Kandasamy, Ram; Lee, Andrea T; Morgan, Michael M
2017-12-01
The development of new anti-migraine treatments is limited by the difficulty inassessing migraine pain in laboratory animals. Depression of activity is one of the few diagnostic criteria formigraine that can be mimicked in rats. The goal of the present study was to test the hypothesis thatdepression of home cage wheel running is a reliable and clinically relevant method to assess migraine painin rats. Adult female rats were implanted with a cannula to inject allyl isothiocyanate (AITC) onto the dura to induce migraine pain, as has been shown before. Rats recovered from implantation surgery for 8 days in cages containing a running wheel. Home cage wheel running was recorded 23 h a day. AITC and the migraine medication sumatriptan were administered in the hour prior to onset of the dark phase. Administration of AITC caused a concentration-dependent decrease in wheel running that lasted 3 h. The duration and magnitude of AITC-induced depression of wheel running was consistent following three repeated injections spaced 48 h apart. Administration of sumatriptan attenuated AITC-induced depressionof wheel running when a large dose (1 mg/kg) was administered immediately following AITC administration. Wheel running patterns did not change when sumatriptan was given to naïve rats. These data indicate that home cage wheel running is a sensitive, reliable, and clinically relevant method to assess migraine pain in the rat.
Sindhurakar, Anil; Mishra, Asht M; Gupta, Disha; Iaci, Jennifer F; Parry, Tom J; Carmel, Jason B
2017-04-01
4-Aminopyridine (4-AP) is a Food and Drug Administration-approved drug to improve motor function in people with multiple sclerosis. Preliminary results suggest the drug may act on intact neural circuits and not just on demyelinated ones. To determine if 4-AP at clinically relevant levels alters the excitability of intact motor circuits. In anesthetized rats, electrodes were placed over motor cortex and the dorsal cervical spinal cord for electrical stimulation, and electromyogram electrodes were inserted into biceps muscle to measure responses. The motor responses to brain and spinal cord stimulation were measured before and for 5 hours after 4-AP administration both in uninjured rats and rats with a cut lesion of the pyramidal tract. Blood was collected at the same time as electrophysiology to determine drug plasma concentration with a goal of 20 to 100 ng/mL. We first determined that a bolus infusion of 0.32 mg/kg 4-AP was optimal: it produced on average 61.5 ± 1.8 ng/mL over the 5 hours after infusion. This dose of 4-AP increased responses to spinal cord stimulation by 1.3-fold in uninjured rats and 3-fold in rats with pyramidal tract lesion. Responses to cortical stimulation also increased by 2-fold in uninjured rats and up to 4-fold in the injured. Clinically relevant levels of 4-AP strongly augment physiological responses in intact circuits, an effect that was more robust after partial injury, demonstrating its broad potential in treating central nervous system injuries.
Andersson, Håkan; Mitchard, Terri; Johnson, Nakpangi; Floettmann, Eike
2017-08-15
Naloxegol is an opioid antagonist which has been developed for the treatment of patients with opioid induced constipation. In the nonclinical safety program naloxegol was shown to have a very benign toxicity profile. In the rat, but not the mouse, 2-year carcinogenicity study a change in tumour pattern with an increase in testicular Leydig cell tumours (LCT) was observed after dosing at high (supra-pharmacological) concentrations. To establish the basis of the increase in LCT and to assess its potential relevance to humans, studies to exclude and potentially identify mode-of-action (MoA) were performed. A genotoxic mechanism was ruled out following negative results in the Ames, mouse lymphoma, and micronucleus assays. An effect on androgen metabolism was excluded since the treatment of rats with naloxegol for 14days did not result in any induction of CYP protein levels. It was demonstrated that administration of centrally restricted opioid antagonists naloxegol or methylnaltrexone at high doses induced an increase in LH release with no clear increase in testosterone, in contrast to the centrally acting opioid antagonist naloxone, which showed marked increases in both LH and testosterone. LCT due to increased LH stimulation is common in rats but not documented in humans. Collectively, the lack of genotoxicity signal, the lack of androgen effect, the increase in LH secretion in rats, which is no considered to be relevant for LCT formation in humans, and high margins to clinical exposures, the observed increase in LCT in the rat is not expected to be clinically relevant. Copyright © 2017 Elsevier Inc. All rights reserved.
Criswell, Kay A; Cook, Jon C; Wojcinski, Zbigniew; Pegg, David; Herman, James; Wesche, David; Giddings, John; Brady, Joseph T; Anderson, Timothy
2012-07-01
Pregabalin increased the incidence of hemangiosarcomas in carcinogenicity studies of 2-year mice but was not tumorigenic in rats. Serum bicarbonate increased within 24 h of pregabalin administration in mice and rats. Rats compensated appropriately, but mice developed metabolic alkalosis and increased blood pH. Local tissue hypoxia and increased endothelial cell proliferation were also confirmed in mice alone. The combination of hypoxia and sustained increases in endothelial cell proliferation, angiogenic growth factors, dysregulated erythropoiesis, and macrophage activation is proposed as the key event in the mode of action (MOA) for hemangiosarcoma formation. Hemangiosarcomas occur spontaneously in untreated control mice but occur only rarely in humans. The International Programme on Chemical Safety and International Life Sciences Institute developed a Human Relevance Framework (HRF) analysis whereby presence or absence of key events can be used to assess human relevance. The HRF combines the MOA with an assessment of biologic plausibility in humans to assess human relevance. This manuscript compares the proposed MOA with Hill criteria, a component of the HRF, for strength, consistency, specificity, temporality, and dose response, with an assessment of key biomarkers in humans, species differences in response to disease conditions, and spontaneous incidence of hemangiosarcoma to evaluate human relevance. Lack of key biomarker events in the MOA in rats, monkeys, and humans supports a species-specific process and demonstrates that the tumor findings in mice are not relevant to humans at the clinical dose of pregabalin. Based on this collective dataset, clinical use of pregabalin would not pose an increased risk for hemangiosarcoma to humans.
Bhat, Tariq A; Moon, Jung S; Lee, Sookyeon; Yim, Dongsool; Singh, Rana P
2011-11-01
The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.
Shrestha, Badri Man; Haylor, John
2017-11-15
Rat models of renal transplant are used to investigate immunologic processes and responses to therapeutic agents before their translation into routine clinical practice. In this study, we have described details of rat surgical anatomy and our experiences with the microvascular surgical technique relevant to renal transplant by employing donor inferior vena cava and aortic conduits. For this study, 175 rats (151 Lewis and 24 Fisher) were used to establish the Fisher-Lewis rat model of chronic allograft injury at our institution. Anatomic and technical details were recorded during the period of training and establishment of the model. A final group of 12 transplanted rats were studied for an average duration of 51 weeks for the Lewis-to-Lewis isografts (5 rats) and 42 weeks for the Fisher-to-Lewis allografts (7 rats). Functional measurements and histology confirmed the diagnosis of chronic allograft injury. Mastering the anatomic details and microvascular surgical techniques can lead to the successful establishment of an experimental renal transplant model.
A clinically relevant frailty index for aging rats
USDA-ARS?s Scientific Manuscript database
Frailty is a clinical syndrome that is increasingly prevalent during aging. Frailty involves the confluence of reduced strength, speed, physical activity, and endurance, and it is associated with adverse health outcomes. Frailty indices have been developed to diagnose frailty in older adult populati...
Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi
2017-08-05
Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.
Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi
2017-01-01
Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing. PMID:28413186
A novel rat model for chemotherapy-induced alopecia.
Wikramanayake, T C; Amini, S; Simon, J; Mauro, L M; Elgart, G; Schachner, L A; Jimenez, J J
2012-04-01
More than half of all people diagnosed with cancer receive chemotherapy, and approximately 65% of these develop chemotherapy-induced alopecia (CIA), a side-effect that can have considerable negative psychological repercussions. Currently, there are very few animal models available to study the mechanism and prevention of CIA. To develop a clinically relevant adult rat model for CIA. We first tested whether neonatal pigmented Long-Evans (LE) rats developed alopecia in response to the chemotherapeutic agents etoposide and cyclophosphamide. We then determined whether the rats developed CIA as adults. In the latter experiment, rat dorsal hair was clipped during the early telogen stage to synchronize the hair cycle, and starting 15 days later, the rats were treated with etoposide for 3 days. Neonatal LE pups developed CIA in response to etoposide and cyclophosphamide, similar to other murine models for CIA. Clipping of the hair shaft during early telogen resulted in synchronized anagen induction and subsequent alopecia after etoposide treatment in the clipped areas only. Hair follicles in the clipped areas had the typical chemotherapy-induced follicular dystrophy (dystrophic catagen). When the hair in the pigmented alopecic areas regrew, it had normal pigmentation. A novel, pigmented adult rat model has been established for CIA. By hair-shaft clipping during early telogen, synchronized anagen entry was induced, which resulted in alopecia in response to chemotherapy. This is the first clinically relevant adult rat model for CIA, and will be a useful tool to test agents for the prevention and treatment of CIA. © The Author(s). CED © 2012 British Association of Dermatologists.
Mancebo, A; Casacó, A; González, B; Ledón, N; Sorlozabal, J; León, A; Gómez, D; González, Y; Bada, A M; González, C; Arteaga, M E; Ramírez, H; Fuentes, D
2012-05-09
CIMAvax-EGF consists of a human recombinant epidermal growth factor (EGF), coupled to P64k, a recombinant carrier protein from N. meningitis, and Montanide ISA 51 as adjuvant. The vaccine immunization induces a specific antibody production, inhibiting the EGF/EGF-R interaction through EGF deprivation. The objective of this study was to assess the CIMAvax-EGF toxicity in Sprague Dawley rats after intramuscular administration of repeated doses (6 months) and at the same time to determine if rat is a relevant species for studying CIMAvax-EGF vaccine. Rats were randomly distributed into four groups: control, Montanide ISA 51, treated with 1× and 15× of human total dose of the antigen. Animals were immunized weekly during 9 weeks, plus 9 immunizations every 14 days. Rats were inspected daily for clinical signs. Body weight, food consumption, and rectal temperature were measured during the administration of doses. Blood samples were collected for hematological, serum biochemical determinations and EGF titles at the beginning, three months and at the end of experimentation. Gross necropsy and histological examination of tissues were performed on animals at the end of the assay. Vaccine provoked the apparition of antibodies against EGF in the rats, demonstrating rat species relevance in these studies. Body weight gain, food and water consumption were not affected. CIMAvax-EGF and Montanide ISA 51 produced local damage at the administration site, showing multiple cysts and granulomas. Both vaccine-treated groups showed neutrophil elevation, besides an AST increase probably related to the damage at the administration site. Rectal temperature was found to be significantly higher in 15× treated group after immunizations, probably induced by the inflammatory process at the injection site. In summary, the clinical pathology findings together with the body temperature results, appear to be caused by the inflammatory reaction at the administration site of the vaccine, mainly mediated by the oil-based adjuvant Montanide ISA 51, probably enhanced by the immunological properties of the antigen. This study showed evidences that intramuscular administration during 26 weeks of CIMAvax-EGF at doses up to 15× human total dose is well tolerated in rats and it has a clinical importance since this long lasting study in relevant species allows to treat cancer patients with tumors during long periods with relative weight safety margin. Copyright © 2012 Elsevier Ltd. All rights reserved.
Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats.
Placheta, Eva; Wood, Matthew D; Lafontaine, Christine; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H
2015-01-01
Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). Facial nerve injury. Optical fluorescence of regenerating facial nerve axons. Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. NA.
Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.
2016-01-01
Background The assessment of nociception in preclinical studies is undergoing a transformation from pain-evoked to pain-depressed tests to more closely mimic the effects of clinical pain. Many inflammatory pain-depressed behaviors (reward seeking, locomotion) have been examined, but these tests are limited because of confounds such as stress and difficulties in quantifying behavior. New Method The present study evaluates home cage wheel running as an objective method to assess the magnitude and duration of inflammatory pain in male and female rats. Results Injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw to induce inflammatory pain almost completely inhibited wheel running for 2 days in males and females. Wheel running gradually returned to baseline levels within 12 days despite persistent mechanical hypersensitivity (von Frey test). Comparison with Existing Methods Continuously monitoring home cage wheel running improves on previous studies examining inflammatory pain-depressed wheel running because it is more sensitive to noxious stimuli, avoids the stress of removing the rat from its cage for testing, and provides a complete analysis of the time course for changes in nociception. Conclusions The present data indicate that home cage wheel running is a clinically relevant method to assess inflammatory pain in the rat. The decrease in activity caused by inflammatory pain and subsequent gradual recovery mimics the changes in activity caused by pain in humans. The tendency for pain-depressed wheel running to be greater in female than male rats is consistent with the tendency for women to be at greater risk of chronic pain than men. PMID:26891874
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Mitchell R.; Williams, C. David; Xie, Yuchao
2012-11-01
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites amore » reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The limited mitochondrial adducts in rats are insufficient to trigger cell necrosis.« less
Clinical Investigation Program (Tripler Army Medical Center)
1991-10-01
temperatures - arterial and central venous blood pressure, relevant blood and urinary hormones, and urine flows will be measured via indwelling catheters...Analysis of central venous pressure recordings are not yet complete, but all experimentation is complete. 21 Detail Summary Sheet Prot No: llA91 Status... catheterized newborn rats are performed. Rats are instrumented with arterial, venous , and stomach catheters and a bladder cannula 3 to 7 days before
Chauhan, Ashwini; Lebeaux, David; Decante, Benoit; Kriegel, Irene; Escande, Marie-Christine; Ghigo, Jean-Marc; Beloin, Christophe
2012-01-01
Formation of resilient biofilms on medical devices colonized by pathogenic microorganisms is a major cause of health-care associated infection. While in vitro biofilm analyses led to promising anti-biofilm approaches, little is known about their translation to in vivo situations and on host contribution to the in vivo dynamics of infections on medical devices. Here we have developed an in vivo model of long-term bacterial biofilm infections in a pediatric totally implantable venous access port (TIVAP) surgically placed in adult rats. Using non-invasive and quantitative bioluminescence, we studied TIVAP contamination by clinically relevant pathogens, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis, and we demonstrated that TIVAP bacterial populations display typical biofilm phenotypes. In our study, we showed that immunocompetent rats were able to control the colonization and clear the bloodstream infection except for up to 30% that suffered systemic infection and death whereas none of the immunosuppressed rats survived the infection. Besides, we mimicked some clinically relevant TIVAP associated complications such as port-pocket infection and hematogenous route of colonization. Finally, by assessing an optimized antibiotic lock therapy, we established that our in vivo model enables to assess innovative therapeutic strategies against bacterial biofilm infections. PMID:22615964
Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu
2015-01-01
For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a standard clinical biochemistry exercise. The students are not only exposed to techniques and equipment but are also inspired to think more about the biochemical mechanisms of diseases. When linked with lecture topics about the metabolism of carbohydrates and lipids, the students obtain a better understanding of the relevance of abnormal metabolism in relation to diseases. Such understanding provides a solid foundation for the medical students' future research and for other clinical applications. © 2014 Biochemistry and Molecular Biology Education.
Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu
2015-01-01
For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a standard clinical biochemistry exercise. The students are not only exposed to techniques and equipment but are also inspired to think more about the biochemical mechanisms of diseases. When linked with lecture topics about the metabolism of carbohydrates and lipids, the students obtain a better understanding of the relevance of abnormal metabolism in relation to diseases. Such understanding provides a solid foundation for the medical students' future research and for other clinical applications. PMID:25521692
Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Robert J.; Jun, Brandon J.; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California
Purpose: In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. Methods and Materials: Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. Results: Fractional anisotropy in the spleniummore » of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. Conclusions: The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.« less
Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio
2005-06-28
Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.
NASA Astrophysics Data System (ADS)
Sun, Tao; Sutton, Jonathan T.; Power, Chanikarn; Zhang, Yongzhi; Miller, Eric L.; McDannold, Nathan J.
2017-10-01
Sub-megahertz transmission is not usually adopted in pre-clinical small animal experiments for focused ultrasound (FUS) brain therapy due to the large focal size. However, low frequency FUS is vital for preclinical evaluations due to the frequency-dependence of cavitation behavior. To maximize clinical relevance, a dual-aperture FUS system was designed for low-frequency (274.3 kHz) cavitation-mediated FUS therapy. Combining two spherically curved transducers provides significantly improved focusing in the axial direction while yielding an interference pattern with strong side lobes, leading to inhomogeneously distributed cavitation activities. By operating the two transducers at slightly offset frequencies to modulate this interference pattern over the period of sonication, the acoustic energy was redistributed and resulted in a spatially homogenous treatment profile. Simulation and pressure field measurements in water were performed to assess the beam profiles. In addition, the system performance was demonstrated in vivo in rats via drug delivery through microbubble-mediated blood-brain barrier disruption. This design resulted in a homogenous treatment profile that was fully contained within the rat brain at a clinically relevant acoustic frequency.
Isolation Rearing Effects on Probabilistic Learning and Cognitive Flexibility in Rats
AMITAI, Nurith; YOUNG, Jared W.; HIGA, Kerin; SHARP, Richard F.; GEYER, Mark A.; POWELL, Susan B.
2013-01-01
Isolation rearing is a neurodevelopmental manipulation that produces neurochemical, structural, and behavioral alterations in rodents that have consistencies with schizophrenia. Symptoms induced by isolation rearing that mirror clinically relevant aspects of schizophrenia, such as cognitive deficits, open up the possibility of testing putative therapeutics in isolation-reared animals prior to clinical development. We investigated what effect isolation rearing would have on cognitive flexibility, a cognitive function characteristically disrupted in schizophrenia. For this purpose, we assessed cognitive flexibility using between- and within-session probabilistic reversal-learning tasks based on clinical tests. Isolation-reared rats required more sessions, though not more task trials, to acquire criterion performance in the reversal phase of the task and were slower to adjust their task strategy after reward contingencies were switched. Isolation-reared rats also completed fewer trials and exhibited lower levels of overall activity in the probabilistic reversal-learning task compared to socially reared rats. This finding contrasted with the elevated levels of unconditioned investigatory activity and reduced levels of locomotor habituation that isolation-reared rats displayed in the behavioral pattern monitor. Finally, isolation-reared rats also exhibited sensorimotor gating deficits, reflected by decreased prepulse inhibition of the startle response, consistent with previous studies. We conclude that isolation rearing constitutes a valuable, noninvasive manipulation for modeling schizophrenia-like cognitive deficits and assessing putative therapeutics. PMID:23943516
Tillner, Falk; Thute, Prasad; Bütof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang
2014-12-01
For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained. Copyright © 2014. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam
Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the studymore » of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.« less
Vasconcelos, Mailton; Stein, Dirson João; de Almeida, Rosa Maria M
2015-01-01
Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.
Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.
de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann
2017-05-01
To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.
Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Parker, George A; Peters, Jeffrey M; Butenhoff, John L
2017-10-01
Choline is an essential nutrient utilized for phosphatidylcholine biosynthesis and lipoprotein packaging and secretion. Recently, choline supplementation has been used by athletes and the public for weight loss. However, the potential toxicological impact of choline dietary supplementation requires further investigation. This study examined the effects of choline dietary supplementation in Sprague Dawley rats for 4 weeks. Rats were fed diets containing basal choline levels (control) or 5-, 10-, or 15-fold (5×, 10×, or 15×) basal diet concentration. In groups fed choline-supplemented diets, there were no toxicologically relevant findings in clinical observations, food intake, clinical chemistry, liver weights, or liver histopathology. However, decreased mean body weights (8.5-10.2%) and body weight gains (24-31%) were noted for the 10× choline-supplemented (females only) and 15× choline-supplemented (both sexes) groups relative to the control groups from day 3 onward. These body weight effects were not related to a persistent reduction in average food intake. Serum cholesterol was increased in the 15× choline-supplemented male rats relative to the controls, an expected effect of choline supplementation; however, there were no changes in the serum cholesterol of female rats. Serum choline concentrations were increased in female rats relative to the male rats across all treatment groups. The maximum tolerated dose for male and female rats were the 15× and 10× choline supplements, respectively, based on decreased mean body weight and body weight gains. This study supported the conclusions of a clinical trial that showed a high choline diet can decrease body weight in humans.
Musicki, Biljana; Champion, Hunter C; Becker, Robyn E; Liu, Tongyun; Kramer, Melissa F; Burnett, Arthur L
2005-07-01
Despite demonstrated clinical efficacy of sildenafil for the temporary treatment of erectile dysfunction, the possibility that sildenafil used long-term durably augments erectile ability remains unclear. We investigated whether continuous long-term administration of sildenafil at clinically relevant levels to aged rats "primes" the penis for improved erectile ability and involves nitric oxide (NO) or RhoA/Rho-kinase signaling pathways. In aged, but not young rats, sildenafil prolonged erection and increased the protein expressions of phosphorylated endothelial NO synthase (eNOS) at serine-1177 and phosphorylated Akt at serine-473 in penes. Only in the young rat penis, protein expressions of phosphodiesterase-5 and phosphomyosin phosphatase target subunit 1, a marker of Rho-kinase activity, were increased by sildenafil. Sildenafil inhibited phosphodiesterase-5 activity in penes of young and aged rats coincident with assayed free plasma levels of the drug equivalent to clinically therapeutic measurements. We conclude that erectile ability can be enhanced under preconditions of erectile impairment by long-term inhibition of phosphodiesterase-5 and that the effect is mediated by Akt-dependent eNOS phosphorylation. The lack of erectile ability enhancement in young rats by long-term phosphodiesterase-5 inhibition may relate to restrained NO signaling by phosphodiesterase-5 up-regulation, lack of incremental Akt and eNOS phosphorylation, and heightened Rho-kinase signaling in the penis.
Johnson, Clorinda C.; Yu, Alika; Lee, Heeje; Fidel, Paul L.
2012-01-01
Denture stomatitis (DS) is a fungal infection characterized by inflammation of the oral mucosa in direct contact with the denture and affects up to 50% of denture wearers. Despite the prevalence, very little is known about the role of fungal or host factors that contribute to pathogenesis. Recently, we developed a novel intraoral denture system for rodent research. This denture system consists of custom-fitted fixed and removable parts to allow repeated sampling and longitudinal studies. The purpose of this study was to use this denture system to develop a clinically relevant animal model of DS. To establish DS, rats were inoculated with pelleted Candida albicans, which resulted in sustained colonization of the denture and palate for 8 weeks postinoculation. Biofilm formation on the denture was observed by week 4 and on the palate by week 6 postinoculation. Rats were monitored for clinical signs of disease by assigning a clinical score after macroscopic examination of the palate tissue according to Newton's method. By week 4 postinoculation, the majority of inoculated rats with dentures exhibited a clinical score of 1 (pinpoint erythema). By week 6 and week 8 postinoculation, increasing percentages of rats exhibited a clinical score of 2 (diffuse erythema/edema). Histological analysis of palate tissue demonstrated progressively increasing inflammatory cell recruitment throughout the time course of the infection. Palatal biofilm formation was commensurate with development of palatal erythema, which suggests a role for biofilm in the inflammatory response. PMID:22392931
Bauhofer, Artur; Tischer, Bjirn; Middeke, Martin; Plaul, Ulrike; Lorenz, Wilfried; Torossian, Alexander
2003-10-01
Hypertension is proposed as a risk factor among others (high age, diabetes mellitus, and pre- and intraoperative bleeding) for adverse outcomes, such as severe infections, leading to sepsis and to multiple organ failure as the most deleterious complication. Hypertension was modeled with spontaneous hypertensive rats (SHR) and Dahl salt-sensitive (DS) rats and the infective complication by polymicrobial, peritoneal contamination, and infection (PCI). The concept of clinic modeling randomized trials was used to simulate clinical complexity, including a relevant antibiotic prophylaxis in combination with granulocyte-colony stimulating factor (G-CSF) and clinical trial conditions. Outcome parameters were: survival, systemic cytokines (protein), and organ-specific cytokine levels (mRNA). With low complexity (no prophylaxis), 28% of the animals in the Wistar and 50% in the SHR group survived (P=0.17). Tumor necrosis factor-alpha levels were lower in the liver of SHR vs. Wistar rats with PCI (P<0.01). The anti-inflammatory cytokine interleukin (IL)-10 was expressed on a higher level in SHR with PCI compared with Wistar rats (P<0.01). With increased complexity (antibiotic and G-CSF prophylaxis) the survival rate was increased from 50% in Wistar rats to 89% in SHR (P<0.01) and the mRNA expression of IL-6 was decreased in the kidney of SHR (P<0.05). Survival rate was 44% in the DS rats vs. 67% of the Wistar rats (P=0.18). The mRNA expression of tumor necrosis factor-alpha and IL-10 was reduced (P<0.01) by pretreatment in the liver of DS rats with PCI. The hypertensive, genetically distinct SHR and DS rats express different patterns of pro- and anti-inflammatory cytokine levels after PCI. G-CSF and antibiotic prophylaxis increases only in SHR survival and decreases IL-6 mRNA expression in the kidney significantly.
Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells.
Dolan, Laurie; Matulka, Ray; Worn, Jeffrey; Nizio, John
2016-01-01
Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermittent decreases in food efficiency (150 000 ppm males only) that were not biologically relevant. All animals survived and no adverse clinical signs or functional changes were attributable to the test material. There were no toxicologically relevant changes in hematology, clinical chemistry or urinalysis parameters or organ weights in rats ingesting pecan shell fiber. Any macroscopic or microscopic findings were incidental, of normal variation and/or of minimal magnitude for test substance association. Pecan shell fiber was non-mutagenic in a bacterial reverse mutation test and non-clastogenic in a mouse peripheral blood micronucleus test. Based on these results, pecan shell fiber has an oral subchronic (13-week) no observable adverse effect level (NOAEL) of 150 000 ppm in rats and is not genotoxic at the doses analyzed.
Bourke, Chase H.; Capello, Catherine F.; Rogers, Swati M.; Yu, Megan L.; Boss-Williams, Katherine A.; Weiss, Jay M.; Stowe, Zachary N.; Owens, Michael J.
2014-01-01
Rationale A rigorously investigated model of stress and antidepressant administration during pregnancy is needed to evaluate possible effects on the mother. Objective The objective of this study was to develop a model of clinically relevant prenatal exposure to an antidepressant and stress during pregnancy to evaluate the effects on maternal care behavior. Results Female rats implanted with 28 day osmotic minipumps delivering the SSRI escitalopram throughout pregnancy had serum escitalopram concentrations in a clinically observed range (17-65 ng/mL). A separate cohort of pregnant females exposed to a chronic unpredictable mild stress paradigm on gestational days 10-20 showed elevated baseline (305 ng/mL), and acute stress-induced (463 ng/mL), plasma corticosterone concentrations compared to unstressed controls (109 ng/mL). A final cohort of pregnant dams were exposed to saline (control), escitalopram, stress, or stress and escitalopram to determine the effects on maternal care. Maternal behavior was continuously monitored over the first 10 days post parturition. A reduction of 35% in maternal contact and 11% in nursing behavior was observed due to stress during the light cycle. Licking and grooming behavior was unaffected by stress or drug exposure in either the light or dark cycle. Conclusions These data indicate that: 1) clinically relevant antidepressant treatment during human pregnancy can be modeled in rats using escitalopram; 2) chronic mild stress can be delivered in a manner that does not compromise fetal viability; and 3) neither of these prenatal treatments substantially altered maternal care post parturition. PMID:23436130
Harris, Hannah M; Carpenter, Jessica M; Black, Jonathan R; Smitherman, Todd A; Sufka, Kenneth J
2017-06-01
Rodent models typically use a single nitroglycerin injection to induce migraine, yet migraine in clinical populations presents as recurrent episodes. Further, these models quantify behavioral endpoints that do not align with the clinical features of episodic migraine or migraine chronification and therefore may limit translational relevance. Rats received 5 nitroglycerin (10mg/kg/2ml), propylene glycol/ethanol vehicle, or saline injections every third day over 15days. Behavioral endpoints were assessed 110min post nitroglycerin administration and included time spent light/dark chambers for photophobia as well as activity, facial pain expressions, and tactile allodynia. Animals administered nitroglycerin displayed photophobia, decreased activity, and increased facial pain expression. Similar alterations in photophobia and activity were seen in the vehicle treated animals, but these tended to diminish by the 4th or 5th injection. The presentation of spontaneous tactile allodynia was observed in the nitroglycerin group by the 5th episode. Most NTG migraine models entail a single NTG administration and quantification of evoked allodynia. This paradigm employs recurring NTG episodes and clinically-relevant measures of photophobia, hypoactivity and facial grimace endpoints as well as introduces a novel arena apparatus to quantify spontaneous allodynia. This repeated NTG procedure and endpoint measures aligns with the frequency and clinical presentation of episodic migraine and its chronification, respectively. Further, propylene glycol ethanol vehicle contributes to migraine endpoints. Copyright © 2017 Elsevier B.V. All rights reserved.
Infusion of solutions of pre-irradiated components in rats.
Pappas, Georgina; Arnaud, Francoise; Haque, Ashraful; Kino, Tomoyuki; Facemire, Paul; Carroll, Erica; Auker, Charles; McCarron, Richard; Scultetus, Anke
2016-06-01
The objective of this study was to conduct a 14-day toxicology assessment for intravenous solutions prepared from irradiated resuscitation fluid components and sterile water. Healthy Sprague Dawley rats (7-10/group) were instrumented and randomized to receive one of the following Field IntraVenous Resuscitation (FIVR) or commercial fluids; Normal Saline (NS), Lactated Ringer's, 5% Dextrose in NS. Daily clinical observation, chemistry and hematology on days 1,7,14, and urinalysis on day 14 were evaluated for equivalence using a two sample t-test (p<0.05). A board-certified pathologist evaluated organ histopathology on day 14. Equivalence was established for all observation parameters, lactate, sodium, liver enzymes, creatinine, WBC and differential, and urinalysis values. Lack of equivalence for hemoglobin (p=0.055), pH (p=0.0955), glucose (p=0.0889), Alanine-Aminotransferase (p=0.1938), albumin (p=0.1311), and weight (p=0.0555, p=0.1896), was deemed not clinically relevant due to means within physiologically normal ranges. Common microscopic findings randomly distributed among animals of all groups were endocarditis/myocarditis and pulmonary lesions. These findings are consistent with complications due to long-term catheter use and suggest no clinically relevant differences in end-organ toxicity between animals infused with FIVR versus commercial fluids. Copyright © 2016 Elsevier GmbH. All rights reserved.
Induction of P450 3A1/2 and 2C6 by gemfibrozil in Sprague-Dawley rats.
Liu, Aiming; Yang, Julin; Zhao, Xin; Jiao, Xiaolan; Zhao, Weihong; Ma, Qing; Tang, Zhiyuan; Dai, Renke
2011-01-01
Fibrates are a group of peroxisome proliferator-activated receptor α agonists used in the treatment of dyslipidemia; however, they have been reported to cause species-related hepatocarcinogenesis and clinical myotoxicity. Gemfibrozil is one of the most commonly used fibrates, and it shows the highest risk for myotoxicity among the fibrates. The inhibitory drug-drug interaction mechanism associated with gemfibrozil has been explored recently, and the induction of human P450 3A4 and 2C8 has been reported. In this study, in vivo induction of rat P450 by gemfibrozil was studied in Sprague-Dawley rats. After the rats were dosed with gemfibrozil by oral gavage, microsomes were prepared. The metabolic activities of P450 3A1/2, 2C6, and 2D2 were assayed using probe substrates, and the systemic concentration of gemfibrozil during its administration was determined. P450 3A1/2 and 2C6 activities were induced 32-77% in the rats by gemfibrozil when the exposure concentration was in the clinical range. These data indicate that the inducibility of homologous P450 isoforms by gemfibrozil is similar in Sprague-Dawley rats and in humans. Inductive drug-drug interactions and inhibitory actions are involved in the co-administration of gemfibrozil with other drugs, which suggests the relevance for a fibrate-toxicology investigation.
Tuchman, Shamir; Asico, Laureano D.; Escano, Crisanto; Bobb, Daniel A.; Ray, Patricio E.
2013-01-01
Background Nephrocalcinosis (NC) is an important clinical problem seen in critically ill pre-term neonates treated with loop diuretics. No reliable animal models are available to study the pathogenesis of NC in preterm infants. The purpose of this study was to develop a reproducible and clinically relevant animal model of NC for these patients, and to explore the impact of extracellular fluid (ECF) volume contraction induced by sodium and chloride depletion in this process. Methods Three-week old weanling Sprague-Dawley rats were fed diets deficient in either chloride or sodium and chloride. A sub-group of rats from each dietary group was injected daily with furosemide (40 mg/kg; i.p.). Results Rats fed a control diet, with or without furosemide, or a chloride depleted diet alone, did not develop NC. In contrast, 50% of the rats injected with furosemide and fed the chloride depleted diet developed NC. Moreover, 94% of the rats fed the combined sodium/chloride depleted diet developed NC, independently of furosemide use. NC was associated with the development of severe ECF volume contraction, hypochloremic, hypokalemic metabolic alkalosis, increased phosphaturia, and growth retardation. Conclusion Severe ECF volume contraction induced by chronic sodium and chloride depletion appears to play an important role in the pathogenesis of NC. PMID:23174703
Luo, Xue; Ma, Lingjuan; Gao, Peng; Zhang, Yanwen
2017-04-01
The objective of the present study was to systematically determine the effects of 50 Hertz (Hz) magnetic fields (MFs) on biochemical parameters in rats. Sixty-four adult (5 weeks old, 140-165 g) male Sprague-Dawley rats were randomly divided into four groups: sham, 20 µTesla (µT), 100 µT, and 500 µT 50 Hz MF ( n = 16 in each group). The rats in the MF groups were exposed for 2 h daily for up to 4 weeks. Under these experimental conditions, body weight, organ coefficients, biochemical parameters (blood lipids, myocardial enzymes, liver function, and renal function) were measured. We found that 50 Hz MFs had no significant effects on growth or on the majority of blood biochemical parameters, with the exception of creatinine and cholesterol. However, the changes in creatinine and cholesterol were relatively small and unlikely to be clinically relevant.
Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats.
Sufka, Kenneth J; Staszko, Stephanie M; Johnson, Ainslee P; Davis, Morgan E; Davis, Rachel E; Smitherman, Todd A
2016-01-01
This research sought to further validate the rat nitroglycerin (NTG) migraine model by comparing the effects of single versus recurrent NTG episodes on behavioral endpoints that mirror ICHD-3 diagnostic criteria for migraine, and to determine if the altered behavioral endpoints are reduced after administration of sumatriptan. Separate cohorts of rats were administered NTG (10 mg/kg/2 ml) or saline (Experiment 1: single injection; Experiment 2: repeated injections; Experiment 3: repeated injections with sumatriptan [0.0, 0.3 and 1.0 mg/kg/ml] rescue. Behavioral endpoints were assessed 2 h after final NTG administration and included time in light/dark chambers for photophobia and activity, pain facial ratings, and cool (5 °C) and warm (46 °C) tail dip. The first two experiments demonstrated that repeated (n = 5) but not single NTG injections produced photophobia, decreased activity, and yielded less weight gain than saline injections. Experiment 3 showed that sumatriptan attenuated hypoactivity, reduced facial expressions of pain, and reversed weight alterations in a dose-dependent manner. These findings identify numerous clinical homologies of a recurrent NTG rat migraine model that may be useful for screening novel pharmacotherapies.
Haleem, Darakhshan Jabeen; Inam, Qurrat-ul-Aen; Haleem, Muhammad Abdul
2015-03-15
The psychostimulant methylphenidate (MPD) is a first-line drug for the treatment of attention deficit hyperactivity disorder (ADHD). Despite acceptable therapeutic efficacy, there is limited data regarding the long-term consequences of MPD exposure over extended periods. The present study concerns effects of clinically relevant doses of MPD, administered orally to rats for an extended period, on spatial memory, behavioral sensitization and habituation to an open field. Water maze test was used to monitor memory acquisition (2 h after training), retention (day next to training), extinction (1 week after training) and reconsolidation (weekly for 4 weeks). Administration of MPD at doses of 0.25-1.0 mg/kg improved memory acquisition, retention, reconsolidation and impaired memory extinction. Treatment with 0.25 and 0.5 mg/kg MPD for 6 weeks produced a sustained increase in motor activity but higher dose (1.0 mg/kg) elicited behavioral sensitization. High as well as low doses MPD impaired open field habituation. We conclude that clinically relevant doses of MPD enhance memory even if used for extended period. It is suggested that higher (1.0 mg/kg) clinically relevant doses of MPD, if used for extended period, may exacerbate hyperactivity and impulsivity associated with the disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Urban, Kimberly R.; Li, Yan-Chun; Gao, Wen-Jun
2013-01-01
Methylphenidate (Ritalin, MPH) is the most commonly prescribed psychoactive drug for children. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, its cellular mechanisms of action and potential long-term effects are poorly understood. We recently reported that a clinically relevant (1 mg/kg i.p., single injection) dose of MPH significantly decreased neuronal excitability in the juvenile rat prefrontal cortical neurons. Here we further explore the actions of acute treatment with MPH on the level of NMDA receptor subunits and NMDA receptor-mediated short- and long-term synaptic plasticity in the juvenile rat prefrontal cortical neurons. We found that a single dose of MPH treatment (1 mg/kg, intraperitoneal) significantly decreased the surface and total protein levels of NMDA receptor subunits NR1 and NR2B, but not NR2A, in the juvenile prefrontal cortex. In addition, the amplitude, decay time and charge transfer of NMDA receptor-mediated EPSCs were significantly decreased whereas the amplitude and short-term depression of AMPA receptor-mediated EPSCs were significantly increased in the prefrontal neurons. Furthermore, MPH treatment also significantly increased the probability and magnitude of LTP induction, but had only a small effect on LTD induction in juvenile rat prefrontal cortical neurons. Our data thus present a novel mechanism of action of MPH, i.e., changes in glutamatergic receptor-mediated synaptic plasticity following early-life treatment. Furthermore, since a single dosage resulted in significant changes in NMDA receptors, off-label usage by healthy individuals, especially children and adolescents, may result in altered potential for plastic learning. PMID:23333502
Vonder Haar, Cole; Anderson, Gail D; Hoane, Michael R
2011-10-31
Previous research has demonstrated considerable preclinical efficacy of nicotinamide (NAM; vitamin B(3)) in animal models of TBI with systemic dosing at 50 and 500 mg/kg yielding improvements on sensory, motor, cognitive and histological measures. The current study aimed to utilize a more specific dosing paradigm in a clinically relevant delivery mechanism: continuously secreting subcutaneous pumps. A bilateral frontal controlled cortical impact (CCI) or sham surgery was performed and rats were treated with NAM (150 mg/kg day) or saline (1 ml/kg) pumps 30 min after CCI, continuing until seven days post-CCI. Rats were given a loading dose of NAM (50mg/kg) or saline (1 ml/kg) following pump implant. Rats received behavioral testing (bilateral tactile adhesive removal, locomotor placing task and Morris water maze) starting on day two post-CCI and were sacrificed at 31 days post-CCI and brains were stained to examine lesion size. NAM-treated rats had reductions in sensory, motor and cognitive behavioral deficits compared to vehicle-treated rats. Specifically, NAM-treated rats significantly improved on the bilateral tactile adhesive removal task, locomotor placing task and the reference memory paradigm of the Morris water maze. Lesion size was also significantly reduced in the NAM-treated group. The results from this study indicate that at the current dose, NAM produces beneficial effects on recovery from a bilateral frontal brain injury and that it may be a relevant compound to be explored in human studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Learned helplessness and social avoidance in the Wistar-Kyoto rat
Nam, Hyungwoo; Clinton, Sarah M.; Jackson, Nateka L.; Kerman, Ilan A.
2014-01-01
The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague–Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression. PMID:24744709
Learned helplessness and social avoidance in the Wistar-Kyoto rat.
Nam, Hyungwoo; Clinton, Sarah M; Jackson, Nateka L; Kerman, Ilan A
2014-01-01
The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague-Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression.
Bueters, Ruud R G; Jeronimus-Klaasen, Annelies; Maicas, Nuria; Florquin, Sandrine; van den Heuvel, Lambertus P; Schreuder, Michiel F
2016-01-01
Diuretics are administered to neonates to control fluid balance. We studied whether clinical doses affected kidney development and function and whether extrauterine growth retardation (EUGR) could be a modulator. Wistar rats were cross-fostered in normal food or food restricted litters at postnatal day (PND) 2 and treated daily with 0.9% NaCl, 5 mg/kg furosemide or 5 mg/kg hydrochlorothiazide (HCTZ) up to PND 8. Kidneys were evaluated on proliferation, apoptosis and a set of mRNA target genes at PND 8, glomerular- and glomerular generation count at PND 35, clinical pathology parameters at 3- and 9 months, neutrophil gelatinase-associated lipocalin at PND 8, 3 and 6 months, monthly blood pressure from 3 months onward and histopathology at study end. Treatment with furosemide or HCTZ did not have relevant effects on measured parameters. EUGR resulted in lower body weight from day 3 onwards (-29% at weaning; p < 0.001, -10% at necropsy; p < 0.001), less glomerular generations (4.4 ± 0.32 vs. 5.0 ± 0.423; p = 0.025, males only), decreased glomerular numbers (27,861 ± 3,468 vs. 30,527 ± 4,096; p = 0.026), higher creatinine clearance (0.84 ± 0.1 vs. 0.77 ± 0.09 ml/min/kg; p = 0.047) at 3 months and lower plasma creatinine (25.7 ± 1.8 vs. 27.5 ± 2.8 µmol/l; p = 0.043) at 9 months. Furosemide and HCTZ did not influence kidney development or function when administered in a clinically relevant dose to rat pups at a stage of ongoing nephrogenesis. EUGR led to impaired kidney development but did not modify furosemide or HCTZ findings. © 2016 S. Karger AG, Basel.
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus((+)) and tinnitus((-)) groups and detected no evidence of tinnitus in tinnitus((-)) and control rats. In addition, the tinnitus((+)) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus((+)) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Xu, Hong; Ramsey, Deborah M.; Wu, Shengli; Bozulic, Larry D.; Ildstad, Suzanne T.
2012-01-01
Background Approaches to safely induce tolerance in vascularized composite allotransplantation (VCA) with chimerism through bone marrow transplantation (BMT) are currently being pursued. However, the VCA were historically performed sequentially after donor chimerism was established. Delayed VCA is not clinically applicable due to the time constraints associated with procurement from deceased donors. A more clinically relevant approach to perform both the BMT and VCA simultaneously was evaluated. Methods WF (RT1Au) rats were treated with a short course of immunosuppressive therapy (anti-αβ-TCR mAb, FK-506, and anti-lymphocyte serum). One day prior to BMT, rats were treated with varying doses of total body irradiation (TBI) followed by transplantation of heterotopic osteomyocutaneous flaps from hind limbs of ACI (RT1Aabl) rats. Results 80% of rats conditioned with 300 cGy TBI and 40% of rats receiving 400 cGy TBI accepted the VCA. Mixed chimerism was detected in peripheral blood at one month post-VCA, but chimerism was lost in all transplant recipients by 4 months. The majority of peripheral donor cells originated from the BMT and not the VCA. Acceptors of VCA were tolerant of a donor skin graft challenge and no anti-donor antibodies were detectable, suggesting a central deletional mechanism for tolerance. Regulatory T cells (Treg) from spleens of acceptors more potently suppressed lymphocyte proliferation than Treg from rejectors in the presence of donor stimulator cells. Conclusions These studies suggest that simultaneous BMT and VCA may establish indefinite allograft survival in rats through Treg-mediated suppression and thymic deletion of alloreactive T cells. PMID:23250336
Caroff, Eva; Hubler, Francis; Meyer, Emmanuel; Renneberg, Dorte; Gnerre, Carmela; Treiber, Alexander; Rey, Markus; Hess, Patrick; Steiner, Beat; Hilpert, Kurt; Riederer, Markus A
2015-12-10
Recent post hoc analyses of several clinical trials with P2Y12 antagonists showed the need for new molecules being fully efficacious as antiplatelet agents and having a reduced propensity to cause major bleeding. We have previously reported the discovery of the 2-phenylpyrimidine-4-carboxamide analogs as P2Y12 antagonists with nanomolar potency in the disease-relevant platelet aggregation assay in human plasma. Herein we present the optimization steps that led to the discovery of clinical candidate ACT-246475 (30d). The key step was the replacement of the carboxylic acid functionality by a phosphonic acid group which delivered the most potent molecules of the program. In addition, low in vivo clearance in rat and dog was achieved for the first time. Since the bioavailability of 30d was low in rat and dog, we developed the bis((isopropoxycarbonyl)oxy)methyl ester prodrug (ACT-281959, 45). Compound 30d showed efficacy in the rat ferric chloride thrombosis model when administered intravenously as parent or orally as its prodrug 45. Moreover, 30d displays a wider therapeutic window as compared to clopidogrel in the rat surgical blood loss model.
Baladi, Michelle G.; Nielsen, Shannon M.; Umpierre, Anthony; Hanson, Glen R.; Fleckenstein, Annette E
2014-01-01
Methylphenidate (MPD) is clinically effective in treating symptoms of attention-deficit/hyperactivity disorder; however, its relatively wide availability has raised public health concerns for non-medical use of MPD among certain adult populations. Most preclinical studies investigate whether presumed therapeutically relevant doses of MPD alter sensitivity to the reinforcing effects of other drugs, but it remains unclear whether doses of MPD likely exceeding therapeutic relevance impact the subsequent reinforcing effects of drugs. To begin to address this question, the effect of prior MPD self-administration (0.56 mg/kg/infusion) on the subsequent reinforcing effects of methamphetamine (METH, 0.032 or 0.1 mg/kg/infusion) was investigated in male, Sprague-Dawley rats. For comparison, it was also determined whether prior experimenter-administered MPD, injected daily at a presumed therapeutically-relevant dose (2 mg/kg), altered the subsequent reinforcing effects of METH. Results indicate that under the current conditions, only a history of MPD self-administration increased sensitivity to the subsequent reinforcing effects of METH. Furthermore, MPD did not impact food-maintained responding, suggesting that the effect of MPD might be specific to drug reinforcers. These data suggest that short-term, non-medical use of MPD might alter the positive reinforcing effects of METH in a manner relevant to vulnerability to drug use in humans. PMID:25325290
Baladi, Michelle G; Nielsen, Shannon M; Umpierre, Anthony; Hanson, Glen R; Fleckenstein, Annette E
2014-12-01
Methylphenidate (MPD) is clinically effective in treating the symptoms of attention-deficit hyperactivity disorder; however, its relatively widespread availability has raised public health concerns on nonmedical use of MPD among certain adult populations. Most preclinical studies investigate whether presumed therapeutically relevant doses of MPD alter sensitivity to the reinforcing effects of other drugs, but it remains unclear whether doses of MPD likely exceeding therapeutic relevance impact the subsequent reinforcing effects of drugs. To begin to address this question, the effect of prior MPD self-administration (0.56 mg/kg/infusion) on the subsequent reinforcing effects of methamphetamine (METH, 0.032 or 0.1 mg/kg/infusion) was investigated in male Sprague-Dawley rats. For comparison, it was also determined whether prior experimenter-administered MPD, injected daily at a presumed therapeutically relevant dose (2 mg/kg), altered the subsequent reinforcing effects of METH. Results indicated that, under the current conditions, only a history of MPD self-administration increased sensitivity to the subsequent reinforcing effects of METH. Furthermore, MPD did not impact food-maintained responding, suggesting that the effect of MPD might be specific to drug reinforcers. These data suggest that short-term, nonmedical use of MPD might alter the positive reinforcing effects of METH in a manner relevant to vulnerability to drug use in humans.
Dahlmann, Julia; Awad, George; Dolny, Carsten; Weinert, Sönke; Richter, Karin; Fischer, Klaus-Dieter; Munsch, Thomas; Leßmann, Volkmar; Volleth, Marianne; Zenker, Martin; Chen, Yaoyao; Merkl, Claudia; Schnieke, Angelika; Baraki, Hassina; Kutschka, Ingo; Kensah, George
2018-01-01
The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.
Triclosan Decreases Rat Thyroxine: Mode-of-Action, Developmental Susceptibility and Human Relevance
Triclosan (TCS) decreases serum thyroxine (T4) in the rat. In vivo and in vitro approaches were used to address three uncertainties: by what mode-of-action (MOA) does TCS decrease T4; does TCS decrease T4 developmentally; and, are effects observed in rats relevant to humans? To t...
Xu, Huan-Hua; Wang, Mei-Xi; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Li, Hua; Gao, Yue; Ma, Zeng-Chun
2017-02-01
To investigate the effect of clinical dose of Realgar-Indigo Naturais formula (RIF) and large-dose of Realgar on main drug-metabolizing enzymes CYP450s of rat liver, as well as its regulatory effect on mRNA expression. Wistar rats were administrated orally with tested drugs for 14 days. A Cocktail method combined with HPLC-MS/MS was used in the determination of 4 cytochrome P450 isozymes (CYP1A2, CYP2B, CYP3A and CYP2C) in liver of the rats, and the mRNA expression levels of the above subtypes were detected by real-time fluorescent quantitative PCR. The results showed that RIF can significantly induce CYP1A2 and CYP2B enzyme activity, and inhibit CYP3A enzyme activity. This result was consistent with the mRNA expression. However, its single compound showed weaker or even contrary phenomenon. Different doses of Realgar also showed significant inconsistencies on CYP450 enzymes activity and mRNA expression. These phenomena may be relevant with RIF compatibility synergies or toxicity reduction. The results can also prompt drug interactions when RIF is combined with other medicines in application. Copyright© by the Chinese Pharmaceutical Association.
Neonatal hyperthyroidism on rat heart: interrelation with nitric oxide and sex.
Rodríguez, L; Detomaso, F; Braga, P; Prendes, M; Perosi, F; Cernadas, G; Balaszczuk, A; Fellet, A
2015-06-01
To clarify the mechanism mediating the effect of hyperthyroidism on cardiac function during the second month of life in rats. Male and female Sprague-Dawley rats were assigned to a control or to a triiodothyronine (T3)-treated group. Treatment of each group was started on the third day after birth. Control rats (Eut) received 0.9 NaCl [0.1 ml/100 g body weight (BW)] every second day during 60 days and T3-treated rats (Hyper) received subcutaneous (SC) T3 injections every second day during 60 days. Hyperthyroidism decreased left ventricle volume only in male rats. Female euthyroid rats presented higher atrial nitric oxide synthase (NOS) activity than male rats and hormonal treatment decreased this enzyme's activity in both sexes. Euthyroid male and female rats had similar atrial NOS protein levels, but females had higher caveolin (cav) 3 protein levels. T3 treatment increased this protein only in males. Female rats had lower ventricular NOS activity than male rats; hyperthyroidism increased NOS activity in both sexes but this effect was associated with lower cav 3 protein levels. Hyperthyroidism did not change cav 1 protein levels in both male and female rats. The results of this study demonstrating clinically relevant sex-related differences in the pathophysiology of the hyperthyroid heart have raised new questions regarding the mechanisms responsible for the observed differences. This study suggests that sex-related intrinsic factors such as nitric oxide may modulate the response to hyperthyroidism that leads to cardiovascular dysfunction.
Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum
Alperin, Marianna; Feola, Andrew; Duerr, Robert; Moalli, Pamela; Abramowitch, Steven
2010-01-01
Introduction and hypothesis We sought to define changes in vaginal distensibility (VD) induced by pregnancy and vaginal delivery using a novel in vivo biomechanical testing protocol. Methods Under sedation, a balloon was inserted into the vagina of 27 virgin, pregnant and 4-week postpartum Long–Evans rats and incrementally distended. Pressure–volume curves were generated with slopes characterizing VD (higher slope = less distensible). One-way ANOVA with a Bonferroni post-hoc test were used for statistical analyses. Results Mean pressures at an infusion volume of 1 cc were lower in pregnant and postpartum rats than in virgins (P<0.001). VD was increased in pregnant vs. virgin rats (P<0.001) and did not recover to virgin levels post partum (P<0.001). Conclusions We have developed a test that measures VD in vivo under clinically relevant loading conditions. The increased VD in the late postpartum period defines a persistent change in biomechanical behavior of the vagina related to pregnancy and vaginal delivery. PMID:20424824
The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.
Hvoslef-Eide, M; Mar, A C; Nilsson, S R O; Alsiö, J; Heath, C J; Saksida, L M; Robbins, T W; Bussey, T J
2015-11-01
The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
Ney, Denise M.; Sigalet, David L.; Vegge, Andreas; Burrin, Douglas
2014-01-01
Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the choice of SBS model for each clinical or basic research question. PMID:25342047
Pabla, R; Curtis, M J
2007-04-01
The role of nitric oxide (NO) in cardiac pathophysiology remains controversial. According to data from several studies using rat and rabbit isolated hearts, NO is an endogenous cardioprotectant against reperfusion-induced ventricular fibrillation (VF). Thus, if cardiac NO production is abolished by perfusion with L-N(G)-nitro-L-arginine methylester (L-NAME) (100 microM) there is a concomittant increase in the incidence of reperfusion-induced VF, with L-NAME's effects on NO and VF prevented by L- (but not D-) arginine co-perfusion. To make a better estimate of the clinical relevance of these findings, 100 microM L-NAME was tested in primate hearts under similar conditions. Marmoset (Callithrix jaccus) hearts, isolated and perfused, were subjected to 60 min left regional ischaemia followed by 10 min reperfusion in vitro. The ECG was recorded and NO in coronary effluent measured by chemiluminescence. L-NAME (100 micro M) decreased NO in coronary effluent throughout ischaemia and reperfusion (e.g. from 3720+/-777 pmol min(-1) g(-1) in controls to 699+/-98 pmol min(-1) g(-1) after 5 min of ischaemia) and, during ischaemia, lowered coronary flow and reduced heart rate, actions identical to those seen in rat and rabbit hearts. However, the incidence of reperfusion-induced VF was unchanged (20%, with or without L-NAME). A species difference exists in the effectiveness of endogenous NO to protect hearts against reperfusion-induced VF. The present primate data, which presumably take precedence over rat and rabbit data, cast doubt on the clinical relevance of NO as an endogenous, antiarrhythmic, cardioprotectant.
Anesthetic effects on fictive locomotion in the rat isolated spinal cord
Jinks, Steven L.; Andrada, Jason; Satter, Omar
2011-01-01
General anesthetic mechanisms are poorly understood. Anesthetic immobilizing effects occur in the spinal ventral horn. However, a detailed analysis of anesthetic effects on ventral motor networks is lacking. We delivered isoflurane, desflurane, or propofol during NMDA/5-HT-induced, or noxious tail stimulus-evoked, fictive locomotion in neonatal rat isolated spinal cords. Anesthetics changed the frequency, amplitude, and regularity of fictive locomotion with little effect on phase-lag. Isoflurane abolished pharmacologically-induced vs noxious stimulus-induced motor output at similar concentrations. Propofol abolished pharmacologically-induced fictive locomotion via a GABAA-receptor mechanism. Anesthetic effects on pharmacologically-elicted fictive locomotion appear clinically-relevant, and support a ventral horn immobilizing effect on locomotor rhythm generation. PMID:21817927
Fagherazzi, Elen V; Garcia, Vanessa A; Maurmann, Natasha; Bervanger, Thielly; Halmenschlager, Luis H; Busato, Stefano B; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Schröder, Nadja
2012-02-01
Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.
Pace, Edward; Zhang, Jinsheng
2013-01-01
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments. PMID:24069375
Decreases in bone blood flow and bone material properties in aging Fischer-344 rats
NASA Technical Reports Server (NTRS)
Bloomfield, Susan A.; Hogan, Harry A.; Delp, Michael D.
2002-01-01
The purpose of this study was to quantify precisely aging-induced changes in skeletal perfusion and bone mechanical properties in a small rodent model. Blood flow was measured in conscious juvenile (2 months old), adult (6 months old), and aged (24 months old) male Fischer-344 rats using radiolabeled microspheres. There were no significant differences in bone perfusion rate or vascular resistance between juvenile and adult rats. However, blood flow was lower in aged versus adult rats in the forelimb bones, scapulas, and femurs. To test for functional effects of this decline in blood flow, bone mineral density and mechanical properties were measured in rats from these two age groups. Bone mineral density and cross-sectional moment of inertia in femoral and tibial shafts and the femoral neck were significantly larger in the aged versus adult rats, resulting in increased (+14%-53%) breaking strength and stiffness. However, intrinsic material properties at midshaft of the long bones were 12% to 25% lower in the aged rats. Although these data are consistent with a potential link between decreased perfusion and focal alterations in bone remodeling activity related to clinically relevant bone loss, additional studies are required to establish the mechanisms for this putative relationship.
Schmitt, Françoise; Podevin, Guillaume; Poupon, Joël; Roux, Jérôme; Legras, Pierre; Trocello, Jean-Marc; Woimant, France; Laprévote, Olivier; NGuyen, Tuan Huy; Balkhi, Souleiman El
2013-01-01
Background Wilson's disease (WD) is an inherited disorder of copper metabolism leading to liver failure and/or neurological impairment. Its diagnosis often remains difficult even with genetic testing. Relative exchangeable copper (REC) has recently been described as a reliable serum diagnostic marker for WD. Methodology/Principal Findings The aim of this study was to validate the use of REC in the Long Evans Cinnamon (LEC) rat, an animal model for WD, and to study its relevance under different conditions in comparison with conventional markers. Two groups of LEC rats and one group of Long-Evans (LE) rats were clinically and biologically monitored from 6 to 28 weeks of age. One group of LEC rats was given copper-free food. The other groups had normal food. Blood samples were collected each month and different serum markers for WD (namely ceruloplasmin oxidase activity, exchangeable copper (CuEXC), total serum copper and REC) and acute liver failure (serum transaminases and bilirubinemia) were tested. Every LEC rat under normal food developed acute liver failure (ALF), with 40% global mortality. Serum transaminases and bilirubinemia along with total serum copper and exchangeable copper levels increased with the onset of acute liver failure. A correlation was observed between CuEXC values and the severity of ALF. Cut-off values were different between young and adult rats and evolved because of age and/or liver failure. Only REC, with values >19%, was able to discriminate LEC groups from the LE control group at every time point in the study. REC sensitivity and specificity reached 100% in adults rats. Conclusions/Significance REC appears to be independent of demographic or clinical data in LEC rats. It is a very simple and reliable blood test for the diagnosis of copper toxicosis owing to a lack of ATP7B function. CuEXC can be used as an accurate biomarker of copper overload. PMID:24358170
Bonaccorsi, Joyce; Cenni, Maria Cristina; Sale, Alessandro; Maffei, Lamberto
2012-01-01
Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models. We investigated whether exposure to environmental enrichment (EE) is effective in triggering recovery of vision in adult amblyopic rats rendered monocular by optic nerve dissection in their normal eye. By employing both electrophysiological and behavioral assessments, we found a full recovery of visual acuity in enriched rats compared to controls reared in standard conditions. Moreover, we report that EE modulates the expression of GAD67 and BDNF. The non invasive nature of EE renders this paradigm promising for amblyopia therapy in adult monocular people. PMID:22509358
Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud
2017-11-01
Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This construct revitalized and generated new bone tissue. This successful approach proposes a novel paradigm in the treatment of AVN, in which an engineered, vascularized osteogenic graft would be used as a germ to revitalize large volumes of necrotic bone. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ketorolac Administration Does Not Delay Early Fracture Healing in a Juvenile Rat Model
Cappello, Teresa; Nuelle, Julia A.V.; Katsantonis, Nicolas; Nauer, Rachel K.; Lauing, Kristen L.; Jagodzinski, Jason E.; Callaci, John J.
2014-01-01
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Methods Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Results Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. Conclusions In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. Clinical Relevance The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures. PMID:23653032
He, Qili; Su, Guoming; Liu, Keliang; Zhang, Fangcheng; Jiang, Yong; Gao, Jun; Liu, Lida; Jiang, Zhongren; Jin, Minwu; Xie, Huiping
2017-01-01
Hematologic and biochemical analytes of Sprague-Dawley rats are commonly used to determine effects that were induced by treatment and to evaluate organ dysfunction in toxicological safety assessments, but reference intervals have not been well established for these analytes. Reference intervals as presently defined for these analytes in Sprague-Dawley rats have not used internationally recommended statistical method nor stratified by sex. Thus, we aimed to establish sex-specific reference intervals for hematologic and biochemical parameters in Sprague-Dawley rats according to Clinical and Laboratory Standards Institute C28-A3 and American Society for Veterinary Clinical Pathology guideline. Hematology and biochemistry blood samples were collected from 500 healthy Sprague-Dawley rats (250 males and 250 females) in the control groups. We measured 24 hematologic analytes with the Sysmex XT-2100i analyzer, 9 biochemical analytes with the Olympus AU400 analyzer. We then determined statistically relevant sex partitions and calculated reference intervals, including corresponding 90% confidence intervals, using nonparametric rank percentile method. We observed that most hematologic and biochemical analytes of Sprague-Dawley rats were significantly influenced by sex. Males had higher hemoglobin, hematocrit, red blood cell count, red cell distribution width, mean corpuscular volume, mean corpuscular hemoglobin, white blood cell count, neutrophils, lymphocytes, monocytes, percentage of neutrophils, percentage of monocytes, alanine aminotransferase, aspartate aminotransferase, and triglycerides compared to females. Females had higher mean corpuscular hemoglobin concentration, plateletcrit, platelet count, eosinophils, percentage of lymphocytes, percentage of eosinophils, creatinine, glucose, total cholesterol and urea compared to males. Sex partition was required for most hematologic and biochemical analytes in Sprague-Dawley rats. We established sex-specific reference intervals, including corresponding 90% confidence intervals, for Sprague-Dawley rats. Understanding the significant discrepancies in hematologic and biochemical analytes between male and female Sprague-Dawley rats provides important insight into physiological effects in test rats. Establishment of locally sex-specific reference intervals allows a more precise evaluation of animal quality and experimental results of Sprague-Dawley rats in our toxicology safety assessment.
Amitai, Nurith; Powell, Susan B; Young, Jared W
2017-11-22
Schizophrenia is a debilitating neurodevelopmental disorder affecting 1% of the global population with heterogeneous symptoms including positive, negative, and cognitive. While treatment for positive symptoms exists, none have been developed to treat negative symptoms. Animal models of schizophrenia are required to test targeted treatments and since patients exhibit reduced effort (breakpoints) for reward in a progressive ratio (PR) task, we examined the PR breakpoints of rats treated with the NMDA receptor antagonist phencyclidine or those reared in isolation - two common manipulations used to induce schizophrenia-relevant behaviors in rodents. In two cohorts, the PR breakpoint for a palatable food reward was examined in Long Evans rats after: 1) a repeated phencyclidine regimen; 2) A subchronic phencyclidine regimen followed by drug washout; and 3) post-weaning social isolation. Rats treated with repeated phencyclidine and those following washout from phencyclidine exhibited higher PR breakpoints than vehicle-treated rats. The breakpoint of isolation reared rats did not differ from those socially reared, despite abnormalities of these rats in other schizophrenia-relevant behaviors. Despite their common use for modeling other schizophrenia-relevant behaviors neither phencyclidine treatment nor isolation rearing recreated the motivational deficits observed in patients with schizophrenia, as measured by PR breakpoint. Other manipulations, and negative symptom-relevant behaviors, require investigation prior to testing putative therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
Simmler, Linda D; Buchy, Danièle; Chaboz, Sylvie; Hoener, Marius C; Liechti, Matthias E
2016-04-01
Trace amine-associated receptor 1 (TAAR1) has been implicated in the behavioral effects of amphetamine-type stimulant drugs in rodents. TAAR1 has also been suggested as a target for novel medications to treat psychostimulant addiction. We previously reported that binding affinities at TAAR1 can differ between structural analogs of psychostimulants, and species differences have been observed. In this study, we complement our previous findings with additional substances and the determination of functional activation potencies. In summary, we present here pharmacological in vitro profiles of 101 psychoactive substances at human, rat, and mouse TAAR1. p-Tyramine, β-phenylethylamine, and tryptamine were included as endogenous comparator compounds. Functional cAMP measurements and radioligand displacement assays were conducted with human embryonic kidney 293 cells that expressed human, rat, or mouse TAAR1. Most amphetamines, phenethylamine, and aminoindanes exhibited potentially physiologically relevant rat and mouse TAAR1 activation (EC50 < 5 µM) and showed full or partial (Emax < 80%) agonist properties. Cathinone derivatives, including mephedrone and methylenedioxypyrovalerone, exhibited weak (EC50 = 5-10 µM) to negligible (EC50 > 10 µM) binding properties at TAAR1. Pipradrols, including methylphenidate, exhibited no affinity for TAAR1. We found considerable species differences in activity at TAAR1 among the highly active ligands, with a rank order of rat > mouse > human. This characterization provides information about the pharmacological profile of psychoactive substances. The species differences emphasize the relevance of clinical studies to translationally complement rodent studies on the role of TAAR1 activity for psychoactive substances. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
2014-01-01
Background Consecutive treatment of normal heart with a high dose of isoproterenol and adenosine (Iso/Ade treatment), confers strong protection against ischaemia/reperfusion injury. In preparation for translation of this cardioprotective strategy into clinical practice during heart surgery, we further optimised conditions for this intervention using a clinically-relevant dose of Iso and determined its cardioprotective efficacy in hearts isolated from a model of surgically-induced heart failure. Methods Isolated Langendorff-perfused rat hearts were treated sequentially with 5 nM Iso and 30 μM Ade followed by different durations of washout prior to 30 min global ischaemia and 2 hrs reperfusion. Reperfusion injury was assessed by measuring haemodynamic function, lactate dehydrogenase (LDH) release and infarct size. Protein kinase C (PKC) activity and glycogen content were measured in hearts after the treatment. In a separate group of hearts, Cyclosporine A (CsA), a mitochondria permeability transition pore (MPTP) inhibitor, was added with Iso/Ade. Failing hearts extracted after 16 weeks of ligation of left coronary artery in 2 months old rats were also subjected to Iso/Ade treatment followed by ischaemia/reperfusion. Results Recovery of the rate pressure product (RPP) in Iso/Ade-treated hearts was significantly higher than in controls. Thus in Iso/Ade treated hearts with 5 nM Iso and no washout period, RPP recovery was 76.3 ± 6.9% of initial value vs. 28.5 ± 5.2% in controls. This was associated with a 3 fold reduction in LDH release irrespective to the duration of the washout period. Hearts with no washout of the drugs (Ade) had least infarct size, highest PKC activity and also showed reduced glycogen content. Cardioprotection with CsA was not additive to the effect of Iso/Ade treatment. Iso/Ade treatment conferred significant protection to failing hearts. Thus, RPP recovery in failing hearts subjected to the treatment was 69.0 ± 16.3% while in Control hearts 19.7 ± 4.0%. LDH release in these hearts was also 3 fold lower compared to Control. Conclusions Consecutive Iso/Ade treatment of normal heart can be effective at clinically-relevant doses and this effect appears to be mediated by glycogen depletion and inhibition of MPTP. This intervention protects clinically relevant failing heart model making it a promising candidate for clinical use. PMID:24885907
Bourke, Chase H.; Stowe, Zachary N.; Neigh, Gretchen N.; Olson, Darin E.; Owens, Michael J.
