Sample records for clinically significant microorganisms

  1. [THE TRUE OR FALSE BACTERIEMIA: THE SIGNIFICANCE OF EVALUATION CRITERIA OF CLINICAL SIGNIFICANCE OF POSITIVE HEMOCULTURE].

    PubMed

    Bagirova, N S

    2015-08-01

    The diagnostic of infections of blood flow using technique of hemofermentation (blood inoculation) is one of the most significant functions of laboratory of clinical microbiology. The effectiveness of the given technique depends on many factors, including criteria of evaluation of clinical significance of episode of bacteriemia and isolated microorganism applied by physician-microbiologist. The intelligent analysis of received results is needed. The physician-microbiologist has to determine if microorganism isolated from given blood sample, is a genuine agent of infections of bloodflow or it is only effect of contamination of analyzed sample at certain stage. The article presents data concerning taxonomic structure of microorganisms isolated under episodes of bacteriemia of adult oncologic hematologic patients during 2005-2013. The criteria of evaluation of clinical significance of episode of bacteriemia and isolated microorganism are described. The given criteria are developed in the N.N. Blokhin Russian oncological research center and are applied since 1977. The cases of contamination and genuine bacteriemia are established. The comparative analysis of international data and results of one's own study are carried out.

  2. [Survival of probiotic microorganisms in the conditions in vitro imitating the process of human digestion].

    PubMed

    Darmov, I V; Chicherin, I Iu; Pogorel'skiĭ, I P; Lundovskikh, I A

    2011-01-01

    Assessment of survival bifidobacteria and lactobacteria under the conditions in vitro, simulating digestion in human stomach and intestine, and study of survival probiotic and indigenous microorganisms in co-cultivation on solid nutrient medium. Probiotic microorganisms from commercial preparations Bifidobacterin and Lactobacterin, clinical isolates lactobacillus (Lactobacillus acidophilus No 1, L. brevis No 2) were used in experiments. Survival study of probiotic microorganisms was performed on a model in vitro, simulating the process of digestion in the human body. Assessment of the relationship of probiotic microorganisms and indigenous microorganisms was carried out in co-cultivation in vitro on solid nutrient medium. A significant reduction in the number of viable probiotic microorganisms during their incubation in model media was set as well as suppression of probiotic microorganisms growth by cultures of a clinical strains of lactobacillus, corresponding to biocompatibility by type "host against probiotic". While choosing probiotics in the treatment of dysbacterioses the character of relationship between probiotic microorganisms and indigenous microorganisms of a patient is recommended to be preliminarily tested. Also microorganisms of own microflora should be stimulated using modern prebiotics.

  3. Microbiological contamination of cubicle curtains in an out-patient podiatry clinic

    PubMed Central

    2010-01-01

    Background Exposure to potential pathogens on contaminated healthcare garments and curtains can occur through direct or indirect contact. This study aimed to identify the microorganisms present on podiatry clinic curtains and measure the contamination pre and post a standard hospital laundry process. Method Baseline swabs were taken to determine colony counts present on cubical curtains before laundering. Curtains were swabbed again immediately after, one and three weeks post laundering. Total colony counts were calculated and compared to baseline, with identification of micro-organisms. Results Total colony counts increased very slightly by 3% immediately after laundry, which was not statistically significant, and declined significantly (p = 0.0002) by 56% one-week post laundry. Three weeks post laundry colony counts had increased by 16%; although clinically relevant, this was not statistically significant. The two most frequent microorganisms present throughout were Coagulase Negative Staphylococcus and Micrococcus species. Laundering was not completely effective, as both species demonstrated no significant change following laundry. Conclusion This work suggests current laundry procedures may not be 100% effective in killing all microorganisms found on curtains, although a delayed decrease in total colony counts was evident. Cubicle curtains may act as a reservoir for microorganisms creating potential for cross contamination. This highlights the need for additional cleaning methods to decrease the risk of cross infection and the importance of maintaining good hand hygiene. PMID:21087486

  4. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment.

    PubMed

    Palza, Humberto; Nuñez, Mauricio; Bastías, Roberto; Delgado, Katherine

    2018-06-01

    Copper and its alloys are effective antimicrobial surface materials in the laboratory and in clinical trials. Copper has been used in the healthcare setting to reduce environmental contamination, and thus prevent healthcare-associated infections, complementing traditional protocols. The addition of copper nanoparticles to polymer/plastic matrices can also produce antimicrobial materials, as confirmed under laboratory conditions. However, there is a lack of studies validating the antimicrobial effects of these nanocomposite materials in clinical trials. To satisfy this issue, plastic waiting room chairs with embedded metal copper nanoparticles, and metal hospital IV pools coated with an organic paint with nanostructured zeolite/copper particles were produced and tested in a hospital environment. These prototypes were sampled once weekly for 10 weeks and the viable microorganisms were analysed and compared with the copper-free materials. In the waiting rooms, chairs with copper reduced by around 73% the total viable microorganisms present, showing activity regardless of the microorganism tested. Although there were only low levels of microorganisms in the IV pools installed in operating rooms because of rigorous hygiene protocols, samples with copper presented lower total viable microorganisms than unfilled materials. Some results did not have statistical significance because of the low load of microorganisms; however, during at least three weeks the IV pools with copper had reduced levels of microorganisms by a statistically significant 50%. These findings show for the first time the feasibility of utilizing the antimicrobial property of copper by adding nanosized fillers to other materials in a hospital environment. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.

    PubMed

    Bozoglan, Alihan; Ertugrul, Abdullah Seckin; Taspınar, Mehmet; Yuzbasioglu, Betul

    2017-05-01

    The aim of this study is to determine the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients following periodontal treatment. A total of 40 patients were included in the study. 20 of these patients diagnosed with atherosclerosis and chronic periodontitis formed the test group. The remaining 20 patients were systemically healthy patients diagnosed with chronic periodontitis and formed the control group. All patients had nonsurgical periodontal treatment. The periodontopathogenic microorganism levels were determined at baseline and at 6 months in microbial dental plaque samples and WBC, LDL, HDL, PLT, fibrinogen, creatinine and hs-CRP levels were determined by blood samples. Statistically significant reduction has been achieved in clinical periodontal parameters following non-surgical periodontal treatment in test and control groups. Following periodontal treatment, WBC, LDL, PLT, fibrinogen, creatinine and hs-CRP levels significantly decreased and HDL levels significantly increased in both test and control groups. Similarly, the periodontopathogenic microorganism levels significantly decreased following periodontal treatment in the test and control groups. A statistically significant positive correlation has been determined between the periodontopathogenic microorganism levels and WBC, LDL, PLT, fibrinogen, creatinine, and hs-CRP levels in the test group. The association between hs-CRP, WBC, LDL, PLT, fibrinogen, creatinine, and the amount of periodontopathogenic microorganisms indicates the possibility that periodontal treatment could decrease the risk atherosclerosis. More studies must be conducted in order for these results to be supported.

  6. Evaluation of a Mixing versus a Cycling Strategy of Antibiotic Use in Critically-Ill Medical Patients: Impact on Acquisition of Resistant Microorganisms and Clinical Outcomes.

    PubMed

    Cobos-Trigueros, Nazaret; Solé, Mar; Castro, Pedro; Torres, Jorge Luis; Rinaudo, Mariano; De Lazzari, Elisa; Morata, Laura; Hernández, Cristina; Fernández, Sara; Soriano, Alex; Nicolás, José María; Mensa, Josep; Vila, Jordi; Martínez, José Antonio

    2016-01-01

    To compare the effect of two strategies of antibiotic use (mixing vs. cycling) on the acquisition of resistant microorganisms, infections and other clinical outcomes. Prospective cohort study in an 8-bed intensive care unit during 35- months in which a mixing-cycling policy of antipseudomonal beta-lactams (meropenem, ceftazidime/piperacillin-tazobactam) and fluoroquinolones was operative. Nasopharyngeal and rectal swabs and respiratory secretions were obtained within 48h of admission and thrice weekly thereafter. Target microorganisms included methicillin-resistant S. aureus, vancomycin-resistant enterococci, third-generation cephalosporin-resistant Enterobacteriaceae and non-fermenters. A total of 409 (42%) patients were included in mixing and 560 (58%) in cycling. Exposure to ceftazidime/piperacillin-tazobactam and fluoroquinolones was significantly higher in mixing while exposure to meropenem was higher in cycling, although overall use of antipseudomonals was not significantly different (37.5/100 patient-days vs. 38.1/100 patient-days). There was a barely higher acquisition rate of microorganisms during mixing, but this difference lost its significance when the cases due to an exogenous Burkholderia cepacia outbreak were excluded (19.3% vs. 15.4%, OR 0.8, CI 0.5-1.1). Acquisition of Pseudomonas aeruginosa resistant to the intervention antibiotics or with multiple-drug resistance was similar. There were no significant differences between mixing and cycling in the proportion of patients acquiring any infection (16.6% vs. 14.5%, OR 0.9, CI 0.6-1.2), any infection due to target microorganisms (5.9% vs. 5.2%, OR 0.9, CI 0.5-1.5), length of stay (median 5 d for both groups) or mortality (13.9 vs. 14.3%, OR 1.03, CI 0.7-1.3). A cycling strategy of antibiotic use with a 6-week cycle duration is similar to mixing in terms of acquisition of resistant microorganisms, infections, length of stay and mortality.

  7. Pneumonia due to Enterobacter cancerogenus infection.

    PubMed

    Demir, Tülin; Baran, Gamze; Buyukguclu, Tuncay; Sezgin, Fikriye Milletli; Kaymaz, Haci

    2014-11-01

    Enterobacter cancerogenus (formerly known as CDC Enteric Group 19; synonym with Enterobacter taylorae) has rarely been associated with human infections, and little is known regarding the epidemiology and clinical significance of this organism. We describe a community-acquired pneumonia case in a 44-year-old female due to E. cancerogenus. Identification and antimicrobial susceptibility of the microorganism was performed by the automatized VITEK 2 Compact system (bioMerieux, France). The clinical case suggests that E. cancerogenus is a potentially pathogenic microorganism in determined circumstances; underlying diseases such as bronchial asthma, empiric antibiotic treatment, wounds, diagnostic, or therapeutic instruments.

  8. Antimicrobial Photodynamic Therapy as an Adjunct for Clinical Partial Removal of Deciduous Carious Tissue: A Minimally Invasive Approach.

    PubMed

    Ornellas, Pâmela O; Antunes, Leonardo S; Motta, Paula C; Mendonça, Caroline; Póvoa, Helvécio; Fontes, Karla; Iorio, Natalia; Antunes, Lívia A A

    2018-06-20

    This study aimed to evaluate the use of antimicrobial photodynamic therapy (aPDT) as an adjunct for minimally invasive treatment (partial removal of carious tissue - PRCT) of deciduous carious tissue evaluating its efficacy in reducing microorganisms. For that, a clinical study was design including children with deciduous molars with active deep caries lesions (DCL). PRCT was performed and remaining dentin was treated with 100 μg/mL methylene blue solution (5 min) and than irradiated with a low power laser emitting red light (InGaAIP - indium gallium aluminum phosphide; λ = 660nm; 100mW; 300 J/cm²; 90s; 9J). The colony forming units (CFU) count after PRCT and after PRCT + aPDT/mg of dentin were compared for total microorganisms, including Candida spp., the mutans streptococci group, Streptococcus spp. and Lactobacillus spp. The dentin was classified (color, consistency and humidity). The microbial reduction varied from 69.88% to 86.29% and was significantly observed for total microorganisms, mutans streptococci, Streptococcus spp. and Lactobacillus spp (p<0.001). The dentin type did not influence reduction of microorganisms (p>0.05). The aPDT presents a promising future for clinical use as an adjunct for the reduction of microorganisms in PRCT of DCL in all kinds of dentin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Clinical characteristics and outcomes of the meningitides in systemic lupus erythematosus.

    PubMed

    Baizabal-Carvallo, José Fidel; Delgadillo-Márquez, German; Estañol, Bruno; García-Ramos, Guillermo

    2009-01-01

    The meningitides are rare but well-identified complications in patients with systemic lupus erythematosus (SLE). To determine the clinical characteristics, risk factors, prevalence and outcomes of the meningitides (septic and aseptic) in patients with SLE. From January 1988 to December 2006, we identified patients with SLE and septic or aseptic meningitis. We identified 25 episodes of meningitis in 23 patients with SLE, from a total of 1,411 SLE patients (1.63%); in 15 out of 25 episodes, a microorganism was identified. Mycobacterium tuberculosis, Listeria monocytogenes and Criptococcus neoformans represented the main microorganisms. In 10 episodes, aseptic meningitis was diagnosed. Lymphopenia, steroid use, chronic damage and systemic activity of SLE were frequent in both kinds of meningitis. Although the clinical presentation did not differ significantly, patients with septic meningitis had more residual neurological deficits (p = 0.04). Meningitis was observed in about 1.6% of the patients with SLE; in 40% of the cases, no microorganism could be isolated. A residual neurological deficit was more common in patients with septic meningitis. Copyright (c) 2008 S. Karger AG, Basel.

  10. Is Ureaplasma spp. the leading causative agent of acute chorioamnionitis in women with preterm birth?

    PubMed

    Kikhney, J; von Schöning, D; Steding, I; Schulze, J; Petrich, A; Hiergeist, A; Reischl, U; Moter, A; Thomas, A

    2017-02-01

    Aim of this study was to detect microorganisms in fetal membranes and placental tissue in preterm chorioamnionitis by combining fluorescence in situ hybridization (FISH) with broad range PCR. The combination of the two molecular techniques enables identification and localization of the microorganisms within the tissue, confirming their clinical relevance. In a prospective cohort study, we compared 31 women with preterm premature rupture of membranes or preterm labour and preterm delivery by caesarean section with a control group of 26 women undergoing elective caesarean section at term. Fetal membranes and placental tissue were analysed by FISH and broad range 16S rRNA-gene PCR and sequencing. For 20 women in the preterm group, caesarean section was performed because of a clinical diagnosis of chorioamnionitis. Microorganisms were detected in the tissues by both molecular techniques in 11 out of 20 women. Among those, Ureaplasma spp. was most abundant, with five cases that remained culture-negative and would have been missed by routine diagnostic procedures. Other infections were caused by Staphylococcus aureus, Streptococcus mitis or Escherichia coli. FISH and PCR were negative for all women without suspected chorioamnionitis and for the control group. Combination of FISH with broad-range PCR and sequencing permitted unambiguous identification of the causative microorganisms in chorioamnionitis. The high prevalence of Ureaplasma spp. should lead to a re-evaluation of its clinical significance and possible therapeutic consequences. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Wound Microbiology and Associated Approaches to Wound Management

    PubMed Central

    Bowler, P. G.; Duerden, B. I.; Armstrong, D. G.

    2001-01-01

    The majority of dermal wounds are colonized with aerobic and anaerobic microorganisms that originate predominantly from mucosal surfaces such as those of the oral cavity and gut. The role and significance of microorganisms in wound healing has been debated for many years. While some experts consider the microbial density to be critical in predicting wound healing and infection, others consider the types of microorganisms to be of greater importance. However, these and other factors such as microbial synergy, the host immune response, and the quality of tissue must be considered collectively in assessing the probability of infection. Debate also exists regarding the value of wound sampling, the types of wounds that should be sampled, and the sampling technique required to generate the most meaningful data. In the laboratory, consideration must be given to the relevance of culturing polymicrobial specimens, the value in identifying one or more microorganisms, and the microorganisms that should be assayed for antibiotic susceptibility. Although appropriate systemic antibiotics are essential for the treatment of deteriorating, clinically infected wounds, debate exists regarding the relevance and use of antibiotics (systemic or topical) and antiseptics (topical) in the treatment of nonhealing wounds that have no clinical signs of infection. In providing a detailed analysis of wound microbiology, together with current opinion and controversies regarding wound assessment and treatment, this review has attempted to capture and address microbiological aspects that are critical to the successful management of microorganisms in wounds. PMID:11292638

  12. Bacteremic complications of intravascular catheter tip colonization with Gram-negative micro-organisms in patients without preceding bacteremia.

    PubMed

    van Eck van der Sluijs, A; Oosterheert, J J; Ekkelenkamp, M B; Hoepelman, I M; Peters, Edgar J G

    2012-06-01

    Although Gram-negative micro-organisms are frequently associated with catheter-related bloodstream infections, the prognostic value and clinical implication of a positive catheter tip culture with Gram-negative micro-organisms without preceding bacteremia remains unclear. We determined the outcomes of patients with intravascular catheters colonized with these micro-organisms, without preceding positive blood cultures, and identified risk factors for the development of subsequent Gram-negative bacteremia. All patients with positive intravascular catheter tip cultures with Gram-negative micro-organisms at the University Medical Center, Utrecht, The Netherlands, between 2005 and 2009, were retrospectively studied. Patients with Gram-negative bacteremia within 48 h before catheter removal were excluded. The main outcome measure was bacteremia with Gram-negative micro-organisms. Other endpoints were length of the hospital stay, in-hospital mortality, secondary complications of Gram-negative bacteremia, and duration of intensive care admission. A total of 280 catheters from 248 patients were colonized with Gram-negative micro-organisms. Sixty-seven cases were excluded because of preceding positive blood cultures, leaving 213 catheter tips from 181 patients for analysis. In 40 (19%) cases, subsequent Gram-negative bacteremia developed. In multivariate analysis, arterial catheters were independently associated with subsequent Gram-negative bacteremia (odds ratio [OR] = 5.00, 95% confidence interval [CI]: 1.20-20.92), as was selective decontamination of the digestive tract (SDD) (OR = 2.47, 95% CI: 1.07-5.69). Gram-negative bacteremia in patients who received SDD was predominantly caused by cefotaxime (part of the SDD)-resistant organisms. Mortality was significantly higher in the group with subsequent Gram-negative bacteremia (35% versus 20%, OR = 2.12, 95% CI: 1.00-4.49). Patients with a catheter tip colonized with Gram-negative micro-organisms had a high chance of subsequent Gram-negative bacteremia from any cause. This may be clinically relevant, as starting antibiotic treatment pre-emptively in high-risk patients with Gram-negative micro-organisms cultured from arterial intravenous catheters may be beneficial.

  13. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide.

    PubMed

    Ingham, Colin; Bomer, Johan; Sprenkels, Ad; van den Berg, Albert; de Vos, Willem; van Hylckama Vlieg, Johan

    2010-06-07

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays", potentially with multiple identical replicates, are useful in the selection of improved industrial microorganisms, screening antimicrobials, clinical diagnostics, strain storage, and for research into microbial genetics. A high throughput method to print microorganisms at high density was devised, employing a microscope and a stamp with a massive array of PDMS pins. Viable bacteria (Lactobacillus plantarum, Esherichia coli), yeast (Candida albicans) and fungal spores (Aspergillus fumigatus) were deposited onto porous aluminium oxide (PAO) using arrays of pins with areas from 5 x 5 to 20 x 20 microm. Printing onto PAO with up to 8100 pins of 20 x 20 microm area with 3 replicates was achieved. Printing with up to 200 pins onto PAO culture chips (divided into 40 x 40 microm culture areas) allowed inoculation followed by effective segregation of microcolonies during outgrowth. Additionally, it was possible to print mixtures of C. albicans and spores of A. fumigatus with a degree of selectivity by capture onto a chemically modified PAO surface. High resolution printing of microorganisms within segregated compartments and on functionalized PAO surfaces has significant advantages over what is possible on semi-solid surfaces such as agar.

  14. Effect of the antimicrobial photodynamic therapy on microorganism reduction in deep caries lesions: a systematic review and meta-analysis.

    PubMed

    Ornellas, Pâmela Oliveira; Antunes, Leonardo Dos Santos; Fontes, Karla Bianca Fernandes da Costa; Póvoa, Helvécio Cardoso Corrêa; Küchler, Erika Calvano; Iorio, Natalia Lopes Pontes; Antunes, Lívia Azeredo Alves

    2016-09-01

    This study aimed to perform a systematic review to assess the effectiveness of antimicrobial photodynamic therapy (aPDT) in the reduction of microorganisms in deep carious lesions. An electronic search was conducted in Pubmed, Web of Science, Scopus, Lilacs, and Cochrane Library, followed by a manual search. The MeSH terms, MeSH synonyms, related terms, and free terms were used in the search. As eligibility criteria, only clinical studies were included. Initially, 227 articles were identified in the electronic search, and 152 studies remained after analysis and exclusion of the duplicated studies; 6 remained after application of the eligibility criteria; and 3 additional studies were found in the manual search. After access to the full articles, three were excluded, leaving six for evaluation by the criteria of the Cochrane Collaboration’s tool for assessing risk of bias. Of these, five had some risk of punctuated bias. All results from the selected studies showed a significant reduction of microorganisms in deep carious lesions for both primary and permanent teeth. The meta-analysis demonstrated a significant reduction in microorganism counts in all analyses (p<0.00001). Based on these findings, there is scientific evidence emphasizing the effectiveness of aPDT in reducing microorganisms in deep carious lesions.

  15. Effect of the antimicrobial photodynamic therapy on microorganism reduction in deep caries lesions: a systematic review and meta-analysis

    NASA Astrophysics Data System (ADS)

    Ornellas, Pâmela Oliveira; Antunes, Leonardo Santos; Fontes, Karla Bianca Fernandes da Costa; Póvoa, Helvécio Cardoso Corrêa; Küchler, Erika Calvano; Iorio, Natalia Lopes Pontes; Antunes, Lívia Azeredo Alves

    2016-09-01

    This study aimed to perform a systematic review to assess the effectiveness of antimicrobial photodynamic therapy (aPDT) in the reduction of microorganisms in deep carious lesions. An electronic search was conducted in Pubmed, Web of Science, Scopus, Lilacs, and Cochrane Library, followed by a manual search. The MeSH terms, MeSH synonyms, related terms, and free terms were used in the search. As eligibility criteria, only clinical studies were included. Initially, 227 articles were identified in the electronic search, and 152 studies remained after analysis and exclusion of the duplicated studies; 6 remained after application of the eligibility criteria; and 3 additional studies were found in the manual search. After access to the full articles, three were excluded, leaving six for evaluation by the criteria of the Cochrane Collaboration's tool for assessing risk of bias. Of these, five had some risk of punctuated bias. All results from the selected studies showed a significant reduction of microorganisms in deep carious lesions for both primary and permanent teeth. The meta-analysis demonstrated a significant reduction in microorganism counts in all analyses (p<0.00001). Based on these findings, there is scientific evidence emphasizing the effectiveness of aPDT in reducing microorganisms in deep carious lesions.

  16. Wound Healing Finally Enters the Age of Molecular Diagnostic Medicine

    PubMed Central

    Tatum, Owatha L.; Dowd, Scot E.

    2012-01-01

    Background Many wounds are difficult to heal because of the large, complex community of microbes present within the wound. The Problem Classical laboratory culture methods do not provide an accurate picture of the microbial interactions or representation of microorganisms within a wound. There is an inherent bias in diagnosis based upon classical culture stemming from the ability of certain organisms to thrive in culture while others are underrepresented or fail to be identified in culture altogether. Chronic wounds also contain polymicrobial infections existing as a cooperative community that is resistant to antibiotic therapy. Basic/Clinical Science Advances New methods in molecular diagnostic medicine allow the identification of nearly all organisms present in a wound irrespective of the ability of these organisms to be grown in culture. Advances in DNA analyses allow absolute identification of microorganisms from very small clinical specimens. These new methods also provide a quantitative representation of all microorganisms contributing to these polymicrobial infections. Clinical Care Relevance Technological advances in laboratory diagnostics can significantly shorten the time required to heal chronic wounds. Identification of the genetic signatures of organisms present within a wound allows clinicians to identify and treat the primary organisms responsible for nonhealing wounds. Conclusion Advanced genetic technologies targeting the specific needs of wound care patients are now accessible to all wound care clinicians. PMID:24527290

  17. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures.

    PubMed

    Hendry, E R; Worthington, T; Conway, B R; Lambert, P A

    2009-12-01

    Effective disinfection and antisepsis is pivotal in preventing infections within the healthcare setting. Chlorhexidine digluconate (CHG) is a widely used disinfectant/antiseptic possessing broad-spectrum antimicrobial activity; however, its penetration into bacterial biofilms and human skin is poor. The aim of this study was to investigate the antimicrobial efficacy of crude eucalyptus oil (EO) and its main component 1,8-cineole (a recognized permeation enhancer), alone and in combination with CHG, against a panel of clinically relevant microorganisms grown in planktonic and biofilm cultures. MICs and minimum bactericidal/fungicidal concentrations were determined for each microorganism grown in suspension and biofilm using microbroth dilution and ATP bioluminescence, respectively. Chequerboard assays were used to determine synergistic, indifferent or antagonistic interactions between CHG and EO or 1,8-cineole. Antimicrobial activity was demonstrated by CHG, EO and 1,8-cineole; however, CHG was significantly more active against microorganisms in both planktonic and biofilm modes of growth (P < 0.05). Crude EO was significantly more efficacious against microorganisms grown in suspension compared with 1,8-cineole (P < 0.05). Synergistic activity was demonstrated between CHG and both EO and 1,8-cineole against suspensions of Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli and Candida albicans, and biofilm cultures of MRSA and Pseudomonas aeruginosa. In conclusion, CHG may be combined with either crude EO or its major component 1,8-cineole for enhanced, synergistic antimicrobial activity against a wide range of microorganisms in planktonic and biofilm modes of growth; however, the superior antimicrobial efficacy associated with crude EO alone, compared with 1,8-cineole, favours its combination with CHG.

  18. Application of the MALDI Biotyper to clinical microbiology: progress and potential.

    PubMed

    Kostrzewa, Markus

    2018-03-01

    The introduction of the MALDI Biotyper in laboratories substantially changed microbiology practice, this has been called a revolution. The system accelerated diagnostic while costs were reduced and accuracy was increased. In just a few years MALDI-TOF MS became the first-line identification tool for microorganisms. Ten years after its introduction, more than 2000 MALDI Biotyper systems are installed in laboratories which are performing routine diagnostic, and the number is still increasing. Areas covered: This article summarises changes in clinical microbiology introduced by the MALDI Biotyper and its effects, as it has been published in peer reviewed articles found in PubMed. Further, the potential of novel developments to increase the value of the system is described. Expert commentary: The MALDI Biotyper has significantly improved clinical microbiology in the area of microorganism identification. Now new developments and applications, e.g. for typing and resistance testing, might further increase its value in clinical microbiology. The systems might get the central diagnostic analyser which is getting integrated into the widely automated microbiology laboratories of the future.

  19. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    PubMed

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well as influence of microorganisms nature onto the interaction of between barrier layers and microorganisms.

  20. [Formation of microbial biofilms in causative agents of acute and chronic pyelonephritis].

    PubMed

    Lagun, L V; Atanasova, Iu V; Tapal'skiĭ, D V

    2013-01-01

    Study the intensity of formation of microbial biofilms by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus strains isolated during various forms of pyelonephritis. 150 clinical isolates of microorganisms isolated from urine ofpatientswith acute and chronic pyelonephritiswere included into the study. Determination of intensity of film-formation was carried out by staining of the formed biofilms by crystal violet with consequent extraction of the dye and measurement of its concentration in washout solution. Among causative agents ofpyelonephritis P. aeruginosa isolates had the maximum film-forming ability. The intensity of biofilm formation of these isolates was 2-3 time higher than staphylococcus and enterobacteria strains. Strains isolated from patients with chronic pyelonephritis by ability to form biofilms significantly surpassed strains isolated from acute pyelonephritis patients. A higher ability to form microbial biofilms for microorganisms--causative agents of pyelonephritis progressing against the background ofurolithiasis was noted. The ability to form biofilms is determined by both causative agent species and character of the infectious process in which this microorganism participates. Intensive formation of biofilms by E. coli, P. aeruginosa, K. pneumoniae, S. aureus clinical isolates may be an important factor of chronization of urinary tract infections.

  1. Evaluation of BACTEC 9240 blood culture system by using high-volume aerobic resin media.

    PubMed Central

    Schwabe, L D; Thomson, R B; Flint, K K; Koontz, F P

    1995-01-01

    The BACTEC 9240 blood culture system (Becton Dickinson Diagnostic Instrument Systems, Sparks, Md.) is one of three automated, continuous-monitoring systems that is widely used in clinical laboratories. The BACTEC 9240 was compared with the BACTEC NR 660 for the detection of organisms and bacteremic episodes; time to detection of positive cultures; number of false-positive and false-negative cultures; and time needed to load, process, and perform quality control functions by using high-volume aerobic media. Blood specimens (5,282) were inoculated in equal volumes (5 to 10 ml per bottle) into BACTEC Plus Aerobic/F (9240 system) and BACTEC Plus NR26 (660 system) bottles. Clinically significant isolates were detected in 6.6% of cultures, representing 348 microorganisms and 216 bacteremic episodes. Two hundred forty-eight microorganisms were detected by both systems, 48 by the 9240 only and 52 by the 660 only (P = not significant). Of the bacteremic episodes, 158 were detected by both systems, 27 by the 9240 only and 31 by the 660 only (P = not significant). Analysis of data by month revealed equivalent recovery rates for both systems, with the exception of a 30-day period at one study site during which the 660 system detected significantly more microorganisms. Following a proprietary hardware design retrofit of the 9240 instrument, detection rates were again equivalent for the remaining three months at this study site. Positive cultures detected by both systems were detected an average of 4.3 h faster by the 9240 system (21 versus 25.3 h). The numbers of false-positive cultures for the 9240 and 660 systems were 40 (1.0%) and 9 ( < 1.0%), respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7494044

  2. Quantifying Glosair™ 400 efficacy for surface disinfection of American Type Culture Collection strains and micro-organisms recently isolated from intensive care unit patients.

    PubMed

    Herruzo, R; Vizcaíno, M J; Herruzo, I

    2014-07-01

    Microbial contamination of hospital surfaces may be a source of infection for hospitalized patients. We evaluated the efficacy of Glosair™ 400 against two American Type Culture Collection strains and 18 clinical isolates, placed on glass germ-carriers. Carriers were left to air-dry for 60 min and then exposed to a cycle before detection of any surviving micro-organisms. Antibiotic-susceptible Gram-negative bacilli were less susceptible (although not significantly) to this technique than resistant Gram-negative bacilli or Gram-positive cocci and yeasts (3, 3.4 and 4.6 log10 reduction, respectively). In conclusion, in areas that had not been cleaned, aerosolized hydrogen peroxide obtained >3 log10 mean destruction of patients' micro-organisms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Measuring micro-organism gas production

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Pearson, A. O.; Mills, S. M.

    1973-01-01

    Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples.

  4. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method.

    PubMed

    Ferreira, L; Sánchez-Juanes, F; Muñoz-Bellido, J L; González-Buitrago, J M

    2011-07-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast and reliable technology for the identification of microorganisms with proteomics approaches. Here, we compare an intact cell method and a protein extraction method before application on the MALDI plate for the direct identification of microorganisms in both urine and blood culture samples from clinical microbiology laboratories. The results show that the intact cell method provides excellent results for urine and is a good initial method for blood cultures. The extraction method complements the intact cell method, improving microorganism identification from blood culture. Thus, we consider that MALDI-TOF MS performed directly on urine and blood culture samples, with the protocols that we propose, is a suitable technique for microorganism identification, as compared with the routine methods used in the clinical microbiology laboratory. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  5. Impact of microbial invasion of amniotic cavity and the type of microorganisms on short-term neonatal outcome in women with preterm labor and intact membranes.

    PubMed

    Cobo, Teresa; Vives, Irene; Rodríguez-Trujillo, Adriano; Murillo, Clara; Ángeles, Martina A; Bosch, Jordi; Vergara, Andrea; Gratacós, Eduard; Palacio, Montse

    2017-05-01

    The objective of this study was to evaluate the impact of microbial invasion of the amniotic cavity and the type of microorganisms on pregnancy and short-term neonatal outcomes in women with preterm labor. Prospective observational cohort study including women with preterm labor from 22.0 to 36.0 weeks. Microbial invasion of the amniotic cavity was defined based on amniotic fluid aerobic/anaerobic/mycoplasma cultures, and intra-amniotic inflammation on amniotic fluid interleukin-6 levels. Demographic data and pregnancy outcomes were compared among women exposed to microbial invasion of the amniotic cavity by Ureaplasma spp., women with microbial invasion of the amniotic cavity by other microorganisms, and a No-microbial invasion of the amniotic cavity/No-intra-amniotic inflammation group. The short-term neonatal outcome was evaluated in women delivering after 24.0 weeks. We included 228 women with preterm labor. Microbial invasion of the amniotic cavity occurred in 35% (80/228), 28% (22/80) being caused by Ureaplasma spp. Gestational age at admission and at delivery were significantly earlier and the rate of delivery at <24.0 weeks' gestation and of women who further developed clinical chorioamnionitis were significantly higher in women with microbial invasion of the amniotic cavity by microorganisms other than Ureaplasma spp. However, after 24 weeks, regardless of the microorganisms isolated, the short-term neonatal outcome was similar between women exposed to microbial invasion of the amniotic cavity and the No-microbial invasion of the amniotic cavity/No-intra-amniotic inflammation group when gestational age was considered. Microbial invasion of the amniotic cavity by microorganisms other than Ureaplasma spp. was associated with earlier gestational age at admission and at delivery, and a higher rate of preterm delivery <24.0 weeks and of women who developed clinical chorioamnionitis. However, we did not find differences in the short-term neonatal outcome between women exposed to microbial invasion of the amniotic cavity and the no-microbial invasion of the amniotic cavity/no-intra-amniotic inflammation group delivering after 24.0 weeks' gestation when adjusted by gestational age at delivery. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  6. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study.

    PubMed

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-09-01

    The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study.

  7. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study

    PubMed Central

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-01-01

    Background: The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. Materials and Methods: At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. Results: There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). Conclusion: The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study. PMID:26435612

  8. Assessment of anaerobic blood cultures in pediatric oncology patients.

    PubMed

    Monsonís Cabedo, Manuel; Rives Solá, Susana; Noguera-Julian, Antoni; Urrea Ayala, Mireia; Cruz Martinez, Ofelia; Gené Giralt, Amadeu

    2017-01-01

    The routine use of a single aerobic bottle for blood culture in pediatric patients has become commonplace, as anaerobic bacteria are not frequently involved in clinically significant infections. The aim of this study was to assess the usefulness of routinely performing anaerobic blood cultures in pediatric oncology patients. Prospective study was conducted on pediatric (<18 years) patients affected with febrile syndrome after receiving chemotherapy for hematological or solid malignancies. Samples were inoculated into pediatric aerobic and standard anaerobic bottles (BacT/Alert automatic system). Strains were considered clinically significant, or deemed as contaminants, depending on isolation circumstances and clinical criteria. A total of 876 blood cultures from 228 patients were processed during the 21-month study period (January 2014 to September 2015). Baseline diagnosis included 143 solid tumors and 67/18 cases of leukemia/lymphoma. Bacterial growth was detected in 90 (10.2%) blood cultures for 95 different isolates, of which 62 (7.1%)/63 isolates were considered clinically significant. Among the latter, 38 (60.3%) microorganisms grew in both aerobic and anaerobic bottles, 18 (28.6%) only in aerobic bottles, and 7 (11.1%) only in anaerobic bottles. Gram-negative bacilli (33; 52.4%), mainly from the Enterobacteriaceae family, were the most frequently isolated microorganisms. Overall, only 3 out of 90 isolates (3.3%) were strict anaerobes (Propionibacterium acnes), and all of them were deemed contaminants. Strict anaerobes did not cause significant infections in febrile pediatric oncology patients, and anaerobic blood culture bottles offered no additional advantages over aerobic media. Our results suggest that routine blood cultures should be solely processed in aerobic media in this group of patients. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Clinical impact of culture-positive preservation fluid on solid organ transplantation: A systematic review and meta-analysis.

    PubMed

    Oriol, Isabel; Sabé, N; Tebé, C; Veroux, M; Boin, I F S F; Carratalà, J

    2018-04-01

    Contamination of the preservation fluid (PF) used for donated organs is a potential source of post-transplant infection. However, the information on this issue is scarce. We therefore conducted a systematic review and meta-analysis to assess the incidence of culture-positive PF and its impact on solid organ transplant (SOT) recipients. Seventeen studies were identified and included. The overall incidence of culture-positive PF was 37% (95% CI: 27% to 49%), and the incidence of PF-related infections among SOT recipients with PF cultures that grew pathogenic microorganisms was 10% (95% CI: 7% to 15%). There were differences in the rates of infections due to pathogenic microorganisms between SOT recipients who received pre-emptive treatment and those who did not, but without statistical significance. The mortality rate among SOT recipients with PF-related infection was 35% (95% CI: 21% to 53%). In conclusion, although contamination of the PF of donated organs is frequent, the incidence of PF-related infection is relatively low. A closely clinical and microbiologic monitoring of the SOT recipient in case of culture-positive PF, regardless of the type of microorganism isolated might be do in order to establish a prompt diagnosis of PF-related infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Bacterial contamination and stethoscope disinfection practices: a cross-sectional survey of healthcare workers in Karachi, Pakistan.

    PubMed

    Rao, Danish Ahmed; Aman, Aiysha; Muhammad Mubeen, Syed; Shah, Ahmed

    2017-07-01

    Stethoscopes routinely used for clinical examination of patients may potentially transfer micro-organisms and cause iatrogenic infections. This study was undertaken to detect the presence of microorganisms on stethoscopes used clinically in hospitals of Karachi, Pakistan and to ascertain the infection control practices of healthcare workers (HCWs). In a cross-sectional study, 118 samples were collected from public and private institutions. Samples were tested for the presence and sensitivity of pathogenic microorganisms. Microorganisms were found on diaphragms of 33/64 (51.6%) and 19/57 (33.3%) stethoscopes in public and private sector hospitals, respectively. Methycillin resistance was identified in all staphylococcally contaminated samples. Only 33 (18%) respondents reported cleaning their stethoscopes regularly. We highlight the need for more and better on-the-job routines for decontaminating stethoscopes among HCWs in Karachi.

  11. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro.

    PubMed

    Donnelly, Ryan F; Singh, Thakur Raghu Raj; Tunney, Michael M; Morrow, Desmond I J; McCarron, Paul A; O'Mahony, Conor; Woolfson, A David

    2009-11-01

    In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. When employing Silescol membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol membranes in the corresponding experiments. Approximately 10(3) cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle-punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.

  12. Resistance profiles and risk factors of resistant microorganisms in bacteraemia of abdominal origin.

    PubMed

    Martín Jaramago, J; Armero Ibáñez, R; Camarena Miñana, J J; Morales Suárez-Varela, M

    2017-11-01

    The presence of resistant microorganisms is a major cause of failure in initial empirical antimicrobial therapy. The objectives of this study are to determine the resistance profile of microorganisms that cause bacteraemia of abdominal origin and to identify whether the previous use of antibiotics and the place of acquisition of bacteraemia are risk factors associated with the presence of resistant organisms. A clinical, observational, epidemiological, retrospective cohort study was conducted with all the adult patients admitted to a university hospital from 2011-2013. Antimicrobial resistance profiles were described and a 95% confidence interval chi-square test was used to determine whether the variables studied were risk factors in the isolation of resistant microorganisms. Of the 1245 patients with bacteraemia, 212 (17%) presented bacteraemia of abdominal origin. The resistance profile highlights the incidence of methicillin resistant Staphylococcus aureus (50%), coagulase-negative staphylococci resistant to linezolid (20.58%), enterococci resistant to vancomycin (3.12%), Escherichia coli resistant to third-generation cephalosporins (9.9%) and fluoroquinolones (35.64%), Klebsiella pneumoniae resistant to third-generation cephalosporins (8.33%), Pseudomonas aeruginosa resistant to fluoroquinolones and carbapenem (25% and 25% respectively) and Acinetobacter baumanii resistant to fluoroquinolones and carbapenem (100% and 100% respectively), Candida albicans resistant to fluconazole (11.11%), single Candida krusei isolate resistant to fluconazole and Candida parapsilosis resistant to echinocandins (12.5%). In our study, previous use of antibiotics had a statistically significant association with the isolation of resistant microorganisms (P=.013) but not the place of acquisition of bacteraemia (P=.239). Establishing the incidence of resistant organisms can improve empirical antimicrobial therapy in patients with bacteraemia of abdominal origin. Previous use of antibiotics was statistically significantly related to the isolation of resistant microorganisms. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Oral microbial and respiratory status of persons with mental retardation/intellectual and developmental disability: an observational cohort study.

    PubMed

    Binkley, Catherine J; Haugh, Gilbert S; Kitchens, Dinah H; Wallace, Debra L; Sessler, Daniel I

    2009-11-01

    The objective of this study was to determine the prevalence of select microorganisms in oral biofilms and to investigate relationships between oral and respiratory status in persons with mental retardation/intellectual and developmental disabilities (IDD). We conducted a 6-month-long observational cohort study with 63 persons with IDD. Oral examinations, oral sampling, and medical record reviews were performed at baseline and then monthly. Polymerase chain reaction (PCR) was used to analyze all baseline oral samples for the presence of Streptococcus pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), Prevotella melaninogenica, and Candida albicans. PCR analyses were also performed on participants' samples collected in the month before being diagnosed with a respiratory infection. All subjects had P. melaninogenica detected by PCR in their oral samples. Fifty-five percent (35 of 63) of participants had S. pneumoniae, MRSA, and C. albicans in their oral samples at baseline. No dental decay was detected clinically, oral hygiene was fair, and dysphagia was common. During the 6 months of the study, there were 22 respiratory infections (35% of participants)-12 pneumonias, 7 sinusitis, 1 bronchitis, and 1 upper respiratory tract infection. Participants with microorganisms in their baseline samples were significantly more likely to develop any respiratory infection and those who had poor oral status were significantly more likely to develop pneumonia. Almost 60% of participants who developed respiratory infections had the same microorganism detected in the sample collected in the month before infection as had been detected in their baseline sample. Potentially pathogenic microorganisms in the oral cavity and poor oral status significantly increased the risk of developing respiratory infections, including pneumonia, in persons with IDD. The results suggest that colonization with these microorganisms may persist despite routine tooth brushing. Meticulous comprehensive oral hygiene of the oral cavity may be needed to reduce oropharyngeal microbial load.

  14. Clinical Infectious Outcomes Associated with Biofilm-related Infections: a Retrospective Chart Review

    DTIC Science & Technology

    2015-06-07

    Chronic infections, Risk factors, Trauma-related infections, Burn Background The ability of microorganisms to form biofilms, a sessile mode of growth...patients [8]. With the present study, clinical information recovered from chart review was able to differentiate colonizing from infecting organisms...potential influences. Utilization of a randomly selected sample had conse- quences in microorganism representation as well as demographics. Species were

  15. Evaluation of Antibacterial Activity of Three Selected Fruit Juices on Clinical Endodontic Bacterial Strains

    PubMed Central

    Behera, Subasish; Khetrapal, Prashant; Punia, Sandhya Kapoor; Agrawal, Deepak; Khandelwal, Minal; Lohar, Jitendra

    2017-01-01

    Introduction: The increasing problem of antibiotic drug resistance by pathogenic microorganisms in the past few decades has recently led to the continuous exploration of natural plant products for new antibiotic agents. Many consumable food materials have good as well as their bad effects, good effect includes their antibacterial effects on different microorganisms present in the oral cavity. Recently, natural products have been evaluated as source of antimicrobial agent with efficacies against a variety of microorganisms. Methodology: The present study describes the antibacterial activity of three selected fruit juices (Apple, Pomegranate and Grape) on endodontic bacterial strains. Antimicrobial activity of fruit juices were tested by wel l diffusion assay by an inhibition zone surrounding the well. The aim of the study was to evaluate the antibacterial activity of three fruit juises on different endodontic strains. Result: Agar well diffusion method was adopted for determining antibacterial potency. Antibacterial activity present on the plates was indicated by an inhibition zone surrounding the well containing the fruit juice. The zone of inhibition was measured by measuring scale in millimeter. Comparision between antibacterial efficacy of all three fruit juices against Enterococcus feacalis and Streptococcus mutans was observed with significant value of P ≤ 0.05. Conclusion: The results obtained in this study clearly demonstrated a significant antimicrobial effect of apple fruit juice against Enterococcus fecalis and Streptococcus mutans. However, preclinical and clinical trials are needed to evaluate biocompatibility & safety before apple can conclusively be recommended in endodontic therapy, but in vitro observation of apple effectiveness appears promising. PMID:29284967

  16. Microorganisms present on peripheral intravenous needleless connectors in the clinical environment.

    PubMed

    Slater, Karen; Cooke, Marie; Whitby, Michael; Fullerton, Fiona; Douglas, Joel; Hay, Jennine; Rickard, Claire

    2017-08-01

    The aim of this study was to quantify culturable microorganisms on needleless connectors (NCs) attached to peripheral intravenous catheters in hospitalized adult medical patients. Half (50%) of 40 NCs were contaminated with microorganisms commonly found on the skin or mouth. Staphylococcus capitis and Staphylococcus epidermidis were most commonly isolated. Emergency department insertion and higher patient dependency were statistically associated with positive NC microorganism growth. These results reaffirm the need for NC decontamination prior to access. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Lectins and their application to clinical microbiology.

    PubMed Central

    Slifkin, M; Doyle, R J

    1990-01-01

    Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603

  18. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  19. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    PubMed

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity. Key findings: Each investigated lesion harbored a unique microbiota in terms of both species composition and numbers of microorganisms. This indicates that various combinations of aciduric microorganisms can colonize, survive in and probably also propagate dentine carious lesions. We also found that solid pH-selective agars can be used successfully to select acid-tolerant microorganisms in caries lesions. This would preserve their phenotypic traits for further study. In Paper III, the relation between salivary levels of matrix metalloproteinase-8 (MMP-8), salivary levels of tissue inhibitor of MMP (TIMP-1), and the presence of manifest caries lesions in a large number of subjects was investigated. Saliva samples were collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein using immunofluorometric assays, enzyme linked immunosorbent assays and Bradford assays, respectively. Key findings: Subjects with manifest caries lesions had significantly elevated levels of salivary MMP-8 compared to subjects without caries lesions. TIMP-1 was not significant in any case. In Paper IV, a new method for generating bioactive demineralized dentine matrix substrate (DDM) was developed using a dialysis system and two different demineralization approaches (acetic acid or EDTA). The generated DDM was subsequently analyzed for the presence of type 1 collagen, active MMP-8 and hydroxyproline (HYP) levels using SDS-PAGE, ELISA or immunofluorescence assay. Key findings: Both demineralization methods produced a substrate rich in collagen and with preserved MMP-8 activity. This report presents new knowledge on the composition of the acid tolerant dentine caries microbiota from three levels in dentine carious lesions and on the efficacy of operative caries removal on the numbers of viable microorganisms in the caries free cavity using two operative methods. Moreover, the basic mechanisms behind collagen degradation in the dentine caries process are studied from both a clinical and laboratory perspective. The report also provides a reference for further studies on dentine caries microbiology and dentine caries collagen degradation mechanisms, both of which are known only in part.

  20. [Community-acquired pneumonia--from medical technologist].

    PubMed

    Yamanaka, Kiyoharu

    2002-07-01

    The main causative microorganisms of Community-acquired pneumonia are Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus. Especially the causative microorganisms affecting whole body basic disease, persons of advanced age, and alcoholic patients are Moraxella catarrhalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida spp., Cryptococcus spp., Aspergillus spp., Pneumocystis carinii and anaerobic bacteria. Other microorganisms involved in epidemic disease, action condition (travel around hot springs etc.) and pet breeding environments are Mycoplasma pneumoniae, Legionella pnumophila, Chlamydia spp., respiratory syncytial virus, influenza virus, and adeno virus. We suggest methods of advancing the microscopic and microbiological examination and report, and quickly obtaining clinical information and extracting the clinical specimen. We also describe the inspection method for a case "Legionella pneumonia" that was discussed during this symposium.

  1. Feasibility of quantitatively diagnosing cornea infection using Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bai, Yanru; Chen, Keren; Mishra, Arti; Beuerman, Roger; Liu, Quan

    2017-02-01

    Ocular infection is a serious eye disease that could lead to blindness without prompt and proper treatment. In pathology, ocular infection is caused by microorganisms such as bacteria, fungi or viruses. The essential prerequisite for the optimal treatment of ocular infection is to identify the microorganism causing infection early as each type of microorganism requires a different therapeutic approach. The clinical procedure for identifying the microorganism species causing ocular infection includes Gram staining (for bacteria)/microscopy (for fungi) and the culture of corneal surface scraping, or aqueous and vitreous smear samples taken from the surface of infected eyes. The culture procedure is labor intensive and expensive. Moreover, culturing is time consuming, which usually takes a few days or even weeks. Such a long delay in diagnosis could result in the exacerbation of patients' symptoms, the missing of the optimal time frame for initiating treatment and subsequently the rising cost for disease management. Raman spectroscopy has been shown highly effective for non-invasive identification of both fungi and bacteria qualitatively. In this study, we investigate the feasibility of identifying the microorganisms of ocular infection and quantifying the concentrations using Raman spectroscopy by measuring not only gram negative and gram positive bacteria but also infected cornea. By applying a modified orthogonal projection approach, the relative concentration of each bacteria species could be quantified. Our results indicate the great potential of Raman spectroscopy as an alternative tool for non-invasive diagnosis of ocular infection and could play a significantly role in future ophthalmology.

  2. Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Kahle, Vladislav; Moravcová, Dana; Slais, Karel

    2009-08-15

    A chromophoric nonionogenic surfactant poly(ethylene glycol) 3-(2-hydroxy-5-n-octylphenylazo)-benzoate, HOPAB, has been prepared and used as a buffer additive for a dynamic modification of proteins and/or microorganisms including Escherichia coli , Staphylococcus epidermidis (biofilm-positive and biofilm-negative), and the strains of yeast cells Candida albicans and Candida parapsilosis (biofilm-positive and biofilm-negative) during a capillary electrophoresis and a capillary isoelectric focusing (CIEF) with UV detection at 326 nm. Values of isoelectric points of labeled proteins and microorganisms have been calculated using UV-detectable pI markers and have been found comparable with pI of the native compounds. Minimum detectable amount has been assessed lower than picograms of proteins and lower than a hundred cells injected into a separation capillary. The introduced labeling method facilitates CIEF separation of microorganisms from the clinical sample of the infected urine at their clinically important levels in the pH gradient pH range of 2-5 and their subsequent cultivation. At the same time, it has enabled the determination of albumin in human urine as a major clinical marker of urinary tract infections and kidney diseases.

  3. High Levels of Soluble C5b-9 Complex in Dialysis Fluid May Predict Poor Prognosis in Peritonitis in Peritoneal Dialysis Patients.

    PubMed

    Mizuno, Masashi; Suzuki, Yasuhiro; Higashide, Keiko; Sei, Yumi; Iguchi, Daiki; Sakata, Fumiko; Horie, Masanobu; Maruyama, Shoichi; Matsuo, Seiichi; Morgan, B Paul; Ito, Yasuhiko

    2017-01-01

    We searched for indicators to predict the prognosis of infectious peritonitis by measuring levels of complement proteins and activation products in peritoneal dialysis (PD) fluid (PDF) of patients at early stages of peritonitis. We retrospectively analyzed the relationship between the levels of sC5b-9, C3 and C4 in PDF and the subsequent clinical prognosis. We measured levels of sC5b-9, C3 and C4 in PDF on days 1, 2 and 5 post-onset of peritonitis in 104 episodes of infectious peritonitis in PD patients from 2008 and retrospectively compared levels with clinical outcomes. Further analysis for the presence of causative microorganisms or to demonstrate bacterial culture negative peritonitis was performed and correlated with change of levels of sC5b-9 in PDF. When PD patients with peritonitis were divided into groups that either failed to recover from peritonitis and were finally withdrawn from PD (group 1; n = 25) or recovered (group 2; n = 79), levels of sC5b-9, C3 and C4 in PDF were significantly higher in group 1 patients compared to those in group 2 on day5. Analysis of microorganisms showed significantly higher sC5b-9 levels in PDF of peritonitis cases caused by culture negative peritonitis in group 1 compared with group 2 when we analyzed for individual microorganisms. Of note, on day5, the sC5b-9 levels in PDF were similarly high in peritonitis caused by fungi or other organisms. Our results suggested that levels of complement markers in PDF, especially sC5b-9, have potential as surrogate markers to predict prognosis of PD-related peritonitis.

  4. [Necroscopic findings in patients with acquired immunodeficiency syndrome].

    PubMed

    Netto, J G; Collarile, D C; Borges, A F; Biancalana, M L; Stefano, H N

    1990-01-01

    The summaries of clinical data and the autopsy materials of 58 patients who died of acquired immunodeficiency syndrome were reviewed to study the spectrum of the pathologic features of this disease in a general hospital. Histologic sections of all organs were routinely obtained. The most affected organs were the lungs and encephalo, those responsible for the immediate cause of death. There were 11 types of microorganisms and 3 types of tumors. Among the microorganisms, the most frequent was the cytomegalovirus and, among tumors, Kaposi's sarcoma. The microorganisms were frequently associated, mainly in the central nervous system. There was also an association of microorganisms with tumors. Many patients presented with suppurative inflammation. Besides these lesions, a lymphocytic depletion of lymphoid organs was observed. The spectrum of pathologic changes in AIDS is vast, and pathologists should be aware of this fact to accurately diagnose the lesions they find. The morphologic lesions are neither unique nor specific for this syndrome, but in this clinical and immunologic setting they are characteristic. It became clear that several microorganisms and tumors sometimes can only be discovered by autopsy, which is an irrefutable proof that despite the modern technology, autopsy is unavoidable for the knowledge of the pathogeny of a disease.

  5. The Emerging Microbe Project: Developing Clinical Care Plans Based on Pathogen Identification and Clinical Case Studies †

    PubMed Central

    O’Donnell, Lauren A.; Perry, Michael W.; Doup, Dane’t R.

