening methods (benzidine staining, RT-PCR and HPLC analyses) and erythroid cellular model systems (the K562 cell line and erythroid precursors collected from peripheral blood) to select erythroid differentiation agents with foetal haemoglobin inducing potential. With this methodology, we have identified a butyric acid derivative, namely the 4174 cyclopropanecarboxylic acid compound, able to induce erythroid differentiation without antiproliferative effect in K562 cells and increase of γ-globin gene expression in erythroid precursor cells. The results are relevant for pharmacological treatments of haemoglobinopathies, including β-thalassaemia and sickle cell anaemia. Copyright © 2015 Elsevier B.V. All rights reserved.
Monge, Susana; Guillot, Vicente; Alvarez, Marta; Chueca, Natalia; Stella, Natalia; Peña, Alejandro; Delgado, Rafael; Córdoba, Juan; Aguilera, Antonio; Vidal, Carmen; García, Federico
2014-01-01
The aim was to analyse trends in clinically relevant resistance to first-line antiretroviral drugs in Spain, applying the Stanford algorithm, and to compare these results with reported Transmitted Drug Resistance (TDR) defined by the 2009 update of the WHO SDRM list. We analysed 2781 sequences from ARV naive patients of the CoRIS cohort (Spain) between 2007-2011. Using the Stanford algorithm "Low-level resistance", "Intermediate resistance" and "High-level resistance" categories were considered as "Resistant". 70% of the TDR found using the WHO list were relevant for first-line treatment according to the Stanford algorithm. A total of 188 patients showed clinically relevant resistance to first-line ARVs [6.8% (95%Confidence Interval: 5.8-7.7)], and 221 harbored TDR using the WHO list [7.9% (6.9-9.0)]. Differences were due to a lower prevalence in clinically relevant resistance for NRTIs [2.3% (1.8-2.9) vs. 3.6% (2.9-4.3) by the WHO list] and PIs [0.8% (0.4-1.1) vs. 1.7% (1.2-2.2)], while it was higher for NNRTIs [4.6% (3.8-5.3) vs. 3.7% (3.0-4.7)]. While TDR remained stable throughout the study period, clinically relevant resistance to first line drugs showed a significant trend to a decline (p = 0.02). Prevalence of clinically relevant resistance to first line ARVs in Spain is decreasing, and lower than the one expected looking at TDR using the WHO list. Resistance to first-line PIs falls below 1%, so the recommendation of screening for TDR in the protease gene should be questioned in our setting. Cost-effectiveness studies need to be carried out to inform evidence-based recommendations.
Micrometastases in neuroblastoma: are they clinically important?
Burchill, S A
2004-01-01
Despite advances in the treatment of neuroblastoma (NBL), recurrence and metastases continue to pose major problems in clinical management. The relation between micrometastases and the development of secondary disease is not fully understood. However, accurate methods to detect low numbers of tumour cells may allow the evaluation of their role in the disease process, and by implication the possible benefits of eliminating them. Although there is substantial evidence for the increased sensitivity of current molecular methods for the detection of NBL cells compared with more conventional cytology, the clinical relevance and usefulness of detecting this disease remain controversial. The primary goal of current translational research must be to evaluate the clinical relevance of micrometastatic disease detected by these methods in multicentre prospective clinical outcome studies. Only then can the clinical usefulness of these methods be defined so that they may be introduced into relevant clinical practice. PMID:14693828
De Rycker, Manu; Thomas, John; Riley, Jennifer; Brough, Stephen J; Miles, Tim J; Gray, David W
2016-04-01
Chagas disease is a significant health problem in Latin America and the available treatments have significant issues in terms of toxicity and efficacy. There is thus an urgent need to develop new treatments either via a repurposing strategy or through the development of new chemical entities. A key first step is the identification of compounds with anti-Trypanosoma cruzi activity from compound libraries. Here we describe a hit discovery screening cascade designed to specifically identify hits that have the appropriate anti-parasitic properties to warrant further development. The cascade consists of a primary imaging-based assay followed by newly developed and appropriately scaled secondary assays to predict the cidality and rate-of-kill of the compounds. Finally, we incorporated a cytochrome P450 CYP51 biochemical assay to remove compounds that owe their phenotypic response to inhibition of this enzyme. We report the use of the cascade in profiling two small libraries containing clinically tested compounds and identify Clemastine, Azelastine, Ifenprodil, Ziprasidone and Clofibrate as molecules having appropriate profiles. Analysis of clinical derived pharmacokinetic and toxicity data indicates that none of these are appropriate for repurposing but they may represent suitable start points for further optimisation for the treatment of Chagas disease.