2013-01-01
Stress and/or antidepressants during pregnancy have been implicated in a wide range of long-term effects in the offspring. We investigated the long-term effects of prenatal stress and/or clinically relevant antidepressant exposure on male adult offspring in a model of the pharmacotherapy of maternal depression. Female Sprague-Dawley rats were implanted with osmotic minipumps that delivered clinically relevant exposure to the antidepressant escitalopram throughout gestation. Subsequently, pregnant females were exposed on gestational days 10–20 to a chronic unpredictable mild stress paradigm. The male offspring were analyzed in adulthood. Baseline physiological measurements were largely unaltered by prenatal manipulations. Behavioral characterization of the male offspring, with or without pre-exposure to an acute stressor, did not reveal any group differences. Prenatal stress exposure resulted in a faster return towards baseline following the peak response to an acute restraint stressor, but not an airpuff startle stressor, in adulthood. Microarray analysis of the hippocampus and hypothalamus comparing all treatment groups revealed no significantly-altered transcripts. Real time PCR of the hippocampus confirmed that several transcripts in the CRFergic, serotonergic, and neural plasticity pathways were unaffected by prenatal exposures. This stress model of maternal depression and its treatment indicate that escitalopram use and/or stress during pregnancy produced no alterations in our measures of male adult behavior or the transcriptome, however prenatal stress exposure resulted in some evidence for increased glucocorticoid negative feedback following an acute restraint stress. Study design should be carefully considered before implications for human health are ascribed to prenatal exposure to stress or antidepressant medication. PMID:23906943
Shaker, Mohamed E; Shiha, Gamal E; Ibrahim, Tarek M
2011-11-30
Our previous study has already confirmed a promising anti-fibrotic activity especially for nilotinib; when given at a daily dose of 10 mg/kg during the last 4 weeks of thioacetamide (TAA)-induced liver fibrosis for 12 weeks in rats. Therefore, this study was carried out to compare the prophylactic potential of low dose of nilotinib to that of its predecessor, imatinib, and a clinically relevant dose of the standard hepatoprotective treatment, silymarin, in TAA-intoxication. Male Wistar rats received intraperitoneal injections of TAA (150 mg/kg, twice weekly) for 8 weeks, as well as oral treatments with imatinib (5 mg/kg/day), nilotinib (5 mg/kg/day) and silymarin (50 mg/kg/day) from the first day of TAA-intoxication. At the end of the study, chronic hepatic injury was evaluated by analysis of liver function tests in serum. Hepatic oxidative stress was assessed by measuring malondialdehyde, 4-hydroxynonenal, total nitrate/nitrite and reduced glutathione contents, as well as myeloperoxidase and superoxide dismutase activities. Hepatic fibrosis was evaluated by histopathology and collagen content. Our results suggest that the prophylactic potential of nilotinib (5 mg/kg/day), imatinib (5mg/kg/day) and silymarin (50 mg/kg/day) in TAA-intoxication for 8 weeks is lower than the late treatments of nilotinib (10 mg/kg/day), imatinib (10mg/kg/day) and silymarin (100 mg/kg/day) during the last 4 weeks of TAA-intoxication for 12 weeks in rats. Taken together, this study suggests that nilotinib may have higher anti-fibrotic activity when administered at a significant stage of fibrosis as a result of impairment of its metabolism in the fibrotic livers. Copyright © 2011 Elsevier B.V. All rights reserved.
Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga
2016-01-01
Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way. PMID:27375442
Tian, Jing; Guo, Shu; Chen, Heng; Peng, Jing-Jie; Jia, Miao-Miao; Li, Nian-Sheng; Zhang, Xiao-Jie; Yang, Jie; Luo, Xiu-Ju; Peng, Jun
2017-11-04
Apoptosis and receptor-interacting protein kinase 1/3(RIPK1/3)-mediated necroptosis contribute to the cerebral ischemia/reperfusion (I/R) injury. Emricasan is an inhibitor of caspases in clinical trials for liver diseases while ponatinib could be a potential inhibitor for RIPK1/3. This study aims to investigate the effect of emricasan and/or ponatinib on cerebral I/R injury and the underlying mechanisms. Firstly, we evaluated the status of apoptosis and necroposis in a rat model of cerebral I/R under different conditions, which showed noticeable apoptosis and necroptosis under condition of 2-h ischemia and 24-h reperfusion; next, the preventive or therapeutic effect of emricasan or ponatinib on cerebral I/R injury was tested. Administration of emricasan or ponatinib either before or after ischemia could decrease the neurological deficit score and infarct volume; finally, the combined therapeutic effect of emricasan with ponatinib on I/R injury was examined. Combined application of emricasan and ponatinib could further decrease the I/R injury compared to single application. Emricasan decreased the activities of capase-8/-3 in the I/R-treated brain but not the protein levels of necroptosis-relevant proteins: RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL), whereas ponatinib suppressed the expressions of these proteins but not the activities of capase-8/-3. Combination of emricasan with ponatinib could suppress both capase-8/-3 and necroptosis-relevant proteins. Based on these observations, we conclude that combination of emricasan with ponatinib could synergistically reduce I/R injury in rat brain through simultaneous prevention of apoptosis and necroptosis. Our findings might lay a basis on extension of the clinical indications for emricasan and ponatinib in treating ischemic stroke.
Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.
Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H
2016-04-01
To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.
Veeraragavan, Surabi; Wan, Ying-Wooi; Connolly, Daniel R.; Hamilton, Shannon M.; Ward, Christopher S.; Soriano, Sirena; Pitcher, Meagan R.; McGraw, Christopher M.; Huang, Sharon G.; Green, Jennie R.; Yuva, Lisa A.; Liang, Agnes J.; Neul, Jeffrey L.; Yasui, Dag H.; LaSalle, Janine M.; Liu, Zhandong; Paylor, Richard; Samaco, Rodney C.
2016-01-01
Mouse models of the transcriptional modulator Methyl-CpG-Binding Protein 2 (MeCP2) have advanced our understanding of Rett syndrome (RTT). RTT is a ‘prototypical’ neurodevelopmental disorder with many clinical features overlapping with other intellectual and developmental disabilities (IDD). Therapeutic interventions for RTT may therefore have broader applications. However, the reliance on the laboratory mouse to identify viable therapies for the human condition may present challenges in translating findings from the bench to the clinic. In addition, the need to identify outcome measures in well-chosen animal models is critical for preclinical trials. Here, we report that a novel Mecp2 rat model displays high face validity for modelling psychomotor regression of a learned skill, a deficit that has not been shown in Mecp2 mice. Juvenile play, a behavioural feature that is uniquely present in rats and not mice, is also impaired in female Mecp2 rats. Finally, we demonstrate that evaluating the molecular consequences of the loss of MeCP2 in both mouse and rat may result in higher predictive validity with respect to transcriptional changes in the human RTT brain. These data underscore the similarities and differences caused by the loss of MeCP2 among divergent rodent species which may have important implications for the treatment of individuals with disease-causing MECP2 mutations. Taken together, these findings demonstrate that the Mecp2 rat model is a complementary tool with unique features for the study of RTT and highlight the potential benefit of cross-species analyses in identifying potential disease-relevant preclinical outcome measures. PMID:27365498
El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël
2015-12-01
Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Loureiro-Vieira, Sara; Costa, Vera Marisa; Duarte, José Alberto; Duarte-Araújo, Margarida; Gonçalves-Monteiro, Salomé; Maria de Lourdes, Bastos; Carvalho, Félix; Capela, João Paulo
2018-04-01
Methylphenidate (MPH) is a first-line stimulant drug to treat attention deficit hyperactivity disorder (ADHD). Overdiagnosis of ADHD and MPH abuse lead to serious concerns about the possible long-term adverse consequences of MPH in healthy children and adolescents. We aimed to evaluate MPH effects in adolescent male Wistar rats (postnatal day 40) using an oral dose scheme (2 daily MPH doses 5 mg/kg in a 5% sucrose solution, 5 h apart, for 7 days) that mimics the therapeutic doses given to human adolescents. Twenty-four hours after the last MPH administration, rats were sacrificed and brain areas [cerebellum, prefrontal cortex (PFC), hippocampus, and striatum], peripheral organs (liver, heart, and kidneys), and blood were collected for biochemical and histological analysis. MPH treatment did not alter rats' body temperature or weight, neither food or water intake throughout the experiment. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) significantly increased in the PFC and hippocampus of MPH-treated rats, meanwhile protein carbonylation remained unchanged in the brain. In the heart, the GSH/GSSG ratio and GSH levels were significantly increased, with decreased GSSG, while histology revealed significant damage, namely interstitial edema, vascular congestion, and presence of a fibrin-like material in the interstitial space. In the kidneys, MPH treatment resulted in extensive necrotic areas with cellular disorganization and cell infiltration, and immunohistochemistry analysis revealed a marked activation of nuclear factor-ĸB. This study showed that clinically relevant oral MPH doses improve the GSH redox status in the brain and heart, but evoke heart and kidney tissue damage to adolescent rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Rats avoid high magnetic fields: dependence on an intact vestibular system
Houpt, Thomas A.; Cassell, Jennifer A.; Riccardi, Christina; DenBleyker, Megan D.; Hood, Alison; Smith, James C.
2009-01-01
Summary HOUPT, T.A., J.A. CASSELL, C. RICCARDI, M.D. DENBLEYKER, A. HOOD, AND J.C. SMITH. Rats avoid high magnetic fields: dependence on an intact vestibular system. PHYSIOL BEHAV 00(0)000-000, 2006. High strength static magnetic fields are thought to be benign and largely undetectable by mammals. As magnetic resonance imaging (MRI) machines increase in strength, however, potential aversive effects may become clinically relevant. Here we report that rats find entry into a 14.1 T magnet aversive, and that they can detect and avoid entry into the magnet at a point where the magnetic field is 2 T or lower. Rats were trained to climb a ladder through the bore of a 14.1 T superconducting magnet. After their first climb into 14.1 T, most rats refused to re-enter the magnet or climb past the 2 T field line. This result was confirmed in a resistive magnet in which the magnetic field was varied from 1 to 14 T. Detection and avoidance required the vestibular apparatus of the inner ear, because labyrinthectomized rats readily traversed the magnet. The inner ear is a novel site for magnetic field transduction in mammals, but perturbation of the vestibular apparatus would be consistent with human reports of vertigo and nausea around high strength MRI machines. PMID:17585969
Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels
2010-02-01
The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.
Tseng, Hsiang-Chien; Wang, Mao-Hsien; Soung, Hung-Sheng; Chang, Yi; Chang, Kuo-Chi
2015-12-01
Reserpine has been confirmed to induce cognitive dysfunction and increase brain neural oxidative stress. Green tea catechins, particularly (-)epigallocatechin-3-gallate (EGCG), have strong antioxidative properties and can protect against numerous oxidative damages. In this study, we examined the possible protective effects of EGCG on reserpine-induced impairment of short-term memory in rats. Reserpine (1 mg/kg, intraperitoneal)-induced memory impairment was assessed using the social recognition task method; locomotor activity and the olfactory discrimination ability were not altered as measured by an open-field test and an olfactory discrimination test, respectively. EGCG treatment (100 and 300 mg/kg, intraperitoneal, for 7 days, starting 6 days before the reserpine injection) could improve the worsened social memory of reserpine-treated rats. Also, EGCG treatment reduced reserpine-induced lipid peroxidation and enhanced the antioxidation power in the hippocampi of reserpine-treated rats. These results suggest a protective effect of EGCG in treating reserpine-induced impairment of memory, most probably through its powerful antioxidative activities. Accordingly, EGCG may hold a clinically relevant value in preventing reserpine-induced cognitive dysfunction.
Curtis, Ryan C.; Custis, James T.; Ehrhart, Nicole P.; Ehrhart, E. J.; Condon, Keith W.; Gookin, Sara E.; Donahue, Seth W.
2016-01-01
Clinical studies using definitive-intent stereotactic radiation therapy (SRT) for the local treatment of canine osteosarcoma (OSA) have shown canine patients achieving similar median survival times as the current standard of care (amputation and adjuvant chemotherapy). Despite this, there remains an unacceptable high risk of pathologic fracture following radiation treatment. Zoledronic acid (ZA) and parathyroid hormone (PTH) are therapeutic candidates for decreasing this fracture risk post-irradiation. Due to differing mechanisms, we hypothesized that the combined treatment with ZA and PTH would significantly improve bone healing more than ZA or PTH treatment alone. Using an orthotopic model of canine osteosarcoma in athymic rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12 Gy x 3 fractions, 36 Gy total). Groups included 36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment. Our study showed significant increases in bone volume and increased polar moments of inertia (in the distal femoral metaphysis) 8 weeks after radiation in the combined (ZA/PTH) treatment group as compared to radiation treatment alone. Histomorphometric analysis revealed evidence of active mineralization at the study endpoint as well as successful tumor-cell kill across all treatment groups. This work provides further evidence for the expanding potential indications for ZA and PTH therapy, including post-irradiated bone disease due to osteosarcoma. PMID:27332712
Curtis, Ryan C; Custis, James T; Ehrhart, Nicole P; Ehrhart, E J; Condon, Keith W; Gookin, Sara E; Donahue, Seth W
2016-01-01
Clinical studies using definitive-intent stereotactic radiation therapy (SRT) for the local treatment of canine osteosarcoma (OSA) have shown canine patients achieving similar median survival times as the current standard of care (amputation and adjuvant chemotherapy). Despite this, there remains an unacceptable high risk of pathologic fracture following radiation treatment. Zoledronic acid (ZA) and parathyroid hormone (PTH) are therapeutic candidates for decreasing this fracture risk post-irradiation. Due to differing mechanisms, we hypothesized that the combined treatment with ZA and PTH would significantly improve bone healing more than ZA or PTH treatment alone. Using an orthotopic model of canine osteosarcoma in athymic rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12 Gy x 3 fractions, 36 Gy total). Groups included 36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment. Our study showed significant increases in bone volume and increased polar moments of inertia (in the distal femoral metaphysis) 8 weeks after radiation in the combined (ZA/PTH) treatment group as compared to radiation treatment alone. Histomorphometric analysis revealed evidence of active mineralization at the study endpoint as well as successful tumor-cell kill across all treatment groups. This work provides further evidence for the expanding potential indications for ZA and PTH therapy, including post-irradiated bone disease due to osteosarcoma.
Novel fiber optic immunosensor instrument
NASA Astrophysics Data System (ADS)
Wang, Zhiyu; Huang, Wenling; Tang, Lei; Zhou, Bo; Li, Yugi; He, Jun
1996-09-01
It has developed and performed a novel fiberoptic immunosensor instrument with operating wavelength 400 - 760 nm and repeatability cv equals 0.27%. The instrument has many excellent features such as simplified operation, faster testing time, higher sensitivity and economic cost. It has completely eliminated recovery period which traditional immunosensor owned due to use separative sensor structure. It can widely apply to test for bacteria, virus, hormone, parasite and cancer protein in clinical examination. The instrument has operated in laboratory and relevant medicine units and successfully tested monoclonal rat-anti-human of 413 cases in clinic and prepared with existing ELISA method, the coincidence probability reached 94 to 100%.
An immunologically relevant rodent model demonstrates safety of therapy using a tumour-specific IgE.
Josephs, Debra H; Nakamura, Mano; Bax, Heather J; Dodev, Tihomir S; Muirhead, Gareth; Saul, Louise; Karagiannis, Panagiotis; Ilieva, Kristina M; Crescioli, Silvia; Gazinska, Patrycja; Woodman, Natalie; Lomardelli, Cristina; Kareemaghay, Sedigeh; Selkirk, Christopher; Lentfer, Heike; Barton, Claire; Canevari, Silvana; Figini, Mariangela; Downes, Noel; Dombrowicz, David; Corrigan, Christopher J; Nestle, Frank O; Jones, Paul S; Gould, Hannah J; Blower, Philip J; Tsoka, Sophia; Spicer, James F; Karagiannis, Sophia N
2018-04-13
Designing biologically informative models for assessing the safety of novel agents, especially for cancer immunotherapy, carries substantial challenges. The choice of an in vivo system for studies on IgE antibodies represents a major impediment to their clinical translation, especially with respect to class-specific immunological functions and safety. Fcε receptor expression and structure are different in humans and mice, so that the murine system is not informative when studying human IgE biology. By contrast, FcεRI expression and cellular distribution in rats mirrors that of humans. We are developing MOv18 IgE, a human chimeric antibody recognizing the tumour-associated antigen folate receptor alpha. We created an immunologically congruent surrogate rat model likely to recapitulate human IgE-FcεR interactions, and engineered a surrogate rat IgE equivalent to MOv18. Employing this model, we examined in vivo safety and efficacy of anti-tumour IgE antibodies. In immunocompetent rats, rodent IgE restricted growth of syngeneic tumours in the absence of clinical, histopathological or metabolic signs associated with obvious toxicity. No physiological or immunological evidence of a 'cytokine-storm' or allergic response was seen, even at 50 mg/kg weekly doses. IgE treatment was associated with elevated serum concentrations of TNFα, a mediator previously linked with IgE-mediated anti-tumour and anti-parasitic functions, alongside evidence of substantially elevated tumoural immune cell infiltration and immunological pathway activation in tumour-bearing lungs. Our findings indicate safety of MOv18 IgE, in conjunction with efficacy and immune activation, supporting the translation of this therapeutic approach to the clinical arena. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Santos, Raliny O; de Assunção, Gabriela L M; de Medeiros, Diogo M B; de Sousa Pinto, Icaro A; de Barros, Keizianny S; Soares, Bruno L; André, Eunice; Gavioli, Elaine C; de Paula Soares-Rachetti, Vanessa
2014-02-01
Sibutramine is a serotonin and norepinephrine reuptake inhibitor indicated for the treatment of obesity. A pre-clinical study showed that acute administration of sibutramine promoted anxiolytic- and panicolytic-like effects in male rats. However, in clinical reports, sibutramine favoured the onset of panic attacks in women. In this study, the effect of sibutramine on experimental anxiety in females and the relevance of different oestrous cycle phases for this effect were analysed. In experiment 1, both male and female rats were submitted to acute intraperitoneal injection of sibutramine or vehicle 30 min. before testing in the elevated T-maze (ETM) and in the open-field test (OF). Females in the pro-oestrus (P), oestrus (E), early dioestrus (ED) and late dioestrus (LD) phases were tested in the ETM and OF (experiment 2) or in the elevated plus-maze (EPM) 30 min. after the injection of sibutramine. Sibutramine impaired the escape response in the ETM in both males and females. This effect was observed for P, E and ED, but not for LD females. Sibutramine altered neither the inhibitory avoidance in the ETM nor the behaviour of females in the EPM. Thus, sibutramine promoted a panicolytic-like effect in female rats cycling at P, E and ED, but not in the LD phase and did not alter behaviours related to anxiety in both ETM and EPM. Considering that pre-clinical studies aiming the screening of anxiolytic drugs employ male rodents, data here obtained reinforce the importance of better understanding the effects of drugs in females. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
Dobrovolsky, Vasily N; Boctor, Sherin Y; Twaddle, Nathan C; Doerge, Daniel R; Bishop, Michelle E; Manjanatha, Mugimane G; Kimoto, Takafumi; Miura, Daishiro; Heflich, Robert H; Ferguson, Sherry A
2010-03-01
A modified flow cytometry assay for Pig-A mutant rat red blood cells (RBCs) was developed using an antibody that positively identifies rat RBCs (monoclonal antibody HIS49). The assay was used in conjunction with a flow cytometric micronucleus (MN) assay to evaluate gene mutation and clastogenicity/aneugenicity in adolescent male and female rats treated with methylphenidate hydrochloride (MPH). Sprague-Dawley rats were treated orally with 3 mg/kg MPH (70/sex) or water (40/sex) 3 x /day on postnatal days (PNDs) 29-50. Eight additional rats (4/sex) were injected i.p. with N-ethyl-N-nitrosourea (ENU) on PND 28. Blood was collected on PNDs 29, 50, and 90, and used for determining serum MPH levels and/or conducting genotoxicity assays. On the first and last days of MPH treatment (PNDs 29 and 50), serum MPH levels averaged 21 pg/microl, well within the clinical treatment range. Relative to our previously published method (Miura et al. [2008]; Environ Mol Mutagen 49: 614-629), the HIS49 Pig-A mutation assay significantly reduced the background RBC mutant frequency; in the experiments with ENU-treated rats, the modification increased the overall sensitivity of the assay 2-3 fold. Even with the increased assay sensitivity, the 21 consecutive days of MPH treatment produced no evidence of Pig-A mutation induction (measured at PND 90); in addition, MPH treatment did not increase MN frequency (measured at PND 50). These results support the consensus view that the genotoxicity of MPH in pediatric patients reported earlier (El-Zein et al. [2005]: Cancer Lett 230: 284-291) cannot be reproduced in animal models, suggesting that MPH at clinically relevant levels may be nongenotoxic in humans. Published 2009 by Wiley-Liss, Inc.
In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats.
Chu, Michael K L; Chen, Jian; Gordijo, Claudia R; Chiang, Simon; Ivovic, Alexander; Koulajian, Khajag; Giacca, Adria; Wu, Xiao Yu; Sun, Yu
2012-07-21
We have developed glucose-responsive implantable microdevices for closed-loop delivery of insulin and conducted in vivo testing of these devices in diabetic rats. The microdevices consist of an albumin-based bioinorganic membrane that utilizes glucose oxidase (GOx), catalase (CAT) and manganese dioxide (MnO(2)) nanoparticles to convert a change in the environmental glucose level to a pH stimulus, which regulates the volume of pH-sensitive hydrogel nanoparticles and thereby the permeability of the membrane. The membrane is integrated with microfabricated PDMS (polydimethylsiloxane) structures to form compact, stand-alone microdevices, which do not require tethering wires or tubes. During in vitro testing, the microdevices showed glucose-responsive insulin release over multiple cycles at clinically relevant glucose concentrations. In vivo, the microdevices were able to counter hyperglycemia in diabetic rats over a one-week period. The in vitro and in vivo testing results demonstrated the efficacy of closed-loop biosensing and rapid response of the 'smart' insulin delivery devices.
Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul
2016-05-01
The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huynh Le Maux, Amélie; Pignol, Bernadette; Behr-Roussel, Delphine; Blachon, Jean-Luc; Chabrier, Pierre-Etienne; Compagnie, Sandrine; Picaut, Philippe; Bernabé, Jacques; Giuliano, François; Denys, Pierre
2015-01-01
Intradetrusor injections of Botulinum toxin A—currently onabotulinumtoxinA—is registered as a second-line treatment to treat neurogenic detrusor overactivity (NDO). The common clinical practice is 30 × 1 mL injections in the detrusor; however, protocols remain variable and standardization is warranted. The effect of reducing the number of injection sites of Dysport® abobotulinumtoxinA (aboBoNTA) was assessed in the spinal cord-injured rat (SCI). Nineteen days post-spinalization, female rats received intradetrusor injections of saline or aboBoNTA 22.5 U distributed among four or eight sites. Two days after injection, continuous cystometry was performed in conscious rats. Efficacy of aboBoNTA 22.5 U was assessed versus aggregated saline groups on clinically-relevant parameters: maximal pressure, bladder capacity, compliance, voiding efficiency, as well as amplitude, frequency, and volume threshold for nonvoiding contractions (NVC). AboBoNTA 22.5 U significantly decreased maximal pressure, without affecting voiding efficiency. Injected in four sites, aboBoNTA significantly increased bladder capacity and compliance while only the latter when in eight sites. AboBoNTA significantly reduced NVC frequency and amplitude. This preclinical investigation showed similar inhibiting effects of aboBoNTA despite the number of sites reduction. Further studies are warranted to optimize dosing schemes to improve the risk-benefit ratio of BoNTA-based treatment modalities for NDO and further idiopathic overactive bladder. PMID:26694464
Weber, Martin; Motin, Leonid; Gaul, Simon; Beker, Friederike; Fink, Rainer H A; Adams, David J
2004-01-01
The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. In fura-2-loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR-induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+]i by ∼40%. Thiopental (25 μM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. PMID:15644873
Reynolds, Penny S; Tamariz, Francisco J; Barbee, Robert Wayne
2010-04-01
Exploratory pilot studies are crucial to best practice in research but are frequently conducted without a systematic method for maximizing the amount and quality of information obtained. We describe the use of response surface regression models and simultaneous optimization methods to develop a rat model of hemorrhagic shock in the context of chronic hypertension, a clinically relevant comorbidity. Response surface regression model was applied to determine optimal levels of two inputs--dietary NaCl concentration (0.49%, 4%, and 8%) and time on the diet (4, 6, 8 weeks)--to achieve clinically realistic and stable target measures of systolic blood pressure while simultaneously maximizing critical oxygen delivery (a measure of vulnerability to hemorrhagic shock) and body mass M. Simultaneous optimization of the three response variables was performed though a dimensionality reduction strategy involving calculation of a single aggregate measure, the "desirability" function. Optimal conditions for inducing systolic blood pressure of 208 mmHg, critical oxygen delivery of 4.03 mL/min, and M of 290 g were determined to be 4% [NaCl] for 5 weeks. Rats on the 8% diet did not survive past 7 weeks. Response surface regression model and simultaneous optimization method techniques are commonly used in process engineering but have found little application to date in animal pilot studies. These methods will ensure both the scientific and ethical integrity of experimental trials involving animals and provide powerful tools for the development of novel models of clinically interacting comorbidities with shock.
Friedli, Lucia; Rosenzweig, Ephron S.; Barraud, Quentin; Schubert, Martin; Dominici, Nadia; Awai, Lea; Nielson, Jessica L.; Musienko, Pavel; Nout-Lomas, Yvette; Zhong, Hui; Zdunowski, Sharon; Roy, Roland R.; Strand, Sarah C.; van den Brand, Rubia; Havton, Leif A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Bézard, Erwan; Bloch, Jocelyne; Edgerton, V. Reggie; Ferguson, Adam R.; Curt, Armin; Tuszynski, Mark H.; Courtine, Grégoire
2017-01-01
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species has not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys, but nearly absent in rats. Our results uncover pronounced inter-species differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury re-emphasizes the importance of primate models for designing clinically relevant treatments. PMID:26311729
CUMULATIVE TOXICITY OF AN ENVIRONMENTALLY RELEVANT MIXTURE OF NINE REGULATED DISINFECTION BY-PRODUCTS IN A MULTIGENERATIONAL RAT REPRODUCTIVE BIOASSAY J E Simmons, GR. Klinefelter, JM Goldman, AB DeAngelo, DS Best, A McDonald, LF Strader, AS Murr, JD Suarez, MH George, ES Hunte...
Patel, Shyama D.; Pierce, Leslie; Ciardiello, Amber; Hutton, Alexandra; Paskewitz, Samuel; Aronowitz, Eric; Voss, Henning U.; Moore, Holly; Vannucci, Susan J.
2015-01-01
Background Hypoxic-ischemic encephalopathy (HIE) is a major cause of morbidity in survivors. Therapeutic hypothermia (TH) is the only available intervention, but the protection is incomplete. Preclinical studies of HIE/TH in the rodent have relied on the postnatal day (P) 7 rat whose brain approximates a 32–36 week gestation infant, less relevant for these studies. We propose that HIE and TH in the term-equivalent P10 rat will be more translational. Methods P10–11 rat pups were subjected to unilateral hypoxia-ischemia (HI) and 4 hours recovery in normothermic (N) or hypothermic (TH) conditions. Brain damage was assessed longitudinally at 24 hours, 2 and 12 weeks. Motor function was assessed with the beam walk; recognition memory was measured by novel object recognition. Results Neuroprotection with TH was apparent at 2 and 12 weeks in both moderately and severely damaged animals. TH improved motor function in moderate, but not severe damage. Impaired object recognition occurred with severe damage with no evidence of protection of TH. Conclusion This adaptation of the immature rat model of HI provides a reproducible platform to further study HIE/TH in which individual animals are followed longitudinally to provide a useful translational preclinical model. PMID:25996893
Nallani, S C; Genter, M B; Desai, P B
2001-08-01
Docetaxel, a potent antimicrotubule agent widely used in the treatment of ovarian, breast and lung cancer, is extensively metabolized in various animal species, including humans. The metabolism of docetaxel to its primary metabolite, hydroxydocetaxel, is mediated by cytochrome P450 isozymes CYP3A2 and CYP3A4 in rats and humans, respectively. Several substrates of enzymes belonging to the CYP3A subfamily are known to induce different CYP isozymes, including CYP3A enzymes. Recently, paclitaxel, a compound structurally related to docetaxel, has been shown to significantly elevate the expression of CYP3A in rat and human hepatocytes. In this study we investigated the influence of docetaxel, employed at clinically relevant concentrations, on the level and the activity of cytochrome P450 3A in primary cultures of rat hepatocytes. Rat hepatocytes were treated with different concentrations of docetaxel, paclitaxel and other CYP3A inducers. Testosterone 6beta-hydroxylase activity of intact hepatocytes was used as a marker for CYP3A. The immunoreactive CYP3A levels in the S-9 fractions were determined by Western blot analysis. We observed that by day 3 of drug treatment, docetaxel at concentration in the range of 2.5-10 microM increased the CYP3A enzymatic activity and the immunoreactive CYP3A levels in a concentration-dependent manner. At the 10 microM level, docetaxel caused a twofold increase in the CYP3A activity and a threefold increase in the immunoreactive CYP3A levels. However, the docetaxel-mediated CYP3A activity and enzyme level increase were significantly lower than those mediated by paclitaxel and dexamethasone. A comparison of the testosterone 6beta-hydroxylation activity in hepatocytes treated with these agents at a concentration of 5 microM each yielded the following rank order of induction capacity: dexamethasone > paclitaxel > docetaxel (15-fold, 5-fold, 2.2-fold, respectively). Taken together, our findings raise the possibility that docetaxel at clinically relevant concentrations increases CYP3A activity. The potential for docetaxel-mediated changes in the metabolism of other coadministered drugs and its own metabolism, in relation to that due to paclitaxel, are discussed.
Somayajulu-Niţu, Mallika; Sandhu, Jagdeep K; Cohen, Jerome; Sikorska, Marianna; Sridhar, T S; Matei, Anca; Borowy-Borowski, Henryk; Pandey, Siyaram
2009-07-27
Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses.
Raghavendran, Krishnan; Davidson, Bruce A.; Knight, Paul R.; Wang, Zhengdong; Helinski, Jadwiga; Chess, Patricia R.; Notter, Robert H.
2009-01-01
This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant replacement therapy in these prevalent clinical conditions. PMID:18323743
Concheiro, Marta; Baumann, Michael H; Scheidweiler, Karl B; Rothman, Richard B; Marrone, Gina F; Huestis, Marilyn A
2014-01-01
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.
Concheiro, Marta; Baumann, Michael H.; Scheidweiler, Karl B.; Rothman, Richard B.; Marrone, Gina F.
2014-01-01
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA’s safety are needed. We evaluated MDMA’s pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography–tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA’s behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses. PMID:24141857
Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K
2007-08-24
In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.
Kandasamy, Ram; Lee, Andrea T.; Morgan, Michael M.
2017-01-01
Opioid withdrawal in humans is often subtle and almost always spontaneous. In contrast, most preclinical studies precipitate withdrawal by administration of an opioid receptor antagonist such as naloxone. These animal studies rely on measurement of physiological symptoms (e.g., wet dog shakes) in the period immediately following naloxone administration. To more closely model the human condition, we tested the hypothesis that depression of home cage wheel running will provide an objective method to measure the magnitude and duration of spontaneous morphine withdrawal. Rats were allowed access to a running wheel in their home cage for 8 days prior to implantation of two 75 mg morphine or placebo pellets. The pellets were removed 3 or 5 days later to induce spontaneous withdrawal. In normal pain-free rats, removal of the morphine pellets depressed wheel running for 48 hours compared to rats that had placebo pellets removed. Morphine withdrawal-induced depression of wheel running was greatly enhanced in rats with persistent inflammatory pain induced by injection of Complete Freund’s Adjuvant (CFA) into the hindpaw. Removal of the morphine pellets following 3 days of treatment depressed wheel running in these rats for over 6 days. These data demonstrate that home cage wheel running provides an objective and more clinically relevant method to assess spontaneous morphine withdrawal compared to precipitated withdrawal in laboratory rats. Moreover, the enhanced withdrawal in rats with persistent inflammatory pain suggests that pain patients may be especially susceptible to opioid withdrawal. PMID:28366799
Oral treatment with retinoic acid decreases bone mass in rats.
Hotchkiss, Charlotte E; Latendresse, John; Ferguson, Sherry A
2006-12-01
13-cis-retinoic acid (13-cis-RA, isotretinoin) is used to treat severe recalcitrant acne. Other retinoids have adverse effects on bone. Recent studies of human patients treated with 13-cis-RA have had varying results, perhaps because of variability among patients and the lack of control groups. The effects of retinoids have been studied in rodents, but little information is available regarding the effects of clinically relevant retinoid doses as evaluated by use of bone densitometric techniques. We treated rats for 15 or 20 wk with 13-cis-RA, all-trans-RA, or soybean oil (control) by gavage. We used dual-energy X-ray absorptiometry, histomorphometry, and histologic evaluation to evaluate effects on bone. Spontaneous long bone fractures occurred in some rats treated with 15 mg/kg all-trans-RA daily. Bone mineral density, bone mineral content, bone diameter, and cortical thickness of the femur were reduced in rats treated daily with 10 or 15 mg/kg all-trans-RA or 30 mg/kg 13-cis-RA. The lumbar spine was not affected. Although the effects of 13-cis-RA were not as dramatic as those of all-trans-RA, further study of the effects of 13-cis-RA on long bones is warranted.
Adolph, Elizabeth J.; Hafeman, Andrea E.; Davidson, Jeffrey M.; Nanney, Lillian B.; Guelcher, Scott A.
2011-01-01
Injectable scaffolds present compelling opportunities for wound repair and regeneration due to their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound width and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable polyurethane biocomposite scaffold that enhances cutaneous wound healing in a rat model. PMID:22105887
Widzowski, D; Maciag, C; Zacco, A; Hudzik, T; Liu, J; Nyberg, S; Wood, M W
2015-01-01
Background and Purpose Quetiapine has a range of clinical activity distinct from other atypical antipsychotic drugs, demonstrating efficacy as monotherapy in bipolar depression, major depressive disorder and generalized anxiety disorder. The neuropharmacological mechanisms underlying this clinical profile are not completely understood; however, the major active metabolite, norquetiapine, has been shown to have a distinct in vitro pharmacological profile consistent with a broad therapeutic range and may contribute to the clinical profile of quetiapine. Experimental Approach We evaluated quetiapine and norquetiapine, using in vitro binding and functional assays of targets known to be associated with antidepressant and anxiolytic drug actions and compared these activities with a representative range of established antipsychotics and antidepressants. To determine how the in vitro pharmacological properties translate into in vivo activity, we used preclinical animal models with translational relevance to established antidepressant‐like and anxiolytic‐like drug action. Key Results Norquetiapine had equivalent activity to established antidepressants at the noradrenaline transporter (NET), while quetiapine was inactive. Norquetiapine was active in the mouse forced swimming and rat learned helplessness tests. In in vivo receptor occupancy studies, norquetiapine had significant occupancy at NET at behaviourally relevant doses. Both quetiapine and norquetiapine were agonists at 5‐HT1A receptors, and the anxiolytic‐like activity of norquetiapine in rat punished responding was blocked by the 5‐HT1A antagonist, WAY100635. Conclusions and Implications Quetiapine and norquetiapine have multiple in vitro pharmacological actions, and results from preclinical studies suggest that activity at NET and 5‐HT1A receptors contributes to the antidepressant and anxiolytic effects in patients treated with quetiapine. PMID:26436896
El Haj, Cristina; Murillo, Oscar; Ribera, Alba; Garcia-Somoza, Dolors; Tubau, Fe; Cabellos, Carmen; Cabo, Javier; Ariza, Javier
2017-02-01
Using a tissue cage infection rat model, we test the anti-biofilm effect of clarithromycin on the efficacy of daptomycin and a daptomycin + rifampicin combination against methicillin-susceptible (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In vitro: kill curves, daptomycin exposure studies and clarithromycin activity against biofilm were studied. In vivo: the efficacies of clarithromycin, daptomycin or daptomycin + clarithromycin, daptomycin + rifampicin and daptomycin + rifampicin + clarithromycin combinations were evaluated. In vitro: the addition of clarithromycin to daptomycin improved its activity only against one MRSA strain. Changes in daptomycin MIC values appeared more quickly in MSSA than in MRSA strain, and this was not modified by clarithromycin. Clarithromycin prevented biofilm formation but did not eradicate it. In vivo: the daptomycin + rifampicin combination was the most effective treatment and was not improved by the addition of clarithromycin. Daptomycin and daptomycin + clarithromycin had similar effectiveness; the combination protected against the appearance of daptomycin resistance only in one MRSA strain. Using a staphylococcal foreign-body infection model, we observed a slight effect with the addition of clarithromycin to daptomycin, which resulted in protection against the appearance of daptomycin-resistant strains. However, efficacy was not improved. Overall, our findings do not support a relevant clinical role for macrolides in treating device-related staphylococcal infections based on their anti-biofilm effect.
Gaytán-Tocavén, Lorena; López-Vázquez, Miguel Ángel; Guevara, Miguel Ángel; Olvera-Cortés, María Esther
2017-09-01
Cerebellar participation in timing and sensory-motor sequences has been supported by several experimental and clinical studies. A relevant role of the cerebellum in timing of conditioned responses in the range of milliseconds has been demonstrated, but less is known regarding the role of the cerebellum in supra-second timing of operant responses. A dissociated role of the cerebellum and striatum in timing in the millisecond and second range had been reported, respectively. The climbing fibre-Purkinje cell synapse is crucial in timing models; thus, the aberrant connection between these cellular elements is a suitable model for evaluating the contribution of the cerebellum in timing in the supra-second range. The aberrant connection between climbing fibres and Purkinje cells was induced by administration of the antagonist of NMDA receptors MK-801 to Sprague-Dawley rats at postnatal days 7-14. The timing of an operant response with two fixed intervals (5 and 8 s) and egocentric sequential learning was evaluated in 60-day-old adult rats. The aberrant connections caused a reduced accuracy in the timing of the instrumental response that was more evident in the 8-s interval and a reduced number of successive correct responses (responses emitted in the correct second without any other response between them) in the 8-s interval. In addition, an inability to incorporate new information in a sequence previously learned in egocentric-based sequence learning was apparent in rats with aberrant CF-PC synapses. These results support a relevant role for the cerebellum in the fine-tuning of the timing of operant responses in the supra-second range.
Effects of Momordica charantia (Bitter Melon) on Ischemic Diabetic Myocardium.
Czompa, Attila; Gyongyosi, Alexandra; Szoke, Kitti; Bak, Istvan; Csepanyi, Evelin; Haines, David D; Tosaki, Arpad; Lekli, Istvan
2017-03-20
Objective : A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods : Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin-water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results : Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO and ZO BM-treated, versus Lean rats of total cholesterol (high density lipoprotein HDL-c + low density lipoprotein LDL-c), with an inferred increase in HDL-c/LDL-c ratio-an outcome associated with decreased risk of atherosclerotic disease. Conclusions : BM extract failed to positively affect T2DM- and cardiovascular-related outcomes at a level suggesting use as a standalone treatment. Nevertheless, the encouraging effects of BM in enhancement of cardiac function, suppression of post-ischemic/reperfused infarct size extent and capacity to modulate serum cholesterol, will likely make it useful as an adjuvant therapy for the management of T2DM and related cardiovascular diseases.
Chen, Yu-Wei; Fiscella, Kimberly A.; Bacharach, Samuel Z.; Calu, Donna J.
2014-01-01
Background Relapse to unhealthy eating habits is a major problem in human dietary treatment. The individuals most commonly seeking dietary treatment are overweight or obese women, yet the commonly used rat reinstatement model to study relapse to palatable food seeking during dieting primarily uses normal-weight male rats. To increase the clinical relevance of the relapse to palatable food seeking model, here we pre-expose female rats to a calorically-dense cafeteria diet in the home-cage to make them overweight prior to examining the effect of this diet history on cue-, pellet-priming- and footshock-induced reinstatement of food seeking. Methods Post-natal day 32 female Long-Evans rats had seven weeks of home-cage access to either chow only or daily or intermittent cafeteria diet alongside chow. Next, they were trained to self-administer normally preferred 45 mg food pellets accompanied by a tone-light cue. After extinction, all rats were tested for reinstatement induced by discrete cue, pellet-priming, and intermittent footshock under extinction conditions. Results Access to daily cafeteria diet and to a lesser degree access to intermittent cafeteria diet decreased food pellet self-administration compared to chow-only. Prior history of these cafeteria diets also reduced extinction responding, cue- and pellet-priming-induced reinstatement. In contrast, modest stress-induced reinstatement was only observed in rats with a history of daily cafeteria diet. Conclusion A history of cafeteria diet does not increase the propensity for cue- and pellet-priming-induced relapse in the rat reinstatement model but does appear to make rats more susceptible to footshock stress-induced reinstatement. PMID:25025329
Tang, Christine; Naassan, Anthony E; Chamson-Reig, Astrid; Koulajian, Khajag; Goh, Tracy T; Yoon, Frederick; Oprescu, Andrei I; Ghanim, Husam; Lewis, Gary F; Dandona, Paresh; Donath, Marc Y; Ehses, Jan A; Arany, Edith; Giacca, Adria
2013-01-01
β-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes. However, no study has examined its role in type 1 diabetes, which could be clinically relevant for slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent with the hypothesis that lipid and cytokine toxicity may be synergistic. Thus, β-cell lipotoxicity could be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of prolonged free fatty acids elevation on β-cell secretory function in the prediabetic diabetes-prone BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate free fatty acid levels ~2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo. IH significantly decreased β-cell function, assessed both by the disposition index (insulin secretion corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF, rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH significantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infiltration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was permissive for IH-induced β-cell dysfunction in the BB rat, which suggests a link between β-cell lipotoxicity and islet inflammation.
A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism.
Jacob, Minnie; Malkawi, Abeer; Albast, Nour; Al Bougha, Salam; Lopata, Andreas; Dasouki, Majed; Abdel Rahman, Anas M
2018-09-26
Metabolome, the ultimate functional product of the genome, can be studied through identification and quantification of small molecules. The global metabolome influences the individual phenotype through clinical and environmental interventions. Metabolomics has become an integral part of clinical research and allowed for another dimension of better understanding of disease pathophysiology and mechanism. More than 95% of the clinical biochemistry laboratory routine workload is based on small molecular identification, which can potentially be analyzed through metabolomics. However, multiple challenges in clinical metabolomics impact the entire workflow and data quality, thus the biological interpretation needs to be standardized for a reproducible outcome. Herein, we introduce the establishment of a comprehensive targeted metabolomics method for a panel of 220 clinically relevant metabolites using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) standardized for clinical research. The sensitivity, reproducibility and molecular stability of each targeted metabolite (amino acids, organic acids, acylcarnitines, sugars, bile acids, neurotransmitters, polyamines, and hormones) were assessed under multiple experimental conditions. The metabolic tissue distribution was determined in various rat organs. Furthermore, the method was validated in dry blood spot (DBS) samples collected from patients known to have various inborn errors of metabolism (IEMs). Using this approach, our panel appears to be sensitive and robust as it demonstrated differential and unique metabolic profiles in various rat tissues. Also, as a prospective screening method, this panel of diverse metabolites has the ability to identify patients with a wide range of IEMs who otherwise may need multiple, time-consuming and expensive biochemical assays causing a delay in clinical management. Copyright © 2018 Elsevier B.V. All rights reserved.
Grant, Claire; Ewart, Lorna; Muthas, Daniel; Deavall, Damian; Smith, Simon A; Clack, Glen; Newham, Pete
2016-04-01
Nausea and vomiting are components of a complex mechanism that signals food avoidance and protection of the body against the absorption of ingested toxins. This response can also be triggered by pharmaceuticals. Predicting clinical nausea and vomiting liability for pharmaceutical agents based on pre-clinical data can be problematic as no single animal model is a universal predictor. Moreover, efforts to improve models are hampered by the lack of translational animal and human data in the public domain. AZD3514 is a novel, orally-administered compound that inhibits androgen receptor signaling and down-regulates androgen receptor expression. Here we have explored the utility of integrating data from several pre-clinical models to predict nausea and vomiting in the clinic. Single and repeat doses of AZD3514 resulted in emesis, salivation and gastrointestinal disturbances in the dog, and inhibited gastric emptying in rats after a single dose. AZD3514, at clinically relevant exposures, induced dose-responsive "pica" behaviour in rats after single and multiple daily doses, and induced retching and vomiting behaviour in ferrets after a single dose. We compare these data with the clinical manifestation of nausea and vomiting encountered in patients with castration-resistant prostate cancer receiving AZD3514. Our data reveal a striking relationship between the pre-clinical observations described and the experience of nausea and vomiting in the clinic. In conclusion, the emetic nature of AZD3514 was predicted across a range of pre-clinical models, and the approach presented provides a valuable framework for predicition of clinical nausea and vomiting. Copyright © 2016 Elsevier Inc. All rights reserved.
Dorsal hippocampus is necessary for visual categorization in rats.
Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H
2018-02-23
The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for the trained, novel, relocation, and singleton stimuli. Hippocampus-mediated pattern completion and pattern separation mechanisms may be necessary for visual categorization involving overlapping irrelevant features. © 2018 Wiley Periodicals, Inc.
Simola, Nicola
2015-01-01
Several lines of evidence indicate that rats emit ultrasonic vocalizations (USVs) in response to a wide range of stimuli that are capable of producing either euphoric (positive) or dysphoric (negative) emotional states. On these bases, recordings of USVs are extensively used in preclinical studies of affect, motivation, and social behavior. Rat USVs are sensitive to the effects of certain classes of psychoactive drugs, suggesting that emission of rat USVs can have relevance not only to neurobiology, but also to neuropharmacology and psychopharmacology. This review summarizes three types of rat USVs, namely 40-kHz USVs emitted by pups, 22-kHz USVs and 50-kHz USVs emitted by young and adult animals, and relevance of these vocalizations to neuropharmacological studies. Attention will be focused on the issues of how rat USVs can be used to evaluate the pharmacological properties of different classes of drugs, and how rat USVs can be combined with other behavioral models used in neuropharmacology. The strengths and limitations of experimental paradigms based on the evaluation of rat USVs will also be discussed.
Myer, James R; Romach, Elizabeth H; Elangbam, Chandikumar S
2014-01-01
Compound-induced pancreatic injury is a serious liability in preclinical toxicity studies. However, its relevance to humans should be cautiously evaluated because of interspecies variations. To highlight such variations, we evaluated the species- and dose-specific pancreatic responses and progression caused by GI181771X, a novel cholecystokinin 1 receptor agonist investigated by GlaxoSmithKline for the treatment of obesity. Acute (up to 2,000 mg/kg GI181771X, as single dose) and repeat-dose studies in mice and/or rats (0.25-250 mg/kg/day for 7 days to 26 weeks) showed wide-ranging morphological changes in the pancreas that were dose and duration dependent, including necrotizing pancreatitis, acinar cell hypertrophy/atrophy, zymogen degranulation, focal acinar cell hyperplasia, and interstitial inflammation. In contrast to rodents, pancreatic changes were not observed in cynomolgus monkeys given GI181771X (1-500 mg/kg/day with higher systemic exposure than rats) for up to 52 weeks. Similarly, no GI181771X treatment-associated abnormalities in pancreatic structure were noted in a 24-week clinical trial with obese patients (body mass index >30 or >27 kg/m(2)) as assessed by abdominal ultrasound or by magnetic resonance imaging. Mechanisms for interspecies variations in the pancreatic response to CCK among rodents, monkeys, and humans and their relevance to human risk are discussed.
Sun, S; Henriksen, K; Karsdal, M A; Armbrecht, G; Belavý, D L; Felsenberg, D; Rittweger, J; Wang, Y; Zheng, Q; Nedergaard, A F
2014-10-01
In this study we sought to determine whether a Titin peptide fragment can serve as a clinical biomarker for changes in muscle mass. Mass spectrometry was used to identify Titin fragment in urine. An antibody against this Titin sequence was raised and used to develop a competitive ELISA assay for measurement in serum. Rat tissue extractions in the presence or absence of a series of proteases of interest were used to identify its enzymatic origin. A rat model of dexamethasone (DEX) induced muscle atrophy and a human 56-day bed rest study with and without vibration therapy were used to assess biological and clinical relevance. A technically robust ELISA measuring the Titin fragment was developed against a Titin peptide fragment identified in human urine. The fragment was shown to be produced primarily by MMP-2 cleavage of Titin. In the rat muscle DEX induced atrophy model, Titin-MMP2 fragment was decreased in the beginning of DEX treatment, and then significantly increased later on during DEX administration. In the human bed rest study, the Titin-MMP2 fragment was initially decreased 11.9 (±3.7) % after 1day of bed rest, and then gradually increased ending up at a 16.4 (±4.6) % increase at day 47. We developed a robust ELISA measuring a muscle derived MMP-2 generated Titin degradation fragment in rat and human serum. Importantly, the fragment can be measured in serum and that these levels are related to induction of skeletal muscle atrophy. Copyright © 2014 Elsevier Inc. All rights reserved.
van Tilborg, Erik; Achterberg, E J Marijke; van Kammen, Caren M; van der Toorn, Annette; Groenendaal, Floris; Dijkhuizen, Rick M; Heijnen, Cobi J; Vanderschuren, Louk J M J; Benders, Manon N J L; Nijboer, Cora H A
2018-01-01
Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism-spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple-hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long-term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism-like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.
van Tilborg, Erik; Achterberg, E. J. Marijke; van Kammen, Caren M.; van der Toorn, Annette; Groenendaal, Floris; Dijkhuizen, Rick M.; Heijnen, Cobi J.; Vanderschuren, Louk J. M. J.; Benders, Manon N. J. L.
2017-01-01
Abstract Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism‐spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple‐hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long‐term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism‐like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants. PMID:28925578
Keller, Anastasia V P; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily; Magnuson, David S K
2017-02-01
After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.
Buccafusco, Jerry J; Terry, Alvin V; Webster, Scott J; Martin, Daniel; Hohnadel, Elizabeth J; Bouchard, Kristy A; Warner, Samantha E
2008-08-01
The scopolamine-reversal model is enjoying a resurgence of interest in clinical studies as a reversible pharmacological model for Alzheimer's disease (AD). The cognitive impairment associated with scopolamine is similar to that in AD. The scopolamine model is not simply a cholinergic model, as it can be reversed by drugs that are noncholinergic cognition-enhancing agents. The objective of the study was to determine relevance of computer-assisted operant-conditioning tasks in the scopolamine-reversal model in rats and monkeys. Rats were evaluated for their acquisition of a spatial reference memory task in the Morris water maze. A separate cohort was proficient in performance of an automated delayed stimulus discrimination task (DSDT). Rhesus monkeys were proficient in the performance of an automated delayed matching-to-sample task (DMTS). The AD drug donepezil was evaluated for its ability to reverse the decrements in accuracy induced by scopolamine administration in all three tasks. In the DSDT and DMTS tasks, the effects of donepezil were delay (retention interval)-dependent, affecting primarily short delay trials. Donepezil produced significant but partial reversals of the scopolamine-induced impairment in task accuracies after 2 mg/kg in the water maze, after 1 mg/kg in the DSDT, and after 50 microg/kg in the DMTS task. The two operant-conditioning tasks (DSDT and DMTS) provided data most in keeping with those reported in clinical studies with these drugs. The model applied to nonhuman primates provides an excellent transitional model for new cognition-enhancing drugs before clinical trials.
Kidney Injury Associated with Telavancin Dosing Regimen in an Animal Model
Ledesma, Kimberly R.; Bowers, Dana R.; Zhou, Jian; Truong, Luan D.
2015-01-01
The elevation of serum creatinine levels is a concern with telavancin therapy. We examined the onset of kidney injury associated with telavancin in an animal model. Urine samples were collected at baseline and daily to determine the concentrations of kidney injury molecule 1 (KIM-1), a marker for early kidney injury. When a clinically relevant exposure of telavancin was given daily to rats, some differences in kidney injury were attributed to the dosing regimen. Further investigations of alternative telavancin dosing regimens are warranted. PMID:25712358
Reed, Brian; Ho, Ann; Kreek, Mary Jeanne
2011-01-01
Rationale/objectives Although continued heroin use and relapse are thought to be motivated, in part, by the positive incentive-motivational value attributed to heroin, little is understood about heroin’s incentive value during the relapse-prone state of withdrawal. This study uses place preference to measure the incentive value attributed to escalating-dose heroin in the context of heroin dependence. Methods Male Fischer rats were exposed chronically to escalating doses of heroin in the homecage and during place preference conditioning sessions. Conditioned preference for the context paired with escalating-dose heroin was tested after homecage exposure was discontinued and rats entered acute spontaneous withdrawal. Individuals’ behavioral and locomotor responses to heroin and somatic withdrawal signs were recorded. Results Conditioned preference for the heroin-paired context was strong in rats that received chronic homecage exposure to escalating-dose heroin and were tested in acute withdrawal. Behavioral responses to heroin (e.g., stereotypy) varied widely across individuals, with rats that expressed stronger heroin preference also expressing stronger behavioral activation in response to heroin. Individual differences in preference were also related to locomotor responses to heroin but not to overt somatic withdrawal signs. Conclusions Escalating doses of heroin evoked place preference in rats, suggesting that positive incentive-motivational value is attributed to this clinically relevant pattern of drug exposure. This study offers an improved preclinical model for studying dependence and withdrawal and provides insight into individual vulnerabilities to addiction-like behavior. PMID:21748254
Tran, Truc T; Tam, Vincent H; Murray, Barbara E; Arias, Cesar A; Singh, Kavindra V
2017-06-01
We first assessed telavancin (TLV) pharmacokinetics in rats after a single subcutaneous dose of 35 mg/kg of body weight. The pharmacokinetic data were used to predict a TLV dose that simulates human exposure, and the efficacy of TLV was then evaluated using a TLV dose of 21 mg/kg every 12 h against Enterococcus faecalis OG1RF (TLV MIC of 0.06 μg/ml) in a rat endocarditis model with an indwelling catheter. Therapy was given for 3 days with TLV, daptomycin (DAP), or ampicillin (AMP) monotherapy and with combinations of TLV plus AMP, AMP plus gentamicin (GEN), and AMP plus ceftriaxone (CRO); rats were sacrificed 24 h after the last dose. Antibiotics were given to simulate clinically relevant concentrations or as used in other studies. TLV treatment resulted in a significant decrease in bacterial burden (CFU per gram) in vegetations from 6.0 log 10 at time 0 to 3.1 log 10 after 3 days of therapy. Bacterial burdens in vegetations were also significantly lower in the TLV-treated rats than in the AMP ( P = 0.0009)- and AMP-plus-GEN ( P = 0.035)-treated rats but were not significantly different from that of the AMP-plus-CRO-treated rats. Bacterial burdens from vegetations in TLV monotherapy and TLV-plus-AMP-and-DAP groups were similar to each other ( P ≥ 0.05). Our data suggest that further study of TLV as a therapeutic alternative for deep-seated infections caused by vancomycin-susceptible E. faecalis is warranted. Copyright © 2017 American Society for Microbiology.
Bagi, C M; Berryman, E R; Teo, S; Lane, N E
2017-12-01
The aim of this study was to determine the ability of undenatured native chicken type II collagen (UC-II) to prevent excessive articular cartilage deterioration in a rat model of osteoarthritis (OA). Twenty male rats were subjected to partial medial meniscectomy tear (PMMT) surgery to induce OA. Immediately after the surgery 10 rats received vehicle and another 10 rats oral daily dose of UC-II at 0.66 mg/kg for a period of 8 weeks. In addition 10 naïve rats were used as an intact control and another 10 rats received sham surgery. Study endpoints included a weight-bearing capacity of front and hind legs, serum biomarkers of bone and cartilage metabolism, analyses of subchondral and cancellous bone at the tibial epiphysis and metaphysis, and cartilage pathology at the medial tibial plateau using histological methods. PMMT surgery produced moderate OA at the medial tibial plateau. Specifically, the deterioration of articular cartilage negatively impacted the weight bearing capacity of the operated limb. Immediate treatment with the UC-II preserved the weight-bearing capacity of the injured leg, preserved integrity of the cancellous bone at tibial metaphysis and limited the excessive osteophyte formation and deterioration of articular cartilage. Study results demonstrate that a clinically relevant daily dose of UC-II when applied immediately after injury can improve the mechanical function of the injured knee and prevent excessive deterioration of articular cartilage. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Somayajulu-Niţu, Mallika; Sandhu, Jagdeep K; Cohen, Jerome; Sikorska, Marianna; Sridhar, TS; Matei, Anca; Borowy-Borowski, Henryk; Pandey, Siyaram
2009-01-01
Background Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Results Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Conclusion Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of Parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses. PMID:19635141
Benefits of Spine Stabilization with Biodegradable Scaffolds in Spinal Cord Injured Rats
Silva, Nuno A.; Sousa, Rui A.; Fraga, Joana S.; Fontes, Marco; Leite-Almeida, Hugo; Cerqueira, Rui; Almeida, Armando; Sousa, Nuno; Reis, Rui L.
2013-01-01
Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of spinal stabilization on the locomotor behavior was then evaluated for a period of 12 weeks. Locomotor evaluation—assessed by Basso, Beatie, and Bresnahan test; rotarod; and open field analysis—revealed that injured rats subjected to spine stabilization significantly improved their motor performance, including higher coordination and rearing activity when compared with SCI rats without stabilization. Histological analysis further revealed that the presence of the scaffolds not only stabilized the area, but also simultaneously prevented the infiltration of the injury site by connective tissue. Overall, these results reveal that SCI stabilization using a biodegradable scaffold at the vertebral bone level leads to an improvement of the motor deficits and is a relevant element for the successful treatment of SCI. PMID:22779715
Byrne, Jacqueline H; Voogt, Meggie; Turner, Karly M; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J
2013-01-01
Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD) deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT) and the 5 choice continuous performance task (5C-CPT) and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS) task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. AVD-deficient rats were deficient in vitamin D3 (<10 nM) and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI) than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA) responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.
Hellmich, Helen L.; Eidson, Kristine; Cowart, Jeremy; Crookshanks, Jeanna; Boone, Deborah K.; Shah, Syed; Uchida, Tatsuo; DeWitt, Douglas S.; Prough, Donald S.
2008-01-01
Increases of synaptically released zinc and intracellular accumulation of zinc in hippocampal neurons after traumatic or ischemic brain injury is neurotoxic and chelation of zinc has been shown to reduce neurodegeneration. Although our previous studies showed that zinc chelation in traumatically brain-injured rats correlated with an increase in whole-brain expression of several neuroprotective genes and reduced numbers of apoptotic neurons, the effect on functional outcome has not been determined, and the question of whether this treatment may actually be clinically relevant has not been answered. In the present study, we show that treatment of TBI rats with the zinc chelator calcium EDTA reduces the numbers of injured, Fluoro-Jade- positive neurons in the rat hippocampus 24 hours after injury but does not improve neurobehavioral outcome (spatial memory deficits) two weeks post-injury. Our data suggest that zinc chelation, despite providing short-term histological neuroprotection, fails to improve long-term functional outcome, perhaps because long-term disruptions in homeostatic levels of zinc adversely influence hippocampus-dependent spatial memory. PMID:18556117
A Conditioned Behavioral Paradigm for Assessing Onset and Lasting Tinnitus in Rats
Pace, Edward; Luo, Hao; Bobian, Michael; Panekkad, Ajay; Zhang, Xueguo; Zhang, Huiming; Zhang, Jinsheng
2016-01-01
Numerous behavioral paradigms have been developed to assess tinnitus-like behavior in animals. Nevertheless, they are often limited by prolonged training requirements, as well as an inability to simultaneously assess onset and lasting tinnitus behavior, tinnitus pitch or duration, or tinnitus presence without grouping data from multiple animals or testing sessions. To enhance behavioral testing of tinnitus, we developed a conditioned licking suppression paradigm to determine the pitch(s) of both onset and lasting tinnitus-like behavior within individual animals. Rats learned to lick water during broadband or narrowband noises, and to suppress licking to avoid footshocks during silence. After noise exposure, rats significantly increased licking during silent trials, suggesting onset tinnitus-like behavior. Lasting tinnitus-behavior, however, was exhibited in about half of noise-exposed rats through 7 weeks post-exposure tested. Licking activity during narrowband sound trials remained unchanged following noise exposure, while ABR hearing thresholds fully recovered and were comparable between tinnitus(+) and tinnitus(-) rats. To assess another tinnitus inducer, rats were injected with sodium salicylate. They demonstrated high pitch tinnitus-like behavior, but later recovered by 5 days post-injection. Further control studies showed that 1): sham noise-exposed rats tested with footshock did not exhibit tinnitus-like behavior, and 2): noise-exposed or sham rats tested without footshocks showed no fundamental changes in behavior compared to those tested with shocks. Together, these results demonstrate that this paradigm can efficiently test the development of noise- and salicylate-induced tinnitus behavior. The ability to assess tinnitus individually, over time, and without averaging data enables us to realistically address tinnitus in a clinically relevant way. Thus, we believe that this optimized behavioral paradigm will facilitate investigations into the mechanisms of tinnitus and development of effective treatments. PMID:27835697
Efficacy and Safety of Human Retinal Progenitor Cells
Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony
2016-01-01
Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556
Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders.
Hamilton, Shannon M; Green, Jennie R; Veeraragavan, Surabi; Yuva, Lisa; McCoy, Aaron; Wu, Yumei; Warren, Joe; Little, Lara; Ji, Diana; Cui, Xiaoxia; Weinstein, Edward; Paylor, Richard
2014-04-01
Animal models are critical for gaining insights into autism spectrum disorder (ASD). Despite their apparent advantages to mice for neural studies, rats have not been widely used for disorders of the human CNS, such as ASD, for the lack of convenient genome manipulation tools. Here we describe two of the first transgenic rat models for ASD, developed using zinc-finger nuclease (ZFN) methodologies, and their initial behavioral assessment using a rapid juvenile test battery. A syndromic and nonsyndromic rat model for ASD were created as two separate knockout rat lines with heritable disruptions in the genes encoding Fragile X mental retardation protein (FMRP) and Neuroligin3 (NLGN3). FMRP, a protein with numerous proposed functions including regulation of mRNA and synaptic protein synthesis, and NLGN3, a member of the neuroligin synaptic cell-adhesion protein family, have been implicated in human ASD. Juvenile subjects from both knockout rat lines exhibited abnormalities in ASD-relevant phenotypes including juvenile play, perseverative behaviors, and sensorimotor gating. These data provide important first evidence regarding the utility of rats as genetic models for investigating ASD-relevant genes.
Strupp, Christian; Bomann, Werner H; Spézia, François; Gervais, Frédéric; Forster, Roy; Richert, Lysiane; Singh, Pramila
2018-06-01
Propaquizafop is an herbicide with demonstrated hepatocarcinogenic activity in rodents. A rodent-specific mode of action (MOA) in the liver via activation of peroxisome proliferator-activated receptor α (PPARα) has been postulated based on existing data. Experience with PPARα-inducing pharmaceuticals indicates a lack of human relevance of this MOA. The objective of the present investigation was to evaluate the dependency of early key events leading to liver tumors on PPARα activation in wildtype (WT) compared to PPARα-knockout (KO) rats following 2 weeks exposure to 75, 500 and 1000 ppm propaquizafop in the diet. In WT rats, both WY-14643 (50 mg/kg bw/day) and propaquizafop (dose-dependently) induced marked increases in liver weights, correlating with liver enlargement and hepatocellular hypertrophy, along with increased CYP4A and acyl-CoA oxidase mRNA expression and enzyme activities versus controls, while in KO rats liver weight was mildly increased only at the high dose with minimal microscopic correlates and without any changes in liver peroxisomal or CYP4A activities. In addition, BrdU labeling resulted in higher numbers and density of positive hepatocytes versus controls in WT but not in KO rats, indicating increased mitotic activity and cell proliferation only in WT rats, thus confirming the PPARα-dependency of the biochemical and histological changes in the liver. Based on an assessment of the results of this investigation, together with existing propaquizafop data according to the MOA-Human Relevance Framework, we conclude that liver tumors observed in rodents after dietary administration of propaquizafop do not pose a relevant health risk to humans. Copyright © 2018 Elsevier Inc. All rights reserved.