    2015-01-01

    For many students in the health sciences, including doctor of pharmacy (PharmD) students, basic and clinical sciences often appear detached from each other. In the infectious disease field, PharmD students additionally struggle with mastering the diversity of microorganisms and the corresponding therapies. The objective of this study was to design an interdisciplinary project that integrates fundamental microbiology with clinical research and decision-making skills. The Emerging Microbe Project guided students through the identification of a microorganism via genetic sequence analysis. The unknown microbe provided the basis for a patient case that asked the student to design a therapeutic treatment strategy for an infected patient. Outside of lecture, students had two weeks to identify the pathogen using nucleotide sequences, compose a microbiology report on the pathogen, and recommend an appropriate therapeutic treatment plan for the corresponding clinical case. We hypothesized that the students would develop a better understanding of the interplay between basic microbiology and infectious disease clinical practice, and that they would gain confidence and skill in independently selecting appropriate antimicrobial therapies for a new disease state. The exercise was conducted with PharmD students in their second professional year of pharmacy school in a required infectious disease course. Here, we demonstrate that the Emerging Microbe Project significantly improved student learning through two assessment strategies (assignment grades and exam questions), and increased student confidence in clinical infectious disease practice. This exercise could be modified for other health sciences students or undergraduates depending upon the level of clinical focus required of the course. PMID:26753029

  6. Comparison of methods for the identification of microorganisms isolated from blood cultures.

    PubMed

    Monteiro, Aydir Cecília Marinho; Fortaleza, Carlos Magno Castelo Branco; Ferreira, Adriano Martison; Cavalcante, Ricardo de Souza; Mondelli, Alessandro Lia; Bagagli, Eduardo; da Cunha, Maria de Lourdes Ribeiro de Souza

    2016-08-05

    Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK(®) 2 system, which is currently used in routine clinical microbiology laboratories. This study evaluated the accuracy of the VITEK(®) 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. The automated VITEK(®) 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). The performance of the VITEK(®) 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.

  7. Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro

    PubMed Central

    Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Tunney, Michael M.; Morrow, Desmond I. J.; McCarron, Paul A.; O’Mahony, Conor; Woolfson, A. David

    2010-01-01

    Methods In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. Results When employing Silescol® membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol® membranes in the corresponding experiments. Approximately 103cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. Conclusion We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle—punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse. PMID:19756972

  8. Direct and Indirect Effects of Animal Detritus on Growth, Survival, and Mass of Invasive Container Mosquito Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    YEE, DONALD A.; KESAVARAJU, BANUGOPAN; JULIANO, STEVEN A.

    2007-01-01

    Compared with plant detritus, animal detritus yields higher growth rates, survival, adult mass, and population growth of container-dwelling mosquitoes. It is unclear whether the benefit from animal detritus to larvae results from greater microorganism growth, direct ingestion of animal detritus by larvae, or some other mechanism. We tested alternative mechanisms by which animal detritus may benefit the invasive container-dwelling mosquito Aedesalbopictus (Skuse) (Diptera: Culicidae). In the laboratory, larvae were reared under three conditions with access to 1) detritus, but where microorganisms in the water column were reduced through periodic flushing; 2) water column microorganisms, but larvae had no direct access to detritus; or 3) both water column microorganisms and detritus. Access treatments were conducted for three masses of animal detritus: 0.005, 0.010, and 0.020 g. Water column bacterial productivity (measured via incorporation of [3H]leucine) decreased significantly with flushing and with larval presence. Removing microorganisms through flushing significantly reduced mass of adult mosquitoes (both sexes), and it significantly prolonged developmental times of females compared with treatments where water column microorganisms or microorganisms and detritus were available. Survival to adulthood was greatest when larvae had access to both water column microorganisms and 0.020 g of detritus, but it declined when only water column microorganisms were available or when 0.005 g of detritus was used. These findings indicate both direct (as a food source) and indirect (assisting with decomposition of detritus) roles of microorganisms in producing the benefit of animal detritus to container mosquito larvae. PMID:17695011

  9. Invasion of vascular cells in vitro by Porphyromonas endodontalis.

    PubMed

    Dorn, B R; Harris, L J; Wujick, C T; Vertucci, F J; Progulske-Fox, A

    2002-04-01

    The objective of this study was to determine whether laboratory strains and clinical isolates of microorganisms associated with root canal infections can invade primary cultures of cardiovascular cells. Quantitative levels of bacterial invasion of human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC) were measured using a standard antibiotic protection assay. Transmission electron microscopy was used to confirm and visualize internalization within the vascular cells. Of the laboratory and clinical strains tested, only P. endodontalis ATCC 35406 was invasive in an antibiotic protection assay using HCAEC and CASMC. Invasion of P. endodontalis ATCC 35406 was confirmed by transmission electron microscopy. Certain microorganisms associated with endodontic infections are invasive. If bacterial invasion of the vasculature contributes to the pathogenesis of cardiovascular disease, then microorganisms in the pulp chamber represent potential pathogens.

  10. Clinical applications of gut microbiota in cancer biology.

    PubMed

    Wong, Sunny H; Kwong, Thomas N Y; Wu, Chun-Ying; Yu, Jun

    2018-05-18

    The involvement of microorganisms in cancer has been increasing recognized. Collectively, microorganisms have been estimated to account for ∼20% of all cancers worldwide. Recent advances in metagenomics and bioinformatics have provided new insights on the microbial ecology in different tumors, pinpointing the roles of microorganisms in cancer formation, development and response to treatments. Furthermore, studies have emphasized the importance of host-microbial and inter-microbial interactions in the cancer microbiota. These studies have not only revolutionized our understanding of cancer biology, but also opened up new opportunities for cancer prevention, diagnosis, prognostication and treatment. This review article aims to summarize the microbiota in various cancers and their treatments, and explore clinical applications for such relevance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor.

    PubMed

    Feng, Qing; Song, Young-Chae; Ahn, Yongtae

    2018-07-01

    The role of anaerobic microorganisms suspended in the bulk solution on methane production was investigated in a bioelectrochemical anaerobic reactor with the electrode polarized at 0.5 V. The electron transfer from substrate to methane and hydrogen were 25% and 7.5%, respectively, in the absence of the anaerobic microorganisms in the bulk solution. As the anaerobic microorganisms increased to 4400 mg/L, the electrons transferred to methane increased to 83.3% but decreased to 0.3% in hydrogen. The electroactive microorganisms (EAM), including exoelectrogens and electrotrophs, enriched in the bulk solution that confirmed by the redox peaks in the cyclic voltammogram was proportional to the anaerobic microorganism. The methane yield based on COD removal was dependent on the anaerobic microorganisms in the bulk solution rather than on the bioelectrode surface. The EAM suspended in the bulk solution are enriched by the polarized electrode, and significantly improve methane production in bioelectrochemical anaerobic reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Unique blood culture for diagnosis of bloodstream infections in emergency departments: a prospective multicentre study.

    PubMed

    Dargère, S; Parienti, J-J; Roupie, E; Gancel, P-E; Wiel, E; Smaiti, N; Loiez, C; Joly, L-M; Lemée, L; Pestel-Caron, M; du Cheyron, D; Verdon, R; Leclercq, R; Cattoir, V

    2014-11-01

    Detection of microorganisms by blood cultures (BCs) is essential in managing patients with bacteraemia. Rather than the number of punctures, the volume of blood drawn is considered paramount in efficient and reliable detection of microorganisms. We performed a 1-year prospective multicentre study in adult emergency departments of three French university hospitals comparing two methods for BCs: a unique blood culture (UBC) collecting a large volume of blood (40 mL) and the standard method of multiple blood cultures (MBC). The performances of both methods for bacterial contamination and efficient microbial detection were compared, each patient serving as his own control. Amongst the 2314 patients included, three hundred were positive for pathogens (n=245) or contaminants (n=55). Out of the 245 patients, 11 were positive for pathogens by UBC but negative by MBC and seven negative by UBC but positive by MBC (p 0.480). In the subgroup of 137 patients with only two BCs, UBC was superior to MBC (p 0.044). Seven and 17 patients had contaminated BCs by UBC and MBC only, respectively (p 0.062). Considering the sums of pathogens missed and contaminants, UBC significantly outperformed MBC (p 0.045). Considering the complete picture of cost savings, efficient detection of microorganisms and decrease in contaminations, UBC offers an interesting alternative to MBC. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  13. [Opportunistic microorganisms in purulent inflammatory otolaryngologic diseases and meningitis].

    PubMed

    Mironov, A Iu; Savitskaia, K I; Vorob'ev, A A

    2001-01-01

    The contamination of clinical specimens material, obtained from patients with otolaryngology inflammatory processes and purulent meningitides in the Moscow region, has been studied. Etiologically significant causative agents dominating in different purulent inflammatory diseases have been established. As revealed in this study, in the Moscow region the leading causative agents of purulent inflammatory otolaryngology deseases and meningitides are coagulase-negative ataphylococci, Escherichia coli, meningococci, pyogenic streptococci and fungi of the genus Candida.

  14. [Mass spectrometry in the clinical microbiology laboratory].

    PubMed

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  15. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors.

    PubMed

    Willers, Clarissa; Wentzel, Johannes Frederik; du Plessis, Lissinda Hester; Gouws, Chrisna; Hamman, Josias Hendrik

    2017-01-01

    Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.

  16. [Microorganism test systems and antibiograms useful for the proper use of antibacterial agents].

    PubMed

    Takahashi, Shunji

    2010-07-01

    Antimicrobial agents are used for the accurate diagnosis of infectious diseases and effective implementation of antibacterial chemotherapy. The role of microbiological technologists is to provide data from microorganism tests useful for rapid infection treatment. Gram strain can be used to observe microorganisms and neutrophils from specimens of a patient. It is also possible to estimate the kinds of microorganism. If bacterial infectious disease is negative, there is no need for antibacterial chemotherapy. The applied dose of antibacterial agents is different in every hospital. Also, there is a difference in the percentage antibacterial agent susceptibility of isolates. Antibiograms must be created to investigate local factors. For empiric therapy, antibiograms are useful when choosing antibacterial agents showing marked efficacy against the clinical isolate. Microorganism test systems which are useful for the proper use of antibacterial agents are necessary to facilitate safe antibacterial chemotherapy and prevent the development of resistant bacteria. We report a microorganism test system employed at the Sapporo City General Hospital.

  17. Intestinal protozoa infections among patients with ulcerative colitis: prevalence and impact on clinical disease course.

    PubMed

    Yamamoto-Furusho, Jesús K; Torijano-Carrera, Emma

    2010-01-01

    Epidemiological and microbiologic studies suggest that enteropathogenic microorganisms play a substantial role in the clinical initiation and relapses of inflammatory bowel disease. To explore the prevalence of intestinal protozoa in patients with ulcerative colitis (UC) and its impact on clinical disease course. A total of 215 patients with definitive diagnosis of UC were studied. Fresh feces samples taken from all UC patients were examined immediately using trichrome-staining methods. A total of 103 female and 112 male UC patients were analyzed. The mean age at diagnosis was 30.5 +/- 10.8 years. The prevalence of overall parasitic infections was 24% and distributed as follows: Blastocystis hominis in 22 patients (10%), Endolimax nana in 19 cases (9%), and Entamoebahistolytica in 11 cases (5%). A significantly increased frequency of protozoa infection was found in those patients with persistent activity and intermittent activity as compared to active than inactive group (p = 1 x 10(-7), OR 13.05, 95% CI 4.28-42.56, and p = 0.003, OR 1.42-14.47, respectively). Interestingly, this association remained significant when we compared the persistent activity group versus intermittent activity group (p = 0.003, OR 2.97, 95% CI 1.35-6.59). Subgroup analysis showed no association between protozoa infection (E. histolytica, B. hominis, and E. nana) and other clinical variables such as gender, extent of disease, extraintestinal complications, medical treatment and grade of disease activity. The prevalence of intestinal protozoa infections in Mexican UC patients was 24% and these microorganisms could be a contributing cause of persistent activity despite medical treatment in our population. 2010 S. Karger AG, Basel.

  18. Characteristics of airborne micro-organisms in a neurological intensive care unit: Results from China.

    PubMed

    Yu, Yao; Yin, Sufeng; Kuan, Yi; Xu, Yingjun; Gao, Xuguang

    2015-06-01

    To describe the characteristics of airborne micro-organisms in the environment in a Chinese neurological intensive care unit (NICU). This prospective study monitored the air environment in two wards (large and small) of an NICU in a tertiary hospital in China for 12 months, using an LWC-1 centrifugal air sampler. Airborne micro-organisms were identified using standard microbiology techniques. The mean ± SD number of airborne bacteria was significantly higher in the large ward than in the small ward (200 ± 51 colony-forming units [CFU]/m(3) versus 110 ± 40 CFU/m(3), respectively). In the large ward only, the mean number of airborne bacteria in the autumn was significantly higher than in any of the other three seasons. A total of 279 airborne micro-organisms were identified (large ward: 195; small ward: 84). There was no significant difference in the type and distribution of airborne micro-organisms between the large and small wards. The majority of airborne micro-organisms were Gram-positive cocci in both wards. These findings suggest that the number of airborne micro-organisms was related to the number of patients on the NICU ward. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Nitrogen acquisition by plants and microorganisms in a temperate grassland

    PubMed Central

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-01-01

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term 15N experiments with NH4+, NO3−, and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4+ and NO3−, while plants preferred NO3−. Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0–5 cm soil layer and 33% from the 5–15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands. PMID:26961252

  20. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    PubMed

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  1. Comparison of acridine orange and Gram stains for detection of microorganisms in cerebrospinal fluid and other clinical specimens.

    PubMed Central

    Lauer, B A; Reller, L B; Mirrett, S

    1981-01-01

    Acridine orange, a fluorochrome strain, is potentially superior to the Gram stain in the direct microscopic examination of clinical specimens because it gives striking differential staining between bacteria and background cells and debris. Its value in clinical laboratories was evaluated by testing 209 cerebrospinal fluids and 288 other body fluids, tissues, and exudates by both techniques. Smears were made in duplicate, fixed with methanol, stained, and examined without knowledge of the result of the companion smear or culture. Overall, acridine orange was slightly more sensitive than the Gram stain (acridine orange, 59.9%; Gram stain, 55.8%) and equally specific in detecting microorganisms. One smear was falsely positive by the Gram stain; none was falsely positive by the acridine orange stain. We conclude that acridine orange staining is a sensitive method for screening clinical specimens and reviewing selected specimens that are purulent, but negative by the Gram stain. Bloody fluids, thick exudates, and other normally difficult-to-read specimens were easily and quickly examined. We recommend, however, that positive smears be reexamined with the Gram stain to confirm the result and determine the Gram reaction of the microorganisms. PMID:6168652

  2. The Effect of Pistacia atlantica Var. mutica Mouthwash on Dental Plaque Bacteria and Subgingival Microorganisms: a Randomized and Controlled Triple-blind Study.

    PubMed

    Arami, S; Mojaddadi, M A; Pourabbas, R; Chitsaz, M T; Delazar, A; Mobayen, H

    2015-09-01

    Dental plaque is a well-documented etiologic factor for periodontal diseases. While chlorhexidine (CHX) is the gold-standard agent for treating dental plaques, undesirable side effects are often found after continuous use of the mouthwash. Therefore, this single-center, randomized, triple-blinded and clinical trial was undertaken to evaluate the efficacy of Pistacia atlantica Var. mutica extract mouthwash on de novo dental plaque bacteria and subgingival microorganisms compared to CHX on a total of 28 patients. The mean aerobic plaque bacterial count of patients at baseline was 2.17 × 10(6). After 4 days of treatment, there were statistically significant decreases in the mean aerobic bacteria in the patients who received P. atlantica and/or CHX (7.25 × 10(4), p = 0.006) and (9.91 × 10(3), p = 0.002), respectively, compared to the patients who received the placebo (6.26 × 10(5)). This study showed that P. atlantica mouthwash is effective against gingival microorganisms. Because of its reduced side effects, P. atlantica mouthwash may be a good alternative choice for patients. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth

    PubMed Central

    Vornhagen, Jay; Quach, Phoenicia; Boldenow, Erica; Merillat, Sean; Whidbey, Christopher; Ngo, Lisa Y.; Adams Waldorf, K. M.

    2016-01-01

    ABSTRACT Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS), or Streptococcus agalactiae. However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth. PMID:27353757

  4. Local oxygen therapy for treating acute necrotizing periodontal disease in smokers.

    PubMed

    Gaggl, Alexander J; Rainer, Heribert; Grund, Eveline; Chiari, Friedrich M

    2006-01-01

    The main aim of treatment for acute necrotizing periodontal disease is fast and effective reduction of anaerobic destructive microorganisms to avoid periodontal damage. The effect of adjunctive local oxygen therapy in the treatment of necrotizing periodontal disease was examined in this study. Thirty patients with acute necrotizing periodontal disease were treated with the systemic antibiotics amoxicillin, clavulanic acid, and metronidazole. In 15 out of 30 patients, adjunctive local oxygen therapy was administered. The patients were followed from the first to 10th day of treatment with clinical and bacteriological examinations. The clinical examination registered gingival bleeding, periodontal probing depth, and attachment loss; to follow up microbiological colonization of the periodontal sulcus, five representative bacteria were registered by a semiquantitative DNA polymerase chain reaction test. In both groups of patients, colonization with Prevotella intermedia, Tannerella forsythensis, and Treponema denticola was initially positive. None of these three microorganisms were completely eradicated in any of the patients in the group without oxygen therapy within the first 10 days of treatment. In the group with adjunctive oxygen therapy, all patients either showed a reduction in or complete eradication of the microorganisms, resulting in more rapid clinical restitution with less periodontal destruction. Adjunctive oxygen therapy results in early eradication of pathogenic anaerobic microorganisms in cases of acute necrotizing periodontal disease. The damage to periodontal tissue is reduced.

  5. [Complicated urinary tract infections--from the perspective of the medical technologist].

    PubMed

    Nagasawa, Zenzo

    2002-07-01

    We would like to propose re-establishment of the protocol for ordering a clinical microbiology laboratory test after a bedside screening test using urine reagent strip when urinary tract infection is suspected. Media for isolation shall be chosen by the clinical microbiology laboratory after checking turbidity and microscopic examination of the urine specimen. In cases of complicated urinary tract infections, quantitative culture should be performed to investigate changes in the number of microorganism to grasp condition of super infection. In such infections, there are many cases in which multiple microorganism growth including glucose non-fermenting gram-negative bacilli can be recognized. Therefore, it is necessary to inspect colonies on media as long as possible (24 hrs culture may be short in some cases). The protocol for microorganism identification and susceptibility test for such specimen varies in each laboratory, considering the Health Insurance Point System (reimbursement system by MHW). It is necessary to communicate with physicians and to refer to past results to proceed with the laboratory test properly. Therefore, a Certified Clinical Microbiology Medical Technologist is needed and the role played by such staff is important.

  6. Microorganisms in Food--Their Significance and Methods of Enumeration.

    ERIC Educational Resources Information Center

    Andrews, S.

    1980-01-01

    Described are laboratory methods for enumerating microorganisms in food. These methods are utilized to determine if foods are potentially hazardous to the consumer due to high concentrations of microorganisms. Discussed are indicator organisms, including coliforms, interococci, yeasts, and molds; food poisoning organisms (staphylococci and…

  7. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses.

    PubMed

    Sreenivasan, P K; Haraszthy, V I; Zambon, J J

    2013-01-01

    This study evaluated the antimicrobial activity of two commercially available 0·05% cetylpyridinium chloride (CPC) mouthrinses with or without alcohol and examined its antimicrobial activity on oral bacterial species including fresh clinical isolates compared to a chlorhexidine mouthrinse and a control fluoride mouthrinse without CPC. Two different approaches were used to evaluate antimicrobial activity. First, the minimum inhibitory concentration (MIC) was determined for each mouthrinse against a panel of 25 micro-organisms including species associated with dental caries, gingivitis and periodontitis. Second, supragingival dental plaque obtained from 15 adults was incubated with the four mouthrinses to evaluate antimicrobial activity on micro-organisms in oral biofilms. Both CPC mouthrinses exhibited lower MIC's, that is, greater antimicrobial activity, against oral Gram-negative bacteria especially periodontal pathogens and species implicated in halitosis such as Aggregatibacter actinomycemcomitans, Campylobacter rectus, Eikenella corrodens, Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei than the control mouthrinse. Ex-vivo tests on supragingival plaque micro-organisms demonstrated significantly greater antimicrobial activity by the CPC mouthrinses (>90% killing, P < 0·001) and the chlorhexidine rinse (>98% killing, P < 0·05) compared to the control fluoride mouthrinse. Whilst the chlorhexidine mouthrinse was most effective, mouthrinses containing 0·05% CPC formulated with or without alcohol demonstrated broad-spectrum antimicrobial activity against both laboratory strains and supragingival plaque bacteria compared to a control mouthrinse without CPC. These in vitro and ex-vivo studies provide a biological rationale for previous clinical studies demonstrating the efficacy of CPC mouthrinses in reducing supragingival plaque and plaque-associated gingivitis. © 2012 The Society for Applied Microbiology.

  8. Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine

    PubMed Central

    Contreras, Alejandra V.; Cocom-Chan, Benjamin; Hernandez-Montes, Georgina; Portillo-Bobadilla, Tobias; Resendis-Antonio, Osbaldo

    2016-01-01

    It has been experimentally shown that host-microbial interaction plays a major role in shaping the wellness or disease of the human body. Microorganisms coexisting in human tissues provide a variety of benefits that contribute to proper functional activity in the host through the modulation of fundamental processes such as signal transduction, immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been correlated with the genesis and evolution of complex diseases such as cancer. Although this latter disease has been thoroughly studied using different high-throughput (HT) technologies, its heterogeneous nature makes its understanding and proper treatment in patients a remaining challenge in clinical settings. Notably, given the outstanding role of host-microbiome interactions, the ecological interactions with microorganisms have become a new significant aspect in the systems that can contribute to the diagnosis and potential treatment of solid cancers. As a part of expanding precision medicine in the area of cancer research, efforts aimed at effective treatments for various kinds of cancer based on the knowledge of genetics, biology of the disease and host-microbiome interactions might improve the prediction of disease risk and implement potential microbiota-directed therapeutics. In this review, we present the state of the art of sequencing and metabolome technologies, computational methods and schemes in systems biology that have addressed recent breakthroughs of uncovering relationships or associations between microorganisms and cancer. Together, microbiome studies extend the horizon of new personalized treatments against cancer from the perspective of precision medicine through a synergistic strategy integrating clinical knowledge, HT data, bioinformatics, and systems biology. PMID:28018236

  9. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    PubMed

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  10. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip

    PubMed Central

    KAWAI, Kazuhiro; INADA, Mika; ITO, Keiko; HASHIMOTO, Koji; NIKAIDO, Masaru; HATA, Eiji; KATSUDA, Ken; KIKU, Yoshio; TAGAWA, Yuichi; HAYASHI, Tomohito

    2017-01-01

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program. PMID:29093278

  11. Effect of biofilm formation, and biocorrosion on denture base fractures.

    PubMed

    Sahin, Cem; Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-05-01

    The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

  12. Effect of biofilm formation, and biocorrosion on denture base fractures

    PubMed Central

    Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-01-01

    PURPOSE The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). RESULTS Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION All the tested microorganisms had destructive effect over the structure and composition of the denture base materials. PMID:23755339

  13. High Levels of Soluble C5b-9 Complex in Dialysis Fluid May Predict Poor Prognosis in Peritonitis in Peritoneal Dialysis Patients

    PubMed Central

    Mizuno, Masashi; Suzuki, Yasuhiro; Higashide, Keiko; Sei, Yumi; Iguchi, Daiki; Sakata, Fumiko; Horie, Masanobu; Maruyama, Shoichi; Matsuo, Seiichi; Morgan, B. Paul; Ito, Yasuhiko

    2017-01-01

    Background We searched for indicators to predict the prognosis of infectious peritonitis by measuring levels of complement proteins and activation products in peritoneal dialysis (PD) fluid (PDF) of patients at early stages of peritonitis. We retrospectively analyzed the relationship between the levels of sC5b-9, C3 and C4 in PDF and the subsequent clinical prognosis. Methods We measured levels of sC5b-9, C3 and C4 in PDF on days 1, 2 and 5 post-onset of peritonitis in 104 episodes of infectious peritonitis in PD patients from 2008 and retrospectively compared levels with clinical outcomes. Further analysis for the presence of causative microorganisms or to demonstrate bacterial culture negative peritonitis was performed and correlated with change of levels of sC5b-9 in PDF. Results When PD patients with peritonitis were divided into groups that either failed to recover from peritonitis and were finally withdrawn from PD (group 1; n = 25) or recovered (group 2; n = 79), levels of sC5b-9, C3 and C4 in PDF were significantly higher in group 1 patients compared to those in group 2 on day5. Analysis of microorganisms showed significantly higher sC5b-9 levels in PDF of peritonitis cases caused by culture negative peritonitis in group 1 compared with group 2 when we analyzed for individual microorganisms. Of note, on day5, the sC5b-9 levels in PDF were similarly high in peritonitis caused by fungi or other organisms. Conclusion Our results suggested that levels of complement markers in PDF, especially sC5b-9, have potential as surrogate markers to predict prognosis of PD-related peritonitis. PMID:28046064

  14. The predominant bacteria isolated from radicular cysts

    PubMed Central

    2013-01-01

    Purpose To detect predominant bacteria associated with radicular cysts and discuss in light of the literature. Material and methods Clinical materials were obtained from 35 radicular cysts by aspiration. Cultures were made from clinical materials by modern laboratory techniques, they underwent microbiologic analysis. Results The following are microorganisms isolated from cultures: Streptococcus milleri Group (SMG) (23.8%) [Streptococcus constellatus (19.1%) and Streptococcus anginosus (4.7%)], Streptococcus sanguis (14.3%), Streptococcus mitis (4.7%), Streptococcus cremoris (4.7%), Peptostreptococcus pevotii (4.7%), Prevotella buccae (4.7%), Prevotella intermedia (4.7%), Actinomyces meyeri (4.7%), Actinomyces viscosus (4.7%), Propionibacterium propionicum (4.7%), Bacteroides capillosus (4.7%), Staphylococcus hominis (4.7%), Rothia denticariosa (4.7%), Gemella haemolysans (4.7%), and Fusobacterium nucleatum (4.7%). Conclusions Results of this study demonstrated that radicular cysts show a great variety of anaerobic and facultative anaerobic bacterial flora. It was observed that all isolated microorganisms were the types commonly found in oral flora. Although no specific microorganism was found, Streptococcus spp. bacteria (47.5%) – especially SMG (23.8%) – were predominantly found in the microorganisms isolated. Furthermore, radicular cysts might be polymicrobial originated. Although radicular cyst is an inflammatory cyst, some radicular cyst fluids might be sterile. PMID:24011184

  15. Antimicrobial and Antibiofilm Efficacy of Graphene Oxide against Chronic Wound Microorganisms.

    PubMed

    Di Giulio, Mara; Zappacosta, Romina; Di Lodovico, Silvia; Di Campli, Emanuela; Siani, Gabriella; Fontana, Antonella; Cellini, Luigina

    2018-07-01

    Chronic wounds represent an increasing problem worldwide. Graphene oxide (GO) has been reported to exhibit strong antibacterial activity toward both Gram-positive and Gram-negative bacteria. The aim of this work was to investigate the in vitro antimicrobial and antibiofilm efficacy of GO against wound pathogens. Staphylococcus aureus PECHA 10, Pseudomonas aeruginosa PECHA 4, and Candida albicans X3 clinical isolates were incubated with 50 mg/liter of GO for 2 and 24 h to evaluate the antimicrobial effect. Optical and atomic force microscopy images were performed to visualize the effect of GO on microbial cells. Moreover, the antibiofilm effect of GO was tested on biofilms, both in formation and mature. Compared to the respective time controls, GO significantly reduced the S. aureus growth both at 2 and 24 h in a time-dependent way, and it displayed a bacteriostatic effect in respect to the GO t = 0; an immediate (after 2 h) slowdown of bacterial growth was detected for P. aeruginosa , whereas a tardive effect (after 24 h) was recorded for C. albicans Atomic force microscopy images showed the complete wrapping of S. aureus and C. albicans with GO sheets, which explains its antimicrobial activity. Moreover, significant inhibition of biofilm formation and a reduction of mature biofilm were recorded for each detected microorganism. The antibacterial and antibiofilm properties of GO against chronic wound microorganisms make it an interesting candidate to incorporate into wound bandages to treat and/or prevent microbial infections. Copyright © 2018 American Society for Microbiology.

  16. Effect of surgical hand scrub time on subsequent bacterial growth.

    PubMed

    Wheelock, S M; Lookinland, S

    1997-06-01

    In this experimental study, the researchers evaluated the effect of surgical hand scrub time on subsequent bacterial growth and assessed the effectiveness of the glove juice technique in a clinical setting. In a randomized crossover design, 25 perioperative staff members scrubbed for two or three minutes in the first trial and vice versa in the second trial, after which the wore sterile surgical gloves for one hour under clinical conditions. The researchers then sampled the subjects' nondominant hands for bacterial growth, cultured aliquots from the sampling solution, and counted microorganisms. Scrubbing for three minutes produced lower mean log bacterial counts than scrubbing for two minutes. Although the mean bacterial count differed significantly (P = .02) between the two-minute and three-minute surgical hand scrub times, it fell below 0.5 log, which is the threshold for practical and clinical significance. This finding suggests that a two-minute surgical hand scrub is clinically as effective as a three-minute surgical had scrub. The glove juice technique demonstrated sensitivity and reliability in enumerating bacteria on the hands of perioperative staff members in a clinical setting.

  17. Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry.

    PubMed

    de Oliveira, Jonatas Rafael; de Castro, Vinicius Carlos; das Graças Figueiredo Vilela, Polyana; Camargo, Samira Esteves Afonso; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2013-08-15

    With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7). Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA. In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg/mL) when compared to control (41.96 pg/mL). All plant extracts were effective against the microorganisms tested. The G. glabra L. extract exhibited least cytotoxicity and the E. arvense L. extract was the most cytotoxic.

  18. Improved Method for Determination of Respiring Individual Microorganisms in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both ≤0.2 μm in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity. PMID:16346025

  19. Improved method for determination of respiring individual microorganisms in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-06-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both

  20. Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis.

    PubMed

    Reece, Emma; Segurado, Ricardo; Jackson, Abaigeal; McClean, Siobhán; Renwick, Julie; Greally, Peter

    2017-04-21

    Pulmonary infection is the main cause of death in cystic fibrosis (CF). Aspergillus fumigatus (AF) and Pseudomonas aeruginosa (PA) are the most prevalent fungal and bacterial pathogens isolated from the CF airway, respectively. Our aim was to determine the effect of different colonisation profiles of AF and PA on the clinical status of patients with CF. A retrospective analysis of data from the Cystic Fibrosis Registry of Ireland from 2013 was performed to determine the effect of intermittent and persistent colonisation with AF or PA or co-colonisation with both microorganisms on clinical outcome measures in patients with CF. Key outcomes measured included forced expiratory volume in one second (FEV 1 ), number of hospitalisations, respiratory exacerbations and antimicrobials prescribed, and complications of CF, including CF related diabetes (CFRD) and allergic bronchopulmonary aspergillosis (ABPA). The prevalence of AF and PA colonisation were 11% (5% persistent, 6% intermittent) and 31% (19% persistent, 12% intermittent) in the Irish CF population, respectively. Co-colonisation with both pathogens was associated with a 13.8% reduction in FEV 1 (p = 0.016), higher levels of exacerbations (p = 0.042), hospitalisations (p = 0.023) and antimicrobial usage (p = 0.014) compared to non-colonised patients and these clinical outcomes were comparable to those persistently colonised with PA. Intermittent and persistent AF colonisation were not associated with poorer clinical outcomes or ABPA. Patients with persistent PA had a higher prevalence of CFRD diagnosis (p = 0.012). CF patients co-colonised with AF and PA had poor clinical outcomes comparable to patients persistently colonised with PA, emphasising the clinical significance of co-colonisation with these microorganisms.

  1. [Classification of prosthetic loosening and determination of wear particles].

    PubMed

    Otto, M

    2008-11-01

    Nowaday, loosening of orthopaedic implants implies important medical and socioeconomic problems. Implant loosening is caused by implant infections as well as aseptic loosening, due to particle disease and mechanical alterations. Clinically we divide the implant infection into early and late infections. Morphologically it is possible to reliably detect the infection by quantification of neutrophil granulocytes. Additionally molecular methods are suitable to detect micro-organisms which are responsible for the prosthetic joint infection including their resistance to antibiotics. Particle disease may be reproducibly classified by the detection of different types of wear particles, particularly polyethylene, metal, ceramic and cement. The aetiology of the indeterminate type of the periprosthetic membrane is obscure, but may be associated with osteopathies. This classification of the periprosthetic membrane morphology provides clinically significant information concerning clinical management of implant loosening.

  2. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  3. Rapid Characterization of Microorganisms by Mass Spectrometry—What Can Be Learned and How?

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine C.

    2013-08-01

    Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method—everything has a mass—and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.

  4. Rapid characterization of microorganisms by mass spectrometry--what can be learned and how?

    PubMed

    Fenselau, Catherine C

    2013-08-01

    Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method--everything has a mass--and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.

  5. Diagnostic Evasion of Highly-Resistant Microorganisms: A Critical Factor in Nosocomial Outbreaks.

    PubMed

    Zhou, Xuewei; Friedrich, Alexander W; Bathoorn, Erik

    2017-01-01

    Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests.

  6. [From persistence to symbiosis of microorganisms].

    PubMed

    Bukharin, O V

    2012-01-01

    Primary results of study of problem of microorganism persistence over the last 2 decades on 7 all-Russian conferences in Orenburg are examined in the article. Milestones of both fundamental research and practically significant studies are designated, the role of persistent potential of microorganisms in infectious pathology is evaluated. The emerging turn of studies from persistence to symbiosis is consonant with the idea of international project "Human microbiom" and allows to use the persistent potential of microorganisms as one of the instruments of resolving issues of infectology.

  7. Microbiological aspects of vulvovaginitis in prepubertal girls.

    PubMed

    Ranđelović, Gordana; Mladenović, Vesna; Ristić, Ljiljana; Otašević, Suzana; Branković, Sofija; Mladenović-Antić, Snežana; Bogdanović, Milena; Bogdanović, Dragan

    2012-08-01

    This study aimed to establish the vaginal introitus microbial flora in girls with and without symptoms of vulvovaginitis, and to present the distribution of isolated microorganisms by age groups in girls with vulvovaginitis. We enrolled 500 girls with vulvovaginitis symptoms, aged 2-12 years, referred by their pediatricians for microbiological examination of the vaginal introitus swabs, and 30 age-matched asymptomatic girls. Similar microbial flora was isolated in both groups, but the symptomatic girls had significantly more common positive microbiological findings compared to controls (p < 0.001). In symptomatic girls, the following pathogenic bacteria were isolated: Streptococcus pyogenes (4.2%), Haemophilus influenzae (0.4%), and Staphylococcus aureus (5.8%). Bacteria of fecal origin were found in vaginal introitus swabs in 33.8% of cases, most commonly Proteus mirabilis (14.4%), Enterococcus faecalis (12.2%), and Escherichia coli (7.0%). The finding of fecal flora was more common compared to controls, reaching a statistical significance (p < 0.05), as well as in girls aged up to 6 years (p < 0.001). Candida species were found in 2.4% of girls with vulvovaginitis symptoms. The microbial ecosystem in girls with clinical signs of vulvovaginitis is complex and variable, and the presence of a microorganism does not necessarily imply that it is the cause of infection. The diagnosis of vulvovaginitis in prepubertal girls requires a complex and comprehensive approach, and microbiological findings should be interpreted in the context of clinical findings.

  8. [The impact of UV radiation B and C in vitro on different of bacteria strains isolated from patients hospitalized in the Warsaw Medical University Clinics].

    PubMed

    Rongies, Witold; Wultańska, Dorota; Kot, Katarzyna; Bogusz, Aleksandra; Rongies, Magdalena; Świercz, Paweł; Swierszcz, Paweł; Lewandowska, Monika; Cholewińska, Grazyna; Meisel-Mikołajczyk, Felicja

    2011-01-01

    Infections in human body caused by various microbes are a significant problem in modern medicine. Special attention is put to infections of wounds, which are a significant threat to the life of patients. Attempts to treat these wounds base mainly on the application of various chemical preparations (locally) and systematic antibiotic treatment. UV radiation, because of its anti-bacterial activity, appear a complementary issue in therapy. AIM OF THE SURVEY: The aim of this study was an examination of the sensitivity of bacteria strains isolated from patients hospitalised in the Warsaw Medical University clinics, and prove that antibiotics and operation of UV B and C radiation with Endolamp 474 may become a complementary or alternative method of treatment. The study used 65 strains grown aerobically (15 strains of Escherichia coli, 20 strains of Pseudomonas aeruginosa, 15 strains of Staphylococcus aureus, 15 strains of Streptococcus and Enterococcus sp). The same strains were planted on different excipients and were subjected to UV radiation using Endolamp 474. Correctly prepared strains were radiated from a 25 cm distance in various durations (from 5 seconds to 105 seconds). As a result of UV irradiation of microorganisms studied B and C using 474 Endolampy received varied, but the great sensitivity to the effects of this radiation, in all tested bacterial strains. UV radiation on microorganisms requires further study, also in vivo.

  9. Profiles and technological requirements of urogenital probiotics.

    PubMed

    Nader-Macías, María Elena Fátima; Juárez Tomás, María Silvina

    2015-09-15

    Probiotics, defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are considered a valid and novel alternative for the prevention and treatment of female urogenital tract infections. Lactobacilli, the predominant microorganisms of the healthy human vaginal microbiome, can be included as active pharmaceutical ingredients in probiotics products. Several requirements must be considered or criteria fulfilled during the development of a probiotic product or formula for the female urogenital tract. This review deals with the main selection criteria for urogenital probiotic microorganisms: host specificity, potential beneficial properties, functional specifications, technological characteristics and clinical trials used to test their effect on certain physiological and pathological conditions. Further studies are required to complement the current knowledge and support the clinical applications of probiotics in the urogenital tract. This therapy will allow the restoration of the ecological equilibrium of the urogenital tract microbiome as well as the recovery of the sexual and reproductive health of women. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Predictive ability of clinical parameters of bacteremia in hemodialysed patients].

    PubMed

    Egea, Ana L; Vilaró, Mario; De la Fuente, Jorge; Cuestas, Eduardo; Bongiovanni, María E

    2012-01-01

    No clinical events to differentiate bacteteremia from other pathologies in hemodialysis patients therefore the physicians makes diagnosis and treatment decisions based on clinical evidence an local epidemiology. the aim of this work was to study the frequency of microorganism isolated from blood culture of hemodialysis patients with suspected bacteraemia and evaluate Sensitivity (S) and Specificity (E) of medical diagnostic orientation in this cases of suspected Materials and methods: we performed an observational and prospective study for one year in hemodialysis patient with suspected bacteremia. We evaluated blood pressure, temperature (Tº), altered conscious state (AEC), respiratory frequency (FR), chills (ESC),diarrhea (DIARR), blood culture results and microbiological identification. We work with the mean ± standar desviation for continuous variables and frequencies for categorical variables We analyzed S, E, negative predictive value (VPN), positive predictive value (VPP) RESULTADOS: a total of 87 events with suspected bacteremia 34 (39%) were confirmed with positive blood culture the most common microorganisms were cocci Gram positive (CGP) 65%, Most relevant clinical variables were PCP ≥ 2 (VPN 81%), Tº ≥ 38 (VPN 76%) and AEC (E 98% y VPP 80%). CGP were the most prevalent microorganisms None of the clinical variables shows high S and E indicating low usefulness as a predictive tool of bacteremia Excepting AEC with E98% and VPP 80% but it would be necessary to evaluate this variable with a more number patient. Results justify to routine HC use like diagnostic tool.

  11. 40 CFR 725.1 - Scope and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... research and development for commercial purposes. New microorganisms for which manufacturers and importers... significant new use. (b) Any manufacturer, importer, or processor required to report under section 5 of TSCA (see § 725.100 for new microorganisms and § 725.900 for significant new uses) must file a Microbial...

  12. [Microbiological study of sanitary feature of Perinatal Center of Makhachkala City].

    PubMed

    Omarova, S M; Alieva, A I; Abserkhanova, D U; Medzhidova, D Sh; Isaeva, R I; Gorelova, V G

    2010-01-01

    Evaluation of bacterial contamination of six hospital environment of Perinatal Center of Makhachkala as part of epidemiologic surveillance for nosocomial infections. One hundred twenty-eight air samples from different hospital units and 344 swabs from hospital equipment, instruments, and inventory were tested. Dry nutrient media manufactured by Scientific Manufacturing Organization "Pitatelnye Sredy" were used for isolation and identification of microorganisms. Species of microorganisms was determined on the basis of complex of tinctorial, morphological, biochemical, and serologic tests. Significant species diversity of opportunistic microorganisms was established. Cultures of Staphylococcus epidermidis (46; 18.5%) and Staphylococcus saprophyticus (44; 17.7%) were significantly more frequently isolated from swabs from environment. Microbiological monitoring of sanitary conditions of perinatal center assists sanitary-epidemiologic control for circulation of microorganisms--potential agents of nosocomial infections.

  13. Bioactive secondary metabolites from marine microbes for drug discovery.

    PubMed

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The stethoscope in the Emergency Department: a vector of infection?

    PubMed Central

    Núñez, S.; Moreno, A.; Green, K.; Villar, J.

    2000-01-01

    The purposes of this study were to determine whether microorganisms can be isolated from the membranes of stethoscopes used by clinicians and nurses, and to analyse whether or not the degree of bacterial colonization could be reduced with different cleaning methods. We designed a transversal before-after study in which 122 stethoscopes were examined. Coagulase negative staphylococci (which are also potentially pathogenic microorganisms) were isolated together with 13 other potentially pathogenic microorganisms, including S. aureus, Acinetobacter sp. and Enterobacter agglomerans. The most effective antiseptic was propyl alcohol. Analysis of the cleaning habits of the Emergency Department (ED) staff, showed that 45% cleaned the stethoscope annually or never. The isolation of potentially pathogenic microorganisms suggests that the stethoscope must be considered as a potential vector of infection not only in the ED but also in other hospital wards and out-patient clinics. PMID:10813148

  15. The role of viable airborne microorganisms deposition in the southeastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Paytan, A.; Herut, B.

    2016-02-01

    Rahav Eyal1*, Paytan Adina2, Herut Barak1[1] Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel [2] Institute of Marine Science, University of California, Santa Cruz, CA, USA 95064. * Presenting author A high diversity of bacteria, fungi and virus are carried by atmospheric dust and deposit into the ocean. The oligotrophic southeastern Mediterranean Sea (SEMS) is known to receive relatively high amounts of atmospheric dust, thereby potentially be impacted by transport of air-borne microorganisms of diverse biogeographic origin. In this study, we characterized the genetic fingerprinting of microorganisms attached to dust in representative samples collected between 2006-2012 during storm events in the SEMS. Statistical analysis showed that dust of common origin was clustered together based on its genetic signature. Thus, microorganisms picked up in diverse geographical areas can interact differently with ambient populations. Further, microcosm dust addition experiments with surface SEMS filtered (0.2 µm) and killed (autoclaved) seawater showed that airborne microorganisms originated in dust collected in the SEMS significantly enhanced system's bacterial productivity, introduced new species and altered the abundance and activity of ambient surface microbial populations. Our results demonstrate that dust-borne microorganisms may play a significant role in the SEMS ecology.

  16. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells.

    PubMed

    Roshchina, Victoria V

    2016-01-01

    The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.

  17. Kocuria kristinae infection associated with acute cholecystitis

    PubMed Central

    Ma, Edmond SK; Wong, Chris LP; Lai, Kristi TW; Chan, Edmond CH; Yam, WC; Chan, Angus CW

    2005-01-01

    Background Kocuria, previously classified into the genus of Micrococcus, is commonly found on human skin. Two species, K. rosea and K. kristinae, are etiologically associated with catheter-related bacteremia. Case presentation We describe the first case of K. kristinae infection associated with acute cholecystitis. The microorganism was isolated from the bile of a 56-year old Chinese man who underwent laparoscopic cholecystectomy. He developed post-operative fever that resolved readily after levofloxacin treatment. Conclusion Our report of K. kristinae infection associated with acute cholecystitis expands the clinical spectrum of infections caused by this group of bacteria. With increasing number of recent reports describing the association between Kocuria spp. and infectious diseases, the significance of their isolation from clinical specimens cannot be underestimated. A complete picture of infections related to Kocuria spp. will have to await the documentation of more clinical cases. PMID:16029488

  18. Kocuria kristinae infection associated with acute cholecystitis.

    PubMed

    Ma, Edmond S K; Wong, Chris L P; Lai, Kristi T W; Chan, Edmond C H; Yam, W C; Chan, Angus C W

    2005-07-19

    Kocuria, previously classified into the genus of Micrococcus, is commonly found on human skin. Two species, K. rosea and K. kristinae, are etiologically associated with catheter-related bacteremia. We describe the first case of K. kristinae infection associated with acute cholecystitis. The microorganism was isolated from the bile of a 56-year old Chinese man who underwent laparoscopic cholecystectomy. He developed post-operative fever that resolved readily after levofloxacin treatment. Our report of K. kristinae infection associated with acute cholecystitis expands the clinical spectrum of infections caused by this group of bacteria. With increasing number of recent reports describing the association between Kocuria spp. and infectious diseases, the significance of their isolation from clinical specimens cannot be underestimated. A complete picture of infections related to Kocuria spp. will have to await the documentation of more clinical cases.

  19. [Reccurent mycobacterial diseases in patients with impaired axis IL-12/INF-gamma].

    PubMed

    Strach, Magdalena; Nalepa, Piotr; Sulicka-Grodzicka, Joanna; Kierzkowska, Izabella; Siedlar, Maciej; Grodzicki, Tomasz

    2013-01-01

    Mycobacteria is a large group of pathogens that are common in environment, in soil and tap water. Although mycobacteria [non tuberculosis mycobacteria] can inhabit body surface without causing any disease in the circumstances of primary or secondary immunodeficiency can cause clinically significant organ or systemic damage. Defect of IL-12/INFgamma axis is an example of primary immunodeficiency that predispose to mycobacterial infections while protection against other microorganisms is not damaged. We present review of known defects of IL-12/IFNgamma axis and brief presentation of our own experience.

  20. Molecular characterization of the presence of Eubacterium spp and Streptococcus spp in endodontic infections.

    PubMed

    Fouad, A F; Kum, K-Y; Clawson, M L; Barry, J; Abenoja, C; Zhu, Q; Caimano, M; Radolf, J D

    2003-08-01

    Eubacterium spp. and Streptococcus spp. are virulent, commonly identified microorganisms in endodontic infections. The purpose of this study was to use molecular methods to identify these organisms in 22 infected root canals that include eight cases with preoperative clinical symptoms and five cases with a history of diabetes mellitus. The presence of Streptococcus spp. and Eubacterium spp. was examined using two sets of PCR primers specific with multiple species within the respective genera. Positive specimens had their PCR products sequenced and phylogenetically analyzed to identify the specific species. Sixteen specimens (73%) contained Eubacterium spp. and nine (41%) were positive for Streptococcus spp. Eubacterium infirmum was the most prevalent Eubacterium sp. This organism was significantly associated with a history of diabetes (OR = 9.6; P = 0.04). Streptococcus anginosus was the most common Streptococcus sp., but neither it nor any of the other streptococci were significantly associated with the clinical parameters evaluated.

  1. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    PubMed

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Distribution and clinical determinants of time-to-positivity of blood cultures in patients with neutropenia.

    PubMed

    Lambregts, Merel M C; Warreman, Eva B; Bernards, Alexandra T; Veelken, Hendrik; von dem Borne, Peter A; Dekkers, Olaf M; Visser, Leo G; de Boer, Mark G

    2018-02-01

    Blood cultures (BCs) are essential in the evaluation of neutropenic fever. Modern BC systems have significantly reduced the time-to-positivity (TTP) of BC. This study explores the probability of bacteraemia when BCs have remained negative for different periods of time. All adult patients with neutropenia and bacteraemia were included (January 2012-February 2016). Predictive clinical factors for short (≤16 hours) and long (>24 hours) TTP were determined. The residual probability of bacteraemia was estimated for the scenario of negative BC 24 hours after collection. The cohort consisted of 154 patients, accounting for 190 episodes of bacteraemia. Median age of 61 years, 60.5% were male. In 123 (64.7%) episodes, BC yielded a single Gram-positive micro-organism and in 49 (25.8%) a Gram-negative micro-organism (median TTP 16.7, 14.5 hours respectively, P < .01). TTP was ≤24 hours in 91.6% of episodes. Central line-associated bacteraemia was associated with long TTP. The probability of bacteraemia if BC had remained negative for 24 hours was 1%-3%. The expected TTP offers guidance in the management of patients with neutropenia and suspected bacteraemia. The knowledge of negative BC can support a change in working diagnosis, and impact clinical decisions as soon as 24 hours after BC collection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Pseudo-outbreak of Cupriavidus pauculus infection at an outpatient clinic related to rinsing culturette swabs in tap water.

    PubMed

    Balada-Llasat, Joan-Miquel; Elkins, Camille; Swyers, Lettie; Bannerman, Tammy; Pancholi, Preeti

    2010-07-01

    Cupriavidus pauculus is a water microorganism rarely isolated from clinical specimens. We describe a pseudo-outbreak in which multiple strains that were associated with moistening of culturette swabs with tap water were isolated from a single clinic before collecting the patient specimen.

  4. Microbial Endocrinology in the Pathogenesis of Infectious Disease.

    PubMed

    Lyte, Mark

    2016-04-01

    Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.

  5. Medical Service Clinical Laboratory Procedures--Bacteriology.

    ERIC Educational Resources Information Center

    Department of the Army, Washington, DC.

    This manual presents laboratory procedures for the differentiation and identification of disease agents from clinical materials. Included are procedures for the collection of specimens, preparation of culture media, pure culture methods, cultivation of the microorganisms in natural and simulated natural environments, and procedures in…

  6. Resilient microorganisms in dust samples of the International Space Station-survival of the adaptation specialists.

    PubMed

    Mora, Maximilian; Perras, Alexandra; Alekhova, Tatiana A; Wink, Lisa; Krause, Robert; Aleksandrova, Alina; Novozhilova, Tatiana; Moissl-Eichinger, Christine

    2016-12-20

    The International Space Station (ISS) represents a unique biotope for the human crew but also for introduced microorganisms. Microbes experience selective pressures such as microgravity, desiccation, poor nutrient-availability due to cleaning, and an increased radiation level. We hypothesized that the microbial community inside the ISS is modified by adapting to these stresses. For this reason, we analyzed 8-12 years old dust samples from Russian ISS modules with major focus on the long-time surviving portion of the microbial community. We consequently assessed the cultivable microbiota of these samples in order to analyze their extremotolerant potential against desiccation, heat-shock, and clinically relevant antibiotics. In addition, we studied the bacterial and archaeal communities from the stored Russian dust samples via molecular methods (next-generation sequencing, NGS) and compared our new data with previously derived information from the US American ISS dust microbiome. We cultivated and identified in total 85 bacterial, non-pathogenic isolates (17 different species) and 1 fungal isolate from the 8-12 year old dust samples collected in the Russian segment of the ISS. Most of these isolates exhibited robust resistance against heat-shock and clinically relevant antibiotics. Microbial 16S rRNA gene and archaeal 16S rRNA gene targeting Next Generation Sequencing showed signatures of human-associated microorganisms (Corynebacterium, Staphylococcus, Coprococcus etc.), but also specifically adapted extremotolerant microorganisms. Besides bacteria, the detection of archaeal signatures in higher abundance was striking. Our findings reveal (i) the occurrence of living, hardy microorganisms in archived Russian ISS dust samples, (ii) a profound resistance capacity of ISS microorganisms against environmental stresses, and (iii) the presence of archaeal signatures on board. In addition, we found indications that the microbial community in the Russian segment dust samples was different to recently reported US American ISS microbiota.

  7. Profiling of subgingival plaque biofilm microbiota in female adult patients with clear aligners: a three-month prospective study

    PubMed Central

    Liu, Hao; Li, Xiaobei

    2018-01-01

    Background Clear aligners are well known for facilitating oral hygiene maintenance and decreasing susceptibility to periodontal diseases as compared to conventional fixed appliances. However, few research studies focus on the subgingival microbial community during clear aligner treatment (CAT). Hence, this study investigates changes of the subgingival microbial community and its association with clinical characteristics during the first three months of CAT. Methods Ten female patients with clear aligners were enrolled in this study. Subgingival plaque samples were obtained at three time points: before orthodontic treatment (T0), one month after orthodontic treatment (T1) and three months after orthodontic treatment (T2). DNA was then extracted from plaque samples and analyzed by 16S rRNA gene sequencing. Periodontal examinations, including plaque index (PI) and gingival bleeding index (GBI) measurements were also recorded. Results The plaque indices (PIs) and gingival bleeding indices (GBIs) were slightly increased at T1 and T2, but no statistically significant difference was found. The alpha diversity indices, including the ACE, Chao1, Shannon indices, all showed a declining trend without significance, and a rising trend in the Simpson diversity index was observed. The weighted UniFrac distance was significantly higher at T1 and T2 compared with T0. Principal Coordinates Analysis (PCoA) demonstrated that the communities at T0 tended to cluster apart from the communities at T1 and T2. The relative abundance of the phylum Firmicutes and genus Mycoplasma was significantly increased at T0 compared with T2. There was no significant difference in the relative abundance of periodontal pathogens at the genus and species levels or core microorganisms at the genus level. Conclusion A slightly decreasing microbial diversity with a significant change of microbial structure was found during the first three-month clear aligner treatment (CAT). However, subjects receiving clear aligner treatment were free from periodontal diseases with relatively stable levels of periodontal microorganisms and core microorganisms. Thus, our preliminary findings indicated that clear aligners induced nonpathogenic changes of the subgingival microbiome in the first three-month treatment. PMID:29312828

  8. Profiling of subgingival plaque biofilm microbiota in female adult patients with clear aligners: a three-month prospective study.