Yokoyama, Kunio; Miyatake, Shin-Ichi; Kajimoto, Yoshinaga; Kawabata, Shinji; Doi, Atsushi; Yoshida, Toshiko; Okabe, Motonori; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko
2007-01-01
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.
Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng
2015-12-01
Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.
Thin film Heusler compounds manganese nickel gallium
NASA Astrophysics Data System (ADS)
Jenkins, Catherine Ann
Multiferroic Heusler compounds Mn3--xNi xGa (x=0,1,2) have a tetragonal unit cell that can variously be used for magneto-mechanically coupled shape memory ( x=1,2) and spin-mechanical applications (x=0). The first fabrication of fully epitaxial thin films of these and electronically related compounds by sputtering is discussed. Traditional and custom lab characterization of the magnetic and temperature driven multiferroic behavior is augmented by more detailed synchrotron-based high energy photoemission spectroscopic techniques to describe the atomic and electronic structure. Integration of the MnNi2Ga magnetic shape memory compound in microwave patch antennas and active free-standing structures represents a fraction of the available and promising applications for these compounds. Prototype magnetic tunnel junctions are demonstrated by Mn3Ga electrodes with perpendicular anisotropy for spin torque transfer memory structures. The main body of the work concentrates on the definition and exploration of the material series Mn3--xNi xGa (x=0,1,2) and the relevant multiferroic phenomena exhibited as a function of preparation and external stimuli. Engineering results on each x=0,1,2 are presented with device prototypes where relevant. In the appendices the process of the materials design undertaken with the goal of developing new ternary intermetallics with enhanced properties is presented with a full exploration of the road from band structure calculations to device implementation. Cobalt based compounds in single crystal and nanoparticle form are fabricated with an eye to developing the production methods for new cobalt- and iron-based magnetic shape memory compounds for device applications in different forms. Mn2CoSn, a compound isolectronic and with similar atomic ordering to Mn2NiGa is experimentally determined to be a nearly half-metallic ferromagnet in contrast to the metallic ferrimagnetism in the parent compound. High energy photoemission spectroscopy is shown to be applicable to the analysis and observation of deeply buried metallic and semiconducting interface in an analysis of chalcopyrite solar cell heterolayers and model magnetic tunnel junctions with half-metalic Heusler electrodes.
Pathways of the Maillard reaction under physiological conditions.
Henning, Christian; Glomb, Marcus A
2016-08-01
Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.
Brooks, William S.; Laskar, Simone N.; Benjamin, Miles W.; Chan, Philip
2016-01-01
Objectives This study examines the perceived impact of a novel clinical teaching method based on FAIR principles (feedback, activity, individuality and relevance) on students’ learning on clinical placement. Methods This was a qualitative research study. Participants were third year and final year medical students attached to one UK vascular firm over a four-year period (N=108). Students were asked to write a reflective essay on how FAIRness approach differs from previous clinical placement, and its advantages and disadvantages. Essays were thematically analysed and globally rated (positive, negative or neutral) by two independent researchers. Results Over 90% of essays reported positive experiences of feedback, activity, individuality and relevance model. The model provided multifaceted feedback; active participation; longitudinal improvement; relevance to stage of learning and future goals; structured teaching; professional development; safe learning environment; consultant involvement in teaching. Students perceived preparation for tutorials to be time intensive for tutors/students; a lack of teaching on medical sciences and direct observation of performance; more than once weekly sessions would be beneficial; some issues with peer and public feedback, relevance to upcoming exam and large group sizes. Students described negative experiences of “standard” clinical teaching. Conclusions Progressive teaching programmes based on the FAIRness principles, feedback, activity, individuality and relevance, could be used as a model to improve current undergraduate clinical teaching. PMID:26995588