Walker, C S; Sundrum, T; Hay, D L
2014-01-01
Background and Purpose A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. Experimental Approach We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. Key Results PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6–38) also displayed cell-type-dependent, agonist-specific, antagonism. Conclusions and Implications The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types. PMID:24303997
Inhibition of MAO by fractions and constituents of hypericum extract.
Bladt, S; Wagner, H
1994-10-01
The inhibition of monoamine oxidase (MAO) by six fractions from hypericum extract and three characteristic constituents (as pure substances) were analyzed in vitro and ex vivo to study the antidepressive mechanism of action. Rat brain homogenates were used as the in vitro model, while the ex vivo analysis was performed after intraperitoneal application of the test substances to albino rats. Massive inhibition of MAO-A could be shown with the total extract and all fractions only at the concentration of 10(-3) mol/L. At 10(-4) mol/L, one fraction rich in flavonoides showed an inhibition of 39%, and all other fractions demonstrated less than 25% inhibition. Using pure hypericin as well as in all ex vivo experiments, no relevant inhibiting effects could be shown. From the results it can be concluded that the clinically proven antidepressive effect of hypericum extract cannot be explained in terms of MAO inhibition.
Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C
2011-12-01
Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.
Mifune, Hiroharu; Nishi, Yoshihiro; Tajiri, Yuji; Masuyama, Taku; Hosoda, Hiroshi; Kangawa, Kenji; Kojima, Masayasu
2012-04-01
An abnormal eating behavior is often associated with diabetes mellitus in individuals. In the present study, we investigated the mechanisms underlying the relationship among uncontrolled diabetes, food intake, and the production of ghrelin, an orexigenic hormone, in spontaneous diabetic Torii (SDT) rats. Male SDT rats and age-matched control Sprague-Dawley (SD) rats were housed from 8 to 38 weeks of age. Body weight and daily food intake were measured weekly, whereas blood and whole stomach samples were obtained at the age of 8, 25, and 38 weeks in both SDT and SD rats. The SDT rats at both 25 and 38 weeks of age demonstrated significantly lower body weights despite almost doubled food consumption compared with the SD rats of the same age. The SDT rats showed overt hyperglycemia at 25 and 38 weeks of age with concomitant hypoinsulinemia. The plasma active ghrelin levels and the ratio to total ghrelin levels of SDT rats at 38 weeks of age were significantly higher than those of SD rats of the same age. Stomach ghrelin and ghrelin O-acyltransferase messenger RNA expression levels were higher in SDT rats than in SD rats after the induction of diabetes, with a concomitant decrease of stomach ghrelin-immunopositive cell numbers in SDT rats at 38 weeks of age. The SDT rats with uncontrolled hyperglycemia show hyperphagia with a concomitant increase of plasma active ghrelin concentration. This report is the first to clarify the relevance of ghrelin to hyperphagia in diabetic state over an extended period. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Claire, E-mail: claire.grant@astrazeneca.com; Ewart, Lorna; Muthas, Daniel
Nausea and vomiting are components of a complex mechanism that signals food avoidance and protection of the body against the absorption of ingested toxins. This response can also be triggered by pharmaceuticals. Predicting clinical nausea and vomiting liability for pharmaceutical agents based on pre-clinical data can be problematic as no single animal model is a universal predictor. Moreover, efforts to improve models are hampered by the lack of translational animal and human data in the public domain. AZD3514 is a novel, orally-administered compound that inhibits androgen receptor signaling and down-regulates androgen receptor expression. Here we have explored the utility ofmore » integrating data from several pre-clinical models to predict nausea and vomiting in the clinic. Single and repeat doses of AZD3514 resulted in emesis, salivation and gastrointestinal disturbances in the dog, and inhibited gastric emptying in rats after a single dose. AZD3514, at clinically relevant exposures, induced dose-responsive “pica” behaviour in rats after single and multiple daily doses, and induced retching and vomiting behaviour in ferrets after a single dose. We compare these data with the clinical manifestation of nausea and vomiting encountered in patients with castration-resistant prostate cancer receiving AZD3514. Our data reveal a striking relationship between the pre-clinical observations described and the experience of nausea and vomiting in the clinic. In conclusion, the emetic nature of AZD3514 was predicted across a range of pre-clinical models, and the approach presented provides a valuable framework for predicition of clinical nausea and vomiting. - Highlights: • Integrated pre-clinical data can be used to predict clinical nausea and vomiting. • Data integrated from standard toxicology studies is sufficient to make a prediction. • The use of the nausea algorithm developed by Parkinson (2012) aids the prediction. • Additional pre-clinical studies can be used to confirm and quantify the risk.« less
Whittaker, Alexandra L; Lymn, Kerry A; Wallace, Georgia L; Howarth, Gordon S
2016-01-01
Chemotherapy-induced intestinal mucositis is characterized by pain and a pro-inflammatory tissue response. Rat models are frequently used in mucositis disease investigations yet little is known about the presence of pain in these animals, the ability of analgesics to ameliorate the condition, or the effect that analgesic administration may have on study outcomes. This study investigated different classes of analgesics with the aim of determining their analgesic effects and impact on research outcomes of interest in a rat model of mucositis. Female DA rats were allocated to 8 groups to include saline and chemotherapy controls (n = 8). Analgesics included opioid derivatives (buprenorphine; 0.05mg/kg and tramadol 12.5mg/kg) and NSAID (carprofen; 15mg/kg) in combination with either saline or 5-Fluorouracil (5-FU; 150mg/kg). Research outcome measures included daily clinical parameters, pain score and gut histology. Myeloperoxidase assay was performed to determine gut inflammation. At the dosages employed, all agents had an analgesic effect based on behavioural pain scores. Jejunal myeloperoxidase activity was significantly reduced by buprenorphine and tramadol in comparison to 5-FU control animals (53%, p = 0.0004 and 58%, p = 0.0001). Carprofen had no ameliorating effect on myeloperoxidase levels. None of the agents reduced the histological damage caused by 5-FU administration although tramadol tended to increase villus length even when administered to healthy animals. These data provide evidence that carprofen offers potential as an analgesic in this animal model due to its pain-relieving efficacy and minimal effect on measured parameters. This study also supports further investigation into the mechanism and utility of opioid agents in the treatment of chemotherapy-induced mucositis.
Which one is more effective for the treatment of rat sepsis model: thalidomide or etanercept?
Ilhan, N; Susam, S; Gul, H F; Bardas, R; Ilhan, N
2017-01-01
We aimed to investigate the protective effect of selected treatment agents on liver injury in lipopolysaccharide (LPS)-induced rat sepsis model. The sepsis includes complex inflammatory responses between a microbial pathogen and the host immune system, and leads to organ failure and also death. This study was performed with 29 male Wistar Albino rats. Rats were divided randomly into five groups: Sham group, LPS-treated sepsis group, LPS+thalidomide treated group, LPS+etanercept treated group and LPS+thalidomide+etanercept treated group, respectively. Liver tissue tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were determined by enzyme-linked immuno-sorbent assay (ELISA) method. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was performed using western blot analysis. The levels of tissue TNF-α, IL-1β and IL-6 were found statistically significantly higher in sepsis group than in the sham group. TNF-α levels were found statistically significantly decreased in LPS+etanercept and LPS+thalidomide+etanercept treated groups when compared with LPS group (p < 0.05). For IL-1β and IL-6 levels a statistically significant decline was observed in the LPS+thalidomide and LPS+etanercept treated groups compared to the LPS group (p < 0.05). Expression of NF-κB protein in liver tissue was significantly elevated in the LPS group compared to sham group (p < 0.001). In treatment groups, a marked decrease was observed in NF-κB protein expression. The results of this investigation suggested that etanercept and thalidomide administration may have a beneficial effect on LPS-induced sepsis. So, the present study may have significant clinical relevance, but clinical trials are needed to confirm these results (Tab. 1, Fig. 1, Ref. 36).
Sugammadex, a Neuromuscular Blockade Reversal Agent, Causes Neuronal Apoptosis in Primary Cultures
Palanca, José M.; Aguirre-Rueda, Diana; Granell, Manuel V.; Aldasoro, Martin; Garcia, Alma; Iradi, Antonio; Obrador, Elena; Mauricio, Maria Dolores; Vila, Jose; Gil-Bisquert, Anna; Valles, Soraya L.
2013-01-01
Sugammadex, a γ-cyclodextrin that encapsulates selectively steroidal neuromuscular blocking agents, such as rocuronium or vecuronium, has changed the face of clinical neuromuscular pharmacology. Sugammadex allows a rapid reversal of muscle paralysis. Sugammadex appears to be safe and well tolerated. Its blood-brain barrier penetration is poor (< 3% in rats), and thus no relevant central nervous toxicity is expected. However the blood brain barrier permeability can be altered under different conditions (i.e. neurodegenerative diseases, trauma, ischemia, infections, or immature nervous system). Using MTT, confocal microscopy, caspase-3 activity, cholesterol quantification and Western-blot we determine toxicity of Sugammadex in neurons in primary culture. Here we show that clinically relevant sugammadex concentrations cause apoptotic/necrosis neuron death in primary cultures. Studies on the underlying mechanism revealed that sugammadex-induced activation of mitochondria-dependent apoptosis associates with depletion of neuronal cholesterol levels. Furthermore SUG increase CytC, AIF, Smac/Diablo and CASP-3 protein expression in cells in culture. Potential association of SUG-induced alteration in cholesterol homeostasis with oxidative stress and apoptosis activation occurs. Furthermore, resistance/sensitivity to oxidative stress differs between neuronal cell types. PMID:23983586
The Behavioral Actions of Lithium in Rodent Models
O’Donnell, Kelley C.; Gould, Todd D.
2007-01-01
For nearly as long as lithium has been in clinical use for the treatment of bipolar disorder, depression, and other conditions, investigators have attempted to characterize its effects on behaviors in rodents. Lithium consistently decreases exploratory activity, rearing, aggression, and amphetamine-induced hyperlocomotion; and it increases the sensitivity to pilocarpine-induced seizures, decreases immobility time in the forced swim test, and attenuates reserpine-induced hypolocomotion. Lithium also predictably induces conditioned taste aversion and alterations in circadian rhythms. The modulation of stereotypy, sensitization, and reward behavior are less consistent actions of the drug. These behavioral models may be relevant to human symptoms and to clinical endophenotypes. It is likely that the actions of lithium in a subset of these animal models are related to the therapeutic efficacy, as well the side effects, of the drug. We conclude with a brief discussion of various molecular mechanisms by which these lithium-sensitive behaviors may be mediated, and comment on the ways in which rat and mouse models can be used more effectively in the future to address persistent questions about the therapeutically relevant molecular actions of lithium. PMID:17532044
Tolerance to 3,4-Methylenedioxymethamphetamine (MDMA) in Rats Exposed to Single High-Dose Binges
Baumann, Michael H.; Clark, Robert D.; Franken, Frederick H.; Rutter, John J.; Rothman, Richard B.
2008-01-01
3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy) stimulates the transporter-mediated release of monoamines, including serotonin (5-HT). High-dose exposure to MDMA causes persistent 5-HT deficits (e.g., depletion of brain 5-HT) in animals, yet the functional and clinical relevance of such deficits are poorly defined. Here we examine functional consequences of MDMA-induced 5-HT depletions in rats. Male rats received binges of 3 ip injections of MDMA or saline, one injection every 2 h; MDMA was given at a threshold pharmacological dose (1.5 mg/kg × 3, low dose) or at a 5-fold higher amount (7.5 mg/kg × 3, high dose). One week later, jugular catheters and intracerebral guide cannulae were implanted. Two weeks after binges, rats received acute iv challenge injections of 1 and 3 mg/kg MDMA. Neuroendocrine effects evoked by iv MDMA (prolactin and corticosterone secretion) were assessed via serial blood sampling, while neurochemical effects (5-HT and dopamine release) were assessed via microdialysis in brain. MDMA binges elevated core temperatures only in the high-dose group, with these same rats exhibiting ~50% loss of forebrain 5-HT two weeks later. Prior exposure to MDMA did not alter baseline plasma hormones or dialysate monoamines, and effects of iv MDMA were similar in saline and low-dose groups. By contrast, rats pretreated with high-dose MDMA displayed significant reductions in evoked hormone secretion and 5-HT release when challenged with iv MDMA. As tolerance developed only in rats exposed to high-dose binges, hyperthermia and 5-HT depletion are implicated in this phenomenon. Our results suggest that MDMA tolerance in humans may reflect 5-HT deficits which could contribute to further dose escalation. PMID:18313226
Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P.J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.
2009-01-01
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a high-fat diet (SFL model) or a methionine-choline-deficient diet (NASH model) for eight weeks. Hepatic uptake transporter function was determined by bromosulfophthalein (BSP) disposition. Transporter expression was determined by branched DNA signal amplification assay and western blotting; inflammation was identified by immunostaining of liver slices for interleukin 1 beta (IL-1β). MC- rats showed significant retention of BSP in the plasma when compared to control rats. Hepatic NTCP, OATP1a1, 1a4, 1b2 and 2b1; and OAT 2 and 3 mRNA levels were significantly decreased in high-fat and MC- diet rats when compared to control. Protein expression of OATP1a1 was significantly decreased in high-fat animals, while OATP1a1 and OATP1b2 expression was significantly lower in MC- rats when compared to control. Liver tissue from high-fat and MC- rats stained positive for IL-1β, a pro-inflammatory cytokine known to decrease expression of NTCP, OATP and OAT transporters, suggesting a plausible mechanism for the observed transporter alterations. These data suggest that different stages of NAFLD result in altered hepatic uptake transporter expression that can lead to a functional impairment of xenobiotic uptake from the blood. Furthermore, NAFLD may alter the plasma retention time of clinically relevant drugs that are reliant on these transporters and may increase the potential drug toxicity. PMID:19358839
Nasrin, Sweety; Masuda, Eiji; Kugaya, Haruna; Osano, Ayaka; Ito, Yoshihiko; Yamada, Shizuo
2014-01-01
To clarify the effect of saw palmetto extract (SPE), a phytotherapeutic agent, on urodynamic parameters, bladder muscarinic and purinergic receptors, and urinary cytokines in rats with cystitis induced by cyclophosphamide (CYP). Saw palmetto extract (60 mg/kg per day) was administered orally twice a day for 7 days to rats. The urodynamic parameters in CYP (150 mg/kg i.p.)-treated rats were monitored by a cystometric method under anesthesia. The muscarinic and purinergic receptors in the bladder and submaxillary gland were measured by radioreceptor assays using [N-methyl-(3) H] scopolamine chloride([(3) H]NMS) and αβ-methylene-ATP [2,8-(3) H] tetrasodium salt ([(3) H]αβ-MeATP), respectively. Urinary cytokines (interleukin-1β [IL-1β], IL-6 and L-17) were measured with enzyme linked immunosorbent assay kits. Micturition interval and micturition volume were significantly decreased and the frequency of micturition and basal pressure were significantly increased in the CYP-treated rats compared with sham-operated rats. Orally administered SPE significantly increased the micturition interval and micturition volume and decreased the frequency of micturition and basal pressure. The maximal number of sites (Bmax ) for the specific binding of [(3) H]NMS and [(3) H]αβ-MeATP was significantly decreased in the bladder. The decrease in receptors was attenuated by repeated treatment with SPE. An elevation in urinary cytokine (IL-1β and IL-17) levels were seen, and this increase was effectively suppressed by SPE treatment. Saw palmetto extract attenuates the alteration of urodynamic parameters, pharmacologically relevant receptors, and urinary cytokines in CYP-treated rats. Therefore, SPE may be a potential therapeutic agent for improving the clinical symptoms of cystitis. © 2013 Wiley Publishing Asia Pty Ltd.
Bilateral Cervical Contusion Spinal Cord Injury in Rats
Anderson, Kim D.; Sharp, Kelli G.; Steward, Oswald
2009-01-01
There is increasing motivation to develop clinically relevant experimental models for cervical SCI in rodents and techniques to assess deficits in forelimb function. Here we describe a bilateral cervical contusion model in rats. Female Sprague-Dawley rats received mild or moderate cervical contusion injuries (using the Infinite Horizons device) at C5, C6, or C7/8. Forelimb motor function was assessed using a Grip Strength Meter (GSM); sensory function was assessed by the von Frey hair test; the integrity of the corticospinal tract (CST) was assessed by biotinylated dextran amine (BDA) tract tracing. Mild contusions caused primarily dorsal column (DC) and gray matter (GM) damage while moderate contusions produced additional damage to lateral and ventral tissue. Forelimb and hindlimb function was severely impaired immediately post-injury, but all rats regained the ability to use their hindlimbs for locomotion. Gripping ability was abolished immediately after injury but recovered partially, depending upon the spinal level and severity of the injury. Rats exhibited a loss of sensation in both fore- and hindlimbs that partially recovered, and did not exhibit allodynia. Tract tracing revealed that the main contingent of CST axons in the DC was completely interrupted in all but one animal whereas the dorsolateral CST (dlCST) was partially spared, and dlCST axons gave rise to axons that arborized in the GM caudal to the injury. Our data demonstrate that rats can survive significant bilateral cervical contusion injuries at or below C5 and that forepaw gripping function recovers after mild injuries even when the main component of CST axons in the dorsal column is completely interrupted. PMID:19559699
Nonclinical safety of the sodium-glucose cotransporter 2 inhibitor empagliflozin.
Bogdanffy, Matthew S; Stachlewitz, Robert F; van Tongeren, Susan; Knight, Brian; Sharp, Dale E; Ku, Warren; Hart, Susan Emeigh; Blanchard, Kerry
2014-01-01
Empagliflozin, a selective inhibitor of the renal tubular sodium-glucose cotransporter 2, was developed for treatment of type 2 diabetes mellitus. Nonclinical safety of empagliflozin was studied in a battery of tests to support global market authorization. Safety pharmacology studies indicated no effect of empagliflozin on measures of respiratory or central nervous system function in rats or cardiovascular safety in telemeterized dogs. In CD-1 mouse, Wistar Han rat, or beagle dogs up to 13, 26, or 52 weeks of treatment, respectively, empagliflozin exhibited a toxicity profile consistent with secondary supratherapeutic pharmacology related to glucose loss and included decreased body weight and body fat, increased food consumption, diarrhea, dehydration, decreased serum glucose and increases in other serum parameters reflective of increased protein catabolism, gluconeogenesis, and electrolyte imbalances, and urinary changes such as polyuria and glucosuria. Microscopic changes were consistently observed in kidney and included tubular nephropathy and interstitial nephritis (dog), renal mineralization (rat) and tubular epithelial cell karyomegaly, single cell necrosis, cystic hyperplasia, and hypertrophy (mouse). Empagliflozin was not genotoxic. Empagliflozin was not carcinogenic in female mice or female rats. Renal adenoma and carcinoma were induced in male mice only at exposures 45 times the maximum clinical dose. These tumors were associated with a spectrum of nonneoplastic changes suggestive of a nongenotoxic, cytotoxic, and cellular proliferation-driven mechanism. In male rats, testicular interstitial cell tumors and hemangiomas of the mesenteric lymph node were observed; both tumors are common in rats and are unlikely to be relevant to humans. These studies demonstrate the nonclinical safety of empagliflozin. © The Author(s) 2014.
Vahabzadeh-Hagh, Andrew M.; Muller, Paul A.; Gersner, Roman; Zangen, Abraham; Rotenberg, Alexander
2015-01-01
Objective Transcranial magnetic stimulation (TMS) is a well-established clinical protocol with numerous potential therapeutic and diagnostic applications. Yet, much work remains in the elucidation of TMS mechanisms, optimization of protocols, and in development of novel therapeutic applications. As with many technologies, the key to these issues lies in the proper experimentation and translation of TMS methods to animal models, among which rat models have proven popular. A significant increase in the number of rat TMS publications has necessitated analysis of their relevance to human work. We therefore review the essential principles necessary for the approximation of human TMS protocols in rats as well as specific methods that addressed these issues in published studies. Materials and Methods We performed an English language literature search combined with our own experience and data. We address issues that we see as important in the translation of human TMS methods to rat models and provide a summary of key accomplishments in these areas. Results An extensive literature review illustrated the growth of rodent TMS studies in recent years. Current advances in the translation of single, paired-pulse, and repetitive stimulation paradigms to rodent models are presented. The importance of TMS in the generation of data for preclinical trials is also highlighted. Conclusions Rat TMS has several limitations when considering parallels between animal and human stimulation. However, it has proven to be a useful tool in the field of translational brain stimulation and will likely continue to aid in the design and implementation of stimulation protocols for therapeutic and diagnostic applications. PMID:22780329
Age-related changes in Mastication are not improved by Tongue Exercise in a Rat Model
Krekeler, Brittany N.; Connor, Nadine P.
2016-01-01
Objective Aging results in progressive changes in deglutitive functions, which may be due in part to alterations in muscle morphology and physiology. Mastication is a critical component of bolus formation and swallowing, but aging effects on masticatory function have not been well studied. Study Design The purpose of this study was to: 1) quantify the effects of aging on mastication; 2) determine the effects of tongue exercise on mastication in young adult and old rats. We hypothesized that there would be significant differences in mastication characteristics (number of bites, interval between bites, time to eat) as a function of age and that tongue exercise would resolve pre-exercise differences between age groups. Methods We expanded the established model of progressive, 8-week tongue exercise training to include a mastication measurement: acoustic recordings of vermicelli pasta biting from 17 old and 17 young adult rats, randomized into training and control groups. Results We found that: 1) mastication characteristics were impacted by age; specifically in older rats, time to eat and number of bites were increased and intervals between bites were decreased, suggesting increased oral motor processing requirements for bolus formation; 2) tongue exercise did not impact mastication behaviors in young adult or old rats. Conclusion Tongue exercise may not have been specific enough to mastication to result in behavioral changes or exercise dose may not have been sufficient. Nevertheless, results were noteworthy in expanding the established rat model of aging and have relevant clinical implications for future translation to human populations. PMID:27260802
The Biomechanical and Histologic Effects of Platelet-Rich Plasma on Rat Rotator Cuff Repairs
Beck, Jennifer; Evans, Douglas; Tonino, Pietro M.; Yong, Sherri; Callaci, John J.
2013-01-01
Background Rotator cuff tears are common injuries that are often treated with surgical repair. Because of the high concentration of growth factors within platelets, platelet-rich plasma (PRP) has the potential to enhance healing in rotator cuff repairs. Hypothesis Platelet-rich plasma would alter the biomechanical and histologic properties of rotator cuff repair during an acute injury response. Study Design Controlled laboratory study. Methods Platelet-rich plasma was produced from inbred donor rats. A tendon-from-bone supraspinatus tear was created surgically and an immediate transosseous repair performed. The control group underwent repair only. The PRP group underwent a repair with PRP augmentation. Rats in each group were sacrificed at 7, 14, and 21 days. The surgically repaired tendons underwent biomechanical testing, including failure load, stiffness, failure strain, and stress relaxation characteristics. Histological analysis evaluated the cellular characteristics of the repair tissue. Results At 7- and 21-day periods, augmentation with PRP showed statistically significant effects on the biomechanical properties of the repaired rat supraspinatus tear, but failure load was not increased at the 7-, 14-, or 21-day periods (P = .688, .209, and .477, respectively). The control group had significantly higher stiffness at 21 days (P = .006). The control group had higher failure strain at 7 days (P = .02), whereas the PRP group had higher failure strain at 21 days (P = .008). Histologically, the PRP group showed increased fibroblastic response and vascular proliferation at each time point. At 21 days, the collagen fibers in the PRP group were oriented in a more linear fashion toward the tendon footprint. Conclusion In this controlled, rat model study, PRP altered the tissue properties of the supraspinatus tendon without affecting the construct’s failure load. Clinical Relevance The decreased tendon tissue stiffness acutely and failure to enhance tendon-to-bone healing of repairs should be considered before augmenting rotator cuff repairs with PRP. Further studies will be necessary to determine the role of PRP in clinical practice. PMID:22822177
Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans
2014-01-01
Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes in the manufacturing process and vaccine formulation, to start directly with phase 1 clinical trials.
Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.
Hermer-Vazquez, Linda; Moshtagh, Nasim
2009-05-01
Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.
Sun, Tao; Zhang, Yongzhi; Power, Chanikarn; Alexander, Phillip M.; Sutton, Jonathan T.; Aryal, Muna; Vykhodtseva, Natalia; Miller, Eric L.; McDannold, Nathan J.
2017-01-01
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. PMID:29133392
Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model.
Escribano, Begoña M; Medina-Fernández, Francisco J; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijoo, Montserrat; Garcia-Maceira, Fe I; Lillo, Rafael; Vieyra-Reyes, Patricia; Giraldo, Ana I; Luque, Evelio; Drucker-Colín, René; Túnez, Isaac
2017-01-01
Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.
Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis
Bailey, Lisa A.; Nascarella, Marc A.; Kerper, Laura E.; Rhomberg, Lorenz R.
2016-01-01
Inhalation of naphthalene causes olfactory epithelial nasal tumors in rats (but not in mice) and benign lung adenomas in mice (but not in rats). The limited available human data have not identified an association between naphthalene exposure and increased respiratory cancer risk. Assessing naphthalene's carcinogenicity in humans, therefore, depends entirely on experimental evidence from rodents. We evaluated the respiratory carcinogenicity of naphthalene in rodents, and its potential relevance to humans, using our Hypothesis-Based Weight-of-Evidence (HBWoE) approach. We systematically and comparatively reviewed data relevant to key elements in the hypothesized modes of action (MoA) to determine which is best supported by the available data, allowing all of the data from each realm of investigation to inform interpretation of one another. Our analysis supports a mechanism that involves initial metabolism of naphthalene to the epoxide, followed by GSH depletion, cytotoxicity, chronic inflammation, regenerative hyperplasia, and tumor formation, with possible weak genotoxicity from downstream metabolites occurring only at high cytotoxic doses, strongly supporting a non-mutagenic threshold MoA in the rat nose. We also conducted a dose–response analysis, based on the likely MoA, which suggests that the rat nasal MoA is not relevant in human respiratory tissues at typical environmental exposures. Our analysis illustrates how a thorough WoE evaluation can be used to support a MoA, even when a mechanism of action cannot be fully elucidated. A non-mutagenic threshold MoA for naphthalene-induced rat nasal tumors should be considered as a basis to determine human relevance and to guide regulatory and risk-management decisions. PMID:26202831
Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří
2017-05-01
Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach) , a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.
Cloke, Jacob M; Nguyen, Robin; Chung, Beryl Y T; Wasserman, David I; De Lisio, Stephanie; Kim, Jun Chul; Bailey, Craig D C; Winters, Boyer D
2016-12-14
Atypical multisensory integration is an understudied cognitive symptom in schizophrenia. Procedures to evaluate multisensory integration in rodent models are lacking. We developed a novel multisensory object oddity (MSO) task to assess multisensory integration in ketamine-treated rats, a well established model of schizophrenia. Ketamine-treated rats displayed a selective MSO task impairment with tactile-visual and olfactory-visual sensory combinations, whereas basic unisensory perception was unaffected. Orbitofrontal cortex (OFC) administration of nicotine or ABT-418, an α 4 β 2 nicotinic acetylcholine receptor (nAChR) agonist, normalized MSO task performance in ketamine-treated rats and this effect was blocked by GABA A receptor antagonism. GABAergic currents were also decreased in OFC of ketamine-treated rats and were normalized by activation of α 4 β 2 nAChRs. Furthermore, parvalbumin (PV) immunoreactivity was decreased in the OFC of ketamine-treated rats. Accordingly, silencing of PV interneurons in OFC of PV-Cre mice using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) selectively impaired MSO task performance and this was reversed by ABT-418. Likewise, clozapine-N-oxide-induced inhibition of PV interneurons in brain slices was reversed by activation of α 4 β 2 nAChRs. These findings strongly imply a role for prefrontal GABAergic transmission in the integration of multisensory object features, a cognitive process with relevance to schizophrenia. Accordingly, nAChR agonism, which improves various facets of cognition in schizophrenia, reversed the severe MSO task impairment in this study and appears to do so via a GABAergic mechanism. Interactions between GABAergic and nAChR receptor systems warrant further investigation for potential therapeutic applications. The novel behavioral procedure introduced in the current study is acutely sensitive to schizophrenia-relevant cognitive impairment and should prove highly valuable for such research. Adaptive behaviors are driven by integration of information from different sensory modalities. Multisensory integration is disrupted in patients with schizophrenia, but little is known about the neural basis of this cognitive symptom. Development and validation of multisensory integration tasks for animal models is essential given the strong link between functional outcome and cognitive impairment in schizophrenia. We present a novel multisensory object oddity procedure that detects selective multisensory integration deficits in a rat model of schizophrenia using various combinations of sensory modalities. Moreover, converging data are consistent with a nicotinic-GABAergic mechanism of multisensory integration in the prefrontal cortex, results with strong clinical relevance to the study of cognitive impairment and treatment in schizophrenia. Copyright © 2016 the authors 0270-6474/16/3612571-16$15.00/0.
Spencer, Pamela J; Crissman, James W; Stott, William T; Corley, Richard A; Cieszlak, Frank S; Schumann, Alan M; Hardisty, Jerry F
2002-01-01
A series of inhalation studies with propylene glycol monomethyl ether (PGME) vapor were undertaken to characterize its subchronic toxicity in mice and chronic toxicity/oncogenicity in rats and mice. Groups of male and female Fischer 344 rats and B6C3F1 mice were exposed to 0, 300, 1,000, or 3,000 ppm vapor from 1 week to 2 years. Primary treatment-related effects included: initial sedation of animals exposed to 3,000 ppm and its subsequent resolution correlating with induction of hepatic mixed function oxidase activity and S-phase DNA synthesis; elevated mortality in high-exposure male rats and mice (chronic study); elevated deposition of alpha2u-globulin (alpha2U-G) and associated nephropathy and S-phase DNA synthesis in male rat kidneys; accelerated atrophy of the adrenal gland X-zone in female mice (subchronic study only); and increased occurrence and/or severity of eosinophilic foci of altered hepatocytes in male rats. No toxicologically relevant statistically significant increases in neoplasia occurred in either species. A numerical increase in the incidence of kidney adenomas occurred in intermediate-exposure male rats; however, the association with alpha2U-G nephropathy, a male rat specific effect, indicated a lack of relevance for human risk assessment.
Frost, Hanna K; Kodama, Akira; Ekström, Per; Dahlin, Lars B
2016-10-15
Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. There was no difference in axonal outgrowth between G-CSF-treated and non-treated rats, regardless if healthy Wistar or diabetic Goto-Kakizaki (GK) rats were examined. However, G-CSF treatment caused a significant 13% decrease of cleaved caspase 3-positive Schwann cells at the lesion site in healthy rats, but only a trend in diabetic rats. In the distal nerve segments of healthy rats a similar trend was observed. In long-term experiments of healthy rats, regeneration outcome was evaluated at 90days after repair by presence of neurofilaments, wet weight of gastrocnemius muscle, and perception of touch (von Frey monofilament testing weekly). The presence of neurofilaments distal to the suture line was similar in G-CSF-treated and non-treated rats. The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radi, Zaher, E-mail: zaher.radi@pfizer.com; Bartholomew, Phillip, E-mail: phillip.m.bartholomew@pfizer.com; Elwell, Michael, E-mail: michael.elwell@covance.com
In humans, hibernoma is a very rare, benign neoplasm of brown adipose tissue (BAT) that typically occurs at subcutaneous locations and is successfully treated by surgical excision. No single cause has been accepted to explain these very rare human tumors. In contrast, spontaneous hibernoma in rats is rare, often malignant, usually occurs in the thoracic or abdominal cavity, and metastases are common. In recent years, there has been an increased incidence of spontaneous hibernomas in rat carcinogenicity studies, but overall the occurrence remains relatively low and highly variable across studies. There have only been four reported examples of pharmaceutical-induced hibernomamore » in rat carcinogenicity studies. These include phentolamine, an alpha-adrenergic antagonist; varenicline, a nicotine partial agonist; tofacitinib, a Janus kinase (JAK) inhibitor; and hydromorphone, an opiod analgesic. Potential non-genotoxic mechanisms that may contribute to the pathogenesis of BAT activation/proliferation and/or subsequent hibernoma development in rats include: (1) physiological stimuli, (2) sympathetic stimulation, (3) peroxisome proliferator-activated receptor (PPAR) agonism, and/or (4) interference or inhibition of JAK/Signal Transducer and Activator of Transcription (JAK/STAT) signaling. The evaluation of an apparent increase of hibernoma in rats from 2-year carcinogenicity studies of novel pharmaceutical therapeutics and its relevance to human safety risk assessment is complex. One should consider: the genotoxicity of the test article, dose/exposure and safety margins, and pathophysiologic and morphologic differences and similarities of hibernoma between rats and humans. Hibernomas observed to date in carcinogenicity studies of pharmaceutical agents do not appear to be relevant for human risk at therapeutic dosages. - Highlights: • Highly variable incidence of spontaneous hibernoma in carcinogenicity studies • Recent increase in the spontaneous incidence of hibernomas in Sprague–Dawley rats • Pharmaceutical-related hibernoma has been observed in rats, but not in humans. • Pathophysiologic and morphologic differences of hibernoma between rats and 7 humans. • Hibernomas are unlikely to be relevant to human risk assessment.« less
TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter.
Durukan Tolvanen, A; Tatlisumak, E; Pedrono, E; Abo-Ramadan, U; Tatlisumak, T
2017-05-15
Transient ischemic attack (TIA) has received only little attention in the experimental research field. Recently, we introduced a TIA model for mice, and here we set similar principles for simulating this human condition in Wistar rats. In the model: 1) transient nature of the event is ensured, and 2) 24h after the event animals are free from any sensorimotor deficit and from any detectable lesion by magnetic resonance imaging (MRI). Animals experienced varying durations of ischemia (5, 10, 12.5, 15, 25, and 30min, n=6-8pergroup) by intraluminal middle cerebral artery occlusion (MCAO). Ischemia severity and reperfusion rates were controlled by cerebral blood flow measurements. Sensorimotor neurological evaluations and MRI at 24h differentiated between TIA and ischemic stroke. Hematoxylin and eosin staining and apoptotic cell counts revealed pathological correlates of the event. We found that already 12.5min of ischemia was long enough to induce ischemic stroke in Wistar rats. Ten min or shorter durations induced neither gross neurological deficits nor infarcts visible on MRI, but histologically caused selective neuronal necrosis. A separate group of animals with 10min of ischemia followed up to 1week after reperfusion remained free of infarction and any MRI signal change. Thus, 10min or shorter focal cerebral ischemia induced by intraluminal MCAO in Wistar rats provides a clinically relevant TIA the rat. This model is useful for studying molecular correlates of TIA. Copyright © 2017 Elsevier B.V. All rights reserved.
Reliable critical sized defect rodent model for cleft palate research.
Mostafa, Nesrine Z; Doschak, Michael R; Major, Paul W; Talwar, Reena
2014-12-01
Suitable animal models are necessary to test the efficacy of new bone grafting therapies in cleft palate surgery. Rodent models of cleft palate are available but have limitations. This study compared and modified mid-palate cleft (MPC) and alveolar cleft (AC) models to determine the most reliable and reproducible model for bone grafting studies. Published MPC model (9 × 5 × 3 mm(3)) lacked sufficient information for tested rats. Our initial studies utilizing AC model (7 × 4 × 3 mm(3)) in 8 and 16 weeks old Sprague Dawley (SD) rats revealed injury to adjacent structures. After comparing anteroposterior and transverse maxillary dimensions in 16 weeks old SD and Wistar rats, virtual planning was performed to modify MPC and AC defects dimensions, taking the adjacent structures into consideration. Modified MPC (7 × 2.5 × 1 mm(3)) and AC (5 × 2.5 × 1 mm(3)) defects were employed in 16 weeks old Wistar rats and healing was monitored by micro-computed tomography and histology. Maxillary dimensions in SD and Wistar rats were not significantly different. Preoperative virtual planning enhanced postoperative surgical outcomes. Bone healing occurred at defect margin leaving central bone void confirming the critical size nature of the modified MPC and AC defects. Presented modifications for MPC and AC models created clinically relevant and reproducible defects. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
[Leptospirosis in a family after whitewater rafting in Thailand].
Gallardo, C; Williams-Smith, J; Jaton, K; Asner, S; Cheseaux, J-J; Troillet, N; Manuel, O; Berthod, D
2015-04-15
Leptospirosis is a zoonosis found worldwide, with an incidence that is approximately 10 times higher in the tropics than in temperate regions. The main reservoir of leptospirosis is the rat and human infection usually results from exposure to infected animal urine or tissues. Only 10% of cases are symptomatic. We present here two confirmed and two probable cases of leptospirosis in a family returning from whitewater rafting in Thailand, illustrating the wide variety of the clinical manifestations of this infection. Two of the patients were hospitalized and presented a probable Jarisch-Herxheimer reaction after initiation of beta-lactam therapy. The two others patients were treated empirically with doxycycline. We discuss here some relevant aspects of the epidemiology, clinical manifestations, therapy and the challenge of an early diagnosis of leptospirosis.
Silver nanoparticles: a novel radiation sensitizer for glioma?
NASA Astrophysics Data System (ADS)
Liu, Peidang; Huang, Zhihai; Chen, Zhongwen; Xu, Ruizhi; Wu, Hao; Zang, Fengchao; Wang, Cailian; Gu, Ning
2013-11-01
Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after AgNP injection, rats bearing glioma received 10 Gy radiation. The mean survival times were 100.5 and 98 days, the corresponding percent increase in life spans was 513.2% and 497.7%, and the cure rates were 41.7 and 38.5% at 200 days for the 10 and 20 μg AgNPs and radiation combination groups, respectively. In contrast, the mean survival times for irradiated controls, 10 and 20 μg AgNPs alone, and untreated controls were 24.5, 16.1, 19.4, and 16.4 days, respectively. Furthermore, a cooperative antiproliferative and proapoptotic effect was obtained when gliomas were treated with AgNPs followed by radiotherapy. Our results showed the therapeutic efficacy of AgNPs in combination with radiotherapy without apparent systemic toxicity, suggesting the clinical potential of AgNPs in improving the outcome of malignant glioma radiotherapy.Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after AgNP injection, rats bearing glioma received 10 Gy radiation. The mean survival times were 100.5 and 98 days, the corresponding percent increase in life spans was 513.2% and 497.7%, and the cure rates were 41.7 and 38.5% at 200 days for the 10 and 20 μg AgNPs and radiation combination groups, respectively. In contrast, the mean survival times for irradiated controls, 10 and 20 μg AgNPs alone, and untreated controls were 24.5, 16.1, 19.4, and 16.4 days, respectively. Furthermore, a cooperative antiproliferative and proapoptotic effect was obtained when gliomas were treated with AgNPs followed by radiotherapy. Our results showed the therapeutic efficacy of AgNPs in combination with radiotherapy without apparent systemic toxicity, suggesting the clinical potential of AgNPs in improving the outcome of malignant glioma radiotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01351k
Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking
Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.
2013-01-01
Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825
Non-Clinical Safety Evaluation of Intranasal Iota-Carrageenan
Hebar, Alexandra; Koller, Christiane; Seifert, Jan-Marcus; Chabicovsky, Monika; Bodenteich, Angelika; Bernkop-Schnürch, Andreas; Grassauer, Andreas; Prieschl-Grassauer, Eva
2015-01-01
Carrageenan has been widely used as food additive for decades and therefore, an extended oral data set is available in the public domain. Less data are available for other routes of administration, especially intranasal administration. The current publication describes the non-clinical safety and toxicity of native (non-degraded) iota-carrageenan when applied intranasally or via inhalation. Intranasally applied iota-carrageenan is a topically applied, locally acting compound with no need of systemic bioavailability for the drug’s action. Animal experiments included repeated dose local tolerance and toxicity studies with intranasally applied 0.12% iota-carrageenan for 7 or 28 days in New Zealand White rabbits and nebulized 0.12% iota-carrageenan administered to F344 rats for 7 days. Permeation studies revealed no penetration of iota-carrageenan across nasal mucosa, demonstrating that iota-carrageenan does not reach the blood stream. Consistent with this, no relevant toxic or secondary pharmacological effects due to systemic exposure were observed in the rabbit or rat repeated dose toxicity studies. Data do not provide any evidence for local intolerance or toxicity, when carrageenan is applied intranasally or by inhalation. No signs for immunogenicity or immunotoxicity have been observed in the in vivo studies. This is substantiated by in vitro assays showing no stimulation of a panel of pro-inflammatory cytokines by iota-carrageenan. In conclusion, 0.12% iota-carrageenan is safe for clinical use via intranasal application. PMID:25875737
Non-clinical safety evaluation of intranasal iota-carrageenan.
Hebar, Alexandra; Koller, Christiane; Seifert, Jan-Marcus; Chabicovsky, Monika; Bodenteich, Angelika; Bernkop-Schnürch, Andreas; Grassauer, Andreas; Prieschl-Grassauer, Eva
2015-01-01
Carrageenan has been widely used as food additive for decades and therefore, an extended oral data set is available in the public domain. Less data are available for other routes of administration, especially intranasal administration. The current publication describes the non-clinical safety and toxicity of native (non-degraded) iota-carrageenan when applied intranasally or via inhalation. Intranasally applied iota-carrageenan is a topically applied, locally acting compound with no need of systemic bioavailability for the drug's action. Animal experiments included repeated dose local tolerance and toxicity studies with intranasally applied 0.12% iota-carrageenan for 7 or 28 days in New Zealand White rabbits and nebulized 0.12% iota-carrageenan administered to F344 rats for 7 days. Permeation studies revealed no penetration of iota-carrageenan across nasal mucosa, demonstrating that iota-carrageenan does not reach the blood stream. Consistent with this, no relevant toxic or secondary pharmacological effects due to systemic exposure were observed in the rabbit or rat repeated dose toxicity studies. Data do not provide any evidence for local intolerance or toxicity, when carrageenan is applied intranasally or by inhalation. No signs for immunogenicity or immunotoxicity have been observed in the in vivo studies. This is substantiated by in vitro assays showing no stimulation of a panel of pro-inflammatory cytokines by iota-carrageenan. In conclusion, 0.12% iota-carrageenan is safe for clinical use via intranasal application.
Diogo, Camila Cardoso; Costa, Luís Maltez da; Pereira, José Eduardo; Filipe, Vítor; Couto, Pedro Alexandre; Magalhães, Luís G; Geuna, Stefano; Armada-da-Silva, Paulo A; Maurício, Ana Colette; Varejão, Artur Severo
2017-09-29
Of all the detrimental effects of spinal cord injury (SCI), one of the most devastating is the disruption of the ability to perform functional movement. Very little is known on the recovery of hindlimb joint kinematics after clinically-relevant contusive thoracic lesion in experimental animal models. A new functional assessment instrument, the dynamic feet distance (DFD) was used to describe the distance between the two feet throughout the gait cycle in normal and affected rodents. The purpose of this investigation was the evaluation and characterization of the DFD during treadmill locomotion in normal and T9 contusion injured rats, using three-dimensional (3D) instrumented gait analysis. Despite that normal and injured rats showed a similar pattern in the fifth metatarsal head joints distance excursion, we found a significantly wider distance between the feet during the entire gait cycle following spinal injury. This is the first study to quantify the distance between the two feet, throughout the gait cycle, and the biomechanical adjustments made between limbs in laboratory rodents after nervous system injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Cumming, Paul; Caprioli, Daniele; Dalley, Jeffrey W
2011-08-01
Translational molecular imaging with positron emission tomography (PET) and allied technologies offer unrivalled applications in the discovery of biomarkers and aetiological mechanisms relevant to human disease. Foremost among clinical PET findings during the past two decades of addiction research is the seminal discovery of reduced dopamine D(2/3) receptor expression in the striatum of drug addicts, which could indicate a predisposing factor and/or compensatory reaction to the chronic abuse of stimulant drugs. In parallel, recent years have witnessed significant improvements in the performance of small animal tomographs (microPET) and a refinement of animal models of addiction based on clinically relevant diagnostic criteria. This review surveys the utility of PET in the elucidation of neuropharmacological mechanisms underlying drug addiction. It considers the consequences of chronic drug exposure on regional brain metabolism and neurotransmitter function and identifies those areas where further research is needed, especially concerning the implementation of PET tracers targeting neurotransmitter systems other than dopamine, which increasingly have been implicated in the pathophysiology of drug addiction. In addition, this review considers the causal effects of behavioural traits such as impulsivity and novelty/sensation-seeking on the emergence of compulsive drug-taking. Previous research indicates that spontaneously high-impulsive rats--as exemplified by 'Zippy'--are pre-disposed to escalate intravenous cocaine self-administration, and subsequently to develop compulsive drug taking tendencies that endure despite concurrent adverse consequences of such behaviour, just as in human addiction. The discovery using microPET of pre-existing differences in dopamine D(2/3) receptor expression in the striatum of high-impulsive rats suggests a neural endophenotype that may likewise pre-dispose to stimulant addiction in humans. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Bébarová, Markéta; Matejovič, Peter; Pásek, Michal; Hořáková, Zuzana; Hošek, Jan; Šimurdová, Milena; Šimurda, Jiří
2016-10-01
Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.
Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng
2014-05-01
A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.
Erickson, R I; Defensor, E B; Fairchild, D G; Mirsalis, J C; Steinmetz, K L
2011-08-01
The World Health Organization currently recommends combinatorial treatment including artemisinins as first-line therapy against drug-resistant Plasmodium falciparum malaria. Although highly efficacious, artemisinin and its derivatives, including β-arteether (βAE), are associated with ototoxicity, tremors, and other autonomic and motor impairments in the clinic. Similar neurological symptoms, as well as brainstem lesions, have been observed in adult laboratory species (mice, rats, dogs, and non human primates) following acute treatment with βAE; however, few long-term, nonclinical studies have been conducted. Furthermore, the majority of deaths attributed to malarial infection occur in children under age five, yet no laboratory studies have been initiated in neonatal or juvenile animals. In the current study, neonatal 7-day-old rats were administered intramuscular doses of 1-90 mg/kg βAE in sesame oil for up to eight treatment cycles (one cycle=7 days treatment+7 days without treatment). Neonates were tested for changes in sensorimotor function, and the same animals were tested as adults in the Functional Observational Battery, for motor activity, and in the 8-arm radial maze. Pups receiving a single cycle of 60 or 90 mg/kg died within a week of treatment but had few behavioral changes and no brainstem pathology. In the long-term study, behavioral and motor changes and brainstem lesions were observed in a dose- and time-related manner. Rats given repeated cycles of 1 or 5mg/kg βAE showed subtle motor abnormalities (e.g., slight loss of righting reflex) while repeated cycles of 10mg/kg βAE treatment resulted in obvious motor and behavioral changes. Rats receiving 1mg/kg βAE had no brainstem lesions whereas some rats treated with 5mg/kg βAE and all rats treated with 10 mg/kg βAE had brainstem lesions. Brainstem lesions were observed after as few as five cycles and were characterized by gliosis, satellitosis and progressive necrosis in motor neurons of the trapezoid, vestibular, and olivary nuclei. This study shows that repeated treatment with clinically relevant doses of βAE causes motor deficits associated with brainstem damage in rodents and suggests that repeated treatment with βAE in children may elicit neurological damage. Copyright © 2011 Elsevier Inc. All rights reserved.
Schmuck, Eric G; Koch, Jill M; Centanni, John M; Hacker, Timothy A; Braun, Rudolf K; Eldridge, Marlowe; Hei, Derek J; Hematti, Peiman; Raval, Amish N
2016-12-01
: Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries. ©AlphaMed Press.
Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.
Marwitz, Shannon E; Woodie, Lauren N; Blythe, Sarah N
2015-11-01
The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical relevance. Copyright © 2015 Elsevier Inc. All rights reserved.
Aryal, Muna; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan
2015-04-28
Transcranial MRI-guided focused ultrasound is a rapidly advancing method for delivering therapeutic and imaging agents to the brain. It has the ability to facilitate the passage of therapeutics from the vasculature to the brain parenchyma, which is normally protected by the blood-brain barrier (BBB). The method's main advantages are that it is both targeted and noninvasive, and that it can be easily repeated. Studies have shown that liposomal doxorubicin (Lipo-DOX), a chemotherapy agent with promise for tumors in the central nervous system, can be delivered into the brain across BBB. However, prior studies have suggested that doxorubicin can be significantly neurotoxic, even at small concentrations. Here, we studied whether multiple sessions of Lipo-DOX administered after FUS-induced BBB disruption (FUS-BBBD) induces severe adverse events in the normal brain tissues. First, we used fluorometry to measure the doxorubicin concentrations in the brain after FUS-BBBD to ensure that a clinically relevant doxorubicin concentration was achieved in the brain. Next, we performed three weekly sessions with FUS-BBBD±Lipo-DOX administration. Five to twelve targets were sonicated each week, following a schedule described previously in a survival study in glioma-bearing rats (Aryal et al., 2013). Five rats received three weekly sessions where i.v. injected Lipo-DOX was combined with FUS-BBBD; an additional four rats received FUS-BBBD only. Animals were euthanized 70days from the first session and brains were examined in histology. We found that clinically-relevant concentrations of doxorubicin (4.8±0.5μg/g) were delivered to the brain with the sonication parameters (0.69MHz; 0.55-0.81MPa; 10ms bursts; 1Hz PRF; 60s duration), microbubble concentration (Definity, 10μl/kg), and the administered Lipo-DOX dose (5.67mg/kg) used. The resulting concentration of Lipo-DOX was reduced by 32% when it was injected 10min after the last sonication compared to cases where the agent was delivered before sonication. In histology, the severe neurotoxicity observed in some previous studies with doxorubicin by other investigators was not observed here. However, four of the five rats who received FUS-BBBD and Lipo-DOX had regions (dimensions: 0.5-2mm) at the focal targets with evidence of minor prior damage, either a small scar (n=4) or a small cyst (n=1). The focal targets were unaffected in rats who received FUS-BBBD alone. The result indicates that while delivery of Lipo-DOX to the rat brain might result in minor damage, the severe neurotoxicity seen in earlier works does not appear to occur with delivery via FUS-BBB disruption. The damage may be related to capillary damage produced by inertial cavitation, which might have resulted in excessive doxorubicin concentrations in some areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Kandasamy, Ram; Calsbeek, Jonas J; Morgan, Michael M
2017-01-15
Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund's Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED 50 dose of morphine (3.2mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao
Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less
Intravenous S-Ketamine Does Not Inhibit Alveolar Fluid Clearance in a Septic Rat Model
Weber, Nina C.; van der Sluijs, Koen; Hackl, Florian; Hotz, Lorenz; Dahan, Albert; Hollmann, Markus W.; Berger, Marc M.
2014-01-01
We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport. PMID:25386677
Radiation Pneumopathy in the Rat After Intravenous Application of {sup 188}Re-Labeled Microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liepe, Knut; Faulhaber, Diana; Wunderlich, Gerd
2011-10-01
Purpose: To determine the dose dependence and kinetics of pneumopathy after systemic administration of rhenium-188 ({sup 188}Re)-labeled microspheres in a rat model. Methods and Materials: {sup 188}Re-microspheres were injected intravenously into adult Wistar rats (n = 54, age, 8 {+-} 2 months). The rats were divided into 6 groups according to the intended absorbed dose in the lung (maximum 60 Gy). Gamma camera scans were used to estimate the individual whole lung doses. One control group (n = 5) received nonlabeled microspheres. The breathing rate was measured before and weekly after the treatment using whole body plethysmography until 24 weeks.more » An increase in the breathing rate by 20% compared with the individual pretreatment control value was defined as the quantal endpoint for dose-effect analyses. Results: A biphasic increase in the breathing rate was observed. The first impairment of lung function occurred in Weeks 3-6. For late changes, the interval to onset was clearly dose dependent and was 17 weeks (10-30 Gy) and 10 weeks (50-60 Gy), respectively. The incidence of the response was highly dependent on the estimated lung dose. The median effective dose for an early and late response was virtually identical (19.9 {+-} 0.6 Gy and 20.4 {+-} 3.1 Gy, respectively). A significant correlation was found between the occurrence of an early and a late effect in the same rat, suggesting a strong consequential component. Conclusions: The effects of radiolabeled microspheres can be studied longitudinally in a rat model, using changes in the breathing rate as the functional, clinically relevant response. The isoeffective doses from the present study using radionuclide administration and those from published investigations of homogeneous external beam radiotherapy are almost similar.« less
Hall, Brandon J.; Pearson, Laura S.; Terry, Alvin V.; Buccafusco, Jerry J.
2011-01-01
In this study, the use-dependent, nicotinic receptor antagonist bis (2, 2, 6, 6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was evaluated for its ability to attenuate the adverse consequences associated with morphine in rats in all three phases of an abstinence model of drug seeking: self-administration, acute withdrawal, and delayed test of drug seeking. Rats were allowed to self-administer morphine (FR1 schedule) with an active response lever, on a 24hr basis inside operant chambers, for 14 days. Each rat was subsequently evaluated for stereotypical behaviors associated with spontaneous morphine withdrawal. Rats were then placed in standard housing cages for a six week period of protracted abstinence from morphine. After this period, each rat was placed back into its respective operant chamber for a 14 day assessment of unrewarded drug seeking responses. BTMPS was administered to the animals in all three clinically relevant phases in three separate sets of experiments. BTMPS treatment during the self-administration phase resulted in up to a 34% reduction of lever responses to morphine when compared to vehicle treated control animals, as well as a 32% reduction in the dose of morphine self-administered. When given during self-administration and acute withdrawal, BTMPS treatment decreased acute withdrawal symptoms (up to 64%) of morphine use and reduced (up to 45%) drug seeking responses after six weeks of protracted withdrawal compared to control animals. BTMPS treatment after six weeks of abstinence from morphine had no effect. These results offer insight into the role of central cholinergic receptors in the onset and maintenance of drug addiction. PMID:21651919
Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.
2016-01-01
Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED50 dose of morphine (3.2 mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0 mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients. PMID:27746208
Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility.
Grafe, Laura A; Cornfeld, Amanda; Luz, Sandra; Valentino, Rita; Bhatnagar, Seema
2017-04-15
Women are twice as likely as men to experience stress-related psychiatric disorders. The biological basis of these sex differences is poorly understood. Orexins are altered in anxious and depressed patients. Using a rat model of repeated stress, we examined whether orexins contribute to sex differences in outcomes relevant to stress-related psychiatric diseases. Behavioral, neural, and endocrine habituation to repeated restraint stress and subsequent cognitive flexibility was examined in adult male and female rats. In parallel, orexin expression and activation were determined in both sexes, and chromatin immunoprecipitation was used to determine transcription factors acting at the orexin promoter. Designer receptors exclusively activated by designer drugs were used to inhibit orexin activation throughout repeated restraint to determine if the stress-related impairments in female rats could be reduced. Female rats exhibited impaired habituation to repeated restraint with subsequent deficits in cognitive flexibility compared with male rats. Increased orexin expression and activation were observed in female rats compared with male rats. The higher expression of orexin messenger RNA in female rats was due to actions of glucocorticoid receptors on the orexin promoter, as determined by chromatin immunoprecipitation. Inhibition of orexins using designer receptors exclusively activated by designer drugs in female rats throughout repeated restraint abolished their heightened hypothalamic-pituitary-adrenal responsivity and reduced stress-induced cognitive impairments. Orexins mediate the impairments in adaptations to repeated stress and in subsequent cognitive flexibility exhibited by female rats and provide evidence for a broader role for orexins in mediating functions relevant to stress-related psychiatric diseases. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Exploring Genetic, Genomic, and Phenotypic Data at the Rat Genome Database
Laulederkind, Stanley J. F.; Hayman, G. Thomas; Wang, Shur-Jen; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Dwinell, Melinda R.; Jacob, Howard J.; Shimoyama, Mary
2013-01-01
The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, http://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat. PMID:23255149
Gastric pentadecapeptide BPC 157 as an effective therapy for muscle crush injury in the rat.
Novinscak, Tomislav; Brcic, Luka; Staresinic, Mario; Jukic, Ivana; Radic, Bozo; Pevec, Danira; Mise, Sandro; Tomasovic, Sanja; Brcic, Iva; Banic, Tihomir; Jakir, Ana; Buljat, Gojko; Anic, Tomislav; Zoricic, Ivan; Romic, Zeljko; Seiwerth, Sven; Sikiric, Predrag
2008-01-01
Stable gastric pentadecapeptide BPC 157 accelerates the healing of a transected Achilles tendon and a transected quadriceps muscle. It may also be of clinical relevance as a systemic and local peptide treatment for crush injury of a major muscle, such as gastrocnemius muscle complex. BPC 157 is effective without a carrier, and it is presently undergoing trials for inflammatory bowel disease, and no toxicity has so far been reported. In crushed rats (force delivered 0.727 Ns/cm2), BPC 157 was applied either intraperitoneally or locally, as a thin cream layer, immediately after injury (sacrifice at 2 h), and once a day for 14 days. BPC 157 improved muscle healing, macroscopically (less hematoma and edema, no post-injury leg contracture), microscopically, functionally, and also based on enzyme activity (creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase). BPC 157, at all investigated intervals, given locally or intraperitoneally, accelerated post-injury muscle healing and also helped to restore the full function.
NASA Astrophysics Data System (ADS)
Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin
2016-03-01
Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.
Lemaire, L; Howe, F A; Rodrigues, L M; Griffiths, J R
1999-03-01
Chemosensitivity of N-methyl-N-nitrosourea-induced rat mammary tumours treated with 5-fluorouracil at a dose of 100 mg kg(-1) i.p. was assessed by using diffusion-weighted 1H-MRS to measure the average diffusion coefficient (ADC) of water in the tumour tissue. ADC measurements prior to any therapy correlated positively with necrotic fraction. Tumours with low initial ADC (< 0.95 x 10(9) m2 s(-1)) showed an increase in ADC 7 days after treatment, whereas tumours with a high initial ADC (> 1.2 x 10(9) m2 s(-1)) showed a decrease. All tumours decreased significantly in volume (P < 0.05) 2, 5 and 7 days after treatment. At day 7 post-treatment, tumours with a high pre-treatment ADC started to regrow. The initial ADC value, as well as changes after treatment predict tumour chemosensitivity, which could be clinically relevant.
Memory-updating abrogates extinction of learned immunosuppression.
Hadamitzky, Martin; Bösche, Katharina; Wirth, Timo; Buck, Benjamin; Beetz, Oliver; Christians, Uwe; Schniedewind, Björn; Lückemann, Laura; Güntürkün, Onur; Engler, Harald; Schedlowski, Manfred
2016-02-01
When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin
2015-01-01
The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity. PMID:26713446
Cowden, W B; Cullen, F A; Staykova, M A; Willenborg, D O
1998-08-01
Rat strains vary in their susceptibility to experimental autoimmune encephalomyelitis (EAE) and in many cases, factors other than MHC antigens are thought to play a role in this. We found that PVG rats, which have a very low susceptibility to EAE, were rendered highly susceptible to clinical disease when treated with N-methylarginine (NMA) an inhibitor of nitric oxide synthase (NOS). The clinical course of the ensuing disease in NMA-treated PVG rats was in most cases fulminating in nature and accompanied by some mortality. Following immunisation with myelin basic protein (MBP)-complete Freund's adjuvant (CFA), PVG rats developed higher serum levels of the surrogate markers of nitric oxide production, reactive nitrogen intermediates (RNI; nitrite and nitrate), than did their Lewis counterparts. This in vivo finding was reflected in vitro, where the levels of RNI produced in 24, 48 and 72 h IFN-gamma-stimulated spleen cell cultures for PVG rats were significantly higher than those for Lewis rats. A mechanism by which increased NO production might protect PVG rats against clinical EAE was suggested by the finding that lymph node cells, isolated from NMA-treated MBP-immunised PVG rats, proliferated in response to MBP at a rate approximately 3 x greater than those from MBP-immunised, saline treated rats. Thus, the greater number of MBP-specific T cells generated in the NOS inhibitor-treated vs. untreated rats could account for their increased susceptibility to developing clinical EAE. The findings in this study suggest that NO plays a role in protecting PVG rats against developing EAE.
A Novel Rodent Model of Posterior Ischemic Optic Neuropathy
Wang, Yan; Brown, Dale P.; Duan, Yuanli; Kong, Wei; Watson, Brant D.; Goldberg, Jeffrey L.
2014-01-01
Objectives To develop a reliable, reproducible rat model of posterior ischemic optic neuropathy (PION) and study the cellular responses in the optic nerve and retina. Methods Posterior ischemic optic neuropathy was induced in adult rats by photochemically induced ischemia. Retinal and optic nerve vasculature was examined by fluorescein isothiocyanate–dextran extravasation. Tissue sectioning and immunohistochemistry were used to investigate the pathologic changes. Retinal ganglion cell survival at different times after PION induction, with or without neurotrophic application, was quantified by fluorogold retrograde labeling. Results Optic nerve injury was confirmed after PION induction, including local vascular leakage, optic nerve edema, and cavernous degeneration. Immunostaining data revealed microglial activation and focal loss of astrocytes, with adjacent astrocytic hypertrophy. Up to 23%, 50%, and 70% retinal ganglion cell loss was observed at 1 week, 2 weeks, and 3 weeks, respectively, after injury compared with a sham control group. Experimental treatment by brain-derived neurotrophic factor and ciliary neurotrophic factor remarkably prevented retinal ganglion cell loss in PION rats. At 3 weeks after injury, more than 40% of retinal ganglion cells were saved by the application of neurotrophic factors. Conclusions Rat PION created by photochemically induced ischemia is a reproducible and reliable animal model for mimicking the key features of human PION. Clinical Relevance The correspondence between the features of this rat PION model to those of human PION makes it an ideal model to study the pathophysiologic course of the disease, most of which remains to be elucidated. Furthermore, it provides an optimal model for testing therapeutic approaches for optic neuropathies. PMID:23544206
The sub-chronic toxicity of regular White Spirit in rats.
Carrillo, Juan-Carlos; Adenuga, M David; Mckee, Richard H
2014-10-01
Hydrocarbon solvents are mostly complex substances (UVCB) with carbon numbers in the range of approximately C5-C20. One of the most common types is a C9-C14 aliphatic solvent containing approximately 20% aromatics and commonly known as White Spirit in Europe and mineral spirits in the US. In previous repeated inhalation toxicity studies, White Spirit was reported to cause minimal systemic effects in most animal species with few effects other than male rat-specific kidney changes at levels up to approximately 2000mg/m(3). In the present study male and female rats were exposed to White Spirit vapors, 6h/day, 5days/week for 13weeks at levels of approximately 2000, 4000, or 8000mg/m(3) to assess the potential for effects at higher exposure levels. All of the rats survived the treatment period. In life observations were largely restricted to acute central nervous system (CNS) effects in the high exposure group. Terminal body weights of high exposure groups animals were significantly below control values. Statistically significant differences in the clinical and hematological observations were small and within normal physiological limits. Weights of some organs including liver, spleen and kidneys were elevated, but microscopic examination indicated that the only pathological effects were changes in the kidneys of the male rats, consistent with an α2u-globulin-mediated process, which is gender and species-specific and not relevant to humans. The overall no observed adverse effect level (NOAEC) was 4000mg/m(3). Copyright © 2014 Elsevier Inc. All rights reserved.
Assessment in rats of the reproductive toxicity of gasoline from a gasoline vapor recovery unit.
McKee, R H; Trimmer, G W; Whitman, F T; Nessel, C S; Mackerer, C R; Hagemann, R; Priston, R A; Riley, A J; Cruzan, G; Simpson, B J; Urbanus, J H
2000-01-01
Gasoline (CAS 86290-81-5) is one of the world's largest volume commercial products. Although numerous toxicology studies have been conducted, the potential for reproductive toxicity has not been directly assessed. Accordingly, a two-generation reproductive toxicity study in rats was conducted to provide base data for hazard assessment and risk characterization. The test material, vapor recovery unit gasoline (68514-15-8), is the volatile fraction of formulated gasoline and the material with which humans are most likely to come in contact. The study was of standard design. Exposures were by inhalation at target concentrations of 5000, 10 000, and 20 000 mg/m(3). The highest exposure concentration was approximately 50% of the lower explosive limit and several orders of magnitude above anticipated exposure during refueling. There were no treatment-related clinical or systemic effects in the parental animals, and no microscopic changes other than hyaline droplet nephropathy in the kidneys of the male rats. None of the reproductive parameters were affected, and there were no deleterious effects on offspring survival and growth. The potential for endocrine modulation was also assessed by analysis of sperm count and quality as well as time to onset of developmental landmarks. No toxicologically important differences were found. Therefore, the NOAEL for reproductive toxicity in this study was > or =20 000 mg/m(3). The only systemic effects, in the kidneys of the male rats, were consistent with an alpha-2 u-globulin-mediated process. This is a male rat-specific effect and not relevant to human health risk assessment.
[Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats].