    PubMed

    Guo, Runzhi; Zheng, Yunfei; Liu, Hao; Li, Xiaobei; Jia, Lingfei; Li, Weiran

    2018-01-01

    Clear aligners are well known for facilitating oral hygiene maintenance and decreasing susceptibility to periodontal diseases as compared to conventional fixed appliances. However, few research studies focus on the subgingival microbial community during clear aligner treatment (CAT). Hence, this study investigates changes of the subgingival microbial community and its association with clinical characteristics during the first three months of CAT. Ten female patients with clear aligners were enrolled in this study. Subgingival plaque samples were obtained at three time points: before orthodontic treatment (T0), one month after orthodontic treatment (T1) and three months after orthodontic treatment (T2). DNA was then extracted from plaque samples and analyzed by 16S rRNA gene sequencing. Periodontal examinations, including plaque index (PI) and gingival bleeding index (GBI) measurements were also recorded. The plaque indices (PIs) and gingival bleeding indices (GBIs) were slightly increased at T1 and T2, but no statistically significant difference was found. The alpha diversity indices, including the ACE, Chao1, Shannon indices, all showed a declining trend without significance, and a rising trend in the Simpson diversity index was observed. The weighted UniFrac distance was significantly higher at T1 and T2 compared with T0. Principal Coordinates Analysis (PCoA) demonstrated that the communities at T0 tended to cluster apart from the communities at T1 and T2. The relative abundance of the phylum Firmicutes and genus Mycoplasma was significantly increased at T0 compared with T2. There was no significant difference in the relative abundance of periodontal pathogens at the genus and species levels or core microorganisms at the genus level. A slightly decreasing microbial diversity with a significant change of microbial structure was found during the first three-month clear aligner treatment (CAT). However, subjects receiving clear aligner treatment were free from periodontal diseases with relatively stable levels of periodontal microorganisms and core microorganisms. Thus, our preliminary findings indicated that clear aligners induced nonpathogenic changes of the subgingival microbiome in the first three-month treatment.

  9. [Role of bacteria associated with sexually transmitted infections in the etiology of lower urinary tract infection in primary care].

    PubMed

    González-Pedraza, Alberto; Ortiz, Catalina; Mota, Ricardo; Dávila, Rocío; Dickinson, Eloísa

    2003-02-01

    Urinary tract infections (UTI) are the second most frequent type of infectious pathology treated in primary care clinics. The participation of microorganisms associated with sexually transmitted infection has been reported as a cause of UTI; nevertheless this concept is still controversial. To gather data on this subject, we carried out a search for Gardnerella vaginalis, Ureaplasma urealyticum, Mycoplasma hominis and Streptococcus agalactiae besides the common microorganisms involved in UTI. A total of 1507 urine cultures from patients with a clinical diagnosis of low UTI were analyzed. Samples were inoculated onto 5% sheep blood agar and McConkey agar, as well as HBT medium for G. vaginalis, and U9B broth and agar E broth for M. hominis and U. urealyticum. The following parameters were analyzed as possible risk factors: age, sex, pregnancy and diabetes status. RESULTS. There were 436 (28.9%) positive urine cultures. Escherichia coli was isolated in 44.34% of cases. Microorganisms associated with sexually transmitted disease were found in 162 (37%): G. vaginalis (25.7%), U. urealyticum (5.9%), S. agalactiae (3.4%) and M. hominis (2%). UTI were more frequent among the 20 to 40 year-old age group, in women and in diabetic patients. Microorganisms associated with sexually transmitted disease were found in a large percentage of cultures, indicating the need for studies to clarify their role in the etiology of UTI.

  10. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  11. Microorganisms meet solid minerals: interactions and biotechnological applications.

    PubMed

    Ng, Daphne H P; Kumar, Amit; Cao, Bin

    2016-08-01

    In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.

  12. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  13. Inflammatory Responses, Spirometry, and Quality of Life in Subjects With Bronchiectasis Exacerbations.

    PubMed

    Guan, Wei-Jie; Gao, Yong-Hua; Xu, Gang; Lin, Zhi-Ya; Tang, Yan; Li, Hui-Min; Lin, Zhi-Min; Jiang, Mei; Zheng, Jin-Ping; Chen, Rong-Chang; Zhong, Nan-Shan

    2015-08-01

    Bronchiectasis exacerbations are critical events characterized by worsened symptoms and signs (ie, cough frequency, sputum volume, malaise). Our goal was to examine variations in airway and systemic inflammation, spirometry, and quality of life during steady state, bronchiectasis exacerbations, and convalescence (1 week following a 2-week antibiotic treatment) to determine whether potentially pathogenic microorganisms, including Pseudomonas aeruginosa, were associated with poorer conditions during bronchiectasis exacerbations. Peripheral blood and sputum were sampled to detect inflammatory mediators and bacterial densities. Spirometry and quality of life (St George Respiratory Questionnaire [SGRQ]) were assessed during the 3 stages. Forty-eight subjects with bronchiectasis (43.2 ± 14.2 y of age) were analyzed. No notable differences in species and density of potentially pathogenic microorganisms were found during bronchiectasis exacerbations. Except for CXCL8 and tumor necrosis factor alpha (TNF-α), serum inflammation was heightened during bronchiectasis exacerbations and recovered during convalescence. Even though sputum TNF-α was markedly higher during bronchiectasis exacerbations and remained heightened during convalescence, the variations in miscellaneous sputum markers were unremarkable. Bronchiectasis exacerbations were associated with notably higher SGRQ symptom and total scores, which recovered during convalescence. FVC, FEV1, and maximum mid-expiratory flow worsened during bronchiectasis exacerbations (median change from baseline of -2.2%, -0.8%, and -1.3%) and recovered during convalescence (median change from baseline of 0.6%, 0.7%, and -0.7%). Compared with no bacterial isolation, potentially pathogenic microorganism or P. aeruginosa isolation at baseline did not result in poorer clinical condition during bronchiectasis exacerbations. Bronchiectasis exacerbations are characterized by heightened inflammatory responses and poorer quality of life and spirometry, but not by increased bacterial density, which applies for subjects with and without potentially pathogenic microorganism isolation when clinically stable. (ClinicalTrials.gov registration NCT01761214.). Copyright © 2015 by Daedalus Enterprises.

  14. Studies on the antimicrobial activity and brine shrimp toxicity of Zeyheria tuberculosa (Vell.) Bur. (Bignoniaceae) extracts and their main constituents

    PubMed Central

    Bastos, Maria Lysete A; Lima, Maria Raquel F; Conserva, Lucia M; Andrade, Vânia S; Rocha, Eliana MM; Lemos, Rosangela PL

    2009-01-01

    Background Due to the indiscriminate use of antimicrobial drugs, the emergence of human pathogenic microorganisms resistant to major classes of antibiotics has been increased and has caused many clinical problems in the treatment of infectious diseases. Thus, the aim of this study was to evaluate for the first time the in vitro antimicrobial activity and brine shrimp lethality of extracts and isolated compounds from Zeyheria tuberculosa (Vell.) Bur., a species used in Brazilian folk medicine for treatment of cancer and skin diseases. Methods Using the disc diffusion method, bioautography assay and brine shrimp toxicity test (Artemia salina Leach), we studied the antimicrobial activity and lethality of extracts and isolated compounds against three microorganisms strains, including Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria and yeasts (Candida albicans). Results In this study, the extracts inhibited S. aureus (8.0 ± 0.0 to 14.0 ± 0.0 mm) and C. albicans (15.3 ± 0.68 to 25.6 ± 0.4 mm) growth. In the brine shrimp test, only two of them showed toxic effects (LC50 29.55 to 398.05 μg/mL) and some extracts were non-toxic or showed weak lethality (LC50 705.02 to > 1000 μg/mL). From these extracts, four flavones [5,6,7,8-tetramethoxyflavone (1), 5,6,7-trimethoxyflavone (2), 4'-hydroxy-5,6,7,8-tetramethoxyflavone (3), and 4'-hydroxy-5,6,7-trimethoxyflavone (4)] were isolated through bioassay-guided fractionation and identified based on the 1D and 2D NMR spectral data. By bioautography assays, compounds 1 [S. aureus (16.0 ± 0.0 mm) and C. albicans (20.0 ± 0.0 mm)] and 3 [S. aureus (10.3 ± 0.6 mm) and C. albicans (19.7 ± 0.6 mm)] inhibited both microorganisms while 2 inhibited only S. aureus (11.7 ± 0.6 mm). Compound 4 did not restrain the growth of any tested microorganism. Conclusion Our results showed that extracts and isolated flavones from Z. tuberculosa may be particularly useful against two pathogenic microorganisms, S. aureus and C. albicans. These results may justify the popular use this species since some fractions tested had antimicrobial activity and others showed significant toxic effects on brine shrimps. However, in order to evaluate possible clinical application in therapy of infectious diseases, further studies about the safety and toxicity of isolated compounds are needed. PMID:19450272

  15. Presence of aerobic micro-organisms and their influence on basic semen parameters in infertile men.

    PubMed

    Filipiak, E; Marchlewska, K; Oszukowska, E; Walczak-Jedrzejowska, R; Swierczynska-Cieplucha, A; Kula, K; Slowikowska-Hilczer, J

    2015-09-01

    Urogenital tract infections in males are one of the significant etiological factors in infertility. In this prospective study, 72 patients with abnormal semen parameters or any other symptoms of urogenital tract infection were examined. Semen analysis according to the WHO 2010 manual was performed together with microbial assessment: aerobic bacteria culture, Chlamydia antigen test, Candida culture, Ureaplasma and Mycoplasma-specific culture. In total, 69.4% of semen samples were positive for at least one micro-organism. Ureaplasma sp. was the most common micro-organism found in 33% of semen samples of infertile patients with suspected male genital tract infection. The 2nd most common micro-organisms were Enterococcus faecalis (12.5%) and Escherichia coli (12.5%), followed by Staphylococcus aureus (7%), Chlamydia trachomatis (7%) and Candida sp. (5.6%). Generally, bacteria were sensitive to at least one of the antibiotics tested. No statistically significant relationship was observed between the presence of aerobic micro-organisms in semen and basic semen parameters: volume, pH, concentration, total count, motility, vitality and morphology. © 2014 Blackwell Verlag GmbH.

  16. Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis.

    PubMed

    Mello, Cesar; Ribeiro, Diórginis; Novaes, Fábio; Poppi, Ronei J

    2005-10-01

    Use of classical microbiological methods to differentiate bacteria that cause gastroenteritis is cumbersome but usually very efficient. The high cost of reagents and the time required for such identifications, approximately four days, could have serious consequences, however, mainly when the patients are children, the elderly, or adults with low resistance. The search for new methods enabling rapid and reagentless differentiation of these microorganisms is, therefore, extremely relevant. In this work the main microorganisms responsible for gastroenteritis, Escherichia coli, Salmonella choleraesuis, and Shigella flexneri, were studied. For each microorganism sixty different dispersions were prepared in physiological solution. The Raman spectra of these dispersions were recorded using a diode laser operating in the near infrared region. Partial least-squares (PLS) discriminant analysis was used to differentiate among the bacteria by use of their respective Raman spectra. This approach enabled correct classification of 100% of the bacteria evaluated and unknown samples from the clinical environment, in less time ( approximately 10 h), by use of a low-cost, portable Raman spectrometer, which can be easily used in intensive care units and clinical environments.

  17. Role of dental plaque, saliva and periodontal disease in Helicobacter pylori infection

    PubMed Central

    Anand, Pradeep S; Kamath, Kavitha P; Anil, Sukumaran

    2014-01-01

    Helicobacter pylori (H. pylori) infection is one of the most common bacterial infections in humans. Although H. pylori may be detected in the stomach of approximately half of the world’s population, the mechanisms of transmission of the microorganism from individual to individual are not yet clear. Transmission of H. pylori could occur through iatrogenic, fecal-oral, and oral-oral routes, and through food and water. The microorganism may be transmitted orally and has been detected in dental plaque and saliva. However, the role of the oral cavity in the transmission and recurrence of H. pylori infection has been the subject of debate. A large number of studies investigating the role of oral hygiene and periodontal disease in H. pylori infection have varied significantly in terms of their methodology and sample population, resulting in a wide variation in the reported results. Nevertheless, recent studies have not only shown that the microorganism can be detected fairly consistently from the oral cavity but also demonstrated that the chances of recurrence of H. pylori infection is more likely among patients who harbor the organism in the oral cavity. Furthermore, initial results from clinical trials have shown that H. pylori-positive dyspeptic patients may benefit from periodontal therapy. This paper attempts to review the current body of evidence regarding the role of dental plaque, saliva, and periodontal disease in H. pylori infection. PMID:24914323

  18. Role of dental plaque, saliva and periodontal disease in Helicobacter pylori infection.

    PubMed

    Anand, Pradeep S; Kamath, Kavitha P; Anil, Sukumaran

    2014-05-21

    Helicobacter pylori (H. pylori) infection is one of the most common bacterial infections in humans. Although H. pylori may be detected in the stomach of approximately half of the world's population, the mechanisms of transmission of the microorganism from individual to individual are not yet clear. Transmission of H. pylori could occur through iatrogenic, fecal-oral, and oral-oral routes, and through food and water. The microorganism may be transmitted orally and has been detected in dental plaque and saliva. However, the role of the oral cavity in the transmission and recurrence of H. pylori infection has been the subject of debate. A large number of studies investigating the role of oral hygiene and periodontal disease in H. pylori infection have varied significantly in terms of their methodology and sample population, resulting in a wide variation in the reported results. Nevertheless, recent studies have not only shown that the microorganism can be detected fairly consistently from the oral cavity but also demonstrated that the chances of recurrence of H. pylori infection is more likely among patients who harbor the organism in the oral cavity. Furthermore, initial results from clinical trials have shown that H. pylori-positive dyspeptic patients may benefit from periodontal therapy. This paper attempts to review the current body of evidence regarding the role of dental plaque, saliva, and periodontal disease in H. pylori infection.

  19. Host-Microbiome Cross-talk in Oral Mucositis

    PubMed Central

    Vasconcelos, R.M.; Sanfilippo, N.; Paster, B.J.; Kerr, A.R.; Li, Y.; Ramalho, L.; Queiroz, E.L.; Smith, B.; Sonis, S.T.; Corby, P.M.

    2016-01-01

    Oral mucositis (OM) is among the most common, painful, and debilitating toxicities of cancer regimen–related treatment, resulting in the formation of ulcers, which are susceptible to increased colonization of microorganisms. Novel discoveries in OM have focused on understanding the host-microbial interactions, because current pathways have shown that major virulence factors from microorganisms have the potential to contribute to the development of OM and may even prolong the existence of already established ulcerations, affecting tissue healing. Additional comprehensive and disciplined clinical investigation is needed to carefully characterize the relationship between the clinical trajectory of OM, the local levels of inflammatory changes (both clinical and molecular), and the ebb and flow of the oral microbiota. Answering such questions will increase our knowledge of the mechanisms engaged by the oral immune system in response to mucositis, facilitating their translation into novel therapeutic approaches. In doing so, directed clinical strategies can be developed that specifically target those times and tissues that are most susceptible to intervention. PMID:27053118

  20. Hydrogel-forming Microneedle Arrays Exhibit Antimicrobial Properties: Potential for Enhanced Patient Safety

    PubMed Central

    Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Alkilani, Ahlam Zaid; McCrudden, Maelíosa T.C.; O’Mahony, Conor; Armstrong, Keith; McLoone, Nabla; Kole, Prashant; Woolfson, A. David

    2014-01-01

    We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture was greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of C. albicans and S. epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard. PMID:23644043

  1. [Applications of MALDI-TOF technology in clinical microbiology].

    PubMed

    Suarez, S; Nassif, X; Ferroni, A

    2015-02-01

    Until now, the identification of micro-organisms has been based on the cultural and biochemical characteristics of bacterial and fungal species. Recently, Mass Spectrometry type Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF MS) was developed in clinical microbiology laboratories. This new technology allows identification of micro-organisms directly from colonies of bacteria and fungi within few minutes. In addition, it can be used to identify germs directly from positive blood culture bottles or directly from urine samples. Other ways are being explored to expand the use of MALDI-TOF in clinical microbiology laboratories. Indeed, some studies propose to detect bacterial antibiotic resistance while others compare strains within species for faster strain typing. The main objective of this review is to update data from the recent literature for different applications of MALDI-TOF technique in microbiological diagnostic routine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. PARTICLE-ASSOCIATED MICROORGANISMS IN STORMWATER RUNOFF

    EPA Science Inventory

    This research investigated the effects of blending and chemical addition before analysis of the concentration of microorganisms in stormwater runoff to determine whether clumped or particle-associated organisms play a significant role. All organisms, except for Escherichia coli, ...

  3. A novel approach to the use of subgingival controlled-release chlorhexidine delivery in chronic periodontitis: a randomized clinical trial.

    PubMed

    Gonzales, Jose R; Harnack, Lutz; Schmitt-Corsitto, Gabriella; Boedeker, Rolf H; Chakraborty, Trinad; Domann, Eugen; Meyle, Joerg

    2011-08-01

    We aimed to analyze clinical, microbiologic, and serologic effects of chlorhexidine (CHX) chips used as a subgingival controlled-release delivery device before and immediately after scaling and root planing (SRP). Twenty-four patients presenting with ≥12 teeth with probing depth (PD) ≥5 mm and bleeding on probing were assigned in test or control groups. After prophylaxis, CHX chips (test) or placebo chips (control) were placed in pockets with PD ≥5 mm. Ten days later, SRP was performed in all teeth with PD ≥4 mm in a single appointment. Immediately after SRP, new chips were inserted in all pockets with PD ≥5 mm. Parameters were assessed at baseline; beginning of SRP; and 1, 3, and 6 months after treatment. Subgingival samples were obtained at baseline; beginning of SRP; and at 1 month after treatment. Periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Treponema denticola were analyzed. Serum levels of high sensitive C-reactive and lipopolysaccharide-binding proteins were measured. The changes of the parameters between and within the groups were tested by Mann-Whitney U test (P <0.05). All clinical and serologic parameters improved in both groups over time. There was a significant difference in clinical attachment level (CAL) gain from baseline to 6 months between groups (1.17 mm in the test group versus 0.79 mm in the placebo group) (P <0.05). The treatment with CHX chips showed a greater reduction of the microorganisms of the "red complex" after 1 month (P = 0.02). The use of CHX chips before and immediately after SRP improved CAL and reduced the subgingival microorganisms of the red complex in the treatment of chronic periodontitis.

  4. Evaluation of the Broad-Range PCR/ESI-MS Technology in Blood Specimens for the Molecular Diagnosis of Bloodstream Infections.

    PubMed

    Jordana-Lluch, Elena; Giménez, Montserrat; Quesada, M Dolores; Rivaya, Belén; Marcó, Clara; Domínguez, M Jesús; Arméstar, Fernando; Martró, Elisa; Ausina, Vicente

    2015-01-01

    Rapid identification of the etiological agent in bloodstream infections is of vital importance for the early administration of the most appropriate antibiotic therapy. Molecular methods may offer an advantage to current culture-based microbiological diagnosis. The goal of this study was to evaluate the performance of IRIDICA, a platform based on universal genetic amplification followed by mass spectrometry (PCR/ESI-MS) for the molecular diagnosis of sepsis-related pathogens directly from the patient's blood. A total of 410 whole blood specimens from patients admitted to Emergency Room (ER) and Intensive Care Unit (ICU) with clinical suspicion of sepsis were tested with the IRIDICA BAC BSI Assay (broad identification of bacteria and Candida spp.). Microorganisms grown in culture and detected by IRIDICA were compared considering blood culture as gold standard. When discrepancies were found, clinical records and results from other cultures were taken into consideration (clinical infection criterion). The overall positive and negative agreement of IRIDICA with blood culture in the analysis by specimen was 74.8% and 78.6%, respectively, rising to 76.9% and 87.2% respectively, when compared with the clinical infection criterion. Interestingly, IRIDICA detected 41 clinically significant microorganisms missed by culture, most of them from patients under antimicrobial treatment. Of special interest were the detections of one Mycoplasma hominis and two Mycobacterium simiae in immunocompromised patients. When ICU patients were analyzed separately, sensitivity, specificity, positive and negative predictive values compared with blood culture were 83.3%, 78.6%, 33.9% and 97.3% respectively, and 90.5%, 87.2%, 64.4% and 97.3% respectively, in comparison with the clinical infection criterion. IRIDICA is a promising technology that offers an early and reliable identification of a wide variety of pathogens directly from the patient's blood within 6h, which brings the opportunity to improve management of septic patients, especially for those critically ill admitted to the ICU.

  5. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons.

    PubMed

    Selvakumar, Ariamalar; Borst, Michael

    2006-03-01

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential and landscaped commercial). The concentrations of microorganisms in the stormwater runoff were found to be similar in magnitude to, but less variable than, those reported in the stormwater National Pollutant Discharge Elimination System (NPDES) database. Microorganism concentrations from high-density residential areas were higher than those associated with low-density residential and landscaped commercial areas. Since the outfalls were free of sanitary wastewater cross-connections, the major sources of microorganisms to the stormwater runoff were most likely from the feces of domestic animals and wildlife. Concentrations of microorganisms were significantly affected by the season during which the samples were collected. The lowest concentrations were observed during winter except for Staphylococcus aureus. The Pearson correlation coefficients among different indicators showed weak linear relationships and the relationships were statistically significant. However, the relationships between indicators and pathogens were poorly correlated and were not statistically significant, suggesting the use of indicators as evidence of the presence of pathogens is not appropriate. Further, the correlation between the concentration of the traditionally monitored indicators (total coliforms and fecal coliforms) and the suggested substitutes (enterococci and E. coli) is weak, but statistically significant, suggesting that historical time series will be only a qualitative indicator of impaired waters under the revised criteria for recreational water quality by the US EPA.

  6. Maternal periodontal disease and preeclampsia in Jaipur population

    PubMed Central

    Jaiman, Girija; Nayak, Prathibha Anand; Sharma, Sanu; Nagpal, Kiran

    2018-01-01

    Background: Preeclampsia is identified as an important cause for mother and newborn mortality. Inspite of extensive research, the exact etiological relations have not been established. Hence, an attempt has been made in this study to evaluate the relationship between the preeclampsia and maternal periodontal disease. Materials and Methods: The case–control study comprised of thirty pregnant women distributed equally in the case (preeclampsia) and control (healthy) group. Gingival index, plaque index, bleeding on probing, clinical probing depth, and clinical attachment level were measured in both groups. Microbiologic examination for identification of one red complex organism Porphyromonas gingivalis and one orange complex organism Fusobacterium nucleatum were done in plaque and placental blood of cases and controls. The clinical examinations and collection of placental blood were done 24 h before delivery. Results: Periodontal condition in the preeclamptic women was statistically worse compared with the normotensive women. There was no statistically significant association between microorganisms in plaque and placental blood between normotensive control and preeclamptic pregnant women. The preeclamptic women had significantly higher chances of having newborns weighing <2.5 kg than the normotensive women. Conclusion: The preeclamptic women were associated with significantly higher periodontitis and lower fetal birth weight than normotensive women. PMID:29568173

  7. Maternal periodontal disease and preeclampsia in Jaipur population.

    PubMed

    Jaiman, Girija; Nayak, Prathibha Anand; Sharma, Sanu; Nagpal, Kiran

    2018-01-01

    Preeclampsia is identified as an important cause for mother and newborn mortality. Inspite of extensive research, the exact etiological relations have not been established. Hence, an attempt has been made in this study to evaluate the relationship between the preeclampsia and maternal periodontal disease. The case-control study comprised of thirty pregnant women distributed equally in the case (preeclampsia) and control (healthy) group. Gingival index, plaque index, bleeding on probing, clinical probing depth, and clinical attachment level were measured in both groups. Microbiologic examination for identification of one red complex organism Porphyromonas gingivalis and one orange complex organism Fusobacterium nucleatum were done in plaque and placental blood of cases and controls. The clinical examinations and collection of placental blood were done 24 h before delivery. Periodontal condition in the preeclamptic women was statistically worse compared with the normotensive women. There was no statistically significant association between microorganisms in plaque and placental blood between normotensive control and preeclamptic pregnant women. The preeclamptic women had significantly higher chances of having newborns weighing <2.5 kg than the normotensive women. The preeclamptic women were associated with significantly higher periodontitis and lower fetal birth weight than normotensive women.

  8. Emerging commercial molecular tests for the diagnosis of bloodstream infection.

    PubMed

    Mwaigwisya, Solomon; Assiri, Rasha Assad M; O'Grady, Justin

    2015-05-01

    Bloodstream infection (BSI) by microorganisms can lead to sepsis. This condition has a high mortality rate, which rises significantly with delays in initiation of appropriate antimicrobial treatment. Current culture methods for diagnosing BSI have long turnaround times and poor clinical sensitivity. While clinicians wait for culture diagnosis, patients are treated empirically, which can result in inappropriate treatment, undesirable side effects and contribute to drug resistance development. Molecular diagnostics assays that target pathogen DNA can identify pathogens and resistance markers within hours. Early diagnosis improves antibiotic stewardship and is associated with favorable clinical outcomes. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews recent commercially available molecular methods that use pathogen DNA to diagnose BSI, either by testing positive blood cultures or directly testing patient blood. We critically assess these tests and their application in clinical microbiology. A view of future directions in BSI diagnosis is also provided.

  9. Influence of multidrug resistant organisms on the outcome of diabetic foot infection.

    PubMed

    Saltoglu, Nese; Ergonul, Onder; Tulek, Necla; Yemisen, Mucahit; Kadanali, Ayten; Karagoz, Gul; Batirel, Ayse; Ak, Oznur; Sonmezer, Cagla; Eraksoy, Haluk; Cagatay, Atahan; Surme, Serkan; Nemli, Salih A; Demirdal, Tuna; Coskun, Omer; Ozturk, Derya; Ceran, Nurgul; Pehlivanoglu, Filiz; Sengoz, Gonul; Aslan, Turan; Akkoyunlu, Yasemin; Oncul, Oral; Ay, Hakan; Mulazımoglu, Lutfiye; Erturk, Buket; Yilmaz, Fatma; Yoruk, Gulsen; Uzun, Nuray; Simsek, Funda; Yildirmak, Taner; Yaşar, Kadriye Kart; Sonmezoglu, Meral; Küçükardali, Yasar; Tuna, Nazan; Karabay, Oguz; Ozgunes, Nail; Sargın, Fatma

    2018-05-01

    We described the clinical outcomes of the diabetic patients who had foot infections with multidrug resistant organisms. We included the patients with diabetic foot infections (DFI) from 19 centers, between May 2011 and December 2015. Infection was defined according to IDSA DFI guidelines. Patients with severe infection, complicated moderate infection were hospitalized. The patients were followed-up for 6 months after discharge. In total, 791 patients with DFI were included, 531(67%) were male, median age was 62 (19-90). Severe infection was diagnosed in 85 (11%) patients. Osteomyelitis was diagnosed in 291(36.8%) patients. 536 microorganisms were isolated, the most common microorganisms were S. aureus (20%), P. aeruginosa (19%) and E. coli (12%). Methicillin resistance (MR) rate among Staphylococcus aureus isolates was 31%. Multidrug resistant bacteria were detected in 21% of P. aeruginosa isolates. ESBL (+) Gram negative bacteria (GNB) was detected in 38% of E. coli and Klebsiella isolates. Sixty three patients (8%) were re-hospitalized. Of the 791 patiens, 127 (16%) had major amputation, and 24 (3%) patients died. In multivariate analysis, significant predictors for fatality were; dialysis (OR: 8.3, CI: 1.82-38.15, p=0.006), isolation of Klebsiella spp. (OR:7.7, CI: 1.24-47.96, p=0.028), and chronic heart failure (OR: 3, CI: 1.01-9.04, p=0.05). MR Staphylococcus was detected in 21% of the rehospitalized patients, as the most common microorganism (p<0.001). Among rehospitalized patients, methicillin resistant Staphylococcus infections was detected as the most common agent, and Klebsiella spp. infections were found to be significantly associated with fatality. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Abnormal vaginal colonization by gram-negative bacteria is significantly higher in pregnancy conceived through infertility treatment compared to natural pregnancy.

    PubMed

    Kim, Ji Y; Sung, Ji-Hee; Chang, Kylie Hae-Jin; Choi, Suk-Joo; Oh, Soo-Young; Roh, Cheong-Rae; Kim, Jong-Hwa

    2017-03-01

    To compare abnormal vaginal colonization between natural pregnancy and pregnancy by infertility treatment in high-risk parturient women and to examine the association between abnormal vaginal colonization and early-onset neonatal sepsis (EONS). The clinical characteristics, vaginal culture result, and delivery outcome of patients who admitted to our high-risk unit between 2005 and 2014 were retrospectively reviewed and compared. We investigated the prevalence of EONS according to maternal vaginal colonization and examined the concordance between maternal vaginal bacteria and etiologic microorganism causing EONS. Among 1096 pregnancies, the rate of vaginal colonization by gram-negative bacteria, especially Escherichia coli was significantly higher in pregnancies by infertility treatment after adjustment of confounding variables (E. coli, OR [95% CI]: 2.47 [1.33-4.57], p = 0.004). The rate of EONS was significantly higher in neonates with maternal abnormal vaginal bacteria colonization (OR [95% CI]: 3.38 [1.44-7.93], p = 0.005) after adjusting for confounding variables. Notably, among microorganisms isolated from maternal vagina, E. coli and Staphylococcus aureus were consistent with the results from neonatal blood culture in EONS. Our data implicate a possible association between gram-negative bacteria colonization and infertility treatment and suggest that maternal vaginal colonization may be associated with EONS of neonates in high-risk pregnancy.

  11. An appropriately performed conventional blood culture can facilitate choice of therapy in resource-constrained settings-comparison with BACTEC 9050.

    PubMed

    Surase, P V; Nataraj, G; Pattamadai, K; Mehta, P R; Pazare, A R; Agarwal, M C; Nanavati, R N

    2016-01-01

    Comparison of conventional blood culture with BACTEC 9050 for rate and time to detection of microorganisms. A prospective study was carried out in a multispecialty tertiary care teaching hospital. A total of 835 paired specimens (797 blood and 38 nonblood specimens) were collected and processed according to standard microbiological procedures by both conventional method as well as by BACTEC 9050 automated culture system. Clinical details of patients were recorded. Data were analyzed for time to detection and isolation rate by the two systems and compared. Overall culture positivity for BACTEC 9050 and the conventional system was 32% and 19.88%, respectively. Eighty-five demonstrated concordant growth, 136 specimens were culture positive by BACTEC only, and 38 specimens were culture positive by conventional only. Twelve contaminants in BACTEC and nine contaminants in conventional system were detected. Using BACTEC 9050, higher isolation was observed for Acinetobacter spp., coagulase negative Staphylococcus spp., Streptococcus spp., and Candida spp. A total of 410 patients were on antimicrobial treatment and culture positivity was significantly higher with BACTEC 9050 (P < 0.0001). There was a significant difference in the mean time to detection with BACTEC 9050 recovering 86.8% of isolates within 48 h (P < 0.0001). Although BACTEC 9050 demonstrated a significantly higher recovery of microorganisms from blood, an appropriately performed conventional blood culture can facilitate the choice of therapy.

  12. The Evolving Nature of Infective Endocarditis in Spain: A Population-Based Study (2003 to 2014).

    PubMed

    Olmos, Carmen; Vilacosta, Isidre; Fernández-Pérez, Cristina; Bernal, José L; Ferrera, Carlos; García-Arribas, Daniel; Pérez-García, Carlos N; San Román, J Alberto; Maroto, Luis; Macaya, Carlos; Elola, Francisco J

    2017-12-05

    Little information exists regarding population-based epidemiological changes in infective endocarditis (IE) in Europe. This study sought to analyze temporal trends in IE in Spain from 2003 to 2014. This retrospective, population-based, temporal trend study analyzed the incidence, epidemiological and clinical characteristics, and outcome of all patients discharged from hospitals included in the Spanish National Health System with a diagnosis of IE, from January 2003 to December 2014. Overall, 16,867 episodes of IE were identified during the study period, 66.3% in men. The rate of IE significantly increased, from 2.72 in 2003 to 3.49 per 100,000 person-years in 2014, and this rise was higher among older adults. The most frequent microorganisms were staphylococci (28.7%), followed by streptococci (20.4%) and enterococci (13.1%). Twenty-three percent of patients underwent cardiac surgery. The in-hospital mortality rate was 20.4%. Throughout the study period, the proportion of patients with previously known heart valve disease and diabetes mellitus significantly increased, whereas the prevalence of intravenous drug use decreased. Regarding microorganisms, Staphylococcus aureus and streptococci slightly declined, whereas coagulase-negative staphylococci and enterococci consistently increased over the years. In-hospital complications and cardiac surgery rates significantly increased across the years. The risk-adjusted in-hospital mortality rate diminished (0.2% per year) during the study period. The incidence of IE episodes significantly increased over the decade of the study period, particularly among older adults. Relevant changes in clinical and microbiological profile included older patients with more comorbidity and a rise in enterococci and coagulase-negative staphylococcal infections. Adjusted mortality rates slightly declined over the study period. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Microbial investigation of biofilms recovered from endotracheal tubes using sonication in intensive care unit pediatric patients.

    PubMed

    Ferreira, Thiago de Oliveira; Koto, Rafael Yoshio; Leite, Gabriel Fialkovitz da Costa; Klautau, Giselle Burlamaqui; Nigro, Stanley; Silva, Cely Barreto da; Souza, Ana Paula Idalgo da Fonseca; Mimica, Marcelo Jenne; Cesar, Regina Grigolli; Salles, Mauro José Costa

    2016-01-01

    To compare cultured microorganisms identified on endotracheal tubes biofilms through sonication technique with traditional tracheal aspirate collected at extubation of pediatric intensive care unit patients. Demographic and epidemiological data were analyzed to identify factors possibly related with the microbiological profile of the two collection methods. Associations between categorical and continuous variables were analyzed using the chi-square or Fisher's exact test, or Student's t test. p-Value <0.05 were considered significant. Thirty endotracheal tubes and tracheal aspirates samples from 27 subjects were analyzed. Only one patient presented the clinical diagnosis of ventilator-associated pneumonia. Overall, 50% of bacteria were Gram-negative bacilli, followed by Gram-positive bacteria in 37%, and fungi in 10%. No statistically significant difference on the distribution of Gram-positive or Gram-negative bacteria (p=0.996), and fungi (p=0.985) were observed between the collection methods. Pseudomonas spp. was the most frequent microorganism identified (23.8%), followed by Streptococcus spp. (18.5%), Acinetobacter spp. (15.9%), coagulase-negative staphylococci (11.2%), and Klebsiella spp. (8.6%). Concordant results between methods amounted to 83.3%. Pseudomonas aeruginosa and Acinetobacter baumannii showed carbapenem resistance in 50% and 43.7% of the isolates, respectively. In general, cultures after endotracheal tubes sonication (non-centrifuged sonication fluid and centrifuged sonication fluid) yielded bacteria with higher rates of antimicrobial resistance compared to tracheal aspirates cultures. Additionally, in 12 subjects (40%), we observed discrepancies regarding microbiologic profiles of cultures performed using the collection methods. Our study demonstrated that sonication technique can be applied to ET biofilms to identify microorganisms attached to their surface with a great variety of species identified. However, we did not find significant differences in comparison with the traditional tracheal aspirate culture approach. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Effect of High Pressure Homogenization and Dimethyl Dicarbonate (DMDC) on Microbial and Physicochemical Qualities of Mulberry Juice.

    PubMed

    Yu, Yuanshan; Wu, Jijun; Xu, Yujuan; Xiao, Gengsheng; Zou, Bo

    2016-03-01

    In this study, the effect of high pressure homogenization (HPH) and dimethyl dicarbonate (DMDC) on microbial and nutrient qualities of mulberry juice was evaluated. Results showed that repeated HPH passes at 200 MPa or adding DMDC at 250 mg/L significantly inactivated the indigenous microorganisms in mulberry juice (P < 0.05), whereas some surviving microorganisms recovered to grow during storage of 4 °C. The combined treatment with 3 passes of HPH and 250 mg/L of DMDC (HPH-DMDC) decreased the population of surviving indigenous microorganisms to the level attained by heat treatment at 95 °C for 1 min (HT) with no significant increase (P > 0.05) in the population of microorganisms during subsequent storage at 4 °C. Moreover, no significant changes (P > 0.05) in the physical attributes, including pH, TSS ((o) Brix), L*, a*, and b* values were observed in the samples treated by the HPH-DMDC or by HT. Compared with HT, HPH-DMDC treatment resulted in a higher degree of retention in total phenolics, and α-glucosidase inhibitory activity, although the treatment led to higher losses in cyanidin 3-glucoside, cyanidin 3-rutinoside, and antioxidant capacity. Overall, HPH-DMDC treatment can be a useful alternative to conventional thermal pasteurization of mulberry juice, considering its ability to inactive, and inhibit indigenous microorganisms. © 2016 Institute of Food Technologists®

  15. Dysbiosis in Ukrainian Children with Irritable Bowel Syndrome Affected by Natural Radiation

    PubMed Central

    Sajjadieh, Mohammad-Reza Sheikh; Kuznetsova, Larisa V; Bojenko, Vadim B

    2012-01-01

    Objective Microbiota has an important role in human metabolism, nutrition, immunity, and protection against colonization by pathogenic microorganisms. Radiation can harm the beneficial members of the gastrointestinal tract flora. Methods Our study included 75 rural children aged 4-18 years, who lived in contaminated area exposed to natural environmental radiation with clinical symptoms of irritable bowel syndrome and 20 healthy urban participants aged 5-15 as control group. The intestinal bacterial microbiota was examined from stool samples. Findings Our results indicated the population levels of microbiota such as Enterobacter, Enterococcus, Lactobacillus and Bifidbacterium in caecal contents in 61 subjects (81.3%) was significantly less than in control group. Conclusion We investigated alternation of the intestinal microbiota affected by ionizing radiation in children with clinical symptoms of irritable bowel syndrome. PMID:23400266

  16. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    PubMed

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  17. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    PubMed Central

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-01-01

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar. PMID:26610516

  18. Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World.

    PubMed

    Chisanga, Malama; Muhamadali, Howbeer; Ellis, David I; Goodacre, Royston

    2018-01-01

    The microbial world forms a huge family of organisms that exhibit the greatest phylogenetic diversity on Earth and thus colonize virtually our entire planet. Due to this diversity and subsequent complex interactions, the vast majority of microorganisms are involved in innumerable natural bioprocesses and contribute an absolutely vital role toward the maintenance of life on Earth, whilst a small minority cause various infectious diseases. The ever-increasing demand for environmental monitoring, sustainable ecosystems, food security, and improved healthcare systems drives the continuous search for inexpensive but reproducible, automated and portable techniques for detection of microbial isolates and understanding their interactions for clinical, environmental, and industrial applications and benefits. Surface-enhanced Raman scattering (SERS) is attracting significant attention for the accurate identification, discrimination and characterization and functional assessment of microbial cells at the single cell level. In this review, we briefly discuss the technological advances in Raman and Fourier transform infrared (FT-IR) instrumentation and their application for the analysis of clinically and industrially relevant microorganisms, biofilms, and biological warfare agents. In addition, we summarize the current trends and future prospects of integrating Raman/SERS-isotopic labeling and cell sorting technologies in parallel, to link genotype-to-phenotype in order to define community function of unculturable microbial cells in mixed microbial communities which possess admirable traits such as detoxification of pollutants and recycling of essential metals.

  19. [Assessment of antibacterial efficacy of ozone therapy in treatment of caries at the white spot stage].

    PubMed

    Makeeva, I M; Turkina, A Yu; Margaryan, E G; Paramonov, Yu O; Polyakova, M A

    Effect on cariogenic flora is the key toremineralizing therapy efficacy in treatment of initial caries (at the white spot stage). Ozone in dentistry is used as a highly effective antibacterial agent. Treatment of white spot lesions with the ozone-air mixture leads to significant increase of efficacy in non-invasive treatment of initial caries. clinical and microbiological assessment of antibacterial efficacy of ozone therapy in treatment of caries at the white spot stage. The trial recruited 86 patients for non-invasive treatment of caries at the white spot stage which included the complex of professional oral hygiene, medicamental treatment of white spot lesions with hydrogen peroxide 3% and chlorhexidinedigluconate 0,2%, treatment with the ozone-air mixture and application of hydroxyapatite Са2+. Material for microbiological study was received before the treatment, after the complex of professional oral hygiene and medicamental treatment of white spot lesions conducted as well as after the treatment with the ozone-air mixture. Before the treatment up to 16 kinds of microorganisms on the surface of white spot lesion were detected with the following shares: S. mutans (19.9%), S. salivarius (15.1%), S. epidermidis (8.7%), S. mitis (6.5%), Lactobacillus (6.5%) and different kinds of staphylococci (10.8%). After the complex of professional oral hygiene and medicamental treatment conducted decrease in number of cariogenic microorganisms was indicated as follows: S. mutans - from 1·105 to 1·104, S. salivarius - from 1·107 to 1·106, S. epidermidis - from 1·105 to 1·104, S. mitis - from 1·104 to 1·103, Lactobacillus - from 1·104 tо 1·103. After the treatment of tooth enamel with the ozone-air mixture increase in microorganisms was not observed. The efficacy of ozone on cariogenic microorganisms exceeds significantly the efficacy of 3% hydrogen peroxide and 0,2% chlorhexidinedigluconate. It is strongly advisable to include ozone in protocol of non-invasive treatment of initial dental caries.

  20. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  1. [Vaginitis and vaginosis. Comparison of two periods].

    PubMed

    Ceruti, M; Canestrelli, M; Piantelli, G; Amone, F; Condemi, V; De Paolis, P; Ludovici, G; Somenzi, P

    1993-10-01

    Vaginitis is the most frequent gynecological disease. It is characterized by objective and subjective signs of inflammation and differs from bacterial vaginosis (BV) which is an abnormal condition of the vaginal ecosystem caused by the excessive growth of aerobic and anaerobic flora normally present in the vagina with an increased risk of pelvic inflammatory disease (PID). The authors report the results of a study carried out at the Centre for Gynecological Infections at the Clinic of Obstetrics and Gynecology of the University of Parma. 828 patients were enrolled in the study during the period 1985-86 and 1559 patients during the two-year period 1991-92. The aim of the study was to evaluate variations in epidemiological data for vaginitis and bacterial vaginosis in the two periods examined. No significant changes were observed (p > 0.05) with regard to the prevalence of Ca, Tv and BV forms. On the other hand, there was a significant reduction (p < 0.001) in the forms sustained by other microorganisms (above all, streptococcus and enterobacteria) between the first and second periods with a parallel increase in the number of negative cases. The analysis of the age distribution of vaginitis and BV showed a reduction of other microorganisms and an increase in negative vaginal swabs in adults (> 20 years old).

  2. Great horsetail (Equisetum telmateia Ehrh.): Active substances content and biological effects

    PubMed Central

    Radojevic, Ivana D.; Stankovic, Milan S.; Stefanovic, Olgica D.; Topuzovic, Marina D.; Comic, Ljiljana R.; Ostojic, Aleksandar M.

    2012-01-01

    This paper deals with the antioxidant and antimicrobial activity, total phenolic content and concentrations of flavonoids of Equisetum telmateia extracts. Total phenolic content was determined with Folin-Ciocalteu reagent and it ranged between 129.0 to 262.7 mg GA/g. The concentration of flavonoids in various extracts of E. telmateia was determined using spectrophotometric method with aluminum chloride and obtained results varied from 112.6 to 199.8 mg RU/g. Antioxidant activity was monitored spectrophotometrically and expressed in terms of IC50 (µg/ml), and its values ranged from 33.4 to 982.2 µg/ml. The highest phenolic content, concentrations of flavonoids and capacity to neutralize DPPH radicals were found in the acetone extract. In vitro antimicrobial activity was determined using microdilution method. Minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were also determined. Testing was performed on 22 microorganisms, including 15 strains of bacteria (standard and clinical strains) and 7 species of fungi. There were statistically significant differences in activity between the extracts of E. telmateia. Different effects were noticed against the bacteria and the methanol extract appeared to be most efficient. All the extracts showed significant antibacterial activity against G+ bacteria and weak to moderate activity against other microorganisms. PMID:27350768

  3. Influence of Food Microorganisms on Staphylococcal Growth and Enterotoxin Production in Meat

    PubMed Central

    McCoy, D. W.; Faber, J. E.

    1966-01-01

    Forty-four microorganisms were studied for their influence on staphylococcal growth and enterotoxin production. Inhibition was found to be more common than stimulation. Two types of inhibition were observed: inhibition of staphylococcal growth, and inhibition of enterotoxin formation with no apparent effect on growth. By use of a plate test, 12 of the 44 food microorganisms were found to inhibit staphylococcal growth at 35 C. Of the 12, 3 also inhibited growth at 25 C. No significant differences in inhibition were observed with the 15 strains of enterotoxigenic staphylococci. In meat slurries, inhibition of staphylococcal growth was found to be greater at 25 C than at 35 C. Results on inhibition obtained from the plate test could not be correlated with the effect of the organisms in slurries. Environmental conditions were found to affect markedly the influence of food microorganisms on staphylococci. Of the 44 food microorganisms studied, only Bacillus cereus was observed to stimulate significantly staphylococcal growth and enterotoxin formation. Stimulation was more pronounced with Staphylococcus aureus 196E than with other strains of enterotoxigenic staphylococci. Bacillus megaterium and Brevibacterium linens were inhibited by staphylococci. These organisms were completely inhibited when inoculated in mixed cultures with staphylococci. In pure cultures, good staphylococcal growth was found to be accompanied by enterotoxin production; however, in the presence of food microorganisms, good staphylococcal growth occurred without the formation of detectable levels of enterotoxin A. PMID:5970822

  4. Evaluation of dispersion methods for enumeration of microorganisms from peat and activated carbon biofilters treating volatile organic compounds.

    PubMed

    Khammar, Nadia; Malhautier, Luc; Degrange, Valérie; Lensi, Robert; Fanlo, Jean-Louis

    2004-01-01

    To enumerate microorganisms having colonized biofilters treating volatile organic compounds, it is necessary firstly to evaluate dispersion methods. Crushing, shaking and sonication were then tested for the removal of microflora from biofilters packing materials (peat and activated carbon). Continuous or discontinuous procedures, and addition of glass beads had no effect on the number of microorganisms removed from peat particles. The duration of treatment also had no effect for shaking and crushing, but the number of microorganisms after 60 min of treatment with ultrasound was significantly higher than that obtained after 0.5 min. The comparison between these methods showed that crushing was the most efficient for the removal of microorganisms from both peat and activated carbon. The comparison between three chemical dispersion agents showed that 1% Na-pyrophosphate was less efficient, compared with 200 mM phosphate buffer or 1% Na-hexametaphosphate. To optimize the cultivation of microorganisms, three different agar media were compared. Tryptic soy agar tenfold diluted (TSA 1/10) was the most suitable medium for the culture of microflora from a peat biofilter. For the activated carbon biofilter, there was no significant difference between Luria Bertoni, TSA 1/10, and plate count agar. The optimized extraction and enumeration protocols were used to perform a quantitative characterization of microbial populations in an operating laboratory activated carbon biofilter and in two parallel peat biofilters.

  5. Microorganisms and psoriasis.

    PubMed Central

    Rosenberg, E. W.; Noah, P. W.; Skinner, R. B.

    1994-01-01

    It has been suggested previously that psoriasis is best explained as a distinctive inflammatory response to a variety of microbial stimuli, all acting primarily through activation of the alternative complement pathway. For the past several years we have conducted a "Problem Psoriasis Clinic" based on that premise. Patients are questioned, examined, and subjected to microbiologic laboratory investigations in an attempt to identify possibly relevant microorganisms, and then are treated with antibiotics. This article lists the most commonly found microorganisms in psoriasis patients and describes the usual treatment for each. Results obtained with this approach compare favorably with those achieved with more usual anti-psoriasis treatments. We recommend that a microbiologic investigation and a trial of antimicrobial treatment should precede any plan to treat psoriasis patients with anything more than the simplest topical agents. PMID:8040907

  6. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments

    PubMed Central

    Yergeau, Etienne; Bokhorst, Stef; Kang, Sanghoon; Zhou, Jizhong; Greer, Charles W; Aerts, Rien; Kowalchuk, George A

    2012-01-01

    Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures. PMID:21938020

  7. Influence of environmental pollution with creosote oil or its vapors on biomass and selected physiological groups of microorganisms

    NASA Astrophysics Data System (ADS)

    Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam

    2017-11-01

    Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.

  8. Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases.

    PubMed

    Cierech, Mariusz; Osica, Izabela; Kolenda, Adam; Wojnarowicz, Jacek; Szmigiel, Dariusz; Łojkowski, Witold; Kurzydłowski, Krzysztof; Ariga, Katsuhiko; Mierzwińska-Nastalska, Elżbieta

    2018-05-06

    The aim of this study was to investigate the selected properties of zinc oxide- polymethyl methacrylate (ZnO-PMMA) nanocomposites that can influence the microorganism deposition on their surface. Non-commercial ZnO-NPs were prepared, characterized and used for the preparation of PMMA nanocomposite. Roughness, absorbability, contact angle and hardness of this new nanomaterial were evaluated. PMMA without ZnO-NPs served as control. Compared to unenriched PMMA, incorporation of ZnO-NPs to 7.5% for PMMA nanocomposite increases the hardness (by 5.92%) and the hydrophilicity. After modification of the material with zinc oxide nanoparticles the roughness parameter did not change. All tested materials showed absorption within the range of 1.82 to 2.03%, which meets the requirements of International Organization for Standardization (ISO) standards for denture base polymers. The results showed no significant deterioration in the properties of acrylic resin that could disqualify the nanocomposite for clinical use. Increased hydrophilicity and hardness with absorbability within the normal range can explain the reduced microorganism growth on the denture base, as has been proven in a previous study.

  9. Inhibitory effect of heparin on neutrophil phagocytosis and burst production using a new whole-blood cytofluorometric method for determination.

    PubMed

    Salih, H; Husfeld, L; Adam, D

    1997-12-31

    The influence of heparin on Polymorphonuclear (PMN s) leukocytes was investigated using a new whole-blood cytofluorometric method (patent granted for the test with the number P 4334935.8-41) with Candida albicans and Staphylococcus aureus as test microorganisms. After comparing the effect of equal volumes of two widely used heparins we examined the influence of 5 different heparin-concentrations. Using both yeasts and bacteria, we found a significant, dose-depending decrease of the percentage of phagocyting PMN's and of phagocytized microorganisms as well as of the resulting percentage of PMN s producing respiratory burst along the kinetics. Furthermore we could demonstrate that heparin independently of phagocytosis produces a dose-dependent decrease of burst production of PMN's. Our results indicate that the use of heparins as anticoagulant for immunological investigations as well as clinically with patients under immunosuppressive therapy should be critically reconsidered. This applies even more because due to the evaluated dose-dependent decrease of phagocyte function no boundary for the inhibiting effect can be declared.

  10. Impact of Sodium Tungstate and Tungsten Alloys on the Growth of Selected Microorganisms with Environmental Significance

    DTIC Science & Technology

    2010-07-30

    TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element...lower tolerances. Interestingly, bacteria cultivated from the environment displayed only minor delays and reduction in growth relative to pure...settings where nutrients may be limited. 15. SUBJECT TERMS Tungsten, sodium tungstate, microbial growth , environmental microbiology, bacteria , Shewanella

  11. [New aspects of safety assessment and food contamination with antibiotics of tetracycline group in the light of harmonization of hygienic standards in Russia and Customs Union with the international standards].

    PubMed

    Onishchenko, G G; Sheveleva, S A; Khotimchenko, S A

    2012-01-01

    To address the issue of harmonization of Russian MRLs for tetracycline in food and on the basis of the tasks of preserving the value of hygienic standard for the more restrictive level than similar standards of the Codex Alimentarius Commission in this survey we analyzed the evidences of the negative effects of subingibitory amounts of these antibiotics (lying below the MIC for clinically relevant microorganisms). The inadequacy of the microbiological JECFA ADI and the necessity of using of methodology of analyzing the effects of biological active substances in small doses for assessing the risk of food contamination of tetracycline subingibitory concentrations were demonstrated. Current scientific information on the functions of antibiotics as signaling molecules in the microbial world and the role of tetracycline as a leading factor in the regulation of transcription in microorganisms and activation of the horizontal transfer of resistance genes transferred to the family of conjugative transposons Tn916-Tn1545 also was reviewed in paper. Evidence-based data regarding the basic contribution of subingibitory concentrations of tetracycline in the spread of worst transmissible type of antibiotic resistance and the formation of new pathogens, associated with it, are represented. To reduce the risk of direct adverse effects on microbial ecosystem in the human body and its habitat, and to minimize the indirect risk of new infections, the necessity of saving the current Russian level residues of tetracycline (< or = 0.01 mg/kg of product), which is low by contrast to the Codex MRLs (< or = 0.1-1.2 mg/kg), was proved. Tetracycline concentrations in food, regulated in Russian Federation, below 0.1 MIC for clinically significant microorganisms which aren't capable to initiation of the above described negative changes.

  12. Microbiologic study of soft contact lenses after laser subepithelial keratectomy for myopia.

    PubMed

    Hondur, Ahmet; Bilgihan, Kamil; Cirak, Meltem Yalinay; Dogan, Ozgur; Erdinc, Alper; Hasanreisoglu, Berati

    2008-01-01

    To evaluate the extent and agents of bacterial contamination of bandage disposable soft contact lenses after laser subepithelial keratectomy (LASEK) and to correlate the findings with clinical data. Disposable soft contact lenses were collected from 52 eyes of 26 consecutive patients treated with LASEK for myopia. The patients were treated with a fixed combination of tobramycin and diclofenac until epithelial closure. The lenses were removed on the fourth or fifth postoperative day with sterile forceps and immediately placed in sterile tubes containing culture media brain-heart infusion broth. The lenses were evaluated for microbial colonization. Of the 52 contact lenses analyzed, six (11.5%) had positive cultures. However, no clinical finding of infection was noted. Isolated microorganisms were coagulase-negative staphylococci (two lenses), Stenotrophomonas maltophilia (two lenses), Acinetobacter species (one lens), and Aeromonas hydrophila (one lens). Except for one case, the microorganisms were sensitive to the administered antibiotic. The risk of infectious keratitis after LASEK seems to be low. Except for staphylococci, the isolated microorganisms have not been previously reported to colonize the ocular surface or cause keratitis after refractive surgery. These findings may suggest a changing trend of potentially infectious agents after surface ablation.