Gao, Yu-Hai; Zhou, Yan-Feng; Li, Shao-Feng; Li, Wen-Yuan; Xi, Hui-Rong; Yang, Fang-Fang; Chen, Ke-Ming
2017-12-25
To study effects of 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) on bone mineral density (BMD) in SD rats. Thirty SD rats weighted(110±10) and aged 1 month were randomly divided into control group and electromagnetic field group, 15 in each group. Normal control group of 50 Hz 0 mT density and sinusoidal electromagnetic field group of 50 Hz 1.8 mT were performed respectively with 1.5 h/d and weighted weight once a week, and observed food-intake. Rats were anesthesia by intraperitoneal injection and dual energy X-ray absorptiometry were used to detect bone density of whole body, and detected bone density of femur and vertebral body. Osteocalcin and tartrate-resistant acid phosphatase 5b were detected by ELSA; weighted liver, kidney and uterus to calculate purtenance index, then detected pathologic results by HE. Compared with control group, there was no significant change in weight every week, food-intake every day; no obvious change of bone density of whole body at 2 and 4 weeks, however bone density of whole body, bone density of excised femur and vertebra were increased at 6 weeks. Expression of OC was increased, and TRACP 5b expression was decreased. No change of HE has been observed in liver, kidney and uterus and organic index. 50 Hz 1.8 mT sinusoidal electromagnetic fields could improve bone formation to decrease relevant factors of bone absorbs, to improve peak bone density of young rats, in further provide a basis for clinical research electromagnetic fields preventing osteoporosis foundation.
Zhou, Lili; Lin, Qingming; Wang, Peng; Yao, Lan; Leong, Kahong; Tan, Zhiqun; Huang, Zitong
2017-01-01
Cardiac arrest-induced global cerebral ischemia injury (CA-GCII) usually leads to a poor neurological outcome without an effective treatment. Bone marrow-derived mesenchymal stem cells (BMMSCs) may provide a potential cell-based therapy against neurologic disorders through induction of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). To optimize the neuroprotective efficacy of BMMSCs further, in this study we have derived BMMSCs, which co-overexpress both BDNF and VEGF, and tested them for the treatment of CA-GCII in a rat model. Lentiviruses that express rat BDNF exon IV or VEGF-A were created using the bicistronic shuttle vectors of pLVX-IRES-ZsGreen1 and pLVX-IRES-tdTomato, respectively. BMMSCs that were co-transduced with the engineered lentiviruses with co-overexpression of both BDNF and VEGF along with corresponding fluorescent protein reporters were injected via jugular vein of rats that just recovered from a cardiac arrest. Animals were then scored for neurofunctional deficits and examined for brain pathology and gene expression relevant to the engraftment seven days after the treatments. We demonstrate that anchorage of lentiviral vector-transduced BMMSCs, which co-overexpressed both BDNF and VEGF in the hippocampus and temporal cortex along with significantly ameliorated brain pathology and improved neurofunctional performance in CA-GCII rats after transplantation. These findings provide a proof of concept for the further validation of engineered BMMSCs for the treatment of CA-GCII patients in clinical practice in the future. PMID:28492549
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
Gabapentin alleviates affective pain after traumatic nerve injury.
Griggs, Ryan B; Bardo, Michael T; Taylor, Bradley K
2015-06-17
Gabapentin reduces behavioral signs of stimulus-evoked allodynia and hyperalgesia in preclinical studies of traumatic nerve injury, but its effects on more clinically relevant measures of stimulus-independent pain are unclear. To address this gap, we determined whether gabapentin would relieve affective pain after spared nerve injury (SNI). Twelve days after sham or SNI surgery, we administered gabapentin over three consecutive conditioning days and then evaluated conditioned place preference. Gabapentin produced conditioned place preference and reversed mechanical hypersensitivity in SNI but not sham rats at a dose (100 mg/kg) that did not change open-field activity. These results show for the first time that gabapentin provides relief from affective pain without producing sedation, and add to the limited clinical literature suggesting that its use can be extended to treat pain arising from traumatic nerve injury.
Kohmoto, J; Nakao, A; Stolz, D B; Kaizu, T; Tsung, A; Ikeda, A; Shimizu, H; Takahashi, T; Tomiyama, K; Sugimoto, R; Choi, A M K; Billiar, T R; Murase, N; McCurry, K R
2007-10-01
Carbon monoxide (CO) provides protection against oxidative stress via anti-inflammatory and cytoprotective actions. In this study, we tested the hypothesis that a low concentration of exogenous (inhaled) CO would protect transplanted lung grafts from cold ischemia-reperfusion injury via a mechanism involving the mitogen-activated protein kinase (MAPK) signaling pathway. Lewis rats underwent orthotopic syngeneic or allogeneic left lung transplantation with 6 h of cold static preservation. Exposure of donors and recipients (1 h before and then continuously post-transplant) to 250 ppm CO resulted in significant improvement in gas exchange, reduced leukocyte sequestration, preservation of parenchymal and endothelial cell ultrastructure and reduced inflammation compared to animals exposed to air. The beneficial effects of CO were associated with p38 MAPK phosphorylation and were significantly prevented by treatment with a p38 MAPK inhibitor, suggesting that CO's efficacy is at least partially mediated by activation of p38 MAPK. Furthermore, CO markedly suppressed inflammatory events in the contralateral naïve lung. This study demonstrates that perioperative exposure of donors and recipients to CO at a low concentration can impart potent anti-inflammatory and cytoprotective effects in a clinically relevant model of lung transplantation and support further evaluation for potential clinical use.
Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E
2010-09-01
Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadinova, Radina; Boess, Franziska; Applegate, Dawn
2013-04-01
Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitromore » three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity observed in vivo. ► 3D liver co-cultures can detect species-specific drug toxicity observed in vivo. ► This in vitro model may improve assessment of human relevance of preclinical findings.« less
Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Terry, Claire; Millar, Neil S; Zablotny, Carol L; Gibb, Alasdair; Marshall, Valerie; Collins, Toby; Carney, Edward W; Billington, Richard
2012-06-01
Sulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies. The weight of evidence from these studies supported a novel MoA where sulfoxaflor is an agonist to the fetal, but not adult, rat muscle nAChR and that prolonged agonism on this receptor in fetal/neonatal rats causes sustained striated muscle contracture resulting in concomitant reduction in muscle responsiveness to physiological nerve stimulation. Fetal effects were inducible with as little as 1 day of exposure at the end of gestation, but were rapidly reversible after birth, consistent with a pharmacological MoA. With respect to human relevance, sulfoxaflor was shown to have no agonism on human fetal or adult muscle nAChRs. Taken together, the data support the hypothesis that the developmental effects of sulfoxaflor in rats are mediated via sustained agonism on the fetal muscle nAChR during late fetal development and are considered not relevant to humans.
Experimental models for cancellous bone healing in the rat
Bernhardsson, Magnus; Sandberg, Olof; Aspenberg, Per
2015-01-01
Background and purpose — Cancellous bone appears to heal by mechanisms different from shaft fracture healing. There is a paucity of animal models for fractures in cancellous bone, especially with mechanical evaluation. One proposed model consists of a screw in the proximal tibia of rodents, evaluated by pull-out testing. We evaluated this model in rats by comparing it to the healing of empty drill holes, in order to explain its relevance for fracture healing in cancellous bone. To determine the sensitivity to external influences, we also compared the response to drugs that influence bone healing. Methods — Mechanical fixation of the screws was measured by pull-out test and related to the density of the new bone formed around similar, but radiolucent, PMMA screws. The pull-out force was also related to the bone density in drill holes at various time points, as measured by microCT. Results — The initial bone formation was similar in drill holes and around the screw, and appeared to be reflected by the pull-out force. Both models responded similarly to alendronate or teriparatide (PTH). Later, the models became different as the bone that initially filled the drill hole was resorbed to restore the bone marrow cavity, whereas on the implant surface a thin layer of bone remained, making it change gradually from a trauma-related model to an implant fixation model. Interpretation — The similar initial bone formation in the different models suggests that pull-out testing in the screw model is relevant for assessment of metaphyseal bone healing. The subsequent remodeling would not be of clinical relevance in either model. PMID:26200395
The effects of inhalation anaesthetics on common clinical pathology parameters in laboratory rats.
Deckardt, K; Weber, I; Kaspers, U; Hellwig, J; Tennekes, H; van Ravenzwaay, B
2007-09-01
Effects of common anaesthetics such as ether, methoxyflurane, isoflurane, carbon dioxide (at 100%, 80% or 60% admixed with O(2)) on toxicity and clinical pathology parameters in rats were investigated. Ether, methoxyflurane and 100% CO(2) induced toxicity in some animals. Erythrocyte, haemoglobin and haematocrit were reduced in females by 100% CO(2), methoxyflurane and isoflurane. Glucose was increased by 60% CO(2), 80% CO(2), ether, isoflurane and methoxyflurane in males. Chloride was reduced by isoflurane and all CO(2) concentrations in females. Serum proteins were reduced by isoflurane and methoxyflurane. Sodium, inorganic phosphate, calcium and magnesium were reduced by methoxyflurane and isoflurane, but increased by all CO(2) concentrations. Potassium was reduced by ether, methoxyflurane or isoflurane. Triiodothyronine and thyroxine were reduced by all anaesthetics. Prolactin was reduced by methoxyflurane, but raised by ether and isoflurane. Erythrocyte cholinesterase (E-ChE) activity is markedly reduced (20-40%) after anaesthesia with all CO(2) concentrations in both sexes. E-ChE was unaffected by ether, methoxyflurane, or isoflurane. Serum and brain cholinesterase activities were not affected. E-ChE inhibition correlated with decreased blood pH, suggesting that this was caused by acidosis. This is of practical relevance in the risk assessment of cholinesterase inhibitors. Clinical pathology data were affected by all anaesthetics. CO(2)/O(2) (80%/20%) and isoflurane are the most suitable anaesthetics. If E-ChE activity is to be determined, isoflurane is the anaesthetic of choice.
Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats
Bruijnzeel, Adriaan W.; Qi, Xiaoli; Guzhva, Lidia V.; Wall, Shannon; Deng, Jie V.; Gold, Mark S.; Febo, Marcelo; Setlow, Barry
2016-01-01
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity. PMID:27065006
Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats.
Bruijnzeel, Adriaan W; Qi, Xiaoli; Guzhva, Lidia V; Wall, Shannon; Deng, Jie V; Gold, Mark S; Febo, Marcelo; Setlow, Barry
2016-01-01
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.
Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.
2017-01-01
Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy when consuming ibuprofen. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. Clinical Relevance Ibuprofen is a commonly used drug by sedentary individuals and athletes. This study suggests that ibuprofen has tissue-dependent effects that should be considered when prescribing the drug. PMID:27281275
Klaunig, James E; Dekant, Wolfgang; Plotzke, Kathy; Scialli, Anthony R
2016-02-01
Decamethylcyclopentasiloxane (D5) is a cyclic siloxane used in the production and formulation of consumer products with potential exposure to manufacturing workers, consumer, and the general public. Following a combined 2-year inhalation chronic bioassay performed in Fischer 344 (F344) rats, an increase in uterine endometrial adenocarcinomas was noted at the highest concentration to which animals were exposed. No other neoplasms were detected. In this study, a dose of 160 ppm produced an incidence of 8% endometrial adenocarcinomas. Based on a number of experimental studies with D5, the current manuscript examines the biological relevance and possible modes of action for the uterine endometrial adenocarcinomas observed in the rat following chronic exposure to D5. Variable rates of spontaneous uterine endometrial adenocarcinomas have been reported for untreated F344 CrlBr rats. As such, we concluded that the slight increase in uterine endometrial adenocarcinomas observed in the D5 chronic bioassay might not be the result of D5 exposure but may be related to variability of the spontaneous tumor incidence in this strain of rat. However, if the uterine endometrial adenocarcinomas are related to D5-exposure, alteration in the estrous cycle in the aging F344 rat is the most likely mode of action. D5 is not genotoxic or estrogenic. The alteration in the estrous cycle is caused by a decrease in progesterone with an increase in the estrogen:progesterone ratio most likely induced by a decrease in prolactin concentration. Available data support that exposure to D5 influences prolactin concentration. Although the effects on prolactin concentrations in a number of experiments were not always consistent, the available data support the conclusion that D5 is acting via a dopamine receptor agonist-like mechanism to alter the pituitary control of the estrous cycle. In further support of this mode of action, studies in F344 aged animals showed that the effects of D5 on estrous cyclicity produced a response consistent with a dopamine-like effect and further suggest that D5 is accelerating the aging of the reproductive endocrine system in the F344 rat utilized in this study. This mode of action for uterine endometrial adenocarcinoma tumorigenesis is not relevant for humans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ferris, Elliott; Abegglen, Lisa M; Schiffman, Joshua D; Gregg, Christopher
2018-03-06
The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
In Situ Optical Mapping of Voltage and Calcium in the Heart
Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.
2012-01-01
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327
Impact of Environmental Enrichment Devices on NTP In Vivo Studies
Churchill, Sheba R.; Morgan, Daniel L.; Kissling, Grace E.; Travlos, Gregory S.; King-Herbert, Angela P.
2015-01-01
The goal of this study was to determine whether the use of nesting material or polycarbonate shelters, as enrichment devices would have an impact on endpoints commonly measured during the conduct of the National Toxicology Program (NTP) 13-week studies. The study design was consistent with the NTP 13-week toxicity studies. Harlan Sprague Dawley (HSD) rats and their offspring, and B6C3F1/N mice were assigned to control (unenriched) and enriched experimental groups. Body weight, food and water consumption, behavioral observations, fecal content, clinical pathology, gross pathology, organ weights, and histopathology were evaluated. Enriched male mice and male and female rats exhibited decreased feed intake without a subsequent decrease in body weight; this may have been the result of the nesting material reducing the effect of cold stress thereby allowing for more efficient use of feed. There were statistical differences in some hematological parameters, however these were not considered physiologically relevant since all values were within the normal range. Gross pathology and histopathological findings were background changes and were not considered enrichment-related. Nesting material and shelters were used frequently and consistently and allowed animals to display species typical behavior. There was no significant impact on commonly measured endpoints in HSD rats and B6C3F1/N mice given enrichment devices. PMID:26873679
Mitra, Rupshi; Sapolsky, Robert Morris; Vyas, Ajai
2013-01-01
SUMMARY Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity. PMID:23104989
Jellett, Adam P; Jenks, Kyle; Lucas, Marcella; Scott, Rod C
2015-02-01
Children with epilepsy face significant cognitive and behavioral impairments. These impairments are due to a poorly characterized interaction between the underlying etiology, the effect of seizures and the effect of medication. The large variation in these factors make understanding the main drivers of cognitive impairment in humans extremely difficult. Therefore, we investigated the cognitive effect of seizures and the antiepileptic drug valproic acid in a rodent model of cortical dysplasia. Rats were divided into seizure-receiving and non-receiving groups. Rats experienced frequent early life seizures using the flurothyl inhalation method: 50 seizures between postnatal day 5 and 15 and then one seizure a day following that. Rats were further divided into drug-treated and vehicle treated groups. Valproic acid treated animals were treated from 5 days preceding behavioral testing in the Morris water maze at a clinically relevant concentration. We show here that the main driver of cognitive impairments are the brain malformations, and that persistent seizures in animals with brain malformations and valproic acid caused no additional impact. These findings suggest that neither an appropriate dose of a standard antiepileptic drug or intractable seizures worsen cognition associated with a malformation of cortical development and that alternative treatment strategies to improve cognition are required. Copyright © 2014 Elsevier B.V. All rights reserved.
Selimkhanov, Jangir; Thompson, W Clayton; Patterson, Terrell A; Hadcock, John R; Scott, Dennis O; Maurer, Tristan S; Musante, Cynthia J
2016-01-01
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology.
Selimkhanov, Jangir; Patterson, Terrell A.; Scott, Dennis O.; Maurer, Tristan S.; Musante, Cynthia J.
2016-01-01
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology. PMID:27227543
Postdependent state in rats as a model for medication development in alcoholism.
Meinhardt, Marcus W; Sommer, Wolfgang H
2015-01-01
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review. © 2014 Society for the Study of Addiction.
2010-01-01
Introduction Pristane-induced arthritis (PIA) in the rat has been described as an animal model of inflammatory arthritis which exhibits features similar to rheumatoid arthritis in humans, such as a chronic, destructive, and symmetrical involvement of peripheral joints. However, so far little is known about the earliest inflammatory events and their influence on locomotor behaviour during the course of PIA. To investigate this issue a detailed analysis of the pathologic changes occurring during the prodromal and early stages of PIA was performed. Methods Arthritis was induced in DA.rats by injection of 150 μl 2,6,10,4-tetramethyl-pentadecane (pristane) at the base of the tail and changes in locomotor behaviour of the affected paws were monitored using the CatWalk quantitative gait analysis system. The pathologic events occurring in the joints of pristane-injected animals were studied before onset, at onset, and during acute phase of arthritis by histological methods. Results Gait analysis revealed that changes in locomotion such as reduced paw print areas and stance phase time are already apparent before the onset of clinically discernible arthritis symptoms (erythema, paw swelling) and correlate with PIA scores. In agreement with these findings, inflammatory tenosynovitis could be observed by histology already before the onset of erythema and swelling of the respective paws. In the most heavily affected rats also irregularities in step sequence patterns occurred A kinetic analysis of clinical and histological findings demonstrated that gait changes precede the pathological changes occurring during the acute phase of pristane-induced arthritis. Conclusions Gait analysis allows for pinpointing the initial inflammatory changes in experimental arthritis models such as pristane-induced arthritis. Analysis of early clinically relevant symptoms in arthritis models may facilitate the search for novel therapeutics to interfere with pain, inflammation and joint destruction in patients suffering from inflammatory arthritis. PMID:20222952
Rundfeldt, C; Gasparic, A; Wlaź, P
2014-01-01
Imepitoin is a novel anti-epileptic licensed in the European Union for the treatment of canine idiopathic epilepsy. The aim of this study was to characterize the pharmacokinetics of imepitoin in dogs and to evaluate the interaction with drug metabolizing enzymes. Upon administration of imepitoin tablets at a dose of 30 mg/kg to beagle dogs, high plasma levels were observed within 30 min following oral dosing, with maximal plasma concentrations of 14.9–17.2 μg/mL reached after 2–3 h. In a crossover study, co-administration of imepitoin tablets with food reduced the total AUC by 30%, but it did not result in significant changes in Tmax and Cmax, indicating lack of clinical relevance. No clinically relevant effects of sex and no accumulation or metabolic tolerance were observed upon twice daily dosing. Following single dose administration of 10–100 mg/kg, dose linearity was found. Administering [14C] imepitoin, high enteral absorption of 92% and primary fecal excretion were identified. Plasma protein binding was only 55%. At therapeutic plasma concentrations, imepitoin did not inhibit microsomal cytochrome P450 family liver enzymes in vitro. In rats, no relevant induction of liver enzymes was found. Therefore, protein binding or metabolism-derived drug–drug interactions are unlikely. Based on these data, imepitoin can be dosed twice daily, but the timing of tablet administration in relation to feeding should be kept consistent. PMID:24611573
Rojas, J M; Printz, R L; Niswender, K D
2011-07-04
Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.
Jabbour, Zaher; El-Hakim, Michel; Henderson, Janet E; de Albuquerque, Rubens F
2014-05-01
This study aimed to evaluate the impact of concurrent administration of clinically relevant doses of zoledronic acid (ZA) and dexamethasone (DX) on bone healing after tooth extraction (EXO). Forty-four Sprague-Dawley rats (6-8 month old) were randomized into five groups: ZA + DX = weekly injection of ZA with DX for 7 weeks; WD = ZA with DX for 3 weeks then DX alone for 4 weeks; C = control saline for 7 weeks; ZA = ZA alone for 7 weeks and DX = DX alone for 7 weeks. ZA was administered at 0.13 mg/kg/week and DX at 3.8 mg/kg/week and body weights recorded at the time of injection. All rats underwent extraction (EXO) of the mandibular and maxillary first molars at 3 weeks and were euthanized at 7 weeks. The extracted and non-extracted sides of both jaws were harvested for micro-CT analyses. All rats, particularly those injected with ZA, exhibited weight gain till EXO followed by decline then recovery. ZA + DX group demonstrated highest fractional bone to tissue volume (BV/TV) in the non-extracted side. ZA + DX rats exhibited also highest volume and surface of sequestra. Only sequestra volume was statistically higher in the WD group compared to C group. Combined treatment with ZA and DX over a prolonged period inhibits bone remodeling and increased sequestra formation to a greater extent than either drug alone. Trauma caused by these sequestra cutting through the mucosa could play a key role in the development of BRONJ by potentially facilitating infection. ZA withdrawal may promote bone-remodeling reactivation following EXO. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yokosawa, Michiko; Sonoda, Yukihiko; Sugiyama, Shin-ichiro; Saito, Ryuta; Yamashita, Yoji; Nishihara, Masamichi; Satoh, Taku; Kumabe, Toshihiro; Yokoyama, Masayuki; Tominaga, Teiji
2010-08-01
Prognosis for the patients with glioblastoma, the most common malignant brain tumor, remains dismal. A major barrier to progress in treatment of glioblastoma is the relative inaccessibility of tumors to chemotherapeutic agents. Convection-enhanced delivery (CED) is a direct intracranial drug infusion technique to deliver chemotherapeutic agents to the central nervous system, circumventing the blood-brain barrier and reducing systemic side effects. CED can provide wider distribution of infused agents compared to simple diffusion. We have reported that CED of a polymeric micelle carrier system could yield a clinically relevant distribution of encapsulated agents in the rat brain. Our aim was to evaluate the efficacy of CED of polymeric micellar Am80, a synthetic agonist with high affinity to nuclear retinoic acid receptor, in a rat model of glioblastoma xenografts. We also used systemic administration of temozolomide, a DNA-alkylating agent, which has been established as the standard of care for newly diagnosed malignant glioma. U87MG human glioma cells were injected into the cerebral hemisphere of nude rats. Rats bearing U87MG xenografts were treated with CED of micellar Am80 (2.4 mg/m(2)) on day 7 after tumor implantation. Temozolomide (200 mg/m(2)/day) was intraperitoneally administered daily for 5 days, starting on day 7 after tumor implantation. CED of micellar Am80 provided significantly longer survival than the control. The combination of CED of micellar Am80 and systemic administration of temozolomide provided significantly longer survival than single treatment. In conclusion, temozolomide combined with CED of micellar Am80 may be a promising method for the treatment of malignant gliomas.
Will, Johanna L; Eckart, Moritz T; Rosenow, Felix; Bauer, Sebastian; Oertel, Wolfgang H; Schwarting, Rainer K W; Norwood, Braxton A
2013-06-15
The human serial reaction time task (SRTT) has widely been used to study the neural basis of implicit learning. It is well documented, in both human and animal studies, that striatal dopaminergic processes play a major role in this task. However, findings on the role of the hippocampus - which is mainly associated with declarative memory - in implicit learning and performance are less univocal. We used a SRTT to evaluate implicit learning and performance in rats with perforant pathway stimulation-induced hippocampal neuron loss; a clinically-relevant animal model of mesial temporal lobe epilepsy (MTLS-HS). As has been previously reported for the Sprague-Dawley strain, 8h of continuous stimulation in male Wistar rats reliably induced widespread neuron loss in areas CA3 and CA1 with a characteristic sparing of CA2 and the granule cells. Histological analysis revealed that hippocampal volume was reduced by an average of 44%. Despite this severe hippocampal injury, rats showed superior performance in our instrumental SRTT, namely shorter reaction times, and without a loss in accuracy, especially during the second half of our 16-days testing period. These results demonstrate that a hippocampal lesion can improve performance in a rat SRTT, which is probably due to enhanced instrumental performance. In line with our previous findings based on ibotenic-acid induced hippocampal lesion, these data support the hypothesis that loss or impairment of hippocampal function can enhance specific task performance, especially when it is dependent on procedural (striatum-dependent) mechanisms with minimal spatial requirements. As the animal model used here exhibits the defining characteristics of MTLE-HS, these findings may have implications for the study and management of patients with MTLE. Copyright © 2013 Elsevier B.V. All rights reserved.
Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits.
Gruene, Tina M; Roberts, Elian; Thomas, Virginia; Ronzio, Ashley; Shansky, Rebecca M
2015-08-01
The neural projections from the infralimbic region of the prefrontal cortex to the amygdala are important for the maintenance of conditioned fear extinction. Neurons in this pathway exhibit a unique pattern of structural plasticity that is sex-dependent, but the relationship between the morphologic characteristics of these neurons and successful extinction in male and female subjects is unknown. Using classic cued fear conditioning and an extinction paradigm in large cohorts of male and female rats, we identified subpopulations of both sexes that exhibited high (HF) or low (LF) levels of freezing on an extinction retrieval test, representing failed or successful extinction maintenance, respectively. We combined retrograde tracing with fluorescent intracellular microinjections to perform three-dimensional reconstructions of infralimbic neurons that project to the basolateral amygdala in these groups. The HF and LF male rats exhibited neuroanatomical distinctions that were not observed in HF or LF female rats. A retrospective analysis of behavior during fear conditioning and extinction revealed that despite no overall sex differences in freezing behavior, HF and LF phenotypes emerged in male rats during extinction and in female rats during fear conditioning, which does not involve infralimbic-basolateral amygdala neurons. Our results suggest that the neural processes underlying successful or failed extinction maintenance may be sex-specific. These findings are relevant not only to future basic research on sex differences in fear conditioning and extinction but also to exposure-based clinical therapies, which are similar in premise to fear extinction and which are primarily used to treat disorders that are more common in women than in men. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Saraf-Sinik, Inbar; Assa, Eldad; Ahissar, Ehud
2015-06-10
Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables. Copyright © 2015 the authors 0270-6474/15/358777-13$15.00/0.
Burkholder, Timothy P; Clayton, Joshua R; Rempala, Mark E; Henry, James R; Knobeloch, John M; Mendel, David; McLean, Johnathan A; Hao, Yan; Barda, David A; Considine, Eileen L; Uhlik, Mark T; Chen, Yuefeng; Ma, Liandong; Bloem, Laura J; Akunda, Jacqueline K; McCann, Denis J; Sanchez-Felix, Manuel; Clawson, David K; Lahn, Michael M; Starling, James J
2012-06-01
LY2457546 is a potent and orally bioavailable inhibitor of multiple receptor tyrosine kinases involved in angiogenic and tumorigenic signalling. In biochemical and cellular assays, LY2457546 demonstrates potent activity against targets that include VEGFR2 (KDR), PDGFRβ, FLT-3, Tie-2 and members of the Eph family of receptors. With activities against both Tie2 and Eph receptors, LY2457546 possesses an activity profile that distinguishes it from multikinase inhibitors. When compared head to head with sunitinib, LY2457546 was more potent for inhibition of endothelial tube formation in an in vitro angiogenesis co-culture model with an intermittent treatment design. In vivo, LY2457546 inhibited VEGF-driven autophosphorylation of lung KDR in the mouse and rat in a dose and concentration dependent manner. LY2457546 was well tolerated and exhibited efficacy in a 13762 syngeneic rat mammary tumor model in both once and twice daily continuous dosing schedules and in mouse human tumor xenograft models of lung, colon, and prostate origin. Additionally, LY2457546 caused complete regression of well-established tumors in an acute myelogenous leukemia (AML) FLT3-ITD mutant xenograft tumor model. The observed efficacy that was displayed by LY2457546 in the AML FLT3-ITD mutant tumor model was superior to sunitinib when both were evaluated using equivalent doses normalized to in vivo inhibition of pKDR in mouse lung. LY2457546 was well tolerated in non-clinical toxicology studies conducted in rats and dogs. The majority of the toxicities observed were similar to those observed with other multi-targeted anti-angiogenic kinase inhibitors (MAKs) and included bone marrow hypocellularity, hair and skin depigmentation, cartilage dysplasia and lymphoid organ degeneration and necrosis. Thus, the unique spectrum of target activity, potent in vivo anti-tumor efficacy in a variety of rodent and human solid tumor models, exquisite potency against a clinically relevant model of AML, and non-clinical safety profile justify the advancement of LY2457546 into clinical testing.
Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction
Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev
2016-01-01
Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury. PMID:27375429
Nelson, Carol A.; Azure, Michael T.; Adams, Christopher T.; Zinn, Kurt R.
2015-01-01
P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor-xenograft mice to determine if Re-188-P2045 could inhibit the growth of pancreatic cancer in an animal model. Methods Re-188-P2045 was intravenously administered every 3 days for 16 days to nude mice with AR42J tumor-xenografts that were ≈ 20 mm3 at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy all tissues were assessed for levels of radioactivity and evaluated for histological abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of non-radioactive Re-185/187-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor-cell membranes expressing predominantly SSTR2. Results In the 1.85 and 5.55 mBq groups tumor growth was inhibited in a dose-dependent fashion. In the 11.1 mBq group tumor growth was completely inhibited throughout the dosing period and for 12 days after the last administered dose. The radioactivity level in tumors 4 hours post-injection was 10%ID/g, which was 2-fold higher than in the kidneys. Re-188-P2045 was well tolerated in all dose-groups with no adverse clinical, histological, or hematological findings. The non-radioactive Re-185/187-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes suggesting that these studies are relevant to human studies. Conclusion Re-188-P2045 is a promising therapeutic candidate for patients with somatostatin-receptor-positive cancer. PMID:25359879
Romański, Michał; Kasprzyk, Anna; Teżyk, Artur; Widerowska, Agnieszka; Żaba, Czesław; Główka, Franciszek
2017-06-05
A prodrug treosulfan (TREO) is currently investigated in clinical trials for conditioning prior to hematopoietic stem cell transplantation. Bioanalysis of TREO and its active derivatives, monoepoxide (S,S-EBDM) and diepoxide, in plasma and urine underlay the pharmacokinetic studies of these compounds but cannot explain an organ pharmacological action or toxicity. Recently, distribution of TREO and S,S-EBDM into brain, cerebrospinal fluid, and aqueous humor of the eye has been investigated in animal models and the obtained results presented clinical relevance. In this paper, a selective and rapid HPLC-ESI-MS/MS method was elaborated and validated for the studies of disposition of TREO and S,S-EBDM in rat plasma, liver, lungs, kidneys, muscle, and brain. The two analytes and codeine, internal standard (IS), were isolated from 50μL of plasma and 100μL of supernatants of the tissues homogenates using ultrafiltration Amicon vials. Chromatographic resolution was accomplished on C18 column with isocratic elution. The limits of quantitation of TREO and S,S-EBDM in the studied matrices ranged from 0.11 to 0.93μM. The HPLC-MS/MS method was adequately precise and accurate within and between runs. The IS-normalized matrix effect differed among the tissues and was the most pronounced in a liver homogenate supernatant (approximately 0.55 for TREO and 0.35 for S,S-EBDM). Stability of the analytes in experimental samples was also established. The validated method for the first time enabled determination of TREO and S,S-EBDM in the six life-important tissues in rats following administration of the prodrug. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative metabolism of 2-nitropropane in rats and chimpanzees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, W.F.; Coulston, F.; Korte, F.
1983-01-01
To obtain more information about the metabolic fate of 2-nitropropane (2-NP) in rats and to study the relevance of the findings for man, the authors investigated the metabolism of 2-NP in rats and chimpanzees. The results of this study show that 2-NP is eliminated largely by exhalation, while excretion in urine and feces are only minor pathways. Carbon dioxide, acetone and isopropanol are the major metabolites. Preliminary chromatographic results suggest different conjugates formed by rats and chimpanzees. 2-NP has little potential for accumulation; the lipid tissues, which can absorb it to considerable concentrations, are rapidly depleted.
Memory Inhibition as a Critical Factor Preventing Creative Problem Solving
ERIC Educational Resources Information Center
Gómez-Ariza, Carlos J.; del Prete, Francesco; Prieto del Val, Laura; Valle, Tania; Bajo, M. Teresa; Fernandez, Angel
2017-01-01
The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had…
Perfluorobutyrate (PFBA) has been detected in precipitation, surface waters, water treatment effluent, and in public and private wells in Minnesota at up to low mg/l concentrations. We evaluated the pharmacokinetics of PFBA in rats, mice, monkeys, and humans to provide a rati...
Perfluorobutyrate (PFBA) has been detected in precipitation, surface waters, water treatment effluent, and in public and private wells in Minnesota at up to low mug/L concentrations. We evaluated the pharmacokinetics of PFBA in rats, mice, monkeys, and humans to provide a rationa...
Muñoz-Quiles, Cintia; Santos-Benito, Fernando F.; Llamusí, M. Beatriz; Ramón-Cueto, Almudena
2009-01-01
Olfactory bulb ensheathing glia (OB-OEG) promote repair of spinal cord injury (SCI) in rats after transplantation at acute or subacute (up to 45 days) stages. The most relevant clinical scenario in humans, however, is chronic SCI, in which no more major cellular or molecular changes occur at the injury site; this occurs after the third month in rodents. Whether adult OB-OEG grafts promote repair of severe chronic SCI has not been previously addressed. Rats with complete SCI that were transplanted with OB-OEG 4 months after injury exhibited progressive improvement in motor function and axonal regeneration from different brainstem nuclei across and beyond the SCI site. A positive correlation between motor outcome and axonal regeneration suggested a role for brainstem neurons in the recovery. Functional and histological outcomes did not differ at subacute or chronic stages. Thus, autologous transplantation is a feasible approach as there is time for patient stabilization and OEG preparation in human chronic SCI; the healing effects of OB-OEG on established injuries may offer new therapeutic opportunities for chronic SCI patients. PMID:19915486
Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension
Chen, Selena; Tang, Chaoshu
2016-01-01
Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913
Synaptic changes in rat maculae in space and medical imaging: the link
NASA Technical Reports Server (NTRS)
Ross, M. D.
1998-01-01
Two different space life sciences missions (SLS-1 and SLS-2) have demonstrated that the synapses of the hair cells of rat vestibular maculae increase significantly in microgravity. The results also indicate that macular synapses are sensitive to stress. These findings argue that vestibular maculae exhibit neuroplasticity to macroenvironmental and microenvironmental changes. This capability should be clinically relevant to rehabilitative training and/or pharmacological treatments for vestibular disease. The results of this ultrastructural research also demonstrated that type I and type II hair cells are integrated into the same neuronal circuitry. The findings were the basis for development of three-dimensional reconstruction software to learn details of macular wiring. This software, produced for scientific research, has now been adapted to reconstruct the face and skull directly from computerized tomography scans. In collaboration with craniofacial reconstructive surgeons at Stanford University Medical Center, an effort is under way to produce a virtual environment workbench for complex craniofacial surgery. When completed, the workbench will help surgeons train for and simulate surgery. The methods are patient specific. This research illustrates the value of basic research in leading to unanticipated medical applications.
Lentiviral-induced high-grade gliomas in rats: the effects of PDGFB, HRAS-G12V, AKT, and IDH1-R132H.
Lynes, John; Wibowo, Mia; Koschmann, Carl; Baker, Gregory J; Saxena, Vandana; Muhammad, A K M G; Bondale, Niyati; Klein, Julia; Assi, Hikmat; Lieberman, Andrew P; Castro, Maria G; Lowenstein, Pedro R
2014-07-01
In human gliomas, the RTK/RAS/PI(3)K signaling pathway is nearly always altered. We present a model of experimental gliomagenesis that elucidates the contributions of genes involved in this pathway (PDGF-B ligand, HRAS-G12V, and AKT). We also examine the effect on gliomagenesis by the potential modifier gene, IDH1-R132H. Injections of lentiviral-encoded oncogenes induce de novo gliomas of varying penetrance, tumor progression, and histological grade depending on the specific oncogenes used. Our model mimics hallmark histological structures of high-grade glioma, such as pseudopalisades, glomeruloid microvascular proliferation, and diffuse tumor invasion. We use our model of gliomagenesis to test the efficacy of an experimental brain tumor gene therapy. Our model allowed us to test the contributions of oncogenes in the RTK/RAS/PI(3)K pathway, and their potential modification by over-expression of mutated IDH1, in glioma development and progression in rats. Our model constitutes a clinically relevant system to study gliomagenesis, the effects of modifier genes, and the efficacy of experimental therapeutics.
Miraglia, Niccolò; Bianchi, Davide; Trentin, Antonella; Volpi, Nicola; Soni, Madhu G
2016-07-01
Chondroitin sulfate, an amino sugar polymer made of glucuronic acid and N-acetyl-galactosamine, is used in dietary supplements to promote joint health. Commonly used chondroitin sulfate is of animal origin and can pose potential safety problems including bovine spongiform encephalopathy (BSE). The objective of the present study was to investigate potential adverse effects, if any, of microbial derived chondroitin sulfate sodium (CSS) in subchronic toxicity, genotoxicity and bioavailability studies. In the toxicity study, Sprague Dawley rats (10/sex/group) were gavaged with CSS at dose levels of 0, 250, 500 and 1000 mg/kg body weight (bw)/day for 90-days. No mortality or significant changes in clinical signs, body weights, body weight gain or feed consumption were noted. Similarly, no toxicologically relevant treatment-related changes in hematological, clinical chemistry, urinalysis and organ weights were noted. Macroscopic and microscopic examinations did not reveal treatment-related abnormalities. In vitro mutagenic and clastogenic potentials as evaluated by Ames assay, chromosomal aberration test and micronucleus assay did not reveal genotoxicity of CSS. In pharmacokinetic study in human, CSS showed higher absorption as compared to chondroitin sulfate of animal origin. The results of subchronic toxicity study supports the no-observed-adverse-effect level (NOAEL) for CSS as 1000 mg/kg bw/day, the highest dose tested. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gutierrez, Silvia; Carnes, Ansley; Finucane, Beth; Oelsner, Gabrielle Musci William; Hicks, Lucretia; Russell, Gregory B.; Liu, Chun; Turner, Christopher P.
2010-01-01
General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature. PMID:20298758
Muelken, Peter; Schmidt, Clare E; Shelley, David; Tally, Laura; Harris, Andrew C
2015-01-01
Avoidance of the negative affective (emotional) symptoms of nicotine withdrawal (e.g., anhedonia, anxiety) contributes to tobacco addiction. Establishing the minimal nicotine exposure conditions required to demonstrate negative affective withdrawal signs in animals, as well as understanding moderators of these conditions, could inform tobacco addiction-related research, treatment, and policy. The goal of this study was to determine the minimal duration of continuous nicotine infusion required to demonstrate nicotine withdrawal in rats as measured by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Administration of the nicotinic acetylcholine receptor antagonist mecamylamine (3.0 mg/kg, s.c.) on alternate test days throughout the course of a 2-week continuous nicotine infusion (3.2 mg/kg/day via osmotic minipump) elicited elevations in ICSS thresholds beginning on the second day of infusion. Magnitude of antagonist-precipitated withdrawal did not change with further nicotine exposure and mecamylamine injections, and was similar to that observed in a positive control group receiving mecamylamine following a 14-day nicotine infusion. Expression of a significant withdrawal effect was delayed in nicotine-infused rats receiving mecamylamine on all test days rather than on alternate test days. In a separate study, rats exhibited a transient increase in ICSS thresholds following cessation of a 2-day continuous nicotine infusion (3.2 mg/kg/day). Magnitude of this spontaneous withdrawal effect was similar to that observed in rats receiving a 9-day nicotine infusion. Our findings demonstrate that rats exhibit antagonist-precipitated and spontaneous nicotine withdrawal following a 2-day continuous nicotine infusion, at least under the experimental conditions studied here. Magnitude of these effects were similar to those observed in traditional models involving more prolonged nicotine exposure. Further development of these models, including evaluation of more clinically relevant nicotine dosing regimens and other measures of nicotine withdrawal (e.g., anxiety-like behavior, somatic signs), may be useful for understanding the development of the nicotine withdrawal syndrome.
Zhang, Hui-Ying; Han, De-Wu; Zhao, Zhong-Fu; Liu, Ming-She; Wu, Yan-Jun; Chen, Xian-Ming; Ji, Cheng
2007-01-01
AIM: To develop and characterize a practical model of Hepatopulmonary syndrome (HPS) in rats. METHODS: The experimental animals were randomized into five feeding groups: (1) control (fed standard diet), (2) control plus intraperitoneal injection with lipopolysaccharide (LPS), (3) cirrhosis (fed a diet of maize flour, lard, cholesterol, and alcohol plus subcutaneously injection with carbon tetrachloride (CCl4) oil solution), (4) cirrhosis plus LPS, and (5) cirrhosis plus glycine and LPS. The blood, liver and lung tissues of rats were sampled for analysis and characterization. Technetium 99m-labeled macroaggregated albumin (Tc99m-MAA) was used to test the dilatation of pulmonary microvasculature. RESULTS: Typical cirrhosis and subsequent hepato-pulmonary syndrome was observed in the cirrhosis groups after an 8 wk feeding period. In rats with cirrhosis, there were a decreased PaO2 and PaCO2 in arterial blood, markedly decreased arterial O2 content, a significantly increased alveolar to arterial oxygen gradient, an increased number of bacterial translocated within mesenteric lymph node, a significant higher level of LPS and tumor necrosis factor-α (TNF-α) in plasma, and a significant greater ratio of Tc99m-MAA brain-over-lung radioactivity. After LPS administration in rats with cirrhosis, various pathological parameters got worse and pulmonary edema formed. The predisposition of glycine antagonized the effects of LPS and significantly alleviated various pathological alterations. CONCLUSION: The results suggest that: (1) a characte-ristic rat model of HPS can be non-invasively induced by multiple pathogenic factors including high fat diet, alcohol, cholesterol and CCl4; (2) this model can be used for study of hepatopulmonary syndrome and is clinically relevant; and (3) intestinal endotoxemia (IETM) and its accompanying cytokines, such as TNF-α, exert a crucial role in the pathogenesis of HPS in this model. PMID:17659698
Muelken, Peter; Schmidt, Clare E.; Shelley, David; Tally, Laura; Harris, Andrew C.
2015-01-01
Avoidance of the negative affective (emotional) symptoms of nicotine withdrawal (e.g., anhedonia, anxiety) contributes to tobacco addiction. Establishing the minimal nicotine exposure conditions required to demonstrate negative affective withdrawal signs in animals, as well as understanding moderators of these conditions, could inform tobacco addiction-related research, treatment, and policy. The goal of this study was to determine the minimal duration of continuous nicotine infusion required to demonstrate nicotine withdrawal in rats as measured by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Administration of the nicotinic acetylcholine receptor antagonist mecamylamine (3.0 mg/kg, s.c.) on alternate test days throughout the course of a 2-week continuous nicotine infusion (3.2 mg/kg/day via osmotic minipump) elicited elevations in ICSS thresholds beginning on the second day of infusion. Magnitude of antagonist-precipitated withdrawal did not change with further nicotine exposure and mecamylamine injections, and was similar to that observed in a positive control group receiving mecamylamine following a 14-day nicotine infusion. Expression of a significant withdrawal effect was delayed in nicotine-infused rats receiving mecamylamine on all test days rather than on alternate test days. In a separate study, rats exhibited a transient increase in ICSS thresholds following cessation of a 2-day continuous nicotine infusion (3.2 mg/kg/day). Magnitude of this spontaneous withdrawal effect was similar to that observed in rats receiving a 9-day nicotine infusion. Our findings demonstrate that rats exhibit antagonist-precipitated and spontaneous nicotine withdrawal following a 2-day continuous nicotine infusion, at least under the experimental conditions studied here. Magnitude of these effects were similar to those observed in traditional models involving more prolonged nicotine exposure. Further development of these models, including evaluation of more clinically relevant nicotine dosing regimens and other measures of nicotine withdrawal (e.g., anxiety-like behavior, somatic signs), may be useful for understanding the development of the nicotine withdrawal syndrome. PMID:26658557
Reichel, Carmela M; Schwendt, Marek; McGinty, Jacqueline F; Olive, M Foster; See, Ronald E
2011-03-01
Chronic methamphetamine (meth) abuse can lead to persisting cognitive deficits. Here, we utilized a long-access meth self-administration (SA) protocol to assess recognition memory and metabotropic glutamate receptor (mGluR) expression, and the possible reversal of cognitive impairments with the mGluR5 allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB). Male, Long-Evans rats self-administered i.v. meth (0.02 mg/infusion) on an FR1 schedule of reinforcement or received yoked-saline infusions. After seven daily 1-h sessions, rats were switched to 6-h daily sessions for 14 days, and then underwent drug abstinence. Rats were tested for object recognition memory at 1 week after meth SA at 90 min and 24 h retention intervals. In a separate experiment, rats underwent the same protocol, but received either vehicle or CDPPB (30 mg/kg) after familiarization. Rats were killed on day 8 or 14 post-SA and brain tissue was obtained. Meth intake escalated over the extended access period. Additionally, meth-experienced rats showed deficits in both short- and long-term recognition memory, demonstrated by a lack of novel object exploration. The deficit at 90 min was reversed by CDPPB treatment. On day 8, meth intake during SA negatively correlated with mGluR expression in the perirhinal and prefrontal cortex, and mGluR5 receptor expression was decreased 14 days after discontinuation of meth. This effect was specific to mGluR5 levels in the perirhinal cortex, as no differences were identified in the hippocampus or in mGluR2/3 receptors. These results from a clinically-relevant animal model of addiction suggest that mGluR5 receptor modulation may be a potential treatment of cognitive dysfunction in meth addiction.
Christgau, Stephan; Tankó, László B; Cloos, Paul A C; Mouritzen, Ulrik; Christiansen, Claus; Delaissé, Jean-Marie; Høegh-Andersen, Pernille
2004-01-01
Several observational studies indicate that estrogen deficiency increases the incidence of osteoarthritis in postmenopausal women. To validate this observation, we investigated the effects of ovariectomy (OVX) on cartilage erosion in rats using histology and an established bio-assay of cartilage-specific collagen type II degradation products (CTX-II). Furthermore, we investigated whether estrogen and levormeloxifene, a selective estrogen-receptor modulator (SERM), can prevent the OVX-induced changes in cartilage degradation. The clinical relevance was assessed in postmenopausal women by measuring the changes in CTX-II during 12-month treatment with levormeloxifene versus placebo. Sixty 6-month-old rats were divided in five groups. One group was subjected to sham and the others to OVX, followed by treatment with vehicle alone, estradiol or 0.2 mg/kg/day or 5 mg/kg/day of levormeloxifene. The rats were treated for 9 weeks with biweekly blood and urine sampling for measurement of bone resorption and cartilage turnover. After study termination, hind knees were removed for histological analysis of erosions. The effect of levormeloxifene in post-menopausal women was assessed by measuring CTX-II in samples from 301 women who were participating in a phase II study of this SERM. OVX rats showed significant increases in the urinary excretion of CTX-II. After 9 weeks this was manifested as increased surface erosion of knee articular cartilage compared with sham-operated rats. Treatment with estrogen or levormeloxifene prevented the OVX-induced changes. There was a significant correlation between the 4-week changes in CTX-II and cartilage erosion at week 9 (r = 0.64, P < 0.001). In postmenopausal women treated with levormeloxifene, the urinary excretion of CTX-II was decreased by approximately 50% and restored CTX-II levels to the premenopausal range. This study is the first to demonstrate that a SERM suppresses cartilage degradation in both rodents and humans, suggesting potential therapeutical benefits in the prevention of destructive joint diseases such as osteoarthritis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, Casey C.; Palani, Anandan; Chang, Wei
Studies directed at developing a broadly acting non-nucleoside inhibitor of HCV NS5B led to the discovery of a novel structural class of 5-aryl benzofurans that simultaneously interact with both the palm I and palm II binding regions. An initial candidate was potent in vitro against HCV GT1a and GT1b replicons, and induced multi-log reductions in HCV viral load when orally dosed to chronic GT1 infected chimpanzees. However, in vitro potency losses against clinically relevant GT1a variants prompted a further effort to develop compounds with sustained potency across a broader array of HCV genotypes and mutants. Ultimately, a biology and medicinalmore » chemistry collaboration led to the discovery of the development candidate MK-8876. MK-8876 demonstrated a pan-genotypic potency profile and maintained potency against clinically relevant mutants. It demonstrated moderate bioavailability in rats and dogs, but showed low plasma clearance characteristics consistent with once-daily dosing. Herein we describe the efforts which led to the discovery of MK-8876, which advanced into Phase 1 monotherapy studies for evaluation and characterization as a component of an all-oral direct-acting drug regimen for the treatment of chronic HCV infection.« less
Christian, M S; Brent, R L; Calda, P
2007-02-01
A large National Institutes of Health (NIH) study showed that pharmacy-compounded 17alpha-hydroxyprogesterone caproate (17-OHP-C) reduced the incidence of preterm birth. The study results included a signal that 17-OHP-C may be associated with an increase in the rate of miscarriages and stillbirths. The most probable cause of an increased incidence of miscarriage/stillbirths may be the use of 17-OHP-C in high-risk patients. The current search of the non-clinical literature was performed to identify whether there were any signals from studies in animals that might suggest concerns for the safe use of progestins generally, and 17-OHP-C specifically, in the prevention of preterm birth in humans. An extensive literature search was performed for progesterone, 17-hydroxyprogesterone, and 17-OHP-C, using Medline and Toxline databases, textbooks, and then the obtained publications. Because 17-OHP-C does not have a standardized clinical formulation or optimal route of administration identified, all formulations, vehicles, routes and doses were included in the search, as well as treatment during any stage of pregnancy. All publications obtained were reviewed for relevancy; those in German, French, Italian or Russian were translated. None of the relevant non-clinical studies conducted in mice, rats, rabbits, guinea pigs, horses or non-human primates met current standards for determining reproductive and developmental effects as part of the process of drug development. Most studies focused on the potential of 17-OHP-C for teratogenicity. Many studies used supra-pharmacologic and/or high multiples of human exposure in their study design. Overall, 17-OHP-C was consistently shown to be less potent than progesterone, and neither progesterone nor 17-OHP-C consistently adversely affected maternal weight, embryo-fetal viability or caused malformations. One study in rhesus monkeys raises concerns because resorption/abortion occurred at the human equivalent dose of 17-OHP-C, 10 mg/kg; this finding did not occur in cynomolgus monkeys. The absence of information regarding the serum levels of both progesterone and 17-OHP-C in the animal studies and in humans, as well as presumed inter-species metabolic differences, make it difficult to conclude that the findings with 17-OHP-C in rhesus monkeys and the signal in the NIH trial are related. A few studies in rats raised questions regarding potential effects on postnatal development, but in the absence of better study designs, the relevancy of these findings to human risk are also questionable at best. There is a signal for embryo-fetal toxicity associated with 17-OHP-C in the two largest clinical trials conducted to date; there is also a signal for embryo-fetal toxicity with 17-OHP-C in rhesus monkeys and possibly one in rodent species. The relationship between these signals is unclear given the absence of state-of-the-art reproductive toxicology studies and human pharmacokinetic studies.
Suzuki, K; Kawakura, K; Tamaoki, B I
1978-05-01
After incubation of progesterone, 17 alpha-hydroxyprogesterone, androstenedione, and testostrone with an ovarian preparation (supernatant fluid at 10,000 x g) of immature rats (21-23 days of age) in the presence of NADPH, 3 alpha- and 3 beta-hydroxy-5 alpha-reduced steroids were obtained as the major metabolites. Among the enzyme activities relevant to the metabolism, delta 4-5 alpha-reductase and 3 beta-hydroxysteroid dehydrogenase were intracellularly localized to the microsomal fraction (10,000--105,000 x g), and 3 alpha-hydroxysteroid dehydrogenase was detected exclusively in the cytosol fraction (supernatant fluid at 105,000 x g). Within 2 days after a single injection of pregnant mare's serum gonadotrophin (10 IU/rat) to 21-day-old female rats, the following occurred: 1) an enhancement of 17 alpha-hydroxylase and C-17-C-20 lyase activities; 2) a suppression of delta 4-5 alpha-reductase activity; and 3) an increase in aromatizing activity. From the above-mentioned results, it was concluded that the increased secretion of estrogen from ovaries of immature rats stimulated by pregnant mare's serum gonadotrophin administration was caused by a modification of the ovarian enzyme activities relevant to estrogen production.
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Wernecke, Kerstin E. A.; Fendt, Markus
2015-01-01
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats’ behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the effects of different odors on rats’ behavior within single trials. First, we demonstrated that the corner holes of the hole-board were preferentially visited by rats. The placement of different odors under the corner holes changed this hole preference. We showed that holes with carnivore urine samples were avoided, while corner holes with female rat urine samples were preferred. Furthermore, corner holes with urine samples from a carnivore, herbivore, and omnivore were differentially visited indicating that rats can discriminate these odors. To test whether anxiolytic treatment specifically modulates the avoidance of carnivore urine holes, we treated rats with buspirone. Buspirone treatment completely abolished the avoidance of carnivore urine holes. Taken together, our findings indicate that the olfactory hole-board test is a valuable tool for measuring avoidance and preference responses to biologically relevant odors. PMID:26379516
Davis, Darryl R; Kizana, Eddy; Terrovitis, John; Barth, Andreas S.; Zhang, Yiqiang; Smith, Rachel Ruckdeschel; Miake, Junichiro; Marbán, Eduardo
2010-01-01
The adult heart contains reservoirs of progenitor cells that express embryonic and stem cell-related antigens. While these antigenically-purified cells are promising candidates for autologous cell therapy, clinical application is hampered by their limited abundance and tedious isolation methods. Methods that involve an intermediate cardiosphere-forming step have proven successful and are being tested clinically, but it is unclear whether the cardiosphere step is necessary. Accordingly, we investigated the molecular profile and functional benefit of cells that spontaneously emigrate from cardiac tissue in primary culture. Adult Wistar-Kyoto rat hearts were minced, digested and cultured as separate anatomical regions. Loosely-adherent cells that surround the plated tissue were harvested weekly for a total of five harvests. Genetic lineage tracing demonstrated that a small proportion of the direct outgrowth from cardiac samples originates from myocardial cells. This outgrowth contains sub-populations of cells expressing embryonic (SSEA-1) and stem cell-related antigens (c-Kit, abcg2) that varied with time in culture but not with the cardiac chamber of origin. This direct outgrowth, and its expanded progeny, underwent marked in vitro angiogenic/cardiogenic differentiation and cytokine secretion (IGF-1, VGEF). In vivo effects included long-term functional benefits as gauged by MRI following cell injection in a rat model of myocardial infarction. Outgrowth cells afforded equivalent functional benefits to cardiosphere-derived cells, which require more processing steps to manufacture. These results provide the basis for a simplified and efficient process to generate autologous cardiac progenitor cells (and mesenchymal supporting cells) to augment clinically-relevant approaches for myocardial repair. PMID:20211627
Protective effect of acetyl-L-carnitine on propofol-induced toxicity in embryonic neural stem cells.
Liu, Fang; Rainosek, Shuo W; Sadovova, Natalya; Fogle, Charles M; Patterson, Tucker A; Hanig, Joseph P; Paule, Merle G; Slikker, William; Wang, Cheng
2014-05-01
Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (L-Ca), an anti-oxidant dietary supplement, has been reported to prevent neuronal damage from a variety of causes. To evaluate the ability of L-Ca to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the eighth day in culture were exposed for 24h to propofol at 10, 50, 100, 300 and 600 μM, with or without L-Ca (10 μM). Markers of cellular proliferation, mitochondrial health, cell death/damage and oxidative damage were monitored to determine: (1) the effects of propofol on neural stem cell proliferation; (2) the nature of propofol-induced neurotoxicity; (3) the degree of protection afforded by L-Ca; and (4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically relevant concentration (50 μM), the number of dividing cells was significantly decreased, oxidative DNA damage was increased and a significant dose-dependent reduction in mitochondrial function/health was observed. No significant effect on lactase dehydrogenase (LDH) release was observed at propofol concentrations up to 100 μM. The oxidative damage at 50 μM propofol was blocked by L-Ca. Thus, clinically relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxoguanine suggest enhanced oxidative damage [reactive oxygen species (ROS) generation] and L-Ca effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing their production. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp; Hagiwara, Akihiro; Imai, Norio
To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulationmore » of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.« less
Dekant, Wolfgang; Scialli, Anthony R; Plotzke, Kathy; Klaunig, James E
2017-10-20
Octamethylcyclotetrasiloxane (D4) is a cyclic siloxane primarily used as a monomer or intermediate in the production of silicone polymers resulting in potential exposure of workers, and potential low level inhalation or dermal exposure for consumers and the general public. Following a two-year inhalation toxicity study with D4 in rats, increases in uterine endometrial cystic hyperplasia and adenomas were observed at the highest concentration of D4 administered (700ppm). No other neoplasms were increased with D4 treatment. In addition, chronic inhalation exposure of rats to D4 induced changes in relative liver and kidney weights, and produced a chronic nephropathy. This manuscript examines the biological relevance and possible modes of action for the effects observed in the F344 rat following chronic inhalation exposure to D4. D4 is not genotoxic and appears to exert its effects through a nongenotoxic mode of action. An alteration in the estrous cycle in the aging F344 rat was the most likely mode of action for the observed uterine effects following chronic inhalation exposure. Data support the conclusion that D4 acts indirectly via a dopamine-like mechanism leading to alteration of the pituitary control of the estrous cycle in aging F344 rats with a decrease in progesterone and an increase in the estrogen/progesterone ratio most likely induced by a decrease in prolactin concentration. D4 also inhibited the pre-ovulatory LH surge causing a delay in ovulation, persistent follicles and thus a prolonged exposure to elevated estrogen in the adult Sprague Dawely rat. A lengthening of the estrous cycle in the F344 rat with an increase in endogenous estrogen was also induced by D4 inhalation. Although the mode of action responsible for induction of uterine adenomas in the female F344 rat has not been clearly confirmed, the subtlety of effects on the effects of D4 on cyclicity may prevent further assessment and definition of the mode of action. The occurrence of uterine endometrial adenoma in the rat is not relevant for human risk characterization because (1) there are differences in ovulatory cycle regulation in rats compared to humans, (2) cystic hyperplasia without atypia in women is not a cancer precursor, and (3) there is no endometrial lesion in women that is directly analogous to endometrial adenoma in the rat. The effects of D4 on liver are due to a phenobarbital-like mechanism that results in induction of cytochrome P450 and other enzymes of xenobiotic biotransformation. The liver effects are adaptive and not adverse. Kidney findings included chonic progressive nephropathy, a rat lesion that has no counterpart in the human and that should not be used in human risk assessment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Hormone-induced rat model of polycystic ovary syndrome: A systematic review.
Noroozzadeh, Mahsa; Behboudi-Gandevani, Samira; Zadeh-Vakili, Azita; Ramezani Tehrani, Fahimeh
2017-12-15
Despite polycystic ovary syndrome (PCOS) being one of the most common endocrine disorders affecting reproductive-aged women, the etiopathogenesis and mechanisms of this syndrome remain unclear. Considering the ethical limitations in human studies, animal models that reflect many features of PCOS are crucial resources to investigate this syndrome. We aimed to introduce the most suitable rat model of PCOS that closely mimics the endocrine, ovarian and metabolic disturbances of human PCOS phenotype, while maintaining normal reproductive system morphology in adulthood, in order to further more detailed investigations about PCOS. We searched Pubmed, Science direct, and Web of science between 1990 and 2016, for relevant English manuscripts, using keywords including the "Polycystic Ovary Syndrome AND Rat Model" to generate a subset of citations relevant to our research. Included were those articles that compared at least both ovarian histology or estrous cycle and reproductive hormonal profiles in hormone-induced rat model of PCOS and controls. Differences in the findings between hormone-induced PCOS rats appear to be a result of the degree of transplacental transfer of the steroid administered into the fetus, dose and type of hormone, route of administration and timing and duration of exposure. We conclude that prenatal hormone-induced rat model with a lower dose and shorter time of exposure during the critical period of fetal development that exhibits endocrine, ovarian and metabolic disturbances similar to PCOS in women, while maintaining normal reproductive system morphology in adulthood is more suitable than postnatal hormone-induced rat model to facilitate studies regarding PCOS. Copyright © 2017 Elsevier Inc. All rights reserved.
Vargas, Wanette M.; Bengston, Lynn; Gilpin, Nicholas W.; Whitcomb, Brian W.
2014-01-01
Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. PMID:25355229
Chin, Melanie; Lee, Chun-Yue Ivy; Chuang, Jen-Chieh; Bumeister, Ron; Wigley, W Christian; Sonis, Stephen T; Ward, Keith W; Meyer, Colin
2013-06-15
Bardoxolone methyl and related triterpenoids are well tolerated and efficacious in numerous animal models potentially relevant to patients with Type 2 diabetes and chronic kidney disease. These agents enhance glucose control and regulate lipid accumulation in rodent models of diabetes and obesity, and improve renal function, reduce inflammation, and prevent structural injury in models of renal disease. However, a recent study in Zucker diabetic fatty (ZDF) rats noted poor tolerability with the bardoxolone methyl analog RTA 405 within 1 mo after treatment initiation, although this study was confounded in part by the use of an impure RTA 405 batch. To investigate these discordant observations, the present studies were conducted to further characterize triterpenoids in rodent models of diabetes and obesity. A follow-up study was conducted in ZDF rats with two related triterpenoids (RTA 405 and dh404) for 1.5 mo. Consistent with previous rodent experience, and in contrast to the more recent ZDF report, ZDF rats administered RTA 405 or dh404 exhibited no adverse clinical signs, had laboratory values similar to controls, and exhibited no evidence of adverse liver or kidney histopathology. Additionally, RTA 405 was well tolerated in streptozotocin-induced Type 1 diabetic rats and high-fat-diet-induced obese mice. The present results are consistent with the overall published body of data obtained with triterpenoids and provide further evidence that these molecules are well tolerated without adverse effects on hepatobiliary or renal function in rodent models of diabetes and obesity.
Yano, Tetsuo; Yamada, Mei; Inoue, Daisuke
2017-07-01
Teriparatide (TPTD), a recombinant human parathyroid hormone N-terminal fragment (1-34), is a widely used bone anabolic drug for osteoporosis. Sequential treatment with antiresorptives such as bisphosphonates after TPTD discontinuation is generally recommended. However, relative effects of bisphosphonates have not been determined. In the present study, we directly compared effects of risedronate (RIS) and alendronate (ALN) on bone mineral density (BMD), bone turnover, structural property and strength in ovariectomized (OVX) rats, when administered after TPTD. Female Sprague Dawley rats were divided into one sham-operated and eight ovariectomized groups. TPTD, RIS, and ALN were given subcutaneously twice per week for 4 or 8 weeks after 4 week treatment with TPTD. TPTD significantly increased BMD (+9.6%) in OVX rats after 4 weeks of treatment. 8 weeks after TPTD withdrawal, vehicle-treated group showed a blunted BMD increase of +8.4% from the baseline. In contrast, 8 weeks of treatment with RIS and ALN significantly increased BMD to 17.4 and 21.8%, respectively. While ALN caused a consistently larger increase in BMD, sequential treatment with RIS resulted in lower Tb.Sp compared to ALN in the fourth lumbar vertebra as well as in greater stiffness in compression test. In conclusion, the present study demonstrated that sequential therapy with ALN and RIS after TPTD both improved bone mass and structure. Our results further suggest that RIS may have a greater effect on improving bone quality and stiffness than ALN despite less prominent effect on BMD. Further studies are necessary to determine clinical relevance of these findings to fracture rate.
Minocycline neuroprotection in a rat model of asphyxial cardiac arrest is limited.
Keilhoff, Gerburg; Schweizer, Hannes; John, Robin; Langnaese, Kristina; Ebmeyer, Uwe
2011-03-01
The study investigated a possible neuroprotective potency of minocycline in an experimental asphyxial cardiac arrest (ACA) rat model. Clinically important survival times were evaluated thus broadening common experimental approaches. Adult rats were subjected to 5 min of ACA followed by resuscitation. There were two main treatment groups: ACA and sham operated. Relating to minocycline treatment each group consisted of three sub-groups: pre-, post-, and sans-mino, with three different survival times: 4, 7, and 21 days. Neurodegeneration and microgliosis were monitored by immunohistochemistry. Alterations of microglia-associated gene expression were analyzed by quantitative RT-PCR. ACA induced massive nerve cell loss and activation of microglia/macrophages in hippocampal CA1 cell layer intensifying with survival time. After 7 days, minocycline significantly decreased both, neuronal degeneration and microglia response in dependence on the application pattern; application post ACA was most effective. After 21 days, neuroprotective effects of minocycline were lost. ACA significantly induced expression of the microglia-associated factors Ccl2, CD45, Mac-1, F4-80, and Tnfa. Independent on survival time, minocycline affected these parameters not significantly. Expression of iNOS was unaffected by both, ACA and minocycline. In adult rat hippocampus microglia was significantly activated by ACA. Minocycline positive affected neuronal survival and microglial response temporary, even when applied up to 18 h after ACA, thus defining a therapeutically-relevant time window. As ACA-induced neuronal cell death involves acute and delayed events, longer minocycline intervention targeting also secondary injury cascades should manifest neuroprotective potency, a question to be answered by further experiments. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Tétreault, Pascal; Dansereau, Marc-André; Doré-Savard, Louis; Beaudet, Nicolas; Sarret, Philippe
2011-09-01
Preclinical pain assessment remains a key step for the development of new and potent painkillers. Significant progress in pain evaluation has been achieved with the development of non-reflexive tools. Seeking efficient and clinically relevant devices for pain-related quality of life assessment, we evaluated a new Dynamic Weight Bearing (DWB) device based on pressure captors in three different preclinical chronic pain models. Inflammatory (CFA), neuropathic (CCI) and bone cancer pain (femoral tumor) models were evaluated in Sprague Dawley rats for mechanical allodynia using dynamic von Frey for pain-related behaviors and DWB for discomfort. We observed similar impairment patterns in all of the models for both von Frey (allodynia) and DWB (weight balance) during the complete observation period, starting at day 3 in CCI- and CFA-affected limbs and at day 14 in bone cancer-afflicted rats, indicating that the DWB could be a useful tool for supporting pain assessment. Interestingly, we demonstrated that the main compensation, when animals experienced pain, was seen in the forepaws, ranging from 46% to 69% of increased load compared to normal. Other pain-related coping behaviors were also measured, such as the time spent on each paw and the contact surface. Our results revealed that CFA, CCI and cancerous rats decreased the use of their ipsilateral hind paws by 30% and showed a 50% reduction in paw surface pressed against the floor. In conclusion, this new device improves methods for preclinical evaluation of discomfort and quality of life proxies and could be helpful in screening putative analgesics. Copyright © 2011 Elsevier Inc. All rights reserved.
Lunardi, N; Oklopcic, A; Prillaman, M; Erisir, A; Jevtovic-Todorovic, V
2015-10-01
Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum.
Nassoiy, Sean P; Babu, Favin S; LaPorte, Heather M; Byron, Kenneth L; Majetschak, Matthias
2018-04-27
Recently, we demonstrated that Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements in short-term rat models of haemorrhagic shock. The aim of the present study was to further delineate the therapeutic potential and side effect profile of the Kv7 channel blocker linopirdine in various rat models of severe haemorrhagic shock over clinically relevant time periods. Intravenous administration of linopirdine, either before (1 or 3 mg/kg) or after (3 mg/kg) a 40% blood volume haemorrhage, did not affect blood pressure and survival in lethal haemorrhage models without fluid resuscitation. A single bolus of linopirdine (3 mg/kg) at the beginning of fluid resuscitation after haemorrhagic shock transiently reduced early fluid requirements in spontaneously breathing animals that were resuscitated for 3.5 hours. When mechanically ventilated rats were resuscitated after haemorrhagic shock with normal saline (NS) or with linopirdine-supplemented (10, 25 or 50 μg/mL) NS for 4.5 hours, linopirdine significantly and dose-dependently reduced fluid requirements by 14%, 45% and 55%, respectively. Lung and colon wet/dry weight ratios were reduced with linopirdine (25/50 μg/mL). There was no evidence for toxicity or adverse effects based on measurements of routine laboratory parameters and inflammation markers in plasma and tissue homogenates. Our findings support the concept that linopirdine-supplementation of resuscitation fluids is a safe and effective approach to reduce fluid requirements and tissue oedema formation during resuscitation from haemorrhagic shock. © 2018 John Wiley & Sons Australia, Ltd.
Time-Dependent Changes in T1 during Fracture Healing in Juvenile Rats: A Quantitative MR Approach
Baron, Katharina; Neumayer, Bernhard; Amerstorfer, Eva; Scheurer, Eva; Diwoky, Clemens; Stollberger, Rudolf; Sprenger, Hanna; Weinberg, Annelie M.
2016-01-01
Quantitative magnetic resonance imaging (qMRI) offers several advantages in imaging and determination of soft tissue alterations when compared to qualitative imaging techniques. Although applications in brain and muscle tissues are well studied, its suitability to quantify relaxation times of intact and injured bone tissue, especially in children, is widely unknown. The objective observation of a fracture including its age determination can become of legal interest in cases of child abuse or maltreatment. Therefore, the aim of this study is the determination of time dependent changes in intact and corresponding injured bones in immature rats via qMRI, to provide the basis for an objective and radiation-free approach for fracture dating. Thirty-five MR scans of 7 Sprague-Dawley rats (male, 4 weeks old, 100 ± 5 g) were acquired on a 3T MRI scanner (TimTrio, Siemens AG, Erlangen, Germany) after the surgical infliction of an epiphyseal fracture in the tibia. The images were taken at days 1, 3, 7, 14, 28, 42 and 82 post-surgery. A proton density-weighted and a T1-weighted 3D FLASH sequence were acquired to calculate the longitudinal relaxation time T1 of the fractured region and the surrounding tissues. The calculation of T1 in intact and injured bone resulted in a quantitative observation of bone development in intact juvenile tibiae as well as the bone healing process in the injured tibiae. In both areas, T1 decreased over time. To evaluate the differences in T1 behaviour between the intact and injured bone, the relative T1 values (bone-fracture) were calculated, showing clear detectable alterations of T1 after fracture occurrence. These results indicate that qMRI has a high potential not only for clinically relevant applications to detect growth defects or developmental alterations in juvenile bones, but also for forensically relevant applications such as the dating of fractures in cases of child abuse or maltreatment. PMID:27832068
Fretellier, Nathalie; Idée, Jean-Marc; Guerret, Sylviane; Hollenbeck, Claire; Hartmann, Daniel; González, Walter; Robic, Caroline; Port, Marc; Corot, Claire
2011-02-01
the purpose of this study was to compare the clinical, pathologic, and biochemical effects of repeated administrations of ionic macrocyclic or nonionic linear gadolinium chelates (GC) in rats with impaired renal function. rats submitted to subtotal nephrectomy were allocated to single injections of 2.5 mmol/kg of gadodiamide (nonionic linear chelate), nonformulated gadodiamide (ie, without the free ligand caldiamide), gadoterate (ionic macrocyclic chelate), or saline for 5 consecutive days. Blinded semi-quantitative histopathologic and immunohistochemical examinations of the skin were performed, as well as clinical, hematological, and biochemical follow-up. Rats were killed at day 11. Long-term (up to day 32) follow-up of rats was also performed in an auxiliary study. epidermal lesions (ulcerations and scabs) were found in 4 of the 10 rats treated with nonformulated gadodiamide. Two rats survived the study period. Inflammatory signs were observed in this group. No clinical, hematological, or biochemical signs were observed in the saline and gadoterate- or gadodiamide-treated groups. Plasma fibroblast growth factor-23 levels were significantly higher in the gadodiamide group than in the gadoterate group (day 11). Decreased plasma transferrin-bound iron levels were measured in the nonformulated gadodiamide group. Histologic lesions were in the range: nonformulated gadodiamide (superficial epidermal lesions, inflammation, necrosis, and increased cellularity in papillary dermis) > gadodiamide (small superficial epidermal lesions and signs of degradation of collagen fibers in the dermis) > gadoterate (very few pathologic lesions, similar to control rats). repeated administration of the nonionic linear GC gadodiamide to renally impaired rats is associated with more severe histologic lesions and higher FGF-23 plasma levels than the macrocyclic GC gadoterate.
Animal model of neuropathic tachycardia syndrome
NASA Technical Reports Server (NTRS)
Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.
2001-01-01
Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.
Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.
Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A
2012-10-01
Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated cortex and the basal forebrain. Our observation that 20 cGy of 1 GeV/u (56)Fe particles is sufficient to impair the ability of rats to conduct attentional set-shifting raises the possibility that astronauts on prolonged deep space exploratory missions could subsequently develop deficits in executive function.
Oladipo, Olusola Olalekan; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Mohammed, Bisalla; Aluwong, Tanang
2017-07-01
Lead (Pb), cadmium (Cd) and manganese (Mn) have many potential adverse health effects in vitro and in animal models of clinical toxicity. The current study investigated the dyslipidaemic and oxidative stress effects of chronic low-dose oral exposure to Pb, Cd and Mn and the combination (Pb+Cd+Mn) in rats for 15 weeks. Chronic exposure to the metals did not significantly (P>0.05) alter serum lipid profiles. However, the atherogenic index decreased by 32.2% in the Pb+Cd+Mn group, relative to the control. The triglyceride/high-density lipoprotein cholesterol ratio decreased by 39.4% in the Pb+Cd+Mn group, relative to the control, and elevated by 81.8, 94.8 and 20.8%, relative to the Pb, Cd and Mn groups, respectively. While the serum concentrations of malondialdehyde significantly increased in the Mn and Pb+Cd+Mn groups, that of glutathione peroxidase-1 decreased in the Pb+Cd+Mn group, and metallothionein-1 and zinc concentrations markedly decreased in all the metal treatment groups. The results suggest that long-term exposure of rats to Pb+Cd+Mn may result in hypolipidaemia, mediated via oxidative stress and metal interactions. Individuals who are constantly exposed to environmentally relevant levels of the metals may be at risk of hypolipidaemia. Copyright © 2017 Elsevier B.V. All rights reserved.
Zagon, Ian S; Sassani, Joseph W; Malefyt, Kristin J; McLaughlin, Patricia J
2006-11-01
To determine whether molecular manipulation of the opioid growth factor receptor (OGFr) alters corneal reepithelialization following central corneal abrasion in rats. The plasmid pcDNA3.1 + OGFr, carrying the rat OGFr complementary DNA in both the sense and antisense orientations, and empty vector (EV), were delivered by gene gun to the rat cornea. After 24 hours, corneas were abraded and reepithelialization was documented by fluorescein photography. Twenty-four hours after wounding, DNA synthesis (with bromodeoxyuridine) was examined. Eyes transfected with sense constructs of OGFr had corneal defects that were 24%, 52%, and 50% larger than the EV group at 16, 24, and 28 hours, respectively. Conversely, corneas transfected with antisense constructs of OGFr had corneal defects that were 56% and 48% smaller than the EV group at 16 and 24 hours, respectively. Bromodeoxyuridine labeling in the basal and suprabasal layers of the antisense group were increased 3.3- and 3.7-fold, respectively, in DNA synthesis from corresponding EV layers; DNA synthesis was comparable in the sense and EV groups. Excess OGFr delays reepithelialization, whereas attenuation of OGFr accelerates repair of the corneal surface. Clinical Relevance Inhibition of opioid growth factor action using gene therapy could be important in the treatment of corneal diseases such as nonhealing and recurrent erosions, diabetic keratopathy, and neurotrophic keratitis.
NASA Astrophysics Data System (ADS)
Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming
2008-12-01
Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.
NASA Technical Reports Server (NTRS)
West, John B.
1991-01-01
Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.
Safety of oral sulfates in rats and dogs contrasted with phosphate-induced nephropathy in rats.
Pelham, Russell W; Russell, Robert G; Padgett, Eric L; Reno, Frederick E; Cleveland, Mark vB
2009-01-01
An oral sulfate salt solution (OSS), under development as a bowel cleansing agent for colonoscopy in humans, is studied in rats and dogs. In rats, amaximumpractical oral OSS dose (5 g/kg/d) is compared with an oral sodium phosphate (OSP) solution, both at about 7 times the clinical dose. OSS induces the intended effects of loose stools and diarrhea. In rats, higher urine sodium and potassium accompany higher clearance rates, considered adaptive to the osmotic load of OSS. OSS for 28 days is well tolerated in rats and dogs. In contrast, OSP causes increased mortality, reduced body weight and food consumption, severe kidney tubular degeneration, and calcium phosphate deposition in rats. These are accompanied by mineralization in the stomach and aorta, along with cardiac and hepatic degeneration and necrosis. The greater safety margin of OSS over OSP at similarmultiples of the clinical dose indicates its suitability for human use.
Microarray data from independent labs and studies can be compared to potentially identify toxicologically and biologically relevant genes. The Baseline Animal Database working group of HESI was formed to assess baseline gene expression from microarray data derived from control or...
Nicken, Petra; Brauer, Nicole; Lampen, Alfonso; Steinberg, Pablo
2012-05-01
In the present study, the effect of three controversially discussed risk factors for colorectal cancer, a fat-rich diet (16% raw fat content), dietary folic acid supplementation (50 mg folic acid/kg lab chow) and a human-relevant concentration (0.1 ppm) of the heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), either alone or in combination, on the induction of aberrant crypt foci (ACF) in the colon of male Fischer 344 rats was analyzed. The mean number of ACF per rat in the case of the four groups fed a fat-rich diet tended to be higher than that of the four groups being fed a standard diet. However, the increase in the mean number of ACF per rat only reached statistical significance in the case of the rats receiving a fat-rich lab chow supplemented with 50 mg/kg folic acid. Moreover, a concentration of 0.1 ppm PhIP per se, either in the standard or in the fat-rich lab chow, did not lead to an increase in the mean number of ACF per rat. In conclusion, the present study provides additional evidence for a colon cancer promoting effect of folic acid supplementation when rodents are fed the compound in supraphysiological concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder
Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less
Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics
Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie
2016-01-01
Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922
Modeling Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats
Lovati, Arianna Barbara; Romanò, Carlo Luca; Bottagisio, Marta; Monti, Lorenzo; De Vecchi, Elena; Previdi, Sara; Accetta, Riccardo; Drago, Lorenzo
2016-01-01
S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (103, 105, 108 colony forming units) and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 103 group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 105 and 108 groups showed severe signs of osteomyelitis and a non-union rate of 83–100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the role of subclinical infections in orthopaedic and trauma surgery and to test specifically designed diagnostic, prevention and therapeutic strategies. PMID:26796958
Rundfeldt, C; Gasparic, A; Wlaź, P
2014-10-01
Imepitoin is a novel anti-epileptic licensed in the European Union for the treatment of canine idiopathic epilepsy. The aim of this study was to characterize the pharmacokinetics of imepitoin in dogs and to evaluate the interaction with drug metabolizing enzymes. Upon administration of imepitoin tablets at a dose of 30 mg/kg to beagle dogs, high plasma levels were observed within 30 min following oral dosing, with maximal plasma concentrations of 14.9-17.2 μg/mL reached after 2-3 h. In a crossover study, co-administration of imepitoin tablets with food reduced the total AUC by 30%, but it did not result in significant changes in Tmax and Cmax , indicating lack of clinical relevance. No clinically relevant effects of sex and no accumulation or metabolic tolerance were observed upon twice daily dosing. Following single dose administration of 10-100 mg/kg, dose linearity was found. Administering [(14) C] imepitoin, high enteral absorption of 92% and primary fecal excretion were identified. Plasma protein binding was only 55%. At therapeutic plasma concentrations, imepitoin did not inhibit microsomal cytochrome P450 family liver enzymes in vitro. In rats, no relevant induction of liver enzymes was found. Therefore, protein binding or metabolism-derived drug-drug interactions are unlikely. Based on these data, imepitoin can be dosed twice daily, but the timing of tablet administration in relation to feeding should be kept consistent. © 2014 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.
Heussner, Kirsten; Ruebner, Matthias; Huebner, Hanna; Rascher, Wolfgang; Menendez-Castro, Carlos; Hartner, Andrea; Fahlbusch, Fabian B; Rauh, Manfred
2016-01-01
Glucocorticoid-induced fetal programming has been associated with negative metabolic and cardiovascular sequelae in the adult. The placental enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2) shields the fetus from maternal glucocorticoid excess by catalyzing the conversion of these hormones into biologically inactive derivatives. In vivo experiments addressing placental barrier function are mostly conducted in rodents. Therefore we set out to characterize species-specific differences of rat and human placental 11β-HSD2 steroid turnover, introducing Liquid Chromatography Tandem Mass-Spectrometry (LC-MS/MS) as a tool for rat tissue analysis. Using LC-MS/MS we determined corticotropin-releasing hormone (CRH), cortisol (F), cortisone (E), corticosterone (B) and 11-dehydrocorticosterone (A) in human and rat placenta at term and measured the enzymatic 11β-HSD glucocorticoid conversion-rates in placental microsomes of both species. In parallel, further glucocorticoid derivatives and sex steroids were determined in the same placental samples. In contrast to the human placenta, we did not detect CRH in the rat placenta. While cortisol (F) and cortisone (E) were exclusively present in human term placenta (E/F-ratio >1), rat placenta showed significant levels of corticosterone (B) and 11-dehydrocorticosterone (A), with an A/B-ratio <1. In line with these species-specific findings, human placenta showed a prominent 11β-HSD2 activity, while in rat placenta higher 11β-HSD1 glucocorticoid turnover rates were determined. Placental steroid metabolism of human and rat shows relevant species-specific differences, especially regarding the barrier function of 11β-HSD2 at term. The exclusive expression of CRH in the human placenta further points to relevant differences in the regulation of parturition in rats. Consideration of these findings is warranted when transferring results from rodent placental glucocorticoid metabolism into humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
New Challenges for Intervertebral Disc Treatment Using Regenerative Medicine
Masuda, Koichi
2010-01-01
The development of tissue engineering therapies for the intervertebral disc is challenging due to ambiguities of disease and pain mechanisms in patients, and lack of consensus on preclinical models for safety and efficacy testing. Although the issues associated with model selection for studying orthopedic diseases or treatments have been discussed often, the multifaceted challenges associated with developing intervertebral disc tissue engineering therapies require special discussion. This review covers topics relevant to the clinical translation of tissue-engineered technologies: (1) the unmet clinical need, (2) appropriate models for safety and efficacy testing, (3) the need for standardized model systems, and (4) the translational pathways leading to a clinical trial. For preclinical evaluation of new therapies, we recommend establishing biologic plausibility of efficacy and safety using models of increasing complexity, starting with cell culture, small animals (rats and rabbits), and then large animals (goat and minipig) that more closely mimic nutritional, biomechanical, and surgical realities of human application. The use of standardized and reproducible experimental procedures and outcome measures is critical for judging relative efficacy. Finally, success will hinge on carefully designed clinical trials with well-defined patient selection criteria, gold-standard controls, and objective outcome metrics to assess performance in the early postoperative period. PMID:19903086
Phthalate esters (PEs) constitute a large class of compounds that are used for many consumer product applications. Many of the C2-C7 di-ortho PEs reduce fetal testicular hormone and gene expression levels in rats resulting in adverse effects seen later in life but it appears that...
Chenni, Fatima Z; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Hobbs, Ditte A; Kunhle, Gunter G C; Pierre, Fabrice H; Corpet, Denis E
2013-01-01
Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme/alcenal, heterocyclic amines or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate heme-induced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, salivary nitrite did not change the effect of hemoglobin on biochemical markers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitroso-compounds level, but their fecal concentration and their nature (iron-nitrosyl) would not be associated with an increased risk of cancer. The rat model could thus be relevant to study the effect of red meat on colon carcinogenesis in spite of the lack of nitrite recycling in rat’s saliva. PMID:23441609
Armijo-Olivo, Susan; Warren, Sharon; Fuentes, Jorge; Magee, David J
2011-12-01
Statistical significance has been used extensively to evaluate the results of research studies. Nevertheless, it offers only limited information to clinicians. The assessment of clinical relevance can facilitate the interpretation of the research results into clinical practice. The objective of this study was to explore different methods to evaluate the clinical relevance of the results using a cross-sectional study as an example comparing different neck outcomes between subjects with temporomandibular disorders and healthy controls. Subjects were compared for head and cervical posture, maximal cervical muscle strength, endurance of the cervical flexor and extensor muscles, and electromyographic activity of the cervical flexor muscles during the CranioCervical Flexion Test (CCFT). The evaluation of clinical relevance of the results was performed based on the effect size (ES), minimal important difference (MID), and clinical judgement. The results of this study show that it is possible to have statistical significance without having clinical relevance, to have both statistical significance and clinical relevance, to have clinical relevance without having statistical significance, or to have neither statistical significance nor clinical relevance. The evaluation of clinical relevance in clinical research is crucial to simplify the transfer of knowledge from research into practice. Clinical researchers should present the clinical relevance of their results. Copyright © 2011 Elsevier Ltd. All rights reserved.
A pre-clinical safety study of PEGylated recombinant human endostatin (M2ES) in Sprague Dawley rats.
Geng, Xingchao; Guo, Lifang; Liu, Li; Wang, Chao; Peng, Qian; Qi, Weihong; Sun, Li; Liu, Xiaomeng; Miao, Yufa; Lin, Zhi; Fu, Yan; Luo, Yongzhang; Li, Bo
2018-06-01
PEGylated recombinant human endostatin (M 2 ES) exhibited prolonged serum half-life and enhanced antitumor activity when compared with endostatin. A pre-clinical study was performed to evaluate the safety of M 2 ES in rats. After intravenous (IV) infusions of M 2 ES at a dose level of 3, 15 and 75 mg/kg in Sprague Dawley (SD) rats, M 2 ES was well tolerated in animals, with no observable changes in clinical observation, body weight, food consumption, urine analysis, hematology and serum biochemical analysis. The increase of kidney weights, and slight to severe vacuolation and necrosis of proximal tubule epithelial cells in kidney were observed in 15 and 75 mg/kg M 2 ES groups, but this adverse-effect was reversible. In summary, the major toxicity target organ of M 2 ES might be kidney, and the no observed adverse effect level (NOAEL) of M 2 ES in rats was 3 mg/kg in this study. These pre-clinical safety data contribute to the initiation of the ongoing clinical study. Copyright © 2018. Published by Elsevier Inc.
Sánchez-González, Ana; Esnal, Aitor; Río-Álamos, Cristóbal; Oliveras, Ignasi; Cañete, Toni; Blázquez, Gloria; Tobeña, Adolf; Fernández-Teruel, Alberto
2016-03-01
This study presents the first evaluation of the associations between responses in two paradigms related to schizophrenia in the genetically heterogeneous NIH-HS rat stock. NIH-HS rats are a stock of genetically heterogeneous animals that have been derived from eight different inbred strains. A rotational breeding schedule has been followed for more than eighty generations, leading to a high level of genetic recombination that makes the NIH-HS rats a unique tool for studying the genetic basis of (biological, behavioral, disease-related) complex traits. Previous work has dealt with the characterization of coping styles, cognitive and anxiety/fear-related profiles of NIH-HS rats. In the present study we have completed their characterization in two behavioral models, prepulse inhibition (PPI) and latent inhibition (LI) of the two-way active avoidance response, that appear to be related to schizophrenia or to schizophrenia-relevant symptoms. We have found that these rats display PPI for each of the four prepulse intensities tested, allowing their stratification in high, medium and low PPI subgroups. When testing these three subgroups for LI of two-way active avoidance acquisition it has been observed that the LowPPI and MediumPPI subgroups present impaired LI, which, along with the fact that the HighPPI group presents significant LI, allows us to hypothesize that responses in these two paradigms are somehow related and that selection of NIH-HS rats for Low vs HighPPI could make a promising animal model for the study of clusters of schizophrenia-relevant symptoms and their underlying neurobiological mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats
Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R.; Chapman, Rebecca; Young, Shih-Houng; Richardson, Diana; Cumpston, Jared; McKinney, Walter; Chen, Bean T.; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius
2015-01-01
Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m3, 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity. PMID:22861000
Lehallier, Benoist; Rampin, Olivier; Saint-Albin, Audrey; Jérôme, Nathalie; Ouali, Christian; Maurin, Yves; Bonny, Jean-Marie
2012-01-01
So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex. By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.
Feng, Wenhuan; Wang, Hongdong; Zhang, Pengzi; Gao, Caixia; Tao, Junxian; Ge, Zhijuan; Zhu, Dalong; Bi, Yan
2017-07-01
Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.
Choudhary, Dharmendra; Kothari, Priyanka; Tripathi, Ashish Kumar; Singh, Sonu; Adhikary, Sulekha; Ahmad, Naseer; Kumar, Sudhir; Dev, Kapil; Mishra, Vijay Kumar; Shukla, Shubha; Maurya, Rakesh; Mishra, Prabhat R; Trivedi, Ritu
2018-02-20
Spinacia oleracea is an important dietary vegetable in India and throughout the world and has many beneficial effects. It is cultivated globally. However, its effect on osteoarthritis that mainly targets the cartilage cells remains unknown. In this study we aimed to evaluate the anti-osteoarthritic and chondro-protective effects of SOE on chemically induced osteoarthritis (OA). OA was induced by intra-patellar injection of monosodium iodoacetate (MIA) at the knee joint in rats. SOE was then given orally at 250 and 500 mg.kg - 1 day - 1 doses for 28 days to these rats. Anti-osteoarthritic potential of SOE was evaluated by micro-CT, mRNA and protein expression of pro-inflammatory and chondrogenic genes, clinically relevant biomarker's and behavioural experiments. In vitro cell free and cell based assays indicated that SOE acts as a strong anti-oxidant and an anti-inflammatory agent. Histological analysis of knee joints at the end of the experiment by safranin-o and toluidine blue staining established its protective effect. Radiological data corroborated the findings with improvement in the joint space and irregularity of the articular and atrophied femoral condyles and tibial plateau. Micro-CT analysis of sub-chondral bone indicated that SOE had the ability to mitigate OA effects by increasing bone volume to tissue volume (BV/TV) which resulted in decrease of trabecular pattern factor (Tb.Pf) by more than 200%. SOE stimulated chondrogenic marker gene expression with reduction in pro-inflammatory markers. Purified compounds isolated from SOE exhibited increased Sox-9 and Col-II protein expression in articular chondrocytes. Serum and urine analysis indicated that SOE had the potential to down-regulate glutathione S-transferase (GST) activity, clinical markers of osteoarthritis like cartilage oligometric matrix protein (COMP) and CTX-II. Overall, this led to a significant improvement in locomotion and balancing activity in rats as assessed by Open-field and Rota rod test. On the basis of in vitro and in vivo experiments performed with Spinacea oleracea extract we can deduce that SOE has the ability to alleviate the MIA induced deleterious effects.
Environmental enrichment attenuates cue-induced reinstatement of sucrose seeking in rats
Grimm, Jeffery W.; Osincup, Daniel; Wells, Barbara; Manaois, Meghan; Fyall, Amber; Buse, Carl; Harkness, John H.
2010-01-01
This study examined the effect of environmental enrichment on sucrose seeking in rats made abstinent from sucrose for 1 month, as measured by response for a tone + light cue previously associated with 10% sucrose self-administration. Rats were either enriched throughout the study (experiment 1) or only after sucrose self-administration training (experiment 2). Enrichment consisted of either housing the rats in pairs or grouping four rats (ENR4) in a large environment, both with novel objects. Controls (CON) were singly housed without novel objects. In experiment 1, ENR4 rats responded less to the sucrose-paired cue versus CON rats, but this difference was not statistically significant. In contrast, the decrease in response of ENR4 rats versus CON rats in experiment 2 was dramatic and significant. These findings, along with findings from other laboratories, support a hypothesis that the enrichment may provide individuals with a greater ability to discriminate the availability of reward. This may impart a decreased vulnerability to relapse behavior. Therefore, these results are relevant to both eating disorder and drug addiction – disorders characterized by relapse. PMID:19020412
González Borroto, Jorge Ignacio; Awori, Malaika Sharon; Chouinard, Luc; Smith, Susan Y; Tarragó, Cristina; Blazquez, Teresa; Gargallo-Viola, Domingo; Zsolt, Ilonka
2018-05-01
Ozenoxacin is a nonfluorinated quinolone antibacterial approved for topical treatment of impetigo. Because quinolones have known chondrotoxic effects in juvenile animals, the potential toxicity of ozenoxacin was assessed in preclinical studies. Ozenoxacin or ofloxacin (300 mg/kg/day for 5 days, for each compound) was orally administered to juvenile rats, and oral ozenoxacin (10-100 mg/kg/day for 14 days) was administered to juvenile dogs. In juvenile rats, ozenoxacin showed no chondrotoxicity, whereas ofloxacin produced typical quinolone-induced lesions in articular cartilage in three of ten rats. Oral ozenoxacin administration to juvenile dogs showed no chondrotoxicity or toxicologically relevant findings in selected target organs. Ozenoxacin was generally well-tolerated in juvenile rats and dogs, with no evidence of quinolone-induced arthropathy.
[Oral mucosa analog allografts in non-consanguineous rats].
González, Luis; Padrón, Karla; Salmen, Siham; Jerez, Elsy; Dávila, Lorena; Solórzano, Eduvigis
2017-01-24
Although there are therapeutic options for the treatment of oral mucosa defects, the need for functional, anatomical and aesthetically similar substitutes persists, as well as for solutions to reduce autologous grafts morbidity. To determine clinical and histological compatibility of equivalent oral mucosa allografts generated through tissue engineering in non-consanguineous rats. We used a sample of oral mucosa from Sprague Dawley rats to obtain a fibroblast culture and a keratinocytes and fibroblasts co-culture. In both cases, we used a commercial collagen membrane as "scaffold". After ten weeks of culture, we grafted the resulting membranes into four Wistar rats. The first phase of the study was the development of the oral mucosa equivalents generated by tissue engineering. Then, we implanted them in immunocompetent Wistar rats, and finallywe evaluated the clinical and histological features of the allografts. In vivo evaluation of mucosal substitutes showed a correct integration of artificial oral mucosa in immunocompetent hosts, with an increase in periodontal biotype and the creation of a zone with increased keratinization. Histologically, the tissue was similar to the control oral mucosa sample with no inflammatory reaction nor clinical or histological rejection signs. The equivalent oral mucosa allografts generated by tissue engineering showed clinical and histological compatibility.
Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...
Introduction/overview: gender-based differences in pharmacologic and toxicologic responses.
Christian, M S
2001-01-01
Gender may be the most important factor in mammalian development and response to exogenous agents. From believing sex-related differences required sheltering women to protect their reproductive capacity (Victorians thought exercise, education, train travel, and certain music neuro- and reprotoxic to females) to legislating a status of essential equality of the sexes may have increased women's health issues. Men and women often respond differently to drugs. Inclusion of women in phase I/II clinical trials is insufficient to identify gender-based differences in response; rather, animal models should be the basis for predicting gender-based differences in pharmacologic and toxicologic effects. Unfortunately, current animal models do not consistently demonstrate such differences. Use of commonly used species (e.g., rats and dogs) does not necessarily result in relevant evaluation of an agent in a species at appropriate development (age), physiological state, anatomy, metabolism, or kinetics for estimation of human risks. The need to test agents in relevant animal models and advances in metabolic, pharmacokinetic, and pharmacodynamic capabilities challenge us to improve methods by using the most relevant models for estimating human risk. We need to be concerned about gender-related differences and the dynamics of gender-based growth and development over the entire life cycle. We must also consider potential interactions of dietary supplements and other exogenous agents that can act as drugs or modulate the potential effects of drugs differently in men, women, and developing children of both sexes. To this end, the health benefits of genistein and the effects of this dietary agent in a multigeneration study in rats will be described. It is envisioned that this symposium will assist in re-recognition of the importance of gender-related differences in use and response to pharmaceuticals and result in optimization of nonclinical testing procedures to identify benefits and risks for human use of these agents.
Mansbach, Robert; Shaw, Karen J; Hodges, Michael R; Coleman, Samantha; Fitzsimmons, Michael E
2017-01-01
Abstract Background APX001 is a small-molecule therapeutic agent in clinical development for the treatment of invasive fungal infections (IFI). Methods The absorption, distribution and excretion profiles of [14C]APX001-derived radioactivity were determined in rats (albino and pigmented) and monkeys. Rats (some implanted with bile duct cannulae) were administered a single 100 mg/kg oral dose or a 30 mg/kg intravenous (IV) dose. Monkeys were administered a single 6 mg/kg IV dose. Samples of blood, urine, feces and bile, as well as carcasses, were collected through 168 hours after dosing. Samples were analyzed for total radioactivity content by liquid scintillation counting, and carcasses were analyzed by quantitative whole-body autoradiography. Results [14C]APX001-derived radioactivity was rapidly and extensively absorbed and extensively distributed to most tissues for both routes of administration in both species. In rats, tissues with the highest radioactivity Cmax values included bile, abdominal fat, reproductive fat, subcutaneous fat, and liver, but radioactivity was also detected in tissues associated with IFI, including lung, brain and eye. In monkeys, the highest Cmax values were in bile, urine, uveal tract, bone marrow, abdominal fat, liver, and kidney cortex. Liver and kidney were the tissues with highest radioactivity, but as in the rat, radioactivity was also detected in lung, brain and eye tissues. In pigmented rats, radiocarbon was densely distributed into pigmented tissue and more slowly cleared than from other tissues. Mean recovery of radioactivity in rats was approximately 95–100%. In bile duct-intact rats, >90% of radioactivity was recovered in feces. In cannulated rats, biliary excretion of radioactivity was the major route of elimination and accounted for 88.8% of the dose, whereas urinary and fecal excretion of radioactivity was minor and accounted for 2.56% and 5.42% of the dose, respectively. In monkeys, the overall recovery of radioactivity was 87.6%, and was eliminated in feces (49.8% of dose) and to a lesser extent in urine (20.6% of dose). Conclusion Together, the results indicate that APX001-related radioactivity is extensively distributed to major tissues (including tissues relevant to IFI) in both rats and monkeys and cleared primarily by biliary/fecal excretion. Disclosures R. Mansbach, Amplyx Pharmaceuticals Inc.: Consultant, Consulting fee; K. J. Shaw, Amplyx Pharmaceuticals Inc.: Employee, Salary; M. R. Hodges, Amplyx Pharmaceuticals: Employee, Salary; S. Coleman, Covance Laboratories: Employee, Salary; M. E. Fitzsimmons, Covance Laboratories: Employee, Salary
Smith, Trevor R F; Schultheis, Katherine; Morrow, Matthew P; Kraynyak, Kimberly A; McCoy, Jay R; Yim, Kevin C; Muthumani, Karuppiah; Humeau, Laurent; Weiner, David B; Sardesai, Niranjan Y; Broderick, Kate E
2017-05-15
Respiratory syncytial virus (RSV) is a massive medical burden in infants, children and the elderly worldwide, and an effective, safe RSV vaccine remains an unmet need. Here we assess a novel vaccination strategy based on the intradermal delivery of a SynCon® DNA-based vaccine encoding engineered RSV-F antigen using a surface electroporation device (SEP) to target epidermal cells, in clinically relevant experimental models. We demonstrate the ability of this strategy to elicit robust immune responses. Importantly we demonstrate complete resistance to pulmonary infection at a single low dose of vaccine in the cotton rat RSV/A challenge model. In contrast to the formalin-inactivated RSV (FI-RSV) vaccine, there was no enhanced lung inflammation upon virus challenge after DNA vaccination. In summary the data presented outline the pre-clinical development of a highly efficacious, tolerable and safe non-replicating vaccine delivery strategy. Copyright © 2017. Published by Elsevier Ltd.
Recent Advances and Future of Gene Therapy for Bone Regeneration.
Shapiro, Galina; Lieber, Raphael; Gazit, Dan; Pelled, Gadi
2018-06-16
The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function. In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive. In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.
Reproducibility of African giant pouched rats detecting Mycobacterium tuberculosis.
Ellis, Haylee; Mulder, Christiaan; Valverde, Emilio; Poling, Alan; Edwards, Timothy
2017-04-24
African pouched rats sniffing sputum samples provided by local clinics have significantly increased tuberculosis case findings in Tanzania and Mozambique. The objective of this study was to determine the reproducibility of rat results. Over an 18-month period 11,869 samples were examined by the rats. Intra-rater reliability was assessed through Yule's Q. Inter-rater reliability was assessed with Krippendorff's alpha. Intra-rater reliability was high, with a mean Yule's Q of 0.9. Inter-rater agreement was fair, with Krippendorf's alpha ranging from 0.15 to 0.45. Both Intra- and Inter-rater reliability was independent of the sex of the animals, but they were positively correlated with age. Both intra- and inter-rater agreement was lowest for samples designated as smear-negative by the clinics. Overall, the reproducibility of tuberculosis detection rat results was fair and diagnostic results were therefore independent of the rats used.
Cacna1c haploinsufficiency leads to pro-social 50-kHz ultrasonic communication deficits in rats.
Kisko, Theresa M; Braun, Moria D; Michels, Susanne; Witt, Stephanie H; Rietschel, Marcella; Culmsee, Carsten; Schwarting, Rainer K W; Wöhr, Markus
2018-06-20
The cross-disorder risk gene CACNA1C is strongly implicated in multiple neuropsychiatric disorders, including autism spectrum disorder (ASD), bipolar disorder (BPD) and schizophrenia (SCZ), with deficits in social functioning being common for all major neuropsychiatric disorders. In the present study, we explored the role of Cacna1c in regulating disorder-relevant behavioral phenotypes, focusing on socio-affective communication after weaning during the critical developmental period of adolescence in rats. To this aim, we used a newly developed genetic Cacna1c rat model and applied a truly reciprocal approach for studying communication through ultrasonic vocalizations, including both sender and receiver. Our results show that a deletion of Cacna1c leads to deficits in social behavior and pro-social 50-kHz ultrasonic communication in rats. Reduced levels of 50-kHz ultrasonic vocalizations emitted during rough-and-tumble play may suggest that Cacna1c haploinsufficient rats derive less reward from playful social interactions. Besides the emission of fewer 50-kHz ultrasonic vocalizations in the sender, Cacna1c deletion reduced social approach behavior elicited by playback of 50-kHz ultrasonic vocalizations. This indicates that Cacna1c haploinsufficiency has detrimental effects on 50-kHz ultrasonic communication in both sender and receiver. Together, these data suggest that Cacna1c plays a prominent role in regulating socio-affective communication in rats with relevance for ASD, BPD and SCZ.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Long-term functional recovery and compensation after cerebral ischemia in rats.
Girard, Sylvie; Murray, Katie N; Rothwell, Nancy J; Metz, Gerlinde A S; Allan, Stuart M
2014-08-15
Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Yang, Lijun; Kress, Benjamin T; Weber, Harris J; Thiyagarajan, Meenakshisundaram; Wang, Baozhi; Deane, Rashid; Benveniste, Helene; Iliff, Jeffrey J; Nedergaard, Maiken
2013-05-01
Neurodegenerative diseases such as Alzheimer's are associated with the aggregation of endogenous peptides and proteins that contribute to neuronal dysfunction and loss. The glymphatic system, a brain-wide perivascular pathway along which cerebrospinal fluid (CSF) and interstitial fluid (ISF) rapidly exchange, has recently been identified as a key contributor to the clearance of interstitial solutes from the brain, including amyloid β. These findings suggest that measuring changes in glymphatic pathway function may be an important prognostic for evaluating neurodegenerative disease susceptibility or progression. However, no clinically acceptable approach to evaluate glymphatic pathway function in humans has yet been developed. Time-sequenced ex vivo fluorescence imaging of coronal rat and mouse brain slices was performed at 30-180 min following intrathecal infusion of CSF tracer (Texas Red- dextran-3, MW 3 kD; FITC- dextran-500, MW 500 kD) into the cisterna magna or lumbar spine. Tracer influx into different brain regions (cortex, white matter, subcortical structures, and hippocampus) in rat was quantified to map the movement of CSF tracer following infusion along both routes, and to determine whether glymphatic pathway function could be evaluated after lumbar intrathecal infusion. Following lumbar intrathecal infusions, small molecular weight TR-d3 entered the brain along perivascular pathways and exchanged broadly with the brain ISF, consistent with the initial characterization of the glymphatic pathway in mice. Large molecular weight FITC-d500 remained confined to the perivascular spaces. Lumbar intrathecal infusions exhibited a reduced and delayed peak parenchymal fluorescence intensity compared to intracisternal infusions. Lumbar intrathecal contrast delivery is a clinically useful approach that could be used in conjunction with dynamic contrast enhanced MRI nuclear imaging to assess glymphatic pathway function in humans.
2013-01-01
Background Neurodegenerative diseases such as Alzheimer’s are associated with the aggregation of endogenous peptides and proteins that contribute to neuronal dysfunction and loss. The glymphatic system, a brain-wide perivascular pathway along which cerebrospinal fluid (CSF) and interstitial fluid (ISF) rapidly exchange, has recently been identified as a key contributor to the clearance of interstitial solutes from the brain, including amyloid β. These findings suggest that measuring changes in glymphatic pathway function may be an important prognostic for evaluating neurodegenerative disease susceptibility or progression. However, no clinically acceptable approach to evaluate glymphatic pathway function in humans has yet been developed. Methods Time-sequenced ex vivo fluorescence imaging of coronal rat and mouse brain slices was performed at 30–180 min following intrathecal infusion of CSF tracer (Texas Red- dextran-3, MW 3 kD; FITC- dextran-500, MW 500 kD) into the cisterna magna or lumbar spine. Tracer influx into different brain regions (cortex, white matter, subcortical structures, and hippocampus) in rat was quantified to map the movement of CSF tracer following infusion along both routes, and to determine whether glymphatic pathway function could be evaluated after lumbar intrathecal infusion. Results Following lumbar intrathecal infusions, small molecular weight TR-d3 entered the brain along perivascular pathways and exchanged broadly with the brain ISF, consistent with the initial characterization of the glymphatic pathway in mice. Large molecular weight FITC-d500 remained confined to the perivascular spaces. Lumbar intrathecal infusions exhibited a reduced and delayed peak parenchymal fluorescence intensity compared to intracisternal infusions. Conclusion Lumbar intrathecal contrast delivery is a clinically useful approach that could be used in conjunction with dynamic contrast enhanced MRI nuclear imaging to assess glymphatic pathway function in humans. PMID:23635358
Joksovic, Pavle M; Bayliss, Douglas A; Todorovic, Slobodan M
2005-01-01
Currents arising from T-type Ca2+ channels in nucleus reticularis thalami (nRT) play a critical role in generation of low-amplitude oscillatory bursting involving mutually interconnected cortical and thalamic neurones, and are implicated in the state of arousal and sleep, as well as seizures. Here we show in brain slices from young rats that two kinetically different T-type Ca2+ currents exist in nRT neurones, with a slowly inactivating current expressed only on proximal dendrites, and fast inactivating current predominantly expressed on soma. Nickel was about twofold more potent in blocking fast (IC50 64 μm) than slow current (IC50 107 μm). The halogenated volatile anaesthetic enflurane blocked both currents, but only the slowly inactivating current was affected in voltage-dependent fashion. Slow dendritic current was essential for generation of low-threshold Ca2+ spikes (LTS), and both enflurane and nickel also suppressed LTS and neuronal burst firing at concentrations that blocked isolated T currents. Differential kinetic properties of T currents expressed in cell soma and proximal dendrites of nRT neurones indicate that various subcellular compartments may exhibit different membrane properties in response to small membrane depolarizations. Furthermore, since blockade of two different T currents in nRT neurones by enflurane and other volatile anaesthetics occurs within concentrations that are relevant during clinical anaesthesia, our findings suggest that these actions could contribute to some important clinical effects of anaesthetics. PMID:15845580
Modeling the functional repair of nervous tissue in spinal cord injury
NASA Astrophysics Data System (ADS)
Mantila, Sara M.; Camp, Jon J.; Krych, Aaron J.; Robb, Richard A.
2004-05-01
Functional repair of traumatic spinal cord injury (SCI) is one of the most challenging goals in modern medicine. The annual incidence of SCI in the United States is approximately 11,000 new cases. The prevalence of people in the U.S. currently living with SCI is approximately 200,000. Exploring and understanding nerve regeneration in the central nervous system (CNS) is a critical first step in attempting to reverse the devastating consequences of SCI. At Mayo Clinic, a preliminary study of implants in the transected rat spinal cord model demonstrates potential for promoting axon regeneration. In collaborative research between neuroscientists and bioengineers, this procedure holds promise for solving two critical aspects of axon repair-providing a resorbable structural scaffold to direct focused axon repair, and delivery of relevant signaling molecules necessary to facilitate regeneration. In our preliminary study, regeneration in the rat's spinal cord was modeled in three dimensions utilizing an image processing software system developed in the Biomedical Imaging Resource at Mayo Clinic. Advanced methods for image registration, segmentation, and rendering were used. The raw images were collected at three different magnifications. After image processing the individual channels in the scaffold, axon bundles, and macrophages could be identified. Several axon bundles could be visualized and traced through the entire volume, suggesting axonal growth throughout the length of the scaffold. Such information could potentially allow researchers and physicians to better understand and improve the nerve regeneration process for individuals with SCI.
Traumatic Neuroma in Continuity Injury Model in Rodents
Kemp, Stephen William Peter; Khu, Kathleen Joy Ong Lopez; Kumar, Ranjan; Webb, Aubrey A.; Midha, Rajiv
2012-01-01
Abstract Traumatic neuroma in continuity (NIC) results in profound neurological deficits, and its management poses the most challenging problem to peripheral nerve surgeons today. The absence of a clinically relevant experimental model continues to handicap our ability to investigate ways of better diagnosis and treatment for these disabling injuries. Various injury techniques were tested on Lewis rat sciatic nerves. Optimal experimental injuries that consistently resulted in NIC combined both intense focal compression and traction forces. Nerves were harvested at 0, 5, 13, 21, and 65 days for histological examination. Skilled locomotion and ground reaction force (GRF) analysis were performed up to 9 weeks on the experimental (n=6) and crush-control injuries (n=5). Focal widening, disruption of endoneurium and perineurium with aberrant intra- and extrafascicular axonal regeneration and progressive fibrosis was consistently demonstrated in 14 of 14 nerves with refined experimental injuries. At 8 weeks, experimental animals displayed a significantly greater slip ratio in both skilled locomotor assessments, compared to nerve crush animals (p<0.01). GRFs of the crush- injured animals showed earlier improvement compared to the experimental animals, whose overall GRF patterns failed to recover as well as the crush group. We have demonstrated histological features and poor functional recovery consistent with NIC formation in a rat model. The injury mechanism employed combines traction and compression forces akin to the physical forces at play in clinical nerve injuries. This model may serve as a tool to help diagnose this injury earlier and to develop intervention strategies to improve patient outcomes. PMID:22011082
Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model.
Chandran, Sunitha; Babu S, Suresh; Vs, Hari Krishnan; Varma, H K; John, Annie
2016-10-01
Excessive demineralization in osteoporotic bones impairs its self-regeneration potential following a defect/fracture and is of great concern among the aged population. In this context, implants with inherent osteogenic ability loaded with therapeutic ions like Strontium (Sr 2+ ) may bring forth promising outcomes. Micro-granular Strontium incorporated Hydroxyapatite scaffolds have been synthesized and in vivo osteogenic efficacy was evaluated in a long-term osteoporosis-induced aged (LOA) rat model. Micro-granules with improved surface area are anticipated to resorb faster and together with the inherent bioactive properties of Hydroxyapatite with the leaching of Strontium ions from the scaffold, osteoporotic bone healing may be promoted. Long-term osteoporosis-induced aged rat model was chosen to extrapolate the results to clinical osteoporotic condition in the aged. Micro-granular 10% Strontium incorporated Hydroxyapatite synthesized by wet precipitation method exhibited increased in vitro dissolution rate and inductively coupled plasma studies confirmed Strontium ion release of 0.01 mM, proving its therapeutic potential for osteoporotic applications. Wistar rats were induced to long-term osteoporosis-induced aged model by ovariectomy along with a prolonged induction period of 10 months. Thereafter, osteogenic efficacy of Strontium incorporated Hydroxyapatite micro-granules was evaluated in femoral bone defects in the long-term osteoporosis-induced aged model. Post eight weeks of implantation in vivo regeneration efficacy ratio was highest in the Strontium incorporated Hydroxyapatite implanted group (0.92 ± 0.04) compared to sham and Hydroxyapatite implanted group. Micro CT evaluation further substantiated the improved osteointegration of Strontium incorporated Hydroxyapatite implants from the density histograms. Thus, the therapeutical potential of micro-granular Strontium incorporated Hydroxyapatite scaffolds becomes relevant, especially as bone void fillers in osteoporotic cases of tumor resection or trauma. © The Author(s) 2016.
Csiszar, Anna; Labinskyy, Nazar; Podlutsky, Andrej; Kaminski, Pawel M.; Wolin, Michael S.; Zhang, Cuihua; Mukhopadhyay, Partha; Pacher, Pal; Hu, Furong; de Cabo, Rafael; Ballabh, Praveen; Ungvari, Zoltan
2008-01-01
The dietary polyphenolic compound resveratrol, by activating the protein deacetylase enzyme silent information regulator 2/sirtuin 1 (SIRT1), prolongs life span in evolutionarily distant organisms and may mimic the cytoprotective effects of dietary restriction. The present study was designed to elucidate the effects of resveratrol on cigarette smoke-induced vascular oxidative stress and inflammation, which is a clinically highly relevant model of accelerated vascular aging. Cigarette smoke exposure of rats impaired the acetylcholine-induced relaxation of carotid arteries, which could be prevented by resveratrol treatment. Smoking and in vitro treatment with cigarette smoke extract (CSE) increased reactive oxygen species production in rat arteries and cultured coronary arterial endothelial cells (CAECs), respectively, which was attenuated by resveratrol treatment. The smoking-induced upregulation of inflammatory markers (ICAM-1, inducible nitric oxide synthase, IL-6, and TNF-α) in rat arteries was also abrogated by resveratrol treatment. Resveratrol also inhibited CSE-induced NF-κB activation and inflammatory gene expression in CAECs. In CAECs, the aforementioned protective effects of resveratrol were abolished by knockdown of SIRT1, whereas the overexpression of SIRT1 mimicked the effects of resveratrol. Resveratrol treatment of rats protected aortic endothelial cells against cigarette smoking-induced apoptotic cell death. Resveratrol also exerted antiapoptotic effects in CSE-treated CAECs, which could be abrogated by knockdown of SIRT1. Resveratrol treatment also attenuated CSE-induced DNA damage in CAECs (comet assay). Thus resveratrol and SIRT1 exert antioxidant, anti-inflammatory, and antiapoptotic effects, which protect the endothelial cells against the adverse effects of cigarette smoking-induced oxidative stress. The vasoprotective effects of resveratrol will likely contribute to its anti-aging action in mammals and may be especially beneficial in patho-physiological conditions associated with accelerated vascular aging. PMID:18424637
Lichtenauer, Michael; Mildner, Michael; Werba, Gregor; Beer, Lucian; Hoetzenecker, Konrad; Baumgartner, Andrea; Hasun, Matthias; Nickl, Stefanie; Mitterbauer, Andreas; Zimmermann, Matthias; Gyöngyösi, Mariann; Podesser, Bruno Karl; Klepetko, Walter; Ankersmit, Hendrik Jan
2012-01-01
Acute myocardial infarction (AMI) followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries. Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG) was evaluated in this study. AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat) was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01). Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG. These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.
Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David
2017-06-15
Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.
Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice
2017-01-01
Abstract Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague–Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery. PMID:28288544
Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu
2015-01-01
Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.
MIYAZAKI, KOZO; MORIMOTO, YUJI; NISHIYAMA, NOBUHIRO; SATOH, HIROYUKI; TANAKA, MASAMITSU; SHINOMIYA, NARIYOSHI; ITO, KEIICHI
2014-01-01
Urothelial carcinoma (UC) is an extremely common type of cancer that occurs in the bladder. It has a particularly high rate of recurrence. Therefore, preclinical studies using animal models are essential to determine effective forms of treatment. In the present study, in order to establish an orthotopic bladder UC animal model with clinical relevance, the effects of preconditioning methods on properties of the developed tumor were evaluated. The bladder cavity was pretreated with phosphate-buffered saline (PBS), acid-base, trypsin (TRY) or poly (L-lysine) (PLL) and then rat UC cells (AY-27) (4×106 cells) were inoculated. The results demonstrated that, two weeks later, the tumorigenic rate (88%) and tumor count (2.3 per rat) were not significantly different among the preconditioning methods, whereas tumor volume and invasion depth into bladder tissue were significantly different. Average tumor volumes were >50 mm3 in the PBS and acid-base-treated groups and <10 mm3 in the TRY- and PLL-treated groups. The percentage of invasive tumors (T2 or more advanced stage) was ∼75% of total tumors in the PBS- and acid-base-treated groups, whereas the percentages were reduced in the TRY- and PLL-treated groups (58 and 32%, respectively). Non-invasive tumors (Ta or T1) accounted for 54% of tumors in the PLL-treated group, which was 2-5-fold higher than the percentages in the remaining groups. Properties of the developed tumor in the rat orthotopic UC model were different depending on preconditioning methods. Therefore, different animal models suitable for a discrete preclinical examination may be established by using the appropriate preconditioning condition. PMID:24649309
Mickley, G. Andrew; Ketchesin, Kyle D.; Ramos, Linnet; Luchsinger, Joseph R.; Rogers, Morgan M.; Wiles, Nathanael R.; Hoxha, Nita
2012-01-01
Due to its relevance to clinical practice, extinction of learned fears has been a major focus of recent research. However, less is known about the means by which conditioned fears re-emerge (i.e., spontaneously recover) as time passes or contexts change following extinction. The periaqueductal gray represents the final common pathway mediating defensive reactions to fear and we have reported previously that the dorsolateral PAG (dlPAG) exhibits a small but reliable increase in neural activity (as measured by c-fos protein immunoreactivity) when spontaneous recovery (SR) of a conditioned taste aversion (CTA) is reduced. Here we extend these correlational studies to determine if inducing dlPAG c-fos expression through electrical brain stimulation could cause a reduction in SR of a CTA. Male Sprague-Dawley rats acquired a strong aversion to saccharin (conditioned stimulus; CS) and then underwent CTA extinction through multiple non-reinforced exposures to the CS. Following a 30-day latency period after asymptotic extinction was achieved; rats either received stimulation of the dorsal PAG (dPAG) or stimulation of closely adjacent structures. Sixty minutes following the stimulation, rats were again presented with the saccharin solution as we tested for SR of the CTA. The brain stimulation evoked c-fos expression around the tip of the electrodes. However, stimulation of the dPAG failed to reduce SR of the previously extinguished CTA. In fact, dPAG stimulation caused rats to significantly suppress their saccharin drinking (relative to controls) – indicating an enhanced SR. These data refute a cause-and-effect relationship between enhanced dPAG c-fos expression and a reduction in SR. However, they highlight a role for the dPAG in modulating SR of extinguished CTAs. PMID:23183042
Colón, Jennifer M; González, Pablo A; Cajigas, Ámbar; Maldonado, Wanda I; Torrado, Aranza I; Santiago, José M; Salgado, Iris K; Miranda, Jorge D
2018-01-01
No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window. Copyright © 2017 Elsevier Inc. All rights reserved.
Mankouski, Anastasiya; Kantores, Crystal; Wong, Mathew J; Ivanovska, Julijana; Jain, Amish; Benner, Eric J; Mason, Stanley N; Tanswell, A Keith; Auten, Richard L; Jankov, Robert P
2017-02-01
Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O 2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O 2 until day 14 were recovered in air with or without IH (FI O 2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O 2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O 2 -exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD. Copyright © 2017 the American Physiological Society.
Roof, Steve R.; Boslett, James; Russell, Duncan; del Rio, Carlos; Alecusan, Joe; Zweier, Jay L.; Ziolo, Mark T.; Hamlin, Robert; Mohler, Peter J.; Curran, Jerry
2015-01-01
Aims Insulin-like growth factor 1 (IGF-1)-dependent signaling promotes exercise-induced physiological cardiac hypertrophy. However, the in vivo therapeutic potential of IGF-1 for heart disease is not well established. Here we test the potential therapeutic benefits of IGF-1 on cardiac function using an in vivo model of chronic catecholamine-induced cardiomyopathy. Methods Rats were perfused with isoproterenol via osmotic pump (1 mg/kg/day) and treated with 2 mg/kg IGF-1 (2 mg/kg/day, 6 days a week) for 2 or 4 weeks. Echocardiography, ECG, and blood pressure were assessed. In vivo pressure-volume loop studies were conducted at 4 weeks. Heart sections were analyzed for fibrosis and apoptosis, and relevant biochemical signaling cascades were assessed. Results After 4 weeks, diastolic function (EDPVR, EDP, tau, E/A ratio), systolic function (PRSW, ESPVR, dP/dtmax), and structural remodeling (LV chamber diameter, wall thickness) were all adversely affected in isoproterenol-treated rats. All these detrimental effects were attenuated in rats treated with Iso+IGF-1. Isoproterenol-dependent effects on BP were attenuated by IGF-1 treatment. Adrenergic sensitivity was blunted in isoproterenol-treated rats but was preserved by IGF-1 treatment. Immunoblots indicate that cardioprotective p110α signaling and activated Akt are selectively upregulated in Iso+IGF-1 treated hearts. Expression of iNOS was significantly increased in both the Iso and Iso+IGF-1 groups, however tetrahydrobiopterin (BH4) levels were decreased in the Iso group and maintained by IGF-1 treatment. Conclusion IGF-1 treatment attenuates diastolic and systolic dysfunction associated with chronic catecholamine-induced cardiomyopathy while preserving adrenergic sensitivity and promoting BH4 production. These data support the potential use of IGF-1 therapy for clinical applications for cardiomyopathies. PMID:26399932
Vickers, Steven P; Cheetham, Sharon C; Headland, Katie R; Dickinson, Keith; Grempler, Rolf; Mayoux, Eric; Mark, Michael; Klein, Thomas
2014-01-01
The present study assessed the potential of the sodium glucose-linked transporter (SGLT)-2 inhibitor empagliflozin to decrease body weight when administered alone or in combination with the clinically effective weight-loss agents orlistat and sibutramine in obese rats fed a cafeteria diet. Female Wistar rats were exposed to a cafeteria diet to induce obesity. Empagliflozin was dosed once daily (10, 30, and 60 mg/kg) for 28 days. Combination studies were subsequently performed using a submaximal empagliflozin dose (10 mg/kg) with either sibutramine or orlistat. Body weight, food, and water intake were recorded daily. The effect of drug treatment on glucose tolerance, relevant plasma parameters, and carcass composition was determined. Empagliflozin dose-dependently reduced body weight, plasma leptin, and body fat though increased urinary glucose excretion. The combination of empagliflozin and orlistat significantly reduced body weight compared to animals treated with either drug alone, and significantly improved glucose tolerance, plasma insulin, and leptin compared to vehicle-treated controls. The effect of sibutramine to improve glycemic control in an oral glucose-tolerance test was also significantly increased, with empagliflozin and combination treatment leading to a reduction in carcass fat greater than that observed with either drug alone. These data demonstrate that empagliflozin reduces body weight in cafeteria-fed obese rats. In combination studies, empagliflozin further improved the body-weight or body-fat loss of animals in comparison to orlistat or sibutramine alone. Such studies may indicate improved strategies for the treatment of obese patients with prediabetes or type 2 diabetes.
Fragoso, Ana Catarina; Martinez, Leopoldo; Estevão-Costa, José; Tovar, Juan A
2014-02-01
Gastrointestinal malformations such as esophageal atresia with tracheoesophageal fistula (EA/TEF) and duodenal atresia (DA) have been reported in infants born to hyperthyroid mothers or with congenital hypothyroidism. The present study aimed to test whether maternal thyroid status during embryonic foregut division has any influence on the prevalence of EA/TEF and DA in an accepted rat model of these malformations. Pregnant rats received either vehicle or 1.75 mg/kg i.p. adriamycin on gestational days 7, 8 and 9. Transient maternal hyper or hypothyroidism was induced by oral administration of levothyroxine (LT4, 50 μg/kg/day) or propylthiouracil (PTU, 2 mg/kg/day), respectively, on days 7 to 12 of gestation. Plasma cholesterol, total T3, free T4 and TSH were measured at gestational days 7, 12, and 21. At the end of gestation, the mothers were sacrificed and embryo-fetal mortality was recorded. Fetuses were dissected to determine the prevalence of esophageal and intestinal atresias. At gestational day 12, mothers treated with LT4 or PTU had hyper or hypothyroid status, respectively; plasma cholesterol levels were similar. In the adriamycin-exposed fetuses from hyperthyroid mothers, the embryonal resorption rate and the prevalence of both EA/TEF and DA were significantly higher than in the other groups; maternal hypothyroidism during the same period did not have significant effect on the prevalence of atresias. Maternal hyperthyroidism during the embryonic window corresponding to foregut cleavage increased the prevalence of both EA/TEF and duodenal atresia in fetal rats exposed to adriamycin. This suggests that maternal thyroid hormone status might be involved in the pathogenesis of foregut atresias and invites further research on this likely clinically relevant issue in humans.
Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi
2013-04-01
Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.
Lindstrom, Nicole M; Moore, David M; Zimmerman, Kurt; Smith, Stephen A
2015-09-01
Hamsters, gerbils, rats, and mice are presented to veterinary clinics and hospitals for prophylactic care and treatment of clinical signs of disease. Physical examination, history, and husbandry practice information can be supplemented greatly by assessment of hematologic parameters. As a resource for veterinarians and their technicians, this article describes the methods for collection of blood, identification of blood cells, and interpretation of the hemogram in mice, rats, gerbils, and hamsters. Copyright © 2015 Elsevier Inc. All rights reserved.
Klar, Agnes S; Biedermann, Thomas; Michalak, Katarzyna; Michalczyk, Teresa; Meuli-Simmen, Claudia; Scherberich, Arnaud; Meuli, Martin; Reichmann, Ernst
2017-12-01
There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model, melDESS, of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes. Its dermal compartment consists either of adipose tissue-derived stromal cells, dermal fibroblasts (Fbs), or a mixture of both cell types. These skin substitutes were transplanted for 5 weeks on the backs of immuno-incompetent rats and analyzed. Gene expression and Western blot analyses showed a significantly higher expression of transforming growth factor-β1 by adipose tissue-derived stromal cells compared with dermal Fbs. In addition, we showed that melanocytes responded to the increased levels of transforming growth factor-β1 by down-regulating the expression of key melanogenic enzymes such as tyrosinase. This caused decreased melanin synthesis and, consequently, greatly reduced pigmentation of melDESS. The conclusions are of utmost clinical relevance, namely that adipose tissue-derived stromal cells derived from the hypodermis fail to appropriately interact with epidermal melanocytes, thus preventing the sustainable restoration of the patient's native skin color in bioengineered skin grafts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akita, Shingo; Kubota, Koji; Kobayashi, Akira, E-mail: kbys@shinshu-u.ac.jp
Highlights: Black-Right-Pointing-Pointer BMC-derived PSCs play a role in a rat CDE diet-induced pancreatitis model. Black-Right-Pointing-Pointer BMC-derived PSCs contribute mainly to the early stage of pancreatic fibrosis. Black-Right-Pointing-Pointer BMC-derived activated PSCs can produce PDGF and TGF {beta}1. -- Abstract: Bone marrow cell (BMC)-derived myofibroblast-like cells have been reported in various organs, including the pancreas. However, the contribution of these cells to pancreatic fibrosis has not been fully discussed. The present study examined the possible involvement of pancreatic stellate cells (PSCs) originating from BMCs in the development of pancreatic fibrosis in a clinically relevant rat model of acute pancreatitis induced by amore » choline-deficient/ethionine-supplemented (CDE) diet. BMCs from female transgenic mice ubiquitously expressing green fluorescent protein (GFP) were transplanted into lethally irradiated male rats. Once chimerism was established, acute pancreatitis was induced by a CDE diet. Chronological changes in the number of PSCs originating from the donor BMCs were examined using double immunofluorescence for GFP and markers for PSCs, such as desmin and alpha smooth muscle actin ({alpha}SMA), 1, 3 and 8 weeks after the initiation of CDE feeding. We also used immunohistochemical staining to evaluate whether the PSCs from the BMCs produce growth factors, such as platelet-derived growth factor (PDGF) and transforming growth factor (TGF) {beta}1. The percentage of BMC-derived activated PSCs increased significantly, peaking after 1 week of CDE treatment (accounting for 23.3 {+-} 0.9% of the total population of activated PSCs) and then decreasing. These cells produced both PDGF and TGF{beta}1 during the early stage of pancreatic fibrosis. Our results suggest that PSCs originating from BMCs contribute mainly to the early stage of pancreatic injury, at least in part, by producing growth factors in a rat CDE diet-induced pancreatitis model.« less
Acute cognitive impact of antiseizure drugs in naive rodents and corneal-kindled mice.
Barker-Haliski, Melissa L; Vanegas, Fabiola; Mau, Matthew J; Underwood, Tristan K; White, H Steve
2016-09-01
Some antiseizure drugs (ASDs) are associated with cognitive liability in patients with epilepsy, thus ASDs without this risk would be preferred. Little comparative pharmacology exists with ASDs in preclinical models of cognition. Few pharmacologic studies exist on the acute effects in rodents with chronic seizures. Predicting risk for cognitive impact with preclinical models may supply valuable ASD differentiation data. ASDs (phenytoin [PHT]; carbamazepine [CBZ]; valproic acid [VPA]; lamotrigine [LTG]; phenobarbital [PB]; tiagabine [TGB]; retigabine [RTG]; topiramate [TPM]; and levetiracetam [LEV]) were administered equivalent to maximal electroshock median effective dose ([ED50]; mice, rats), or median dose necessary to elicit minimal motor impairment (median toxic dose [TD50]; rats). Cognition models with naive adult rodents were novel object/place recognition (NOPR) task with CF-1 mice, and Morris water maze (MWM) with Sprague-Dawley rats. Selected ASDs were also administered to rats prior to testing in an open field. The effect of chronic seizures and ASD administration on cognitive performance in NOPR was also determined with corneal-kindled mice. Mice that did not achieve kindling criterion (partially kindled) were included to examine the effect of electrical stimulation on cognitive performance. Sham-kindled and age-matched mice were also tested. No ASD (ED50) affected latency to locate the MWM platform; TD50 of PB, RTG, TPM, and VPA reduced this latency. In naive mice, CBZ and VPA (ED50) reduced time with the novel object. Of interest, no ASD (ED50) affected performance of fully kindled mice in NOPR, whereas CBZ and LEV improved cognitive performance of partially kindled mice. Standardized approaches to the preclinical evaluation of an ASD's potential cognitive impact are needed to inform drug development. This study demonstrated acute, dose- and model-dependent effects of therapeutically relevant doses of ASDs on cognitive performance of naive mice and rats, and corneal-kindled mice. This study highlights the challenge of predicting clinical adverse effects with preclinical models. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Cannella, Nazzareno; Halbout, Briac; Uhrig, Stefanie; Evrard, Lionel; Corsi, Mauro; Corti, Corrado; Deroche-Gamonet, Veronique; Hansson, Anita C; Spanagel, Rainer
2013-01-01
Medication development for cocaine-addicted patients is difficult, and many promising preclinical candidates have failed in clinical trials. One reason for the difficulty in translating preclinical findings to the human condition is that drug testing is typically conducted in behavioral procedures in which animals do not show addiction-like traits. Recently, a DSM-IV-based animal model has been developed that allows studying the transition to an addiction-like behavior. Changes in synaptic plasticity are involved in the transition to cocaine addiction. In particular, it has been shown that metabotropic glutamate receptor 2/3 (mGluR2/3)-mediated long-term depression is suppressed in the prelimbic cortex in addict-like rats. We therefore hypothesized that cocaine-seeking in addict-like rats could be treated with an mGluR2/3 agonist. Indeed, addict-like rats that were treated systemically with the mGluR2/3 agonist LY379268 (0, 0.3, and 3 mg/kg) showed a pronounced reduction in cue-induced reinstatement of cocaine-seeking. In an attempt to dissect the role played by mGluR2 and mGluR3 in cue-induced reinstatement, we analyzed the mRNA expression patterns in several relevant brain areas but did not find any significant differences between cocaine addict-like and non-addict-like rats, suggesting that the behavioral differences observed are due to translational rather than transcriptional regulation. Another possibility to study the contributions of mGluR2 and mGluR3 in mediating addictive-like behavior is the use of knockout models. Because mGluR2 knockouts cannot be used in operant procedures due to motoric impairment, we only tested mGluR3 knockouts. These mice did not differ from controls in reinstatement, suggesting that mGluR2 receptors are critical in mediating addictive-like behavior. PMID:23624743
Main, Keith L; Soman, Salil; Pestilli, Franco; Furst, Ansgar; Noda, Art; Hernandez, Beatriz; Kong, Jennifer; Cheng, Jauhtai; Fairchild, Jennifer K; Taylor, Joy; Yesavage, Jerome; Wesson Ashford, J; Kraemer, Helena; Adamson, Maheen M
2017-01-01
Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts). However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from military veterans admitted to a polytrauma clinic (Overall n = 109; Age: M = 47.2, SD = 11.3; Male: 88%; TBI: 67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis produced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC) analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's diagnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients. The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC analysis may be used to identify clinically relevant variables in the TBI population.
Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.
Bast, Tobias; Pezze, Marie; McGarrity, Stephanie
2017-10-01
We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.
2013-07-10
The Journal of Neuroscience has received a report describing an investigation by the Karolinska Institutet, which found substantial data misrepresentation in the article "The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity" by Dasiel O. Borroto-Escuela, Wilber Romero-Fernandez, Mileidys Pérez-Alea, Manuel Narvaez, Alexander O. Tarakanov, Giuseppa Mudó , Luigi F. Agnati, Francisco Ciruela, Natale Belluardo, and Kjell Fuxe, which appeared on pages 6295-6303 of the May 2, 2012 issue. Because the results cannot be considered reliable, the editors of The Journal are retracting the paper.
MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea
Chen, Yanfeng; Yang, Wenzhao; Zhang, Xiaobo; Yang, Shu; Peng, Gao; Wu, Ting; Zhou, Yueping; Huang, Caihong; Reinach, Peter S.; Li, Wei; Liu, Zuguo
2016-01-01
MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases. PMID:27329698
A New Spontaneously Diabetic Non-obese Torii Rat Strain With Severe Ocular Complications
Masuyama, Taku; Shoda, Toshiyuki; Takahashi, Tadakazu; Katsuda, Yoshiaki; Komeda, Kajuro; Kuroki, Masatoshi; Kakehashi, Akihiro; Kanazaw, Yasunori
2000-01-01
A new spontaneously diabetic strain of the Sprague-Dawley rat was established in 1997 and named the SDT (Spontaneously Diabetic Torii) rat. In this research, we investigated the characteristics of the disease condition in the SDT rats. The time of onset of glucosuria was different between male and female SDT rats; glucosuria appeared at approximately 20 weeks of age in male rats and at approximately 45 weeks of age in female rats. A cumulative incidence of diabetes of 100% was noted by 40 weeks of age in male rats, while it was only 33.3% even by 65 weeks of age in female rats. The survival rate up to 65 weeks of age was 92.9% in male rats and 97.4% in female rats. Glucose intolerance was observed in male rats from 16 weeks of age. The clinical characteristics of the male SDT rats were (1) hyperglycemia and hypoinsulinemia (from 25 weeks of age); (2) long-term survival without insulin treatment; (3) hypertriglyceridemia (by 35 weeks of age); however, no obesity was noted in any of the male rats. The histopathological characteristics of the male rats with diabetes mellitus (DM) were (1) fibrosis of the pancreatic islets (by 25 weeks of age); (2) cataract (by 40 weeks of age); (3) tractional retinal detachment with fibrous proliferation (by 70 weeks of age) and (4) massive hemorrhaging in the anterior chamber (by 77 weeks of age). These clinical and histopathological characteristics of the disease in SDT rats resemble those of human Type 2 diabetes with insulin hyposecretion. In conclusion, SDT rat is considered to be a potentially useful model for studies of diabetic retinopathy encountered in humans. PMID:11469401
Hamada, S; Ooshima, T; Torii, M; Imanishi, H; Masuda, N; Sobue, S; Kotani, S
1978-01-01
Oral implantation and the cariogenic activity of clinical strains of Streptococcus mutans which had been isolated from Japanese children and labeled with streptomycin-resistance were examined in specific pathogen-free Sprague-Dawley rats. All the seven strains tested were easily implanted and persisted during the experimental period. Extensive carious lesions were produced in rats inoculated with clinical strains of S. mutans belonging to serotypes c, d, e, and f, and maintained on caries-inducing diet no. 2000. Noninfected rats did not develop dental caries when fed diet no. 2000. Type d S. mutans preferentially induced smooth surface caries in the rats. Strains of other serotypes primarily developed caries of pit and fissure origin. Caries also developed in rats inoculated with reference S. mutans strains BHTR and FAIR (type b) that had been maintained in the laboratories for many years. However, the cariogenicity of the laboratory strains was found to have decreased markedly. All three S. sanguis strains could be implanted, but only one strain induced definite fissure caries. Two S. salivarius strains could not be implanted well in the rats and therefore they were not cariogenic. Four different species of lactobacilli also failed to induce dental caries in rats subjected to similar caries test regimen on diet no. 200. S. mutans strain MT6R (type c) also induce caries in golden hamsters and ICR mice, but of variable degrees.
ERIC Educational Resources Information Center
Wray, Alisha M.; Mahoney, Amanda; Weetjens, Bart J.; Cox, Christophe; Jubitana, Maureen; Kazwala, Rudovic; Mfinanga, Godfrey S.; Durgin, Amy; Poling, Alan
2013-01-01
Previous studies have shown that pouched rats can detect the presence of "Mycobacterium tuberculosis," which causes tuberculosis, in human sputum samples obtained from clinical facilities. Although pouched rats evaluate sputum samples quickly, preparing the samples is relatively slow. The present study evaluated whether the rats can detect…
NASA Astrophysics Data System (ADS)
Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming
2010-05-01
Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.
Hocher, Berthold; Heiden, Susi; von Websky, Karoline; Arafat, Ayman M; Rahnenführer, Jan; Alter, Markus; Kalk, Philipp; Ziegler, Dieter; Fischer, Yvan; Pfab, Thiemo
2011-03-10
Liver cirrhosis is often complicated by an impaired renal excretion of water and sodium. Diuretics tend to further deteriorate renal function. It is unknown whether chronic selective adenosine A(1) receptor blockade, via inhibition of the hepatorenal reflex and the tubuloglomerular feedback, might exert diuretic and natriuretic effects without a reduction of the glomerular filtration rate. In healthy animals intravenous treatment with the novel A(1) receptor antagonist SLV329 resulted in a strong dose-dependent diuretic (up to 3.4-fold) and natriuretic (up to 13.5-fold) effect without affecting creatinine clearance. Male Wistar rats with thioacetamide-induced liver cirrhosis received SLV329, vehicle or furosemide for 12 weeks. The creatinine clearance of cirrhotic animals decreased significantly (-36.5%, p<0.05), especially in those receiving furosemide (-41.9%, p<0.01). SLV329 was able to prevent this decline of creatinine clearance. Mortality was significantly lower in cirrhotic animals treated with SLV329 in comparison to animals treated with furosemide (17% vs. 54%, p<0.05). SLV329 did not relevantly influence the degree of liver fibrosis, kidney histology or expression of hepatic or renal adenosine receptors. In conclusion, chronic treatment with SLV329 prevented the decrease of creatinine clearance in a rat model of liver cirrhosis. Further studies will have to establish whether adenosine A(1) receptor antagonists are clinically beneficial at different stages of liver cirrhosis.
Velardo, Margaret J; Burger, Corinna; Williams, Philip R; Baker, Henry V; López, M Cecilia; Mareci, Thomas H; White, Todd E; Muzyczka, Nicholas; Reier, Paul J
2004-09-29
Spinal cord injury (SCI) induces a progressive pathophysiology affecting cell survival and neurological integrity via complex and evolving molecular cascades whose interrelationships are not fully understood. The present experiments were designed to: (1) determine potential functional interactions within transcriptional expression profiles obtained after a clinically relevant SCI and (2) test the consistency of transcript expression after SCI in two genetically and immunologically diverse rat strains characterized by differences in T cell competence and associated inflammatory responses. By interrogating Affymetrix U34A rat genome GeneChip microarrays, we defined the transcriptional expression patterns in midcervical contusion lesion sites between 1 and 90 d postinjury of athymic nude (AN) and Sprague Dawley (SD) strains. Stringent statistical analyses detected significant changes in 3638 probe sets, with 80 genes differing between the AN and SD groups. Subsequent detailed functional categorization of these transcripts unveiled an overall tissue remodeling response that was common to both strains. The functionally organized gene profiles were temporally distinct and correlated with repair indices observed microscopically and by magnetic resonance microimaging. Our molecular and anatomical observations have identified a novel, longitudinal perspective of the post-SCI response, namely, that of a highly orchestrated tissue repair and remodeling repertoire with a prominent cutaneous wound healing signature that is conserved between two widely differing rat strains. These results have significant bearing on the continuing development of cellular and pharmacological therapeutics directed at tissue rescue and neuronal regeneration in the injured spinal cord.
Papakosta, Marianthi; Dalle, Carine; Haythornthwaite, Alison; Cao, Lishuang; Stevens, Edward B; Burgess, Gillian; Russell, Rachel; Cox, Peter J; Phillips, Stephen C; Grimm, Christian
2011-11-11
The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa.
Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model
Caroline, Amy L.; Kujawa, Michael R.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.
2016-01-01
Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1–2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3–5 dpi) followed by brain (5–7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics. PMID:26779164
Atypical febrile seizures, mesial temporal lobe epilepsy, and dual pathology.
Sanon, Nathalie T; Desgent, Sébastien; Carmant, Lionel
2012-01-01
Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE.
NASA Astrophysics Data System (ADS)
Quian Quiroga, R.; Kraskov, A.; Kreuz, T.; Grassberger, P.
2002-04-01
We study the synchronization between left and right hemisphere rat electroencephalographic (EEG) channels by using various synchronization measures, namely nonlinear interdependences, phase synchronizations, mutual information, cross correlation, and the coherence function. In passing we show a close relation between two recently proposed phase synchronization measures and we extend the definition of one of them. In three typical examples we observe that except mutual information, all these measures give a useful quantification that is hard to be guessed beforehand from the raw data. Despite their differences, results are qualitatively the same. Therefore, we claim that the applied measures are valuable for the study of synchronization in real data. Moreover, in the particular case of EEG signals their use as complementary variables could be of clinical relevance.
Asarian, Lori; Abegg, Kathrin; Geary, Nori; Schiesser, Marc; Lutz, Thomas A; Bueter, Marco
2012-08-01
Despite the fact that ∼85% of bariatric operations are performed in women, the effects of the reproductive axis function on outcome of bariatric surgery remain to be determined. Here we developed the first published model of Roux-en-Y gastric bypass (RYGB) in female rats. We show in ovariectomized rats receiving estradiol or control treatment that (1) RYGB-induced body weight loss and (2) the satiating efficacy of endogenous glucagon-like peptide-1 and cholecystokinin satiation were significantly increased in estradiol-treated rats. These data are relevant to the care of obese women, in particular perimenopausal women, undergoing bariatric surgery. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Zhang, J; Yuan, T; Zheng, N; Zhou, Y; Hogan, M V; Wang, J H-C
2017-04-01
After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231-244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1. © 2017 Wang et al.
Zhou, Zhi-Wei; Chen, Xiao; Liang, Jun; Yu, Xi-Yong; Wen, Jing-Yuan; Zhou, Shu-Feng
2007-08-01
Tanshinone IIB (TSB) is a major constituent of Salvia miltiorrhiza, which is widely used in treatment of cardiovascular and central nervous system (CNS) diseases such as coronary heart disease and stroke. This study aimed to investigate the role of various drug transporters in the brain penetration of TSB using several in vitro and in vivo mouse and rat models. The uptake and efflux of TSB in rat primary microvascular endothelial cells (RBMVECs) were ATP-dependent and significantly altered in the presence of a P-glycoprotein (P-gp) or multidrug resistance associated protein (Mrp1/2) inhibitor. A polarized transport of TSB was found in RBMVEC monolayers with facilitated efflux from the abluminal to luminal side. Addition of a P-gp inhibitor (e.g. verapamil) in both abluminal and luminal sides attenuated the polarized transport. In an in situ rat brain perfusion model, TSB crossed the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier at a greater rate than that for sucrose, and the brain penetration was increased in the presence of a P-gp or Mrp1/2 inhibitor. The brain levels of TSB were only about 30% of that in the plasma and it could be increased to up to 72% of plasma levels when verapamil, quinidine, or probenecid was co-administered in rats. The entry of TSB to CNS increased by 67-97% in rats subjected to middle cerebral artery occlusion or treatment with the neurotoxin, quinolinic acid, compared to normal rats. Furthermore, The brain levels of TSB in mdr1a(-/-) and mrp1(-/-) mice were 28- to 2.6-fold higher than those in the wild-type mice. TSB has limited brain penetration through the BBB due to the contribution of P-gp and to a lesser extent of Mrp1 in rodents. Further studies are needed to confirm whether these corresponding transporters in humans are involved in limiting the penetration of TSB across the BBB and the clinical relevance.
Zhang, J.; Yuan, T.; Zheng, N.; Zhou, Y.; Hogan, M. V.
2017-01-01
Objectives After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Conclusions Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231–244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1. PMID:28450316
Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros
2013-11-01
Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.
Wu, Xiaowu; Corona, Benjamin T.; Chen, Xiaoyu
2012-01-01
Abstract Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. PMID:23515319
Anderberg, Rozita H; Richard, Jennifer E; Hansson, Caroline; Nissbrandt, Hans; Bergquist, Filip; Skibicka, Karolina P
2016-03-01
Glucagon-like peptide 1 (GLP-1), produced in the intestine and hindbrain, is known for its glucoregulatory and appetite suppressing effects. GLP-1 agonists are in clinical use for treatment of type 2 diabetes and obesity. GLP-1, however, may also affect brain areas associated with emotionality regulation. Here we aimed to characterize acute and chronic impact of GLP-1 on anxiety and depression-like behavior. Rats were subjected to anxiety and depression behavior tests following acute or chronic intracerebroventricular or intra-dorsal raphe (DR) application of GLP-1 receptor agonists. Serotonin or serotonin-related genes were also measured in the amygdala, DR and the hippocampus. We demonstrate that both GLP-1 and its long lasting analog, Exendin-4, induce anxiety-like behavior in three rodent tests of this behavior: black and white box, elevated plus maze and open field test when acutely administered intraperitoneally, into the lateral ventricle, or directly into the DR. Acute central GLP-1 receptor stimulation also altered serotonin signaling in the amygdala. In contrast, chronic central administration of Exendin-4 did not alter anxiety-like behavior but significantly reduced depression-like behavior in the forced swim test. Importantly, this positive effect of Exendin-4 was not due to significant body weight loss and reduced food intake, since rats pair-fed to Exendin-4 rats did not show altered mood. Collectively we show a striking impact of central GLP-1 on emotionality and the amygdala serotonin signaling that is divergent under acute versus chronic GLP-1 activation conditions. We also find a novel role for the DR GLP-1 receptors in regulation of behavior. These results may have direct relevance to the clinic, and indicate that Exendin-4 may be especially useful for obese patients manifesting with comorbid depression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Extended acute toxicity study of (188) Re-liposome in rats.
Chi-Mou, Liu; Chia-Che, Tsai; Chia-Yu, Yu; Wan-Chi, Lee; Chung-Li, Ho; Tsui-Jung, Chang; Chih-Hsien, Chang; Te-Wei, Lee
2013-09-01
Liposomes can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness as well as reducing toxicity. To evaluate therapeutic strategies, it is essential to use animal models reflecting important safety aspects before clinical application. As our previous study found that a high dosage (185 of MBq) of (188) Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine-labeled pegylated liposomes ((188) Re-liposome) induced a decrease in white blood cell (WBC) count in Sprague-Dawley rats 7 days postinjection, the objective of the present study was to investigate extended acute radiotoxicity of (188) Re-liposome. Rats were administered via intravenous (i.v.) injection with (188) Re-liposome (185, 55.5 and 18.5 MBq), normal saline as a blank control or non-radioactive liposome as a vehicle control. Mortality, clinical signs, food consumption, body weights, urinary, biochemical and hematological analyzes were examined. In addition, gross necropsy and histopathological examinations were also performed at the end of the follow-up period. None of the rats died and no clinical sign was observed during the 28-day study period. Only male rats receiving (188) Re-liposome at a high dosage (185 MBq) displayed a slight weight loss compared with the control rats. In both male and female rats, the WBC counts of both high-dose and medium-dose (55.5 MBq) groups reduced significantly 7 days postinjection, but recovered to the normal range on Study Day 29. There was no significant difference in urinary analyzes, biochemical parameters and histopathological assessments between the (188) Re-liposome-treated and control groups. The information generated from the present study on extended acute toxicity of (188) Re-liposome will serve as a safety reference for radiopharmaceuticals in early-phase clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu
2015-01-01
For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a…
Xu, Yanjie; Dai, Xiongwei; Zhu, Danxia; Xu, Xiaoli; Gao, Cao; Wu, Changping
2015-01-01
Hydrogen sulfide (H2S) has been reported to be interwined in multiple systems, specifically in the cardiovascular system. However, the mechanisms underlying remain controversial. In the present study, we assessed the cardio-protective effects of H2S in the rat hemorrhagic shock model. Hemorrhagic shock was induced in adult male Sprague-Dawley rats by drawing blood from the femoral artery to maintain the mean arterial pressure at 35-40 mmHg for 1.5 h. The rats were assigned to four groups and the H2S donor, NaHS (28 μmol/kg, i.p.), was injected before the resuscitation in certain groups. After resuscitation the animals were observed and then killed to harvest the hearts. The morphological investigation and ultrastructural analyses were done and apoptotic cells were detected. The levels of relevant proteins were examined using Western blotting and immunohistochemical analyses. Resuscitated hemorrhagic shock induced heart injury and significantly increased the levels of serum myocardial enzymes, creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Furthermore, it caused marked increase of apoptotic cells in heart tissue. Moreover, the expression of death receptor Fas and Fas-ligand, as well as the expression of apoptosis-relevant proteins active-caspase 3 and active-caspase 8 were markedly increased. Administration of NaHS significantly ameliorated hemorrhagic shock caused hemodynamic deterioration, decreased myocardial enzymes elevation, protected myocardial ultrastructure, and inhibited the expression of apoptosis-relevant proteins. It suggested that H2S might exert its cardio-protective roles via both the extrinsic Fas/FasL/caspase-8/caspase-3 pathway and the intrinsic mitochondria-involved pathways.
Bucher, J R; Gupta, B N; Adkins, B; Thompson, M; Jameson, C W; Thigpen, J E; Schwetz, B A
1987-01-01
Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. During exposures, signs of restlessness, lacrimation, and a reddish discharge from the nose and mouth were evident in rats and mice. Following exposures, rats and mice were dyspneic and weak. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. No significant clinical pathology, or hematologic changes were observed in exposed rats. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3622444
Kalman, Eszter; Keay, Kevin A
2014-12-01
Physical and psychological trauma which results in mood disorders and the disruption of complex behaviours is associated with reductions in hippocampal volume. Clinical evaluation of neuropathic pain reveals mood and behavioural change in a significant number of patients. A rat model of neuropathic injury results in complex behavioural changes in a subpopulation (~30%) of injured rats; these changes are co-morbid with a range of other 'disabilities'. The specific objective of this study was to determine in rats the morphology of the hippocampus and dentate gyrus in individuals with and without complex behavioural disruptions following a constriction injury of the sciatic nerve, and to determine whether rats that develop disabilities following nerve injury have a reduced hippocampal volume compared with injured rats with no disabilities. The social behaviours of nerve-injured rats were evaluated before and after nerve injury. The morphology of the hippocampus of rats with and without behavioural disruptions was compared in serial histological sections. Single-housing and repeated social-interaction testing had no effect on the morphology of either the hippocampus or the dentate gyrus. Rats with transient or ongoing disability identified by behavioural disruption following sciatic nerve injury, show bilateral reductions in hippocampal volume, and lateralised reduction in the dentate gyrus (left side). Disabled rats display a combination of behavioural and physiological changes, which resemble many of the criteria used clinically to diagnose mood disorders. They also show reductions in the volume of the hippocampus similar to people with clinically diagnosed mood disorders. The sciatic nerve injury model reveals a similarity to the human neuropathic pain presentation presenting an anatomically specific focus for the investigation of the neural mechanisms underpinning the co-morbidity of chronic pain and mood disorder. © 2014 Anatomical Society.
Acute toxicity of sodium formononetin-3'-sulphonate (Sul-F) in Sprague-Dawley rats and Beagle dogs.
Li, Guisheng; Yang, Menglin; Hao, Xinmiao; Li, Chunmei; Gao, Yonglin; Tao, Jun
2015-11-01
Sodium formononetin-3'-sulphonate (Sul-F, C16H12O7SNa), a water-soluble derivate of formononetin, provided significant neuroprotective and cardioprotective effects in vitro and in vivo. The aim of this study was to evaluate acute toxicity of Sul-F after intravenous administration in rats and dogs. Animals were intravenously administered Sul-F at the maximum dosage of 2000 mg/kg and 1000 mg/kg in rats and dogs, respectively. After treatment, rats and dogs were monitored for 14 days. Body weight, clinical signs, the hematological and biochemical findings, and pathological examination were performed. The results showed that no Sul-F related clinical signs of toxicity or mortality were observed in rats. Of note, the transient vomiting was found in dogs after Sul-F administration 15-20 min. In addition, a white crystal, non-metabolic Sul-F, was found after urine volatilization in Sul-F treated animals (rats and dogs). However, neither biochemical findings nor histopathological changes due to Sul-F treatment were found in tests. In summary, the present study results provided practical guidance for selecting a safe dosage for Sul-F further studies and clinical trials in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa
2018-07-01
Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.
Veskoukis, Aristidis S; Paschalis, Vassilis; Kyparos, Antonios; Nikolaidis, Michalis G
2018-05-01
Maximal velocity (V max ) is a well established biomarker for the assessment of tissue redox status. There is scarce evidence, though, that it does not probably reflect sufficiently in vivo tissue redox profile. Instead, the Michaelis constant (K m ) could more adequately image tissue oxidative stress and, thus, be a more physiologically relevant redox biomarker. Therefore, the aim of the present study was to side-by-side compare V max and K m of an antioxidant enzyme after implementing an in vivo set up that induces alterations in tissue redox status. Forty rats were divided into two groups including rats injected with blood plasma originating from rats that had previously swam until exhaustion and rats injected with blood plasma originating from sedentary rats. Tail-vein injections were performed daily for 21 days. Catalase V max and K m measured in gastrocnemius muscle were increased after administration of the exercise-conditioned plasma, denoting enhancement of the enzyme activity but impairment of its affinity for the substrate, respectively. These alterations are potential adaptations stimulated by the administered plasma pointing out that blood is an active fluid capable of regulating tissue homeostasis. Our findings suggest that K m adequately reflects in vivo modifications of skeletal muscle catalase and seems to surpass V max regarding its physiological relevance and biological interpretation. In conclusion, K m can be regarded as an in vivo-like biomarker that satisfactorily images the intracellular environment, as compared to V max that could be aptly parallelized with a biomarker that describes tissue oxidative stress in an in vitro manner. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
We are conducting studies to evaluate the biological relevance of changes in KEs and molecular initiating events (MIE) in AOPs to determine if these can accurately predict of the dose levels of chemicals that disrupt the androgen signaling pathway in utero. Herein, we focus on ch...
Saadane, A; Delautier, D; Lestriez, V; Feldmann, G; Lardeux, B; Bleiberg-Daniel, F
1999-04-01
To determine whether the inhibition of RNA breakdown observed in ad libitum fed rats 24 h after turpentine administration still occurs in inflamed rats fasted for 24 h and to examine the mechanism and factors involved. RNA breakdown was measured during cyclic in situ perfusion of livers by the accumulation of [14C] cytidine after in vivo RNA labelling. Autophagic activity was determined by the morphometric analysis of lysosomal structures. The decrease in RNA breakdown (53%) observed in the inflamed rats was accompanied by a 38% drop in the fractional cytoplasmic volume of initial and digestive autophagic vacuoles. Among amino acids, only the portal levels of glutamate were significantly enhanced by 83%. In vivo suppression of glucocorticoid activity using RU 38486 in inflamed rats did not affect the inhibition of RNA breakdown. The results show that turpentine-induced inflammation in fasted rats inhibits RNA degradation as well as autophagy and that glucocorticoids do not seem to be involved.
Clinical relevance in anesthesia journals.
Lauritsen, Jakob; Møller, Ann M
2006-04-01
The purpose of this review is to present the latest knowledge and research on the definition and distribution of clinically relevant articles in anesthesia journals. It will also discuss the importance of the chosen methodology and outcome of articles. In the last few years, more attention has been paid to evidence-based medicine in anesthesia. Several articles on the subject have focused on the need to base clinical decisions on sound research employing both methodological rigor and clinically relevant outcomes. The number of systematic reviews in anesthesia literature is increasing as well as the focus on diminishing the number of surrogate outcomes. It has been shown that the impact factor is not a valid measure of establishing the level of clinical relevance to a journal. This review presents definitions of clinically relevant anesthesia articles. A clinically relevant article employs both methodological rigor and a clinically relevant outcome. The terms methodological rigor and clinical outcomes are fully discussed in the review as well as problems with journal impact factors.
Retinoic acid-induced lumbosacral neural tube defects: myeloschisis and hamartoma.
Cai, WeiSong; Zhao, HongYu; Guo, JunBin; Li, Yong; Yuan, ZhengWei; Wang, WeiLin
2007-05-01
To observe the morphological features of the lumbosacral neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) and to explore the pathogenesis of these defects. Rat embryos with lumbosacral NTDs were obtained by treating pregnant rats with administration of atRA. Rat embryos were obtained by cesarean. Fetuses were sectioned and stained with hematoxylin-eosin (H&E). Relevant structures including caudal neural tube were examined. In the atRA-treated rats, about 48% embryos showed lumbosacral NTDs. There appeared a dorsally and rostrally situated, neural-plate-like structure (myeloschisis) and a ventrally and caudally located cell mass containing multiple canals (hamartoma) in the lumbosacral NTDs induced by atRA. Retinoic acid could disturb the notochord and tail bud development in the process of primary and secondary neurulation in rat embryos, which cause lumbosacral NTDs including myeloschisis and hamartoma. The morphology is very similar to that happens in humans.
Eggenhofer, Elke; Popp, Felix C; Mendicino, Michael; Silber, Paula; Van't Hof, Wouter; Renner, Philipp; Hoogduijn, Martin J; Pinxteren, Jef; van Rooijen, Nico; Geissler, Edward K; Deans, Robert; Schlitt, Hans J; Dahlke, Marc H
2013-08-01
Multipotent adult progenitor cells (MAPCs) are an adherent stem cell population that belongs to the mesenchymal-type progenitor cell family. Although MAPCs are emerging as candidate agents for immunomodulation after solid organ transplantation, their value requires further validation in a clinically relevant cell therapy model using an organ donor- and organ recipient-independent, third-party cell product. We report that stable allograft survival can be achieved following third-party MAPC infusion in a rat model of fully allogeneic, heterotopic heart transplantation. Furthermore, long-term accepted heart grafts recovered from MAPC-treated animals can be successfully retransplanted to naïve animals without additional immunosuppression. This prolongation of MAPC-mediated allograft acceptance depends upon a myeloid cell population since depletion of macrophages by clodronate abrogates the tolerogenic MAPC effect. We also show that MAPC-mediated allograft acceptance differs mechanistically from drug-induced tolerance regarding marker gene expression, T regulatory cell induction, retransplantability, and macrophage dependence. MAPC-based immunomodulation represents a promising pathway for clinical immunotherapy that has led us to initiate a phase I clinical trial for testing safety and feasibility of third-party MAPC therapy after liver transplantation.
Franconi, Giovanna; Schröder, Sven; Marchetti, Paolo; Robinson, Nicola
2013-01-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect that can be very disabling and can limit or delay the dose of chemotherapy that can be administered. Acupuncture may be effective for treating peripheral neuropathy. The aim of this study was to review the available literature on the use of acupuncture for CIPN. The systematic literature search was performed using MEDLINE, Google Scholar, Cochrane Database, CINHAL, and ISI Proceedings. Hand searching was conducted, and consensus was reached on all extracted data. Only papers in the English language were included, irrespective of study design. From 3989 retrieved papers, 8 relevant papers were identified. One was an experimental study which showed that electroacupuncture suppressed CIPN pain in rats. In addition, there were 7 very heterogeneous clinical studies, 1 controlled randomised study using auricular acupuncture, 2 randomized controlled studies using somatic acupuncture, and 3 case series/case reports which suggested a positive effect of acupuncture in CIPN. Conclusions. Only one controlled randomised study demonstrated that acupuncture may be beneficial for CIPN. All the clinical studies reviewed had important methodological limitations. Further studies with robust methodology are needed to demonstrate the role of acupuncture for treating CIPN resulting from cancer treatment. PMID:23983788
Robison, Lisa S.; Michaelos, Michalis; Gandhi, Jason; Fricke, Dennis; Miao, Erick; Lam, Chiu-Yim; Mauceri, Anthony; Vitale, Melissa; Lee, Junho; Paeng, Soyeh; Komatsu, David E.; Hadjiargyrou, Michael; Thanos, Panayotis K.
2017-01-01
Methylphenidate (MP) is a psychostimulant prescribed for Attention Deficit Hyperactivity Disorder. Previously, we developed a dual bottle 8-h-limited-access-drinking-paradigm for oral MP treatment of rats that mimics the pharmacokinetic profile of treated patients. This study assessed sex differences in response to this treatment. Male and female Sprague Dawley rats were assigned to one of three treatment groups at 4 weeks of age (n = 12/group): Control (water), low dose (LD) MP, and high dose (HD) MP. Rats drank 4 mg/kg MP (LD) or 30 mg/kg MP (HD) during the first hour, and 10 mg/kg (LD) or 60 mg/kg MP (HD) for the remaining 7 h each day. Throughout 3 months of treatment, rats were monitored for body weight, food intake, and fluid intake; as well as tested for open field behavior, circadian activity, novel object recognition, and social interaction. Chronic MP treated rats exhibited reduced fluid intake during distinct treatment weeks to a greater extent in males, and reduced total fluid intake in males only. HD MP treatment decreased body weight in both sexes, while HD MP increased total food intake in females only, likely to offset energy deficits resulting from MP-induced hyperactivity. LD and HD MP increased locomotor activity in the open field, particularly in females and during later treatment weeks. MP dose-dependently increased activity during the dark cycle of circadian testing in females, while in males hyperactivity was only exhibited by HD rats. HD MP increased center activity to a greater extent in males, while MP increased rearing behavior in females only. MP had no effect on social behavior or novel object recognition in either sex. This study concludes that chronic oral MP treatment at clinically-relevant dosages has significant effects on food intake, body weight, open field behavior, and wake cycle activity. Particularly marked sex differences were apparent for locomotor activity, with females being significantly more sensitive to the hyperactivating effects of the drug. These findings suggest that chronic MP exposure beginning in adolescence can have significant behavioral effects that are both dose- and sex-dependent, and raise concerns regarding the reversibility of these effects post-discontinuation of treatment. PMID:28400722
Cumming, Paul; Caprioli, Daniele; Dalley, Jeffrey W
2011-01-01
Translational molecular imaging with positron emission tomography (PET) and allied technologies offer unrivalled applications in the discovery of biomarkers and aetiological mechanisms relevant to human disease. Foremost among clinical PET findings during the past two decades of addiction research is the seminal discovery of reduced dopamine D2/3 receptor expression in the striatum of drug addicts, which could indicate a predisposing factor and/or compensatory reaction to the chronic abuse of stimulant drugs. In parallel, recent years have witnessed significant improvements in the performance of small animal tomographs (microPET) and a refinement of animal models of addiction based on clinically relevant diagnostic criteria. This review surveys the utility of PET in the elucidation of neuropharmacological mechanisms underlying drug addiction. It considers the consequences of chronic drug exposure on regional brain metabolism and neurotransmitter function and identifies those areas where further research is needed, especially concerning the implementation of PET tracers targeting neurotransmitter systems other than dopamine, which increasingly have been implicated in the pathophysiology of drug addiction. In addition, this review considers the causal effects of behavioural traits such as impulsivity and novelty/sensation-seeking on the emergence of compulsive drug-taking. Previous research indicates that spontaneously high-impulsive rats – as exemplified by ‘Zippy’– are pre-disposed to escalate intravenous cocaine self-administration, and subsequently to develop compulsive drug taking tendencies that endure despite concurrent adverse consequences of such behaviour, just as in human addiction. The discovery using microPET of pre-existing differences in dopamine D2/3 receptor expression in the striatum of high-impulsive rats suggests a neural endophenotype that may likewise pre-dispose to stimulant addiction in humans. LINKED ARTICLES This article is part of a themed section on Imaging. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.163.issue-8BJP has previously published an Imaging in Pharmacology themed section, edited by A Davenport and C Daly. To view this section visit http://dx.doi.org/10.1111/bph.2010.159.issue-4 PMID:20846139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, Svetlana; Hussein, Jabeen; Ariano, Robert E.
Epidemiological studies support an association between perinatal cigarette smoke (CS) exposure and a number of severe pre- and postnatal complications. However, the mechanisms through which CS enhances such risks largely remain unknown. One of the reasons for our inability to discover such mechanisms has been the unavailability of a clinically relevant and physiologically concordant animal model. A number of studies have previously used nicotine (Nic) as surrogate for CS. We sought to (1) establish the amount of CS exposure to achieve plasma Nic concentrations observed among moderate to heavy smokers (20-60 ng/ml) (2) investigate the temporal changes in plasma Nicmore » concentrations, carboxyhemoglobin, and hematocrit with advancing pregnancy, and (3) elucidate the effects of CS exposure on pregnancy outcome. Pregnant Sprague-Dawley rats were exposed to various doses of CS or room air (Sham) from days 6 to 21 of gestation. Exposure to 6000 ml/day of CS led to very high plasma Nic concentrations and increased maternal and fetal mortality (P < 0.001). The plasma Nic concentrations remained higher than those observed in moderate smokers until the CS dose was reduced to 1000 ml/day and showed dose-dependent temporal changes with advancing gestational age. Significant increases in carboxyhemoglobin and hematocrit were observed in the CS group as compared with the Sham group (P < 0.001). In addition, prenatally CS exposed fetuses had lower birth weight as compared with the Sham group (P = 0.04). Our current study establishes a newly standardized and physiologically relevant model to investigate the mechanisms of CS-mediated adverse effects during the critical period of fetal development.« less
Baker, Valerie A; Harries, Helen M; Waring, Jeff F; Duggan, Colette M; Ni, Hong A; Jolly, Robert A; Yoon, Lawrence W; De Souza, Angus T; Schmid, Judith E; Brown, Roger H; Ulrich, Roger G; Rockett, John C
2004-01-01
Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically relevant markers of toxicity. To be useful for risk assessment, however, microarray data must be challenged to determine reliability and interlaboratory reproducibility. As part of a series of studies conducted by the International Life Sciences Institute Health and Environmental Science Institute Technical Committee on the Application of Genomics to Mechanism-Based Risk Assessment, the biological response in rats to the hepatotoxin clofibrate was investigated. Animals were treated with high (250 mg/kg/day) or low (25 mg/kg/day) doses for 1, 3, or 7 days in two laboratories. Clinical chemistry parameters were measured, livers removed for histopathological assessment, and gene expression analysis was conducted using cDNA arrays. Expression changes in genes involved in fatty acid metabolism (e.g., acyl-CoA oxidase), cell proliferation (e.g., topoisomerase II-Alpha), and fatty acid oxidation (e.g., cytochrome P450 4A1), consistent with the mechanism of clofibrate hepatotoxicity, were detected. Observed differences in gene expression levels correlated with the level of biological response induced in the two in vivo studies. Generally, there was a high level of concordance between the gene expression profiles generated from pooled and individual RNA samples. Quantitative real-time polymerase chain reaction was used to confirm modulations for a number of peroxisome proliferator marker genes. Though the results indicate some variability in the quantitative nature of the microarray data, this appears due largely to differences in experimental and data analysis procedures used within each laboratory. In summary, this study demonstrates the potential for gene expression profiling to identify toxic hazards by the identification of mechanistically relevant markers of toxicity. PMID:15033592
Greiwe, L; Vinck, M; Suhr, F
2016-05-01
Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Rat-bite fever presenting with rash and septic arthritis.
Kanechorn Na Ayuthaya, Rajyani; Niumpradit, Nucha
2005-11-01
Rat-bite fever is an uncommon disease known for its endemicity to occur worldwide. Although most patients tend to develop mild symptoms with improvement from conventional antibiotics, it can progress with severe complications with a mortality rate as high as 13% without proper treatment. The authors report a complicated case of rat bite-fever involving a 61-year old woman who presented with fever petechial rash, and septic arthritis following a rat bite. Initially, multiple antibiotics were administered but were not effective. As a consequence, invasive procedures such as arthrotomy and joint debridement were done and prolonged antibiotic was administered until clinical resolution. Since many cases do not have a history of rat bite and may present with fever, rashes, and arthritis it is essential to distinguish it from other diseases. Here, the authors will provide details on the etiology, clinical manifestations, diagnosis, and management to aid prompt detection and treatment of the disease.
Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg
2011-01-01
Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163
Kurtz, M; Capobianco, E; Careaga, V; Martinez, N; Mazzucco, M B; Maier, M; Jawerbaum, A
2014-03-01
Maternal diabetes impairs fetal lung development. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors relevant in lipid homeostasis and lung development. This study aims to evaluate the effect of in vivo activation of PPARs on lipid homeostasis in fetal lungs of diabetic rats. To this end, we studied lipid concentrations, expression of lipid metabolizing enzymes and fatty acid composition in fetal lungs of control and diabetic rats i) after injections of the fetuses with Leukotriene B4 (LTB4, PPARα ligand) or 15deoxyΔ(12,14)prostaglandin J2 (15dPGJ2, PPARγ ligand) and ii) fed during pregnancy with 6% olive oil- or 6% safflower oil-supplemented diets, enriched with PPAR ligands were studied. Maternal diabetes increased triglyceride concentrations and decreased expression of lipid-oxidizing enzymes in fetal lungs of diabetic rats, an expression further decreased by LTB4 and partially restored by 15dPGJ2 in lungs of male fetuses in the diabetic group. In lungs of female fetuses in the diabetic group, maternal diets enriched with olive oil increased triglyceride concentrations and fatty acid synthase expression, while those enriched with safflower oil increased triglyceride concentrations and fatty acid transporter expression. Both olive oil- and safflower oil-supplemented diets decreased cholesterol and cholesteryl ester concentrations and increased the expression of the reverse cholesterol transporter ATP-binding cassette A1 in fetal lungs of female fetuses of diabetic rats. In fetal lungs of control and diabetic rats, the proportion of polyunsaturated fatty acids increased with the maternal diets enriched with olive and safflower oils. Our results revealed important changes in lipid metabolism in fetal lungs of diabetic rats, and in the ability of PPAR ligands to modulate the composition of lipid species relevant in the lung during the perinatal period.
Publications in anesthesia journals: quality and clinical relevance.
Lauritsen, Jakob; Moller, Ann M
2004-11-01
Clinicians performing evidence-based anesthesia rely on anesthesia journals for clinically relevant information. The objective of this study was to analyze the proportion of clinically relevant articles in five high impact anesthesia journals. We evaluated all articles published in Anesthesiology, Anesthesia & Analgesia, British Journal of Anesthesia, Anesthesia, and Acta Anaesthesiologica Scandinavica from January to June, 2000. Articles were assessed and classified according to type, outcome, and design; 1379 articles consisting of 5468 pages were evaluated and categorized. The most common types of article were animal and laboratory research (31.2%) and randomized clinical trial (20.4%). A clinically relevant article was defined as an article that used a statistically valid method and had a clinically relevant end-point. Altogether 18.6% of the pages had as their subject matter clinically relevant trials. We compared the Journal Impact Factor (a measure of the number of citations per article in a journal) and the proportion of clinically relevant pages and found that they were inversely proportional to each other.
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D
2016-08-01
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
Sun, Xue-Yi; Yu, Zhi; Chen, Zhi-Yu; Xu, Bin
2018-02-25
To observe the effect of manual acupuncture stimulation of different layers (skin, muscle, peritoneum, sub-peritoneum) of "Tianshu" (ST 25) region on proximal colonic pressure in normal rats. Forty-eight male SD rats were divided into 6 groups: all layer-needling, brushing, cutaneous needling, muscular needling, peritoneum-needling and sub-peritoneum-needling groups ( n =8 in each group). Manual needling or brushing was applied to "Tianshu" (ST 25) region. The colonic internal pressure was measured by using an amplifier and a pressure transducer-connected balloon which was implanted into the colonic cavity about 6 cm from the ileocecal valve. For rats of the all-layer needling group, an acupuncture needle was inserted into ST 25 about 1 cm deep and rotated for a while, for rats of the brushing group, a Chinese calligraphy brush pen was used to brush the skin hair for 1 min. For rats of the rest 4 groups, an acupuncture needle was inserted into the skin, muscle layer after cutting open the skin (about 0.1 cm), the peritoneum layer after cutting open the skin and muscle layers, and the sub-peritoneum layer after cutting open the skin, muscle and peritoneum layers, respectively, and rotated using the uniform reinforcing-reducing technique for about 1 min at a frequency of 120 twirlings per minute every time. During manual needling stimulation of the full layers, cutaneous layer, muscle layer, peritoneum layer and the sub-peritoneum layer of bilateral "Tianshu" (ST 25), the internal pressure of proximal colon was significantly decreased relevant to pre-stimulation in each group ( P <0.05), and there were no significant differences between bilateral sides needling stimulation in the decreased pressure levels ( P >0.05). During hair brushing of ST 25 region, the colonic pressure was observably increased relevant to pre-needling stimulation ( P <0.05). One min after the acupuncture stimulation, the decreased pressures maintained in needling the all-layer on the left side, needling the skin on the right side, needling the peritoneum layer on both sides, and needling the sub-peritoneum layer on both sides relevant to the brushing group of the same side ( P <0.05). Manual acupuncture stimulation of each layer tissue of ST 25 on both sides may lower internal pressure of proximal colon in normal rats, suggesting their involvement of acupuncture effect in relaxing proximal colonic contraction.
Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR.
Zhou, Xiaoyan; Frohlich, Edward D
2007-01-01
Hypertension plays major causative roles in development of cardiac failure and end-stage renal disease (ESRD). Cardiac and renal involvements in hypertension and relevant pharmacological interventions have been extensively studied in our laboratories. Our findings demonstrated that aged spontaneous hypertensive rats (SHR) developed reduced coronary flow reserve, increased coronary vascular resistance and cardiac fibrosis, and impaired cardiac function. Moreover, aged SHR naturally developed glomerular hypertension and ischemia, proteinuria, and glomerular sclerosis and interstitial fibrosis. These naturally-occurring cardiac and renal involvements in aged SHR are very similar to these target organ changes in essential hypertension. Furthermore, we have been able to reproduce similar derangements in younger adult SHR by nitric oxide synthesis inhibition. These changes are identical to the pathophysiological alterations in heart and kidney found in old SHR as well as clinically. Antihypertensive therapeutic interventions provided cardiac and renal protection and, perhaps even prevention in the aged SHR and younger adult SHR with suppressed nitric oxide synthesis. Recent clinical trails have translated these pathophysiological observations demonstrating that angiotensin II inhibition affords remarkable cardiac and renal benefits to patients with essential hypertension. Thus, both the aged SHR as well as younger adult SHR with suppressed nitric oxide synthesis very closely mimic the cardiac and renal outcomes seen in patients with essential hypertension. They accordingly have become extremely useful experimental models of hypertensive heart disease and ESRD seen with severe nephrosclerosis. The latter hypertensive rat model with induced endothelial dysfunction is recommended enthusiastically for its foregoing as well as time-saving and economic values.
Zoladz, Phillip R; Diamond, David M
2016-10-01
Research on post-traumatic stress disorder (PTSD) is faced with the challenge of understanding how a traumatic experience produces long-lasting detrimental effects on behavior and brain functioning, and more globally, how stress exacerbates somatic disorders, including cardiovascular disease. Moreover, the design of translational research needs to link animal models of PTSD to clinically relevant risk factors which address why only a subset of traumatized individuals develop persistent psychopathology. In this review, we have summarized our psychosocial stress rodent model of PTSD which is based on well-described PTSD-inducing risk factors, including a life-threatening experience, a sense of horror and uncontrollability, and insufficient social support. Specifically, our animal model of PTSD integrates acute episodes of inescapable exposure of immobilized rats to a predator with chronic daily social instability. This stress regimen produces PTSD-like effects in rats at behavioral, cognitive, physiological, pharmacological and epigenetic levels of analysis. We have discussed a recent extension of our animal model of PTSD in which stress exacerbated coronary pathology following an ischemic event, assessed in vitro. In addition, we have reviewed our research investigating pharmacological and non-pharmacological therapeutic strategies which may have value in clinical approaches toward the treatment of traumatized people. Overall, our translational approach bridges the gap between human and animal PTSD research to create a framework with which to enhance our understanding of the biological basis of trauma-induced pathology and to assess therapeutic approaches in the treatment of psychopathology. Copyright © 2016 Elsevier Inc. All rights reserved.
Lucke-Wold, Brandon P.; Phillips, Michael; Turner, Ryan C.; Logsdon, Aric F.; Smith, Kelly E.; Huber, Jason D.; Rosen, Charles L.; Regele, Jonathan D.
2016-01-01
3 million concussions occur each year in the United States. The mechanisms linking acute injury to chronic deficits are poorly understood. Mild traumatic brain injury has been described clinically in terms of acute functional deficits, but the underlying histopathologic changes that occur are relatively unknown due to limited high-function imaging modalities. In order to improve our understanding of acute injury mechanisms, appropriately designed preclinical models must be utilized. The clinical relevance of compression wave injury models revolves around the ability to produce consistent histopathologic deficits. Repetitive mild traumatic brain injuries activate similar neuroinflammatory cascades, cell death markers, and increases in amyloid precursor protein in both humans and rodents. Humans however infrequently succumb to mild traumatic brain injuries and therefore the intensity and magnitude of impacts must be inferred. Understanding compression wave properties and mechanical loading could help link the histopathologic deficits seen in rodents to what might be happening in human brains following repetitive concussions. Advances in mathematical and computer modeling can help characterize the wave properties generated by the compression wave model. While this concept of linking duration and intensity of impact to subsequent histopathologic deficits makes sense, numerical modeling of compression waves has not been performed in this context. In this collaborative interdisciplinary work, numerical simulations were performed to study the creation of compression waves in our experimental model. This work was conducted in conjunction with a repetitive compression wave injury paradigm in rats in order to better understand how the wave generation correlates with validated histopathologic deficits. PMID:27880054
Audi, Said H.; Clough, Anne V.; Haworth, Steven T.; Medhora, Meetha; Ranji, Mahsa; Densmore, John C.; Jacobs, Elizabeth R.
2016-01-01
99mTc-Hexamethylpropyleneamine oxime (HMPAO) is a clinical single-photon emission computed tomography biomarker of tissue oxidoreductive state. Our objective was to investigate whether HMPAO lung uptake can serve as a pre-clinical marker of lung injury in two well-established rat models of human acute lung injury (ALI). Rats were exposed to >95% O2 (hyperoxia) or treated with intratracheal lipopolysaccharide (LPS), with first endpoints obtained 24 hours later. HMPAO was administered intravenously before and after treatment with the glutathione-depleting agent diethyl maleate (DEM), scintigraphy images were acquired, and HMPAO lung uptake was quantified from the images. We also measured breathing rates, heart rates, oxygen saturation, bronchoalveolar lavage (BAL) cell counts and protein, lung homogenate glutathione (GSH) content, and pulmonary vascular endothelial filtration coefficient (Kf). For hyperoxia rats, HMPAO lung uptake increased after 24 hours (134%) and 48 hours (172%) of exposure. For LPS-treated rats, HMPAO lung uptake increased (188%) 24 hours after injury and fell with resolution of injury. DEM reduced HMPAO uptake in hyperoxia and LPS rats by a greater fraction than in normoxia rats. Both hyperoxia exposure (18%) and LPS treatment (26%) increased lung homogenate GSH content, which correlated strongly with HMPAO uptake. Neither of the treatments had an effect on Kf at 24 hours. LPS-treated rats appeared healthy but exhibited mild tachypnea, BAL and histological evidence of inflammation, and increased wet and dry lung weights. These results suggest the potential utility of HMPAO as a tool for detecting ALI at a phase likely to exhibit minimal clinical evidence of injury. PMID:26974426
Impulsive-choice patterns for food in genetically lean and obese Zucker rats
Boomhower, Steven R.; Rasmussen, Erin B.; Doherty, Tiffany S.
2012-01-01
Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0–10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. PMID:23261877
Impulsive-choice patterns for food in genetically lean and obese Zucker rats.
Boomhower, Steven R; Rasmussen, Erin B; Doherty, Tiffany S
2013-03-15
Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
Jayaraman, Anusha; Christensen, Amy; Moser, V. Alexandra; Vest, Rebekah S.; Miller, Chris P.; Hattersley, Gary
2014-01-01
The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed “selective androgen receptor modulators” (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases. PMID:24428527
A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior
Thanos, Panayotis K.; Robison, Lisa S.; Steier, Jessica; Hwang, Yu Fen; Cooper, Thomas; Swanson, James M.; Komatsu, David E.; Hadjiargyrou, Michael; Volkow, Nora D.
2015-01-01
Most animal studies using methylphenidate (MP) do not administer it the same way it is administered clinically (orally), but rather by injection, resulting in an altered pharmacokinetic profile (i.e. quicker and higher peak concentrations). Here, we evaluated several oral-dosing regimens in rats, including dual-dose drinking, to mimic the clinical drug delivery profile. Using an 8-hour-limited-access-drinking-paradigm, MP solutions were delivered at different doses (20, 30, or 60 mg/kg/day; as well as dual-dosages of 4 and 10 mg/kg/day, 20 and 30 mg/kg/day, or 30 and 60 mg/kg/day, in which the low dose was administered in the first hour of drinking followed by 7 h of drinking the high dose). Blood was sampled and plasma was assayed for MP levels at many time points. Results showed that an 8-hour limited drinking of a dual-dosage 30/60 mg/kg MP solution achieved a pharmacokinetic profile similar to clinically administered doses of MP at the high end of the spectrum (peaking at ~30 ng/mL), while the 4/10 mg/kg MP dual-dosage produced plasma levels in the range produced by typically prescribed clinical doses of MP (peaking at ~8 ng/mL). Treatment with the higher dual-dosage (HD: 30/60 mg/kg) resulted in hyperactivity, while the lower (LD: 4/10 mg/kg) had no effect. Next, chronic effects of these dual-dosages were assessed on behavior throughout three months of treatment and one month of abstinence, beginning in adolescence. MP dose-dependently decreased body weight, which remained attenuated throughout abstinence. MP decreased food intake during early treatment, suggesting that MP may be an appetite suppressant and may also speed metabolism and/or suppress growth. Chronic HD MP resulted in hyperactivity limited during the dark cycle; decreased exploratory behavior; and increased anxiolytic behavior. These findings suggest that this dual-dosage-drinking-paradigm can be used to examine the effects of clinically relevant pharmacokinetic doses of MP, and that chronic treatment with such dosages can result in long-lasting developmental and behavioral changes. PMID:25641666
A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior.
Thanos, Panayotis K; Robison, Lisa S; Steier, Jessica; Hwang, Yu Fen; Cooper, Thomas; Swanson, James M; Komatsu, David E; Hadjiargyrou, Michael; Volkow, Nora D
2015-04-01
Most animal studies using methylphenidate (MP) do not administer it the same way it is administered clinically (orally), but rather by injection, resulting in an altered pharmacokinetic profile (quicker and higher peak concentrations). We evaluated several oral-dosing regimens in rats, including dual-dose drinking, to mimic clinical drug delivery. Using an 8-hour-limited-access-drinking-paradigm, MP solutions were delivered at different doses (20, 30, or 60mg/kg/day; as well as dual-dosages of 4 and 10mg/kg/day, 20 and 30mg/kg/day, or 30 and 60mg/kg/day, in which the low dose was administered in the first hour of drinking followed by 7 h of drinking the high dose). Plasma was assayed for MP levels at many time points. Results showed that an 8-hour limited drinking of a dual-dosage 30/60mg/kg MP solution achieved a pharmacokinetic profile similar to clinically administered doses of MP at the high end of the spectrum (peaking at ~30ng/mL), while the 4/10mg/kg MP dual-dosage produced plasma levels in the range produced by typically prescribed clinical doses of MP (peaking at ~8ng/mL). Treatment with the higher dual-dosage (HD: 30/60mg/kg) resulted in hyperactivity, while the lower (LD: 4/10mg/kg) had no effect. Chronic effects of these dual-dosages were assessed throughout three months of treatment and one month of abstinence, beginning in adolescence. MP dose-dependently decreased body weight, which remained attenuated throughout abstinence. MP decreased food intake during early treatment, suggesting that MP may be an appetite suppressant and may also speed metabolism and/or suppress growth. Chronic HD MP resulted in hyperactivity limited during the dark cycle, decreased exploratory behavior, and increased anxiolytic behavior. Findings suggest that these dual-dosage-drinking-paradigms can be used to examine the effects of clinically relevant pharmacokinetic doses of MP and that chronic treatment with such dosages can result in long-lasting developmental and behavioral changes. Copyright © 2015 Elsevier Inc. All rights reserved.
Kawamura, Hiromi; Tanaka, Sarasa; Uenami, Yuri; Tani, Mariko; Ishitani, Midori; Morii, Saeko; Sakaue, Motoyoshi; Ito, Mikiko
2018-01-01
Refeeding syndrome (RFS) is characterized by the metabolic and clinical changes that occur following aggressive nutritional supplementation in malnourished patients. Hypophosphatemia is the hallmark of RFS and is key to its prevention and treatment in clinical practice. However, the mechanism of hypophosphatemia during RFS is unclear because of the lack of an animal model. In this study, we developed a rat RFS model as a first step to clarifying the molecular mechanism. After establishing the parenteral route, rats were fasted for 5 days and refeeding was started using total parenteral nutrition. The animals were infused with a high calorie solution with or without insulin administration. Results showed that plasma phosphate levels did not decrease in rats infused with the high calorie solution alone;in contrast, a 20% reduction compared to baseline was observed in rats administered insulin. In addition, rats infused with the high calorie solution containing added phosphate did not present with hypophosphatemia. Thus, we developed a rat RFS model with hypophosphatemia by tube feeding and insulin administration, and demonstrated the importance of phosphate in preventing refeeding hypophosphatemia. J. Med. Invest. 65:50-55, February, 2018.
Bassett, Leanne; Troncy, Eric; Pouliot, Mylene; Paquette, Dominique; Ascah, Alexis; Authier, Simon
2014-01-01
Non-clinical seizure liability studies typically aim to: 1) confirm the nature of EEG activity during abnormal clinical signs, 2) identify premonitory clinical signs, 3) measure plasma levels at seizure onset, 4) demonstrate that drug-induced seizures are self-limiting, 5) confirm that conventional drugs (e.g. diazepam) can treat drug-induced seizures and 6) confirm the no observed adverse effect level (NOAEL) at EEG. Our aim was to originally characterize several of these items in a three species comparative study. Cynomolgus monkey, Beagle dog and Sprague-Dawley rat with EEG telemetry transmitters were used to obtain EEG using the 10-20 system. Pentylenetetrazol (PTZ) was used to determine seizure threshold or as a positive seizurogenic agent. Clinical signs were recorded and premonitory signs were evaluated. In complement, other pharmacological agents were used to illustrate various safety testing strategies. Intravenous PTZ doses required to induce clonic convulsions were 36.1 (3.8), 56.1 (12.7) and 49.4 (11.7) mg/kg, in Beagle dogs, cynomolgus monkeys and Sprague-Dawley rats, respectively. Premonitory clinical signs typically included decreased physical activity, enhanced physiological tremors, hypersalivation, ataxia, emesis (except in rats) and myoclonus. In Sprague-Dawley rats, amphetamine (PO) increased high (approximately 40-120Hz), and decreased low (1-14Hz) frequencies. In cynomolgus monkeys, caffeine (IM) increased power in high (14-127Hz), and attenuated power in low (1-13Hz) frequencies. In the rat PTZ infusion seizure threshold model, yohimbine (SC and IV) and phenobarbital (IP) confirmed to be reliable positive controls as pro- and anticonvulsants, respectively. Telemetry video-EEG for seizure liability investigations was characterized in three species. Rats represent a first-line model in seizure liability assessments. Beagle dogs are often associated with overt susceptibility to seizure and are typically used in seizure liability studies only if required by regulators. Non-human primates represent an important model in seizure liability assessments given similarities to humans and a high translational potential. Copyright © 2014. Published by Elsevier Inc.
Effect of Zinc-Deficient Diet on Oral Tissues and Periodontal Indices in Rats
Seyedmajidi, Seyed Ali; Seyedmajidi, Maryam; Moghadamnia, Aliakbar; Khani, Zohreh; Zahedpasha, Samir; Jenabian, Niloofar; Jorsaraei, Gholamali; Halalkhor, Sohrab; Motallebnejad, Mina
2014-01-01
Zinc (Zn) as a nutritional factor affects the health of the oral tissues. This study was done for the evaluation of the effects of zinc deficiency on the oral tissues of rats. The study was carried out on 14 male Wistar rats, cessation of lactation on the 24th day after birth. The rats were randomly divided into two groups. Zinc deficient (ZD) diet was used for one group and another group was fed with a zinc-containing (ZC) diet. The alterations of the oral tissues in both groups were evaluated clinically after four weeks. Also the gingival index and periodontal pocket depth were recorded. The measurement of serum zinc level was done by atomic absorption spectrophotometry. The microscopic slides of oral tissue specimen were evaluated quantitatively. The serum zinc level of the ZD rats was lower than the ZC group (p< 0.001). According clinical findings, the gingival index was lower in ZC rat (p=0.001), but there was no significant difference regarding the periodontal pocket depth between two groups (p=0.07). Aphthous ulcer was observed in ZD rats on the floor of the mouth. There was no significant difference regarding the epithelial and keratin thickening between two groups. This study indicated that oral and periodontal health was better in ZC rats than in ZD rats. Aphthous lesions were more prominent in ZD rats. This study confirmed that zinc deficiency may endanger oral and periodo ntal structures. PMID:25035857
Corbellini, Ezio; Corbellini, Monica; Licciardello, Orazio; Marotta, Francesco
2014-04-01
The QUEC PHISIS(™) technology, based on the theory of coherence domains of water, is the most advanced application of quantum electrodynamics coherence suitable for transferring highly targeted and personalized electromagnetic signals to the living cells. Several experimental studies in aged rats confirm its beneficial action on vital cellular parameters while also optimizing the bioavailability and absorption of fundamental elements in cellular metabolism. Clinical observations have followed and have strengthened its applicability in healthy volunteers and in patients with complex diseases such as cardiovascular, neuromuscular, and metabolic disorders. Our pilot study on severely compromised, frail subjects corroborates its relevance. The delivery of correct frequencies has the potential to become a safe, very affordable, and effective therapeutic modality that is amenable to being integrated with pharmacological drugs, thus representing a substantial innovation in medical practice.
Atypical Febrile Seizures, Mesial Temporal Lobe Epilepsy, and Dual Pathology
Sanon, Nathalie T.; Desgent, Sébastien; Carmant, Lionel
2012-01-01
Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE. PMID:22957226
Rivier, Jean E; Rivier, Catherine L
2014-04-01
Elusive for more than half a century, corticotropin-releasing factor (CRF) was finally isolated and characterized in 1981 from ovine hypothalami and shortly thereafter, from rat brains. Thirty years later, much has been learned about the function and localization of CRF and related family members (Urocortins 1, 2 and 3) and their 2 receptors, CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2). Here, we report the stepwise development of peptide CRF agonists and antagonists, which led to the CRFR1 agonist Stressin1; the long-acting antagonists Astressin2-B which is specific for CRFR2; and Astressin B, which binds to both CRFR1 and CRFR2.This analog has potential for the treatment of CRF-dependent diseases in the periphery, such as irritable bowel syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.
Pharmacological effects of saw palmetto extract in the lower urinary tract
Suzuki, Mayumi; Ito, Yoshihiko; Fujino, Tomomi; Abe, Masayuki; Umegaki, Keizo; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo
2009-01-01
Saw palmetto extract (SPE), an extract from the ripe berries of the American dwarf palm, has been widely used as a therapeutic remedy for urinary dysfunction due to benign prostatic hyperplasia (BPH) in Europe. Numerous mechanisms of action have been proposed for SPE, including the inhibition of 5α-reductase. Today, α1-adrenoceptor antagonists and muscarinic cholinoceptor antagonists are commonly used in the treatment of men with voiding symptoms secondary to BPH. The improvement of voiding symptoms in patients taking SPE may arise from its binding to pharmacologically relevant receptors in the lower urinary tract, such as α1-adrenoceptors, muscarinic cholinoceptors, 1,4-dihyropyridine receptors and vanilloid receptors. Furthermore, oral administration of SPE has been shown to attenuate the up-regulation of α1-adrenoceptors in the rat prostate induced by testosterone. Thus, SPE at clinically relevant doses may exert a direct effect on the pharmacological receptors in the lower urinary tract, thereby improving urinary dysfunction in patients with BPH and an overactive bladder. SPE does not have interactions with co-administered drugs or serious adverse events in blood biochemical parameters, suggestive of its relative safety, even with long-term intake. Clinical trials (placebo-controlled and active-controlled trials) of SPE conducted in men with BPH were also reviewed. This review should contribute to the understanding of the pharmacological effects of SPE in the treatment of patients with BPH and associated lower urinary tract symptoms (LUTS). PMID:19262550
Pharmacological effects of saw palmetto extract in the lower urinary tract.
Suzuki, Mayumi; Ito, Yoshihiko; Fujino, Tomomi; Abe, Masayuki; Umegaki, Keizo; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo
2009-03-01
Saw palmetto extract (SPE), an extract from the ripe berries of the American dwarf palm, has been widely used as a therapeutic remedy for urinary dysfunction due to benign prostatic hyperplasia (BPH) in Europe. Numerous mechanisms of action have been proposed for SPE, including the inhibition of 5alpha-reductase. Today, alpha(1)-adrenoceptor antagonists and muscarinic cholinoceptor antagonists are commonly used in the treatment of men with voiding symptoms secondary to BPH. The improvement of voiding symptoms in patients taking SPE may arise from its binding to pharmacologically relevant receptors in the lower urinary tract, such as alpha(1)-adrenoceptors, muscarinic cholinoceptors, 1,4-dihyropyridine receptors and vanilloid receptors. Furthermore, oral administration of SPE has been shown to attenuate the up-regulation of alpha(1)-adrenoceptors in the rat prostate induced by testosterone. Thus, SPE at clinically relevant doses may exert a direct effect on the pharmacological receptors in the lower urinary tract, thereby improving urinary dysfunction in patients with BPH and an overactive bladder. SPE does not have interactions with co-administered drugs or serious adverse events in blood biochemical parameters, suggestive of its relative safety, even with long-term intake. Clinical trials (placebo-controlled and active-controlled trials) of SPE conducted in men with BPH were also reviewed. This review should contribute to the understanding of the pharmacological effects of SPE in the treatment of patients with BPH and associated lower urinary tract symptoms (LUTS).