  13. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  14. 40 CFR 725.1 - Scope and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... research and development for commercial purposes. New microorganisms for which manufacturers and importers... any microorganism that EPA determines by rule is being manufactured, imported, or processed for a significant new use. (b) Any manufacturer, importer, or processor required to report under section 5 of TSCA...

  15. Clinical and microbiological correlates of vaginal trichomoniasis during pregnancy. The Vaginal Infections and Prematurity Study Group.

    PubMed

    Pastorek, J G; Cotch, M F; Martin, D H; Eschenbach, D A

    1996-11-01

    Colonization with Trichomonas vaginalis is a possible cause of poor pregnancy outcome. To facilitate the diagnosis of this condition during pregnancy, we conducted a prospective, multicenter study of 13,816 gravid women who were between 23rd and 26th week of gestation. Findings significantly associated with T. vaginalis colonization included a yellow, green, or bloody discharge from the vagina or cervix; abnormal odor after KOH was added to a vaginal specimen; a vaginal pH of > 5.0; and cervical friability. The amount of vaginal discharge and abnormal consistency of the discharge were also associated with T. vaginalis colonization. These findings (except for cervical bleeding and odor after the addition of KOH to a vaginal specimen, which may be influenced by the presence of other flora) are consistent with those reported elsewhere. The clinical usefulness of these features is minimal, and it is more significant that other microorganisms are makers for trichomoniasis; therefore, controlling for other flora is important in the investigation of T. vaginalis colonization.

  16. Root sepsis associated with insect-dwelling Sebaldella termitidis in a lesser dwarf lemur (Cheirogaleus medius).

    PubMed

    Eisenberg, Tobias; Glaeser, Stefanie P; Kämpfer, Peter; Schauerte, Nicole; Geiger, Christina

    2015-12-01

    Sebaldella termitidis is a rare fastidious microorganism of the Leptotrichiaceae family. A variety of closely related species are associated with severe and even life-threatening disease in humans and animals, such as Streptobacillus moniliformis, the etiological organism of rat-bite fever as well as members of Leptotrichia spp. and Sneathia sanguinegens, which have been reported from cases of septicaemia. In contrast, since its description some 50 years ago, S. ermitidis has so far never been reported as a vertebrate pathogen, nor has it been found aside from its natural termite host. A lesser dwarf lemur was presented with unilateral facial inflammation originating from rotten maxillary teeth and septic root abscess. Surgical intervention and root extraction significantly improved the clinical cause in that a pus-filled cavity underneath the right eye could be drained, sampled and flushed. Bacteria displaying substantial characteristics of S. termitidis were cultured from the sampled pus. Morphological features observed included strictly anaerobic regular Gram-negative rods. Significant shared biochemical properties included negative reactions for cytochrome oxidase, catalase, urease, nitrate reduction and indole production. Furthermore, 16S rRNA gene sequencing revealed 99.9 % sequence homology to the S. termitidis type strain NCTC 11300(T), from which it, nevertheless, differed with respect to rep and rep- and RAPD-PCR profiles. An affiliation of the lemur isolate described in this study with the type strain of S. termitidis as well as a clear discrimination from other members of the Leptotrichiaceae could also be confirmed by matrix-assisted laser desorption/ionization time-of flight mass spectrometry and Fourier transform-infrared spectroscopy. This is the first evidence for clinical disease caused by S. termitidis in a vertebrate species indicating a broader host spectrum of this rarely encountered microorganism.

  17. Comparison of the lysis centrifugation method with the conventional blood culture method in cases of sepsis in a tertiary care hospital.

    PubMed

    Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M

    2012-07-01

    Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.

  18. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    PubMed

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  19. Microbial metabolites in nutrition, healthcare and agriculture.

    PubMed

    Singh, Rajendra; Kumar, Manoj; Mittal, Anshumali; Mehta, Praveen Kumar

    2017-05-01

    Microorganisms are a promising source of an enormous number of natural products, which have made significant contribution to almost each sphere of human, plant and veterinary life. Natural compounds obtained from microorganisms have proved their value in nutrition, agriculture and healthcare. Primary metabolites, such as amino acids, enzymes, vitamins, organic acids and alcohol are used as nutritional supplements as well as in the production of industrial commodities through biotransformation. Whereas, secondary metabolites are organic compounds that are largely obtained by extraction from plants or tissues. They are primarily used in the biopharmaceutical industry due to their capability to reduce infectious diseases in human beings and animals and thus increase the life expectancy. Additionally, microorganisms and their products inevitably play a significant role in sustainable agriculture development.

  20. Cyst infection in autosomal dominant polycystic kidney disease: causative microorganisms and susceptibility to lipid-soluble antibiotics.

    PubMed

    Suwabe, T; Araoka, H; Ubara, Y; Kikuchi, K; Hazue, R; Mise, K; Hamanoue, S; Ueno, T; Sumida, K; Hayami, N; Hoshino, J; Imafuku, A; Kawada, M; Hiramatsu, R; Hasegawa, E; Sawa, N; Takaichi, K

    2015-07-01

    Cyst infection is a frequent and serious complication of autosomal dominant polycystic kidney disease (ADPKD). Lipid-soluble antibiotics like fluoroquinolones show good penetration into cysts and are recommended for cyst infection, but causative microorganisms are often resistant to these agents. This study investigated the profile of the microorganisms causing cyst infection in ADPKD, their susceptibility to lipid-soluble antibiotics, and clinical outcomes. This retrospective study reviewed all ADPKD patients admitted to Toranomon Hospital with a diagnosis of cyst infection from January 2004 to March 2014. All patients who underwent cyst drainage and had positive cyst fluid cultures were enrolled. Patients with positive blood cultures who satisfied our criteria for cyst infection or probable infection were also enrolled. There were 99 episodes with positive cyst fluid cultures and 93 episodes with positive blood cultures. The majority of patients were on dialysis. The death rate was high when infection was caused by multiple microorganisms or when there were multiple infected cysts. Gram-negative bacteria accounted for 74-79 % of the isolates in all groups, except for patients with positive hepatic cyst fluid cultures. The susceptibility of Escherichia coli to fluoroquinolones was very low in patients with hepatic cyst infection, especially those with frequent episodes and those with hepatomegaly. Fungi were detected in two episodes. Fluoroquinolone-resistant microorganisms showed a high prevalence in cyst infection. It is important to identify causative microorganisms to avoid the overuse of fluoroquinolones and to improve the outcome of cyst infection in ADPKD.

  1. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance.

    PubMed

    Balczun, Carsten; Scheid, Patrick L

    2017-04-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses.

  2. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance

    PubMed Central

    Balczun, Carsten; Scheid, Patrick L.

    2017-01-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses. PMID:28368313

  3. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin.

    PubMed

    Takasu, Soo; Parida, Isabella Supardi; Onose, Shinji; Ito, Junya; Ikeda, Ryoichi; Yamagishi, Kenji; Higuchi, Oki; Tanaka, Fukuyo; Kimura, Toshiyuki; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2018-01-01

    1-Deoxynojirimycin (DNJ) is a potent α-glucosidase inhibitor and thus beneficial for prevention of diabetes. While we have succeeded in obtaining the culture supernatant extract (CSE) rich in DNJ from microorganism source, information regarding its anti-hyperglycemic effect and safety were still limited. Therefore, this study was aimed to evaluate the anti-hyperglycemic effect and safety of microorganism DNJ. Oral sucrose tolerance test was performed, and the result showed that CSE was able to significantly suppress the blood glucose elevation and suggested DNJ as the main active compound. To determine its safety, the absorption and excretion of microorganism DNJ were evaluated using 15N labeling method. Our findings investigated the recovery rate of 15N from DNJ reached 80% up to 48 hours after oral administration, suggesting its rapid excretion, suggesting the safety of DNJ. This study verified the functional properties and safety of DNJ from microorganisms, suggesting its potential use for functional purpose.

  4. Antimicrobial efficacy of oral topical agents on microorganisms associated with radiated head and neck cancer patients: an in vitro study.

    PubMed

    Bidra, Avinash S; Tarrand, Jeffery J; Roberts, Dianna B; Rolston, Kenneth V; Chambers, Mark S

    2011-04-01

    A variety of oral topical agents have been used for prevention and management of radiotherapy-induced adverse effects. The antimicrobial nature of some of the commonly used agents is unknown. The purpose of this study was to evaluate antimicrobial efficacies of various oral topical agents on common microorganisms associated with radiated head and neck cancer patients. Seven commonly used topical oral agents-0.12% chlorhexidine with alcohol, 0.12% chlorhexidine without alcohol, baking soda-salt rinse, 0.4% stannous fluoride gel, 0.63% stannous fluoride rinse, calcium phosphate mouthrinse, and acemannan hydrogel (aloe vera) rinse-were evaluated in vitro for their antimicrobial efficacies against four common microorganisms. A combination of baking soda-salt rinse and 0.4% stannous fluoride gel was evaluated as the eighth agent. The microorganisms used were Staphylococcus aureus, group B Streptococcus, Escherichia coli, and Candida albicans. An ELISA reader was used to measure the turbidity of microbial culture wells and optical density (OD) values for each of the 960 wells recorded. Mean OD values were rank ordered based on their turbidity. One-way ANOVA with Tukey HSD post hoc analysis was used to study differences in OD values (P < .05). Mean OD values classified for topical agents from lowest to highest were chlorhexidine with alcohol, chlorhexidine without alcohol, baking soda- salt, calcium phosphate rinse, and the combination of baking soda-salt and stannous fluoride gel. Mean OD values classified for microorganisms from lowest to highest were Escherichia coli, Staphylococcus aureus, group B Streptococcus, and Candida albicans. A significant difference among the antimicrobial efficacies of topical agents was evident for each of four microorganisms (P < .05). There was also a significant difference among the antimicrobial efficacies of the same topical agent on the four microorganisms tested (P < .05).

  5. The Impact of Microbial Biotransformation of Catechin in Enhancing the Allelopathic Effects of Rhododendron formosanum

    PubMed Central

    Wang, Chao-Min; Li, Tsai-Chi; Jhan, Yun-Lian; Weng, Jen-Hsien; Chou, Chang-Hung

    2013-01-01

    Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy. PMID:24391991

  6. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum.

    PubMed

    Wang, Chao-Min; Li, Tsai-Chi; Jhan, Yun-Lian; Weng, Jen-Hsien; Chou, Chang-Hung

    2013-01-01

    Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy.

  7. Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel.

    PubMed

    Son, Hyeri; Park, Sunhyung; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2016-12-05

    The goal of this study was to develop a desiccation resistant antimicrobial surface using biofilm of competitive exclusion (CE) microorganism inhibitory to Staphylococcus aureus. We isolated 161 microorganisms from soils, foods, and food-contact surfaces that are inhibitory to S. aureus. Among them, three CE microorganisms (Streptomyces spororaveus strain Gaeunsan-18, Bacillus safensis strain Chamnamu-sup 5-25, and Pseudomonas azotoformans strain Lettuce-9) exhibiting strong antibacterial activity and high growth rates were selected for evaluation. These isolates formed biofilms within 24h on stainless steel coupons (SSCs) immersed in Bennet's broth and tryptic soy broth at 25°C. Cells in these biofilms showed significantly (P≤0.05) enhanced resistance to a desiccation (43% relative humidity [RH]) compared to those attached to SSCs but not in biofilms. The antimicrobial activities of biofilms formed by these isolates on SSCs against S. aureus at 25°C and 43% RH were determined. Compared to SSCs lacking biofilms formed by CE microorganisms, populations of S. aureus on SSCs harboring CE biofilms were significantly lower (P≤0.05). Results indicate that persistent antimicrobial activity against S. aureus on stainless steel surfaces can be achieved by the presence of biofilms of CE microorganisms. This information will be useful when developing strategies to improve the microbiological safety of foods during storage, processing, and distribution by facilitating the development of effective antimicrobial food-contact surfaces. Copyright © 2016. Published by Elsevier B.V.

  8. Invasive bark beetle-associated microbes degrade a host defensive monoterpene.

    PubMed

    Xu, Le-Tian; Lu, Min; Sun, Jiang-Hua

    2016-04-01

    Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha-pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations of α-pinene to D. valens and the three most frequently isolated yeasts and bacteria of D. valens, and further assayed microorganisms' capabilities to degrade α-pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α-pinene applied in media compared to controls. The tolerance of experimental microorganisms to α-pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%-50% of α-pinene compared to controls in 24 h in vitro. The microorganisms capable of α-pinene degradation in vitro and their tolerance to high levels of α-pinene suggested that D. valens-associated microorganisms may help both microorganisms and the bark beetle overcome host α-pinene defense. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  9. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples.

    PubMed

    Lantz, P G; Abu al-Soud, W; Knutsson, R; Hahn-Hägerdal, B; Rådström, P

    2000-01-01

    Since its introduction in the mid-80s, polymerase chain reaction (PCR) technology has been recognised as a rapid, sensitive and specific molecular diagnostic tool for the analysis of micro-organisms in clinical, environmental and food samples. Although this technique can be extremely effective with pure solutions of nucleic acids, it's sensitivity may be reduced dramatically when applied directly to biological samples. This review describes PCR technology as a microbial detection method, PCR inhibitors in biological samples and various sample preparation techniques that can be used to facilitate PCR detection, by either separating the micro-organisms from PCR inhibitors and/or by concentrating the micro-organisms to detectable concentrations. Parts of this review are updated and based on a doctoral thesis by Lantz [1] and on a review discussing methods to overcome PCR inhibition in foods [2].

  10. Spontaneous regression of tumour and the role of microbial infection – possibilities for cancer treatment

    PubMed Central

    Cervinkova, Monika

    2016-01-01

    This review deals with the role of microorganisms in spontaneous regression of a tumour. Spontaneous cancer regression is a phenomenon that has been described for many centuries. One of the most well known methods of inducing spontaneous regression of cancer is the application of Coley’s toxin (heat-killed Streptococcus pyogenes and Serratia marcescens), which has been used for the successful treatment of sarcomas, carcinomas, lymphomas, myelomas and melanomas. In clinical practice, the use of Bacillus Calmette-Guérin vaccine for the treatment of superficial urinary bladder cancer is the most common instance of the application of microorganisms for the treatment of cancer. This review provides further information on other tested bacteria – Clostridium spp., Bifidobacterium spp., Lactobacillus spp. and Salmonella spp. – in this field of study. Among new age methods, bactofection, alternative gene therapy, combination bacteriolytic therapy and bacteria-directed enzyme prodrug therapy are some of the potential cancer treatment modalities that use microorganisms. We have also provided information about the interconnection among microorganisms, immune system response, and the possible mechanisms involved in the spontaneous regression of tumours. PMID:26813865

  11. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment.

    PubMed

    Kucerova, Petra; Cervinkova, Monika

    2016-04-01

    This review deals with the role of microorganisms in spontaneous regression of a tumour. Spontaneous cancer regression is a phenomenon that has been described for many centuries. One of the most well known methods of inducing spontaneous regression of cancer is the application of Coley's toxin (heat-killed Streptococcus pyogenes and Serratia marcescens), which has been used for the successful treatment of sarcomas, carcinomas, lymphomas, myelomas and melanomas. In clinical practice, the use of Bacillus Calmette-Guérin vaccine for the treatment of superficial urinary bladder cancer is the most common instance of the application of microorganisms for the treatment of cancer. This review provides further information on other tested bacteria--Clostridium spp., Bifidobacterium spp., Lactobacillus spp. and Salmonella spp.--in this field of study. Among new age methods, bactofection, alternative gene therapy, combination bacteriolytic therapy and bacteria-directed enzyme prodrug therapy are some of the potential cancer treatment modalities that use microorganisms. We have also provided information about the interconnection among microorganisms, immune system response, and the possible mechanisms involved in the spontaneous regression of tumours.

  12. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  13. 40 CFR 725.920 - Exports and imports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Exports and imports. 725.920 Section... on Significant New Uses of Microorganisms § 725.920 Exports and imports. (a) Exports. Persons who intend to export a microorganism identified in subpart M of this part, or in any proposed rule which...

  14. Clinical Significance and Taxonomy of Actinobacillus hominis

    PubMed Central

    Friis-Møller, Alice; Christensen, Jens Jørgen; Fussing, Vivian; Hesselbjerg, Annemarie; Christiansen, Jytte; Bruun, Brita

    2001-01-01

    Clinical findings in 36 immunosuppressed patients with lower respiratory tract infection or bacteremia with Actinobacillus hominis are described. Animal contact was only recorded for three patients; nine patients died despite appropriate antimicrobial treatment. Although infections with this microorganism seem to be rare, the fact that 37 of 46 strains characterized in this study have been found in Copenhagen indicates that under-reporting may occur. A. hominis is phenotypically relatively homogeneous but can be difficult to differentiate from other Actinobacillus species unless extensive biochemical testing is performed. Mannose-positive strains of A. hominis are especially difficult to differentiate from A. equuli. Attempts to identify A. hominis by automatic identification systems may lead to misidentifications. Ribotyping and DNA-DNA hybridization data show that A. hominis is a homogeneous species clearly separated from other species within the genus Actinobacillus. PMID:11230406

  15. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis.

    PubMed

    Brouwer, Matthijs C; Tunkel, Allan R; van de Beek, Diederik

    2010-07-01

    The epidemiology of bacterial meningitis has changed as a result of the widespread use of conjugate vaccines and preventive antimicrobial treatment of pregnant women. Given the significant morbidity and mortality associated with bacterial meningitis, accurate information is necessary regarding the important etiological agents and populations at risk to ascertain public health measures and ensure appropriate management. In this review, we describe the changing epidemiology of bacterial meningitis in the United States and throughout the world by reviewing the global changes in etiological agents followed by specific microorganism data on the impact of the development and widespread use of conjugate vaccines. We provide recommendations for empirical antimicrobial and adjunctive treatments for clinical subgroups and review available laboratory methods in making the etiological diagnosis of bacterial meningitis. Finally, we summarize risk factors, clinical features, and microbiological diagnostics for the specific bacteria causing this disease.

  16. Enhance the anti-microorganism activity of cinnamon oil by xanthan gum as emulsifying agent

    NASA Astrophysics Data System (ADS)

    Lieu, Dong M.; Dang, Thuy T. K.; Nguyen, Huong T.

    2018-04-01

    The aim of this study was to evaluate the effect of emulsifying agents (tween 20, DMSO (Dimethyl Sulfoxide) and xanthan gum) to inhibit Escherichia coli; Staphylococcus aureus; Saccharomyces cerevisiae and Aspergillus niger by cinnamon oil (Cinnamomum Cassia). Cinnamon oil was added in the emulsifying agents independently: tween 20 (0.3% v/v). DMSO (0.3% v/v) and xanthan gum (0.3% w/v) at different concentrations and evaluated their anti-microorganism activity by agar disk diffusion, mycelial growth inhibition and growth inhibition in liquid phase. The result indicated that, cinnamon oil diluted in different emulsifying agents showed the difference of the anti-microorganism activity, in which DMSO showed the lowest result. Xanthan gum and tween 20 show good stable emulsion. The anti-microorganism effect of cinnamon oil in tween 20 and xanthan gum was not significant difference. However, cinnamon oil in xanthan gum showed anti-microorganism activity better than tween 20 at low concentration in agar disk diffusion. This suggests that, cinnamon oil could be encapsulated by xanthan gum to enhance the anti-microorganism activity.

  17. Probiotics and clinical effects: is the number what counts?

    PubMed

    Bertazzoni, Elisa; Donelli, Gianfranco; Midtvedt, Tore; Nicoli, Jacques; Sanz, Yolanda

    2013-08-01

    Probiotics are defined as 'live microorganisms that when administered in adequate amounts confer health benefits on the host', underlining the need of microbial viability and the requirement of a suitable dose to obtain a health benefit. The dose and the administration regimen are critical issues for probiotics either ingested as foods claiming health benefits or used as drugs in clinics. In fact, regulatory authorities demand to guarantee consumers that a probiotic is effective in the recommended conditions of use and responds to its specific claims. Thus, a proper identification of probiotic strain(s), a definition of the amount of microorganisms surviving by the end of the product shelf-life, and a demonstration of their beneficial effects by appropriate human trials are required. The current knowledge on the effective dose of different probiotic strains used for several disorders is here reviewed.

  18. Broad-Range Detection of Microorganisms Directly from Bronchoalveolar Lavage Specimens by PCR/Electrospray Ionization-Mass Spectrometry

    PubMed Central

    Ullberg, Måns; Lüthje, Petra; Mölling, Paula; Strålin, Kristoffer

    2017-01-01

    The clinical demand on rapid microbiological diagnostic is constantly increasing. PCR coupled to electrospray ionization-mass spectrometry, PCR/ESI-MS, offers detection and identification of over 750 bacteria and Candida species directly from clinical specimens within 6 hours. In this study, we investigated the clinical performance of the IRIDICA BAC LRT Assay for detection of bacterial pathogens in 121 bronchoalveolar lavage (BAL) samples that were received consecutively at our bacterial laboratory for BAL culture. Commensal or pathogenic microorganisms were detected in 118/121 (98%) BAL samples by PCR/ESI-MS, while in 104/121 (86%) samples by routine culture (P<0.01). Detection of potentially pathogenic microorganisms by PCR/ESI-MS was evaluated in comparison with conventional culture-based or molecular methods. The agreement between positive findings was overall good. Most Staphylococcus aureus-positive PCR/ESI-MS results were confirmed by culture or species-specific PCR (27/33, 82%). The identity of Streptococcus pneumoniae could however be confirmed for only 6/17 (35%) PCR/ESI-MS-positive samples. Non-cultivable and fastidious pathogens, which were not covered by standard culture procedures were readily detected by PCR/ESI-MS, including Legionella pneumophila, Bordetella pertussis, Norcadia species and Mycoplasma pneumoniae. In conclusion, PCR/ESI-MS detected a broad range of potential pathogens with equal or superior sensitivity compared to conventional methods within few hours directly from BAL samples. This novel method might thus provide a relevant tool for diagnostics in critically ill patients. PMID:28085931

  19. [Taxonomic characteristics and mixed communities of wound infection agents in patients of reanimation and surgical departments of a hospital].

    PubMed

    Men'shikova, E D; Kiselevskaia-Babinina, I V; Men'shikov, D D; Godkov, M A

    2012-01-01

    Study of taxonomical structure ofwound infection agents, prevalence of mixes, and detection of character of their possible connection with the results of various microorganisms population interaction in septic wounds. A microbiological study of material from patients with wound infection (WI), 582 of those were cured in reanimation and intensive therapy departments (RITD; group 1) and 1455 - in surgical departments (SD; group 2), was performed. Taxonomic membership and ability to coexist was determined in 4129 microorganisms strains. Etiological role of the agents was evaluated by using values of consistency rate (CR). Species that were present in more than 50% of samples were considered consistent, in 25 to 50%--additional, and in less than 25%--random. Frequency rates (FR) were also determined, that is the fraction of a certain species (genus) of the microorganism (in %) from all the isolated cultures that correspond to 100%. For the determination of the significance of individual species of the agent in the structure of mixed microorganism populations, FR - their fraction (%) in mixed population from the number of strains of this species that correspond to 100% - was calculated. A significant part of the microorganisms strains, more frequently in reanimation department (65.5%), caused wound suppuration in populations mixed with other species of the agents. In reanimation and surgical departments consistent species of wound infection agents were not detected. A leading etiological role of Staphylococcus aureus (FR 19.2% and 23.9%) was determined, and FR of S. aureus strains in mixes was 64.6% in RITD and 46.8% in SD. The parameters ofotheragents of WI in the comparison groups were similar. However FR among mixes in RITD were significantly higher for streptococci that do not belong to S. pyogenes species (72,5%), and also nonfermentative microorganisms (67,2%), and in SD - in Klebsiella pneumoniae mixes. For agents of wound infection especially in RITD, low species diversity was characteristic and the number of mixes variants is significantly higher. In RITD mixed infections develop more frequently, and the ecological community of microorganisms reaches higher values than in SD. During the analysis of microbiologi-cal data in RITD and SD general patterns and specific features of taxonomical structure, prevalence of mixed populations and character of their ecological community in wound infection was determined.

  20. [Initial stages of steel biocorrosion].

    PubMed

    Zhigletsova, S K; Rodin, V B; Kobelev, V S; Aleksandrova, N V; Rasulova, G E; Kholodenko, V P

    2000-01-01

    Initial stages of corrosion of mild steel induced by Klebsiela rhinoscleromatis BO2 were studied in various media. The effect of the microorganism was detected 8-10 h after inoculation. The number of viable cells were virtually unchanged within one month in all media, but the corrosive activity of the strain decreased. The corrosive activity of microorganisms can be determined by spectrophotometry even only after incubation for 24 h. At a low level of organic substrate, even strong colonization with microorganisms does not inevitably result in a significant damage to metals.

  1. Microbial Load Monitor

    NASA Technical Reports Server (NTRS)

    Gibson, S. F.; Royer, E. R.

    1979-01-01

    The Microbial Load Monitor (MLM) is an automated and computerized system for detection and identification of microorganisms. Additionally, the system is designed to enumerate and provide antimicrobic susceptibility profiles for medically significant bacteria. The system is designed to accomplish these tasks in a time of 13 hours or less versus the traditional time of 24 hours for negatives and 72 hours or more for positives usually required for standard microbiological analysis. The MLM concept differs from other methods of microbial detection in that the system is designed to accept raw untreated clinical samples and to selectively identify each group or species that may be present in a polymicrobic sample.

  2. The Role of PCR in the Diagnosis of Candida Vulvovaginitis-a New Gold Standard?

    PubMed

    Sobel, J D; Akins, Robert A

    2015-06-01

    PCR is recognized as a reliable technique for detection of all types of microorganisms. Being highly objective and reproducible also sensitive and specific, PCR is now widely used for sexually transmitted infection (STI) diagnosis. Potential, however, exists for detecting non-pathogens, and not identifying a pathogenic state decreases specificity or clinical significance. PCR Candida tests of vaginal specimens are now widely available and frequently used offering a modest to moderate increase in sensitivity and are likely to replace traditional culture and DNA homology testing. Nevertheless, there remain considerable gaps in our knowledge regarding the usefulness and applications of these expensive tests.

  3. Identification of key micro-organisms involved in Douchi fermentation by statistical analysis and their use in an experimental fermentation.

    PubMed

    Chen, C; Xiang, J Y; Hu, W; Xie, Y B; Wang, T J; Cui, J W; Xu, Y; Liu, Z; Xiang, H; Xie, Q

    2015-11-01

    To screen and identify safe micro-organisms used during Douchi fermentation, and verify the feasibility of producing high-quality Douchi using these identified micro-organisms. PCR-denaturing gradient gel electrophoresis (DGGE) and automatic amino-acid analyser were used to investigate the microbial diversity and free amino acids (FAAs) content of 10 commercial Douchi samples. The correlations between microbial communities and FAAs were analysed by statistical analysis. Ten strains with significant positive correlation were identified. Then an experiment on Douchi fermentation by identified strains was carried out, and the nutritional composition in Douchi was analysed. Results showed that FAAs and relative content of isoflavone aglycones in verification Douchi samples were generally higher than those in commercial Douchi samples. Our study indicated that fungi, yeasts, Bacillus and lactic acid bacteria were the key players in Douchi fermentation, and with identified probiotic micro-organisms participating in fermentation, a higher quality Douchi product was produced. This is the first report to analyse and confirm the key micro-organisms during Douchi fermentation by statistical analysis. This work proves fermentation micro-organisms to be the key influencing factor of Douchi quality, and demonstrates the feasibility of fermenting Douchi using identified starter micro-organisms. © 2015 The Society for Applied Microbiology.

  4. Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms.

    PubMed

    Chen, Chien-Chia; Yan, Sui-Hing; Yen, Muh-Yong; Wu, Pei-Fang; Liao, Wei-Ting; Huang, Tsi-Shu; Wen, Zhi-Hong; David Wang, Hui-Min

    2016-02-01

    Diseases caused by infectious and inflammatory microorganisms are among the most common and most severe nosocomial diseases worldwide. Therefore, developing effective agents for treating these illnesses is critical. In this study, essential oils from two tea tree species, kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium), were evaluated for use in treating diseases and inflammation caused by microorganism infection. Isolates of clinically common bacteria and fungi were obtained from American Type Culture Collection and from Kaohsiung Veterans General Hospital. Minimum inhibitory concentrations for Trichosporon mucoides, Malassezia furfur, Candida albicans, and Candida tropicalis were determined by the broth microdilution method with Sabouraud dextrose broth. The antibacterial susceptibility of Staphylococcus aureus, Streptococcus sobrinus, Streptococcus mutans, and Escherichia coli were determined by the broth microdilution method. A human acute monocytic leukemia cell line (THP-1) was cultured to test the effects of the essential oils on the release of the two inflammatory cytokines, tumor necrosis factor-α and interleukin-4. Multiple analyses of microorganism growth confirmed that both essential oils significantly inhibited four fungi and the four bacteria. The potent fungicidal properties of the oils were confirmed by minimum inhibitory concentrations ranging from 0.78% to 3.13%. The oils also showed excellent bactericidal qualities with 100% inhibition of the examined bacteria. In THP-1 cells, both oils lowered tumor necrosis factor-α released after lipopolysaccharide stimulation. Finally, the antimicrobial and anti-inflammatory effects of the oils were obtained without adversely affecting the immune system. These results indicate that the potent antimicroorganism and anti-inflammation properties of kanuka and manuka essential oils make them strong candidates for use in treating infections and immune-related disease. The data confirm the potential use of kanuka and manuka extracts as pharmaceutical antibiotics, medical cosmetology agents, and food supplements. Copyright © 2014. Published by Elsevier B.V.

  5. Antimicrobial activity of complete denture cleanser solutions based on sodium hypochlorite and Ricinus communis - a randomized clinical study.

    PubMed

    Salles, Marcela Moreira; Badaró, Maurício Malheiros; Arruda, Carolina Noronha Ferraz de; Leite, Vanessa Maria Fagundes; Silva, Cláudia Helena Lovato da; Watanabe, Evandro; Oliveira, Viviane de Cássia; Paranhos, Helena de Freitas Oliveira

    2015-01-01

    To preserve oral health and to maintain the prosthetic devices, it is important not only to improve the properties of commonly known hygiene products, but also to investigate new materials with antimicrobial action. Objectives This study evaluated the antimicrobial activity of sodium hypochlorite (0.25% and 0.50%) and 10% Ricinus communis' solutions against specific microorganisms. Sixty four maxillary complete denture wearers were instructed to brush their dentures three times a day and to soak them (20 min/day) in the solutions: SH1: 0.25% sodium hypochlorite; SH2: 0.5% sodium hypochlorite; RC: 10% R. communis oil; and C: 0.85% saline (control). The solutions were used for 7 days in a randomized sequence. Following each period of use, there was a 1-week washout period. Antimicrobial activity was determined by Colony Forming Units (CFU) counts of Streptococcus mutans, Candida spp., and gram-negative microorganisms. For collecting biofilm, the internal surface of maxillary dentures was brushed with saline solution, and biofilm suspension obtained. After dilutions (100 - 10-3), aliquots were seeded in Mitis salivarius, CHROMagar Candida, and MacConkey agar for detecting S. mutans, Candida spp., or gram-negative microorganisms, respectively. After incubation, colonies were counted, and CFU/mL values were calculated. Then, transformation - log10 (CFU+1) - data were analyzed using the Friedman test (α=0.05). Results showed significant differences between the solutions (p<0.001). All three solutions showed antimicrobial activity against S. mutans. Against Candida spp., RC and SH1 solutions showed similar effect while SH2 showed superior activity. SH1 and SH2 solutions showed antimicrobial action against gram-negative microorganisms. The Candida species most frequently isolated was C. albicans, followed by C. tropicalis and C. glabrata. The 0.5% sodium hypochlorite solution was the most effective and might be used to control denture biofilm. C. albicans was the most frequently isolated Candida sp.

  6. Cytological Findings of 140 Bile Samples from Dogs and Cats and Associated Clinical Pathological Data.

    PubMed

    Peters, L M; Glanemann, B; Garden, O A; Szladovits, B

    2016-01-01

    Cholecystocentesis can be part of the diagnostic workup of hepatobiliary disease in small animals, but literature on cytological evaluation of bile is scant. To determine the diagnostic utility of cytological assessment of bile aspirates. Fifty-six and 78 client-owned dogs and cats, respectively, with bile collected by cholecystocentesis and submitted to our diagnostic laboratory between 1999 and 2014. Retrospective study describing cytological findings of bile, concurrent bacterial culture results, hematological and serum biochemical data, gallbladder biopsy results, as well as final diagnosis and complications after cholecystocentesis. Infectious agents were found in 30% of canine and 22% of feline bile aspirates, and inflammation in 5% and 19% respectively. Presence of microorganisms was more often detected on cytological examination (24%) than by culture (21%). The most common bacterial isolates were Escherichia coli and Enterococcus spp., isolated from 14.8% and 6.7% of cultured samples respectively. Only increased canine pancreatic lipase immunoreactivity concentration (cPLI) was significantly associated with the presence of microorganisms, inflammatory cells, or both in bile. Clinically relevant complications of cholecystocentesis occurred in 2 dogs. The majority of the animals undergoing cholecystocentesis suffered from hepatic, pancreatic, gastrointestinal disease, or a combination thereof. Cytological examination of bile is inexpensive and straightforward, and yields diagnostically relevant information that precedes and complements bacterial culture. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. Clinical and microbiologic effects of lingual cervical coverage by removable partial dentures.

    PubMed

    Ao, Aiichiro; Wakabayashi, Noriyuki; Nitta, Hiroshi; Igarashi, Yoshimasa

    2013-01-01

    The effect of gingival coverage by removable partial dentures (RPDs) on bacterial accumulation has not been sufficiently established. The aim of this study was to evaluate the periodontal and microbiologic reactions to mandibular major connectors. It was hypothesized that the use of a lingual plate increases the risk of periodontal disease. Fourteen subjects (mean age: 69.0 years) received oral hygiene instructions and ultrasonic debridement prior to examination. Each subject received an experimental RPD incorporating either a lingual bar or lingual plate for the first 8 weeks and was then switched to the other option for the next 8 weeks. Clinical parameters (Plaque Index, Gingival Index, probing depth, and tooth mobility) were recorded. Subgingival plaque samples were collected from the periodontal pocket in the test site to measure the colonization of periodontal pathogens after the use of each denture. The mean probing depth was significantly greater after use of the lingual plate compared to the lingual bar (P < .05), whereas the type of connector did not affect the levels of any of the microbial species. All subjects that exhibited at least one bacterial species showed smaller numbers of microorganisms at the second examination than at the first. The lingual cervical coverage did not precipitate the accumulation of anaerobic microorganisms, although it could potentially induce gingival inflammation. The results suggest that a lingual plate can be used as safely as a lingual bar if oral and denture hygiene are carefully monitored.

  8. Resin straw as an alternative system to securely store frozen microorganisms.

    PubMed

    Thammavongs, Bouachanh; Poncet, Jean-Marc; Desmasures, Nathalie; Guéguen, Micheline; Panoff, Jean-Michel

    2004-05-01

    Freezing of prokaryotic and eukaryotic microorganisms is the main interest in the study of cold stress responses of living organisms. In parallel, applications which arise from this approach are of two types: (i) optimization of the frozen starters used in food processing; and (ii) improvement of the ex situ preservation of microorganisms in collections. Currently, cryopreservation of microorganisms in collections is carried out in cryotubes, and bibliographical references related to freezing microorganisms packaged in straws are scarce. In this context, a preliminary study was completed to evaluate the technological potential of ionomeric resin straws compared to polycarbonate cryo-tubes. Survival under freezing stress was tested on three microorganisms selected for their biotechnological interest: two lactic acid bacteria, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus and a deuteromycete fungus, Geotrichum candidum. The stress was carried out by repeated freezing-thawing cycles to artificially accelerate the lethal effect of freezing on the microorganisms. Two main results were obtained: (i) the survival rate values (per freezing-thawing cycle) seems to depend on the thermal type of the studied microorganism, and (ii) there was no, under our experimental conditions, significant difference between straws and tubes. However, conservation in the resin straws lead to a slight increase in the survival of L. cremoris and G. candidum compared to microtubes. In those conditions, straws seems an alternative system to securely store frozen microorganisms with three main characteristics: (i) a high resistance to thermal stress, (ii) a safe closing by hermetic weld, and (iii) a system for inviolable identification.

  9. L-malate production by metabolically engineered escherichia coli

    DOEpatents

    Zhang, Xueli; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-11-17

    A process for the production of malic acid in commercially significant quantities from the carbon compounds by genetically modified bacterial strains (GMBS; also referred to as biocatalysts or genetically modified microorganisms) is disclosed. Microorganisms suitable for the production of malic acid can be cultured in one or two-step processes as disclosed herein.

  10. Prevalence of vaginal microorganisms among pregnant women according to trimester and association with preterm birth

    PubMed Central

    Son, Kyung-A; Kim, Minji; Kim, Yoo Min; Kim, Soo Hyun; Choi, Suk-Joo; Roh, Cheong-Rae; Kim, Jong-Hwa

    2018-01-01

    Objective The aim of this study was to investigate the prevalence of abnormal vaginal microorganisms in pregnant women according to trimester, and to determine whether the presence of abnormal vaginal colonization is associated with higher risk of miscarriage or preterm delivery. Furthermore, we analyzed delivery outcomes according to individual microorganism species. Methods We included pregnant women who underwent vaginal culture during routine prenatal check-up between January 2011 and June 2016. We compared delivery outcomes according to the presence or absence of abnormal vaginal flora grouped by trimester. Results This study included 593 singleton pregnancies. We classified participants into 3 groups, according to the trimester in which vaginal culture was performed; 1st trimester (n=221), 2nd trimester (n=138), and 3rd trimester (n=234). Abnormal vaginal colonization rate significantly decreased with advancing trimester of pregnancy (21.7% for 1st, 21.0% for 2nd, 14.5% for 3rd; P=0.048). Abnormal vaginal colonization detected in the 2nd trimester but not in 1st trimester was associated with a significant increase in preterm delivery before 28 weeks of gestation (6.9% vs. 0%; P=0.006). Among abnormal vaginal flora isolated in the 2nd trimester, the presence of Klebsiella pneumonia was identified as significant microorganism associated with preterm delivery before 28 weeks of gestation (50% vs. 0.7% for K. pneumonia; P=0.029). Conclusion There is an association between abnormal vaginal colonization detected in the 2nd trimester and preterm delivery before 28 weeks. K. pneumonia has been identified as the likely causative microorganisms. PMID:29372148

  11. Identification of microorganisms on mobile phones of intensive care unit health care workers and medical students in the tertiary hospital.

    PubMed

    Kotris, Ivan; Drenjančević, Domagoj; Talapko, Jasminka; Bukovski, Suzana

    2017-02-01

    Aim To identify and investigate a difference between microorganisms present on intensive care unit (ICU) health care workers' (HCW, doctors, nurses or medical technicians) and medical students' mobile phones as well as to investigate a difference between the frequency and the way of cleaning mobile phones. Methods Fifty swabs were collected from HCWs who work in the ICU (University Hospital Centre Osijek) and 60 swabs from medical students (School of Medicine, University of Osijek). Microorganisms were identified according to standard microbiological methods and biochemical tests to the genus/species level. Results Out of 110 processed mobile phones, mobile phones microorganisms were not detected on 25 (22.7%), 15 (25%) students' and 10 (20%) HCW's mobile phones. No statistically significant difference was found between the number of isolated bacteria between the HCW' and students' mobile phones (p>0.05). Statistically significant difference was found between both HCW and students and frequency of cleaning their mobile phones (p<0.001). A significant difference was also obtained with the way of cleaning mobile phones between HCWs and students (p<0.001). Conclusion The most common isolated microorganisms in both groups were coagulase-negative staphylococci (CoNS) and Staphylococcus aureus. Most HCWs cleaned their mobile phones at least once a week, 35 (52.0%), and most medical students several times per year, 20 (33.3%). HCW clean their mobile phones with alcohol disinfectant in 26 (40.0%) and medical students with dry cloth in 20 (33.3%) cases. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  12. [Progress in synthetic biology of pinocembrin].

    PubMed

    Guo, Lei; Kong, Jianqiang

    2015-04-01

    Pinocembrin, belonging to flavanons, was isolated from various plants. Pinocembrin has a variety of pharmacological activities, such as neuroprotective effect, antimicrobial activity, and antioxidant efficacy. Pinocembrin was approved as class I drugs to its phase II clinical trial by CFDA in 2009, mainly used for the treatment of ischemic stroke. As a promising compound, the manufacturing technologies of pinocembrin, including chemical synthesis, extraction from plant and synthetic biology, have attracted many attentions. Compared with the first two technologies, synthetic biology has many advantages, such as environment-friendly and low-cost. Construction of biosynthetic pathway in microorganism offers promising results for large scale pinocembrin production by fermentation after taking lots of effective strategies. This article reviews some of recent strategies in microorganisms to improve the yield, with focus on the selection of appropriate the key enzyme sources, the supply of precursors and cofactors by microorganisms, the choice of substance and the level of the key enzyme expression.

  13. An in vitro biofilm model to examine the effect of antibiotic ointments on biofilms produced by burn wound bacterial isolates.

    PubMed

    Hammond, Adrienne A; Miller, Kyle G; Kruczek, Cassandra J; Dertien, Janet; Colmer-Hamood, Jane A; Griswold, John A; Horswill, Alexander R; Hamood, Abdul N

    2011-03-01

    Topical treatment of burn wounds is essential as reduced blood supply in the burned tissues restricts the effect of systemic antibiotics. On the burn surface, microorganisms exist within a complex structure termed a biofilm, which enhances bacterial resistance to antimicrobial agents significantly. Since bacteria differ in their ability to develop biofilms, the susceptibility of these biofilms to topically applied antibiotics varies, making it essential to identify which topical antibiotics efficiently disrupt or prevent biofilms produced by these pathogens. Yet, a simple in vitro assay to compare the susceptibility of biofilms produced by burn wound isolates to different topical antibiotics has not been reported. Biofilms were developed by inoculating cellulose disks on agar plates with burn wound isolates and incubating for 24h. The biofilms were then covered for 24h with untreated gauze or gauze coated with antibiotic ointment and remaining microorganisms were quantified and visualized microscopically. Mupirocin and triple antibiotic ointments significantly reduced biofilms produced by the Staphylococcus aureus and Pseudomonas aeruginosa burn wound isolates tested, as did gentamicin ointment, with the exception of one P. aeruginosa clinical isolate. The described assay is a practical and reproducible approach to identify topical antibiotics most effective in eliminating biofilms produced by burn wound isolates. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  14. [Yeast colonization of urinary catheters and the significance of biofilm formation].

    PubMed

    Růžička, Filip; Holá, Veronika; Mahelová, Martina; Procházková, Alena

    2012-08-01

    Urinary catheters are colonized by a wide range of microorganisms, including numerous yeasts. The catheters are usually colonized by more microbial species forming a community - multispecies biofilm. Catheter colonization usually does not affect the patient's clinical status in any significant way. On the other hand, the biofilm can become a source of endogenous infection and its presence can affect functionality of the catheter and formation of urinary stones. Material a A total of 721 urinary catheters were studied. Microorganisms were released from catheters by sonication and subsequently cultured. Their identification was performed with the use of common phenotypic tests, as well as using MALDI TOF. Yeasts whose identification was ambiguous were recognized by sequencing. Biofilm formation was assessed by growth in a microtiter plate. Yeast colonization was proved in 244 urinary catheters. However, a total of 274 yeast strains were isolated. Most of them occurred together with other yeast species and/or bacteria on the catheters, producing multispecies biofilm there. The most frequent species was Candida albicans (a total of 144 isolated strains), followed by Candida glabrata (41), Candida tropicalis (41) and Candida parapsilosis sensu stricto (14). Other isolated species were as follows: Candida kefyr (10), Candida krusei (9), Candida fabianii (6), Candida lusitaniae (5), Candida dubliniensis (3) and Saccharomyces cerevisiae (one case). Most of the yeasts rather readily formed a firmly adhering biofilm layer on artificial surfaces.

  15. The Acinetobacter baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace

    PubMed Central

    Roca, Ignasi; Espinal, Paula; Vila-Farrés, Xavier; Vila, Jordi

    2012-01-01

    During the past few decades Acinetobacter baumannii has evolved from being a commensal dweller of health-care facilities to constitute one of the most annoying pathogens responsible for hospitalary outbreaks and it is currently considered one of the most important nosocomial pathogens. In a prevalence study of infections in intensive care units conducted among 75 countries of the five continents, this microorganism was found to be the fifth most common pathogen. Two main features contribute to the success of A. baumannii: (i) A. baumannii exhibits an outstanding ability to accumulate a great variety of resistance mechanisms acquired by different mechanisms, either mutations or acquisition of genetic elements such as plasmids, integrons, transposons, or resistant islands, making this microorganism multi- or pan-drug-resistant and (ii) The ability to survive in the environment during prolonged periods of time which, combined with its innate resistance to desiccation and disinfectants, makes A. baumannii almost impossible to eradicate from the clinical setting. In addition, its ability to produce biofilm greatly contributes to both persistence and resistance. In this review, the pathogenesis of the infections caused by this microorganism as well as the molecular bases of antibacterial resistance and clinical aspects such as treatment and potential future therapeutic strategies are discussed in depth. PMID:22536199

  16. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges.

    PubMed

    Nallar, Shreeram C; Xu, De-Qi; Kalvakolanu, Dhan V

    2017-01-01

    Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed. Copyright © 2016. Published by Elsevier Ltd.

  17. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases.

    PubMed

    Cataldi, V; Di Bartolomeo, S; Di Campli, E; Nostro, A; Cellini, L; Di Giulio, M

    2015-12-01

    The failure of traditional antimicrobial treatments is becoming a worldwide problem. The use of Aloe vera is of particular interest for its role as curative agent and its efficacy in complementary therapies for a variety of illnesses. This study evaluated the antimicrobial activity of A. vera inner gel against a panel of microorganisms, Gram-positive and -negative bacteria, and Candida albicans. In addition to A. vera inner gel being used in the treatment of peptic ulcers, in dermatological treatments, and wound healing, it was also tested on the sessile phase of clinical Helicobacter pylori strains (including multi-drug-resistant strains) and on planktonic and sessile phase of Staphylococcus aureus/Pseudomonas aeruginosa clinical isolates from venous leg ulcers.A. vera inner gel expresses its prevalent activity against Gram-negative bacteria and C. albicans in respect to Gram-positive bacteria. The results of the A. vera antibiofilm activity showed a decrease of the produced biomass in a concentration-dependent-way, in each analyzed microorganism. The data obtained show that A. vera inner gel has both an antimicrobial and antibiofilm activity suggesting its potential use for the treatment of microbial infections, in particular for H. pylori gastric infection, especially in case of multi-drug-resistance, as well as for an effective wound dressing. © The Author(s) 2015.

  18. Antibacterial Efficacy of a New Sonic Irrigation Device for Root Canal Disinfection.

    PubMed

    Neuhaus, Klaus W; Liebi, Melanie; Stauffacher, Simone; Eick, Sigrun; Lussi, Adrian

    2016-12-01

    Passive ultrasonic irrigation (PUI) is the most widespread method used to activate irrigation solutions. Concerns have been raised that PUI is less effective in curved root canals and is not passive at all. Our aim was to compare a novel passive sonic irrigation (PSI) device (6000 Hz) with PUI and manual irrigation (MI) with respect to their efficiency in removing different endodontic microorganisms from curved and straight root canals. We performed 2 experiments as follows. In a 3-day infection model, we included 8 groups of single or dual microbial species that were rinsed with 0.9% sodium chloride using PSI, PUI, or MI. Colony-forming units (CFUs) were counted after incubation, and log 10 transformations were performed for statistical comparisons. In a 21-d infection model, we tested the same irrigation protocols on 4 groups of microorganisms and used 1.5% sodium hypochlorite as an irrigant. Infection control samples were taken at day 0, 3, 5, and 7 after treatment and were subsequently reincubated. Using sodium chloride as an irrigant, the amount of reduction in CFUs compared with the negative control was approximately 3 log 10 units for PSI at 6000 Hz, 2 log 10 units for PUI, and 1 log 10 unit for MI. PSI reduced the microorganism CFUs significantly better than PUI. Using sodium hypochlorite led to a significant reduction in microorganism CFUs even with MI. After 3 days, compared with MI, microorganism regrowth significantly reduced after PSI and PUI treatment, but in these groups, in at least half of the samples, microorganisms were detectable after 7 days. PSI at 6000 Hz might be at least equal to PUI with respect to reduction of the microbial load in curved and straight root canals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    PubMed

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  20. Chemosensory cues alter earthworm (Eisenia fetida) avoidance of lead-contaminated soil.

    PubMed

    Syed, Zuby; Alexander, Dana; Ali, Jasmine; Unrine, Jason; Shoults-Wilson, W Aaron

    2017-04-01

    Earthworms were shown to significantly avoid soils spiked with Pb at concentrations lower than or comparable to concentrations that demonstrate significant effects for other endpoints. It was also shown that inclusion of a microorganism-produced volatile compound that attracts earthworms, ethyl valerate, decreased avoidance of spiked soils. These findings suggest that care should be taken when analyzing earthworm avoidance of soils in which microorganism communities are not controlled. Environ Toxicol Chem 2017;36:999-1004. © 2016 SETAC. © 2016 SETAC.

  1. Method for in situ biological conversion of coal to methane

    DOEpatents

    Volkwein, Jon C.

    1995-01-01

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  2. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  3. Phototherapy of adenoid disease in children

    NASA Astrophysics Data System (ADS)

    Naumov, Sergey A.; Chankov, Ivan I.; Volovodenko, Alexey V.; Khlusov, Igor A.; Vovk, Sergey M.; Tuchin, Valery V.

    2004-08-01

    The results presented testify to the high clinical effectiveness of therapy of adenoid disease based on photodynamic effects caused by combined action of physical (red light) and chemical factors (methylene blue) on pathogenic microorganisms. Original physiotherapy device and autonomous photostimulator of "Duny" Inc. were used. Clinical results have a good correlation with results of bacteriological and cell research conducted in vivo and in vitro.

  4. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor.

    PubMed

    Bessonova, Leona; Volkova, Nataliya; Higgins, Mark; Bengtsson, Leif; Tian, Simon; Simard, Christopher; Konstan, Michael W; Sawicki, Gregory S; Sewall, Ase; Nyangoma, Stephen; Elbert, Alexander; Marshall, Bruce C; Bilton, Diana

    2018-05-10

    Ivacaftor is the first cystic fibrosis transmembrane conductance regulator (CFTR) modulator demonstrating clinical benefit in patients with cystic fibrosis (CF). As ivacaftor is intended for chronic, lifelong use, understanding long-term effects is important for patients and healthcare providers. This ongoing, observational, postapproval safety study evaluates clinical outcomes and disease progression in ivacaftor-treated patients using data from the US and the UK CF registries following commercial availability. Annual analyses compare ivacaftor-treated and untreated matched comparator patients for: risks of death, transplantation, hospitalisation, pulmonary exacerbation; prevalence of CF-related complications and microorganisms and lung function changes in a subset of patients who initiated ivacaftor in the first year of commercial availability. Results from the 2014 analyses (2 and 3 years following commercial availability in the UK and USA, respectively) are presented here. Analyses included 1256 ivacaftor-treated and 6200 comparator patients from the USA and 411 ivacaftor-treated and 2069 comparator patients from the UK. No new safety concerns were identified based on the evaluation of clinical outcomes included in the analyses. As part of safety evaluations, ivacaftor-treated US patients were observed to have significantly lower risks of death (0.6% vs 1.6%, p=0.0110), transplantation (0.2% vs 1.1%, p=0.0017), hospitalisation (27.5% vs 43.1%, p<0.0001) and pulmonary exacerbation (27.8% vs 43.3%, p<0.0001) relative to comparators; trends were similar in the UK. In both registries, ivacaftor-treated patients had a lower prevalence of CF-related complications and select microorganisms and had better preserved lung function. While general limitations of observational research apply, analyses revealed favourable results for clinically important outcomes among ivacaftor-treated patients, adding to the growing body of literature supporting disease modification by CFTR modulation with ivacaftor. EUPAS4270. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Pathogenetic aspects of uncomplicated urinary tract infection: recent advances.

    PubMed

    Fünfstück, R; Smith, J W; Tschäpe, H; Stein, G

    1997-01-01

    Urinary tract infections mostly are caused by Enterobacteriaceae; E. coli dominating in 80-90% for uncomplicated diseases. Microorganisms possessing the ability to colonize the uroepithelium (fimbriae/pili) and to cytotoxically damage cells and tissue (hemolysin) may initiate acute infection. Properties such as serum resistance, iron sequesteration, hydroxamate production and the presence of K-antigen are found in strains which persist in the host without initiating clinical symptoms. The ability of bacteria to adhere to cells of the epithelial boundary layer of the host organisms is of initial importance in the origin and progress of an infection. A variety of specific factors, e.g. glycolipids on the surface of the uroepithelium as well as cellular and humoral disorders of immunoreactions in the host determine the course of a disease. The immune response may ameliorate clinical symptoms and select urovirulent characteristics of the causative microorganism in recurrent diseases.

  6. Antibacterial effect of grapefruit seed extract (GSE) on Makgeolli-brewing microorganisms and its application in the preservation of fresh Makgeolli.