Sistare, Frank D; Morton, Daniel; Alden, Carl; Christensen, Joel; Keller, Douglas; Jonghe, Sandra De; Storer, Richard D; Reddy, M Vijayaraj; Kraynak, Andrew; Trela, Bruce; Bienvenu, Jean-Guy; Bjurström, Sivert; Bosmans, Vanessa; Brewster, David; Colman, Karyn; Dominick, Mark; Evans, John; Hailey, James R; Kinter, Lewis; Liu, Matt; Mahrt, Charles; Marien, Dirk; Myer, James; Perry, Richard; Potenta, Daniel; Roth, Arthur; Sherratt, Philip; Singer, Thomas; Slim, Rabih; Soper, Keith; Fransson-Steen, Ronny; Stoltz, James; Turner, Oliver; Turnquist, Susan; van Heerden, Marjolein; Woicke, Jochen; DeGeorge, Joseph J
2011-06-01
Data collected from 182 marketed and nonmarketed pharmaceuticals demonstrate that there is little value gained in conducting a rat two-year carcinogenicity study for compounds that lack: (1) histopathologic risk factors for rat neoplasia in chronic toxicology studies, (2) evidence of hormonal perturbation, and (3) positive genetic toxicology results. Using a single positive result among these three criteria as a test for outcome in the two-year study, fifty-two of sixty-six rat tumorigens were correctly identified, yielding 79% test sensitivity. When all three criteria were negative, sixty-two of seventy-six pharmaceuticals (82%) were correctly predicted to be rat noncarcinogens. The fourteen rat false negatives had two-year study findings of questionable human relevance. Applying these criteria to eighty-six additional chemicals identified by the International Agency for Research on Cancer as likely human carcinogens and to drugs withdrawn from the market for carcinogenicity concerns confirmed their sensitivity for predicting rat carcinogenicity outcome. These analyses support a proposal to refine regulatory criteria for conducting a two-year rat study to be based on assessment of histopathologic findings from a rat six-month study, evidence of hormonal perturbation, genetic toxicology results, and the findings of a six-month transgenic mouse carcinogenicity study. This proposed decision paradigm has the potential to eliminate over 40% of rat two-year testing on new pharmaceuticals without compromise to patient safety.
Hesterberg, T W; Hart, G A
1994-12-01
In a recent rat inhalation study, 2 years of exposure to high concentrations of fiberglass (FG) resulted in no treatment-related fibrosis or thoracic tumors. To determine the relevancy of this study for human risk assessment, it is important to compare the rat experimental exposure levels with those of humans. Data on human exposures were taken from several studies and included FG manufacturing, installation and removal, and ambient air. FG levels in the rat aerosol were 200,000-fold higher than indoor air, > 2000-fold higher than during FG insulation manufacturing, and > 1000-fold higher than FG batt installation. The rat aerosol was 30-fold more concentrated than the highest human exposure (blowing installation of unbound FG). Rat FG lung burden also vastly exceeded that of FG workers, which was not significantly elevated above nonworker levels. The amount of fibers/mg dry lung for the rat after lifetime exposure was > 4000-fold greater than for the FG worker, average exposure 11 years. Aerosol and lung fiber dimensions in the rat study were comparable to those of human exposures. From these comparisons, it can be concluded that the exposure level in the rat inhalation study was sufficiently, if not excessively, high in comparison to human exposures. Increasing the experimental exposure in the rat studies would not serve to mirror human environmental or occupational exposures.
MECHANISTIC CONSIDERATIONS FOR HUMAN RELEVANCE OF CANCER HAZARD OF DI(2-ETHYLHEXYL) PHTHALATE
Rusyn, Ivan; Corton, J. Christopher
2012-01-01
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B). PMID:22198209
Gertel, Smadar; Mahagna, Hussein; Karmon, Gidi; Watad, Abdulla; Amital, Howard
2017-11-01
Rheumatoid arthritis (RA) is an autoimmune disease characterized by pronounced inflammation and leukocyte infiltration in affected joints. Tofacitinib is new agent, a selective inhibitor of Janus kinase (JAK) signaling pathways mediated by JAK1 and JAK3 and inhibits the key transcription factors STAT1 and STAT3. We investigated the action mechanisms of tofacitinib in rats with adjuvant-induced-arthritis (AIA). AIA-rats were treated orally with tofacitinib or with methotrexate. Arthritis severity and serum C-reactive protein (CRP) levels were evaluated, splenic cells were examined by flow cytometry and cytokines were analyzed by real-time PCR. Tofacitinib markedly reduced the clinical status of treated rats in comparison to control group. Reduced joints inflammation and down-regulated serum CRP levels reflected the clinical manifestations of the treated rats. Tofacitinib down-regulated significantly the frequency of CD4 + IFN-γ + T cells and reduced IL-1β mRNA expression levels in the spleen of the treated rats. These results show that tofacitinib attenuated arthritis severity, modified splenic populations and cytokine imbalance. Copyright © 2017. Published by Elsevier Inc.
Modeling Alzheimer’s disease in transgenic rats
2013-01-01
Alzheimer’s disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this “pre-clinical” stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes. PMID:24161192
Dexmedetomidine and propofol sedation requirements in an autistic rat model.
Elmorsy, Soha A; Soliman, Ghada F; Rashed, Laila A; Elgendy, Hamed
2018-05-30
Autism is a challenging neurodevelopmental disorder. Previous clinical observations suggest altered sedation requirements for autistic children. Our study aimed to test this observation experimentally with an animal model and, to explore its possible mechanisms. Eight adult pregnant female Sprague Dawley rats were randomly selected into two groups. Four were injected with intraperitoneal sodium valproate on the gestational day 12 and four were injected with normal saline. On post-natal day 28 the newborn male rats were subjected to an open field test to confirm autistic features. Each rat was injected intraperitoneally with a single dose of propofol (50 mg/kg) or dexmedetomidine (0.2 mg/kg). Times to Loss of Righting Reflex (LORR) and to Return of Righting Reflex (RORR) were recorded. On the next day, all rats were re-sedated and their EEGs were recorded. The rats were sacrificed and hippocampal GABAA and glutamate NMDA receptor gene expression were assessed. Autistic rats showed significantly longer time to LORR and a shorter time to RORR compared to controls (Median time to LORR: 12.0 versus 5.0 for dexmedetomidine and 22.0 and 8.0 for propofol; p < 0.05). EEG showed a low frequency, high amplitude wave pattern two minutes after LORR in control rats. Autistic rats showed a high frequency, low amplitude awake pattern. Hippocampal GABAA receptor gene expression was significantly less in autistic rats and NMDA gene expression was greater. This study in rat supports the clinical observations of increased anesthetic sedative requirements in autistic children and proposes a mechanism for it.
Bech, Christine Flagstad; Frederiksen, Tine; Villesen, Christine Tilsted; Højsted, Jette; Nielsen, Per Rotbøll; Kjeldsen, Lene Juel; Nørgaard, Lotte Stig; Christrup, Lona Louring
2018-02-01
Background Disagreement among healthcare professionals on the clinical relevance of drug-related problems can lead to suboptimal treatment and increased healthcare costs. Elderly patients with chronic non-cancer pain and comorbidity are at increased risk of drug related problems compared to other patient groups due to complex medication regimes and transition of care. Objective To investigate the agreement among healthcare professionals on their classification of clinical relevance of drug-related problems in elderly patients with chronic non-cancer pain and comorbidity. Setting Multidisciplinary Pain Centre, Rigshospitalet, Copenhagen, Denmark. Method A pharmacist performed medication review on elderly patients with chronic non-cancer pain and comorbidity, identified their drug-related problems and classified these problems in accordance with an existing categorization system. A five-member clinical panel rated the drug-related problems' clinical relevance in accordance with a five-level rating scale, and their agreement was compared using Fleiss' κ. Main outcome measure Healthcare professionals' agreement on clinical relevance of drug related problems, using Fleiss' κ. Results Thirty patients were included in the study. A total of 162 drug related problems were identified, out of which 54% were of lower clinical relevance (level 0-2) and 46% of higher clinical relevance (level 3-4). Only slight agreement (κ = 0.12) was found between the panellists' classifications of clinical relevance using a five-level rating scale. Conclusion The clinical pharmacist identified drug related problems of lower and higher clinical relevance. Poor overall agreement on the severity of the drug related problems was found among the panelists.
Elucidating Poor Decision-Making in a Rat Gambling Task
Seriès, Peggy; Marchand, Alain R.; Dellu-Hagedorn, Françoise
2013-01-01
Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder, pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa gambling task – the Rat Gambling Task (RGT), we identified a population of poor decision makers, and assessed how these rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility, and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making tasks and may predispose to mental disorders with similar symptoms. PMID:24339988
Elucidating poor decision-making in a rat gambling task.
Rivalan, Marion; Valton, Vincent; Seriès, Peggy; Marchand, Alain R; Dellu-Hagedorn, Françoise
2013-01-01
Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder, pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa gambling task--the Rat Gambling Task (RGT), we identified a population of poor decision makers, and assessed how these rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility, and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making tasks and may predispose to mental disorders with similar symptoms.
Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej
2011-04-01
Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shitara, Yoshihisa; Nakamichi, Noritaka; Norioka, Misaki; Shima, Hiroyo; Kato, Yukio; Horie, Toshiharu
2013-03-01
Phenformin causes lactic acidosis in clinical situations due to inhibition of mitochondrial respiratory chain complex I. It is reportedly taken up by hepatocytes and exhibits mitochondrial toxicity in the liver. In this study, uptake of phenformin and [(14)C]tetraethylammonium (TEA) and complex I inhibition by phenformin were examined in isolated liver and heart mitochondria. Uptake of phenformin into isolated rat liver mitochondria was higher than that into heart mitochondria. It was inhibited by several cat ionic compounds, which suggests the involvement of multispecific transport system(s). Similar characteristics were also observed for uptake of TEA; however, uptake of phenformin into mitochondria of organic cation/carnitine transporter 1 (OCTN1) knockout mice was lower than that in wild-type mice, whereas uptake of TEA was comparable between the two strains, suggesting the involvement of distinct transport mechanisms for these two cations in mitochondria. Inhibition by phenformin of oxygen consumption via complex I respiration in isolated rat liver mitochondria was greater than that in heart mitochondria, whereas inhibitory effect of phenformin on complex I respiration was similar in inside-out structured submitochondrial particles prepared from rat livers and hearts. Lactic acidosis provoked by iv infusion of phenformin was weaker in octn1(-/-) mice than that in wild-type mice. These observations suggest that uptake of phenformin into liver mitochondria is at least partly mediated by OCTN1 and functionally relevant to its inhibition potential of complex I respiration. This study was, thus, the first to demonstrate OCTN1-mediated mitochondrial transport and toxicity of biguanide in vivo in rodents.
Saitoh, M; Umemura, T; Kawasaki, Y; Momma, J; Matsushima, Y; Sakemi, K; Isama, K; Kitajima, S; Ogawa, Y; Hasegawa, R; Suzuki, T; Hayashi, M; Inoue, T; Ohno, Y; Sofuni, T; Kurokawa, Y; Tsuda, M
1999-07-01
2-Mercaptobenzimidazole (2-MBI), a rubber antioxidant, is known to exhibit potent antithyroid toxicity in rats and is a candidate as an environmental endocrine disrupter. 2-Mercaptomethylbenzimidazoles (a 1:1 mixture of 4-methyl and 5-methyl isomers, MMBIs), are also employed industrially as rubber antioxidants and are suspected to exert antithyroid toxicity such as 2-MBI. In this investigation, acute and subacute oral toxicity studies of MMBIs in Wistar rats were conducted. The clinical signs of acute oral toxicity were observed including decreased spontaneous movement, a paralytic gait, salivation and lacrimation, and adoption of prone and lateral positions. The LD50 was estimated to be 330 mg/kg. In the subacute oral toxicity study, male and female rats were treated with MMBIs by gavage at doses of 0 (corn oil), 4, 20 and 100 mg/kg for 28 consecutive days followed by a 2-week recovery period for the control and highest dose groups. Body weight and food consumption, clinical signs, organ weights, clinical biochemistry and haematological parameters including clotting times and micronuclei induction in bone marrow erythropoeitic cells, and histopathology were examined. Relative organ weights of lung, liver and kidney, and serum cholesterol and phospholipid significantly increased in male rats treated with MMBIs at doses of 20 and 100 mg/kg. Male rats administered 100 mg/kg MMBIs exhibited a 1.8-fold increase in thyroid weight associated with histopathological changes but not altered serum thyroid hormone levels. Female rats administered 100 mg MMBIs/kg exhibited significant increases of liver and kidney but not thyroid weights, and serum cholesterol level. The antithyroid toxicity of MMBIs in rats was estimated to be one-tenth that of 2-MBI. No-observed-effect levels for male and female rats were found to be 4 and 20 mg/kg, respectively, in this subacute oral toxicity study.
Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.
Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon
2017-06-01
A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Olier, Maïwenn; Sekkal, Soraya; Harkat, Cherryl; Eutamene, Hélène; Theodorou, Vassilia
2017-05-01
Reticulated gelatin (RG), hibiscus and propolis (RGHP) is a medical device that can reduce the bacterial adherence to epithelial cultured cells and invasion by enteropathogens, thus gathering relevant properties to decrease the risk of urinary tract infections (UTIs). We aimed at evaluating in Wistar rats the efficacy of RGHP, RG and vehicle against intestinal commensals commonly involved in UTIs. Animals received orally (with supplemental Na 2 CO 3 ): RGHP 1540 mg/day/rat; RG 500 mg/day/rat or vehicle. RGHP significantly reduced fecal Escherichia coli and Enterococcus spp. levels without affecting other targeted Enterobacteriaceae. The antagonistic property of RGHP was confirmed in streptomycin-pretreated rats highly colonized with a human commensal E. coli strain with uropathogenic potential. RGHP may decrease the risk of UTIs by reducing colonization by opportunistic uropathogens.
biologically relevant effects of dipentyl phthalate
metadata sheet, data sheet for each table and figure in the published manuscriptThis dataset is associated with the following publication:Gray , E., J. Furr , K. Tatum-Gibbs, C. Lambright , H. Sampson, B. Hannas, V. Wilson , A. Hotchkiss , and P. Foster. Establishing the Biological Relevance of Dipentyl Phthalate Reductions in Fetal Rat Testosterone Production and Plasma and Testis Testosterone Levels. TOXICOLOGICAL SCIENCES. Society of Toxicology, 149(1): 178-91, (2016).
Van den Bergh, An; Van Hemelryck, Sandy; Bevernage, Jan; Van Peer, Achiel; Brewster, Marcus; Mackie, Claire; Mannaert, Erik
2018-06-11
The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( F abs,sol ) and relative ( F rel, susp/sol ) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having F rel,susp/sol and F abs,sol in both rat and dog at doses around 10 and 5 mg/kg, respectively. The bioavailability outcomes in the dog aligned well with a BCS-like classification based upon the solubility of the active pharmaceutical ingredient (API) in biorelevant media, while the alignment was less clear for the bioavailability data in the rat. A retrospective analysis on the clinically tested formulations for a set of 12 Janssen compounds confirmed that the previously proposed animal bioavailability-based decision tree facilitated decisions on the oral formulation type, with the dog as the most discriminative species. Furthermore, the analysis showed that based on a Do for a standard human dose of 100 mg in aqueous and/or biorelevant media, a similar formulation type would have been selected compared to the one suggested by the animal data. However, the concept of a Do did not distinguish between solubility enhancing or enabling formulations and does not consider the API permeability, and hence, it produces the risk of slow and potentially incomplete oral absorption of an API with poor intestinal permeability. In cases where clinical dose estimations are available early in development, the preclinical bioavailability studies and dose number calculations, used to guide formulation selection, may be performed at more relevant doses instead of the proposed standard human dose. It should be noted, however, that unlike in late development, there is uncertainty on the clinical dose estimated in the early clinical phases because that dose is usually only based on in vitro and/or in vivo animal pharmacology models, or early clinical biomarker information. Therefore, formulation strategies may be adjusted based on emerging data supporting clinical doses. In summary, combined early information on in vitro-assessed API solubility and permeability, preclinical suspension/solution bioavailability data in relation to the intravenous clearance, and metabolic pathways of the API can strengthen formulation decisions. However, these data may not always fully distinguish between conventional (e.g., to be taken with food), enhancing, and enabling formulations. Therefore, to avoid overinvestment in complex and expensive enabling technologies, it is useful to evaluate a conventional and solubility (and/or permeability) enhancing formulation under fasted and fed conditions, as part of a first-in-human study or in a subsequent early human bioavailability study, for compounds with high Do, a low animal F rel,susp/sol , or low F abs,sol caused by precipitation of the solubilized API.
Perez, Stephanie M; Chen, Li; Lodge, Daniel J
2014-09-01
Clinical studies have reported differences in the incidence and severity of schizophrenia symptoms between male and female schizophrenia patients. Unfortunately, the cause of these differences is not currently known due, in part, to the fact that preclinical studies largely focus on male subjects. Dopamine neuron activity has been previously demonstrated to change across the estrous cycle, and may therefore be of relevance, as aberrant dopamine signaling is thought to underlie the positive symptoms of schizophrenia. Here we examine dopamine neuron activity across the estrous cycle in the MAM rodent model of schizophrenia. We demonstrate that the elevation in dopamine neuron activity, consistently observed in male MAM-treated rats, is most prominent during estrus and attenuated in met-estrus. Furthermore, this appears to be mediated, in part, by progesterone in the ventral hippocampus, as increases in dopamine neuron population activity (observed in estrus) were normalized by the intra-hippocampal administration of the progesterone receptor antagonist, mifepristone (but not the estrogen receptor antagonists, fulvestrant). Taken together, these data suggest that changes in dopamine system function occur across the estrous cycle in MAM-treated rats and may contribute to the differences in symptomatology between male and female schizophrenia patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues.
Jetté, L; Beaulieu, E; Leclerc, J M; Béliveau, R
1996-05-01
To see whether P-glycoprotein (PGP) expressed in renal brush-border membranes (BBM) could interact with compounds known as modulators of multidrug resistance (MDR), photoaffinity-labeling experiments were performed. A 145k-Da protein was photolabeled with [125I] iodoarylazidoprazosin, and this labeling was reduced in the presence of cyclosporin A (CsA) and PSC-833 (PSC). Interaction of CsA with PGP was further investigated by treating rats with daily subcutaneous injections of CsA (10 mg.kg-1.day-1). After this treatment, PGP expression levels were dramatically increased in renal BBM, intestine, liver, and many other tissues except the brain. This induction was a reversible process, since after cessation of CsA administration PGP levels declined to reach values similar to those of the control groups. The increase in PGP expression in the kidney was also detected in photolabeling experiments, suggesting the induction of a functional PGP. A higher dose of CsA (50 mg/kg) given as a bolus injection did not modify PGP expression] in renal BBM. These results demonstrate that CsA induces reversible overexpression of PGP in the rat. This may present significant relevance in the design of clinical trials using CsA as a chemosensitizing agent.
Janakiram, Naveena B.; Mohammed, Altaf; Bryant, Taylor; Zhang, Yuting; Brewer, Misty; Duff, Ashley; Biddick, Laura; Singh, Anil; Lightfoot, Stan; Steele, Vernon E; Rao, Chinthalapally V.
2016-01-01
Colorectal cancer (CRC) is the second highest cause of cancer-related deaths. A successful strategy to improve chemopreventive efficacies is by down-regulating tumor polyamines and enhancing NK cell activities. Colonic carcinogenesis was induced by azoxymethane (AOM) in male F344 rats. Eight weeks after AOM treatment, animals were fed diets containing Rosuvastatin and difluromethylornithine (DFMO) individually and in combination for 40 weeks. Both agents showed significant suppression of adenocarcinoma multiplicity and incidence with no toxicity compared to untreated rats. Low-dose Rosuvastatin plus DFMO suppressed colon adenocarcinoma multiplicity by 76% compared to low-dose Rosuvastatin (29%) and DFMO (46%), suggesting additive efficacy. Furthermore, low-dose combination caused a delay in colonic adenocarcinoma progression. DFMO, Rosuvastatin and/or combinations significantly decreased polyamine content and increased intra-tumoral NK cells expressing perforin plus IFN-γ compared to untreated colon tumors. Further ex-vivo analysis of splenic NK cells exposed to DFMO, Rosuvastatin or combination resulted in an increase of NKs with perforin expression. This is the first report on Rosuvastatin alone or combination strategy using clinically relevant statin plus DFMO doses which shows a significant suppression of colon adenocarcinomas, and their potential in increasing functional NK cells. This strategy has potential for further testing in high risk individuals for colon cancer. PMID:27841323
Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.
Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E
2016-05-01
Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trenkwalder, Teresa; Lahmann, Anna Lena; Nowicka, Magdalena; Pellegrini, Costanza; Rheude, Tobias; Mayr, N Patrick; Voss, Stephanie; Bleiziffer, Sabine; Lange, Rüdiger; Joner, Michael; Kasel, Albert M; Kastrati, Adnan; Schunkert, Heribert; Husser, Oliver; Hadamitzky, Martin; Hengstenberg, Christian
2018-02-21
Multislice computed tomography (MSCT) has emerged as the mainstay in patients planned for transcatheter aortic valve implantation (TAVI). Incidental findings (IF) in MSCT are common. However, the exact incidence, clinical relevance and further consequences of IF are unclear and it is controversial whether IF adversely affect patients' outcome. We analyzed MSCT data of 1050 patients screened for TAVI between January 2011 and December 2014. Median follow-up of patients was 20 months. In total, 3194 IF were identified, which were classified into clinically non-relevant IF (2872, 90%) and clinically relevant IF (322, 10%). In 25% of patients (258/1050) at least one clinically relevant IF was present. Age (80 ± 7 vs. 80 ± 7 years; p = 0.198) and EuroSCORE II (3.6% [2.1-5.7] vs. 3.6% [2.1-5.9]; p = 0.874) was similar between patients with and without a clinically relevant IF. TAVI was performed less frequently in patients with a clinically relevant IF (76% vs. 85%; p < 0.001), with more patients receiving surgical aortic valve replacement in that group (14% vs. 11%; p = 0.042), possibly due to the high rate of incidental aneurysms of the ascending aorta (n = 48). If TAVI was performed mortality did not differ (30-days: 4% vs. 3%; p = 0.339, 1-year: 11% vs. 14%; p = 0.226) between patients with and without a clinically relevant IF. Our study is the largest study to analyze prevalence, clinical relevance and therapeutic consequences of IF during screening for TAVI. IF in pre-procedural MSCT are common and clinically relevant in one-quarter of patients. However, these findings had no impact on overall mortality.
Individual variability in behavioral flexibility predicts sign-tracking tendency
Nasser, Helen M.; Chen, Yu-Wei; Fiscella, Kimberly; Calu, Donna J.
2015-01-01
Sign-tracking rats show heightened sensitivity to food- and drug-associated cues, which serve as strong incentives for driving reward seeking. We hypothesized that this enhanced incentive drive is accompanied by an inflexibility when incentive value changes. To examine this we tested rats in Pavlovian outcome devaluation or second-order conditioning prior to the assessment of sign-tracking tendency. To assess behavioral flexibility we trained rats to associate a light with a food outcome. After the food was devalued by pairing with illness, we measured conditioned responding (CR) to the light during an outcome devaluation probe test. The level of CR during outcome devaluation probe test correlated with the rats' subsequent tracking tendency, with sign-tracking rats failing to suppress CR to the light after outcome devaluation. To assess Pavlovian incentive learning, we trained rats on first-order (CS+, CS−) and second-order (SOCS+, SOCS−) discriminations. After second-order conditioning, we measured CR to the second-order cues during a probe test. Second-order conditioning was observed across all rats regardless of tracking tendency. The behavioral inflexibility of sign-trackers has potential relevance for understanding individual variation in vulnerability to drug addiction. PMID:26578917
Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J
2017-05-08
Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and other tissues is sparse. While transcriptomic regulation following methylprednisolone (MPL) dosing has been temporally examined in rat liver, proteomic assessments are needed to better characterize the tissue-specific functional aspects of MPL actions. This study describes a functional pharmacoproteomic analysis of dynamic changes in MPL-regulated proteins in liver and provides biological insight into how steroid-induced perturbations on a molecular level may relate to both adverse and therapeutic responses presented clinically. Copyright © 2017 Elsevier B.V. All rights reserved.
Capobianco, Evangelina; Pelesson, Magalí; Careaga, Valeria; Fornes, Daiana; Canosa, Ivana; Higa, Romina; Maier, Marta; Jawerbaum, Alicia
2015-10-01
Maternal diabetes can program metabolic and cardiovascular diseases in the offspring. The aim of this work was to address whether an olive oil supplemented diet during pregnancy can prevent lipid metabolic alterations in the heart of the offspring of mild diabetic rats. Control and diabetic Wistar rats were fed during pregnancy with either a standard diet or a 6% olive oil supplemented diet. The heart of adult offspring from diabetic rats showed increases in lipid concentrations (triglycerides in males and phospholipids, cholesterol, and free fatty acids in females), which were prevented with the maternal diets enriched in olive oil. Maternal olive oil supplementation increased the content of unsaturated fatty acids in the hearts of both female and male offspring from diabetic rats (possibly due to a reduction in lipoperoxidation), increased the expression of Δ6 desaturase in the heart of male offspring from diabetic rats, and increased the expression of peroxisome proliferator activated receptor α in the hearts of both female and male offspring from diabetic rats. Relevant alterations in cardiac lipid metabolism were evident in the adult offspring of a mild diabetic rat model, and regulated by maternal diets enriched in olive oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Świeca, Michał; Reguła, Julita; Suliburska, Joanna; Złotek, Urszula; Gawlik-Dziki, Urszula
2015-09-01
This paper examines the effects of gluten-free bread enriched with functional ingredients (milk powder, poppy, sunflower and pumpkin seeds, egg yolk, carum, hazel nuts and amaranth) on the morphological and biochemical parameters and antioxidant status of rats serum. Rats were provided test diets--gluten-free breads and water ad libitum. After 14 days, the animals were weighed and killed. A hazel nut-amaranth bread diet significantly increased the level of thrombocytes when compared to control bread. A mixed bread diet significantly decreased cholesterol levels in rats. All fortified breads decreased triglyceride levels and alanine transaminase activity and caused an increase in antiradical activity of the serum. In rats fed with poppy-milk bread, milk-seed bread and mixed bread, a marked decrease in superoxide dismutase activity was found. Enriched breads reduced the levels of triglyceride and improved the antiradical properties of serum, although the physiological relevance of this needs to be confirmed by human studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Porto, Luiz Carlos S; da Silva, Juliana; Ferraz, Alexandre B F; Ethur, Eduardo M; Porto, Caroline D L; Marroni, Norma P; Picada, Jaqueline N
2015-12-01
Pecan shell decoction has been used to treat diabetes and obesity-related diseases. In this study, the effects of a pecan shell aqueous extract (PSAE) were evaluated in diabetic and hypercholesterolemic Wistar rats, analyzing clinical signs and biochemical as well as genotoxic and mutagenic parameters, to assess its safe use and efficacy. Diabetes mellitus and hypercholesterolemia were induced with streptozotocin (STZ) and tyloxapol, respectively. Animals were orally administered PSAE (100 mg/kg body weight, b.w.) for 28 days. Biochemical analyses and genotoxicity were evaluated in blood samples and mutagenicity was evaluated in bone marrow. PSAE treatment decreased the blood glucose level and stabilized clinical signs of diabetes in diabetic rats. PSAE diminished the increase in total cholesterol and triglyceride levels in hypercholesterolemic rats. The urea levels were higher in diabetic rats than in treated ones; however, creatinine values were the same in all groups. Elevated transaminase levels were suggestive of liver injuries in diabetic rats, and were not altered by PSAE treatment. PSAE did not show genotoxic or mutagenic activities in diabetic and hypercholesterolemic rats, indicating its safe use at 100 mg/kg b.w. not only in healthy rats but also in rats with induced metabolic alterations. The findings on PSAE's efficacy may indicate that its successful and popular use is in accordance with our results. Thus, PSAE might be a potential candidate for medical purposes as a complementary treatment of diabetes and hypercholesterolemia.
Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Kucuk, Osman; Ozercan, Ibrahim H; Juturu, Vijaya; Komorowski, James R
2013-07-28
The objective of the present study was to evaluate anti-diabetic effects of chromium picolinate (CrPic) and biotin supplementations in type 2 diabetic rats. The type 2 diabetic rat model was induced by high-fat diet (HFD) and low-dose streptozotocin. The rats were divided into five groups as follows: (1) non-diabetic rats fed a regular diet; (2) diabetic rats fed a HFD; (3) diabetic rats fed a HFD and supplemented with CrPic (80 μg/kg body weight (BW) per d); (4) diabetic rats fed a HFD and supplemented with biotin (300 μg/kg BW per d); (5) diabetic rats fed a HFD and supplemented with both CrPic and biotin. Circulating glucose, cortisol, total cholesterol, TAG, NEFA and malondialdehyde concentrations decreased (P< 0·05), but serum insulin concentrations increased (P< 0·05) in diabetic rats treated with biotin and CrPic, particularly with a combination of the supplements. Feeding a HFD to diabetic rats decreased PPAR-γ expression in adipose tissue and phosphorylated insulin receptor substrate 1 (p-IRS-1) expression of liver, kidney and muscle tissues, while the supplements increased (P< 0·001) PPAR-γ and p-IRS-1 expressions in relevant tissues. Expression of NF-κB in the liver and kidney was greater in diabetic rats fed a HFD, as compared with rats fed a regular diet (P< 0·01). The supplements decreased the expression of NF-κB in diabetic rats (P< 0·05). Results of the present study revealed that supplementing CrPic and biotin alone or in a combination exerts anti-diabetic activities, probably through modulation of PPAR-γ, IRS-1 and NF-κB proteins.
Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz
2016-12-01
Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β 1 ), gene expression of TGF-β 1 , connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.
Araos, Patricio; Mondaca, David; Jalil, Jorge E.; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz
2016-01-01
Background: Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Methods: Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague–Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. Results: All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β1), gene expression of TGF-β1, connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. Conclusions: In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. PMID:27587602
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turowska, Agnieszka; Librizzi, Damiano; Baumgartl, Nadja
The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mousemore » lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2 h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen. - Highlights: • Local and systemic distribution of GATA-3-specific DNAzyme hgd40 was investigated. • Pharmacokinetics of hgd40 was tested in rats and dogs. • hgd40 dissolved in PBS was easily taken up into the lungs after local application. • No accumulation of hgd40 was observed after multiple treatments. • Pharmacokinetic properties of hgd40 support convenient dose administration regimen.« less
Placenta hominis protects osteoporosis in ovariectomized rats.
Chae, H J; Choi, K H; Chae, S W; Kim, H M; Shin, T K; Lee, G Y; Jeong, G S; Park, H R; Choi, H I; Kim, S B; Yoo, S K; Kim, H R
2006-01-01
In China, Japan, and Korea, placenta hominis extracts (PHEs) are used clinically for the treatment of osteoporosis. The anti-osteoporotic effect of PHEs was studied. The trabecular bone area and thickness in OVX rats decreased by 50% from those in sham-operated rats; these decreases were completely inhibited by administration of PHEs for 7 weeks. Osteoclast numbers and the osteoblast surface were enhanced in OVX rats, but PHEs had no effect on these phenomena. Serum phosphorus and alkaline phosphatase in OVX rats increased compared to those in sham-operated rats, but the increases were not affected by the administration of PHEs. Thyroxine (T4) level was stimulated in OVX rats. The extracts inhibited the T4 level in the OVX rats. These results strongly suggest that PHEs be effective in preventing the development of bone loss induced by OVX in rats.
Waidyanatha, Suramya; Toy, Heather; South, Natalie; Gibbs, Seth; Mutlu, Esra; Burback, Brian; McIntyre, Barry S; Catlin, Natasha
2018-01-01
Vinpocetine is being used worldwide by people of all ages, including pregnant women, for its purported multiple health benefits. However, limited data is available addressing the safety/toxicity of vinpocetine. The National Toxicology Program conducted studies to examine potential effects of vinpocetine on the developing rat. Disposition data is helpful to put the fetal findings into context and provide information on the potential risk for humans. The current study reports the systemic exposure and toxicokinetic (TK) parameters of vinpocetine and metabolite, apovincaminic acid (AVA), in pregnant Harlan Sprague Dawley rats, fetuses and amniotic fluid following oral gavage exposure of dams to 5 and 20mg/kg vinpocetine from gestational day 6 to 18. Vinpocetine was absorbed rapidly in dams with a maximum plasma concentration (C max ) reaching ≤1.37h. Predicted C max and area under the concentration versus time curve (AUC) increased less than proportionally to the dose. Vinpocetine was rapidly distributed to the peripheral compartment. More importantly, significant transfer of vinpocetine from dam to fetuses was observed with fetal C max and AUC≥55% of dams. Vinpocetine was cleared rapidly from dam plasma with an elimination half-life of ≤4.02h with no apparent dose-related effect. Vinpocetine was rapidly and highly metabolized to AVA with AVA plasma levels in dams ≥2.7-fold higher than vinpocetine, although in the fetuses, AVA levels were much lower than vinpocetine. Comparison of current rat data with literature human data demonstrates that systemic exposure to vinpocetine in rats following repeated exposure to 5mg/kg is similar to that following a single human relevant dose of 10mg suggesting that the findings from the toxicology study may be relevant to humans. Published by Elsevier Inc.
Effects of estrogen coadministration on epoxiconazole toxicity in rats.
Stinchcombe, Stefan; Schneider, Steffen; Fegert, Ivana; Rey Moreno, Maria Cecilia; Strauss, Volker; Gröters, Sibylle; Fabian, Eric; Fussell, Karma C; Pigott, Geoffrey H; van Ravenzwaay, Bennard
2013-06-01
Epoxiconazole (EPX; CAS-No. 133855-98-8) is a triazole class-active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7-18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 μg/animal/day of estradiol cyclopentylpropionate abolished the EPX-mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen-related mechanism behind EPX-mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno-fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013). © 2013 Wiley Periodicals, Inc.
González-Trujano, María Eva; Alvarado-Vásquez, Noé; Mendoza-Sotelo, José; López, Guadalupe; Estrada-Camarena, Erika; Martínez-Mota, Lucia; Moreno, Julia
2012-08-01
Biochemical markers associated with the prognosis of depression in humans are being described in the literature, whereas experimental studies in animal models in search for antidepressant strategies are lacking. The aim of this study was to evaluate platelet morphology, platelet activity and nitric oxide (NO) synthesis as possible biomarkers of depressive-like behavior by using FST alone and in the presence of fluoxetine. Naïve rats were compared to those receiving vehicle or fluoxetine at 10mg/kg i.p. in acute, subchronic and chronic administration in the FST. After behavioral assessment, platelets were isolated from blood samples and analyzed by flow cytometry to determine the platelet mitochondrial membrane potential and NO synthesis. In addition, HPLC and electron microscopy were used to examine 5-HT and tryptophan levels and morphology of platelets, respectively. Rats receiving vehicle and exposed to FST showed depressive-like behavior at all the times tested; after chronic FST rats showed a similar pattern of alteration in platelet morphology and in the studied as possible biochemical markers as those previously recognized in depressive humans. Depressive-like behavior in rats exposed to FST was prevented in the presence of fluoxetine administration at all the times tested and associated with the prevention of alterations in platelet morphology, platelet activity and NO synthesis, and/or in 5-HT concentrations. The results of the present study suggest that platelet function and morphology might be relevant markers for the prognosis of depression and the search for functional treatments. Besides, the relevance of FST as model to study this psychiatric illness is reinforced. Copyright © 2012 Elsevier Inc. All rights reserved.
Jafari, Somayeh; Huang, Xu-Feng; Andrews, Jessica L.; Fernandez-Enright, Francesca
2013-01-01
Olanzapine (Olz) is one of the most effective antipsychotic drugs commonly used for treating schizophrenia. Unfortunately, Olz administration is associated with severe weight gain and metabolic disturbances. Both patients and clinicians are highly interested in the development of new antipsychotics which are as effective as atypical antipsychotics but which have a lower propensity to induce metabolic side effects. In the present study, we examined two new derivatives of Olz; OlzEt (2-ethyl-4-(4′-methylpiperazin-1′-yl)-10Hbenzo[b]thieno[2,3-e][1,4]diazepine), and OlzHomo (2-ethyl-4-(4′-methyl-1′,4′-diazepan-1′-yl)-10H-benzo[b]thieno[2,3-e] [1,4]diazepine), for their tendency to induce weight gain in rats. Weight gain and metabolic changes were measured in female Sprague Dawley rats. Animals were treated orally with Olz, OlzEt, OlzHomo (3 or 6 mg/kg/day), or vehicle (n = 8), three times daily at eight-hour intervals for 5 weeks. Furthermore, a phencyclidine (PCP)-treated rat model was used to examine the prevention of PCP-induced hyperlocomotor activity relevant for schizophrenia therapy. Male Sprague Dawley rats were pre-treated with a single dose (3 mg/kg/day) of Olz, OlzEt, OlzHomo, or vehicle (n = 12), for 2 weeks. Locomotor activity was recorded following a subcutaneous injection with either saline or PCP (10 mg/kg). Olz was found to induce weight gain, hyperphagia, visceral fat accumulation, and metabolic changes associated with reduced histamatergic H1 receptor density in the hypothalamus of treated rats. In contrast, OlzEt and OlzHomo presented promising antipsychotic effects, which did not induce weight gain or fat deposition in the treated animals. Behavioural analysis showed OlzEt to attenuate PCP-induced hyperactivity to a level similar to that of Olz; however, OlzHomo showed a lower propensity to inhibit these stereotyped behaviours. Our data suggest that the therapeutic effectiveness of OlzHomo may be delivered at a higher dose than that of Olz and OlzEt. Overall, OlzEt and OlzHomo may offer a better pharmacological profile than Olz for treating patients with schizophrenia. Clinical trials are needed to test this hypothesis. PMID:24349027
Brim, Remy L.; Noon, Kathleen R.; Collins, Gregory T.; Stein, Aron; Nichols, Joseph; Narasimhan, Diwa; Ko, Mei-Chuan; Woods, James H.
2012-01-01
Cocaine abuse and toxicity remain widespread problems in the United States. Currently cocaine toxicity is treated only symptomatically, because there is no Food and Drug Administration-approved pharmacotherapy for this indication. To address the unmet need, a stabilized mutant of bacterial cocaine esterase [T172R/G173Q-CocE (DM-CocE)], which hydrolyzes cocaine into inactive metabolites and has low immunogenic potential, has been developed and previously tested in animal models of cocaine toxicity. Here, we document the rapid cocaine hydrolysis by low doses of DM-CocE in vitro and in vivo, as well as the pharmacokinetics and distribution of the DM-CocE protein in rats. DM-CocE at 50.5 μg/kg effectively eliminated 4 mg/kg cocaine within 2 min in both male and female rats as measured by mass spectrometry. We expanded on these findings by using a pharmacologically relevant dose of DM-CocE (0.32 mg/kg) in rats and monkeys to hydrolyze convulsant doses of cocaine. DM-CocE reduced cocaine to below detection limits rapidly after injection; however, elimination of DM-CocE resulted in peripheral cocaine redistribution by 30 to 60 min. Elimination of DM-CocE was quantified by using [35S] labeling of the enzyme and was found to have a half-life of 2.1 h in rats. Minor urinary output of DM-CocE was also observed. Immunohistochemistry, Western blotting, and radiography all were used to elucidate the mechanism of DM-CocE elimination, rapid proteolysis, and recycling of amino acids into all tissues. This rapid elimination of DM-CocE is a desirable property of a therapeutic for cocaine toxicity and should reduce the likelihood of immunogenic or adverse reactions as DM-CocE moves toward clinical use. PMID:21990608
Qiu, Xudong; Johnson, James R.; Wilson, Bradley S.; Gammon, Seth T.; Piwnica-Worms, David; Barnett, Edward M.
2014-01-01
Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging standard for functional evaluation of future probe analogues and provides a basis for extending this strategy into glaucoma-specific animal models. PMID:24586415
NASA Astrophysics Data System (ADS)
Capogrosso, Marco; Gandar, Jerome; Greiner, Nathan; Moraud, Eduardo Martin; Wenger, Nikolaus; Shkorbatova, Polina; Musienko, Pavel; Minev, Ivan; Lacour, Stephanie; Courtine, Grégoire
2018-04-01
Objective. We recently developed soft neural interfaces enabling the delivery of electrical and chemical stimulation to the spinal cord. These stimulations restored locomotion in animal models of paralysis. Soft interfaces can be placed either below or above the dura mater. Theoretically, the subdural location combines many advantages, including increased selectivity of electrical stimulation, lower stimulation thresholds, and targeted chemical stimulation through local drug delivery. However, these advantages have not been documented, nor have their functional impact been studied in silico or in a relevant animal model of neurological disorders using a multimodal neural interface. Approach. We characterized the recruitment properties of subdural interfaces using a realistic computational model of the rat spinal cord that included explicit representation of the spinal roots. We then validated and complemented computer simulations with electrophysiological experiments in rats. We additionally performed behavioral experiments in rats that received a lateral spinal cord hemisection and were implanted with a soft interface. Main results. In silico and in vivo experiments showed that the subdural location decreased stimulation thresholds compared to the epidural location while retaining high specificity. This feature reduces power consumption and risks of long-term damage in the tissues, thus increasing the clinical safety profile of this approach. The hemisection induced a transient paralysis of the leg ipsilateral to the injury. During this period, the delivery of electrical stimulation restricted to the injured side combined with local chemical modulation enabled coordinated locomotor movements of the paralyzed leg without affecting the non-impaired leg in all tested rats. Electrode properties remained stable over time, while anatomical examinations revealed excellent bio-integration properties. Significance. Soft neural interfaces inserted subdurally provide the opportunity to deliver electrical and chemical neuromodulation therapies using a single, bio-compatible and mechanically compliant device that effectively alleviates locomotor deficits after spinal cord injury.
Michely, Julian A.; Manier, Sascha K.; Caspar, Achim T.; Brandt, Simon D.; Wallach, Jason; Maurer, Hans. H.
2017-01-01
Background: 3-Methoxyphencyclidine (3-MeO-PCP) and 3-methoxyrolicyclidine (3-MeO-PCPy) are two new psychoactive substances (NPS). The aims of the present study were the elucidation of their metabolic fate in rat and pooled human liver microsomes (pHLM) the identification of the cytochrome P450 (CYP) isoenzymes involved and the detectability using standard urine screening approaches (SUSA) after intake of common users’ doses using gas chromatography-mass spectrometry (GC-MS) liquid chromatography-multi-stage mass spectrometry (LC-MSn) and liquid chromatography-high-resolution tandem mass spectrometry (LC-HR-MS/MS) Methods: For metabolism studies rat urine samples were treated by solid phase extraction or simple precipitation with or without previous enzymatic conjugate cleavage. After analyses via LC-HR-MSn the phase I and II metabolites were identified Results: Both drugs showed multiple aliphatic hydroxylations at the cyclohexyl ring and the heterocyclic ring single aromatic hydroxylation carboxylation after ring opening O-demethylation and glucuronidation. The transferability from rat to human was investigated by pHLM incubations where O-demethylation and hydroxylation were observed. The involvement of the individual CYP enzymes in the initial metabolic steps was investigated after single CYP incubations. For 3-MeO-PCP CYP 2B6 was responsible for aliphatic hydroxylations and CYP 2C19 and CYP 2D6 for O-demethylation. For 3-MeO-PCPy aliphatic hydroxylation was again catalyzed by CYP 2B6 and O-demethylation by CYP 2C9 and CYP 2D6 Conclusions: As only polymorphically expressed enzymes were involved pharmacogenomic variations might occur but clinical data are needed to confirm the relevance. The detectability studies showed that the authors’ SUSAs were suitable for monitoring the intake of both drugs using the identified metabolites PMID:27758707
Hsu, Shao-Jung; Tsai, Ming-Hung; Chang, Ching-Chih; Hsieh, Yu-Hsin; Huang, Hui-Chun; Lee, Fa-Yauh; Chuang, Chiao-Ling; Hou, Ming-Chih; Lee, Shou-Dong
2018-03-30
Liver cirrhosis is characterized by portal hypertension. However, the alteration of portal hypertension-related derangements during cirrhosis resolution is not well known. The present study aimed to establish animal models with cirrhosis resolution and to investigate the relevant changes during this process. Male Sprague-Dawley rats were applied. In reverse thioacetamide (rTAA) model, rats were randomly allocated into four groups with control, thioacetamide (TAA) cirrhosis and rTAA groups that discontinued TAA for 4 or 8 weeks after cirrhosis induction. In reverse bile duct ligation (rBDL) model, rats received choledochoduodenal shunt surgery upon the establishment of cirrhosis and 4, 8, or 16 weeks were allowed after the surgery. At the end, portal hypertension-related parameters were evaluated. Cirrhosis resolution was observed in rTAA groups. Portal pressure (PP) decreased after cirrhosis resolution but remained higher than control group (control, TAA, rTAA4, rTAA8 (mmHg): 5.4 ± 0.3, 12.9 ± 0.3, 8.6 ± 0.4, 7.6 ± 0.6). Further survey found the increased splanchnic blood flow did not reduce during cirrhosis resolution. The extrahepatic pathological angiogenesis was not ameliorated (% of mesenteric window area: 1.2 ± 0.3, 7.3 ± 1.1, 8.3 ± 1.0, 11.3 ± 2.7). In collateral system, the shunting degree reduced while the vessels structure remained. The vascular contractility of all systems and nitric oxide (NO) production were normalized. In rBDL series, PP decreased in rBDL16 groups but the extrahepatic angiogenesis persisted. In conclusion, cirrhosis resolution attenuates but not completely normalizes portal hypertension because of persistently high splanchnic inflow and angiogenesis. In clinical setting, vascular complications such as varices could persist after cirrhosis resolution and further investigation to define the follow-up and treatment strategies is anticipated. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Li, Yan; Pehrson, Alan L; Oosting, Ronald S; Gulinello, Maria; Olivier, Berend; Sanchez, Connie
2017-07-15
Treatment-related sexual dysfunction is a common side effect of antidepressants and contributes to patient non-compliance or treatment cessation. However, the multimodal antidepressant, vortioxetine, demonstrates low sexual side effects in depressed patients. To investigate the mechanisms involved, sexual behavior was assessed in male and female rats after acute, and repeated (7 and 14 days) treatment with vortioxetine, flesinoxan (a 5-HT 1A receptor agonist), CP-94253 (a 5-HT 1B receptor agonist), or ondansetron (a 5-HT 3 receptor antagonist). These selective ligands were chosen to simulate vortioxetine's direct modulation of these receptors. Paroxetine was also included in the male study. Acute and repeated treatment with vortioxetine at doses corresponding to clinical levels (based on serotonin transporter occupancy) had minimal effects on sexual behavior in male and female rats. High dose vortioxetine plus flesinoxan (to mimic predicted clinical levels of 5-HT 1A receptor occupancy by vortioxetine) facilitated male rat sexual behavior (acutely) while inhibiting female rat proceptive behavior (both acutely and after 14 days treatment). The selective serotonin reuptake inhibitor, paroxetine, inhibited male sexual behavior after repeated administration (7 and 14 days). Flesinoxan alone facilitated male sexual behavior acutely while inhibiting female rat proceptive behavior after repeated administration (7 and 14 days). CP-94253 inhibited sexual behavior in both male and female rats after repeated administration. Ondansetron had no effect on sexual behavior. These findings underline the complex serotonergic regulation of sexual behavior and indicate that the low sexual side effects of vortioxetine found in clinical studies are likely associated with its direct modulation of serotonin receptors. Copyright © 2017. Published by Elsevier Ltd.
Brenna, Øystein; Furnes, Marianne W.; Drozdov, Ignat; van Beelen Granlund, Atle; Flatberg, Arnar; Sandvik, Arne K.; Zwiggelaar, Rosalie T. M.; Mårvik, Ronald; Nordrum, Ivar S.; Kidd, Mark; Gustafsson, Björn I.
2013-01-01
Background Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different time points after colitis induction, and 3) compare rat and human IBD mucosal transcriptomic data to evaluate whether TNBS-colitis is an appropriate model of IBD. Methodology/Principal Findings Five female Sprague Daley rats received TNBS diluted in 50% ethanol (18 mg/0.6 ml) rectally. The rats underwent colonoscopy with biopsy at different time points. RNA was extracted from rat biopsies and microarray was performed. PCR and in situ hybridization (ISH) were done for validation of microarray results. Rat microarray profiles were compared to human IBD expression profiles (25 ulcerative colitis Endoscopic score demonstrated mild to moderate colitis after three and seven days, but declined after twelve days. Histologic changes corresponded with the endoscopic appearance. Over-represented Gene Ontology Biological Processes included: Cell Adhesion, Immune Response, Lipid Metabolic Process, and Tissue Regeneration. IL-1α, IL-1β, TLR2, TLR4, PRNP were all significantly up-regulated, while PPARγ was significantly down-regulated. Among genes with highest fold change (FC) were SPINK4, LBP, ADA, RETNLB and IL-1α. The highest concordance in differential expression between TNBS and IBD transcriptomes was three days after colitis induction. ISH and PCR results corresponded with the microarray data. The most concordantly expressed biologically relevant pathways included TNF signaling, Cell junction organization, and Interleukin-1 processing. Conclusions/Significance Endoscopy with biopsies in TNBS-colitis is useful to follow temporal changes of inflammation visually and histologically, and to acquire tissue for gene expression analyses. TNBS-colitis is an appropriate model to study specific biological processes in IBD. PMID:23382912
2006-08-01
animals had higher corticosterone than Combined Enrichment/Not Stressed (CNS) animals (F [1, 22 ] = 6.78, p < 0.01). The greatest effects were in...biological effects of stress. In particular, plasma corticosterone levels have been reported to increase in response to stressors in different... effects of restraint stress on the biological and behavioral factors relevant to cardiovascular disease (e.g., plasma corticosterone levels
Eastman, Clifford L.; Fender, Jason S.; Temkin, Nancy R.; D’Ambrosio, Raimondo
2015-01-01
Conventionally developed antiseizure drugs fail to control epileptic seizures in about 30% of patients, and no treatment prevents epilepsy. New etiologically realistic, syndrome-specific epilepsy models are expected to identify better treatments by capturing currently unknown ictogenic and epileptogenic mechanisms that operate in the corresponding patient populations. Additionally, the use of electrocorticography permits better monitoring of epileptogenesis and the full spectrum of acquired seizures, including focal nonconvulsive seizures that are typically difficult to treat in humans. Thus, the combined use of etiologically realistic models and electrocorticography may improve our understanding of the genesis and progression of epilepsy, and facilitate discovery and translation of novel treatments. However, this approach is labor intensive and must be optimized. To this end, we used an etiologically realistic rat model of posttraumatic epilepsy, in which the initiating fluid percussion injury closely replicates contusive closed-head injury in humans, and has been adapted to maximize epileptogenesis and focal non-convulsive seizures. We obtained week-long 5-electrode electrocorticography 1 month post-injury, and used a Monte-Carlo-based non-parametric bootstrap strategy to test the impact of electrode montage design, duration-based seizure definitions, group size and duration of recordings on the assessment of posttraumatic epilepsy, and on statistical power to detect antiseizure and antiepileptogenic treatment effects. We found that use of seizure definition based on clinical criteria rather than event duration, and of recording montages closely sampling the activity of epileptic foci, maximize the power to detect treatment effects. Detection of treatment effects was marginally improved by prolonged recording, and 24 h recording epochs were sufficient to provide 80% power to detect clinically interesting seizure control or prevention of seizures with small groups of animals. We conclude that appropriate electrode montage and clinically relevant seizure definition permit convenient deployment of fluid percussion injury and electrocorticography for epilepsy therapy development. PMID:25523813
Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco
2015-01-01
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.
Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco
2015-01-01
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066
Analysis of antigen-induced changes in pulmonary mechanics in sensitized inbred rats.
Holroyde, M C; Smith, S Y; Holme, G
1982-05-01
An inbred line of rats was derived which develop marked and consistent dyspnea following sensitization and then exposure to aerosolized antigen. This pulmonary response was investigated in detail by determining forced pulmonary mechanics to derive respiratory rate, peak expiratory flow rate (PEFR), forced vital capacity (FVC), forced expiratory volume in 0.1 s (FEV0.1), and maximal midexpiratory flow rate (MMFR). Challenging anesthetized rats for 5 min with an aerosol of 3% egg albumin produced minimal change in respiratory rate, a 20% fall in PEFR, a 50% fall in FVC, and a 30% decrease in FEV0.1 and MMFR. The response could be inhibited or reversed by salbutamol (0.5 mg/kg, i.v.) and aminophylline (25 mg/kg, i.v.) administered either before or after challenge. The pulmonary changes are consistent with antigen-induced asthma in the rats. The response shows similarities to human asthma and may provide a relevant experimental model.
Prinsen, Michael J.; Oliva, Jonathan; Campbell, Mary A.; Arnett, Stacy D.; Tajfirouz, Deena; Ruminski, Peter G.; Yu, Ying; Bond, Brian R.; Ji, Yuhua; Neckermann, Georg; Choy, Robert K. M.; de Hostos, Eugenio; Meyers, Marvin J.
2016-01-01
Racecadotril (acetorphan) is a neutral endopeptidase (NEP) inhibitor with known antidiarrheal activity in animals and humans; however, in humans, it suffers from shortcomings that might be improved with newer drugs in this class that have progressed to the clinic for nonenteric disease indications. To identify potentially superior NEP inhibitors with immediate clinical utility for diarrhea treatment, we compared their efficacy and pharmacologic properties in a rat intestinal hypersecretion model. Racecadotril and seven other clinical-stage inhibitors of NEP were obtained or synthesized. Enzyme potency and specificity were compared using purified peptidases. Compounds were orally administered to rats before administration of castor oil to induce diarrhea. Stool weight was recorded over 4 hours. To assess other pharmacologic properties, select compounds were orally administered to normal or castor oil–treated rats, blood and tissue samples collected at multiple time points, and active compound concentrations determined by mass spectroscopy. NEP enzyme activity was measured in tissue homogenates. Three previously untested clinical NEP inhibitors delayed diarrhea onset and reduced total stool output, with little or no effect on intestinal motility assessed by the charcoal meal test. Each was shown to be a potent, highly specific inhibitor of NEP. Each exhibited greater suppression of NEP activity in intestinal and nonintestinal tissues than did racecadotril and sustained this inhibition longer. These results suggest that newer clinical-stage NEP inhibitors originally developed for other indications may be directly repositioned for treatment of acute secretory diarrhea and offer advantages over racecadotril, such as less frequent dosing and potentially improved efficacy. PMID:26907621
Effects of cococonut water and simvastatin in the treatment of sepsis and hemorrhagic shock in rats.
Medeiros, Vanessa de Fátima Lima Paiva; Azevedo, Ítalo Medeiros; Carvalho, Marília Daniela Ferreira; Egito, Eryvaldo Sócrates Tabosa; Medeiros, Aldo Cunha
2016-12-01
To evaluate the effects of modified coconut water as fluid of resuscitation combined with simvastatin in hemorrhagic shock and sepsis model in rats. Four groups of Wistar rats with hemorrhagic shock and abdominal sepsis were studied (n=8/group). Rats were bled and maintained at a mean blood pressure 35mmHg for 60min. They were then resuscitated with: 1) saline 0.9%; 2) coconut water+3% NaCl; 3) coconut water+NaCl 3%+simvastatin microemulsion (10 mg/kg i.v.; 4) normal coconut water. At 8h post-resuscitation, blood and lungs were collected for exams. Clinical scores, TNF-α, IL-1β, liver/kidney proof levels, and lung injury were significantly reduced in coconut water+NaCl 3%+simvastatin group treated rats, comparing with the other resuscitation treatments. Resuscitation with coconut water with Nacl 3%+simvastatin had a significant beneficial effect on downregulating cytokines and decreasing lung injury in a rat model of abdominal sepsis and hemorrhagic shock. We also demonstrated that coconut water with Nacl 3%+simvastatin administration clearly made liver and kidney function better and improved clinical score.
Hou, Li; Fan, Chunguang; Liu, Chenghu; Qu, Qiujin; Wang, Chunren
2018-01-01
Abstract Systemic toxicity caused by repeated exposure to both polar and nonpolar leachables of di(2-ethylhexyl)-1,2-cyclohexane plasticized polyvinyl chloride (PVC) was evaluated with dual routes of parenteral administration method on rats in the study. Experimental group and control group were designed by researchers. Tail intravenous injection with 0.9% sodium chloride injection extracts and intraperitoneal injection with corn oil extracts were conducted to the experimental rats while tail intravenous injection with 0.9% sodium chloride Injection and intraperitoneal injection with corn oil were conducted to the control rats. After 14 days, blood specimens were collected for clinical pathology (hematology and clinical chemistry) analysis. Selected organs were weighed and a histopathological examination was conducted. As a result, compared with the control animals, there were no toxicity-related changes on the parameters above. The results show that the rats do not show obvious systemic toxicity reaction caused by repeated exposure with dual routes of parenteral administration method on rats after administration with both polar and nonpolar exacts of di(2-ethylhexyl)-1,2-cyclohexane plasticized PVC simultaneously up for 14 days. PMID:29423263
The influence of gender and the estrous cycle on learned helplessness in the rat.
Jenkins, J A; Williams, P; Kramer, G L; Davis, L L; Petty, F
2001-11-01
Although the etiology of clinical depression is unknown, women are more likely to suffer from major depressive disorder than men. In addition, in some women, there is a clear association between depression and specific phases of the menstrual cycle. Surprisingly little research has examined gender differences and the influences of the estrous cycle in this and other animal behavioral models of clinical depression. Learned helplessness is a valid animal model of stress-induced behavioral depression in which prior exposure to inescapable stress produces deficits in escape testing. Learned helplessness was studied in rats using an inescapable tail shock stress followed by a shuttle box test to determine escape latencies. Animals with mean escape latencies of >or=20 s after shuttle-box testing are defined as learned helpless. Males and normal cycling female rats in the estrus and diestrus II phases were studied. Female rats in the diestrus II phase had significantly higher escape latencies and exhibited a more helpless behavior than female rats in the estrus phase. Male rat escape latencies were intermediate between the two female phases. These results suggest a role for gonadal hormones in the development of stress-induced behavioral depression or 'learned helplessness.'
Subchronic toxicity studies of t-butyl alcohol in rats and mice.
Lindamood, C; Farnell, D R; Giles, H D; Prejean, J D; Collins, J J; Takahashi, K; Maronpot, R R
1992-07-01
The purpose of this study was to evaluate the toxicity of t-butyl alcohol, an important commodity chemical, an additive to unleaded gasoline, and a contaminant of drinking water. Ninety-day toxicity studies were conducted in B6C3F1 mice and Fischer 344 (F344) rats of both sexes using dosed water. Dose levels of t-butyl alcohol were 0, 0.25, 0.5, 1, 2, and 4% (w/v). Lethality was observed at the 4% level of both sexes and species. Weight-gain depression was present in all dose levels of male rats; 4% female rats; 1, 2, and 4% male mice; and 2 and 4% female mice. Water consumption was increased at lower dose levels in male rats and decreased in the higher dose levels of both sexes of rats and female mice. Clinical signs in rats were ataxia in both sexes and hypoactivity in males. Clinical signs in mice were ataxia, abnormal posture, and hypoactivity. In rats, urine volumes were reduced, in association with crystalluria. Gross lesions at necropsy were urinary tract calculi, renal pelvic and ureteral dilatation, and thickening of the urinary bladder mucosa. Microscopic lesions were hyperplasia of transitional epithelia and inflammation of the urinary bladder. In male rats treated with t-butyl alcohol, microscopic renal changes were suggestive of alpha-2 mu-globulin nephropathy. No-effect levels for the urinary tract lesions were 1% in male rats and mice (803.7 mg/kg/day for the male rats and 1565.8 mg/kg/day for the male mice) and 2% in female rats and mice (1451.5 mg/kg/day for the female rats and 4362.9 mg/kg/day for the female mice). The results indicate that in rodents the urinary tract is the target organ for t-butyl alcohol toxicity, and males are more sensitive to t-butyl alcohol toxicity than females.
Chronic corticosterone treatment enhances extinction-induced depression in aged rats.
Huston, Joseph P; Komorowski, Mara; de Souza Silva, Maria A; Lamounier-Zepter, Valéria; Nikolaus, Susanne; Mattern, Claudia; Müller, Christian P; Topic, Bianca
2016-11-01
Withdrawal and avoidance behavior are common symptoms of depression and can appear as a consequence of absence of reward, i.e. extinction-induced depression (EID). This is particularly relevant for the aged organism subjected to pronounced loss of former rewards. Avoidance of the former site of reward and increased withdrawal into a distant compartment accompany extinction of food-rewarded behavior in rodent models. During extinction, behavioral markers for re-learning dissociate from indicators of extinction-induced depression. Here we examined the effect of a chronic treatment with corticosterone (CORT), a well-known inducer of depression-related behavior, on EID in adult and aged rats. Adult (3-4months) and aged (18months) male rats were treated with CORT via drinking water for 3weeks prior to extinction of a cued food-reward task. CORT treatment increased the distance from the site of reward and decreased goal tracking behavior during extinction, especially in the aged rats. Plasma hormone levels measured before and after restraint stress showed a decline in basal ACTH- and CORT-levels after chronic CORT treatment in aged animals. The treatment significantly impaired the HPA-axis activation after acute stress in both, adult and aged animals, alike. Altogether, these findings show an enhancement of EID after chronic CORT treatment in the aged organism, which may be mediated by an impaired HPA-axis sensitivity. These findings may have special relevance for the investigation of human geriatric depression. Copyright © 2016 Elsevier Inc. All rights reserved.
Lefèvre, Pavine L.C.; Berger, Robert G.; Ernest, Sheila R.; Gaertner, Dean W.; Rawn, Dorothea F.K.; Wade, Michael G.; Robaire, Bernard; Hales, Barbara F.
2015-01-01
Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis. PMID:26607716
Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G
2003-10-10
The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.
Germain, M A; Hatton, A; Williams, S; Matthews, J B; Stone, M H; Fisher, J; Ingham, E
2003-02-01
Concern over polyethylene wear particle induced aseptic loosening of metal-on-polyethylene hip prostheses has led to renewed interest in alternative materials such as metal-on-metal and alumina ceramic-on-alumina ceramic for total hip replacement. This study compared the effects of clinically relevant cobalt-chromium and alumina ceramic wear particles on the viability of U937 histiocytes and L929 fibroblasts in vitro. Clinically relevant cobalt-chromium wear particles were generated using a flat pin-on-plate tribometer. The mean size of the clinically relevant metal particles was 29.5+/-6.3 nm (range 5-200 nm). Clinically relevant alumina ceramic particles were generated in the Leeds MkII anatomical hip simulator from a Mittelmieier prosthesis using micro-separation motion. This produced particles with a bimodal size distribution. The majority (98%) of the clinically relevant alumina ceramic wear debris was 5-20 nm in size. The cytotoxicity of the clinically relevant wear particles was compared to commercially available cobalt-chromium (9.87 microm+/-5.67) and alumina ceramic (0.503+/-0.19 microm) particles. The effects of the particles on the cells over a 5 day period at different particle volume (microm(3)) to cell number ratios were tested and viability determined using ATP-Lite(TM). Clinically relevant cobalt-chromium particles 50 and 5 microm(3) per cell reduced the viability of U937 cells by 97% and 42% and reduced the viability of L929 cells by 95% and 73%, respectively. At 50 microm(3) per cell, the clinically relevant ceramic particles reduced U937 cell viability by 18%. None of the other concentrations of the clinically relevant particles were toxic. The commercial cobalt-chromium and alumina particles did not affect the viability of either the U937 histiocytes or the L929 fibroblasts.Thus at equivalent particle volumes the clinically relevant cobalt-chromium particles were more toxic then the alumina ceramic particles. This study has emphasised the fact that the nature, size and volume of particles are important in assessing biological effects of wear debris on cells in vitro.
Badolo, Lassina; Bundgaard, Christoffer; Garmer, Mats; Jensen, Bente
2013-07-16
A change in the function or expression of hepatic drug transporters may have significant effect on the efficacy or safety of orally administered drugs. Although a number of clinical drug-drug interactions associated with hepatic transport proteins have been reported, in practice it is not always straightforward to discriminate other pathways (e.g. drug metabolism) from being involved in these interactions. The present study was designed to assess the interactions between organic anion transporting polypeptide (Oatp) substrates (pravastatin or repaglinide) and inhibitors (spironolactone or diphenhydramine) in vivo in rats. The mechanisms behind the interactions were then investigated using in vitro tools (isolated hepatocytes and rat liver microsomes). The results showed a significant increase in the systemic exposures of pravastatin (2.5-fold increase in AUC) and repaglinide (1.8-fold increase in AUC) after co-administration of spironolactone to rats. Diphenhydramine increased the AUC of repaglinide by 1.4-fold. The in vivo interactions observed in rats between Oatp substrates and inhibitors may a priori be classified as transport-mediated drug-drug interactions. However, mechanistic studies performed in vitro using both isolated rat hepatocytes and rat liver microsomes showed that the interaction between pravastatin and spironolactone may be solely linked to the inhibition of pravastatin uptake in liver. On the contrary, the inhibition of cytochrome P450 seemed to be the reason for the interactions observed between repaglinide and spironolactone. Although the function and structure of transport proteins may vary between rats and humans, the approach used in the present study can be applied to humans and help to understand the role of drug transport and drug metabolism in a given drug-drug interaction. This is important to predict and mitigate the risk of drug-drug interactions for a candidate drug in pre-clinical development, it is also important for the optimal design of drug-drug interactions studies in the clinic. Copyright © 2013 Elsevier B.V. All rights reserved.
Efficacy of moclobemide in a rat model of neurotoxicant-induced edema.
Girard, Philippe; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie
2007-05-01
The potent antidepressant effect of moclobemide, a selective and reversible type A monoamine oxidase (MAO) inhibitor, is clinically established. In view of the ongoing debate on the neuroprotective properties of MAO inhibitors, the present study was undertaken to further define the protective effect of moclobemide in a rat model of neurotoxicant-induced edema. In this model, daily oral triethyltin (TET) administration for 5 consecutive days strongly perturbed the rat behaviour and induced a cerebral edema at the 5th day. Oral coadministration of moclobemide (2 x 100 mg.kg-1.day-1) with TET blocked the development of brain edema and the increase in the cerebral chloride content induced by TET. Moreover, moclobemide reduced the increase in the cerebral sodium content and attenuated the neurological deficit. In conclusion, moclobemide possesses potent protective properties in this rat model of cerebral edema, suggesting potential clinical utility as a neuroprotectant.
Development of Ultra Long Duration Local Anesthetic Agents in a Rat Model
1994-02-24
this formulation is not toxic to the spinal cord. Initial trials with lecithin-coated bupivacaine microcrystals indic,-.. that this preparation also has...an ultra long duration local anesthetic effect, producing a 43 hour block in the rat tail. Clinical trials of this preparation in a human model are...l f _ _ _ Memorandum for LTC Dean E. Calcagni, M.D. Director, Combat Casualty Research Program USAMRDC Subject: Annual Report for Clinical
Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.
Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio
2017-09-01
This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.
Cox, David A; Helvering, Leah M
2006-03-09
Recent gene microarray studies have illustrated heterogeneity in gene expression changes not only between estrogens and selective estrogen receptor modulators (SERMs), but also across different SERM molecules. In ovariectomized rats, this phenomenon was observed with respect to a number of genes involved in collagen turnover and extracellular matrix (ECM) integrity in the uterus and vaginal tissues. Preliminary mechanistic data suggest that these effects on ECM integrity may have relevance in the context of the effect of estrogens and some SERMs to increase the risk of pelvic organ prolapse and the incidence of urinary incontinence in postmenopausal women. Given the pivotal role of ECM integrity and collagen turnover in other tissues and disease states, these processes may provide a fruitful target for future research into the mechanisms for the heterogeneous pharmacology of estrogens and SERMs across different cell types and target tissues.
Agarwal, Renu; Gupta, S K; Agarwal, Puneet; Srivastava, Sushma
2013-10-01
Aqueous extract of C. longa when administered 4 h after induction of E. coli lipopolysaccharide-induced uveitis in rats showed significantly suppressed inflammation with a significantly lower mean clinical grade, histopathological grade and aqueous humor (AH) protein level compared to vehicle treated group. Although, prednisolone group showed significantly lower clinical grade, histopathological grades and AH protein levels compared to C. longa group, TNF-alpha levels did not differ significantly. Moreover, when the aqueous extract was administered starting from 3 days before induction of uveitis, the mean clinical and histopathological grade as well as AH protein and TNF-alpha levels were comparable to C. longa group when treatment was administered 4 h after induction of uveitis. It is concluded that topically applied standardized aqueous extract of C. longa suppresses endotoxin-induced uveitis in rats by reducing TNF-alpha activity.
Hlavacova, Natasa; Wes, Paul D; Ondrejcakova, Maria; Flynn, Marianne E; Poundstone, Patricia K; Babic, Stanislav; Murck, Harald; Jezova, Daniela
2012-03-01
The potential role of aldosterone in the pathophysiology of depression is unclear. The aim of this study was to test the hypothesis that prolonged elevation of circulating aldosterone induces depression-like behaviour accompanied by disease-relevant changes in gene expression in the hippocampus. Subchronic (2-wk) treatment with aldosterone (2 μg/100 g body weight per day) or vehicle via subcutaneous osmotic minipumps was used to induce hyperaldosteronism in male rats. All rats (n = 20/treatment group) underwent a modified sucrose preference test. Half of the animals from each treatment group were exposed to the forced swim test (FST), which served both as a tool to assess depression-like behaviour and as a stress stimulus. Affymetrix microarray analysis was used to screen the entire rat genome for gene expression changes in the hippocampus. Aldosterone treatment induced an anhedonic state manifested by decreased sucrose preference. In the FST, depressogenic action of aldosterone was manifested by decreased latency to immobility and increased time spent immobile. Aldosterone treatment resulted in transcriptional changes of genes in the hippocampus involved in inflammation, glutamatergic activity, and synaptic and neuritic remodelling. Furthermore, aldosterone-regulated genes substantially overlapped with genes affected by stress in the FST. This study demonstrates the existence of a causal relationship between the hyperaldosteronism and depressive behaviour. In addition, aldosterone treatment induced changes in gene expression that may be relevant to the aetiology of major depressive disorder. Subchronic treatment with aldosterone represents a new animal model of depression, which may contribute to the development of novel targets for the treatment of depression.
Wheel access duration in rats: I. Effects on feeding and running.
Lattanzio, Sara B; Eikelboom, Roelof
2003-06-01
The effects of 0-, 2-, and 24-hr wheel access on the pattern of running, feeding, and weight were explored over 24 days in 3 groups of 8 male rats. Both 2 and 24 hr of wheel access suppressed feeding by about 15% for about 8 days before feeding gradually returned to normal. Weight in these 2 groups was similar and was suppressed for the 24 days. Like the pattern seen with drug self-administration (S. H. Ahmed & G. F. Koob, 1998, 1999), running levels stayed low with short, 2-hr daytime wheel access, but with long, 24-hr access, rats' running escalated over days to chronically high levels. These results may have relevance for the understanding of addiction and anorexia nervosa.
Lim, Maria A; Louie, Brenton; Ford, Daniel; Heath, Kyle; Cha, Paulyn; Betts-Lacroix, Joe; Lum, Pek Yee; Robertson, Timothy L; Schaevitz, Laura
2017-01-01
Despite a broad spectrum of anti-arthritic drugs currently on the market, there is a constant demand to develop improved therapeutic agents. Efficient compound screening and rapid evaluation of treatment efficacy in animal models of rheumatoid arthritis (RA) can accelerate the development of clinical candidates. Compound screening by evaluation of disease phenotypes in animal models facilitates preclinical research by enhancing understanding of human pathophysiology; however, there is still a continuous need to improve methods for evaluating disease. Current clinical assessment methods are challenged by the subjective nature of scoring-based methods, time-consuming longitudinal experiments, and the requirement for better functional readouts with relevance to human disease. To address these needs, we developed a low-touch, digital platform for phenotyping preclinical rodent models of disease. As a proof-of-concept, we utilized the rat collagen-induced arthritis (CIA) model of RA and developed the Digital Arthritis Index (DAI), an objective and automated behavioral metric that does not require human-animal interaction during the measurement and calculation of disease parameters. The DAI detected the development of arthritis similar to standard in vivo methods, including ankle joint measurements and arthritis scores, as well as demonstrated a positive correlation to ankle joint histopathology. The DAI also determined responses to multiple standard-of-care (SOC) treatments and nine repurposed compounds predicted by the SMarTR TM Engine to have varying degrees of impact on RA. The disease profiles generated by the DAI complemented those generated by standard methods. The DAI is a highly reproducible and automated approach that can be used in-conjunction with standard methods for detecting RA disease progression and conducting phenotypic drug screens.
Kyriakides, Michael; Hardwick, Rhiannon N.; Jin, Zhaosheng; Goedken, Michael J.; Holmes, Elaine; Cherrington, Nathan J.; Coen, Muireann
2014-01-01
Adverse drug reactions (ADRs) represent a significant clinical challenge with respect to patient morbidity and mortality. We investigated the hepatotoxicity and systems level metabolic phenotype of methotrexate (MTX) in the context of a prevalent liver disease; non-alcoholic steatohepatitis (NASH). A nuclear magnetic resonance spectroscopic-based metabonomic approach was employed to analyze the metabolic consequences of MTX (0, 10, 40, and 100 mg/kg) in the urine and liver of healthy rats (control diet) and in a model of NASH (methionine-choline deficient diet). Histopathological analysis confirmed baseline (0 mg/kg) liver necrosis, liver inflammation, and lipid accumulation in the NASH model. Administration of MTX (40 and 100 mg/kg) led to liver necrosis in the control cohort, whereas the NASH cohort also displayed biliary hyperplasia and liver fibrosis (100 mg/kg), providing evidence of the synergistic effect of MTX and NASH. The complementary hepatic and urinary metabolic phenotypes of the NASH model, at baseline, revealed perturbation of multiple metabolites associated with oxidative and energetic stress, and folate homeostasis. Administration of MTX in both diet cohorts showed dose-dependent metabolic consequences affecting gut microbial, energy, nucleobase, nucleoside, and folate metabolism. Furthermore, a unique panel of metabolic changes reflective of the synergistic effect of MTX and NASH was identified, including the elevation of hepatic phenylalanine, urocanate, acetate, and both urinary and hepatic formiminoglutamic acid. This systems level metabonomic analysis of the hepatotoxicity of MTX in the context of NASH provided novel mechanistic insight of potential wider clinical relevance for further understanding the role of liver pathology as a risk factor for ADRs. PMID:25145655
Bhide, Yoshita; Tomar, Jasmine; Dong, Wei; de Vries-Idema, Jacqueline; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J
2018-11-01
Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.
Day, Nicole L; Floyd, Candace L; D'Alessandro, Tracy L; Hubbard, William J; Chaudry, Irshad H
2013-09-01
Abstract Traumatic brain injury (TBI) is a significant public health problem in the United States. Despite preclinical success of various drugs, to date all clinical trials investigating potential therapeutics have failed. Recently, sex steroid hormones have sparked interest as possible neuroprotective agents after traumatic injury. One of these is 17β-estradiol (E2), the most abundant and potent endogenous vertebrate estrogen. The goal of our study was to investigate the acute potential protective effects of E2 or the specific G protein-coupled estrogen receptor 1 (GPER) agonist G-1 when administered in an intravenous bolus dose 1 hour post-injury in the lateral fluid percussion (LFP) rodent model of TBI. The results of this study show that, when assessed at 24 hours post-injury, E2 or G-1 confers protection in adult male rats subjected to LFP brain injury. Specifically, we found that an acute bolus dose of E2 or G-1 administered intravenously 1 hour post-TBI significantly increases neuronal survival in the ipsilateral CA 2/3 region of the hippocampus and decreases neuronal degeneration and apoptotic cell death in both the ipsilateral cortex and CA 2/3 region of the hippocampus. We also report a significant reduction in astrogliosis in the ipsilateral cortex, hilus, and CA 2/3 region of the hippocampus. Finally, these effects were observed to be chiefly dose-dependent for E2, with the 5 mg/kg dose generating a more robust level of protection. Our findings further elucidate estrogenic compounds as a clinically relevant pharmacotherapeutic strategy for treatment of secondary injury following TBI, and intriguingly, reveal a novel potential therapeutic target in GPER.
Temel, Yasin; Boothman, Laura J; Blokland, Arjan; Magill, Peter J; Steinbusch, Harry W M; Visser-Vandewalle, Veerle; Sharp, Trevor
2007-10-23
Bilateral, high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the surgical therapy of choice for movement disability in advanced Parkinson's disease (PD), but this procedure evokes debilitating psychiatric effects, including depressed mood, of unknown neural origin. Here, we report the unexpected finding that HFS of the STN inhibits midbrain 5-hydroxytryptamine (5-HT) neurons to evoke depression-related behavioral changes. We found that bilateral HFS of the STN consistently inhibited (40-50%) the firing rate of 5-HT neurons in the dorsal raphe nucleus of the rat, but not neighboring non-5-HT neurons. This effect was apparent at clinically relevant stimulation parameters (> or =100 Hz, > or =30 microA), was not elicited by HFS of either neighboring or remote structures to the STN, and was still present in rat models of PD. We also found that bilateral HFS of the STN evoked clear-cut, depressive-like behavior in a widely used experimental paradigm of depression (forced swim test), and this effect was also observed in a PD model. Importantly, the depressive-like behavior elicited by HFS of the STN was reversed by a selective 5-HT-enhancing antidepressant, thereby linking the behavioral change to decreased 5-HT neuronal activity. Overall, these findings link reduced 5-HT function to the psychiatric effects of HFS of the STN observed in PD patients and provide a rational basis for their clinical management. More generally, the powerful interaction between the STN and 5-HT system uncovered here offers insights into the high level of comorbidity of basal ganglia disease and mood disorder.
Predicting Maternal Rat and Pup Exposures: How Different Are They?
Risk and safety assessments for early life exposures to environmental chemicals or pharmaceuticals based on cross-species extrapolation would greatly benefit from information on chemical dosimetry in the young. Although relevant toxicity studies involve exposures during multiple ...
Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei
2011-09-27
To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P < 0.05). The brain water content was significantly elevated in TAA-administrated rats compared with the control (P < 0.05). The expressions of AQP4 protein and mRNA in brain tissues significantly increased in TAA-administrated rats (P < 0.05). In addition, the expressions of AQP4 protein and mRNA were positively correlated with brain water content (r = 0.536, P < 0.01; r = 0.566, P = 0.01). The high expression of AQP4 in rats with TAA-induced acute liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishizato, Yohei, E-mail: yohei-nishizato@ds-pharma.co.jp; Imai, Satoki; Okahashi, Noriko
2014-05-01
SMP-028 is a drug candidate developed for the treatment of asthma. In a 13-week repeated dose toxicity study of SMP-028 in rats and monkeys, differences of endocrine toxicological events between rats and monkeys were observed. In rats, these toxicological events mainly consisted of pathological changes in the adrenal, testis, ovary, and the other endocrine-related organs. On the other hand, in monkeys, no toxicological events were observed. The goal of this study is to try to understand the reason why only rats, but not monkeys, showed toxicological events following treatment with SMP-028 and to eventually predict the possible toxicological effect ofmore » this compound on human endocrine organs. Our results show that SMP-028 inhibits neutral cholesterol esterase more strongly than other steroidogenic enzymes in rats. Although SMP-028 also inhibits monkeys and human neutral cholesterol esterase, this inhibition is much weaker than that of rat neutral cholesterol esterase. These results indicate (1) that the difference in endocrine toxicological events between rats and monkeys is mainly due to inhibition of steroidogenesis by SMP-028 in rats, not in monkeys, and (2) that SMP-028 may not affect steroidogenesis in humans and therefore might cause no endocrine toxicological events in clinical studies. - Highlights: • SMP-028 inhibits neutral CEase more strongly than other steroidogenic enzymes in rats. • Inhibition of neutral CEase in rats by SMP-028 suppresses steroidogenesis in vivo. • SMP-028 does not inhibit neutral CEase in monkeys in vivo. • Steroidogenesis pathway in monkeys treated with SMP-028 was not suppressed. • SMP-028 may not inhibit LIPE in humans in vivo.« less
Herencia-Bueno, Karina E; Aldrovani, Marcela; Crivelaro, Roberta M; Thiesen, Roberto; Barros-Sobrinho, Alexandre A F; Claros-Chacaltana, Flor D Y; Padua, Ivan R M; Santos, Daniela M; Laus, José L
2018-05-01
To evaluate acetylation of histone H3, chromatin remodeling, nuclear size and shape, DNA ploidy, and distribution of nucleolus organizing regions (NORs) in corneal epithelial and stromal cells of diabetic and nondiabetic rats. Diabetes was induced by a single intraperitoneal injection of alloxan. All diabetic rats (n = 20) included in the study had 4 weeks of moderate-to-severe hyperglycemia (plasma glucose levels >400 mg/dL). Acetylated histone H3 levels were quantified in corneal tissue using a colorimetric assay. Chromatin remodeling, nuclear sizes (area/perimeter) and shapes (circularity), and DNA ploidies were evaluated from Feulgen-stained tissue sections using video image analysis. Distributions of NORs were studied in tissue sections impregnated with silver ions. Ophthalmic clinical parameters, including corneal sensitivity, were investigated. Twenty nondiabetic rats were used as controls. Acetylation of histone H3 was reduced in the corneas of the diabetic rats. Nuclei in corneal epithelial cells of diabetic rats compacted chromatin, increased in size, modified their shapes, and elevated DNA ploidy. The only nuclear change observed in the corneal stromal cells of diabetic rats was chromatin decompaction. The size of the silver-stained NOR did not differ between the study samples. The corneal sensitivity in diabetic rats was 51.8% lower than that in nondiabetic rats. The results of this study show that alloxan-induced diabetes altered the histone H3 acetylation pattern and compromised the chromatin supraorganization in corneal tissue/cells. Continued research is needed to understand the clinical and morphofunctional significance of changes in corneal cell nuclei of diabetic individuals.
Waalkes, M P; Anver, M; Diwan, B A
1999-12-01
Cadmium is a known human carcinogen based on findings of lung cancer in exposed populations. A more controversial target site for cadmium is the human prostate gland, for which some studies indicate a link between cadmium exposure and cancer. Our work in various strains of Wistar rats has shown that cadmium can induce tumors in the ventral lobe of the prostate. The relevance of this type of lesion to human prostate cancer has been questioned because the ventral lobe of the rat prostate, unlike the dorsolateral lobe, has no embryological homolog in the human gland. In this study we investigated the chronic toxic and carcinogenic effects of cadmium in the Noble (NBL/Cr) rat, with particular attention to lesions of the prostate. Cadmium chloride (CdCl2) was given as a single sc injection (0, 1, 2, 4, 8, 16, or 32 micromol/kg) to groups (initially n = 30) of 10-week-old rats. Rats were observed for up to 72 weeks following exposure. In rats that were injected with the lower doses of cadmium (< or =4 micromol/kg), a clear dose-related increase in proliferative lesions of the dorsolateral prostate occurred (0 micromol/kg = 36% incidence, 1 micromol/kg = 62%, 2 micromol/kg = 65%; 4 micromol/kg = 79%; trend p < 0.003). Lesions were described as intraepithelial hyperplasia with occasional areas of atypical epithelial cells, without stromal invasion. At higher doses (> or =8 micromol/kg) the proliferative-lesion response in the dorsolateral prostate gradually declined to near control levels (8 micromol/kg = 63%; 16 micromol/kg = 60%; 32 micromol/kg = 52%). The loss of prostatic response at the higher doses of cadmium was probably due to loss of testicular function secondary to cadmium treatment. This was reflected in a very high incidence (>90%) of lesions, indicative of testicular hypofunction, including tubular degeneration, mineralization, and interstitial (Leydig) cell tumors, at doses in excess of 16 micromol/kg. Malignant injection-site sarcomas occurred at the two highest doses of cadmium, while pituitary adenomas were elevated by cadmium exposure at the highest dose. These results show that cadmium induces proliferative lesions in the dorsolateral prostate of the Noble rat, a model having a presumed relevance to human prostate cancers.
Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan
2016-10-29
Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.
Ryan, Gemma M; Bischof, Robert J; Enkhbaatar, Perenlei; McLeod, Victoria M; Chan, Linda J; Jones, Seth A; Owen, David J; Porter, Christopher J H; Kaminskas, Lisa M
2016-02-01
Cancer metastasis to pulmonary lymph nodes dictates the need to deliver chemotherapeutic and diagnostic agents to the lung and associated lymph nodes. Drug conjugation to dendrimer-based delivery systems has the potential to reduce toxicity, enhance lung retention and promote lymphatic distribution in rats. The current study therefore evaluated the pharmacokinetics and lung lymphatic exposure of a PEGylated dendrimer following inhaled administration. Plasma pharmacokinetics and disposition of a 22 kDa PEGylated dendrimer were compared after aerosol administration to rats and sheep. Lung-derived lymph could not be sampled in rats and so lymphatic transport of the dendrimer from the lung was assessed in sheep. Higher plasma concentrations were achieved when dendrimer was administered to the lungs of rats as a liquid instillation when compared to an aerosol. Plasma pharmacokinetics were similar between sheep and rats, although some differences in disposition patterns were evident. Unexpectedly, less than 0.5% of the aerosol dose was recovered in pulmonary lymph. The data suggest that rats provide a relevant model for assessing the pharmacokinetics of inhaled macromolecules prior to evaluation in larger animals, but that the pulmonary lymphatics are unlikely to play a major role in the absorption of nanocarriers from the lungs.
Expression of sulfonylurea receptors in rat taste buds.
Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan
2011-07-01
To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.
Effects of 2-AG on the reinforcing properties of wheel activity in obese and lean Zucker rats.
Smith, Shilo L; Rasmussen, Erin B
2010-07-01
The endocannabinoid system plays a role in obesity, primarily by its role in food reward. Activity, also involved in obesity, seems to be at least partially controlled by the endocannabinoid system, but the relevant behavioral and neurochemical mechanisms have not been well established. This study represents an attempt to begin elucidating these mechanisms by examining the effects of an endogenous cannabinoid ligand, 2-arachidonoylglycerol (2-AG), on the reinforcing properties of exercise reinforcement in lean and obese Zucker rats. Ten obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min periods. After baseline breakpoints were established, doses of 2-AG (0.3-3 mg/kg) were administered before experimental sessions. Obese rats exhibited lower breakpoints for wheel activity, lower response rates, and fewer revolutions compared with lean rats. 2-AG decreased breakpoints, response rates, and revolutions for obese rats, and revolutions only for lean rats. These data suggest that 2-AG may reduce the reinforcing properties of activity, and that obese Zuckers may show a greater sensitivity to 2-AG. The data also suggest that endocannabinoids may play a role in the reinforcing properties of exercise.
Zheng, Lei; Qin, Jun; Sun, Longci; Gui, Liang; Zhang, Chihao; Huang, Yijun; Deng, Wensheng; Huang, An; Sun, Dong; Luo, Meng
2017-06-01
Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. Portal hypertension was induced in rats via an injection of CCl 4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. Upregulation of MRTF-A protein expression in the livers of rats with CCl 4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. Increased intrahepatic resistance in rats with CCl 4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl 4 -induced portal hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Volumetric abnormalities of the brain in a rat model of recurrent headache.
Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan
2018-01-01
Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.
2011-01-01
We recently demonstrated the utility of quantifying spontaneous pain in mice via the blinded coding of facial expressions. As the majority of preclinical pain research is in fact performed in the laboratory rat, we attempted to modify the scale for use in this species. We present herein the Rat Grimace Scale, and show its reliability, accuracy, and ability to quantify the time course of spontaneous pain in the intraplantar complete Freund's adjuvant, intraarticular kaolin-carrageenan, and laparotomy (post-operative pain) assays. The scale's ability to demonstrate the dose-dependent analgesic efficacy of morphine is also shown. In addition, we have developed software, Rodent Face Finder®, which successfully automates the most labor-intensive step in the process. Given the known mechanistic dissociations between spontaneous and evoked pain, and the primacy of the former as a clinical problem, we believe that widespread adoption of spontaneous pain measures such as the Rat Grimace Scale might lead to more successful translation of basic science findings into clinical application. PMID:21801409
Endocrine regulation of carbohydrate metabolism in hypometabolic animals
NASA Technical Reports Server (NTRS)
Musacchia, X. J.
1988-01-01
Experimental hypothermia and natural hibernation are two forms of hypometabolism with recognized physiological changes, including depression of endocrine and metabolic functions. To better understand functional changes, helox (i.e., helium and oxygen (80:20) mixtures) and low ambient temperatures have been used to induce hypothermia in hamsters and rats. Both clinical and biological survival, i.e., survival without recovery and survival with recovery from hypothermia, respectively, are related to depth and length of hypothermia. In the rat, body temperatures of 15 degrees C for periods greater than 6-10 h greatly restrict biological survival. The role of glucocorticoids in enhancing thermogenic capacity of rats was assessed using triamcinolone [correction of triamcinalone] acetonide. In the hamster, treatment with cortisone acetate prolonged both clinical and biological survival. Hypothermic hamsters continue utilizing circulating glucose until they become hypoglycemic and die. Hypothermic rats do not utilize glucose and respond with a significant hypoinsulinema. The role of endocrines in the regulation of carbohydrate homeostasis and metabolism differs in hibernation and hypothermia. Glucocorticoids influence the hypothermic response in both species, specifically by prolonging induction of hypothermia in rats and by prolonging survival in hypothermic hamsters.
1985-01-01
enzymes resulted mainly in the formation of 2-amino-6-nitrotoluene and 2-(N-acetylami no)-6-nitrotoluene and minor amounts of 2,6-diaminotoluene. I.p...2,6-DNT to DNA of cultured hepatocytes from both A/N mice and Fischer-344 rats required prior metabolism of 2,6-DNT by the respective cecal enzymes . DNA...64 37. In Vitro Metabolism of [3- 3H]2,6-DNT by Cecal Enzymes from A/ Mice and Fischer-344 Rats ..... ............ 65 38. In Vivo Covalent
HDAC Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy
Xie, Min; Kong, Yongli; Tan, Wei; May, Herman; Battiprolu, Pavan K.; Pedrozo, Zully; Wang, Zhao; Morales, Cyndi; Luo, Xiang; Cho, Geoffrey; Jiang, Nan; Jessen, Michael E.; Warner, John J.; Lavandero, Sergio; Gillette, Thomas G.; Turer, Aslan T.; Hill, Joseph A.
2014-01-01
Background Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that SAHA, a histone deacetylase (HDAC) inhibitor FDA-approved for cancer treatment, will blunt reperfusion injury. Methods and Results Twenty-one rabbits were randomized into 3 groups: a) vehicle control, b) SAHA pretreatment (one day prior and at surgery), and c) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (I/R, 30min coronary ligation, 24h reperfusion). Additionally cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated I/R (sI/R) to probe mechanism. SAHA reduced infarct (those reduction inhibitor, SAHA, infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during I/R occur, at least in part, through induction of autophagic flux. assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to sI/R, SAHA pretreatment reduced cell death by 40%. This eduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. Conclusions The FDS-approved anti-cancer HDAC inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during I/R occur, at least in part, through induction of autophagic flux. PMID:24396039
Djouhri, Laiche
2016-11-01
Chronic inflammatory and peripheral neuropathic pain (PNP) is a major health problem for which effective drug treatment is lacking. The pathophysiology of these debilitating conditions is incompletely understood, but nerve growth factor (NGF) is believed to play a major role. NGF-antagonism has previously been shown to prevent pain hypersensitivity in rodent models of acute inflammatory pain and PNP, but most of those animal studies did not address the more clinically relevant issue of whether NGF-antagonism provides relief of established chronic pain behavior. Therefore, the aim of this study was to investigate whether blocking NGF actions with a humanized anti-NGF monoclonal antibody (PG110) would reverse/attenuate established pain hypersensitivity in rat models of chronic/persistent inflammatory pain and PNP. The complete Freund's adjuvant (CFA) rat model of persistent inflammatory pain, and the L5 spinal nerve axotomy (SNA) model of PNP, were used in the present study. The effect of a single intravenous injection (10, 30, and 300 µg/kg) of an anti-NGF antibody PG110 on heat and mechanical hypersensitivity was assessed 5 and 7 days after CFA and SNA, respectively. Compared to vehicle treated group, PG110 dose dependently attenuated established heat and mechanical hypersensitivity induced by CFA, but not that induced by SNA. The anti-allodynic and anti-hyperalgesic effects of PG110 in the CFA model were similar to those of the positive control naproxen (30 mg/kg, i.v.). These findings suggest that therapies that target NGF or its receptors may be effective for treatment of persistent/chronic inflammatory pain, but probably not PNP. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Manzanares, Miguel Á.; Campbell, Deanna J.W.; Maldonado, Gabrielle T.
2017-01-01
Periostin and mesothelin have each been suggested to be predictors of poor survival for patients with intrahepatic cholangiocarcinoma, although the clinical prognostic value of both of these biomarkers remains uncertain. The aim of the current study was to investigate these biomarkers for their potential to act as tumor progression factors when assessed in orthotopic tumor and three‐dimensional culture models of rat cholangiocarcinoma progression. Using our orthotopic model, we demonstrated a strong positive correlation between tumor and serum periostin and mesothelin and increasing liver tumor mass and associated peritoneal metastases that also reflected differences in cholangiocarcinoma cell aggressiveness and malignant grade. Periostin immunostaining was most prominent in the desmoplastic stroma of larger sized more aggressive liver tumors and peritoneal metastases. In comparison, mesothelin was more highly expressed in the cholangiocarcinoma cells; the slower growing more highly differentiated liver tumors exhibited a luminal cancer cell surface immunostaining for this biomarker, and the rapidly growing less differentiated liver and metastatic tumor masses largely showed cytoplasmic mesothelin immunoreactivity. Two molecular weight forms of mesothelin were identified, one at ∼40 kDa and the other, a more heavily glycosylated form, at ∼50 kDa. Increased expression of the 40‐kDa mesothelin over that of the 50 kDa form predicted increased malignant progression in both the orthotopic liver tumors and in cholangiocarcinoma cells of different malignant potential in three‐dimensional culture. Moreover, coculturing of cancer‐associated myofibroblasts with cholangiocarcinoma cells promoted overexpression of the 40‐kDa mesothelin, which correlated with enhanced malignant progression in vitro. Conclusion: Periostin and mesothelin are useful predictors of tumor progression in our rat desmoplastic cholangiocarcinoma models. This supports their relevance to human intrahepatic cholangiocarcinoma. (Hepatology Communications 2018;2:155–172) PMID:29404524
Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco
2014-05-15
Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Long-Term Efficacy of GMP Grade Xeno-Free hESC-Derived RPE Cells Following Transplantation
McGill, Trevor J.; Bohana-Kashtan, Osnat; Stoddard, Jonathan W.; Andrews, Michael D.; Pandit, Neelay; Rosenberg-Belmaker, Lior R.; Wiser, Ofer; Matzrafi, Limor; Banin, Eyal; Reubinoff, Benjamin; Netzer, Nir; Irving, Charles
2017-01-01
Purpose Retinal pigment epithelium (RPE) dysfunction underlies the retinal degenerative process in age-related macular degeneration (AMD), and thus RPE cell replacement provides an optimal treatment target. We characterized longitudinally the efficacy of RPE cells derived under xeno-free conditions from clinical and xeno-free grade human embryonic stem cells (OpRegen) following transplantation into the subretinal space of Royal College of Surgeons (RCS) rats. Methods Postnatal (P) day 20 to 25 RCS rats (n = 242) received a single subretinal injection of 25,000 (low)-, 100,000 (mid)-, or 200,000 (high)-dose xeno-free RPE cells. BSS+ (balanced salt solution) (vehicle) and unoperated eyes served as controls. Optomotor tracking (OKT) behavior was used to quantify functional efficacy. Histology and immunohistochemistry were used to evaluate photoreceptor rescue and transplanted cell survival at 60, 100, 150, and 200 days of age. Results OKT was rescued in a dose-dependent manner. Outer nuclear layer (ONL) was significantly thicker in cell-treated eyes than controls up to P150. Transplanted RPE cells were identified in both the subretinal space and integrated into the host RPE monolayer in animals of all age groups, and often contained internalized photoreceptor outer segments. No pathology was observed. Conclusions OpRegen RPE cells survived, rescued visual function, preserved rod and cone photoreceptors long-term in the RCS rat. Thus, these data support the use of OpRegen RPE cells for the treatment of human RPE cell disorders including AMD. Translational Relevance Our novel xeno-free RPE cells minimize concerns of animal derived contaminants while providing a promising prospective therapy to the diseased retina. PMID:28626601
Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C
2010-11-01
Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.
Matveyenko, Aleksey V.; Georgia, Senta; Bhushan, Anil
2010-01-01
Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant. PMID:20587750
Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.
2015-01-01
Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436
Joksovic, Pavle M.; Lunardi, Nadia; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M.
2015-01-01
Recent evidence supports the idea that common general anesthetics (GAs) such as isoflurane (Iso) and nitrous oxide (N2O; laughing gas) are neurotoxic and may harm the developing mammalian brain, including the thalamus; however, to date very little is known about how developmental exposure to GAs may affect synaptic transmission in the thalamus which, in turn, controls the function of thalamocortical circuitry. To address this issue we used in vitro patch-clamp recordings of evoked inhibitory postsynaptic currents (eIPSCs) from intact neurons of the nucleus reticularis thalami (nRT) in brain slices from rat pups (postnatal age P10-P18) exposed at age of P7 to clinically relevant GA combinations of Iso and N2O. We found that rats exposed to a combination of 0.75% Iso and 75% N2O display lasting reduction in the amplitude and faster decays of eIPSCs. Exposure to sub-anesthetic concentrations of 75% N2O alone or 0.75% Iso alone at P7 did not affect the amplitude of eIPSCs; however, Iso alone, but not N2O, significantly accelerated decay of eIPSCs. Anesthesia with 1.5% Iso alone decreased amplitudes, caused faster decay and decreased the paired-pulse ratio of eIPSCs. We conclude that anesthesia at P7 with Iso alone or in combination with N2O causes plasticity of eIPSCs in nRT neurons by both presynaptic and postsynaptic mechanisms. We hypothesize that changes in inhibitory synaptic transmission in the thalamus induced by GAs may contribute to altered neuronal excitability and consequently abnormal thalamocortical oscillations later in life. PMID:26048671
Ortega, Israel; Villanueva, Jesus A.; Wong, Donna H.; Cress, Amanda B.; Sokalska, Anna; Stanley, Scott D.
2012-01-01
Polycystic ovary syndrome is characterized by theca-interstitial hyperplasia and increased expression of steroidogenic genes, leading to excessive androgen production. Resveratrol, a natural polyphenol, promotes apoptosis and reduces rat theca-interstitial cell growth, in part by inhibiting the mevalonate pathway and decreasing the availability of substrates of isoprenylation [farnesyl-pyrophosphate (FPP) and geranylgeranyl-pyrophosphate (GGPP)]. This study evaluated the effect of resveratrol on rat theca-interstitial cell steroidogenesis. Because resveratrol may activate sirtuins, this study also investigated whether steroidogenesis was affected by sirtuin inhibitors (nicotinamide, sirtinol). Theca-interstitial cells were cultured with or without resveratrol (1–10 μm), GGPP (30 μm), FPP (30 μm), nicotinamide (1 mm), and/or sirtinol (10 μm). Resveratrol did not affect progesterone levels but reduced androgen production in a concentration-dependent fashion (androstenedione by up to 78% and androsterone by up to 76%). This inhibitory effect correlated with a decrease in mRNA expression of genes regulating androgen production, especially Cyp17a1 (by up to 73%). GGPP and FPP had no effect on androgen levels and Cyp17a1 mRNA levels and did not alter the effects induced by resveratrol. Similarly, sirtuin inhibitors did not reverse resveratrol-induced inhibition of steroidogenesis. However, resveratrol decreased activity of serine-threonine kinase/protein kinase B pathway, a cell-signaling pathway involved in ovarian steroidogenesis. The present findings indicate that resveratrol reduces androgen production primarily by inhibiting Cyp17a1 mRNA expression, and this inhibition may be mediated, in part, by blocking the activity of the serine-threonine kinase/protein kinase B pathway. These findings may be of clinical relevance to conditions associated with excessive production of androgens by theca cells, such as polycystic ovary syndrome. PMID:22719052
Tallino, Savannah; Duffy, Megan; Ralle, Martina; Cortés, María Paz; Latorre, Mauricio; Burkhead, Jason L.
2015-01-01
Nonalcoholic fatty-liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes non-alcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decrease liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w), or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high sucrose or low Cu diets had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase (Acly) and fatty-acid synthase (Fasn) gene transcription (Fold change >2, p <0.02). Low dietary Cu decreased hepatic and serum Cu (p ≤0.05), promoted lipid peroxidation, and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis. PMID:26033743
Tallino, Savannah; Duffy, Megan; Ralle, Martina; Cortés, María Paz; Latorre, Mauricio; Burkhead, Jason L
2015-10-01
Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Maduwage, Kalana P; Scorgie, Fiona E; Lincz, Lisa F; O'Leary, Margaret A; Isbister, Geoffrey K
2016-01-01
Animal models are used to test toxic effects of snake venoms/toxins and the antivenom required to neutralise them. However, venoms that cause clinically relevant coagulopathy in humans may have differential effects in animals. We aimed to investigate the effect of different procoagulant snake venoms on various animal plasmas. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and D-dimer levels were measured in seven animal plasmas (human, rabbit, cat, guinea pig, pig, cow and rat). In vitro clotting times were then used to calculate the effective concentration (EC50) in each plasma for four snake venoms with different procoagulant toxins: Pseudonaja textilis, Daboia russelli, Echis carinatus and Calloselasma rhodostoma. Compared to human, PT and aPTT were similar for rat, rabbit and pig, but double for cat and cow, while guinea pig had similar aPTT but double PT. Fibrinogen and D-dimer levels were similar for all species. Human and rabbit plasmas had the lowest EC50 for P. textilis (0.1 and 0.4 μg/ml), D. russelli (0.4 and 0.1 μg/ml), E. carinatus (0.6 and 0.1 μg/ml) venoms respectively, while cat plasma had the lowest EC50 for C. rhodostoma (11 μg/ml) venom. Cow, rat, pig and guinea pig plasmas were highly resistant to all four venoms with EC50 10-fold that of human. Different animal plasmas have varying susceptibility to procoagulant venoms, and excepting rabbits, animal models are not appropriate to test procoagulant activity. In vitro assays on human plasma should instead be adopted for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kulikova, Sofya P; Tolmacheva, Elena A; Anderson, Paul; Gaudias, Julien; Adams, Brendan E; Zheng, Thomas; Pinault, Didier
2012-11-01
Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive. Clinical and experimental evidence suggests that these deficits result from a hyporegulation of glutamate N-methyl-D-aspartate receptors. Here we modeled these deficits in rats with ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist and a translational psychotomimetic substance at subanesthetic doses. We tested the hypothesis that ketamine-induced sensory deficits involve an impairment of the ability of the thalamocortical (TC) system to discriminate the relevant information from the baseline activity. Furthermore, we wanted to assess whether ketamine disrupts synaptic plasticity in TC systems. We conducted multisite network recordings in the rat somatosensory TC system, natural stimulation of the vibrissae and high-frequency electrical stimulation (HFS) of the thalamus. A single systemic injection of ketamine increased the amount of baseline GFO, reduced the amplitude of the sensory-evoked TC response and decreased the power of the sensory-evoked GFO. Furthermore, cortical application of ketamine elicited local and distant increases in baseline GFO. The ketamine effects were transient. Unexpectedly, HFS of the TC pathway had opposite actions. In conclusion, ketamine and thalamic HFS have opposite effects on the ability of the somatosensory TC system to discriminate the sensory-evoked response from the baseline GFO during information processing. Investigating the link between the state and function of the TC system may conceptually be a key strategy to design innovative therapies against neuropsychiatric disorders. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Koch, Diana A; Silva, Rodrigo B M; de Souza, Alessandra H; Leite, Carlos E; Nicoletti, Natália F; Campos, Maria M; Laufer, Stefan; Morrone, Fernanda B
2014-03-01
Mitogen-activated protein kinase (MAPK) p38 inhibitors have entered the clinical phase, although many of them have failed due to high toxicity and lack of efficacy. In the present study we compared the effects of the selective p38 inhibitor ML3403 and the dual p38-PDE4 inhibitor CBS-3595, on inflammatory and nociceptive parameters in a model of polyarthritis in rats. Male Wistar rats (180-200 g) were used for the complete Freund's adjuvant (CFA)-induced arthritis model and they were evaluated at 14-21 days. We also analysed the effects of these pharmacological tools on liver and gastrointestinal toxicity and on cytokine levels. Repeated CBS-3595 (3 mg/kg) or ML3403 (10 mg/kg) administration produced significant anti-inflammatory actions in the chronic arthritis model induced by CFA. CBS-3595 and ML3403 treatment also markedly reduced the production of the proinflammatory cytokine IL-6 in the paw tissue, whereas it widely increased the levels of the anti-inflammatory cytokine IL-10. Moreover, CBS-3595 produced partial anti-allodynic effects in the CFA model at 4 and 8 days after treatment. Notably, ML3403 and CBS-3595 did not show marked signs of hepatoxicity, as supported by unaltered histological observations in the liver sections. Finally, both compounds were safe in the gastrointestinal tract, according to evaluation of intestinal biopsies. CBS-3595 displayed a superior profile regarding its anti-inflammatory effects. Thus p38 MAPK/PDE4 blocking might well constitute a relevant strategy for the treatment of RA.
Feillet-Coudray, Christine; Fouret, Gillen; Ebabe Elle, Raymond; Rieusset, Jennifer; Bonafos, Beatrice; Chabi, Beatrice; Crouzier, David; Zarkovic, Kamelija; Zarkovic, Neven; Ramos, Jeanne; Badia, Eric; Murphy, Michael P; Cristol, Jean Paul; Coudray, Charles
2014-10-01
The prevalence of metabolic syndrome (MetS) components including obesity, dyslipidemia, insulin resistance (IR), and hepatic steatosis is rapidly increasing in wealthy societies. It is accepted that inflammation/oxidative stress are involved in the initiation/evolution of the MetS features. The present work was designed to evaluate the effects of three major cellular ROS production systems on obesity, glucose tolerance, and hepatic steatosis development and on oxidative stress onset. To do so, 40 young male Sprague-Dawley rats were divided into 5 groups: 1-control group, 2-high fat (HF) group (60% energy from fat), 3-HF+ MitoQ (mitochondrial ROS scavenger), 4-HF+ Apocynin (NADPH oxidase inhibitor), 5-HF+ Allopurinol (xanthine oxidase inhibitor). After 8 weeks of these treatments, surrogate MetS, mitochondrial function, and oxidative stress markers were measured in blood and liver. As expected, rats that were fed the HF diet exhibited increased body weight, glucose intolerance, overt hepatic steatosis, and increased hepatic oxidative stress. The impacts of the studied ROS inhibitors on these aspects of the MetS were markedly different. MitoQ showed the most clinically relevant effects, attenuating body weight gain and glucose intolerance provoked by the HF diet. Both Apocynin and Allopurinol showed limited effects suggesting secondary roles of xanthine oxidase (XO) or NADPH oxidase-dependent ROS production in the onset of oxidative stress-dependent obesity, glucose intolerance, and hepatic steatosis process. Thus, MitoQ revealed the central role of mitochondrial oxidative stress in the development of MetS and suggested that mitochondria-targeted antioxidants may be worth considering as potentially helpful therapies for MetS features.
Badiu, Carmen-Ionela
2004-11-12
Mutations in GABA-A receptor subunits have been reported in a number of idiopathic generalized epilepsies including childhood absence epilepsy. One of these mutations is located within a high-affinity benzodiazepine-binding domain, and clonazepam is clinically used as an anti-absence drug. The intrathalamic loop consisting of the GABAergic neurons of the nucleus reticularis thalami (NRT) and the thalamocortical (TC) neurons of sensory thalamic nuclei plays an essential role in spike and wave discharges. In a well-established genetic model of absence epilepsy (Genetic Absence Epilepsy rat from Strasbourg, GAERS), systemic injections of benzodiazepines have been shown to suppress spike-and-waves discharges. The aim of this study, therefore, was to determine whether the sensitivity of GABAergic synaptic currents to clonazepam in NRT and TC neurons was different in GAERS and non-epileptic control (NEC) rats. In both pre-seizure GAERS and NEC clonazepam (100 nM) had no effect on the mIPSCs recorded from TC neurons while it increased the decay time constant of the mIPSCs recorded in NRT neurons by a similar amount in GAERS (54.5+/-5%) and NEC (50.7+/-5%). Similar results have been obtained in the presence of 100 microM Cd2+, showing that the effect of clonazepam did not occur via modulation of voltage-activated Ca2+ currents. These results are relevant to understand that in GAERS, the clonazepam anti-absence actions cannot be fully explained by the enhancement of the intra-NRT inhibition and the modulation of the GABAergic synaptic currents in other brain areas, in particular the cortex, must be taken into consideration.
Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.
Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan
2016-09-01
Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.
Autoantibodies against α-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients
Fetissov, Sergueï O.; Hallman, Jarmila; Oreland, Lars; af Klinteberg, Britt; Grenbäck, Eva; Hulting, Anna-Lena; Hökfelt, Tomas
2002-01-01
The hypothalamic arcuate nucleus is involved in the control of energy intake and expenditure and may participate in the pathogenesis of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Two systems are of particular interest in this respect, synthesizing α-melanocyte-stimulating hormone (α-MSH) and synthesizing neuropeptide Y, respectively. We report here that 42 of 57 (74%) AN and/or BN patients studied had in their plasma Abs that bind to melanotropes and/or corticotropes in the rat pituitary. Among these sera, 8 were found to bind selectively to α-MSH-positive neurons and their hypothalamic and extrahypothalamic projections as revealed with immunostaining on rat brain sections. Adsorption of these sera with α-MSH peptide abolished this immunostaining. In the pituitary, the immunostaining was blocked by adsorption with α-MSH or adrenocorticotropic hormone. Additionally, 3 AN/BN sera bound to luteinizing hormone-releasing hormone (LHRH)-positive terminals in the rat median eminence, but only 2 of them were adsorbed with LHRH. In the control subjects, 2 of 13 sera (16%) displayed similar to AN/BN staining. These data provide evidence that a significant subpopulation of AN/BN patients have autoantibodies that bind to α-MSH or adrenocorticotropic hormone, a finding pointing also to involvement of the stress axis. It remains to be established whether these Abs interfere with normal signal transduction in the brain melanocortin circuitry/LHRH system and/or in other central and peripheral sites relevant to food intake regulation, to what extent such effects are related to and/or could be involved in the pathophysiology or clinical presentation of AN/BN, and to what extent increased stress is an important factor for production of these autoantibodies. PMID:12486250
HACKLER, E. A.; BYUN, N. E.; JONES, C. K.; WILLIAMS, J. M.; BAHEZA, R.; SENGUPTA, S.; GRIER, M. D.; AVISON, M.; CONN, P. J.; GORE, J. C.
2013-01-01
Previous preclinical and clinical studies have demonstrated the efficacy of group II metabotropic glutamate receptor (mGluR) agonists as potential antipsychotics. Recent studies utilizing mGluR2-, mGluR3-, and double knockout mice support that the antipsychotic effects of those compounds are mediated by mGluR2. Indeed, biphenyl indanone-A (BINA), an allosteric potentiator of mGluR2, is effective in experimental models of psychosis, blocking phencyclidine (PCP)-induced hyperlocomotion and prepulse inhibition deficits in mice. In this study, we administered the NMDA receptor antagonist PCP (5.6 mg/kg i.p.) to rats, an established animal model predictive of schizophrenia. Here, we show that BINA (32 mg/kg i.p.) attenuated PCP-induced locomotor activity in rats. Using behaviorally relevant doses of BINA and PCP, we performed pharmacological magnetic resonance imaging (phMRI) to assess the specific brain regions that underlie the psychotomimetic effects of PCP, and examined how BINA modulated the PCP-induced functional changes in vivo. In anesthetized rats, acute administration of PCP produced robust, sustained blood oxygenation level-dependent (BOLD) activation in specific cortical, limbic, thalamic, and striatal regions. Pretreatment with BINA suppressed the amplitude of the BOLD response to PCP in the prefrontal cortex, caudaute–putamen, nucleus accumbens, and mediodorsal thalamus. Our results show key brain structures underlying PCP-induced behaviors in a preclinical model of schizophrenia, and, importantly, its reversal by potentiation of mGluR2 by BINA, revealing specific brain regions functionally involved in its pharmacological action. Finally, our findings bolster the growing body of evidence that mGluR2 is a viable target for the treatment of schizophrenia. PMID:20350588
Morrissey, Catherine; Grieve, Ian C; Heinig, Matthias; Atanur, Santosh; Petretto, Enrico; Pravenec, Michal; Hubner, Norbert; Aitman, Timothy J
2011-11-07
The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with "physiological" QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.
Synergistic interaction between ketamine and magnesium in lowering body temperature in rats.
Vučković, Sonja M; Savić Vujović, Katarina R; Srebro, Dragana P; Medić, Branislava M; Vučetić, Cedomir S; Prostran, Milan Š; Prostran, Milica Š
2014-03-29
A large body of evidence supports the existence of an endogenous glutamate system that tonically modulates body temperature via N-methyl-d-aspartate (NMDA) receptors. Ketamine and magnesium, both NMDA receptor antagonists, are known for their anesthetic, analgesic and anti-shivering properties. This study is aimed at evaluating the effects of ketamine and magnesium sulfate on body temperature in rats, and to determine the type of interaction between them. The body temperature was measured by insertion of a thermometer probe 5cm into the colon of unrestrained male Wistar rats (200-250g). Magnesium sulfate (5 and 60mg/kg, sc) showed influence neither on baseline, nor on morphine-evoked hyperthermic response. Subanesthetic doses of ketamine (5-30mg/kg, ip) given alone, produced significant dose-dependent reduction in both baseline colonic temperature and morphine-induced hyperthermia. Analysis of the log dose-response curves for the effects of ketamine and ketamine-magnesium sulfate combination on the baseline body temperature revealed synergistic interaction, and about 5.3 fold reduction in dosage of ketamine when the drugs were applied in fixed ratio (1:1) combinations. In addition, fixed low dose of magnesium sulfate (5mg/kg, sc) enhanced the temperature lowering effect of ketamine (1.25-10mg/kg, ip) on baseline body temperature and morphine-induced hyperthermia by factors of about 2.5 and 5.3, respectively. This study is the first to demonstrate the synergistic interaction between magnesium sulfate and ketamine in a whole animal study and its statistical confirmation. It is possible that the synergy between ketamine and magnesium may have clinical relevance. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shkand, Tatiana V.; Chizh, Mykola O.; Sleta, Iryna V.; Sandomirsky, Borys P.; Tatarets, Anatoliy L.; Patsenker, Leonid D.
2016-12-01
The main goal of this study is to investigate a combination of viscosity-sensitive and viscosity-insensitive fluorescent dyes to distinguish different rheological states of hydrogel based biostructural materials and carriers in biological tissues and to assess their corresponding location areas. The research is done in the example of alginate hydrogel stained with viscosity-sensitive dyes Seta-470 and Seta-560 as well as the viscosity-insensitive dye Seta-650. These dyes absorb/emit at 469/518, 565/591 and 651/670 nm, respectively. The rheological state of the alginate, the area of the fluorescence signal and the mass of the dense alginate versus the calcium gluconate concentration utilized for alginate gelation were studied in vitro. The most pronounced change in the fluorescence signal area was found at the same concentrations of calcium gluconate (below ~1%) as the change in the alginate plaque mass. The stained alginate was also implanted in situ in rat hip and myocardium and monitored using fluorescence imaging. In summary, our data indicate that the viscosity sensitive dye in combination with the viscosity-insensitive dye allow tracking the biodegradation of the alginate hydrogel and determining the rheological state of hydrogel in biological tissue, which both should have relevance for research and clinical applications. Using this method we estimated the half-life of the dense alginate hydrogel in a rat hip to be in the order of 4 d and about 6-8 d in rat myocardium. The half-life of the dense hydrogel in the myocardium was found to be long enough to prevent aneurysm rupture of the left ventricle wall, one of the more severe complications of the early post-infarction period.
Moreira, Maria Stella; Katayama, Emilio; Bombana, Antonio Carlos; Marques, Márcia Martins
2005-12-01
The use of alendronate, a bisphosphonate which is able to inhibit bone resorption, in order to prevent dental root resorption after tooth replantation would be of clinical relevance. However, this drug must be biocompatible to the periapical tissues. The aim of this study was to analyze the effect of an alendronate paste in polyethyleneglycol (2 g ml(-1)) on endothelial cells in culture (in vitro) and on rat subcutaneous tissue (in vivo). For the in vitro study the paste was applied on round glass coverslips that were immersed into confluent cell cultures (clone Cips). The cell viability percentages of these cultures were obtained 0, 6 and 12 h after contact with the substance. As control, cultures that received plain coverslips were used. This analysis was carried out in triplicate using the Trypan blue dye exclusion assay. For the in vivo study the paste was introduced into polyethylene tubes that were placed into the rat subcutaneous tissue. The rats were killed 7 and 14 days later; then, the tissue sections stained with hematoxylin-eosin were analyzed. In vitro, the alendronate caused a significant decrease in the cell viability in 6 h (P < 0.05) and 12 h (P < 0.01), when compared with the control cultures. In vivo the tissue response was exuberant and similar at the two experimental times. There was a necrosis in a comprehensive area in contact with the open end of the tube. Presence of micro-abscesses and intense inflammatory infiltrate in the hypoderm permeating the muscle fibers and fat lobules were observed. In conclusion, the alendronate paste in polyethylene glycol as used showed to be highly cytotoxic in vitro as well as in vivo.
Kwon, Youngjoo; Magnuson, Bernadene A
2009-02-01
Curcumin is a widely-used dietary supplement and a chemopreventive agent for various cancers. Pre-clinical chemopreventive studies rarely consider the effect of aging. We previously reported that unlike young animals, curcumin is ineffective in middle-aged rats for colon chemoprevention. This study investigated whether resistance to apoptosis during cancer initiation contributes to this age-dependent effect. Young, middle-aged, and old F344 rats were fed either curcumin (0.6%) or control diet. Colonic apoptosis was evaluated 0, 8, and 16 h after azoxymethane (AOM) injection. Colonic Hsp70 mRNA levels, caspase-9 activity, cell proliferation, and crypt morphology were measured. In AOM-treated rats, only middle-aged rats were resistant to curcumin-induced apoptosis whereas cell proliferation was reduced by curcumin in all ages. Curcumin-induced apoptosis was mediated by caspase-9 in young but not older rats. Transcriptional Hsp70 expression was induced in only young rats and was suppressed by curcumin. Therefore, the age-related difference in curcumin chemoprevention is due to a differential response in induction of apoptosis. The mitochondria-dependent pathway seems to mediate curcumin-induced apoptosis in young but not older animals. Hsp70 expression was not related with resistance to curcumin-induced apoptosis. Understanding age-related differences in the apoptotic response may lead to improved translation from pre-clinical animal studies to humans.
21 CFR 1271.75 - How do I screen a donor?
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Risk factors for, and clinical evidence of, relevant communicable disease agents and diseases... risk factors for and clinical evidence of relevant cell-associated communicable disease agents and... having either of the following: (1) A risk factor for or clinical evidence of any of the relevant...
NASA Astrophysics Data System (ADS)
Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge
2013-05-01
The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.
Effect of thalidomide and pentoxifylline on experimental autoimmune encephalomyelitis (EAE).
Corrêa, José Otávio do Amaral; Aarestrup, Beatriz Julião Vieira; Aarestrup, Fernando Monteiro
2010-11-01
Autoimmune encephalomyelitis (EAE) in Lewis rats is a classical experimental model of demyelinating inflammatory disease of the central nervous system. EAE is widely accepted for study of immune-inflammatory mechanisms in the CNS related to multiple sclerosis (MS) due to similar clinical evolution. In the present study we investigated the effects of Thalidomide and pentoxifylline during EAE development in Lewis rats. EAE was induced in Lewis rats and treatment with Thalidomide or pentoxifylline was performed. Clinical evaluation was carried out daily. Histopathological analysis of the brain tissue and spinal cord was performed. Griess method was used for determination of NO serum levels. TNF-alpha and IFN-gamma serum levels were investigated using ELISA method. Thalidomide and pentoxifylline treatment is associated with significant reduction of neuroinflammation in CNS. Serum levels of NO, IFN-gamma and TNF-alpha showed a marked reduction. Such findings were correlated with improvement of clinical symptoms, particularly in thalidomide treated rats. Taken together the data suggested that thalidomide and pentoxifylline may be therapeutic options for the treatment of MS, however further experiments must be performed to investigate this hypothesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Rat Bite Fever and Streptobacillus moniliformis
Elliott, Sean P.
2007-01-01
Rat bite fever, caused by Streptobacillus moniliformis, is a systemic illness classically characterized by fever, rigors, and polyarthralgias. If left untreated, it carries a mortality rate of 10%. Unfortunately, its nonspecific initial presentation combined with difficulties in culturing its causative organism produces a significant risk of delay or failure in diagnosis. The increasing popularity of rats and other rodents as pets, together with the risk of invasive or fatal disease, demands increased attention to rat bite fever as a potential diagnosis. The clinical and biological features of rat bite fever and Streptobacillus moniliformis are reviewed, providing some distinguishing features to assist the clinician and microbiologist in diagnosis. PMID:17223620
Il'in, E A; Serova, L V; Noskin, A D
1976-01-01
In 1974 a rat experiment was carried out onboard the Cosmos-605 biosatellite. Inflight Wistar rats were kept unrestrained in small cages. The cages were equipped with a feeder, water supply, light source and a ventilation device. The state of the animals was assessed with respect to their motor activity. The flight experiment was preceded by a number of preparatory runs and testinns that were completed with an end-to-end experiment in a biosatellite mockup. The flight experiment was paralleled by the ground-based synchroneous experiment which simulated almost entirely the flight profile. For each experiment rats were selected and trained during a month's observation. Postflight rats were exposed to clinical, physiological, morphological, cytochemical and biochemical investigations. Tissue examinations were performed on the 2nd-3rd day (20 rats) and 26-27th day (12 rats) after flight. Four rats were kept to study remote aftereffects.
Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P
2012-08-01
Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.
Drug specificity in drug versus food choice in male rats.
Tunstall, Brendan J; Riley, Anthony L; Kearns, David N
2014-08-01
Although different classes of drug differ in their mechanisms of reinforcement and effects on behavior, little research has focused on differences in self-administration behaviors maintained by users of these drugs. Persistent drug choice despite available reinforcement alternatives has been proposed to model behavior relevant to addiction. The present study used a within-subjects procedure, where male rats (Long-Evans, N = 16) were given a choice between cocaine (1.0 mg/kg/infusion) and food (a single 45-mg grain pellet) or between heroin (0.02 mg/kg/infusion) and food in separate phases (drug order counterbalanced). All rats were initially trained to self-administer each drug, and the doses used were based on previous studies showing that small subsets of rats tend to prefer drug over food reinforcement. The goal of the present study was to determine whether rats that prefer cocaine would also prefer heroin. Choice sessions consisted of 2 forced-choice trials with each reinforcer, followed by 14 free-choice trials (all trials separated by 10-min intertrial interval). Replicating previous results, small subsets of rats preferred either cocaine (5 of the 16 rats) or heroin (2 of the 16 rats) to the food alternative. Although 1 of the 16 rats demonstrated a preference for both cocaine and heroin to the food alternative, there was no relationship between degree of cocaine and heroin preference in individual rats. The substance-specific pattern of drug preference observed suggests that at least in this animal model, the tendencies to prefer cocaine or heroin in preference to a nondrug alternative are distinct behavioral phenomena.
Food intake in laboratory rats provided standard and fenbendazole-supplemented diets.
Vento, Peter J; Swartz, Megan E; Martin, Lisa Be; Daniels, Derek
2008-11-01
The benzimidazole anthelmintic fenbendazole (FBZ) is a common and effective treatment for pinworm infestation in laboratory animal colonies. Although many investigators have examined the potential for deleterious biologic effects of FBZ, more subtle aspects of the treatment remain untested. Accordingly, we evaluated differences in food intake when healthy male Sprague-Dawley rats were provided a standard nonmedicated laboratory rodent chow or the same chow supplemented with FBZ. We also tested for a preference for either food type when subjects were provided a choice of the 2 diets. Data from these experiments showed no differences in food intake or body weight when rats were maintained on either standard or FBZ-supplemented chow. When the rats were given access to both the standard and FBZ-supplemented diets, they showed a clear preference for the standard diet. The preference for the standard diet indicates that the rats can discriminate between the 2 foods and may avoid the FBZ-supplemented chow when possible. Investigators conducting experiments during treatment with FBZ in which differences in food preference are relevant should be aware of these data and plan their studies accordingly.
Food Intake in Laboratory Rats Provided Standard and Fenbendazole-supplemented Diets
Vento, Peter J; Swartz, Meghan E; Martin, Lisa BE; Daniels, Derek
2008-01-01
The benzimidazole anthelmintic fenbendazole (FBZ) is a common and effective treatment for pinworm infestation in laboratory animal colonies. Although many investigators have examined the potential for deleterious biologic effects of FBZ, more subtle aspects of the treatment remain untested. Accordingly, we evaluated differences in food intake when healthy male Sprague–Dawley rats were provided a standard nonmedicated laboratory rodent chow or the same chow supplemented with FBZ. We also tested for a preference for either food type when subjects were provided a choice of the 2 diets. Data from these experiments showed no differences in food intake or body weight when rats were maintained on either standard or FBZ-supplemented chow. When the rats were given access to both the standard and FBZ-supplemented diets, they showed a clear preference for the standard diet. The preference for the standard diet indicates that the rats can discriminate between the 2 foods and may avoid the FBZ-supplemented chow when possible. Investigators conducting experiments during treatment with FBZ in which differences in food preference are relevant should be aware of these data and plan their studies accordingly. PMID:19049253
Husain, Gulam Mohammed; Ahmed, Syed Shoeb; Azhar, Misbahuddin; Siddiqui, Javed Inam; Waheed, Mohammad Abdul; Kazmi, Munawwar Husain
2017-03-01
Jawarish Jalinoos (JJ) is a classical semisolid traditional Unani formulation clinically used for the treatment of weakness of vital organs, liver, and stomach. Although JJ has been widely used clinically for several decades, no scientific report is available for its safety. JJ and its sugar-free tablet version (SFJJ; formulated to target diabetic population) were assessed for safety in rats. Ninety-day repeated dose oral toxicity study was performed as per the Organisation for Economic Co-operation and Development Guideline 408. JJ was orally administered at the dose of 2000 mg/kg bw/d, whereas SFJJ was orally administered at the doses of 506 mg/kg body weight (bw)/d, 1012 mg/kg bw/d, and 2024 mg/kg bw/d for 90 days. The animals were periodically observed for clinical signs of toxicity, mortality, morbidity, body weight changes, and feed consumption. At the end of the study, hematology, clinical biochemistry, electrolytes, gross pathology, relative organ weight, and histological examination were performed. Treatment with SFJJ and JJ showed no significant differences in body weight gain, feed consumption, hematology, clinical biochemistry, and serum electrolytes. No gross pathological findings and differences in relative organ weights were observed between control and drug treated rats. Histological examination revealed no toxicologically significant abnormalities related with SFJJ or JJ treatment. The 90-day repeated dose oral toxicity study demonstrates that the no observed adverse effect level of SFJJ and JJ is greater than 2024 mg/kg bw/d and 2000 mg/kg bw/d (p.o.) in rats, respectively. Both formulations were found to be safe up to the tested dose levels and experimental conditions, and therefore safe for clinical use as specified in the literature.
Seibel, J; Bodié, K; Weber, S; Bury, D; Kron, M; Blaich, G
2010-10-01
The investigation of clinical pathology parameters (haematology, clinical chemistry and coagulation) is an important part of the preclinical evaluation of drug safety. However, the blood sampling method employed should avoid or minimize stress and injury in laboratory animals. In the present study, we compared the clinical pathology results from blood samples collected terminally from the vena cava (VC) immediately before necropsy with samples taken from the sublingual vein (VS) also prior to necropsy in order to determine whether the sampling method has an influence on clinical pathology parameters. Forty-six 12-week-old male Sprague-Dawley rats were assigned to two groups (VC or VS; n = 23 each). All rats were anaesthetized with isoflurane prior to sampling. In the VC group, blood was withdrawn from the inferior VC. For VS sampling, the tongue was gently pulled out and the VS was punctured. The haematology, coagulation and clinical chemistry parameters were compared. Equivalence was established for 13 parameters, such as mean corpuscular volume, white blood cells and calcium. No equivalence was found for the remaining 26 parameters, although they were considered to be similar when compared with the historical data and normal ranges. The most conspicuous finding was that activated prothrombin time was 30.3% less in blood taken from the VC (16.6 ± 0.89 s) than that in the VS samples (23.8 ± 1.58 s). Summing up, blood sampling from the inferior VC prior to necropsy appears to be a suitable and reliable method for terminal blood sampling that reduces stress and injury to laboratory rats in preclinical drug safety studies.
Mobile phone interference with medical equipment and its clinical relevance: a systematic review.
Lawrentschuk, Nathan; Bolton, Damien M
2004-08-02
To conduct a systematic review of studies on clinically relevant digital mobile phone electromagnetic interference with medical equipment. MEDLINE and SUMSEARCH were searched for the period 1966-2004. The Cochrane Library and Database of Abstracts of Reviews of Effects were also searched for systematic reviews. Studies were eligible if published in a peer-reviewed journal in English, and if they included testing of digital mobile phones for clinically relevant interference with medical equipment used to monitor or treat patients, but not implantable medical devices. As there was considerable heterogeneity in medical equipment studied and the conduct of testing, results were summarised rather than subjected to meta-analysis. Clinically relevant electromagnetic interference (EMI) secondary to mobile phones potentially endangering patients occurred in 45 of 479 devices tested at 900 MHz and 14 of 457 devices tested at 1800 MHz. However, in the largest studies, the prevalence of clinically relevant EMI was low. Most clinically relevant EMI occurred when mobile phones were used within 1 m of medical equipment. Although testing was not standardised between studies and equipment tested was not identical, it is of concern that at least 4% of devices tested in any study were susceptible to clinically relevant EMI. All studies recommend some type of restriction of mobile phone use in hospitals, with use greater than 1 m from equipment and restrictions in clinical areas being the most common.
Repeated injections of nicergoline increase the nerve growth factor level in the aged rat brain.
Nishio, T; Sunohara, N; Furukawa, S; Akiguchi, I; Kudo, Y
1998-03-01
We studied whether nicergoline, clinically active in chronic cerebrovascular insufficiency, influences nerve growth factor (NGF) levels in the rat brain. In young Fischer rats, repeated intraperitoneal injections of nicergoline (0.3 and 1.0 mg/kg body weight) did not show any effects on frontal NGF contents determined by a highly sensitive enzyme immunoassay. In aged rats, 22-month-old, however, repeated injections of nicergoline (1.0 mg/kg body weight) induced a significant increase in the NGF level in the frontal region.