    PubMed

    Choi, Jae-Suk; Lee, Yu-Ri; Ha, Yu-Mi; Seo, Hyo Ju; Kim, Young Hun; Park, Sun-Mee; Sohn, Jae Hak

    2014-06-01

    To develop a new preservation method, the antimicrobial activity of grapefruit seed extract (GSE) against Makgeolli-brewing microorganisms and food-borne pathogens was assessed, and a general analysis and sensory evaluation of fresh Makgeolli with added GSE was made. The minimum inhibitory concentration (MIC) values of GSE against 10 strains of Makgeolli-brewing microorganism were 0.0122 to 1.5625 μL/mL. The MIC values against 6 strains of food-borne pathogens were 0.0061 to 0.7813 μL/mL. On addition of 0.1% (v/v) and 0.2% GSE in bottled fresh Makgeolli, no significant difference in the pH, or the contents of total acids, ethanol, or methanol in the Makgeolli, were observed compared with control Makgeolli (with no GSE), during the preservation period (8 weeks) at 10 °C. In the Makgeolli with 0.1% and 0.2% GSE, the total bacterial counts decreased significantly by 4.9% (P < 0.01) and 11.2% (P < 0.001), respectively, versus the control. The decreases in yeast count were significantly lessened by 15.33% and 15.24% (both P < 0.001), respectively, after 8 weeks of storage, compared with the control. In the sensory evaluation of Makgeolli with 0.1% and 0.2% GSE, the refreshment and overall acceptability received significantly better scores than the control (P < 0.01), with no change in sweetness, bitterness, sourness, turbidity, color, or odor. These results suggest that GSE controls the growth of Makgeolli-brewing microorganisms and extends the shelf life (ca. 2 wk), without decreasing overall acceptance. A new preservation method for fresh Makgeolli by adding grapefruit seed extract (GSE) was developed. As fresh Makgeolli contains live microorganisms, the preservation period is 1 wk, which is relatively short. GSE controls the growth of Makgeolli-brewing and Makgeolli-spoiling microorganisms. 0.1% to 0.2% GSE is optimum for prolonging the shelf life (2 wk) of bottled fresh Makgeolli, and has no adverse effect on overall acceptability. We demonstrated that GSE is an effective natural additive that prolongs the shelf life of fresh Makgeolli with no significant loss in quality. © 2014 Institute of Food Technologists®

  7. Microbiological agents as health risks in indoor air.

    PubMed Central

    Burrell, R

    1991-01-01

    Ambient air may be contaminated with or carry significant levels of a variety of potentially harmful microorganisms. There are three major sources of such microbes: a) those arising from microbial decomposition of various substrates associated with particular occupations (e.g., "moldy" hay leading to hypersensitivity pneumonitis), b) those associated with certain types of environments (e.g., Legionnaires' bacteria in water supplies), and c) those stemming from infective individuals harboring a particular pathogen (e.g., tuberculosis). This presentation deals primarily with important microorganisms from occupational and environmental sources and clearly differentiates from case to case transmission via droplet nuclei infection. Microorganisms that are uniformly injurious are differentiated from those that are more opportunistic (i.e., those that cause problems only in people with preexisting debilities). Such microorganisms are categorized according to whether they are allergenic, infectious, or capable of inducing toxic or inflammatory reactions when inhaled. Representative examples from each of these categories, which include bacteria, fungi, rickettsia, and amoebae, are discussed. The conditions responsible for the entrance of significant numbers of these microbes into the air, the mechanisms by which they produce injury, and the methods of prevention are also considered. With attention given to some of the basic sources and requirements for such microorganisms to reproduce and enter the ambient air environment, it is a relatively simple matter to prevent the occurrence of health problems. PMID:1669959

  8. Magnesium Fertilizer-Induced Increase of Symbiotic Microorganisms Improves Forage Growth and Quality.

    PubMed

    Chen, Jihui; Li, Yanpeng; Wen, Shilin; Rosanoff, Andrea; Yang, Gaowen; Sun, Xiao

    2017-04-26

    Magnesium (Mg) plays important roles in photosynthesis and protein synthesis; however, latent Mg deficiencies are common phenomena that can influence food quality. Nevertheless, the effects of Mg fertilizer additions on plant carbon (C):nitrogen (N):phosphorus (P) stoichiometry, an important index of food quality, are unclear and the underlying mechanisms unexplored. We conducted a greenhouse experiment using low-Mg in situ soil without and with a gradient of Mg additions to investigate the effect of Mg fertilizer on growth and stoichiometry of maize and soybean and also measure these plants' main symbiotic microorganisms: arbuscular mycorrhizal fungi (AMF) and rhizobium, respectively. Our results showed that Mg addition significantly improved both plant species' growth and also increased N and P concentrations in soybean and maize, respectively, resulting in low C:N ratio and high N:P ratio in soybean and low C:P and N:P ratios in maize. These results presumably stemmed from the increase of nutrients supplied by activation-enhanced plant symbiotic microorganisms, an explanation supported by statistically significant positive correlations between plant stoichiometry and plants' symbiotic microorganisms' increased growth with Mg addition. We conclude that Mg supply can improve plant growth and alter plant stoichiometry via enhanced activity of plant symbiotic microorganisms. Possible mechanisms underlying this positive plant-soil feedback include an enhanced photosynthetic product flow to roots caused by adequate Mg supply.

  9. Antimicrobial Efficacy of Multipurpose Disinfecting Solutions in the Presence of Contact Lenses and Lens Cases.

    PubMed

    Gabriel, Manal M; McAnally, Cindy; Bartell, John

    2018-03-01

    The aim of this study was to use antimicrobial efficacy endpoint methodology to determine compatibility of multipurpose disinfecting solutions (MPSs), lens cases, and hydrogel lenses for disinfection (AEEMC) against International Organization for Standardization (ISO)-specified microorganisms and clinical ocular isolates of Stenotrophomonas maltophilia. Six MPSs (PQ/Aldox 1, 2, and 3; PQ/Alexidine; PQ/PHMB; and PHMB) were challenged against ISO-specified microorganisms and S. maltophilia using the AEEMC test. AEEMC tests were performed with and without balafilcon A, etafilcon A, and senofilcon A lenses in lens cases with organic soil. Exposure times included disinfection time (DT) and 24 hr. Additionally, all six MPSs were challenged with two strains of S. maltophilia, based on the ISO Stand-alone test. The efficacy against bacteria for PQ/Aldox and PQ/Alexidine MPSs was not diminished by the presence of lenses. The efficacy of PQ/PHMB and PHMB MPSs against Serratia marcescens was significantly reduced compared with the no-lens control at DT for at least one lens type. The PHMB MPS with lenses present also demonstrated reduced efficacy against Staphylococcus aureus at DT versus the control. PQ/Aldox MPSs retained activity against Fusarium solani with lenses present; however, all other test MPSs demonstrated reduced F. solani efficacy at DT with lenses present. With lenses, all MPSs showed reduced efficacy against Candida albicans. AEEMC antimicrobial efficacy test results vary based on challenge microorganism, contact lenses, and MPS biocide systems. This study highlights the importance of evaluating MPSs for compatibility with lenses and lens cases.

  10. Antimicrobial Efficacy of Multipurpose Disinfecting Solutions in the Presence of Contact Lenses and Lens Cases

    PubMed Central

    McAnally, Cindy; Bartell, John

    2018-01-01

    Objective: The aim of this study was to use antimicrobial efficacy endpoint methodology to determine compatibility of multipurpose disinfecting solutions (MPSs), lens cases, and hydrogel lenses for disinfection (AEEMC) against International Organization for Standardization (ISO)–specified microorganisms and clinical ocular isolates of Stenotrophomonas maltophilia. Methods: Six MPSs (PQ/Aldox 1, 2, and 3; PQ/Alexidine; PQ/PHMB; and PHMB) were challenged against ISO-specified microorganisms and S. maltophilia using the AEEMC test. AEEMC tests were performed with and without balafilcon A, etafilcon A, and senofilcon A lenses in lens cases with organic soil. Exposure times included disinfection time (DT) and 24 hr. Additionally, all six MPSs were challenged with two strains of S. maltophilia, based on the ISO Stand-alone test. Results: The efficacy against bacteria for PQ/Aldox and PQ/Alexidine MPSs was not diminished by the presence of lenses. The efficacy of PQ/PHMB and PHMB MPSs against Serratia marcescens was significantly reduced compared with the no-lens control at DT for at least one lens type. The PHMB MPS with lenses present also demonstrated reduced efficacy against Staphylococcus aureus at DT versus the control. PQ/Aldox MPSs retained activity against Fusarium solani with lenses present; however, all other test MPSs demonstrated reduced F. solani efficacy at DT with lenses present. With lenses, all MPSs showed reduced efficacy against Candida albicans. Conclusions: AEEMC antimicrobial efficacy test results vary based on challenge microorganism, contact lenses, and MPS biocide systems. This study highlights the importance of evaluating MPSs for compatibility with lenses and lens cases. PMID:27598555

  11. Functional Basis of Microorganism Classification.

    PubMed

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with phylogenetic descent.

  12. Functional Basis of Microorganism Classification

    PubMed Central

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with phylogenetic descent. PMID:26317871

  13. Study of utilization liquid smoke and carrageenan as a natural antibacterial in manufacturing beef meatballs

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Arifiani S., N.; Yaqin, N.; Baarri, A. N. Al

    2018-01-01

    This research have observed liquid smoke and carragenan ability to obstruct microbe activity. Phenol and sulfate ester in liquid smoke and carrageenan, give preservation effect by obstruct microorganisms growth on beef meatballs. Liquid smoke and carrageenan was added on a particular variation into meatballs dough. Liquid smoke variation was 0.5%-1%, and carrageenan variation was 0.5%-1.5%. Meatballs then stored up to 36 hours at room temperature and performed TPC test in every 12 hours. The results indicates that in 0-12 hours carragenan has significant effect to obstruct microorganism growth with the percentage reduction in total bacteria was 13.54% and 93.73%. In 24-36 hours liquid smoke effected to the significant effect obstruction of microorganism growth with the percentage reduction in total bacteria was 98.99% and 99.93%. The addition of liquid smoke and carrageenan did not give a significant effect on the lightness of beef meatballs produced, but provided significant effect on the storage time and the lightness of beef meatballs.

  14. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives.

    PubMed

    Jung, Jaejoon; Park, Woojun

    2015-03-01

    Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.

  15. Chronic gingivitis: the prevalence of periodontopathogens and therapy efficiency.

    PubMed

    Igic, M; Kesic, L; Lekovic, V; Apostolovic, M; Mihailovic, D; Kostadinovic, L; Milasin, J

    2012-08-01

    The purpose of this study was to determine the level of gingival inflammation and the prevalence of periodontopathogenic microorganisms in adolescents with chronic gingivitis, as well as to compare the effectiveness of two approaches in gingivitis treatment-basic therapy alone and basic therapy + adjunctive low-level laser therapy (LLLT). After periodontal evaluation, the content of gingival pockets of 140 adolescents with gingivitis was analyzed by multiplex PCR for the presence of P. gingivalis, A. actinomycetemcomitans, T. forsythensis and P. intermedia. Subsequent to bacteria detection, the examinees were divided into two groups with homogenous clinical and microbiological characteristics. Group A was subjected to basic gingivitis therapy, and group B underwent basic therapy along with adjunctive LLLT. A statistically significant difference between the values of plaque-index (PI) and sulcus bleeding index (SBI) before and after therapy was confirmed in both groups (p<0.001), though more pronounced in group B. Following therapy, the incidence of periodontopathogenic microorganisms decreased considerably. The best result was obtained in P. gingivalis eradication by combined therapy (p=0.003). The presence of periodontopathogens in adolescents with gingivitis should be regarded as a sign for dentists to foster more effective oral health programs. LLLT appears to be beneficial as adjuvant to basic therapy.

  16. Influence of TiO2 Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms

    PubMed Central

    Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia

    2014-01-01

    The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB −1 for H. pluvialis and A. platensis, respectively. PMID:25610914

  17. 40 CFR 725.910 - Persons excluded from reporting significant new uses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identified in subpart M of this part and who intends to distribute it in commerce is not required to submit a... subpart M of this part and distributes it in commerce has knowledge that a recipient of the microorganism..., of the specific section in subpart M of this part which identifies the microorganism and its...

  18. Effect of solid boundaries on a motile microorganism in a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Karimi, Alireza; Li, Gaojin; Ardekani, Arezoo

    2014-11-01

    Microorganisms swimming in viscoelastic fluids are ubiquitous in nature; this includes biofilms grown on surfaces, Helicobacter pylori colonizing in the mucus layer covering the stomach and spermatozoa swimming through cervical mucus inside the mammalian female reproductive tract. Previous studies have focused on the locomotion of microorganisms in an unbounded viscoelastic fluid. However in many situations, microorganisms interact with solid boundaries and their hydrodynamic interaction is poorly understood. In this work, we numerically study the effect of solid boundaries on the swimming behavior of an archetypal low-Reynolds number swimmer, called ``squirmer,'' in a viscoelastic fluid. A Giesekus constitutive equation is used to model both viscoelasticity and shear-thinning behavior of the background fluid. We found that the time a neutral squirmer spends in the close proximity of the wall increases with polymer relaxation time and reaches a maximum at Weissenberg number of unity. A pusher is found to be trapped near the wall in a viscoelastic fluid, but the puller is less affected. This publication was made possible, in part, with support from NSF (Grant No. CBET-1150348-CAREER) and Indiana Clinical and Translational Sciences Institute Collaboration in Biomedical/Translational Research (Grant No. TR000006) from NIH.

  19. Epidemiology, Diagnosis, and Antimicrobial Treatment of Acute Bacterial Meningitis

    PubMed Central

    Brouwer, Matthijs C.; Tunkel, Allan R.; van de Beek, Diederik

    2010-01-01

    Summary: The epidemiology of bacterial meningitis has changed as a result of the widespread use of conjugate vaccines and preventive antimicrobial treatment of pregnant women. Given the significant morbidity and mortality associated with bacterial meningitis, accurate information is necessary regarding the important etiological agents and populations at risk to ascertain public health measures and ensure appropriate management. In this review, we describe the changing epidemiology of bacterial meningitis in the United States and throughout the world by reviewing the global changes in etiological agents followed by specific microorganism data on the impact of the development and widespread use of conjugate vaccines. We provide recommendations for empirical antimicrobial and adjunctive treatments for clinical subgroups and review available laboratory methods in making the etiological diagnosis of bacterial meningitis. Finally, we summarize risk factors, clinical features, and microbiological diagnostics for the specific bacteria causing this disease. PMID:20610819

  20. [Antibacterial and antifungal activity of Salvia apiana against clinically important microorganisms].

    PubMed

    Córdova-Guerrero, Iván; Aragon-Martinez, Othoniel H; Díaz-Rubio, Laura; Franco-Cabrera, Santiago; Serafín-Higuera, Nicolas A; Pozos-Guillén, Amaury; Soto-Castro, Tely A; Martinez-Morales, Flavio; Isiordia-Espinoza, Mario

    Due to the great global concern regarding bacterial resistance to antibiotics, an ongoing search for new molecules having antibacterial activity is necessary. This study evaluated the antibacterial and anticandidal effects of a hexane extract from the root of Salvia apiana. Salvia extracts at concentrations of 27, 13.5, 6.8 and 3.4mg/ml caused growth inhibition of Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Candida albicans. However, no significant effect was observed on Escherichia coli and Candida tropicalis in comparison to vehicle. It was here demonstrated for the first time that Salvia apiana has an important antimicrobial effect on human pathogens of great clinical value, thus opening the field to continue the evaluation of this lamiaceous plant for its future use as a therapeutic agent. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Antiseptic resistance: what do we know and what does it mean?

    PubMed

    Sheldon, Albert T

    2005-01-01

    Biocides (antiseptics, disinfectants, preservatives, sterilants) are used in clinical medicine as intervention strategies that prevent the dissemination of nosocomial pathogens. Biocides are also used for personal hygiene and to prevent cross-contamination of food-borne pathogens in homes, restaurants, day care centers, and nursing homes. However, laboratory evidence has emerged suggesting that the mechanism of nonsusceptibility to biocides may counter-select for resistance to antibiotics. Nature conserves successful survival strategies. Using existing mechanisms of resistance to antibiotics and their means of dissemination, microorganisms have adopted this same survival strategy for biocide nonsusceptibility. These mechanisms are intrinsic in nature or are acquired. The consequences to biocide efficacy in the clinical setting are probably not significant from the biocide perspective. But, the selective pressure biocides exert on bacterial populations that have mechanisms of resistance similar to those to antibiotics or that are also substrates for antibiotic resistance is of concern.

  2. Heterogeneity of Vaginal Microbial Communities within Individuals▿ #

    PubMed Central

    Kim, Tae Kyung; Thomas, Susan M.; Ho, Mengfei; Sharma, Shobha; Reich, Claudia I.; Frank, Jeremy A.; Yeater, Kathleen M.; Biggs, Diana R.; Nakamura, Noriko; Stumpf, Rebecca; Leigh, Steven R.; Tapping, Richard I.; Blanke, Steven R.; Slauch, James M.; Gaskins, H. Rex; Weisbaum, Jon S.; Olsen, Gary J.; Hoyer, Lois L.; Wilson, Brenda A.

    2009-01-01

    Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health. PMID:19158255

  3. Septic implantation syndrome in dogs and cats: a distinct pattern of endophthalmitis with lenticular abscess.

    PubMed

    Bell, Cynthia M; Pot, Simon A; Dubielzig, Richard R

    2013-05-01

    To summarize the clinical and pathologic findings in a group of dogs and cats with progressive clinical ocular disease, which were diagnosed with suppurative endophthalmitis and lens capsule rupture. Twenty cats and forty-six dogs that underwent unilateral enucleation or evisceration for intractable uveitis and/or glaucoma. Biopsy submission requests and microscopic case material were evaluated for clinical and histological features, including history of ocular trauma, duration of ocular disease, pattern of inflammation, and the presence of intralenticular microorganisms. The median duration for cats and dogs was 6 and 5 weeks, respectively. A history of trauma was reported for four (20%) cats and 18 (39%) dogs. All confirmed cases of trauma-three in cats and 14 in dogs-were caused by a cat scratch. Microscopically, all cases had suppurative endophthalmitis centered on the lens, lens capsule rupture, cataract, and lenticular abscess. Infectious organisms were identified by Gram stain within the lens of 14 (70%) cats and 30 (65%) dogs. Gram-positive cocci were seen most commonly. Male cats were overrepresented as compared to females. There were no apparent gender, age or breed predilections in dogs. A unique pattern of slowly progressive or delayed-onset endophthalmitis with lens capsule rupture, lenticular abscess, and frequently intralenticular microorganisms is associated with traumatic penetration of the globe and lens capsule. The term Septic Implantation Syndrome (SIS) is favored in lieu of 'phacoclastic uveitis' to avoid confusion with phacolytic uveitis and to clearly implicate the role of intralenticular microorganisms in the pathogenesis. © 2012 American College of Veterinary Ophthalmologists.

  4. Bacteriology of peritonsillar abscess: the changing trend and predisposing factors.

    PubMed

    Tsai, Yi-Wen; Liu, Yu-Hsi; Su, Hsing-Hao

    2017-07-17

    Peritonsillar abscess is the most common deep neck infection. The infectious microorganism may be different according to clinical factors. To identify the major causative pathogen of peritonsillar abscess and investigate the relationship between the causative pathogen, host clinical factors, and hospitalization duration. This retrospective study included 415 hospitalized patients diagnosed with peritonsillar abscess who were admitted to a tertiary medical center from June 1990 to June 2013. We collected data by chart review and analyzed variables such as demographic characteristics, underlying systemic disease, smoking, alcoholism, betel nut chewing, bacteriology, and hospitalization duration. A total of 168 patients had positive results for pathogen isolation. Streptococcus viridans (28.57%) and Klebsiella pneumoniae (23.21%) were the most common microorganisms identified through pus culturing. The isolation rate of anaerobes increased to 49.35% in the recent 6 years (p=0.048). Common anaerobes were Prevotella and Fusobacterium spp. The identification of K. pneumoniae increased among elderly patients (age>65 years) with an odds ratio (OR) of 2.76 (p=0.03), and decreased in the hot season (mean temperature>26°C) (OR=0.49, p=0.04). No specific microorganism was associated with prolonged hospital stay. The most common pathogen identified through pus culturing was S. viridans, followed by K. pneumoniae. The identification of anaerobes was shown to increase in recent years. The antibiotics initially selected should be effective against both aerobes and anaerobes. Bacterial identification may be associated with host clinical factors and environmental factors. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings.

    PubMed

    Tennert, Christian; Fuhrmann, Maximilian; Wittmer, Annette; Karygianni, Lamprini; Altenburger, Markus J; Pelz, Klaus; Hellwig, Elmar; Al-Ahmad, Ali

    2014-05-01

    The aim of the present study was to analyze the microbiota of primary and secondary/persistent endodontic infections of patients undergoing endodontic treatment with respect to clinical and radiographic findings. Samples from the root canals of 21 German patients were taken using 3 sequential sterile paper points. In the case of a root canal filling, gutta-percha was removed with sterile files, and samples were taken using sterile paper points. The samples were plated, and microorganisms were then isolated and identified morphologically by biochemical analysis and sequencing the 16S rRNA genes of isolated microorganisms. In 12 of 21 root canals, 33 different species could be isolated. Six (50%) of the cases with isolated microorganisms were primary, and 6 (50%) cases were endodontic infections associated with root-filled teeth. Twelve of the isolated species were facultative anaerobic and 21 obligate anaerobic. Monomicrobial infections were found for Enterococcus faecalis and Actinomyces viscosus. E. faecalis was most frequently isolated in secondary endodontic infections (33%). Moraxella osloensis was isolated from a secondary endodontic infection that had an insufficient root canal filling accompanied by a mild sensation of pain. A new bacterial composition compromising Atopobium rimae, Anaerococcus prevotii, Pseudoramibacter alactolyticus, Dialister invisus, and Fusobacterium nucleatum was recovered from teeth with chronic apical abscesses. New bacterial combinations were found and correlated to clinical and radiographic findings, particularly to chronic apical abscesses. M. osloensis was detected in root canals for the second time and only in German patients. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. MorphoCol: An ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies.

    PubMed

    Sousa, Ana Margarida; Pereira, Maria Olívia; Lourenço, Anália

    2015-06-01

    One of the major concerns of the biomedical community is the increasing prevalence of antimicrobial resistant microorganisms. Recent findings show that the diversification of colony morphology may be indicative of the expression of virulence factors and increased resistance to antibiotic therapeutics. To transform these findings, and upcoming results, into a valuable clinical decision making tool, colony morphology characterisation should be standardised. Notably, it is important to establish the minimum experimental information necessary to contextualise the environment that originated the colony morphology, and describe the main morphological features associated unambiguously. This paper presents MorphoCol, a new ontology-based tool for the standardised, consistent and machine-interpretable description of the morphology of colonies formed by human pathogenic bacteria. The Colony Morphology Ontology (CMO) is the first controlled vocabulary addressing the specificities of the morphology of clinically significant bacteria, whereas the MorphoCol publicly Web-accessible knowledgebase is an end-user means to search and compare CMO annotated colony morphotypes. Its ultimate aim is to help correlate the morphological alterations manifested by colony-forming bacteria during infection with their response to the antimicrobial treatments administered. MorphoCol is the first tool to address bacterial colony morphotyping systematically and deliver a free of charge resource to the community. Hopefully, it may introduce interesting features of analysis on pathogenic behaviour and play a significant role in clinical decision making. http://morphocol.org. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Survival and growth of micro-organisms on air filtration media during initial loading

    NASA Astrophysics Data System (ADS)

    Kemp, P. C.; Neumeister-Kemp, H. G.; Lysek, G.; Murray, F.

    A new type of air filtration medium made from a hygroscopic polymer fibre and constructed in three layers was investigated to measure the survival and growth of micro-organisms on this medium in comparison to a widely used fibreglass medium. Both materials were supplied by the manufacturer and tested "blind". The materials were loaded in an Airotester unit. Micro-organisms were analysed at 2 weekly intervals for 8 weeks by washing filter samples and plating the solution on to agar media and by vital fluorescence microscopy. Filter samples were also weighed to calculate water content and the pH value of the filter material was measured in the wash out eluate. Vital fluorescence microscopy revealed fungi were able to grow on fibreglass medium, but not on the multi-layered polymer. The colony forming unit (CFU) counts did not increase at a steady rate. There was a significant increase on both materials ( P<0.001) during the first 2 weeks which was then followed by a significant decrease in 4 weeks ( P<0.001) but the CFU then significantly increased in 6 weeks ( P<0.05) which were the highest CFU counts during the 2-month trial. There was a significant difference in CFU counts between the filter materials only in week 2 ( P⩽0.001) and week 4 ( P=0.04). Fewer micro-organisms were extracted from the multi-layered polymer than from the fibreglass medium. Fewer fungal species were identified on the multi-layered polymer (nine species) than on the fibreglass medium (13 species). The pH value on the multi-layered polymer was significantly higher than the fibreglass material but only when clean ( P<0.010) and after 2 weeks ( P<0.001). A significantly higher water content on the fibreglass medium ( P<0.001) also indicated a habitat where a wider range of fungal species and bacteria are able to survive. While there was a reduced survival and growth of micro-organisms on the multi-layered polymer material in the initial month of service life, this advantage was cancelled by the supply of nutrients (particulate matter) that were accumulated on the filter materials after 6 weeks.

  8. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22, Number 3, 1994.

    DTIC Science & Technology

    1994-05-01

    culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other

  9. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. Volume 22 Number 2, 1994.

    DTIC Science & Technology

    1994-05-01

    culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other

  10. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, Volume 22 Number 4, 1994.

    DTIC Science & Technology

    1994-01-01

    culture, microorganisms, enzymes, drugs, receptors, sorbents, immunosorbents and other biologically active molecules. (2) Artificial cells, microcapsules ...recombinant hemoglobin, and others. Chemistry, methods, in-vitro studies, in-vivo evaluations and clinical results. (4) Microencapsulation and other

  11. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    PubMed Central

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  12. Microbial phosphorous mobilization strategies across a natural nutrient limitation gradient

    NASA Astrophysics Data System (ADS)

    Walker, R.; Wang, S.; Nico, P. S.; Fox, P. M.; Hao, Z.; Karaoz, U.; Torok, T.; Brodie, E.; Chakraborty, R.; Hao, Z.

    2016-12-01

    Phosphorus (P) is a critical nutrient and frequently limits primary productivity in terrestrial ecosystems. Microorganisms have evolved an array of strategies to mobilize occluded and insoluble P and may be important regulators of P availability to vegetation. Understanding the mechanisms of P mobilization, the breadth of microorganisms responsible, and the impact of these organisms on vegetation growth remains an important knowledge gap for both predicting ecosystem productivity and harnessing microbial functions to improve vegetation growth. To determine the relationship between soil development, phosphorus availability and P mobilizing microorganisms and their strategies we are studying a marine terrace chronosequence (Ecological Staircase, Mendocino County, CA) representing a fertility gradient culminating in P-limited pygmy forests that provide an ideal natural observatory to investigate how plant-microbe interactions co-evolve in response to P stress. Soil mineralogical analysis identified acidic soils bearing iron and aluminum phosphates and phytate as the dominant forms of occluded inorganic and organic P, respectively. Several diverse bacterial and fungal strains were isolated on media with AlPO4, FePO4, or phytate as the sole P source. Most microorganisms were able to utilize AlPO4 as a sole P source, with fewer subsisting on FePO4 or phytate. Terraces with a higher fraction of occluded and organic P harbored the greatest abundance of P-mobilizing microorganisms, with a significant proportion coming from the Burkholderia. Isolates that exhibited significant excess P mobilization were inoculated with Arabidopsis and Switchgrass plants grown with insoluble P forms had a positive impact on growth. These results indicate that rhizosphere microorganisms that have evolved under extreme nutrient limitation have an extended capacity for P solubilization, and could potentially be harnessed to alleviate P stress for plants. The detailed mechanisms for P mobilization by these isolates is under investigation.

  13. Evaluation of the clinical and antimicrobial effects of the Er:YAG laser or topical gaseous ozone as adjuncts to initial periodontal therapy.

    PubMed

    Yılmaz, Selçuk; Algan, Serdar; Gursoy, Hare; Noyan, Ulku; Kuru, Bahar Eren; Kadir, Tanju

    2013-06-01

    The aim of this study was to evaluate the clinical and microbiological results of treatment with the Er:YAG laser and topical gaseous ozone application as adjuncts to initial periodontal therapy in chronic periodontitis (CP) patients. Although many studies have evaluated the effectiveness of the Er:YAG laser as an adjunct to initial periodontal therapy, few studies have focused on the use of gaseous ozone as an adjunct. Thirty patients with CP were randomly divided into three parallel groups, each composed of 10 individuals with at least four teeth having at least one approximal site with a probing depth (PD) of ≥5 mm and a sulcus bleeding index (SBI) ≥2 in each quadrant. Groups of patients received: (1) Scaling and root planing (SRP)+Er:YAG laser; (2) SRP+topical gaseous ozone; or (3) SRP alone. The microbiological and clinical parameters were monitored at day 0 and day 90. At the end of the observation period, statistically significant improvements in clinical parameters were observed within each group. Parallel to the clinical changes, all treatments reduced the number of total bacteria and the proportion of obligately anaerobic microorganisms. Although intergroup comparisons of microbiological parameters showed no significant differences, clinical findings, including attachment gain and PD reduction, were found to be statistically significant in favor of the SRP+Er:YAG laser group. Although statistically nonsignificant, the fact that the obligate anaerobic change was mostly observed in the SRP+Er:YAG laser group, and a similar decrease was noted in the SRP+topical gaseous ozone group, shows that ozone has an antimicrobial effect equivalent to that of the Er:YAG laser.

  14. Primary Super-Infection of Hydatid Cyst—Clinical Setting and Microbiology in 37 Cases

    PubMed Central

    García, Moncef Belhassen; Lledías, Javier Pardo; Pérez, Inmaculada Galindo; Tirado, Virginia Velasco; Pardo, Lucia Fuentes; Bellvís, Luis Muñoz; Varela, Gonzalo; Sánchez, Miguel Cordero

    2010-01-01

    The clinical and microbiological characteristics of super-infected hydatid cysts are described. In our cohort, 7.3% of 503 patients had a super-infected cyst. Four patients developed severe sepsis, and two of them died. Escherichia coli, viridans group streptococci, and Enterococcus species in liver cysts and Aspergillus fumigatus in lung cysts were the microorganisms most frequent involved. PMID:20207859

  15. Surface Disinfectants for Burn Units Evaluated by a New Double Method, Using Microorganisms Recently Isolated From Patients, on a Surface Germ-Carrier Model.

    PubMed

    Herruzo, Rafael; Vizcaino, Maria Jose; Herruzo, Irene; Sanchez, Manuel

    Assessment methods of surface disinfection based on international standards (Environmental Protection Agency, European Norms, etc) do not correspond to hospital reality. New evaluation methods of surfaces disinfection are proposed to choose the most suitable disinfectant to act against clinically relevant microorganisms detected on the surfaces of burn units. 1) "Immediate effect": 6 products were compared using a glass germ-carrier and 20 recently isolated microorganisms from different patients in the intensive care units. Disinfectants were applied with microfiber cloths. Log10 reductions were calculated for colony forming units produced after 15 minutes of disinfectant application. 2) "Residual effect": the glass germ-carriers were previously impregnated with one of the studied disinfectants. After a 30-minute wait period, they were then contaminated with 1 microorganism (from the 20 above-mentioned). After 15 minutes, the disinfectant was inhibited and the log10 reduction of colony forming units was assessed. The immediate effect (disinfection and microorganism dragging and transferring from the surface to the cloth) produced complete elimination of the inoculums for all products used except one (a diluted quaternary ammonium). The average residual effect found on the 20 microorganisms was moderate: 2 to 3 log10 colony forming unit reduction with chlorine dioxide or 0.5% chlorhexidine (and lower with the other products), obtaining surfaces refractory to recontamination, at least, during 30 minutes. Two tests should be performed before advising surface disinfectant: 1) direct effect and 2) residual efficacy. These characteristics should be considered when a new surface disinfectant is chosen. Chlorine dioxide has a similar or better direct effect than sodium hypochlorite and a similar residual effect than chlorhexidine.

  16. [Effects of special mouth care with an aroma solution on oral status and oral cavity microorganism growth in elderly stroke patients].

    PubMed

    Lee, Eun-Hye; Park, Hyojung

    2015-02-01

    This study was conducted to examine the effect of oral care with an aroma solution on oral status and oral cavity microorganism growth in elderly patients with stroke. A non-equivalent control group, with a pretest-posttest design was used in this study. The participants were assigned to the experimental group (n=30) that received oral care with an aroma solution or the control group (n=31) that received 0.9% saline solution. To identify the effect of the experimental treatments, objective/subjective assessments of oral status and oral cavity microorganism growth were performed using the oral assessment guide, oral perception guide, and oral swab culture. Data were analyzed using Chi-square test, Fisher's exact test, and t-test with the SPSS version 21.0 program. The objective oral status was significantly lower in the experimental group than in the control group (t= -3.64, p<.001). There was no significant difference between the subjective oral status of the experimental group and control groups (t= -1.24, p=.109). Oral microorganism growth was significantly lower in the experimental group than in the control group (t= -7.39, p<.001). These findings indicate that special mouth care using an aroma solution could be an effective oral health nursing intervention for elderly patients with stroke.

  17. Microbial Populations in Two Swamp Soils of South Carolina

    Treesearch

    David S. Priester; William R. Harms

    1971-01-01

    Microbial populations were counted in agar-plated samples of two swamp soils collected in summer and winter. Number of aerobic and anaerobic microorganisms differed significantly among the soils and between seasons. Alluvial soil from the river swamp was high in organic matter, N, K, Ca, and pH and averaged 88 million microorganisms per gram over the growing season....

  18. Evaluation of micro-organism-detaching efficacy from meat samples by spindle or stomacher treatment and quality analysis of suspensions.

    PubMed

    Kim, S-J; Kim, D-K; Kang, D-H

    2016-04-01

    We investigated and compared the efficacy of a new apparatus for detaching micro-organisms from meat samples. The efficacy of Spindle and stomacher in detaching micro-organisms from meat samples was evaluated. Also, evaluation of appropriateness of suspensions generated by both methods for carrying out molecular biological analysis was implemented. A nearly identical correlation and high R(2) were obtained between Spindle and stomacher in Aerobic Plate Count (APC), and no significant differences were observed in detachment of three major foodborne pathogens. The suspension generated by the Spindle showed lower turbidity and total protein concentration. Also, significantly different threshold cycles were observed in Real-time PCR analysis using suspensions generated by both methods. The Spindle shows nearly identical efficacy with stomacher treatment in detaching micro-organisms from meat samples. Furthermore, the high quality of suspensions generated by the Spindle, in terms of turbidity and total protein assay, allows for a lower threshold cycle than stomached suspension in Real-time PCR. The Spindle could be an alternative method for detaching micro-organisms, yielding a higher quality of suspensions which may be better suited for further molecular microbiological analysis. © 2016 The Society for Applied Microbiology.

  19. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  20. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Remineralization Property of an Orthodontic Primer Containing a Bioactive Glass with Silver and Zinc

    PubMed Central

    Lee, Seung-Min; Kim, In-Ryoung; Park, Bong-Soo; Ko, Ching-Chang; Son, Woo-Sung; Kim, Yong-Il

    2017-01-01

    White spot lesions (WSLs) are irreversible damages in orthodontic treatment due to excessive etching or demineralization by microorganisms. In this study, we conducted a mechanical and cell viability test to examine the antibacterial properties of 0.2% and 1% bioactive glass (BAG) and silver-doped and zinc-doped BAGs in a primer and evaluated their clinical applicability to prevent WSLs. The microhardness statistically significantly increased in the adhesive-containing BAG, while the other samples showed no statistically significant difference compared with the control group. The shear bond strength of all samples increased compared with that of the control group. The cell viability of the control and sample groups was similar within 24 h, but decreased slightly over 48 h. All samples showed antibacterial properties. Regarding remineralization property, the group containing 0.2% of the samples showed remineralization properties compared with the control group, but was not statistically significant; further, the group containing 1% of the samples showed a significant difference compared with the control group. Among them, the orthodontic bonding primer containing 1% silver-doped BAG showed the highest remineralization property. The new orthodontic bonding primer used in this study showed an antimicrobial effect, chemical remineralization effect, and WSL prevention as well as clinically applicable properties, both physically and biologically. PMID:29088092

  2. Community-acquired pneumonia in the elderly. Clinical and nutritional aspects.

    PubMed

    Riquelme, R; Torres, A; el-Ebiary, M; Mensa, J; Estruch, R; Ruiz, M; Angrill, J; Soler, N

    1997-12-01

    Community-acquired pneumonia (CAP) in the elderly has a different clinical presentation than CAP in other age groups. Confusion, alteration of functional physical capacity, and decompensation of underlying illnesses may appear as unique manifestations. Malnutrition is also an associated feature of CAP in this population. We undertook a study to assess the clinical and nutritional aspects of CAP requiring hospitalization in elderly patients (over 65 yr of age). One hundred and one patients with pneumonia, consecutively admitted to a 1,000-bed teaching hospital over an 8-mo period, were studied (age: 78 +/- 8 yr, mean +/- SD). Nutritional aspects and the mental status of patients with pneumonia were compared with those of a control population (n = 101) matched for gender, age, and date of hospitalization. The main symptoms were dyspnea (n = 71), cough (n = 67), and fever (n = 64). The association of these symptoms with CAP was observed in only 32 patients. The most common associated conditions were cardiac disease (n = 38) and chronic obstructive pulmonary disease (COPD) (n = 30). Seventy-seven (76%) episodes of pneumonia were clinically classified as typical and 24 as atypical. There was no association between the type of isolated microorganism and the clinical presentation of CAP, except for pleuritic chest pain, which was more common in pneumonia episodes caused by classical microorganisms (p = 0.02). This was confirmed by a multivariate analysis (relative risk [RR] = 11; 95% confidence interval [CI]: 1.7 to 65; p = 0.0099). The prevalence of chronic dementia was similar in the pneumonia cohort (n = 25) and control group (n = 18) (p = 0.22). However, delirium or acute confusion were significantly more frequent in the pneumonia cohort than in controls (45 versus 29 episodes; p = 0.019). Only 16 patients with pneumonia were considered to be well nourished, as compared with 47 control patients (p = 0.001). Kwashiorkor-like malnutrition was the predominant type of malnutrition (n = 65; 70%) in the pneumonia patients as compared with the control patients (n = 31; 31%) (p = 0.001). The observed mortality was 26% (n = 26). Pleuritic chest pain is the only clinical symptom that can guide an empiric therapeutic strategy in CAP (typical versus atypical pneumonia). Both delirium and malnutrition were very common clinical manifestations of CAP in our study population.

  3. Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities.

    PubMed

    Sohn, Soo-In; Oh, Young-Ju; Kim, Byung-Yong; Cho, Hyun-Suk

    2016-07-28

    Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant.

  4. In vitro antimicrobial and anti-endotoxin action of Zingiber Officinale as auxiliary chemical and medicament combined to calcium hydroxide and chlorhexidine.

    PubMed

    Valera, Marcia Carneiro; Cardoso, Flávia Goulart da Rosa; Maekawa, Lilian Eiko; Camargo, Carlos Henrique Ribeiro; de Oliveira, Luciane Dias; Carvalho, Cláudio Antônio Talge

    2015-01-01

    This study was conducted in vitro to compare the effectiveness of Zingiber Officinale as an auxiliary chemical substance followed by placement of different intra-canal medication in removing endotoxins and cultivable micro-organisms from infected root canals. Seventy-two root canals were contaminated with Enterococcus faecalis, Candida albicans and Escherichia coli for 28 days. After, the teeth were instrumented using Zingiber Officinale and divided into six groups according to the intra-canal medication: chlorhexidine gel; calcium hydroxide + chlorhexidine gel; glycolic ginger extract; calcium hydroxide + glycolic ginger extract; calcium hydroxide + saline solution and saline solution (control). Sample collections were performed after root canal contamination (Baseline; S1), after instrumentation (S2), 7 days after instrumentation (S3), after 14 days with intra-canal medication (S4) and 7 days after removal of intra-canal medication (S5). The results were analyzed by the Kruskal-Wallis and Dunn tests. It was observed that in S2 and S3 there was significant reduction of the micro-organisms and the quantity of endotoxins after instrumentation. In samples S4 and S5 there was complete elimination of micro-organisms and significant reduction of endotoxins. It was concluded that Zingiber Officinale as an auxiliary chemical substance was effective on the micro-organisms tested, yet was unable to eliminate the endotoxins. Similarly, the intra-canal medication were effective on micro-organisms, yet did not completely eliminate the endotoxins.

  5. Prognostic importance of gram-negative intestinal colonization preceding pancreatic infection in severe acute pancreatitis. Results of a controlled clinical trial of selective decontamination.

    PubMed

    Luiten, E J; Hop, W C; Endtz, H P; Bruining, H A

    1998-05-01

    To establish, firstly, whether gram-negative (re)-colonization of the gut leads to an increased risk of gram-negative pancreatic infections and whether this event is time-related and, secondly, whether the difference in the quantity and quality of micro-organisms colonizing the digestive tract influences morbidity and mortality. Prospective analysis of the results of systematic semi-quantitative cultures of several body areas taken from patients with severe acute pancreatitis, during a controlled multicenter trial of adjuvant selective decontamination. Surgical intensive care units of 16 hospitals. A total of 2,159 semi-quantitative cultures from the oropharynx, rectum and pancreatic tissues taken from 90 patients were analyzed. Surveillance cultures from the oropharynx and rectum were taken on admission and repeated twice weekly and from the (peri)-pancreatic devitalized tissues (i. e. necrosis) at every relaparotomy and from drainage. All gram-negative pancreatic infections were preceded by intestinal colonization with the same micro-organisms. The risk of developing a pancreatic infection following gram-negative intestinal colonization (15/42 patients) was significantly higher as compared to patients without gram-negative colonization (0/10 patients) (p < 0.001) or to patients in whom E. coli was the only intestinal micro-organism cultured (0/30 patients) (p < 0.001). The occurrence of intestinal E. coli did not increase the risk of pancreatic infection. Gram-negative colonization of the rectum and oropharynx significantly correlated with the later development of pancreatic infection: relative risks 73.7 (p < 0.001) and 13.6 (p < 0.001), respectively. However, when both areas were evaluated simultaneously, the rectum was more significant (p < 0.001). The severity of intestinal intestinal colonization until the moment of pancreatic infection showed an increase in time in all 15 patients. In 11 of 15 patients (73%) these infections occurred within 1 week following the first isolation from the digestive tract. Gram-negative intestinal colonization was associated with a 3.7 fold increased mortality risk (p = 0.004). Gram-negative intestinal colonization, E. coli excepted, is an early prognostic parameter in patients in whom pancreatic infection has not yet occurred and represents a significantly increased risk of pancreatic infections and mortality.

  6. Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products.

    PubMed

    Parveen, Seema; Kaur, Simleen; David, Selwyn A Wilson; Kenney, James L; McCormick, William M; Gupta, Rajesh K

    2011-10-19

    Most biological products, including vaccines, administered by the parenteral route are required to be tested for sterility at the final container and also at various stages during manufacture. The sterility testing method described in the Code of Federal Regulations (21 CFR 610.12) and the United States Pharmacopoeia (USP, Chapter <71>) is based on the observation of turbidity in liquid culture media due to growth of potential contaminants. We evaluated rapid microbiological methods (RMM) based on detection of growth 1) by adenosine triphosphate (ATP) bioluminescence technology (Rapid Milliflex(®) Detection System [RMDS]), and 2) by CO(2) monitoring technologies (BacT/Alert and the BACTEC systems), as alternate sterility methods. Microorganisms representing Gram negative, Gram positive, aerobic, anaerobic, spore forming, slow growing bacteria, yeast, and fungi were prepared in aliquots of Fluid A or a biological matrix (including inactivated influenza vaccines) to contain approximately 0.1, 1, 10 and 100 colony forming units (CFU) in an inoculum of 10 ml. These preparations were inoculated to the specific media required for the various methods: 1) fluid thioglycollate medium (FTM) and tryptic soy broth (TSB) of the compendial sterility method (both membrane filtration and direct inoculation); 2) tryptic soy agar (TSA), Sabouraud dextrose agar (SDA) and Schaedler blood agar (SBA) of the RMDS; 3) iAST and iNST media of the BacT/Alert system and 4) Standard 10 Aerobic/F and Standard Anaerobic/F media of the BACTEC system. RMDS was significantly more sensitive in detecting various microorganisms at 0.1CFU than the compendial methods (p<0.05), whereas the compendial membrane filtration method was significantly more sensitive than the BACTEC and BacT/Alert methods (p<0.05). RMDS detected all microorganisms significantly faster than the compendial method (p<0.05). BacT/Alert and BACTEC methods detected most microorganisms significantly faster than the compendial method (p<0.05), but took almost the same time to detect the slow growing microorganism P. acnes, compared to the compendial method. RMDS using SBA detected all test microorganisms in the presence of a matrix containing preservative 0.01% thimerosal, whereas the BacT/Alert and BACTEC systems did not consistently detect all the test microorganisms in the presence of 0.01% thimerosal. RMDS was compatible with inactivated influenza vaccines and aluminum phosphate or aluminum hydroxide adjuvants at up to 8 mg/ml without any interference in bioluminescence. RMDS was shown to be acceptable as an alternate sterility method taking 5 days as compared to the 14 days required of the compendial method. Isolation of microorganisms from the RMDS was accomplished by re-incubation of membranes with fresh SBA medium and microbial identification was confirmed using the MicroSEQ Identification System. BacT/Alert and BACTEC systems may be applicable as alternate methods to the compendial direct inoculation sterility method for products that do not contain preservatives or anti-microbial agents. Published by Elsevier Ltd.

  7. Molecular methods for diagnosis of odontogenic infections.

    PubMed

    Flynn, Thomas R; Paster, Bruce J; Stokes, Lauren N; Susarla, Srinivas M; Shanti, Rabie M

    2012-08-01

    Historically, the identification of microorganisms has been limited to species that could be cultured in the microbiology laboratory. The purpose of the present study was to apply molecular techniques to identify microorganisms in orofacial odontogenic infections (OIs). Specimens were obtained from subjects with clinical evidence of OI. To identify the microorganisms involved, 16S rRNA sequencing methods were used on clinical specimens. The name and number of the clones of each species identified and the combinations of species present were recorded for each subject. Descriptive statistics were computed for the study variables. Specimens of pus or wound fluid were obtained from 9 subjects. A mean of 7.4 ± 3.7 (standard deviation) species per case were identified. The predominant species detected in the present study that have previously been associated with OIs were Fusobacterium spp, Parvimonas micra, Porphyromonas endodontalis, and Prevotella oris. The predominant species detected in our study that have not been previously associated with OIs were Dialister pneumosintes and Eubacterium brachy. Unculturable phylotypes accounted for 24% of the species identified in our study. All species detected were obligate or facultative anaerobes. Streptococci were not detected. Molecular methods have enabled us to detect previously cultivated and not-yet-cultivated species in OIs; these methods could change our understanding of the pathogenic flora of orofacial OIs. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of the Influence That Was Produced by Phytoremediation of Soil Microorganisms at Oil Showings

    NASA Astrophysics Data System (ADS)

    Kaimi, Etsuko; Kawakita, Morikazu; Mukaidani, Tsukasa; Fujiwara, Kazuhiro; Okada, Shin-Ichi; Yasuda, Yoshio

    Phytoremediation has been identified as a potentially environmentally friendly and cost effective technique for the treatment of contaminated soil. However, phytoremediation has an unknown mechanism. In this study, we focus on the effects of the cultivation of Italian ryegrass on the soil microbes collected at oil showings, which were expected to have a variety of crude oil degradable microorganisms. We evaluated the number of crude oil degradable microorganism, microbial activity, microflora using the PCR-DGGE method and the change in the concentration of crude oil in the soil. The results indicated that the microflora was affected by the cultivation of Itarian ryegrass, and that the microbial activity and the number of crude oil degradable microorganisms were also improved by the cultivation. Moreover, the concentration of crude oil in the rhizosphere soil decreased significantly when compared to the uncultivated soil. These results suggested that cultivation could regulate microflora selectively, which degraded crude oil.

  9. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    PubMed

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  10. In vitro inhibition of commercial douche products against vaginal microflora.

    PubMed Central

    Pavlova, S I; Tao, L

    2000-01-01

    Recently, vaginal douching has been associated with many health risks in women. The aim of this study was to analyze the effect of commercial douche products against various vaginal microorganisms, including lactobacilli. Seven commercial douches were tested against eight Lactobacillus clinical isolates and three type strains from the American Type Culture Collection. BV-associated bacteria included six strains of five genera: Gardnerella, Mobiluncus, Mycoplasma, Peptostreptococcus, and Ureaplasma. Two isolates of group B Streptococcus, and three species of Candida were also tested. The minimal inhibition concentrations and minimal contact times for these products against vaginal microorganisms were determined in broth cultures. Four antiseptic-containing douche products showed a strong inhibitory effect against all vaginal microorganisms tested with a short contact time (less than 1 min). Three vinegar-containing douche products selectively inhibited vaginal pathogens associated with bacterial vaginosis, group B streptococcal vaginitis, and candidiasis, but not lactobacilli. The antimicrobial effects of the commercial douche products varied among different brands and microbial species tested. PMID:10805365

  11. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in nosocomial patients and molecular characterization of the shv type isolates

    PubMed Central

    de Oliveira, Caio Fernando; Salla, Adenilde; Lara, Valéria Maria; Rieger, Alexandre; Horta, Jorge André; Alves, Sydney Hartz

    2010-01-01

    The emergence of Extended-Spectrum Beta-Lactamase (ESBL)-producing microorganisms in Brazilian hospitals is a challenge that concerns scientists, clinicians and healthcare institutions due to the serious risk they pose to confined patients. The goal of this study was the detection of ESBL production by clinical strains of Escherichia coli and Klebsiella sp. isolated from pus, urine and blood of patients at Hospital Universitário Santa Maria, Rio Grande Sul, RS, Brazil and the genotyping of the isolates based on bla SHV genes. The ESBL study was carried out using the Combined Disc Method, while Polymerase Chain Reaction (PCR) was used to study the bla SHV genes. Of the 90 tested isolates, 55 (61.1%) were identified as ESBL-producing by the combined disk method. The bla SHV genes were found in 67.8% of these microorganisms. K. pneumoniae predominated in the samples, presenting the highest frequency of positive results from the combined disk and PCR. PMID:24031491

  12. [EPIDEMIOLOGICAL, CLINICAL AND MICROBIOLOGICAL FINDINGS IN WOMEN WITH AEROBIC VAGINITIS].

    PubMed

    Dermendjiev, T; Pehlivanov, B; Hadjieva, K; Stanev, S

    2015-01-01

    Aerobic vaginitis (AV) is an alterarion of the normal lactobacillic flora accompanied by signs of inflammation, presence of mainly aerobic microorganisms from intestinal commensals or other aerobic pathogens. Clinical symptoms may vary by type and intensity and are marked by a high tendency for recurrence and chronification. Inflammation and ulcerations in AV could increase the risk of contracting HIV or other sexually transmitted infections. The aim is to study some epidemiological, clinical and microbiological features of the aerobic vaginitis in patients of the specialized Obstetric and Gynecological Clinic in Plovdiv, Bulgaria. In a retrospective research 4687 vaginal smears have been gathered in Microbiological laboratory at "St. George" Hospital - Plovdiv. We used clinical, microbiological and statistical methods. Information processing is performed by variation, alternative, correlation and graphical analysis using specialized package SPSS v13.0. The overall prevalence rate of AV in the studied population is 11.77%. The levels of prevalence of AV in pregnant and non-pregnant women are respectively 13.08% and 4.34%. The highest frequency of AV is in the age group 21-30 years (32.3%). The results show a marked association between Escherichia coli and the cases of AV (p < 0.001). AV is a common cause of vaginal symptoms in patients of specialized ambulatory outpatient. One in ten women with vaginal complaints suffers from AV Streptococcus agalactiae and Escherichia coli are most often isolated aerobic microorganisms.

  13. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  14. Comparison of destructive and nondestructive sampling techniques of retail chicken carcasses for enumeration of hygiene indicator microorganisms.

    PubMed

    Cossi, Marcus Vinícius Coutinho; de Almeida, Michelle Vieira; Dias, Mariane Rezende; de Arruda Pinto, Paulo Sérgiode; Nero, Luís Augusto

    2012-01-01

    The type of sampling technique used to obtain food samples is fundamental to the success of microbiological analysis. Destructive and nondestructive techniques, such as tissue excision and rinsing, respectively, are widely employed in obtaining samples from chicken carcasses. In this study, four sampling techniques used for chicken carcasses were compared to evaluate their performances in the enumeration of hygiene indicator microorganisms. Sixty fresh chicken carcasses were sampled by rinsing, tissue excision, superficial swabbing, and skin excision. All samples were submitted for enumeration of mesophilic aerobes, Enterobacteriaceae, coliforms, and Escherichia coli. The results were compared to determine the statistical significance of differences and correlation (P < 0.05). Tissue excision provided the highest microbial counts compared with the other procedures, with significant differences obtained only for coliforms and E. coli (P < 0.05). Significant correlations (P < 0.05) were observed for all the sampling techniques evaluated for most of the hygiene indicators. Despite presenting a higher recovery ability, tissue excision did not present significant differences for microorganism enumeration compared with other nondestructive techniques, such as rinsing, indicating its adequacy for microbiological analysis of chicken carcasses.

  15. Time-to-detection of bacteria and yeast with the BACTEC FX versus BacT/Alert Virtuo blood culture systems.

    PubMed

    Somily, Ali Mohammed; Habib, Hanan Ahmed; Torchyan, Armen Albert; Sayyed, Samina B; Absar, Muhammed; Al-Aqeel, Rima; Binkhamis, A Khalifa

    2018-01-01

    Bloodstream infections are associated with high rates of morbidity and mortality. Rapid detection of bloodstream infections is important in achieving better patient outcomes. Compare the time-to-detection (TTD) of the new BacT/Alert Virtuo and the BACTEC FX automated blood culture systems. Prospective simulated comparison of two instruments using seeded samples. Medical microbiology laboratory. Blood culture bottles were seeded in triplicate with each of the standard ATCC strains of aerobes, anaerobes and yeast. TTD was calculated as the length of time from the beginning of culture incubation to the detection of bacterial growth. TTD for the various tested organisms on the two microbial detection systems. The 99 bottles of seeded blood cultures incubated in each of the blood culture systems included 21 anaerobic, 39 aerobic and 39 pediatric bottles. The BacT/Alert Virtuo system exhibited significantly shorter TTD for 72.7 % of the tested organisms compared to BACTEC FX system with a median difference in mean TTD of 2.1 hours (interquartile range: 1.5-3.5 hours). The BACTEC FX system was faster in 15.2% (5/33) of microorganisms, with a median difference in mean TTD of 25.9 hours (IQR: 9.1-29.2 hours). TTD was significantly shorter for most of the microorganisms tested on the new BacT/Alert Virtuo system compared to the BACTEC FX system. Use of simulated cultures to assess TTD may not precisely represent clinical blood cultures. None.

  16. The Endotoxemia Marker Lipopolysaccharide-Binding Protein is Reduced in Overweight-Obese Subjects Consuming Pomegranate Extract by Modulating the Gut Microbiota: A Randomized Clinical Trial.

    PubMed

    González-Sarrías, Antonio; Romo-Vaquero, María; García-Villalba, Rocío; Cortés-Martín, Adrián; Selma, María Victoria; Espín, Juan Carlos

    2018-06-01

    Gut microbiota dysbiosis, intestinal barrier failure, obesity, metabolic endotoxemia, and pro-inflammatory status promote cardiovascular risk. However, the modulation of the gut microbiome to prevent endotoxemia in obesity has been scarcely studied. We investigated the association between gut microbiota modulation and plasma lipopolysaccharide-binding protein (LBP), a surrogate marker of endotoxemia, in overweight-obese individuals. In a randomized trial, 49 overweight-obese subjects (body mass index> 27 kg m -2 ) with mild hypelipidemia daily consumed, in a cross-over fashion, two doses (D1 and D2, lasting 3 weeks each) of pomegranate extract (PE) or placebo alternating with 3 weeks of wash-out periods. A significant decrease (p < 0.05) of plasma LBP and a marginal decrease (p = 0.054) of high-sensitivity C-reactive protein were observed, but only after PE-D2 administration (656 mg phenolics). 16S rDNA sequencing analyses revealed the increase of microorganisms important for maintaining normal balance of gut microbiota and gut barrier function, particularly Bacteroides, Faecalibacterium, Butyricicoccus, Odoribacter, and Butyricimonas. PE-D2 also decreased pro-inflammatory microorganisms including Parvimonas, Methanobrevibacter, and Methanosphaera. Remarkably, plasma LBP reduction was significantly associated (p < 0.05) with both Faecalibacterium and Odoribacter increase and Parvimonas decrease. Consumption of PE decreased endotoxemia in overweight-obese individuals by reshaping the gut microbiota, mainly through the modulation of Faecalibacterium, Odoribacter, and Parvimonas. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Immortelle (Xeranthemum annuum L.) as a natural source of biologically active substances

    PubMed Central

    Stankovic, Milan S.; Radojevic, Ivana D.; Stefanovic, Olgica D.; Topuzovic, Marina D.; Comic, Ljiljana R.; Brankovic, Snežana R.

    2011-01-01

    Antioxidant and antimicrobial effects, total phenolic content and flavonoid concentrations of methanolic, acetone and ethyl acetate extracts from Xeranthemum annuum L. were investigated in this study. The total phenolic content was determined using Folin-Ciocalteu reagent and ranged between 101.33 to 159.48 mg GA/g. The concentration of flavonoids in various X. annuum extracts was determined using spectrophotometric method with aluminum chloride and the results varied from 22.25 to 62.42 mg RU/g. Antioxidant activity was monitored spectrophotometrically using DPPH reagent and expressed in terms of IC50 (µg/ml), and it ranged from 59.25 to 956.81 µg/ml. The highest phenolic content and capacity to neutralize DPPH radicals were found in the acetone extract. In vitro antimicrobial activity was determined by microdilution method. Minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) have been determined. Testing was conducted against 24 microorganisms, including 15 strains of bacteria (standard and clinical strains) and 9 species of fungi. Statistically significant difference in activity between the extracts of X. annuum L. was observed and the acetone extract was found most active. The activity of acetone extract was in accordance with total phenol content and flavonoid concentration measured in this extract. The tested extracts showed significant antibacterial activity against G+ bacteria and weak to moderate activity against other microorganisms. Based on the obtained results, X. annuum can be considered as a rich natural source of polyphenolic compounds with very good antioxidant and antimicrobial activity. PMID:27857677

  18. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  19. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE PAGES

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne; ...

    2015-07-21

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  20. Oral cavity infection: an adverse effect after the treatment of oral cancer in aged individuals.

    PubMed

    Pan, Jie; Zhao, Jun; Jiang, Ning

    2014-01-01

    The immune compromised patients after treatment of oral cancer may have a chance of infection by drug-resistant opportunistic microbes. We investigated the occurrence of opportunistic microorganisms in aged individuals receiving follow-up examinations after treatment of oral cancer in China. These patients were used as test group and the respective age grouped healthy individuals as control group. In this study, the oral cavity microorganisms such as bacteria and yeast were taken for the analysis. After the screening of representative microorganisms, their aptitude of pervasiveness against drugs was studied. Here, we used antimicrobial agents which are common in clinical practice. We also performed studies to investigate the presence of toxin genes in methicillin-resistant S. aureus (MRSA). The results indicate that the prevalence of drug-resistant microbes was more pronounced in oral cancer patients after initial treatment above 70 years old. The oxacillin resistance of S. aureus isolate confirms that the prevalence of MRSA is increasing in accordance to age-factor and immune compromise in elderly patients. This study reveals the occurrence of drug-resistant opportunistic microorganisms in oral cavity after treatment for oral cancer in aged individuals. Special attention should be directed to MRSA during the treatment of oral cancer, and to realize the fact of immune compromise in elderly patients.

  1. Techniques and clinical effect of aseptic procedures on patients with acute leukemia in laminar airflow rooms.

    PubMed

    Takeo, H; Sakurai, T; Amaki, I

    1983-01-01

    The techniques of aseptic procedures in the laminar airflow room (LAF) were evaluated in 110 adult patients undergoing antileukemic chemotherapy for remission induction. The patients were divided into three groups according to the regimens: Group A, consisting of 20 patients who stayed in the LAF and received the gown technique + sterile food + prophylactic oral and topical antibiotics; Group B, consisting of 12 patients who stayed in the LAF and received sterile food + prophylactic oral antibiotics; and Group C, consisting of 78 patients in open wards, who received prophylactic oral antibiotics alone. Species and numbers of microorganisms on the skin surface were far less in the patients in Group A than in those in Group B. Airborne microorganisms were counted by the air sampling method. No microorganisms could be detected at the time of the patient's rest and of blood collection in either Group A or B. Electrocardiography and X-ray examination caused an increase in the number of colonies to more than one colony in Group B, but Group A had a count of less than 0.5 colony. The colony counts became negative within 5 min after the cessation of each operation. The percentage of febrile days for patients with a peripheral granulocyte count of less than 100/microliter was 29% in Group A, 21% in Group B and 44% in Group C. The incidence of documented infections during the total hospital stay was 25% (5/20), 42% (5/12) and 86% (67/78), respectively. The aseptic procedures in Group B were not as strict as in Group A, but the incidence of infections in Group B was significantly lower than in Group C.

  2. Quantitative comparison of the in situ microbial communities in different biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.C.; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedlymore » documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/« less

  3. PubMed

    Guerrero, D; Garrigue, E

    2017-01-01

    Atopic dermatitis (AD) is the most frequent disease treated at the Avène hydrotherapy center. Children represent a large part of the population due to the high prevalence of AD in early childhood. Avène thermal spring water (ATSW) has been known for its therapeutic effects since the middle of the 18 th century. It has been greatly studied over the last decades, with a comprehensive fundamental, pharmaco-clinical and clinical approach. Cohort studies using the Scoring Atopic Dermatitis (SCORAD) clinical score and the Dermatology Life Quality Index (DLQI) or the Children's Dermatology Life Quality Index [CDLQI]) quality of life scores, allowed to confirm the clinical results obtained from the previous studies. These results were corroborated by clinical trials conducted in atopic patients outside the Avène hydrotherapy center, allowing to demonstrate the specific effect of the ATSW. Pharmacological and pharmaco-clinical studies evidenced several effects that could explain the healing effect of ATSW: effect on histamine release, anti-inflammatory effects on standardized models, immuno-modulation of some cytokines involved in DA physiopathology (interferon [INF], interleukin 2 and 4 [IL-2, IL-4]), improvement of keratinocyte differentiation, effect on the skin microbioma by promoting the development of a diversified non-pathogenic flora. In addition, an original microorganism, Aquaphilus dolomiae, never described in another medium, has very recently been identified in the ATSW. Aquaphilus dolomiae is responsible for significant pharmacological activities on inflammation, pruritus and enhancement of innate immunity. This set of works confirms the medical significance of the hydrotherapy which should be considered as a complementary care in the sometimes difficult management of AD. © 2017 Elsevier Masson SAS. Tous droits réservés.

  4. Antimicrobial effects of a new therapeutic liquid dentifrice formulation on oral bacteria including odorigenic species.

    PubMed

    Sreenivasan, P K; Furgang, D; Zhang, Y; DeVizio, W; Fine, D H

    2005-03-01

    The control of oral malodor is well-recognized in efforts to improve oral health. Antimicrobial formulations can mitigate oral malodor, however, procedures to assess effects on oral bacteria including those implicated in halitosis are unavailable. This investigation examined the antimicrobial effects of a new liquid triclosan/copolymer dentifrice (test) formulation that demonstrated significant inhibition of oral malodor in previous organoleptic clinical studies. Procedures compared antimicrobial effects of the test and control formulations on a range of oral micro-organisms including members implicated in halitosis, substantive antimicrobial effects of formulations with hydroxyapatite as a surrogate for human teeth and ex vivo effects on oral bacteria from human volunteers. With Actinomyces viscosus, as a model system, the test formulation demonstrated a dose-dependent effect. At these concentrations the test formulation provided significant antimicrobial effects on 13 strains of oral bacteria including those implicated in bad breath at selected posttreatment time points. Treatment of hydroxyapatite by the test dentifrice resulted in a significant and substantive antimicrobial effect vs. controls. Oral bacteria from subjects treated ex vivo with the test dentifrice resulted in significant reductions in cultivable oral bacteria and odorigenic bacteria producing hydrogen sulfide. In summary, microbiological methods adapted to study odorigenic bacteria demonstrate the significant antimicrobial effects of the test (triclosan/copolymer) dentifrice with laboratory and clinical strains of oral bacteria implicated in bad breath.

  5. Dose imprecision and resistance: free-choice medicated feeds in industrial food animal production in the United States.

    PubMed

    Love, David C; Davis, Meghan F; Bassett, Anna; Gunther, Andrew; Nachman, Keeve E

    2011-03-01

    Industrial food animal production employs many of the same antibiotics or classes of antibiotics that are used in human medicine. These drugs can be administered to food animals in the form of free-choice medicated feeds (FCMF), where animals choose how much feed to consume. Routine administration of these drugs to livestock selects for microorganisms that are resistant to medications critical to the treatment of clinical infections in humans. In this commentary, we discuss the history of medicated feeds, the nature of FCMF use with regard to dose delivery, and U.S. policies that address antimicrobial drug use in food animals. FCMF makes delivering a predictable, accurate, and intended dose difficult. Overdosing can lead to animal toxicity; underdosing or inconsistent dosing can result in a failure to resolve animal diseases and in the development of antimicrobial-resistant microorganisms. The delivery of antibiotics to food animals for reasons other than the treatment of clinically diagnosed disease, especially via free-choice feeding methods, should be reconsidered.

  6. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    PubMed

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05) . The Content of fungi PLFAs in soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05). This study provides evidence that effectiveness of the soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  7. Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.

    PubMed

    Huangfu, Jie; Zhang, Genlin; Li, Jun; Li, Chun

    2015-01-01

    As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.

  8. [Effect of periodontal therapy on the subgingival microbiota in preeclamptic patients].

    PubMed

    Jaramillo, Adriana; Arce, Roger; Contreras, Adolfo; Herrera, Julián A

    2012-06-01

    Few studies have described subgingival microbiota in pregnant women with mild preeclampsia. Clinical periodontal and subgingival microbiota changes were identified in pregnant women with mild preeclampsia after periodontal treatment. In a secondary analysis of a randomized clinical trial, 57 preeclamptic women were studied at Hospital Universitario del Valle in Cali, Colombia. Thirty one women were randomized to the periodontal intervention group (subgingival scaling and planing ultrasonic and manual) during pregnancy and 26 to the control group (supragingival prophylaxis). Periodontal clinical parameters and subgingival microbiota were characterized at the time of acceptance into the study and again at postpartum. Eight periodontopathic bacteria and 2 herpesviruses were assessed by polymerase chain reaction. Chi-square, McNemar or Student's t tests were used, with a significance level of p≤0.05. Both groups were comparable in the clinical and microbiological variables at baseline. Periodontal treatment reduced the average pocket depth in the intervention group from 2.4±0.3 to 2.3±0.2 mm (p<0.001) and in control group 2.6±0.4 to 2.44±0.4 mm, (p<0.001) and bleeding index 16.4±1.5% to 7.9±0.7% in the intervention group(p<0.001) and 17.1±1.8% to 10±0.9% in the control group (p=0.002). The frequency of detection of microorganisms did not differ significantly between groups. Scaling/root planning and supragingival prophylaxis significantly reduced the probing depth and gingival bleeding index. Periodontal treatment was not more effective than prophylaxis in reducing periodontopathic organisms or herpesvirus.

  9. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals

    PubMed Central

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  10. Diagnosis of Infectious Diseases: a Cytopathologist’s Perspective

    PubMed Central

    Powers, Celeste N.

    1998-01-01

    This review explores the role of the cytopathology laboratory in the detection and presumptive identification of microorganisms. Sample procurement by exfoliation, abrasion, and aspiration techniques, as well as a variety of cytopreparatory and staining methods, is reviewed. Emphasis is placed on the utility of fine-needle aspiration as a rapid, safe, and cost-effective diagnositic procedure. The role of rapid interpretation and specimen triage is also discussed. Cytomorphologic features and staining characteristics are presented for a spectrum of microorganisms potentially encountered in the cytopathology laboratory. Pitfalls in diagnosis and the usefulness of special stains and ancillary techniques are also evaluated. The importance of communication, collaboration, and clinical correlation is stressed. PMID:9564567

  11. Comparison of clinical and microbiological features of vulvovaginitis in prepubertal and pubertal girls.

    PubMed

    Yilmaz, Ayse E; Celik, Nurullah; Soylu, Gul; Donmez, Ahsen; Yuksel, Cigdem

    2012-07-01

    Vulvovaginitisis the most common gynecological problem of childhood. The aim of the study was to determine and compare clinical and microbiological features of vulvovaginitis in prepubertal and adolescent girls. In this retrospective study, the records of patients who were diagnosed with vulvovaginitis between January 2005 and December 2010 in the pediatric outpatient clinic at Fatih University Hospital were retrieved. Information regarding age, symptoms, history of antibiotic use within 1 month prior to presentation, findings on urinalysis, serum antistreptolysin-O levels, and results of urine/vaginal cultures was collected. The records of 112 patients were evaluated, 72 of which were prepubertal (64.2%) and 40 were pubertal (35.7%) at the time of diagnosis. Thirty-eight prepubertal patients (52.7%) had a positive result on vaginal culture, the most commonly encountered microorganism being group A beta-hemolytic streptococcus (15.2%). Culture positivity rate in the pubertal group was 47.5% (19 patients), with Candida albicans being the most frequently isolated microorganism (27.5%). The etiopathogenesis and culture results differ between prepubertal and adolescent girls with vulvovaginitis, which should be taken into consideration in the treatment approach of this disorder. Copyright © 2012. Published by Elsevier B.V.

  12. Infective endocarditis; report from a main referral teaching hospital in Iran

    PubMed Central

    Heydari, Behrooz; Karimzadeh, Iman; Khalili, Hossein; Shojaei, Esfandiar; Ebrahimi, Abdolrasool

    2017-01-01

    Background/Objective: The aim of the present preliminary study was to assess the demographic, clinical, paraclinical, microbiological, echocardiographic, and therapeutic profile as well as in-hospital outcome of patients with infective endocarditis at a referral center for various infectious diseases in Iran. Methods: Required demographic, clinical, plausible complications and paraclinical data were collected from patients’ medical charts. Echocardiographic findings were obtained by performing transthoracic and/or transesophageal echocardiography as clinically indicated. In addition, details of management modalities and in-hospital outcome of patients were recorded. Results: During a 3-year period, 55 patients with definite or possible diagnosis of Infective endocarditis were admitted to the ward. Twenty one (38.2%) patients were injection drug users. Staphylococcus aureus and S.epidermidis were the most commonly isolated microorganisms. Management modalities of Infective endocarditis included antimicrobial therapy alone (48 cases) and the combination of antimicrobial therapy and surgery (7 cases). Conclusion: The rate of negative blood culture in our cohort is high. S. aureus and S.epidermidis were the most commonly isolated microorganisms from positive blood cultures. Congestive heart failure was the most frequent infective endocarditis complication as well as indication for surgery. In-hospital mortality rate of patients was unexpectedly low. PMID:28496492

  13. Comparison of 'time to detection' values between BacT/ALERT VIRTUO and BacT/ALERT 3D instruments for clinical blood culture samples.

    PubMed

    Congestrì, Francesco; Pedna, Maria Federica; Fantini, Michela; Samuelli, Michela; Schiavone, Pasqua; Torri, Arianna; Bertini, Stefania; Sambri, Vittorio

    2017-09-01

    The early detection of bacteraemia and fungemia is of paramount importance to guide antimicrobial therapy in septic patients. In this study the 'time to detection' (TTD) value for the new blood culture system BacT/ALERT VIRTUO (VIRTUO) was evaluated in 1462 positive clinical bottles and compared with the TTD for 1601 positive clinical bottles incubated in the BacT/ALERT 3D system (BTA-3D). The most representative microorganisms isolated from bottles incubated in both blood culture systems were divided into eight categories (in order of frequency): coagulase-negative staphylococci (CoNS), Escherichia coli, Enterobacteriaceae (other than E. coli), Staphylococcus aureus, Enterococcus spp, viridans group streptococci, Pseudomonas aeruginosa, and Candida spp. The comparison of TTD values for the two blood culture systems strongly indicated that growth of the first five groups listed above was detected earlier with VIRTUO than with BTA-3D (p < 0.05). The new VIRTUO blood culture system can reduce the TTD for more than 75% of isolated microorganisms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Shell-vial culture and real-time PCR applied to Rickettsia typhi and Rickettsia felis detection.

    PubMed

    Segura, Ferran; Pons, Immaculada; Pla, Júlia; Nogueras, María-Mercedes

    2015-11-01

    Murine typhus is a zoonosis transmitted by fleas, whose etiological agent is Rickettsia typhi. Rickettsia felis infection can produces similar symptoms. Both are intracellular microorganisms. Therefore, their diagnosis is difficult and their infections can be misdiagnosed. Early diagnosis prevents severity and inappropriate treatment regimens. Serology can't be applied during the early stages of infection because it requires seroconversion. Shell-vial (SV) culture assay is a powerful tool to detect Rickettsia. The aim of the study was to optimize SV using a real-time PCR as monitoring method. Moreover, the study analyzes which antibiotics are useful to isolate these microorganisms from fleas avoiding contamination by other bacteria. For the first purpose, SVs were inoculated with each microorganism. They were incubated at different temperatures and monitored by real-time PCR and classical methods (Gimenez staining and indirect immunofluorescence assay). R. typhi grew at all temperatures. R. felis grew at 28 and 32 °C. Real-time PCR was more sensitive than classical methods and it detected microorganisms much earlier. Besides, the assay sensitivity was improved by increasing the number of SV. For the second purpose, microorganisms and fleas were incubated and monitored in different concentrations of antibiotics. Gentamicin, sufamethoxazole, trimethoprim were useful for R. typhi isolation. Gentamicin, streptomycin, penicillin, and amphotericin B were useful for R. felis isolation. Finally, the optimized conditions were used to isolate R. felis from fleas collected at a veterinary clinic. R. felis was isolated at 28 and 32 °C. However, successful establishment of cultures were not possible probably due to sub-optimal conditions of samples.

  15. Activation of inoculum microorganism from dairy cattle feces

    NASA Astrophysics Data System (ADS)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  16. Evaluation of Ureteral Stent Colonization in Live-Donor Renal Transplant Recipients.

    PubMed

    Sarier, M; Demir, M; Duman, I; Yuksel, Y; Demirbas, A

    2017-04-01

    Ureteral stent insertion during kidney transplantation is a matter of debate. Stenting has been proven to reduce the risk of surgical complications. In addition, it has been reported to increase risks such as urinary tract infections especially after operation. Ureteral stent colonization (USC) is known to play a role in the pathogenesis of stent related-infections. The aim of this study was (1) to assess the frequency of USC and values of urine cultures in identifying colonizing bacteria; (2) to assess the importance of indwelling time for USC in live-donor renal transplant recipients; and (3) to evaluate the biomarker role of neutrophil-to-lymphocyte ratio (NLR) on USC. A total of 107 live-donor kidney transplant patients were included in the study (76 men and 31 women). The mean age was 43.7 years, and average indwelling time of the ureteral stent was 24.7 days. Patients were divided into three groups according to indwelling stent time as group 1: 15 to 21 days (3rd week), group 2: 22 to 28 days (4th week), and group 3: 29 to 35 days (5th week). The decision to remove the stent was primarily based on clinical judgment. Ureteral stents were removed with the use of flexible cystoscopy. Midstream urine for urine culture and blood samples for NLR were taken prior to stent removal. The removed stents were divided into three parts and taken for bacteriological investigation. Of 107 patients, USC was detected in 24 (22.4%) patients, whereas urinary proliferation was observed in 8 (7.4%) patients. The most common microorganisms found in USC was the Enterecoccus species. The most common microorganisms in urinary culture were Enterecoccus spp. and Klebsiella pnemoniae. All patients with isolated microorganisms in the urine had USC (P < .001). On the other hand, proliferation in urinary culture was observed only in 30% of patients. Urine culture was not significant in identification of USC (P = .063). The three patient groups that were determined according to indwelling stent time were compared in terms of USC, proliferation in urine culture, and NLR. The highest incidence of USC was found in group 3 (44%) and the least in group 2 (11%) (P < .05). No significant difference was found between the groups in terms of urine culture (P = .546). Although no significant difference was found between groups 1 and 2 in NLR values (P = .755), NLR was significantly higher in group 3 (P = .026). Colonization is common in ureteral stents inserted in live-donor kidney transplant patients, although routine urine culture is insufficient in identfying this colonization. The most common microorganism detected in ureteral stent colonization was Enterecoccus spp. The 4th week was the most convenient time for stent removal time in terms of USC among the 3rd, 4th, and 5th weeks. In addition, increased NLR might have value as a biomarker for USC. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic, anthocyanin-rich blueberry extract purified by solid phase extraction.

    PubMed

    Silva, S; Costa, E M; Mendes, M; Morais, R M; Calhau, C; Pintado, M M

    2016-09-01

    The present work aimed to characterize the impact of an anthocyanin-rich blueberry extract upon the growth, adhesion and biofilm formation of several pathogens including some multiresistant bacteria. A group comprised of reference strains and clinical multiresistant isolates of Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Acinetobacter baumannii and Staphylococcus aureus, were used to screen for antimicrobial activity. Microbial growth was determined through the measurement of the optical density while adhesion and biofilm formation was determined using the standard crystal violet staining procedure. The results showed that, while blueberry extract was only effective in hindering the growth of Staph. aureus and E. coli, it was capable of significantly inhibiting biofilm formation and bacterial adhesion for all micro-organisms tested. The extract demonstrated a considerable potential as a natural, alternative antimicrobial capable of either interfering with microbial growth or hamper the adhesion to surfaces, with Staph. aureus proving to be the most susceptible micro-organism. The overall study demonstrates the potential of anthocyanin extracts as natural effective alternative antimicrobial agents. Additionally, the extract's capacity to reduce adhesion without reducing bacterial growth reduces the likeliness of resistance development while reducing the probability of infection. © 2016 The Society for Applied Microbiology.

  18. An in vitro Comparative Evaluation of Efficacy of Disinfecting Ability of Garlic Oil, Neem Oil, Clove Oil, and Tulsi Oil with autoclaving on Endodontic K Files tested against Enterococcus faecalis

    PubMed Central

    Hugar, Shivayogi; Nagmoti, Jyoti; Uppin, Chaitanya; Mistry, Laresh; Dhariwal, Neha

    2017-01-01

    Aim To comparatively evaluate the efficacy of disinfecting ability of garlic oil, neem oil, clove oil, and tulsi oil with autoclaving on endodontic K files tested against Enterococcus faecalis. Materials and methods Fifty endodontic K files were exposed to the test micro-organism and checked for its disinfecting ability using three different methods. Result Garlic oil, clove oil, tulsi oil and autoclave showed considerable effectiveness against E. faecalis except neem oil. Conclusion Garlic oil, clove oil and tulsi oil are an effective disinfectant and can be used as an alternative to autoclaving against the test micro-organism. Clinical Significance Herbs and herbal extracts are a natural and harmless way of controlling infection. These products are readily available and comparable to gold standard, thus can have its applications in rural India. How to cite this article Hugar S, Patel PM, Nagmoti J, Uppin C, Mistry L, Dhariwal N. An in vitro Comparative Evaluation of Efficacy of Disinfecting Ability of Garlic Oil, Neem Oil, Clove Oil, and Tulsi Oil with autoclaving on Endodontic K Files tested against Enterococcus faecalis. Int J Clin Pediatr Dent 2017;10(3):283-288. PMID:29104390

  19. Gangrenous dermatitis in chickens and turkeys.

    PubMed

    Gornatti-Churria, Carlos D; Crispo, Manuela; Shivaprasad, H L; Uzal, Francisco A

    2018-03-01

    Gangrenous dermatitis (GD) is a disease of chickens and turkeys that causes severe economic losses in the poultry industry worldwide. Clostridium septicum, Clostridium perfringens type A, and occasionally Clostridium sordellii are considered the main causes of GD, although Staphylococcus aureus and other aerobic bacteria may also be involved in some cases of the disease. GD has become one of the most significant diseases of commercial turkeys in the United States. Several infectious and/or environmental immunosuppressive factors can predispose to GD. Skin lesions are considered to be the main portal of entry of the microorganism(s) involved. GD is characterized by acute onset of mortality associated with gross skin and subcutaneous tissue lesions consisting of variable amounts of serosanguineous exudate together with emphysema and hemorrhages. The underlying skeletal muscle can also be involved. Ulceration of the epidermis may be also noticed in cases complicated with S. aureus. Microscopically, necrosis of the epidermis and dermis, and subcutaneous edema and emphysema are commonly observed. Gram-positive rods can be identified within the subcutis and skeletal muscles, usually associated with minimal inflammatory infiltrate. A presumptive diagnosis of GD can be made based on history, clinical signs, and gross anatomic and microscopic lesions. However, confirmation should be based on demonstration of the causative agents by culture, PCR, immunohistochemistry, and/or fluorescent antibody tests.

  20. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species.

    PubMed

    Al-Bakri, Amal G; Othman, Ghadeer; Afifi, Fatma U

    2010-10-01

    Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species. Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms. An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively. These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible.

  1. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung

    DOE PAGES

    Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce; ...

    2016-07-14

    Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less

  2. Regional microstructural organization of the cerebral cortex is affected by preterm birth.

    PubMed

    Bouyssi-Kobar, Marine; Brossard-Racine, Marie; Jacobs, Marni; Murnick, Jonathan; Chang, Taeun; Limperopoulos, Catherine

    2018-01-01

    To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.

  3. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization.

    PubMed

    Fagerquist, Clifton K

    2017-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in the MS peaks that collectively constitute the MS 'fingerprint'. This review/perspective is intended to explore this topic in greater detail in the hopes that it may spur interest and further research in this area. Areas covered: This paper examines the recent literature on utilizing MALDI-TOF for bacterial identification. Critical works highlighting protein biomarker identification of bacteria, arguments for and against protein biomarker identification, proteomic approaches to biomarker identification, emergence of MALDI-TOF-TOF platforms and their use for top-down proteomic identification of bacterial proteins, protein denaturation and its effect on protein ion fragmentation, collision cross-sections and energy deposition during desorption/ionization are also explored. Expert commentary: MALDI-TOF and TOF-TOF mass spectrometry platforms will continue to provide chemical analyses that are rapid, cost-effective and high throughput. These instruments have proven their utility in the taxonomic identification of pathogenic bacteria at the genus and species level and are poised to more fully characterize these microorganisms to the benefit of clinical microbiology, food safety and other fields.

  4. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce

    Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less

  5. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    NASA Technical Reports Server (NTRS)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  6. Microbial Brokers of Insect-Plant Interactions Revisited

    PubMed Central

    Douglas, Angela E

    2013-01-01

    Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis. PMID:23793897

  7. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  8. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  9. Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.

    PubMed

    Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N

    2009-02-01

    Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.

  10. Vaccination of healthcare workers: A review

    PubMed Central

    Haviari, Skerdi; Bénet, Thomas; Saadatian-Elahi, Mitra; André, Philippe; Loulergue, Pierre; Vanhems, Philippe

    2015-01-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality. As new vaccines are proving to be effective and as the incidence of some infections decreases, vaccination practices are changing. Healthcare workers (HCWs) are particularly exposed to and play a role in nosocomial transmission, which makes them an important target group for vaccination. Most vaccine-preventable diseases still carry a significant risk of resurgence and have caused outbreaks in recent years. While many professional societies favor vaccination of HCWs as well as the general population, recommendations differ from country to country. In turn, vaccination coverage varies widely for each microorganism and for each country, making hospitals and clinics vulnerable to outbreaks. Vaccine mandates and non-mandatory strategies are the subject of ongoing research and controversies. Optimal approaches to increase coverage and turn the healthcare workforce into an efficient barrier against infectious diseases are still being debated. PMID:26291642

  11. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms.

    PubMed

    Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin

    2018-03-23

    Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures.

    PubMed

    French, Kathryn; Evans, Jason; Tanner, Hannah; Gossain, Savita; Hussain, Abid

    2016-01-01

    Faster identification of bacterial isolates from blood cultures can enable earlier clinical intervention for patients with sepsis. We evaluated the clinical impact of direct identification of micro-organisms from positive blood cultures using MALDI-ToF. Positive blood cultures with organisms seen on Gram stain were included over a four week period. For each patient case, comparison was made between the clinical advice given on day one with only a Gram stain result, and the follow up advice given on day two with the benefit of organism identification. Culture results were then compared with direct MALDI-ToF identification. For 73 of 115 cases (63.5%), direct organism identification was obtained by MALDI-ToF. Of those 73, 70 (95.5%) had a result concordant with that of the plate culture. In 28 of the 115 cases (24.3%) direct MALDI-ToF identification on day one would have had a clear clinical benefit. In 11 cases it would have helped to identify the potential source of bacteraemia. In 11 cases it would have indicated a different antibiotic regimen on day one, with five patients receiving appropriate antibiotics 24 hours earlier. For 14 cases the blood culture isolate could have been designated as unlikely to be clinically significant. We have demonstrated that organism identification on day one of blood culture positivity can have a direct clinical impact. Faster identification using MALDI-ToF assists the clinician in assessing the significance of a blood culture isolate on day one. It can allow earlier appropriate choice of antimicrobial agent, even in the absence of susceptibility testing, and help narrow down the potential source of infection providing a focus for further investigation in a more timely way than conventional techniques alone.

  13. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE PAGES

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.; ...

    2016-11-12

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  14. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    PubMed

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  15. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    PubMed

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  16. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  17. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  18. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level

    PubMed Central

    Gleason, Frank H.; Crawford, John W.; Neuhauser, Sigrid; Henderson, Linda E.; Lilje, Osu

    2012-01-01

    Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples. PMID:22308003

  19. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms.

    PubMed

    Reen, F Jerry; Romano, Stefano; Dobson, Alan D W; O'Gara, Fergal

    2015-07-31

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.

  20. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms

    PubMed Central

    Reen, F. Jerry; Romano, Stefano; Dobson, Alan D.W.; O’Gara, Fergal

    2015-01-01

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters. PMID:26264003

  1. Treatment of Periodontal Disease with an Octenidine-based Antiseptic in HIV-positive Patients.

    PubMed

    Gušić, I; Medić, D; Radovanović Kanjuh, M; Ðurić, M; Brkić, S; Turkulov, V; Predin, T; Mirnić, J

    2016-05-01

    To evaluate the effects of a periodontal therapy with subsequent application of an octenidine (OCT)-based antiseptic in HIV-positive patients receiving highly active antiretroviral therapy. HIV-positive patients with a clinically diagnosed periodontal disease were randomly divided into two groups (n = 30/group). Both groups initially received a periodontal therapy. Patients in the OCT group additionally used an OCT-based mouthwash. Subgingival plaque samples and periodontal indices were analysed prior to treatment onset as well as one and 3 months post-treatment. Periodontal therapy has resulted in a significant decrease in the values of all periodontal indices one and 3 months following the therapy completion (P = 0.000). The effects of the two applied therapeutic protocols differed significantly in terms of the variation in the PBI (F = 4.617; P = 0.017) and the PD (F = 3.203; P = 0.044) value. In the patients in the OCT group, a more pronounced decrease in the PBI and PD was noted at 1-month follow-up as well as a greater increase in the PD value 3 months upon treatment completion. In the OCT group, no more atypical microorganisms were detectable 1 month post-treatment, while in the control group they were found in 34.5% of patients. The periodontal therapy bears good results in HIV-positive patients. Additional administration of OCT contributes to the significant decline in the PBI and DS values and eliminates atypical microorganisms within 1 month post-treatment. However, more favourable results were not noted in the OCT group at the 3-month assessment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The Interplay between the Intestinal Microbiota and the Immune System

    PubMed Central

    Lei, Yuk Man Kevin; Nair, Lekha; Alegre, Maria-Luisa

    2015-01-01

    Summary The relationship between commensal microbes and their hosts has been studied for many years. Commensal microorganisms are known to have a significant role in regulating the physiology of their hosts and preventing pathogenic infections while the hosts’ immune system is important in determining the composition of the microbiota. More recently, specific effects of the intestinal microbiota on the local and distal immune systems have been uncovered with important consequences for health and disease, and alterations in intestinal microbial composition has been associated with various disease states. Here, we will review the current understanding of the microbiota/immune system crosstalk, highlight the clinical consequences of changes in the microbiota and consider how to harness this symbiotic relationship to improve public health. PMID:25481240

  3. Production of a Pyrrole Antibiotic by a Marine Bacterium1

    PubMed Central

    Burkholder, Paul R.; Pfister, Robert M.; Leitz, Frederick H.

    1966-01-01

    Evidence is presented for the isolation and identification of bacteria able to synthesize an unusual antibiotic containing five bromine atoms per molecule. The identification and taxonomic position of these bacteria was made by use of a computer in conjunction with traditional methods. These microorganisms and closely related strains have been isolated on various occasions from tropical water in the vicinity of Puerto Rico. One bacterium, a pseudomonad, has been given the name Pseudomonas bromoutilis because of its distinctive capability. The antibiotic has been extracted, purified, and obtained in crystal form, and its structure has been determined. Although clinical tests of its properties were not encouraging, it may be of significant value and interest from an ecological standpoint. Images Fig. 1 PMID:4380876

  4. 'Honey ointment': a natural remedy of skin wound infections.

    PubMed

    Tasleem, Samiyah; Naqvi, Syed Baqir Shyum; Khan, Saadat Ali; Hashimi, Khursheed

    2011-01-01

    Honey is a gift of nature, principally identified and valued to possess antimicrobial and anti-inflammatory activity and has been used as a natural remedy of wounds since ancient times. The objectives of this study were to evaluate the antimicrobial activity of honey against micro-organisms, to formulate a honey ointment and to evaluate the efficacy of such ointment by conducting clinical trials on skin wound infection. This experimental study was conducted at Department of Pharmaceutics, Faculty of Pharmacy, University of Karachi and Out-patient Department of Dermatology, Fauji Foundation Hospital, Rawalpindi from November 2009 to October 2010. The antimicrobial activity of Pakistani floral sources (Trachysperm copticum, Acacia nilotica species indica, Zizyphus) honey samples was investigated by disc diffusion method against freshly isolated wound infecting bacteria (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans), and Staphylococci aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9022, Escherichia coli ATCC 25922, Candida albican ATCC 15146. An ointment containing 20% active antimicrobial honey was formulated. The efficacy of such ointment was evaluated by passing thought clinical trials. A total number of 27 patients (23 skin wound infection, and 4 diabetic foot ulcer) were involved in the study. Thin layer of newly formulated honey ointment on gauze were applied two to three times per day till complete healing. In microbiological assay the honey samples were found to exhibit a very promising antimicrobial activity against all the micro-organisms tested. In clinical trial very significant results (99.15%) healing was observed in skin wound infections cases with mean healing time of 5.86 (2-20) days, and 95% diabetic foot ulcers healed with the mean healing time of 20 (8-40) days. Newly formulated ointment containing 20% active antimicrobial honey is very effective and alternative low-cost product for the treatment of wound infections.

  5. Microbial signatures of oral dysbiosis, periodontitis and edentulism revealed by Gene Meter methodology.

    PubMed

    Hunter, M Colby; Pozhitkov, Alex E; Noble, Peter A

    2016-12-01

    Conceptual models suggest that certain microorganisms (e.g., the "red" complex) are indicative of a specific disease state (e.g., periodontitis); however, recent studies have questioned the validity of these models. Here, the abundances of 500+ microbial species were determined in 16 patients with clinical signs of one of the following oral conditions: periodontitis, established caries, edentulism, and oral health. Our goal was to determine if the abundances of certain microorganisms reflect dysbiosis or a specific clinical condition that could be used as a 'signature' for dental research. Microbial abundances were determined by the analysis of 138,718 calibrated probes using Gene Meter methodology. Each 16S rRNA gene was targeted by an average of 194 unique probes (n=25nt). The calibration involved diluting pooled gene target samples, hybridizing each dilution to a DNA microarray, and fitting the probe intensities to adsorption models. The fit of the model to the experimental data was used to assess individual and aggregate probe behavior; good fits (R 2 >0.90) were retained for back-calculating microbial abundances from patient samples. The abundance of a gene was determined from the median of all calibrated individual probes or from the calibrated abundance of all aggregated probes. With the exception of genes with low abundances (<2 arbitrary units), the abundances determined by the different calibrations were highly correlated (r~1.0). Seventeen genera were classified as 'signatures of dysbiosis' because they had significantly higher abundances in patients with periodontitis and edentulism when contrasted with health. Similarly, 13 genera were classified as 'signatures of periodontitis', and 14 genera were classified as 'signatures of edentulism'. The signatures could be used, individually or in combination, to assess the clinical status of a patient (e.g., evaluating treatments such as antibiotic therapies). Comparisons of the same patient samples revealed high false negatives (45%) for next-generation-sequencing results and low false positives (7%) for Gene Meter results. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    PubMed

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations

    PubMed Central

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community. PMID:28166302

  8. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations.

    PubMed

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community.

  9. Ocular surface culture changes in patients after septoplasty.

    PubMed

    Ozkiriş, Mahmut; Kapusuz Gencer, Zeliha; Kader, Ciğdem; Saydam, Levent

    2014-01-01

    To investigate the interrelationships between pre- and postoperative microbiological changes by taking samples from both eyes of 40 patients who underwent septoplasty due to septal deviation. Forty patients diagnosed with septal deviation who underwent a septoplasty operation under general anesthesia were enrolled in this study. The study was conducted on 40 patients who met the inclusion criteria and attended follow-up visits. One day before the operation and 48 h after the operation, cultures were taken individually from the conjunctivas and puncta of both eyes and sent to the microbiology laboratory. Patients who were candidates for nasal surgery due to their symptoms and clinical examination results were randomly selected and 40 of these completed the study. No statistically significant differences in bacterial growth were observed between the eyes before the operation (P > 0.05). There were, however, statistically significant differences between the eyes in terms of bacterial growth in the postoperative period (P < 0.05). Pathogenic bacterial cultures were grown in 47 eyes in the postoperative period, and this finding was statistically significant. In the eye cultures, the most commonly isolated pathogens were S. epidermidis, and S. aureus. Although the indicated microorganisms isolated from the patient groups were grown in cultures, there were neither clinical symptoms nor signs related to ocular infections.

  10. [Selective digestive decontamination. Why don't we apply the evidence in the clinical practice?].

    PubMed

    Taylor, N; van Saene, H K F; Abella, A; Silvestri, L; Vucic, M; Peric, M

    2007-04-01

    Selective digestive decontamination (SDD) is a prophylactic strategy whose objective is to reduce the incidence of infections, mainly mechanical ventilation associated pneumonia in patients who require intensive cares, preventing or eradicating the oropharyngeal and gastrointestinal carrier state of potentially pathogenic microorganisms. Fifty-four randomized clinical trials (RCTs) and 9 meta-analysis have evaluated SDD. Thirty eight RCTs show a significant reduction of the infections and 4 of mortality. All the meta-analyses show a significant reduction of the infections and 5 out of the 9 meta-analyses report a significant reduction in mortality. Thus, 5 patients from the ICU with SDD must be treated to prevent pneumonia and 12 patients from the ICU should be treated to prevent one death. The data that show benefit of the SDD on mortality have an evidence grade 1 or recommendation grade A (supported by at least two level 1 investigations). The aim of this review is to explain the pathogeny of infections in critical patients, describe selective digestive decontamination, analyze the evidence available on it efficacy and the potential adverse effects and discuss the reasons published by the experts who advise against the use of SDD, even though it is recognized as the best intervention evaluated in intensive cares to reduce morbidity and mortality of the infections.

  11. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    PubMed Central

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  12. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for... significant new use is any use other than research and development in the degradation of chemicals via...

  13. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for... significant new use is any use other than research and development in the degradation of chemicals via...

  14. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for... significant new use is any use other than research and development in the degradation of chemicals via...

  15. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for... significant new use is any use other than research and development in the degradation of chemicals via...

  16. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for... significant new use is any use other than research and development in the degradation of chemicals via...

  17. The microbial cell factory.

    PubMed

    Murphy, Cormac D

    2012-03-14

    Microorganisms have been used for decades as sources of antibiotics, vitamins and enzymes and for the production of fermented foods and chemicals. In the 21st century microorganisms will play a vital role in addressing some of the problems faced by mankind. In this article three of the current applications in which microbes have a significant role to play are highlighted: the discovery of new antibiotics, manufacture of biofuels and bioplastics, and production of fine chemicals via biotransformation.

  18. Construction Biotechnology: a new area of biotechnological research and applications.

    PubMed

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  19. Tick-Borne Pathogen – Reversed and Conventional Discovery of Disease

    PubMed Central

    Tijsse-Klasen, Ellen; Koopmans, Marion P. G.; Sprong, Hein

    2014-01-01

    Molecular methods have increased the number of known microorganisms associated with ticks significantly. Some of these newly identified microorganisms are readily linked to human disease while others are yet unknown to cause human disease. The face of tick-borne disease discovery has changed with more diseases now being discovered in a “reversed way,” detecting disease cases only years after the tick-borne microorganism was first discovered. Compared to the conventional discovery of infectious diseases, reverse order discovery presents researchers with new challenges. Estimating public health risks of such agents is especially challenging, as case definitions and diagnostic procedures may initially be missing. We discuss the advantages and shortcomings of molecular methods, serology, and epidemiological studies that might be used to study some fundamental questions regarding newly identified tick-borne diseases. With increased tick-exposure and improved detection methods, more tick-borne microorganisms will be added to the list of pathogens causing disease in humans in the future. PMID:25072045

  20. [Microorganisms surviving in drinking water systems and related problems].

    PubMed

    Aulicino, F A; Pastoni, F

    2004-01-01

    Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.

  1. Metabolic engineering of microorganisms for the synthesis of plant natural products.

    PubMed

    Marienhagen, Jan; Bott, Michael

    2013-01-20

    Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes.

    PubMed

    Mercurio, Philip; Burns, Kathryn A; Negri, Andrew

    2004-05-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms.

  3. Constraints based analysis of extended cybernetic models.

    PubMed

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    PubMed

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  5. [Types of microbial contaminants in pharmaceutical raw materials].

    PubMed

    Martínez-Bermúdez, A; Rodríguez-de Lecea, J; Soto-Esteras, T; Vázquez-Estévez, C; Chena-Cañete, C

    1991-01-01

    In order to analyze the significance of the microbial content of pharmaceutical raw materials contributed to the finished pharmaceutical products, we have carried out a study of contamination taking into account aerobic bacteria, anaerobic bacteria and fungi. None or only low numbers of pathogenic microorganisms was found in most analyzed products but in some materials, specially those of natural origin, we have detected high bacterial and fungal contamination. Microorganisms of the genus Bacillus have been the aerobic bacteria most frequently isolated; Bifidobacterium and Clostridium were the most common anaerobic bacteria and with respect to the fungi, Penicillium and Aspergillus have been found with the highest frequency. These microorganisms can produce problems in pharmaceutical finished products, due to their enzymatic or toxigenic activities.

  6. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  7. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea

    PubMed Central

    Poli, Annarita; Di Donato, Paola; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2011-01-01

    Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species. PMID:22007151

  8. Automatic microbial transfer

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M.

    1973-01-01

    Device can transfer metabolites or inhibitory agents to broth cultures of bacteria, in various stages of growth, for study. It also has application in transfer of other micro-organisms, such as yeasts, and could be useful in clinical and research laboratories. Device has been used for wide variety of purposes in experimental situations.

  9. An Antibiotic Resource Program for Students of the Health Professions.

    ERIC Educational Resources Information Center

    Tritz, Gerald J.

    1986-01-01

    Provides a description of a computer program developed to supplement instruction in testing of antibiotics on clinical isolates of microorganisms. The program is a simulation and database for interpretation of experimental data designed to enhance laboratory learning and prepare future physicians to use computerized diagnostic instrumentation and…

  10. Disinfection of human musculoskeletal allografts in tissue banking: a systematic review.

    PubMed

    Mohr, J; Germain, M; Winters, M; Fraser, S; Duong, A; Garibaldi, A; Simunovic, N; Alsop, D; Dao, D; Bessemer, R; Ayeni, O R

    2016-12-01

    Musculoskeletal allografts are typically disinfected using antibiotics, irradiation or chemical methods but protocols vary significantly between tissue banks. It is likely that different disinfection protocols will not have the same level of microorganism kill; they may also have varying effects on the structural integrity of the tissue, which could lead to significant differences in terms of clinical outcome in recipients. Ideally, a disinfection protocol should achieve the greatest bioburden reduction with the lowest possible impact on tissue integrity. A systematic review of three databases found 68 laboratory and clinical studies that analyzed the microbial bioburden or contamination rates of musculoskeletal allografts. The use of peracetic acid-ethanol or ionizing radiation was found to be most effective for disinfection of tissues. The use of irradiation is the most frequently published method for the terminal sterilization of musculoskeletal allografts; it is widely used and its efficacy is well documented in the literature. However, effective disinfection results were still observed using the BioCleanse™ Tissue Sterilization process, pulsatile lavage with antibiotics, ethylene oxide, and chlorhexidine. The variety of effective methods to reduce contamination rate or bioburden, in conjunction with limited high quality evidence provides little support for the recommendation of a single bioburden reduction method.

  11. [The significance of endocrine factors and microorganisms in the development of gingivitis in pregnant women].

    PubMed

    Abraham-Inpijn, L; Polsacheva, O V; Raber-Durlacher, J E

    1996-01-01

    40-100% of pregnant women suffer from the co-called pregnancy gingivitis. The cause of pregnancy gingivitis is possible multicausal: increased plasma female sex-hormones, alteration in dental plague and perhaps Prevotella intermedia in the subgingival plague, together with alteration of immunoresponse. Increasing levels of progesterone in the gingiva as well as estrogens due to specific receptors affect vascular permeability and exudation, provoke stasis of microcirculation, increase prostaglandine E2 formation in human gingiva. Decreased gingival keratinization and capability of cell regeneration may affect the epithelial barrier. This can perhaps explain the direct dependence between progesterone and estrogens increasing and the intensification of gingivitis clinical manifestation. The experimental gingivitis model of women during pregnancy and post-partum showed identical amounts of dental plague, but clinical manifestations were more intense during pregnancy and they had a relation with increasing P. Intermedia, no statistical significance was shown in the proportion of P. gingivalis. Increasing steroid hormones can substitute for the naphtoquinone requirement of P. intermedia. Optimal oral hygiene performed during pregnancy reduced gingival swelling, redness and bleeding tendency to levels which can be considered as physiologic for the pregnant state.

  12. Effects of cadmium on the growth and uptake of cadmium by microorganisms. [Esherichia coli; Bacillus cereus; Lactobacillus acidophilus; Staphylococcus aureus; Streptococcus faecalis; Actinomyces niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, J.J.; Marshall, R.T.; Pfander, W.H.

    1975-01-01

    Six species of microorganisms, Escherichia coli, Bacillus cereus, Lactobacillus acidophilus, Staphylococcus aureus, Streptococcus faecalis and Actinomyces niger, were grown under suitable conditions in appropriate media. Cadmium chloride was added to provide 0, 5, 10, 20, 40, and 80 ..mu..g of Cd per ml. At 40 and 80 ..mu..g of Cd per ml, E. coli and B. cereus grew well and the other species were repressed. Cd uptake patterns differed significantly among the species tested. The significance of these data with respect to Cd in food chains is discussed. 14 references, 3 tables.

  13. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants.

    PubMed

    Qabaha, Khaled Ibraheem

    2013-01-01

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms included six bacterial isolates (i.e. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginos, Klebsiella pneumonia, Bacillus subtilis and Micrococcus luteus) and two fungal isolates (i.e. Candida albicans and Aspergillus niger). A standard antioxidant assay was performed on the plant extracts to assess their capability in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH). Of the five tested plant extract, only Rosmarinus offcinalis extract contained significant antimicrobial activity against all eight microbial isolates including Pseudomonas aeruginosa. Extracts from other four plants exhibited a variable antimicrobial activity against all microorganisms, except Pseudomonas aeruginosa. Significant antioxidant activity was detected in all plant extracts. However, extracts from Pisidium guajava leaves contained significantly higher antioxidant activity compared to the other extracts tested. The antimicrobial and scavenging activities detected in this in vitro study in extracts from the five Palestinian medicinal plants suggest that further study is needed to identify active compounds to target diseases caused by a wide-spectrum pathogens.

  14. Microbiological profile of selected mucks

    NASA Astrophysics Data System (ADS)

    Dąbek-Szreniawska, M.; Wyczółkowski, A. I.

    2009-04-01

    INTRODUCTION Matyka-Sarzynska and Sokolowska (2000) emphasize that peats and peat soils comprise large areas of Poland. The creation of soil begins when the formation of swamp has ended. Gawlik (2000) states that the degree of influence of the mucky process of organic soils on the differentiations of the conditions of growth and development of plants is mainly connected with the changes of moisture-retentive properties of mucks which constitute the material for these soils, and the loss of their wetting capacities. The above-mentioned changes, which usually occur gradually and show a clear connection with the extent of dehydration and, at times, with its duration, intensify significantly when the soils are under cultivation. The mucky process of peat soils leads to transformations of their physical, chemical and biological properties. The main ingredient of peat soils is organic substance. The substance is maintained inside them by the protective activity of water. The process of land improvement reduces the humidity of the environment, and that Intensifies the pace of the activity of soil microorganisms which cause the decay of organic substance. The decay takes place in the direction of two parallel processes: mineralization and humification. All groups of chemical substances constituting peat undergo mineralization. Special attention should be called to the mineralization of carbon and nitrogen compounds, which constitute a large percentage of theorganic substance of the peat organic mass. Okruszko (1976) has examined scientificbases of the classification of peat soils depending on the intensity of the muck process. The aim of this publication was to conduct a microbiological characteristic of selected mucky material. METHODS AND MATERIALS Soil samples used in the experiments were acquired from the Leczynsko-Wlodawski Lake Region, a large area of which constitutes a part of the Poleski National Park, which is covered to a large extent with high peat bogs. It was a mucky-peat soil with different degrees of muck process, described by Gawlik (2000) as MtI - first step of muck process, and MtII - second step of muck process. The numbers of selected groups of microorganisms were established using the cultivation method. The total number of microorganisms, zymogenic, aerobic and anaerobic microorganisms (Fred, Waksman 1928), oligotrophic microorganisms, the number of fungi (Parkinson 1982), ammonifiers (Parkinson et al 1971), nitrogen reducers and amolytic microorganisms (Pochon and Tardieux 1962), were determined. RESULTS The interpretation of the obtained results should take into consideration not only the characteristics of the studied objects, but also the characteristics of the methods used and of the examined microorganisms. As a result of the experiments that were carried out, significant differences of the numbers of the examined groups of microorganisms, depending on the degree of the muck process, have been observed. The number of the examined groups was significantly higher in the soil at the first step muck process than the second step of muck process. Amylolytic bacteria were an exception. Probably, during the muck process, ammonification, nitrification and nitrogen reduction process take place at the same time, which is indicated by the number of individual groups of examined microorganisms. CONCLUSIONS During the muck process, the number of microorganisms in the soil decreases. It can be presupposed that during the muck process, the basic process realized by microorganisms is the degradation of organic substance, using nitrates as oxidizers. Dąbek-Szreniawska M.: 1992 Results of microbiological analysis related to soil physical properties. Zesz. Probl. Post. Nauk Roln., 398, 1-6. Fred E.B., Waksman S.A.: 1928 Laboratory manual of general microbiology. Mc Graw-Hill Book Company, New York - London pp. 145. Gawlik J.: 2000 Division of differently silted peat formations into classes according to their state of secondary transformations. Acta Agrophysica, 26, 17-24. Maciak F.: 1985 MateriaŁ y do ćwiczeń z rekultywacji teren

  15. [Microbiological and biochemical characteristics of inflammatory tissues in the periodontium].

    PubMed

    Surna, Algimantas; Sakalauskiene, Jurgina; Vitkauskiene, Astra; Saferis, Viktoras

    2008-01-01

    To investigate bacterial populations in subgingival and supragingival plaque samples of patients with inflammatory periodontal diseases and activities of the lysosomal enzymes--lysozyme, alkaline phosphatase, and beta-glucuronidase--in peripheral venous blood, in gingival crevicular fluid, and mixed nonstimulated saliva. The study included 60 patients with inflammatory periodontal diseases without any internal pathology and 24 periodontally healthy subjects. Molecular genetic assay (Micro-IDent plus, Germany) for complex identification of additional six periodontopathic bacteria was applied. The activity of lysozyme was determined turbidimetrically, the activity of alkaline phosphatase--spectrophotometrically with a "Monarch" biochemical analyzer, the activity beta-glucuronidase--according to the method described by Mead et al. and modified by Strachunskii. A statistically significant association between clinical and bacteriological data was found in the following cases: gingival bleeding in the presence of Eubacterium nodatum, Eikenella corrodens, Capnocytophaga spp. (P<0.01); pathological periodontal pockets in the presence of Peptostreptococcus micros (alpha< or =0.05 and beta< or =0.2), Fusobacterium nucleatum (alpha< or =0.05 and beta< or =0.2), Campylobacter rectus (alpha< or =0.05 and beta< or =0.2), and Capnocytophaga spp. (P<0.05); and satisfactory oral hygiene in the presence of all microorganisms investigated (P<0.05). The activity of lysozyme in gingival crevicular fluid and mixed nonstimulated saliva indicates the severity of periodontal inflammation. Based on clinical data, in assessing the amount of lysozyme in mixed nonstimulated saliva, sensitivity and specificity of 100% was found. Increased activities of lysozyme, alkaline phosphatase, and beta-glucuronidase were found in peripheral venous blood of patients with inflammatory periodontal disease as compared to control group. The main principles of the treatment of periodontal inflammatory diseases should be based on microorganism elimination, creation of individual treatment means affecting microflora in the mouth and immune system of macroorganisms.

  16. Contemporary issues: diseases with a food vector.

    PubMed

    Archer, D L; Young, F E

    1988-10-01

    Foodborne disease has become a contemporary issue. Several large, well-publicized outbreaks of foodborne disease have heightened public awareness that harmful microorganisms may be present in food and that chronic as well as acute disease may be caused by foodborne microbes. The field of food microbiology has likewise experienced a resurgence of interest. New tools, such as recombinant deoxyribonucleic acid technology and monoclonal antibody production, used to elucidate microbial virulence factors have facilitated identification of disease-causing microbes once thought to be harmless and demonstrated the complexity of individual virulence mechanisms previously considered to be well understood. Foodborne pathogens are also causing disease via some surprising food vectors, such as chopped, bottled garlic and sauteed onions. In addition to acute gastrointestinal disturbances, certain microorganisms may, through complex interactions with the human immune response, cause chronic diseases that affect several major organ systems. These microbes are serving as models in studies of molecular mimicry and genetic interrelatedness of procaryotes and eucaryotes. Other recently recognized attributes of foodborne microorganisms, such as the heat shock phenomenon and the possible nonculturability of some bacteria, may affect their ability to cause disease in humans. Because foodborne disease is a major cause of morbidity and mortality, the study of these diseases and their causative microorganisms presents a unique challenge to many professionals in the subdisciplines of microbiology, epidemiology, and clinical medicine.

  17. Contemporary issues: diseases with a food vector.

    PubMed Central

    Archer, D L; Young, F E

    1988-01-01

    Foodborne disease has become a contemporary issue. Several large, well-publicized outbreaks of foodborne disease have heightened public awareness that harmful microorganisms may be present in food and that chronic as well as acute disease may be caused by foodborne microbes. The field of food microbiology has likewise experienced a resurgence of interest. New tools, such as recombinant deoxyribonucleic acid technology and monoclonal antibody production, used to elucidate microbial virulence factors have facilitated identification of disease-causing microbes once thought to be harmless and demonstrated the complexity of individual virulence mechanisms previously considered to be well understood. Foodborne pathogens are also causing disease via some surprising food vectors, such as chopped, bottled garlic and sauteed onions. In addition to acute gastrointestinal disturbances, certain microorganisms may, through complex interactions with the human immune response, cause chronic diseases that affect several major organ systems. These microbes are serving as models in studies of molecular mimicry and genetic interrelatedness of procaryotes and eucaryotes. Other recently recognized attributes of foodborne microorganisms, such as the heat shock phenomenon and the possible nonculturability of some bacteria, may affect their ability to cause disease in humans. Because foodborne disease is a major cause of morbidity and mortality, the study of these diseases and their causative microorganisms presents a unique challenge to many professionals in the subdisciplines of microbiology, epidemiology, and clinical medicine. PMID:3069199

  18. Introduction to Clinical Microbiology for the General Dentist.

    PubMed

    Rams, Thomas E; van Winkelhoff, Arie J

    2017-04-01

    Clinical oral microbiology may help dental professionals identify infecting pathogenic species and evaluate their in vitro antimicrobial susceptibility. Saliva, dental plaque biofilms, mucosal smears, abscess aspirates, and soft tissue biopsies are sources of microorganisms for laboratory testing. Microbial-based treatment end points may help clinicians better identify patients in need of additional or altered dental therapies before the onset of clinical treatment failure, and help improve patient oral health outcomes. Microbiological testing appears particularly helpful in periodontal disease treatment planning. Further research and technological advances are likely to increase the availability and clinical utility of microbiological analysis in modern dental practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.

  20. Laboratory diagnosis of peritonitis in patients on continuous ambulatory peritoneal dialysis.

    PubMed Central

    Ludlam, H A; Price, T N; Berry, A J; Phillips, I

    1988-01-01

    The clinical course and laboratory diagnosis of peritonitis in patients undergoing continuous ambulatory peritoneal dialysis was studied in 32 consecutive episodes. Peritonitis was associated with a failure in aseptic technique in eight episodes and with an exit-site infection in four episodes. Intraperitoneal vancomycin and ceftazidime were safe, effective, and convenient. Most patients administered their antibiotics at home, and symptoms usually resolved by day 4. Culture of the deposit obtained by centrifugation of 50 ml of effluent after leukocyte lysis provided the best rate of recovery (84% culture positive) but was technically demanding. Filtration of the same volume without leukocyte lysis was simple to perform and almost as effective. Enrichment was less satisfactory (65% culture positive) owing to the presence of antibiotic or infection with fastidious microorganisms. Culture of 50 ml of effluent after concentration by a commonly used laboratory technique, centrifugation without leukocyte lysis, performed poorly (59% culture positive at 48 h), as this method caused sequestration and death of microorganisms within the leukocytes. Culture of nearly 1 liter of effluent from 33 asymptomatic patients by the same techniques yielded no microorganisms. PMID:3183023

  1. Microorganisms isolated from root canals presenting necrotic pulp and their drug susceptibility in vitro.

    PubMed

    Lana, M A; Ribeiro-Sobrinho, A P; Stehling, R; Garcia, G D; Silva, B K; Hamdan, J S; Nicoli, J R; Carvalho, M A; Farias, L de M

    2001-04-01

    The knowledge about causative agents involved in endodontic infections is increasing, especially due to the improvement of culture techniques for anaerobic bacteria, showing that these microorganisms are predominant in this pathology. In this study, 31 canals with pulp necrosis were microbiologically analyzed before and after manipulation. Obligate and facultative anaerobes, microaerophilic bacteria and yeasts were recovered from 24, 14, 5 and 2 clinical specimens, respectively. The most frequent genera were Prevotella, Fusobacterium, Lactobacillus, Streptococcus, Clostridium and Peptostreptococcus for bacteria and Candida and Saccharomyces for yeasts. Strong positive associations, using an odds ratio system, were found between Clostridium and Prevotella and between Peptostreptococcus and Fusobacterium. Even after the instrumentation and the use of Ca(OH)2, facultative anaerobes were detected in two root canals and yeasts in three. Microorganisms were isolated from seven canals at the end of the endodontic treatment: facultative anaerobes from five and yeasts from one. The microbiological evaluation of root canals with pulp necrosis suggests the presence of polymicrobial infections, mainly involving obligate anaerobes, and shows that the infection may persist after treatment.

  2. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. Fast detection of air contaminants using immunobiological methods

    NASA Astrophysics Data System (ADS)

    Schmitt, Katrin; Bolwien, Carsten; Sulz, Gerd; Koch, Wolfgang; Dunkhorst, Wilhelm; Lödding, Hubert; Schwarz, Katharina; Holländer, Andreas; Klockenbring, Torsten; Barth, Stefan; Seidel, Björn; Hofbauer, Wolfgang; Rennebarth, Torsten; Renzl, Anna

    2009-05-01

    The fast and direct identification of possibly pathogenic microorganisms in air is gaining increasing interest due to their threat for public health, e.g. in clinical environments or in clean rooms of food or pharmaceutical industries. We present a new detection method allowing the direct recognition of relevant germs or bacteria via fluorescence-labeled antibodies within less than one hour. In detail, an air-sampling unit passes particles in the relevant size range to a substrate which contains antibodies with fluorescence labels for the detection of a specific microorganism. After the removal of the excess antibodies the optical detection unit comprising reflected-light and epifluorescence microscopy can identify the microorganisms by fast image processing on a single-particle level. First measurements with the system to identify various test particles as well as interfering influences have been performed, in particular with respect to autofluorescence of dust particles. Specific antibodies for the detection of Aspergillus fumigatus spores have been established. The biological test system consists of protein A-coated polymer particles which are detected by a fluorescence-labeled IgG. Furthermore the influence of interfering particles such as dust or debris is discussed.

  4. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars.

    PubMed

    Faria, Raquel Lourdes; Cardoso, Lincoln Marcelo Lourenço; Akisue, Gokithi; Pereira, Cristiane Aparecida; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; Santos Júnior, Paulo Villela

    2011-10-01

    The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL). The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate.

  5. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars

    PubMed Central

    FARIA, Raquel Lourdes; CARDOSO, Lincoln Marcelo Lourenço; AKISUE, Gokithi; PEREIRA, Cristiane Aparecida; JUNQUEIRA, Juliana Campos; JORGE, Antonio Olavo Cardoso; SANTOS JÚNIOR, Paulo Villela

    2011-01-01

    Objective The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Material and Methods Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL). Results The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Conclusions Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate. PMID:21986652

  6. Endotoxins in Environmental and Clinical Samples Assessed by GC-Tandem MS

    NASA Astrophysics Data System (ADS)

    Szponar, Bogumila

    Bacteria appeared on the Earth millions years before us and human evolution was triggered by the constant presence of pathogenic and symbiotic microorganisms in our surroundings. Interplay occurred between higher organism and microbial consortia residing in the host organs and on the epithelial surfaces; another natural space of bacteria-human interaction is the indoor environment where we spend the majority of our lifetime. Indoor microbial exposure affects our well-being and can result in respiratory symptoms, such as allergies and asthma, since both dead and live microorganisms and their cell constituents, including lipopolysaccharides (LPS, endotoxins), interact with our immune system. Thus, there is a demand for robust tools for qualitative and quantitative determination of the microbial communities that we are exposed to.

  7. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

    PubMed Central

    Singh, Shriti; Singh, Santosh Kumar; Chowdhury, Indrajit; Singh, Rajesh

    2017-01-01

    A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms. PMID:28553416

  8. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon.

    PubMed

    Li, Lin; Gao, Min; Liu, Junxin; Guo, Xuesong

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 microm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.

  9. Rapid identification of single microbes by various Raman spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2006-02-01

    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  10. Effects of honey in the management of alveolar osteitis: A study

    PubMed Central

    Soni, Nikita; Singh, Vibha; Mohammad, Shadab; Singh, R. K.; Pal, U. S.; Singh, Ranjana; Aggrwal, Jyatasana; Pal, Mahesh

    2016-01-01

    Introduction: Alveolar osteitis (AO) is a complication of tooth extraction which indicates inflammation of alveolar bone of either maxilla or mandible. This study uses Apitherapy where honey catalyses biological reactions to improve immune system, makes local environment unbearable for microorganisms in the affected socket and enhances healing. Materials and Methods: 50 patients of AO were included in the study. After cleansing of the affected socket, honey dressing was applied. Dressings were changed daily for first 2 days and then altenatively. In biochemical investigations, CRP levels in the body were measured using Nephelometry method. Microbiological examination was done for the identification of microorganism and semi quantitative count of colony forming units. Result: Results were assessed from clinical, microbiological, biochemical and radiological findings at 1st, 2nd, 3rd, 5th, 7th day based on VAS score, erythema, pus discharge, swelling, lymphadenitis, fever, bleeding on probing, exposed bone and necrotic debris. Pre-Treatment CRP was 2.08 ± 1.62 which significantly (P = 0.0001) decreased to 0.82 ± 0.48. Mean change and average percentage change were 1.25 ± 1.51 and 44.1% respectively. Conclusion: Majority of the patients with exposed bone got healed socket with evidance of granulation tissue and healing gingiva in about one week. CRP levels at the completion of treatment of AO with honey dressing showed a significant decrease from the pre-treatment values indicating fast recovery. Microbiological examination showed presence of normal commensal flora at AO sites like Streptococcus, Staphyloccocus and Enterococcus. So, the role of bacteria in the genesis of AO, if any, appears unclear. PMID:28356684

  11. Quantitative Molecular Detection of Putative Periodontal Pathogens in Clinically Healthy and Periodontally Diseased Subjects

    PubMed Central

    Göhler, André; Hetzer, Adrian; Holtfreter, Birte; Geisel, Marie Henrike; Schmidt, Carsten Oliver; Steinmetz, Ivo; Kocher, Thomas

    2014-01-01

    Periodontitis is a multi-microbial oral infection with high prevalence among adults. Putative oral pathogens are commonly found in periodontally diseased individuals. However, these organisms can be also detected in the oral cavity of healthy subjects. This leads to the hypothesis, that alterations in the proportion of these organisms relative to the total amount of oral microorganisms, namely their abundance, rather than their simple presence might be important in the transition from health to disease. Therefore, we developed a quantitative molecular method to determine the abundance of various oral microorganisms and the portion of bacterial and archaeal nucleic acid relative to the total nucleic acid extracted from individual samples. We applied quantitative real-time PCRs targeting single-copy genes of periodontal bacteria and 16S-rRNA genes of Bacteria and Archaea. Testing tongue scrapings of 88 matched pairs of periodontally diseased and healthy subjects revealed a significantly higher abundance of P. gingivalis and a higher total bacterial abundance in diseased subjects. In fully adjusted models the risk of being periodontally diseased was significantly higher in subjects with high P. gingivalis and total bacterial abundance. Interestingly, we found that moderate abundances of A. actinomycetemcomitans were associated with reduced risk for periodontal disease compared to subjects with low abundances, whereas for high abundances, this protective effect leveled off. Moderate archaeal abundances were health associated compared to subjects with low abundances. In conclusion, our methodological approach unraveled associations of the oral flora with periodontal disease, which would have gone undetected if only qualitative data had been determined. PMID:25029268

  12. Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System

    PubMed Central

    Machen, Alexandra; Drake, Tim; Wang, Yun F. (Wayne)

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship. PMID:24551067

  13. Antimicrobial effect of 4 disinfectants on alginate, polyether, and polyvinyl siloxane impression materials.

    PubMed

    Al-Jabrah, Osama; Al-Shumailan, Yousef; Al-Rashdan, Manhal

    2007-01-01

    Dental impressions often carry microorganisms that may cause cross infection from patients to dental staff. The aim of the current study was to determine the effectiveness of 4 different disinfectant solutions on 3 commonly used impression materials--alginate, polyether, and polyvinyl siloxane--to establish a protocol for disinfection of these impression materials after clinical exposure and prior to handling in the dental laboratory. A total of 45 impressions were taken from the maxillary dentate arches of 15 dental staff participants at the Department of Dentistry, Prince Rashid Hospital, Irbid, Jordan. For each participant, 3 successive impressions were recorded in the different impression materials. For each impression, 6 specimens were dissected from 6 different locations and exposed to 6 different regimens: 1 was left untreated, 1 was immersed in sterile water for 10 minutes to serve as a control, and the remaining 4 specimens were exposed to 4 different disinfection treatments (Dimenol, Perform-ID, MD 520, and Haz-tabs). Serial dilutions of the suspension were carried out and counted by the Miles-Misra technique (inoculation on Columbia blood agar for quantification). The dilutions were aerobically incubated at 37 degrees C for 48 hours. The disinfectants were able to completely eliminate microorganisms carried by the impressions. For those undisinfected specimens, the results showed that untreated alginate impressions appear to carry more microorganisms (P < .05) than the other 2 rubber impression materials used in the study. For those specimens immersed in sterile water for 10 minutes (control group), the number of microorganisms eliminated was increased from 62% to 90% compared to those left untreated. Impression materials may act as a vehicle for the transfer of microorganisms from the patient's mouth to dental personnel. Impressions should be disinfected to eliminate the risk of cross contamination.

  14. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches

    PubMed Central

    Papadimitriou, Konstantinos; Zoumpopoulou, Georgia; Foligné, Benoit; Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms. PMID:25741323

  15. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    PubMed

    Machen, Alexandra; Drake, Tim; Wang, Yun F Wayne

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  16. [Increasing incidence of community-acquired pneumonia caused by atypical microorganisms].

    PubMed

    Tazón-Varela, M A; Alonso-Valle, H; Muñoz-Cacho, P; Gallo-Terán, J; Piris-García, X; Pérez-Mier, L A

    2017-09-01

    Knowing the most common microorganisms in our environment can help us to make proper empirical treatment decisions. The aim is to identify those microorganisms causing community-acquired pneumonia. An observational, descriptive and prospective study was conducted, including patients over 14 years with a clinical and radiographic diagnosis of community-acquired pneumonia during a 383 consecutive day period. A record was made of sociodemographic variables, personal history, prognostic severity scales, progress, and pathogenic agents. The aetiological diagnosis was made using blood cultures, detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigens, sputum culture, influenza virus and Streptococcus pyogenes detection. Categorical variables are presented as absolute values and percentages, and continuous variables as their means and standard deviations. Of the 287 patients included in the study (42% women, mean age 66±22 years), 10.45% died and 70% required hospital admission. An aetiological diagnosis was achieved in 43 patients (14.98%), with 16 microorganisms found in 59 positive samples. The most frequently isolated pathogen was Streptococcus pneumonia (24/59, 41%), followed by gram-negative enteric bacilli, Klebsiella pneumonia, Escherichia coli, Serratia marcescens and Enterobacter cloacae isolated in 20% of the samples (12/59), influenza virus (5/59, 9%), methicillin-resistant Staphylococcus aureus (3/59, 5%), Pseudomonas aeruginosa (2/59, 3%), Moraxella catarrhalis (2/59, 3%), Legionella pneumophila (2/59, 3%), and Haemophilus influenza (2/59, 3%). Polymicrobial infections accounted for 14% (8/59). A high percentage of atypical microorganisms causing community-acquired pneumonia were found. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  17. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    PubMed

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  18. Reduction and characterization of bioaerosols in a wastewater treatment station via ventilation.

    PubMed

    Guo, Xuesong; Wu, Pianpian; Ding, Wenjie; Zhang, Weiyi; Li, Lin

    2014-08-01

    Bioaerosols from wastewater treatment processes are a significant subgroup of atmospheric aerosols. In the present study, airborne microorganisms generated from a wastewater treatment station (WWTS) that uses an oxidation ditch process were diminished by ventilation. Conventional sampling and detection methods combined with cloning/sequencing techniques were applied to determine the groups, concentrations, size distributions, and species diversity of airborne microorganisms before and after ventilation. There were 3021 ± 537 CFU/m³ of airborne bacteria and 926 ± 132 CFU/m³ of airborne fungi present in the WWTS bioaerosol. Results showed that the ventilation reduced airborne microorganisms significantly compared to the air in the WWTS. Over 60% of airborne bacteria and airborne fungi could be reduced after 4 hr of air exchange. The highest removal (92.1% for airborne bacteria and 89.1% for fungi) was achieved for 0.65-1.1 μm sized particles. The bioaerosol particles over 4.7 μm were also reduced effectively. Large particles tended to be lost by gravitational settling and small particles were generally carried away, which led to the relatively easy reduction of bioaerosol particles 0.65-1.1 μm and over 4.7 μm in size. An obvious variation occurred in the structure of the bacterial communities when ventilation was applied to control the airborne microorganisms in enclosed spaces. Copyright © 2014. Published by Elsevier B.V.

  19. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  20. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenchly, Jean E.

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolationmore » of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.« less

  1. Role of soil microbial processes in integrated pest management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A.J.

    1987-01-01

    Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenicmore » microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.« less

  2. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain.

    PubMed

    Portillo, M Carmen; Saiz-Jimenez, Cesareo; Gonzalez, Juan M

    2009-01-01

    Caves with paleolithic paintings are influenced by bacterial development. Altamira Cave (Spain) contains some of the most famous paintings from the Paleolithic era. An assessment of the composition of bacterial communities that have colonized this cave represents a first step in understanding and potentially controlling their proliferation. In this study, areas showing colonization with uncolored microorganisms, referred to as "white colonizations", were analyzed. Microorganisms present in these colonizations were studied using DNA analysis, and those showing significant metabolic activity were detected in RNA-based RNA analysis. Bacterial community fingerprints were obtained both from DNA and RNA analyses, indicating differences between the microorganisms present and metabolically active in these white colonizations. Metabolically active microorganisms represented only a fraction of the total bacterial community present in the colonizations. 16S rRNA gene libraries were used to identify the major representative members of the studied communities. Proteobacteria constituted the most frequently found division both among metabolically active microorganisms (from RNA-based analysis) and those present in the community (from DNA analysis). Results suggest the existence of a huge variety of taxa in white colonizations of the Altamira Cave which represent a potential risk for the conservation of the cave and its paintings.

  3. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms.

    PubMed

    Meyer, Kyle M; Klein, Ann M; Rodrigues, Jorge L M; Nüsslein, Klaus; Tringe, Susannah G; Mirza, Babur S; Tiedje, James M; Bohannan, Brendan J M

    2017-03-01

    Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. © 2017 John Wiley & Sons Ltd.

  4. Year in review 2009: Critical Care--infection.

    PubMed

    Harbarth, Stephan; Haustein, Thomas

    2010-01-01

    In 2009 Critical Care provided important and clinically relevant research data for management and prevention of infections in critically ill patients. The present review summarises the results of these observational studies and clinical trials and discusses them in the context of the current relevant scientific and clinical background. In particular, we discuss recent epidemiologic data on nosocomial infections in intensive care units, present new approaches to prevention of ventilator-associated pneumonia, describe recent advances in biomarker-guided antibiotic stewardship and attempt to briefly summarise specific challenges related to the management of infections caused by multidrug-resistant microorganisms and influenza A (H1N1).

  5. Comparison of clinical diagnosis and microbiological test results in vaginal infections.

    PubMed

    Karaca, M; Bayram, A; Kocoglu, M E; Gocmen, A; Eksi, F

    2005-01-01

    Lower genital tract infections continue to be a problem due to the fact that the clinical diagnosis is usually inadequate, and subsequent care is suboptimal. This study aimed at evaluating the accuracy of clinical diagnosis by comparing it with microbiologic test results, and to determine the causative agents of vaginal infections. Sixty-seven nonpregnant women (18-45 years of age) with the clinical diagnosis of lower genital tract infection were enrolled in the study. Patients were not included if they had a history of vaginal infection during the previous three-month period or intrauterine device. The clinical diagnosis was based on the combinations of symptoms, direct observation of wet mount, homogeneous discharge, vaginal pH > 4.5, and detection of the amine odor after exposure of vaginal secretions to 10% KOH. Vaginal samples were taken with two cotton swabs, one was used for pH determination, and the second was utilized for microbiological tests. Gram staining and cultures with Sabouraud agar and chocolate agar were performed for microbiological diagnosis, and the results were compared. The clinical diagnoses included 26 (38.8%) candidiasis, 18 (26.8%) bacterial vaginosis, three (4.5%) trichomoniasis, and 20 (29.9%) mixed vaginal infections. Of the 26 patients with clinical diagnoses of candidiasis, 12 (46.1%) revealed Candiada albicans, nine (34.6) patients revealed microorganisms other than candida species, and five (19.2%) patients had no growth. Five (27.8%) bacterial vaginosis patients revealed Gardnarella vaginalis and 12 patients (66.6%) did not grow any microorganism. The overall rate of accurate clinical diagnoses confirmed by microbiological test results was 43.2%. Seventeen (43.6) of the 39 microbiological test results correlated with clinical diagnosis, and no growth was observed in 28 (41.8%) cultures. We conclude that the clinical diagnosis of vaginal infection is inadequate and should be confirmed with microbiological testing if the resources are avaliable.

  6. Current Features of Secondary (Acquired) Types of Immune Deficiency.

    PubMed

    Kovalchuk, Leonid V.; Pinegin, Boris V.

    1999-12-01

    Secondary (acquired) types of immune deficiencies (SID) take a leading place in practice of modern clinical immunology. The causes for SID development are extremely variable. Special attention is concerned with accumulating facts about target action of microorganisms, and first of all viruses, on certain processes in immune system. Damageable action of HIV-1 on cell elements expressing CD4 molecules is known in most precise manner. It is noteworthy that the search of real molecular defects, induced by microorganisms in immune system is required. It is not to be ruled out that the increased level of apoptosis of immune system cells is one of the causes of SID. The basis of it is disbalance between positive and negative activation processes of immunocompetent cells. Multiple factors may serve as apoptogens, including drugs (glucocorticoids etc.), xenobiotics, physical factors (radiation) and many others. In practice of clinical laboratories a certain spectrum of immunological investigations is recommended that allows to diagnose the degree of immunopathology. At present, in clinical practice these methods are focused around flow cytometry (immunophenotyping), immunodiffusion and immunoenzyme tests (determination of immunoglobulins, cytokines, other soluble components of immune system), tests of estimation of immunocompetent cell activation, proliferation and differentiation. As a prospective, some methods, based on identification of molecular defects in cells and soluble factors of immune system, may be taken into consideration.

  7. Guidelines for the Detection of Rickettsia spp.

    PubMed

    Portillo, Aránzazu; de Sousa, Rita; Santibáñez, Sonia; Duarte, Ana; Edouard, Sophie; Fonseca, Isabel P; Marques, Cátia; Novakova, Marketa; Palomar, Ana M; Santos, Marcos; Silaghi, Cornelia; Tomassone, Laura; Zúquete, Sara; Oteo, José A

    2017-01-01

    The genus Rickettsia (Rickettsiales: Rickettsiaceae) includes Gram-negative, small, obligate intracellular, nonmotile, pleomorphic coccobacilli bacteria transmitted by arthropods. Some of them cause human and probably also animal disease (life threatening in some patients). In these guidelines, we give clinical practice advices (microscopy, serology, molecular tools, and culture) for the microbiological study of these microorganisms in clinical samples. Since in our environment rickettsioses are mainly transmitted by ticks, practical information for the identification of these arthropods and for the study of Rickettsia infections in ticks has also been added.

  8. The use of newly developed real-time PCR for the rapid identification of bacteria in culture-negative osteomyelitis.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Sakai, Hiroshige; Togawa, Daisuke; Lieberman, Isador H; Fujishiro, Takaaki; Procop, Gary W

    2006-12-01

    We report a case of a culture-negative osteomyelitis in which our newly developed real-time polymerase chain reaction (PCR) could differentiate Staphylococcus aureus from Staphylococcus epidermidis. This is the first report that described the application of this novel assay to an orthopedics clinical sample. This assay may be useful for other clinical culture-negative cases in a combination with a broad-spectrum assay as a rapid microorganism identification method.

  9. Use of electron beam irradiation to improve the microbiological safety of Hippophae rhamnoides

    NASA Astrophysics Data System (ADS)

    Minea, R.; Nemţanu, M. R.; Manea, S.; Mazilu, E.

    2007-09-01

    Sea buckthorn ( Hippophae rhamnoides) is increasingly used in food supplements due to its dietary and medicinal compounds with a beneficial role in human diet and health. As many other medicinal plants, sea buckthorn can be contaminated with microorganisms which exerts an important impact on the overall quality of the products. Irradiation is an effective method for food preservation because it is able to destroy pathogenic microorganisms keeping the organoleptic and nutritional characteristics of the foods. The objective of the present study was to investigate the application of electron beam irradiation in order to improve the microbiological safety of sea buckthorn. The experimental results indicated that the electron beam treatment might be a good method to remove undesirable microorganisms from sea buckthorn without significant changes in its active principles.

  10. Metagenomics: A new horizon in cancer research

    PubMed Central

    Banerjee, Joyita; Mishra, Neetu; Dhas, Yogita

    2015-01-01

    Metagenomics has broadened the scope of targeting microbes responsible for inducing various types of cancers. About 16.1% of cancers are associated with microbial infection. Metagenomics is an equitable way of identifying and studying micro-organisms within their habitat. In cancer research, this approach has revolutionized the way of identifying, analyzing and targeting the microbial diversity present in the tissue specimens of cancer patients. The genomic analyses of these micro-organisms through next generation sequencing techniques invariably facilitate in recognizing the microbial population in biopsies and their evolutionary relationships with each other. In this review an attempt has been made to generate current metagenomic view on cancer microbiota. Different types of micro-organisms have been found to be linked to various types of cancers, thus, contributing significantly in understanding the disease at molecular level. PMID:26110115

  11. Dose Imprecision and Resistance: Free-Choice Medicated Feeds in Industrial Food Animal Production in the United States

    PubMed Central

    Love, David C.; Davis, Meghan F.; Bassett, Anna; Gunther, Andrew; Nachman, Keeve E.

    2011-01-01

    Background Industrial food animal production employs many of the same antibiotics or classes of antibiotics that are used in human medicine. These drugs can be administered to food animals in the form of free-choice medicated feeds (FCMF), where animals choose how much feed to consume. Routine administration of these drugs to livestock selects for microorganisms that are resistant to medications critical to the treatment of clinical infections in humans. Objectives In this commentary, we discuss the history of medicated feeds, the nature of FCMF use with regard to dose delivery, and U.S. policies that address antimicrobial drug use in food animals. Discussion FCMF makes delivering a predictable, accurate, and intended dose difficult. Overdosing can lead to animal toxicity; underdosing or inconsistent dosing can result in a failure to resolve animal diseases and in the development of antimicrobial-resistant microorganisms. Conclusions The delivery of antibiotics to food animals for reasons other than the treatment of clinically diagnosed disease, especially via free-choice feeding methods, should be reconsidered. PMID:21030337

  12. Enhancing the Antibiotic Antibacterial Effect by Sub Lethal Tellurite Concentrations: Tellurite and Cefotaxime Act Synergistically in Escherichia coli

    PubMed Central

    Molina-Quiroz, Roberto C.; Muñoz-Villagrán, Claudia M.; de la Torre, Erick; Tantaleán, Juan C.; Vásquez, Claudio C.; Pérez-Donoso, José M.

    2012-01-01

    The emergence of antibiotic-resistant pathogenic bacteria during the last decades has become a public health concern worldwide. Aiming to explore new alternatives to treat antibiotic-resistant bacteria and given that the tellurium oxyanion tellurite is highly toxic for most microorganisms, we evaluated the ability of sub lethal tellurite concentrations to strengthen the effect of several antibiotics. Tellurite, at nM or µM concentrations, increased importantly the toxicity of defined antibacterials. This was observed with both Gram negative and Gram positive bacteria, irrespective of the antibiotic or tellurite tolerance of the particular microorganism. The tellurite-mediated antibiotic-potentiating effect occurs in laboratory and clinical, uropathogenic Escherichia coli, especially with antibiotics disturbing the cell wall (ampicillin, cefotaxime) or protein synthesis (tetracycline, chloramphenicol, gentamicin). In particular, the effect of tellurite on the activity of the clinically-relevant, third-generation cephalosporin (cefotaxime), was evaluated. Cell viability assays showed that tellurite and cefotaxime act synergistically against E. coli. In conclusion, using tellurite like an adjuvant could be of great help to cope with several multi-resistant pathogens. PMID:22536386

  13. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications.

    PubMed

    Rokhsefat, Sana; Lin, Aifeng; Comelli, Elena M

    2016-06-01

    The mucus layer and gut microbiota interplay contributes to host homeostasis. The mucus layer serves as a scaffold and a carbon source for gut microorganisms; conversely, gut microorganisms, including mucin degraders, influence mucin gene expression, glycosylation, and secretion. Conjointly they shield the epithelium from luminal pathogens, antigens, and toxins. Importantly, the mucus layer and gut microbiota are established in parallel during early postnatal life. During this period, the development of gut microbiota and mucus layer is coupled with that of the immune system. Developmental changes of different mucin types can impact the age-dependent patterns of intestinal infection in terms of incidence and severity. Altered mucus layer, dysbiotic microbiota, and abnormal mucus-gut microbiota interaction have the potential for inducing systemic effects, and accompany several intestinal diseases such as inflammatory bowel disease, colorectal cancer, and radiation-induced mucositis. Early life provides a pivotal window of opportunity to favorably modulate the mucus-microbiota interaction. The support of a health-compatible mucin-microbiota maturation in early life is paramount for long-term health and serves as an important opportunity for clinical intervention.

  14. Frequency of bacetrial content finding in persistant periapical lesions

    PubMed Central

    Grgurević, Joško; Tambić Andrašević, Arjana; Prpić Mehičić, Goranka; Kuzmac, Sania; Jukić, Silvana

    2017-01-01

    Objectives To determine the percentage of persistant apical lesions positive for bacterial nucleic acids, to detect microorganisms difficult to cultivate in persistant apical lesions by PCR and relate them to endodontic failure, clinical symptoms and diabetes mellitus. Materials and methods The samples of persistent apical lesions were collected during apicoectomy. Bacterial ubiquitous primer 16S rRNA was used to detect 16S ribosomal RNA in 36 samples. A species–specific PCR was performed with primers targeted to the bacterial 16S rRNA genes of Prevotella Nigrescens, Pseudoramibacter alactolyticus, and Propionobacterium propionicum. Results Six samples (16.67%) were positive for bacterial ribosomal RNA. Pseudoramibacter alactolyticus was detected in three samples. Propionibacterium propionicum and Prevotella nigrescens were detected in one sample each. The prevalence of infection of such lesions with P. intermedia, P. propionicum and P. alactolyticus is low. Conslusion The study we conducted gave insufficient data about extraradicular infection and its connection with diabetes mellitus and clinical symptoms. Conclusions Apical lesions persisting after endodontic treatment could harbor microorganisms other than Actinomyces and Propionicum species. PMID:29225362

  15. Phenotypic and genotypic characterization of clinically relevant bacteria isolated from dental waste and waste workers' hands, mucosas and coats.

    PubMed

    Tagliaferri, T L; Vieira, C D; de Carvalho, M A R; Ladeira, L C D; Magalhães, P P; de Macêdo Farias, L; Dos Santos, S G

    2017-10-01

    Infectious wastes are potential sources of pathogenic micro-organisms, which may represent a risk to the professionals who manage them. In this study, we aimed to characterize the infectious bacteria present in dental waste and waste workers. The dental waste produced over 24 h was collected and waste workers were sampled by swabbing. Isolate resistance profiles were characterized by Vitek ® and PCR and biofilm formation by Congo Red agar, string test and microtitre assay. To assess similarity between the waste and the workers' samples, a random amplified polymorphic DNA test was used. Twenty-eight bacteria were identified as clinically relevant. The most frequent gene was bla TEM present in five Gram-negative micro-organisms, and one bla SHV in Klebsiella pneumoniae. All Pseudomonas aeruginosa were positive to extracellular polymeric substances formation, except one isolated from a worker. Klebsiella pneumoniae had negative results for the string test. Pseudomonas aeruginosa showed better adherence at 25°C after 48 h of incubation and K. pneumonia had the best biofilm formation at the same temperature, after 24 h. The similarity between P. aeruginosa recovered from dental waste and from workers was low, however, it is important to note that a pathogen was found on a worker's hands and that improvements in biosafety are required. Infectious dental waste can contain clinically relevant bacteria with important resistance and biofilm profiles. These micro-organisms could be transmitted to waste workers, other professionals and patients if the principles of biosafety measures are neglected. To our knowledge, no study has ever evaluated the microbial characterization and the potential contamination risk of dental infectious waste and waste handlers. The presence of clinically relevant bacteria in the hands and nasal mucosa of waste workers highlights the need for studies in this field to clarify the risk of these pathogens in dental healthcare services, and to stress the need for an efficient waste management. © 2017 The Society for Applied Microbiology.

  16. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    PubMed

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  17. Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples.

    PubMed

    Herrera, M; Castillo, A; Bravo, M; Liébana, J; Carrión, P

    2000-01-01

    A total of 103 clinical samples of carious dentin were used to study the antibacterial action of different dental resin adhesive materials (Gluma 2000, Syntac, Prisma Universal Bond 3, Scotchbond Multi-Purpose and Prime&Bond 2.0) glass ionomer cements (Ketac-Cem, Ketac-Bond, Ketac-Silver, Ketac-Fil) resin-modified glass ionomer cements (Fuji II LC, Vitremer and Vitrebond) and a compomer (Dyract). The agar plate diffusion method was used for the microbial cultures and a chlorhexidine control. The growth of the caries-producing microorganisms was effectively inhibited by the Vitremer and Vitrebond cements, and to a lesser extent by the Scotchbond Multi-Purpose adhesive system. Overall, there were statistically significant differences in the antibacterial activity of the products tested.

  18. [Rapid identification of meningitis due to bacterial pathogens].

    PubMed

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  19. Ciguatera fish poisoning: impact for the military health care provider.

    PubMed

    Arnett, Michael V; Lim, Julia T

    2007-09-01

    Ciguatera toxin is a marine neurotoxin produced by microorganisms that becomes concentrated in predatory fish. Toxicity in humans results from the ingestion of contaminated fish harvested in tropical waters. Clinical manifestations of illness include the rapid onset of gastrointestinal symptoms and neurological abnormalities. Because of the rapid onset of symptoms and the potential for case clusters from a common source ingestion of contaminated fish, there is the potential that ciguatera poisoning may initially mimic illnesses caused by antipersonnel biological and chemical agents. We present data on an active duty soldier who presented to sick call for evaluation of new onset paresthesias and was diagnosed with ciguatera toxin poisoning. We also present a review of ciguatera poisoning literature with emphasis on the distinguishing features between ciguatoxin and other neurotoxins of military significance.

  20. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms(1a,).

    PubMed

    Pettit, George R; Hogan, Fiona; Xu, Jun-Ping; Tan, Rui; Nogawa, Toshihiko; Cichacz, Zbigniew; Pettit, Robin K; Du, Jiang; Ye, Qing-Hua; Cragg, Gordon M; Herald, Cherry L; Hoard, Michael S; Goswami, Animesh; Searcy, Justin; Tackett, Larry; Doubek, Dennis L; Williams, Lee; Hooper, John N A; Schmidt, Jean M; Chapuis, Jean-Charles; Tackett, Denise N; Craciunescu, Felicia

    2008-03-01

    Bioassay-guided fractionation of extracts of various plants, marine organisms, and microorganisms has led to the discovery of new natural sources of a number of known compounds that have significant biological activity. The isolation of interesting and valuable cancer cell growth inhibitors including majusculamide C ( 1), axinastatin 5 ( 5), bengazoles A ( 6), B ( 7), and E ( 8), manzamine A ( 10), jaspamide ( 11), and neoechinulin A ( 19) has been summarized.

  1. COMPLETE REDUCTION OF TELLURITE TO PURE TELLURIUM METAL BY MICROORGANISMS

    PubMed Central

    Tucker, Fayne L.; Walper, John F.; Appleman, Milo Don; Donohue, Jerry

    1962-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John F. Walper, Milo Don Appleman, and Jerry Donohue. Complete reduction of tellurite to pure tellurium metal by microorganisms. J. Bacteriol. 83:1313–1314. 1962—The black precipitate produced in the presence of potassium tellurite by growing cells of Streptococcus faecalis N83 and Corynebacterium diphtheriae was shown, by X-ray diffraction analysis, to consist of metallic tellurium. The metal was not complexed, to any significant degree, with any organic material. PMID:13922991

  2. Medical Significance of Microorganisms in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  3. Can Cranberries Contribute to Reduce the Incidence of Urinary Tract Infections? A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Clinical Trials.

    PubMed

    Luís, Ângelo; Domingues, Fernanda; Pereira, Luísa

    2017-09-01

    We sought to clarify the association between cranberry intake and the prevention of urinary tract infections. This systematic review, which complies with the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statement, was done as a meta-analysis and trial sequential analysis of clinical trials. The findings clearly showed the potential use of cranberries for the clinical condition of urinary tract infection. Cranberry products significantly reduced the incidence of urinary tract infections as indicated by the weighted risk ratio (0.6750, 95% CI 0.5516-0.7965, p <0.0001). The results of subgroup analysis demonstrated that patients at some risk for urinary tract infections were more susceptible to the effects of cranberry ingestion. The results of the current study could be used by physicians to recommend cranberry ingestion to decrease the incidence of urinary tract infections, particularly in individuals with recurrent urinary tract infections. This would also reduce the administration of antibiotics, which could be beneficial since antibiotics can lead to the worldwide emergence of antibiotic resistant microorganisms. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. The effect of periodontal treatment on C-reactive protein: A clinical study.

    PubMed

    Kumar, Santosh; Shah, Samir; Budhiraja, Shilpa; Desai, Khushboo; Shah, Chirag; Mehta, Dhaval

    2013-07-01

    Chronic periodontitis in amultifactorial inflammatory disease which is caused by various microorganisms. Many studies have found close association between chronic periodontitis and C-reactive protein (CRP). CRPis an inflammatory marker which increases in all inflammatory condition. The present clinical study was designed to show the effect of periodontal treatment on the CRP levels of gingival crevicular fluid and to determine the effect of nonsurgical therapy in minimizing the CRP levels in chronic generalized periodontitis. Gingival crevicular fluid was collected using a micro capillary pipette that was hand calibrated at every 1 mm till 10 mm, from selected sites in the subjects on the 1st, 14th and 45th days. Decreased CRP levels of gingival crevicular fluid were observed at the end of the study. There was a 37% reduction in probing pocket depth and 45% gain in clinical attachment level and a reduction of about 57% after 14 days and 90% reduction of CRP levels in gingival crevicular fluid after 45 days. Thus, the results show that the presence of CRP level is more significant in gingival crevicular fluid and confirms the underlying inflammatory component of the disease activity in chronic periodontitis.

  5. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E

    2014-07-01

    In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  6. [Periodontal microbiota and microorganisms isolated from heart valves in patients undergoing valve replacement surgery in a clinic in Cali, Colombia].

    PubMed

    Moreno, Sandra; Parra, Beatriz; Botero, Javier E; Moreno, Freddy; Vásquez, Daniel; Fernández, Hugo; Alba, Sandra; Gallego, Sara; Castillo, Gilberto; Contreras, Adolfo

    2017-12-01

    Periodontitis is an infectious disease that affects the support tissue of the teeth and it is associated with different systemic diseases, including cardiovascular disease. Microbiological studies facilitate the detection of microorganisms from subgingival and cardiovascular samples. To describe the cultivable periodontal microbiota and the presence of microorganisms in heart valves from patients undergoing valve replacement surgery in a clinic in Cali. We analyzed 30 subgingival and valvular tissue samples by means of two-phase culture medium, supplemented blood agar and trypticase soy agar with antibiotics. Conventional PCR was performed on samples of valve tissue. The periodontal pathogens isolated from periodontal pockets were: Fusobacterium nucleatum (50%), Prevotella intermedia/ nigrescens (40%), Campylobacter rectus (40%), Eikenella corrodens (36.7%), Gram negative enteric bacilli (36.7%), Porphyromonas gingivalis (33.3%), and Eubacterium spp. (33.3%). The pathogens isolated from the aortic valve were Propionibacterium acnes (12%), Gram negative enteric bacilli (8%), Bacteroides merdae (4%), and Clostridium bifermentans (4%), and from the mitral valve we isolated P. acnes and Clostridium beijerinckii. Conventional PCR did not return positive results for oral pathogens and bacterial DNA was detected only in two samples. Periodontal microbiota of patients undergoing surgery for heart valve replacement consisted of species of Gram-negative bacteria that have been associated with infections in extraoral tissues. However, there is no evidence of the presence of periodontal pathogens in valve tissue, because even though there were valve and subgingival samples positive for Gram-negative enteric bacilli, it is not possible to maintain they corresponded to the same phylogenetic origin.

  7. The Microbial Rosetta Stone Database: A compilation of global and emerging infectious microorganisms and bioterrorist threat agents

    PubMed Central

    Ecker, David J; Sampath, Rangarajan; Willett, Paul; Wyatt, Jacqueline R; Samant, Vivek; Massire, Christian; Hall, Thomas A; Hari, Kumar; McNeil, John A; Büchen-Osmond, Cornelia; Budowle, Bruce

    2005-01-01

    Background Thousands of different microorganisms affect the health, safety, and economic stability of populations. Many different medical and governmental organizations have created lists of the pathogenic microorganisms relevant to their missions; however, the nomenclature for biological agents on these lists and pathogens described in the literature is inexact. This ambiguity can be a significant block to effective communication among the diverse communities that must deal with epidemics or bioterrorist attacks. Results We have developed a database known as the Microbial Rosetta Stone. The database relates microorganism names, taxonomic classifications, diseases, specific detection and treatment protocols, and relevant literature. The database structure facilitates linkage to public genomic databases. This paper focuses on the information in the database for pathogens that impact global public health, emerging infectious organisms, and bioterrorist threat agents. Conclusion The Microbial Rosetta Stone is available at . The database provides public access to up-to-date taxonomic classifications of organisms that cause human diseases, improves the consistency of nomenclature in disease reporting, and provides useful links between different public genomic and public health databases. PMID:15850481

  8. Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter.

    PubMed

    Christoffels, E; Mertens, F M; Kistemann, T; Schreiber, C

    2014-01-01

    A study has been conducted on a retention soil filter (RSF) to test its effectiveness in removing pharmaceutical residues and microorganisms from combined sewer overflows (CSOs). Efficient removal of solids, nutrients and heavy metals has already been proven. The possibility that organic micropollutants and microorganisms are also retained by the use of RSFs has been identified, but data are lacking. Results obtained in this study, in which testing for removal by a RSF of numerous micro-pollutant substances was performed, are most promising. The pharmaceuticals diclofenac and ibuprofen are presented in detail as examples of such micropollutants. Both showed a reduction in positive samples of more than 55% as well as a significant reduction in median and maximum concentrations. For microorganisms such as Escherichia coli, coliphages and Giardia lamblia (cysts), an average reduction in concentrations by three logarithmic steps (99.9%) was achieved. These results add to the evidence that using a RSF in the advanced treatment of wastewater from CSOs reduces the exposure of water-courses to pharmaceutical residues and microbial contamination.

  9. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Rios-Velazquez, Carlos; Vazquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2014-06-01

    Investigations focusing on devising rapid and accurate methods for developing signatures for microorganisms that could be used as biological warfare agents' detection, identification, and discrimination have recently increased significantly. Quantum cascade laser (QCL)-based spectroscopic systems have revolutionized many areas of defense and security including this area of research. In this contribution, infrared spectroscopy detection based on QCL was used to obtain the mid-infrared (MIR) spectral signatures of Bacillus thuringiensis, Escherichia coli, and Staphylococcus epidermidis. These bacteria were used as microorganisms that simulate biothreats (biosimulants) very truthfully. The experiments were conducted in reflection mode with biosimulants deposited on various substrates including cardboard, glass, travel bags, wood, and stainless steel. Chemometrics multivariate statistical routines, such as principal component analysis regression and partial least squares coupled to discriminant analysis, were used to analyze the MIR spectra. Overall, the investigated infrared vibrational techniques were useful for detecting target microorganisms on the studied substrates, and the multivariate data analysis techniques proved to be very efficient for classifying the bacteria and discriminating them in the presence of highly IR-interfering media.

  10. Salt influence on surface microorganisms and ripening of soft ewe cheese.

    PubMed

    Tabla, Rafael; Gómez, Antonia; Rebollo, José E; Roa, Isidro

    2015-05-01

    The effect of different brining treatments on salt uptake and diffusion during the first 30 d of ripening was determined in soft ewe cheese. Additionally, salt influence on surface microorganisms and physicochemical parameters was evaluated. Cheeses were placed into different brine solutions (14, 18 and 24°Bé) at 5 and 10 °C for 1, 2 or 3 h. Samples from rind, outer core and inner core were analysed at 0, 7, 15 and 30 d. Complete salt diffusion from rind to the inner core took about 15 d. The resulting salt gradient favoured the development of a pH gradient from the surface to the inner core. Salt concentration also had a significant effect on the growth of surface microorganisms (mesophiles, pseudomonads and halotolerants). However, mould and yeasts were not affected throughout ripening by the salt levels achieved. Brine salting by immersion for 3 h at 10 °C in 24°B brine was found to be the most suitable treatment to control pseudomonads in cheese rind, as spoilage microorganism.

  11. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments

    PubMed Central

    Li, Xi; Zhang, Miaomiao; Liu, Feng; Li, Yong; He, Yang; Zhang, Shunan; Wu, Jinshui

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different waters were treated by M. elatinoides in microcosms for one month. The five waters included tap water (Control), swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two synthetic wastewaters: 200 mg NH4 +-N L−1 (200 NH4 +-N) and 400 mg NH4 +-N L−1 (400 NH4 +-N). The most dramatic changes were in NH4 +-N and total N (TN) concentrations, with average removal rates of 84% and 90%, respectively, in the treatments containing swine wastewater. On days 7, 14, and 28, the dissolved oxygen (DO) increased by 81.8%, 210.4% and 136.5%, respectively, compared with on day 0, in the swine wastewater. The results also showed that the bacterial amoA (AOB) copy numbers in the sediments of the treatments were significantly higher than those of archaeal amoA (AOA) copy numbers (p = 0.015). In addition, the high DO concentrations in swine wastewater responded well to the high abundance of AOB. The AOA and AOB community distributions were positively related with NO3 -N and were negatively related with DO in swine wastewater treatments. In summary, our experimental results suggested that the M. elatinoides purification system could improve the activity of ammonia-oxidizing microorganisms and consequently might contribute to the significant N removal from the swine wastewater. PMID:26444015

  12. Direct Determination of Activities for Microorganisms of Chesapeake Bay Populations

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1984-01-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay. PMID:16346659

  13. Inactivation of Escherichia coli O157:H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms.

    PubMed

    Kim, Seonhwa; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-11-01

    We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments. © 2013.

  14. Direct determination of activities for microorganisms of chesapeake bay populations.

    PubMed

    Tabor, P S; Neihof, R A

    1984-11-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.

  15. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments.

    PubMed

    Li, Xi; Zhang, Miaomiao; Liu, Feng; Li, Yong; He, Yang; Zhang, Shunan; Wu, Jinshui

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different waters were treated by M. elatinoides in microcosms for one month. The five waters included tap water (Control), swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two synthetic wastewaters: 200 mg NH4+-N L(-1) (200 NH4+-N) and 400 mg NH4+-N L(-1) (400 NH4+-N). The most dramatic changes were in NH4+-N and total N (TN) concentrations, with average removal rates of 84% and 90%, respectively, in the treatments containing swine wastewater. On days 7, 14, and 28, the dissolved oxygen (DO) increased by 81.8%, 210.4% and 136.5%, respectively, compared with on day 0, in the swine wastewater. The results also showed that the bacterial amoA (AOB) copy numbers in the sediments of the treatments were significantly higher than those of archaeal amoA (AOA) copy numbers (p = 0.015). In addition, the high DO concentrations in swine wastewater responded well to the high abundance of AOB. The AOA and AOB community distributions were positively related with NO3-N and were negatively related with DO in swine wastewater treatments. In summary, our experimental results suggested that the M. elatinoides purification system could improve the activity of ammonia-oxidizing microorganisms and consequently might contribute to the significant N removal from the swine wastewater.

  16. Diagnostic accuracy of semi-quantitative and quantitative culture techniques for the diagnosis of catheter-related infections in newborns and molecular typing of isolated microorganisms.

    PubMed

    Riboli, Danilo Flávio Moraes; Lyra, João César; Silva, Eliane Pessoa; Valadão, Luisa Leite; Bentlin, Maria Regina; Corrente, José Eduardo; Rugolo, Ligia Maria Suppo de Souza; da Cunha, Maria de Lourdes Ribeiro de Souza

    2014-05-22

    Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). Microbiological evidence implicating catheters as the source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs. Semi-quantitative culture is used to determine the presence of microorganisms on the external catheter surface, whereas quantitative culture also isolates microorganisms present inside the catheter. The main objective of this study was to determine the sensitivity and specificity of these two techniques for the diagnosis of CR-BSIs in newborns from a neonatal ICU. In addition, PFGE was used for similarity analysis of the microorganisms isolated from catheters and blood cultures. Semi-quantitative and quantitative methods were used for the culture of catheter tips obtained from newborns. Strains isolated from catheter tips and blood cultures which exhibited the same antimicrobial susceptibility profile were included in the study as positive cases of CR-BSI. PFGE of the microorganisms isolated from catheters and blood cultures was performed for similarity analysis and detection of clones in the ICU. A total of 584 catheter tips from 399 patients seen between November 2005 and June 2012 were analyzed. Twenty-nine cases of CR-BSI were confirmed. Coagulase-negative staphylococci (CoNS) were the most frequently isolated microorganisms, including S. epidermidis as the most prevalent species (65.5%), followed by S. haemolyticus (10.3%), yeasts (10.3%), K. pneumoniae (6.9%), S. aureus (3.4%), and E. coli (3.4%). The sensitivity of the semi-quantitative and quantitative techniques was 72.7% and 59.3%, respectively, and specificity was 95.7% and 94.4%. The diagnosis of CR-BSIs based on PFGE analysis of similarity between strains isolated from catheter tips and blood cultures showed 82.6% sensitivity and 100% specificity. The semi-quantitative culture method showed higher sensitivity and specificity for the diagnosis of CR-BSIs in newborns when compared to the quantitative technique. In addition, this method is easier to perform and shows better agreement with the gold standard, and should therefore be recommended for routine clinical laboratory use. PFGE may contribute to the control of CR-BSIs by identifying clusters of microorganisms in neonatal ICUs, providing a means of determining potential cross-infection between patients.

  17. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans.

    PubMed

    Pereira, Cristiane A; Costa, Anna Carolina B Pereira; Liporoni, Priscila Christiane S; Rego, Marcos A; Jorge, Antonio Olavo C

    2016-01-01

    Streptococcus mutans is an important cariogenic microorganism, and alternative methods for its elimination are required. Different concentrations of Baccharis dracunculifolia essential oil (EO) were tested to determine its minimal inhibitory concentration (MIC) in planktonic cultures, and this concentration was used in S. mutans biofilms. Additionally, we assessed the effect of a 0.12% chlorhexidine (CHX) and saline solution in S. mutans biofilms. The biofilms were grown in discs of composite resin for 48h and exposed to B. dracunculifolia, CHX or saline solution for 5min. The viability of the biofilms was determined by counting the colony-forming units per milliliter (CFU/ml) in agar, which was statistically significant (P<0.05). The MIC of the B. dracunculifolia EO to planktonic growth of S. mutans was 6%. In biofilms of S. mutans clinical isolates, B. dracunculifolia EO (6%) and CHX resulted in reductions of 53.3-91.1% and 79.1-96.6%, respectively. For the biofilm formed by the S. mutans reference strain, the reductions achieved with B. dracunculifolia EO and CHX were, respectively, 39.3% and 88.1%. It was concluded that B. dracunculifolia EO showed antibacterial activity and was able to control this oral microorganism, which otherwise causes dental caries. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  18. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters.

    PubMed

    Flach, Joost; van der Waal, Mark B; van den Nieuwboer, Maurits; Claassen, Eric; Larsen, Olaf F A

    2017-06-13

    Probiotic microorganisms are increasingly incorporated into food matrices in order to confer proposed health benefits on the consumer. It is important that the health benefits, sensory properties, shelf-life and probiotic gastrointestinal tract (GIT) survival of these products are carefully balanced as they determine functionality and drive consumer acceptance. The strain-specific effects of probiotic species are imperative in this process but carrier matrices may play a pivotal role as well. This study therefore recapitulates the wealth of knowledge on carrier matrices and their interaction with probiotic strains. The most substantiated carrier matrices, factors that influence probiotic functionality and matrix effects on shelf-life, GIT survival and clinical efficacy are reviewed. Results indicate that carrier matrices have a significant impact on the quality of probiotic products. Matrix components, such as proteins, carbohydrates and flavoring agents are shown to alter probiotic efficacy and viability. In vivo studies furthermore revealed strain-dependent matrix effects on the GIT survival of probiotic bacteria. However, only a limited number of studies have specifically addressed the effects of carrier matrices on the aforementioned product-parameters; most studies seem to focus solely on the strain-specific effects of probiotic microorganisms. This hampers the innovation of probiotic products. More human studies, comparing not only different probiotic strains but different carrier matrices as well, are needed to drive the innovation cycle.

  19. Major pathogen microorganisms except yeasts can be detected from blood cultures within the first three days of incubation: A two-year study from a University Hospital.

    PubMed

    Moustos, Emmanuel; Staphylaki, Dimitra; Christidou, Athanasia; Spandidos, Demetrios A; Neonakis, Ioannis K

    2017-12-01

    The knowledge of the expected time-to-positivity (TTP) of blood cultures by major pathogens is essential both clinically and economically. To this end, we conducted the present two-year study in our Institution, aiming to assess the TTP of all the major microorganisms including Enterobacteriaceae, Pseudomonas aeruginosa , Acinetoacter baumannii , Enterococcii spp, Staphylococcus aureus and yeasts, to determine whether a 3-day interval is sufficient for their detection. The TTP for each case of strain isolation per patient was determined as the TTP of the first bottle among a set of bottles collected within the same period of time to be flagged as positive per patient. Based on our results, almost all major Gram-negative (99.30%), Gram-positive microbia (99.01%) and yeasts (98.85%) were detected within the first 5-days of incubation, leading to the solid conclusion that a 5-day period of incubation is adequate to detect almost all the major routine pathogens. By contrast, when a 3-day period was examined acceptable results were only found for Gram-negative (98.33%) and Gram-positive (98.51%) microbia. A significant proportion of yeasts (8.05%) could not be detected within this time frame. Therefore, regarding the yeasts, a 3-day incubation period cannot be considered as adequate and is not advocated.

  20. Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species

    PubMed Central

    Al-Bakri, Amal G.; Othman, Ghadeer; Afifi, Fatma U.

    2010-01-01

    Background: Several Salvia species are indigenous to Jordan and are widely used as beverages and spices and for their medicinal properties. The objective of the study was to establish the antimicrobial activities, including the antiadhesive and antibiofilm effects of seven different Salvia species. Materials and Methods: Methods used for planktonic culture included agar diffusion, broth microdilution, and minimal biocidal concentration determination while viable count was used for the determination of the antibiofilm and antiadhesion activities. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and clinical strains of methicillin-resistant S. aureus (MRSA) were used as test microorganisms. Results: An antimicrobial activity toward planktonic cultures demonstrated a significant bacteriocidal activity (≥4 log cycle reduction) for the S. triloba extract against S. aureus including MRSA. Its volatile oil exhibited an antimicrobial activity covering all tested microorganisms with the exception of P. aeruginosa. S. triloba extract and volatile oil were successful in preventing and controlling the biofilm, demonstrating antiadhesion and antibiofilm activities, respectively. Conclusion: These reported activities for S. triloba extract and volatile oil allows their listing as potential antibiofilm and anti-MRSA natural agents. This might suggest their use as an antiseptic in the prophylaxis and treatment of S. aureus-associated skin infections. The antimicrobial activity of the other tested Salvia species was negligible. PMID:21120026

  1. Chronic bacterial seminal vesiculitis as a potential disease entity in men with chronic prostatitis.

    PubMed

    Park, Soo-Hwan; Ryu, Ji-Kan; Choo, Gwoan-Youb; Chung, Yeun-Goo; Seong, Do-Hwan; Kim, Chang-Ho; Choe, Won-Sik; Ryu, Dong-Soo; Hyun, In Young; Suh, Jun-Kyu

    2015-05-01

    To investigate bacterial infection in the seminal vesicles by bacteriological examination and radionuclide imaging in men with chronic prostatitis. The study included 50 patients with chronic prostatitis who showed hot uptake in seminal vesicles on Tc-99m ciprofloxacin imaging and eight patients who did not show hot uptake. The evaluation included the National Institutes of Health Chronic Prostatitis Symptom Index and four-glass test. In all participants, transperineal aspiration of seminal vesicle fluid under the guidance of transrectal ultrasonography and bacteriological examination was carried out. Of the 50 patients who showed hot uptake in the seminal vesicles on the isotope study, microorganisms were isolated from the seminal vesicle fluid in 17 patients (positive predictive value, 34%). The most common causative organisms were Escherichia coli in 13 patients (26%), followed by coagulase-negative Staphylococcus species in two patients (4%), Enterococcus faecalis in one patient (2%) and Chlamydia trachomatis in one patient (2%). No microorganisms were isolated in the eight patients who did not show hot uptake in the seminal vesicles (negative predictive value, 100%). However, there were no significant differences in National Institutes of Health Chronic Prostatitis Symptom Index total scores and subscores between the study groups. Chronic bacterial seminal vesiculitis might simultaneously affect a considerable portion of patients with chronic prostatitis, although the clinical implication of the disease remains to be further investigated. © 2015 The Japanese Urological Association.

  2. Direct identification from positive blood broth culture by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Barberino, Maria Goreth; Silva, Marcio de Oliveira; Arraes, Ana Carolina Palmeiras; Correia, Luís Cláudio; Mendes, Ana Verena

    Bloodstream infections (BSIs) are among the most concerning bacterial infections. They are one of the leading causes of morbidity and mortality, and occur in 30-70% of critical care patients. The prompt identification of the causative microorganism can help choosing the appropriate antimicrobial therapy that will lead to better clinical outcomes. Blood culture is one of the most relevant tests for microbiological diagnosis of bacterial infections. The introduction of the MALDI-TOF microbiological diagnosis significantly decreased the time of identifying microorganisms. However, it depends on the growth on solid culture medium. In this study, 538 bottles of positive blood cultures were evaluated to test the accuracy of an in house modified protocol. The study sample consisted of 198 Gram-negative and 350 Gram-positive bacteria. In all, 460 (83.94%) species were identified based on the direct plate findings. The protocol allowed the identification of 185/198 (93.43%) of the Gram-negative bacteria, including aerobes, anaerobes, and non-fermenters, and 275/350 (78.85%) of the Gram-positive bacteria. The proposed method has the potential to provide accurate results in comparison to the traditional method with the potential to reduce the turnaround time for the results and optimize antimicrobial therapy in BSI. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Expanding the Use of a Fluorogenic Method to Determine Activity and Mode of Action of Bacillus thuringiensis Bacteriocins Against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    de la Fuente-Salcido, Norma M.; Barboza-Corona, J. Eleazar; Espino Monzón, A. N.; Pacheco Cano, R. D.; Balagurusamy, N.; Bideshi, Dennis K.; Salcedo-Hernández, Rubén

    2012-01-01

    Previously we described a rapid fluorogenic method to measure the activity of five bacteriocins produced by Mexican strains of Bacillus thuringiensis against B. cereus 183. Here we standardize this method to efficiently determine the activity of bacteriocins against both Gram-positive and Gram-negative bacteria. It was determined that the crucial parameter required to obtain reproducible results was the number of cells used in the assay, that is, ~4 × 108 cell/mL and ~7 × 108 cell/mL, respectively, for target Gram-positive and Gram-negative bacteria. Comparative analyses of the fluorogenic and traditional well-diffusion assays showed correlation coefficients of 0.88 to 0.99 and 0.83 to 0.99, respectively, for Gram-positive and Gram-negative bacteria. The fluorogenic method demonstrated that the five bacteriocins of B. thuringiensis have bacteriolytic and bacteriostatic activities against all microorganisms tested, including clinically significant bacteria such as Listeria monocytogenes, Proteus vulgaris, and Shigella flexneri reported previously to be resistant to the antimicrobials as determined using the well-diffusion protocol. These results demonstrate that the fluorogenic assay is a more sensitive, reliable, and rapid method when compared with the well-diffusion method and can easily be adapted in screening protocols for bacteriocin production by other microorganisms. PMID:22919330

  4. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    PubMed Central

    Variola, Fabio; Zalzal, Sylvia Francis; Leduc, Annie; Barbeau, Jean; Nanci, Antonio

    2014-01-01

    Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting. PMID:24872694

  5. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  6. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    PubMed

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Clinical Marine Toxicology: A European Perspective for Clinical Toxicologists and Poison Centers

    PubMed Central

    Schmitt, Corinne; de Haro, Luc

    2013-01-01

    Clinical marine toxicology is a rapidly changing area. Many of the new discoveries reported every year in Europe involve ecological disturbances—including global warming—that have induced modifications in the chorology, behavior, and toxicity of many species of venomous or poisonous aquatic life including algae, ascidians, fish and shellfish. These changes have raised a number of public issues associated, e.g., poisoning after ingestion of contaminated seafood, envenomation by fish stings, and exposure to harmful microorganism blooms. The purpose of this review of medical and scientific literature in marine toxicology is to highlight the growing challenges induced by ecological disturbances that confront clinical toxicologists during the everyday job in the European Poison Centers. PMID:23917333

  8. Human Papillomaviruses and genital co-infections in gynaecological outpatients.

    PubMed

    Verteramo, Rosita; Pierangeli, Alessandra; Mancini, Emanuela; Calzolari, Ettore; Bucci, Mauro; Osborn, John; Nicosia, Rosa; Chiarini, Fernanda; Antonelli, Guido; Degener, Anna Marta

    2009-02-12

    High grade HPV infections and persistence are the strongest risk factors for cervical cancer. Nevertheless other genital microorganisms may be involved in the progression of HPV associated lesions. Cervical samples were collected to search for human Papillomavirus (HPV), bacteria and yeast infections in gynaecologic outpatients. HPV typing was carried out by PCR and sequencing on cervical brush specimens. Chlamydia trachomatis was identified by strand displacement amplification (SDA) and the other microorganisms were detected by conventional methods. In this cross-sectional study on 857 enrolled outpatients, statistical analyses revealed a significant association of HPV with C. trachomatis and Ureaplasma urealyticum (at high density) detection, whereas no correlation was found between HPV infection and bacterial vaginosis, Streptococcus agalactiae, yeasts, Trichomonas vaginalis and U. urealyticum. Mycoplasma hominis was isolated only in a few cases both in HPV positive and negative women and no patient was infected with Neisseria gonorrhoeae. Although bacterial vaginosis was not significantly associated with HPV, it was more common among the HPV positive women. A significant association between HPV and C. trachomatis was found and interestingly also with U. urealyticum but only at a high colonization rate. These data suggest that it may be important to screen for the simultaneous presence of different microorganisms which may have synergistic pathological effects.

  9. Human Papillomaviruses and genital co-infections in gynaecological outpatients

    PubMed Central

    2009-01-01

    Background High grade HPV infections and persistence are the strongest risk factors for cervical cancer. Nevertheless other genital microorganisms may be involved in the progression of HPV associated lesions. Methods Cervical samples were collected to search for human Papillomavirus (HPV), bacteria and yeast infections in gynaecologic outpatients. HPV typing was carried out by PCR and sequencing on cervical brush specimens. Chlamydia trachomatis was identified by strand displacement amplification (SDA) and the other microorganisms were detected by conventional methods. Results In this cross-sectional study on 857 enrolled outpatients, statistical analyses revealed a significant association of HPV with C. trachomatis and Ureaplasma urealyticum (at high density) detection, whereas no correlation was found between HPV infection and bacterial vaginosis, Streptococcus agalactiae, yeasts, Trichomonas vaginalis and U. urealyticum. Mycoplasma hominis was isolated only in a few cases both in HPV positive and negative women and no patient was infected with Neisseria gonorrhoeae. Conclusion Although bacterial vaginosis was not significantly associated with HPV, it was more common among the HPV positive women. A significant association between HPV and C. trachomatis was found and interestingly also with U. urealyticum but only at a high colonization rate. These data suggest that it may be important to screen for the simultaneous presence of different microorganisms which may have synergistic pathological effects. PMID:19216747

  10. Nutrition quality test of fermented waste vegetables by bioactivator local microorganisms (MOL) and effective microorganism (EM4)

    NASA Astrophysics Data System (ADS)

    Mirwandono, E.; Sitepu, M.; Wahyuni, T. H.; Hasnudi; Ginting, N.; Siregar, G. AW; Sembiring, I.

    2018-02-01

    Livestock feed mostly used waste which has low nutrition content and one way to improve feed content by fermentation. The objective of this study was to evaluate the effect of bioactifator types on fermented vegetables waste for animal feed.The research was conducted in Nutrition and Animal Feed Laboratory, Universitas Sumatera Utara from May until July 2016. The research was factorial completely randomized design of 3 x 3 with 3 replications. Factor I were bioactivator types which were control, local bioactivator and EM4 (Effective Microorganisms 4). Factor II were time of incubation 3, 5 and 7 days. Parameters were moisture content, ash, Nitrogen Free Extract (NFE) and Total Digestible Nutrient (TDN). The results showed that bioactivator types either local activator or EM4 has highly significantly different effect (P<0,01) on water content, NFE and TDN on vegetables waste while there was no different between local bioactifator with EM4 on all parameters. Time of incubation 7 days has highly significantly different effect (P<0,01) on NFE, TDN and significant different (P<0,05) on water content and ash. In conclusion local bioactifators could improve animal feed by fermenting vegetables waste and it is more available for livestockers.

  11. Microorganism-induced exacerbations in atopic dermatitis: a possible preventive role for vitamin D?

    PubMed

    Benetti, Cecilia; Piacentini, Giorgio L; Capristo, Carlo; Boner, Attilio L; Peroni, Diego G

    2015-01-01

    Atopic dermatitis (AD) is a common skin disease characterized by a complex pathogenesis not completely understood despite numerous studies to date. The clinical patterns result from interactions between genetic disorders determining abnormalities in the epidermis differentiation complex, modification of the cutaneous barrier, and dysfunction of immune responses. Several studies have shown that an alteration of the skin barrier combined with immune dysfunction is important for the onset, maintenance, and risk of exacerbations of the disease. In recent years, new aspects regarding the pathogenesis of the disease, such as the effects of vitamin D (VD) on immunity at the skin level and the role of certain microorganisms (particularly Staphylococcus and Malassezia species) on eczema exacerbations, have been evaluated. This article provides an overview of the evidences supporting the link between VD (deficiency) and microorganisms (skin colonization/sensitization) in AD pathogenesis, based on comprehensive review of the literature. By considering different aspects of disease, it might be possible to improve our understanding, particularly in those patients refractory to conventional treatments. An electronic research strategy was used to search in Medline Pub-Med Library using as research words AD, exacerbation, VD, Staphylococcus aureus (SA), and Malassezia. The results were downloaded and analyzed for systematic review. Few studies actually consider the relationship between VD deficiency (VDD), AD, and SA and Malassezia, but many suggest a correlation between these factors. VDs play a major role against microorganisms in the development of AD and should be considered when treating patients.

  12. Applications of Flow Cytometry to Clinical Microbiology†

    PubMed Central

    Álvarez-Barrientos, Alberto; Arroyo, Javier; Cantón, Rafael; Nombela, César; Sánchez-Pérez, Miguel

    2000-01-01

    Classical microbiology techniques are relatively slow in comparison to other analytical techniques, in many cases due to the need to culture the microorganisms. Furthermore, classical approaches are difficult with unculturable microorganisms. More recently, the emergence of molecular biology techniques, particularly those on antibodies and nucleic acid probes combined with amplification techniques, has provided speediness and specificity to microbiological diagnosis. Flow cytometry (FCM) allows single- or multiple-microbe detection in clinical samples in an easy, reliable, and fast way. Microbes can be identified on the basis of their peculiar cytometric parameters or by means of certain fluorochromes that can be used either independently or bound to specific antibodies or oligonucleotides. FCM has permitted the development of quantitative procedures to assess antimicrobial susceptibility and drug cytotoxicity in a rapid, accurate, and highly reproducible way. Furthermore, this technique allows the monitoring of in vitro antimicrobial activity and of antimicrobial treatments ex vivo. The most outstanding contribution of FCM is the possibility of detecting the presence of heterogeneous populations with different responses to antimicrobial treatments. Despite these advantages, the application of FCM in clinical microbiology is not yet widespread, probably due to the lack of access to flow cytometers or the lack of knowledge about the potential of this technique. One of the goals of this review is to attempt to mitigate this latter circumstance. We are convinced that in the near future, the availability of commercial kits should increase the use of this technique in the clinical microbiology laboratory. PMID:10755996

  13. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    PubMed

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  14. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches.

    PubMed

    Chassard, Christophe; Scott, Karen P; Marquet, Perrine; Martin, Jennifer C; Del'homme, Christophe; Dapoigny, Michel; Flint, Harry J; Bernalier-Donadille, Annick

    2008-12-01

    The human gut harbours a wide range of bacterial communities that play key roles in supplying nutrients and energy to the host through anaerobic fermentation of dietary components and host secretions. This fermentative process involves different functional groups of microorganisms linked in a trophic chain. Although the diversity of the intestinal microbiota has been studied extensively using molecular techniques, the functional aspects of this biodiversity remain mostly unexplored. The aim of the present work was to enumerate the principal metabolic groups of microorganisms involved in the fermentative process in the gut of healthy humans. These functional groups of microorganisms were quantified by a cultural approach, while the taxonomic composition of the microbiota was assessed by in situ hybridization on the same faecal samples. The functional groups of microorganisms that predominated in the gut were the polysaccharide-degrading populations involved in the breakdown of the most readily available exogenous and endogenous substrates and the predominant butyrate-producing species. Most of the functional groups of microorganisms studied appeared to be present at rather similar levels in all healthy volunteers, suggesting that optimal numbers of these various bacterial groups are crucial for efficient gut fermentation, as well as for host nutrition and health. Significant interindividual differences were, however, confirmed with respect to the numbers of methanogenic archaea, filter paper-degrading and acetogenic bacteria and the products formed by lactate-utilizing bacteria.

  15. Lactobacillemia: an emerging cause of infection in both the immunocompromised and the immunocompetent host.

    PubMed Central

    Antony, S. J.

    2000-01-01

    The bacterium, lactobacillus, is found in the mucosal surfaces of the mouth and the gastrointestinal and genitourinary tracts. There have been increasing reports of the micro-organism being a cause of serious infection in immunocompromised individuals. This article reviews the clinical presentation, laboratory characteristics and treatment of patients with lactobacillemia. PMID:10800296

  16. Natural Clostridium botulinum Type C Toxicosis in a Group of Cats

    PubMed Central

    Elad, D.; Yas-Natan, E.; Aroch, I.; Shamir, M. H.; Kleinbart, S.; Hadash, D.; Chaffer, M.; Greenberg, K.; Shlosberg, A.

    2004-01-01

    Clinical signs of botulism were observed in a group of eight cats, four of which died, after being fed pelican carrion. Clostridium botulinum type C was isolated from one cat. The microorganism and its toxin were found in the pelican. This is apparently the first report of natural botulism in cats. PMID:15528757

  17. Oral Streptococcal Endocarditis, Oral Hygiene Habits, and Recent Dental Procedures: A Case-Control Study.

    PubMed

    Duval, Xavier; Millot, Sarah; Chirouze, Catherine; Selton-Suty, Christine; Moby, Vanessa; Tattevin, Pierre; Strady, Christophe; Euvrard, Edouard; Agrinier, Nelly; Thomas, Daniel; Hoen, Bruno; Alla, François

    2017-06-15

    We aimed to compare oral hygiene habits, orodental status, and dental procedures in patients with infective endocarditis (IE) according to whether the IE-causing microorganism originated in the oral cavity. We conducted an assessor-blinded case-control study in 6 French tertiary-care hospitals. Oral hygiene habits were recorded using a self-administered questionnaire. Orodental status was analyzed by trained dental practitioners blinded to the microorganism, using standardized clinical examination and dental panoramic tomography. History of dental procedures was obtained through patient and dentist interviews. Microorganisms were categorized as oral streptococci or nonoral pathogens using an expert-validated list kept confidential during the course of the study. Cases and controls had definite IE caused either by oral streptococci or nonoral pathogens, respectively. Participants were enrolled between May 2008 and January 2013. Cases (n = 73) were more likely than controls (n = 192) to be aged <65 years (odds ratio [OR], 2.85; 95% CI, 1.41-5.76), to be female (OR, 2.62; 95% CI, 1.20-5.74), to have native valve disease (OR, 2.44; 95% CI, 1.16-5.13), to use toothpicks, dental water jet, interdental brush, and/or dental floss (OR, 3.48; 95% CI, 1.30-9.32), and to have had dental procedures during the prior 3 months (OR, 3.31; 95% CI, 1.18-9.29), whereas they were less likely to brush teeth after meals. The presence of gingival inflammation, calculus, and infectious dental diseases did not significantly differ between groups. Patients with IE caused by oral streptococci differ from patients with IE caused by nonoral pathogens regarding background characteristics, oral hygiene habits, and recent dental procedures, but not current orodental status. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com

  18. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth.

    PubMed

    Vornhagen, Jay; Quach, Phoenicia; Boldenow, Erica; Merillat, Sean; Whidbey, Christopher; Ngo, Lisa Y; Adams Waldorf, K M; Rajagopal, Lakshmi

    2016-06-28

    Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS), or Streptococcus agalactiae However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth. GBS are a family of bacteria that frequently colonize the vagina of pregnant women. In some cases, GBS ascend from the vagina into the uterine space, leading to fetal injury and preterm birth. Unfortunately, little is known about the mechanisms underlying ascending GBS infection. In this study, we show that a GBS virulence factor, HylB, shows higher activity in strains isolated from cases of preterm birth than those isolates from rectovaginal swabs of healthy women. We discovered that GBS rely on HylB to avoid immune detection in uterine tissue, but not placental tissue, which leads to increased rates of fetal injury and preterm birth. These studies provide novel insight into the underlying mechanisms of ascending infection. Copyright © 2016 Vornhagen et al.

  19. Current trends of microorganisms and their sensitivity pattern in paediatric septic arthritis: A prospective study from tertiary care level hospital.

    PubMed

    Motwani, Girish; Mehta, Rujuta; Aroojis, Alaric; Vaidya, Sandeep

    2017-01-01

    Early treatment of septic arthritis is essential before irreversible damage to the articular cartilage occurs. Clinicians often start empirical antibiotic therapy for symptomatic relief while awaiting a definitive culture report. In present day parlance with variations in different centres in the private and public sector and rampant antibiotic abuse, a lot of resistance is being seen in the flora and their sensitivity patterns. Hence it is imperative to document and analyze these changing trends. The authors conducted a retrospective analysis of prospectively gathered data of 60 patients under 14 years of age. Joint arthrotomy was performed as a standard therapeutic protocol and the drained pus or synovial fluid was sent for gram stain and culture by 2 different methods: conventional agar plate method and BACTEC Peds Plus/F bottle method. Antibiotic susceptibility tests were done by the disc diffusion method of Clinical Laboratory Standards Institute (CLSI). The commonest presenting age group was below 1 year (80% patients) including 24 neonates. There were 19 hospital and 41 community acquired cases of septic arthritis. The hip (56%) was the commonest affected joint followed by knee (28%), shoulder joint (11%) and elbow (5%). Microorganism was isolated in 53% isolates of joint fluid only (36 culture positive patients). Conventional agar methods of culture showed positive report in only 42% patients (15/36 patients) while with the BACTEC method the yield was 71%. In the Community acquired septic arthritis, methicillin sensitive Staphylococcus aureus was isolated as commonest microbe while resistant variety of gram negative bacilli including E. coli and Klebsiella were found as predominant organism causing hospital acquired nosocomial infection of joints. The results strikingly differ in terms of response to treatment as most patients (11/19 patients) showed significant resistance to the most commonly practiced empirical antibiotic regimen of ampicillin-cloxacillin group in routine practice. When cefazolin was used as empirical antibiotic, it has shown good response and better sensitivity in 82% patients (27/33 patients). S. aureus is still the most common organism in septic arthritis. The BACTEC system was found to improve the yield of clinically significant isolates. Though a significant resistance to common antibiotic regimen is noticed, the strain is susceptible to cephalosporin group of antibiotics. We recommend the use of cephalosporine antibiotics as an empirical therapy till culture and sensitivity report are available.

  20. Accumulation of metals by microorganisms — processes and importance for soil systems

    NASA Astrophysics Data System (ADS)

    Ledin, Maria

    2000-08-01

    Metal accumulation by solid substances can counteract metal mobilization in the environment if the solid substance is immobile. Microorganisms have a high surface area-to-volume ratio because of their small size and therefore provide a large contact area that can interact with metals in the surrounding environment. Microbial metal accumulation has received much attention in the last years due to the potential use of microorganisms for cleaning metal-polluted water. However, considerably less attention has been paid to the role of microorganisms for metal mobility in soil even though the same processes may occur there. Therefore, this paper highlights this area. The different accumulation processes that microorganisms perform are analyzed and their potential significance in soil systems is discussed. Different kinds of mechanisms can be involved in the accumulation of metals by microorganisms, e.g. adsorption, precipitation, complexation and active transport into the cell. Physicochemical parameters like pH and ionic composition, as well as biological factors are of importance for the magnitude of accumulation. Often large amounts of metals can be accumulated with varying specificity, and microorganisms may provide nucleation sites for mineral formation. Several studies of microbial metal accumulation have been made with different methods and aims. Most of these studies concern single-component systems with one organism at a time. Data from accumulation experiments with pure cultures of microorganisms have been used to model the overall metal retention in soil. A further development is experimental model systems using various solid soil components in salt medium. Microbial metal accumulation is difficult to study in situ, but some experimental methods have been applied as tools for studying real soil systems, e.g. litter bags buried in soil containing microorganisms, a method where discs with microorganisms have been put onto agar plates with soil extracts, and comparison of sterilized and non-sterilized soils or soils with or without nutrient amendment. Different aspects of microbial metal accumulation are emphasized with the different methods applied. Single-component systems have the advantage of providing excellent information of the metal binding properties of microorganisms but cannot directly be applied to metal behavior in the heterogenous systems that real soils constitute. Studies focused on the behavior of metals in real soils can, in contrast, provide information on the overall metal distribution but less insight into the processes involved. Obviously, a combination of approaches is needed to describe metal distribution and mobility in polluted soil such as areas around mines. Different kinds of multi-component systems as well as modelling may bridge the gap between these two types of studies. Several experimental methods, complementary to each other and designed to allow for comparison, may emphasize different aspects of metal accumulation and should therefore be considered. To summarize, there are studies that indicate that microorganisms may also accumulate metals in soil and that the amounts may be considerable. However, much work remains to be done, with the focus of microorganisms in soil. It is also important to put microbial metal accumulation in relation to other microbial processes in soil, which can influence metal mobility, to determine the overall influence of soil microorganisms on metal mobility, and to be able to quantify these processes.

  1. Pelvic inflammatory disease.

    PubMed

    Soper, David E

    2010-08-01

    Pelvic inflammatory disease (PID) is an infection-caused inflammatory continuum from the cervix to the peritoneal cavity. Most importantly, it is associated with fallopian tube inflammation, which can lead to infertility, ectopic pregnancy, and chronic pelvic pain. The microbial etiology is linked to sexually transmitted microorganisms, including Chlamydia trachomatis, Neisseria gonorrheae, Mycoplasma genitalium, and bacterial vaginosis-associated microorganisms, predominantly anaerobes. Pelvic pain and fever are commonly absent in women with confirmed PID. Clinicians should consider milder symptoms such as abnormal vaginal discharge, metrorrhagia, postcoital bleeding, and urinary frequency as potential symptoms associated with the disease, particularly in women at risk of sexually transmitted infection. The diagnosis of PID is based on the findings of lower genital tract inflammation associated with pelvic organ tenderness. The outpatient treatment of mild-to-moderate PID should include tolerated antibiotic regimens with activity against the commonly isolated microorganisms associated with PID and usually consists of an extended spectrum cephalosporin in conjunction with either doxycycline or azithromycin. Clinically severe PID should prompt hospitalization and imaging to rule out a tuboovarian abscess. Parenteral broad-spectrum antibiotic therapy with activity against a polymicrobial flora, particularly gram-negative aerobes and anaerobes, should be implemented. Screening for and treatment of Chlamydia infection can prevent PID.

  2. Emerging Technologies for the Clinical Microbiology Laboratory

    PubMed Central

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  3. Year in review 2009: Critical Care - infection

    PubMed Central

    2010-01-01

    In 2009 Critical Care provided important and clinically relevant research data for management and prevention of infections in critically ill patients. The present review summarises the results of these observational studies and clinical trials and discusses them in the context of the current relevant scientific and clinical background. In particular, we discuss recent epidemiologic data on nosocomial infections in intensive care units, present new approaches to prevention of ventilator-associated pneumonia, describe recent advances in biomarker-guided antibiotic stewardship and attempt to briefly summarise specific challenges related to the management of infections caused by multidrug-resistant microorganisms and influenza A (H1N1). PMID:21122168

  4. Immunological Effects of Probiotics and their Significance to Human Health

    NASA Astrophysics Data System (ADS)

    Gill, Harsharn S.; Grover, Sunita; Batish, Virender K.; Gill, Preet

    Probiotics are defined as live microorganisms which when administered in adequate amounts confer a health benefit upon the host (FAO/WHO, 2001). Lactic acid bacteria, particularly Lactobacillus and Bifidobacterium species are commonly used as probiotics. Other less commonly used probiotics include the yeast Sacchromyces cerevisiae and some non-pathogenic Escherichia coli and Bacillus species. Studies over the past 20 years have demonstrated that probiotic intake is able to confer a range of health benefits including modulation of the immune system, protection against gastrointestinal and respiratory tract infections, lowering of blood cholesterol levels, attenuation of overt immuno-inflammatory disorders (such as inflammatory bowel disease, allergies) and anti-cancer effects. However, the strongest clinical evidence for probiotics relates to their effectiveness in improving gut health and modulating (via stimulation or regulation) the host immune system. This chapter provides an overview of the current status of our knowledge regarding the immunostimulatory and immunoregulatory effects of probiotics on the immune system and their significance to human health.

  5. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.

    PubMed

    Huguet, L; Castelle, S; Schäfer, J; Blanc, G; Maury-Brachet, R; Reynouard, C; Jorand, F

    2010-02-15

    The Petit-Saut ecosystem is a hydroelectric reservoir covering 365km(2) of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1h to 3 months with a nominal 1000ng/L spike of Hg(II) chloride enriched in (199)Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at -9.5m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me(199)Hg(net)/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is highly consistent with the annual net MeHg production estimated from mass balances (8.1mol MeHg/year, Muresan et al., 2008a).

  6. Scavenging of ice-nucleating microorganisms from the atmosphere by artificial rain events

    NASA Astrophysics Data System (ADS)

    Hanlon, Regina; Powers, Craig; Failor, Kevin; Vinatzer, Boris; Schmale, David

    2015-04-01

    Little is known about how microorganisms are scavenged from the atmosphere during rainfall. Microorganisms are abundant and diverse in rain (precipitation) collected near the surface of the earth. Some of these rain-associated microorganisms produce proteins that catalyze the nucleation of ice crystals at significantly warmer temperatures than would normally be required for ice formation, suggesting that they may play important roles in weather, including the onset of precipitation. We conducted a series of field experiments to test the hypothesis that ice-nucleating microorganisms are scavenged from the atmosphere by rainfall. Thirteen artificial rain events were conducted off the side of the Smart Road Bridge in Blacksburg, VA, USA. In each event, sterile water was dispensed over the side of the bridge (simulated rainfall), and recovered in sterile containers following gravitational settling from the side of the bridge to an open fallow agricultural field below (a distance of ~55m from the release site to the collection site). Microbes scavenged from the artificial rain events were cultured on six different types of agar media (R2A, TSA, CA; +/- cycloheximide) and the ice nucleation activity was examined for colonies cultured from the different media types. Mean CFUs scavenged by artificial rain ranged from 83 to 196 CFUs/mL across all six media types. Ice-nucleating microorganisms were recovered from 85% (11/13) of the simulated rain events, and represented about 1% of the total number of colonies assayed from each event. Strikingly, this percentage is nearly identical to the percentage of culturable ice-nucleating microorganisms occurring in about half of the natural rain events studied to date in Blacksburg, Virginia. This work expands our knowledge of the scavenging properties of rain, and suggests that at least some ice nucleators in natural precipitation events may have been stripped from the atmosphere during rainfall, thus negating their potential role in the onset of precipitation.

  7. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    PubMed

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  8. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  9. The aetiology of paediatric inflammatory vulvovaginitis.

    PubMed

    Cuadros, Juan; Mazón, Ana; Martinez, Rocío; González, Pilar; Gil-Setas, Alberto; Flores, Uxua; Orden, Beatriz; Gómez-Herruz, Peña; Millan, Rosario

    2004-02-01

    Vulvovaginitis is the most common gynaecological problem in prepubertal girls and clear-cut data on the microbial aetiology of moderate to severe infections are lacking. Many microorganisms have been reported in several studies, but frequently the paediatrician does not know the pathogenic significance of an isolate reported in vaginal specimens of girls with vulvovaginitis. A multicentre study was performed, selecting 74 girls aged 2 to 12 years old with a clinical picture of vulvovaginitis and inflammatory cells on Gram stain. All the specimens were cultured following standard microbiological techniques and the paediatricians completed a questionnaire to highlight risk factors after interviewing the parents or tutors. The data were compared with those obtained in a control group of 11 girls without vulvovaginitis attending a clinic. Streptococcus pyogenesand Haemophilus spp.were isolated in 47 and 12 cases, respectively. Upper respiratory infection in the previous month ( P<0.001) and vulvovaginitis in the previous year ( P<0.05) were identified as significant risk factors. Foreign bodies, sexual abuse, poor hygiene and bad socioeconomic situation were not identified as risk factors for the infection. Paediatric inflammatory vulvovaginitis is mainly caused by pathogens of the upper respiratory tract and the most common risk factor for this infection is to have suffered an upper respiratory tract infection in the previous month.

  10. Human Permanent Ectoparasites; Recent Advances on Biology and Clinical Significance of Demodex Mites: Narrative Review Article.

    PubMed

    Litwin, Dorota; Chen, WenChieh; Dzika, Ewa; Korycińska, Joanna

    2017-01-01

    Demodex is a genus of mites living predominantly in mammalian pilosebaceous units. They are commonly detected in the skin of face, with increasing numbers in inflammatory lesions. Causation between Demodex mites and inflammatory diseases, such as rosacea, blepharitis, perioral and seborrhoeic dermatitis or chalazion, is controversially discussed. Clinical observations indicate a primary form of human Demodex infection. The aim of this review was to highlight the biological aspects of Demodex infestation and point out directions for the future research. We conducted a broad review based on the electronic database sources such as MEDLINE, PubMed and Scopus with regard to the characteristics of the Demodex species, methods of examination and worldwide epidemiology, molecular studies and its role in the complex human ecosystem. Demodex mites are organisms with a worldwide importance as they act in indicating several dermatoses, under certain conditions. However, correlations between Demodex and other parasites or microorganisms occupying one host, as well as interactions between these arachnids and its symbiotic bacteria should be considered. There are few methods of human mites' examination depending on purpose of the study. Nevertheless, paying attention must be needed as polymorphism of Demodex species has been reported. Overall, the present review will focus on different aspects of Demodex mites' biology and significance of these arachnids in human's health.

  11. Subgingival Microbiota in White Patients With Desquamative Gingivitis: A Cross-Sectional Study.

    PubMed

    Arduino, Paolo G; Romano, Federica; Sasia, Danilo; Broccoletti, Roberto; Ricceri, Fulvio; Barbui, Anna Maria; Brossa, Silvia; Cipriani, Raffaella; Cricenti, Luca; Cabras, Marco; Aimetti, Mario

    2017-07-01

    Presence of epithelial desquamation, erythema, and erosions on gingival tissue is usually described in the literature as desquamative gingivitis (DG). A wide range of autoimmune/dermatologic disorders can manifest as DG, although the two more common are oral lichen planus and mucous membrane pemphigoid. The aim of this study is to investigate prevalence of 11 periodontopathogenic microorganisms in patients with DG and to compare it with the microbiologic status of individuals affected by plaque-induced gingivitis (pGI). Cross-sectional clinical and microbiologic data were obtained from 66 patients (33 in each group). Subgingival plaque samples were analyzed using semiquantitative polymerase chain reaction analysis. Statistically significant difference, but with little clinical significance, was observed in gingival conditions between the two groups, probably due to the worse home control hygiene of patients with DG. Prevalence and levels of Aggregatibacter actinomycetemcomitans, Eikenella corrodens, and Fusobacterium nucleatum/periodonticum were statistically higher in samples from patients with DG than in those with pGI. In multivariate regression models, subgingival colonization of A. actinomycetemcomitans and F. nucleatum/periodonticum was not statistically associated with DG, whereas, high levels of E. corrodens were associated with 13-fold increased odds for DG. Microbiologic differences were found in subgingival plaque for patients with DG and pGI. This may suggest possible association between periodontal pathogens and DG.

  12. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites.

    PubMed

    Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G

    2011-03-21

    Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  13. Enhanced degradation of aluminum metal in the presence of selected microorganisms. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tennyson, J. M.

    1972-01-01

    Experiments were conducted to determine the effects of microorganisms, substrates, pressures, humidities, and oxygen concentrations upon aluminum corrosion. In addition, the effects of microbes upon coated and treated aluminum were examined and an attempt to correlate aluminum in solution with degradation of the samples was undertaken. The organisms, humidities, oxygen levels, and substrates all played a major role in the corrosion of aluminum. Quantitation of aluminum losses indicated that the total metal losses from inoculated samples were significantly greater than those of the uninoculated samples.

  14. High-Level Disinfection of Otorhinolaryngology Clinical Instruments: An Evaluation of the Efficacy and Cost-effectiveness of Instrument Storage.

    PubMed

    Yalamanchi, Pratyusha; Yu, Jason; Chandler, Laura; Mirza, Natasha

    2018-01-01

    Objectives Despite increasing interest in individual instrument storage, risk of bacterial cross-contamination of otorhinolaryngology clinic instruments has not been assessed. This study is the first to determine the clinical efficacy and cost-effectiveness of standard high-level disinfection and clinic instrument storage. Methods To assess for cross-contamination, surveillance cultures of otorhinolaryngology clinic instruments subject to standard high-level disinfection and storage were obtained at the start and end of the outpatient clinical workday. Rate of microorganism recovery was compared with cultures of instruments stored in individual peel packs and control cultures of contaminated instruments. Based on historical clinic data, the direct allocation method of cost accounting was used to determine aggregate raw material cost and additional labor hours required to process and restock peel-packed instruments. Results Among 150 cultures of standard high-level disinfected and co-located clinic instruments, 3 positive bacterial cultures occurred; 100% of control cultures were positive for bacterial species ( P < .001). There was no statistical difference between surveillance cultures obtained before and after the clinic day. While there was also no significant difference in rate of contamination between peel-packed and co-located instruments, peel packing all instruments requires 6250 additional labor hours, and conservative analyses place the cost of individual semicritical instrument storage at $97,852.50 per year. Discussion With in vitro inoculation of >200 otorhinolaryngology clinic instruments, this study demonstrates that standard high-level disinfection and storage are equally efficacious to more time-consuming and expensive individual instrument storage protocols, such as peel packing, with regard to bacterial contamination. Implications for Practice Standard high-level disinfection and storage are equally effective to labor-intensive and costly individual instrument storage protocols.

  15. [THE CLINICAL AND EPIDEMIOLOGICAL CHARACTERISTICS OF MALARIA CONCURRENT WITH OTHER INFECTIONS AND INVASIONS].

    PubMed

    Kondrashin, A V; Tokmalaev, A K; Morozov, E N; Morozova, L F

    2016-01-01

    The present review considers malaria infection concurrent with different species of helminths, bacterial and viral infections, as well as mixed malaria pathogens in the subtropical and tropical countries of the world, causing the clinical picture and epidemiological situation to be different. Malaria co-infections with different pathogenic micro-organisms, such as HIV, tuberculosis, viral hepatitides, and others, affect almost one third of the planet's population. It is known that people who are at risk for malaria may be also at risk for other parasitic and infectious diseases, most commonly helminthisms.

  16. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    PubMed

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  17. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    PubMed

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-05-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  18. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    PubMed

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  19. Clinical solid waste management practices and its impact on human health and environment - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.

    2011-04-15

    Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.« less

  20. Clinical presentation, diagnosis and treatment of vulvovaginitis in girls: a current approach and review of the literature.

    PubMed

    Beyitler, İlke; Kavukcu, Salih

    2017-04-01

    Vulvovaginitis is the most common cause of gynecological complaints in children and young girls. Some of the factors which cause vulvovaginitis include hypoestrogenism, the anatomical proximity of rectum and delicate vulvar skin and vaginal mucosa. We made a literature search with Pubmed, Medline and Cochrane database from January 2002 to May 2015 in English language using the key words vulvovaginitis, children, clinical, diagnosis and treatment. Vulvovaginitis in girls is usually caused by non-specific factors and hygiene measures, bioyoghurt and avoidance of chemical irritants are generally useful. Weight control if necessary and prevention of voiding dysfunction are effective. Vaginal flora is important in girls and results should be interpreted with clinical features to decide whether an isolated microorganism is part of the normal microflora or is the cause of symptomatic vulvovaginitis. Specific treatment is generally considered in case of a detected pathogen microorganism. Isolation of a sexually transmitted organism requires further investigation. Persistent disease may not always indicate a foreign body but it must be taken into account. Girls and parents are encouraged psychologically in all steps of evaluation, diagnosis and treatment. Probiotics, nanotechnology and petroleum jelly are other important treatment options used in vulvovaginitis. In this review, we present current approach to the presentation and management of vulvovaginitis in childhood. This disorder requires a comprehensive evaluation in all steps of diagnosis, differential diagnosis and treatment.

  1. The Challenging Diagnosis of Non-Community-Acquired Pneumonia in Non-Mechanically Ventilated Subjects: Value of Microbiological Investigation.

    PubMed

    Messika, Jonathan; Stoclin, Annabelle; Bouvard, Eric; Fulgencio, Jean-Pierre; Ridel, Christophe; Muresan, Ioan-Paul; Boffa, Jean-Jacques; Bachmeyer, Claude; Denis, Michel; Gounant, Valérie; Esteso, Adoracion; Loi, Valeria; Verdet, Charlotte; Prigent, Hélène; Parrot, Antoine; Fartoukh, Muriel

    2016-02-01

    Early recognition and an attempt at obtaining microbiological documentation are recommended in patients with non-community-acquired pneumonia (NCAP), whether hospital-acquired (HAP) or health care-associated (HCAP). We aimed to characterize the clinical features and microbial etiologies of NCAP to assess the impact of microbiological investigation on their management. This was a prospective 1-y study in a university hospital with 141 non-mechanically ventilated subjects suspected of having HAP (n = 110) or HCAP (n = 31). Clinical criteria alone poorly identified pneumonia (misdiagnosis in 50% of cases). Microbiological confirmation was achievable in 80 subjects (57%). Among 79 microorganisms isolated, 28 were multidrug-resistant aerobic Gram-negative bacilli and group III Enterobacteriaceae and 6 were methicillin-resistant Staphylococcus aureus. Multidrug-resistant aerobic Gram-negative bacilli accounted for one third of the microorganisms in early-onset HAP and for 50% in late-onset HAP. Methicillin-resistant S. aureus was most often recovered from subjects with HCAP. Inappropriate empirical antibiotics were administered to 36% of subjects with confirmed pneumonia. Forty subjects were admitted to the ICU, 13 (33%) of whom died. Overall, 39 subjects (28%) died in the hospital. Integrating the microbiological investigation in the complex clinical diagnostic workup of patients suspected of having NCAP is mandatory. Respiratory tract specimens should be obtained whenever possible for appropriate management. Copyright © 2016 by Daedalus Enterprises.

  2. Efficacy of antimicrobial photodynamic therapy in the disinfection of acrylic denture surfaces: A systematic review.

    PubMed

    Varela Kellesarian, Sergio; Abduljabbar, Tariq; Vohra, Fahim; Malmstrom, Hans; Yunker, Michael; Varela Kellesarian, Tammy; Romanos, Georgios E; Javed, Fawad

    2017-03-01

    The aim of the present systematic review was to assess the efficacy of antimicrobial photodynamic therapy (aPDT) in the disinfection of acrylic denture surfaces. IN order to address the focused question: "Is aPDT more effective in decontaminating denture surfaces compared with traditional denture-disinfection techniques?" an electronic search without time or language restrictions was conducted up to November 2016 in indexed databases using different key words. The exclusion criteria included qualitative and/or quantitative reviews, case reports, case series, commentaries, letters to the editor, interviews, and updates. A total of 14 studies were included and processed for data extraction, out of which 1 study was a randomized clinical trial and 13 studies were performed in vitro. Results from 12 experimental studies reported that aPDT was effective in reducing bacteria and/or yeast cultured in single or multispecies biofilm growth on acrylic resin specimens. One experimental study reported selective microorganism reduction on acrylic resin after aPDT. One clinical randomized control trial reported that aPDT presented similar microorganism reduction compared with oral antifungal medication for the disinfection of denture surfaces. The role of aPDT in the disinfection of acrylic resin surfaces is unclear. From a clinical perspective further randomized control trials are needed to assess the efficacy of aPDT in the disinfection of acrylic resin surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Selective decontamination of the digestive tract in gastrointestinal surgery: useful in infection prevention? A systematic review.

    PubMed

    Abis, Gabor S A; Stockmann, Hein B A C; van Egmond, Marjolein; Bonjer, Hendrik J; Vandenbroucke-Grauls, Christina M J E; Oosterling, Steven J

    2013-12-01

    Gastrointestinal surgery is associated with a high incidence of infectious complications. Selective decontamination of the digestive tract is an antimicrobial prophylaxis regimen that aims to eradicate gastrointestinal carriage of potentially pathogenic microorganisms and represents an adjunct to regular prophylaxis in surgery. Relevant studies were identified using bibliographic searches of MEDLINE, EMBASE, and the Cochrane database (period from 1970 to November 1, 2012). Only studies investigating selective decontamination of the digestive tract in gastrointestinal surgery were included. Two randomized clinical trials and one retrospective case-control trial showed significant benefit in terms of infectious complications and anastomotic leakage in colorectal surgery. Two randomized controlled trials in esophageal surgery and two randomized clinical trials in gastric surgery reported lower levels of infectious complications. Selective decontamination of the digestive tract reduces infections following esophageal, gastric, and colorectal surgeries and also appears to have beneficial effects on anastomotic leakage in colorectal surgery. We believe these results provide the basis for a large multicenter prospective study to investigate the role of selective decontamination of the digestive tract in colorectal surgery.

  4. [Air-conditioner disease. Results of an industrial medicine survey (author's transl)].

    PubMed

    Molina, C; Aiache, J M; Bedu, M; Menaut, P; Wahl, D; Brestowski, J; Grall, Y

    1982-07-03

    The results of a survey conducted in a company employing 1850 persons working in air-conditioned premises are reported. One hundred and five persons were examined, including 790 who mostly complained of respiratory disorders and 20 controls. Regular check-ups during the last two years have failed to reveal any serious disease. The most frequent complaints were rhinitis and tracheitis, especially among female employees. No alveolitis was observed. The finding of Bacillus subtilis in samples of ambient air and air-conditioner filters in conjunction with the presence of precipitating antibodies against crude extracts from these samples, suggested that the respiratory disorders might have been due to this microorganism. A multifactorial analysis demonstrated a statistically significant correlation between clinical symptoms and immunological disorders. The air-conditioner disease, therefore, may present as a benign condition.

  5. Dentists, antibiotics and Clostridium difficile-associated disease.

    PubMed

    Beacher, N; Sweeney, M P; Bagg, J

    2015-09-25

    Dentists prescribe significant volumes of antimicrobial drugs within primary care settings. There is good evidence that many of the prescriptions are not justified by current clinical guidance and that that there is considerable misuse of these drugs in dentistry. One of the risks associated with antibiotic administration is Clostridium difficile-associated disease (CDAD), an entity of which many healthcare workers, including dentists, have little knowledge or understanding. This review seeks to identify the extent and nature of the problem and provides an up to date summary of current views on CDAD, with particular reference to community acquired disease. As for all healthcare workers, scrupulous attention to standard infection control procedures and reducing inappropriate antibiotic prescribing are essential to reduce the risks of CDAD, prevent emergence of further resistant strains of microorganisms and maintain the value of the arsenal of antibiotics currently available to us.

  6. Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale.

    PubMed

    Syal, Karan; Iriya, Rafael; Yang, Yunze; Yu, Hui; Wang, Shaopeng; Haydel, Shelley E; Chen, Hong-Yuan; Tao, Nongjian

    2016-01-26

    Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.

  7. [Pneumonia caused byCorynebacterium pseudodiphtheriticum].

    PubMed

    Furiasse, Daniela; Gasparotto, Ana M; Monterisi, Aída; Castellano, Gabriela; Rocchi, Marta

    Microorganisms of the genera Corynebacterium, specie pseudodiphtheriticum are a part of the indigenous microbiota of human skin and oropharinx. Nevertheless in recent decades these bacilli are emerging as opportunistic pathogens causing clinically significant infections in patients with previous compromise. We report the case of a 76 years old female patient, with a history of hypertension, hypothyroidism, type 2 diabetes and chronic renal failure, who presented pneumonia during their stay at the intensive care unit. The induced sputum revealed a representative sample with monomicrobial gram positive pleomorphic coryneform rods (Gram stain) and cultures demonstrated the presence of C. pseudodiphtheriticum as the only bacteria recovered. The pacient received an empirical third generation cephalosporin medication with a succesfull recovery. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Propolis--based chitosan varnish: drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria.

    PubMed

    Franca, Juçara R; De Luca, Mariana P; Ribeiro, Tatiana G; Castilho, Rachel O; Moreira, Allyson N; Santos, Vagner R; Faraco, André A G

    2014-12-12

    Dental caries is the most prevalent oral disease in several Asian and Latin American countries. It is an infectious disease and different types of bacteria are involved in the process. Synthetic antimicrobials are used against this disease; however, many of these substances cause unwarranted undesirable effects like vomiting, diarrhea and tooth staining. Propolis, a resinous substance collected by honeybees, has been used to control the oral microbiota. So, the objective of this study was to develop and characterize sustained-release propolis-based chitosan varnish useful on dental cariogenic biofilm prevention, besides the in vitro antimicrobial activity. Three formulations of propolis - based chitosan varnish (PCV) containing different concentrations (5%, 10% and 15%) were produced by dissolution of propolis with chitosan on hydro-alcoholic vehicle. Bovine teeth were used for testing adhesion of coatings and to observe the controlled release of propolis associated with varnish. It was characterized by infrared spectroscopy, scanning electron microscopy, casting time, diffusion test in vitro antimicrobial activity and controlled release. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested for the main microorganisms involved in the cariogenic biofilm through the microdilution test in 96-well plates. The formulations presented a tooth surface adherence and were able to form films very fast on bovine tooth surface. Also, propolis-based chitosan varnishes have shown antimicrobial activity similar to or better than chlorhexidine varnish against all oral pathogen bacteria. All microorganisms were sensitive to propolis varnish and chitosan. MIC and MBC for microorganisms of cariogenic biofilme showed better results than chlorhexidine. Propolis active components were released for more than one week. All developed formulations turn them, 5%, 10% and 15% propolis content varnish, into products suitable for clinical application on dental caries prevention field, deserving clinical studies to confirm its in vivo activity.

  9. Advanced Effect of Moringa oleifera Bioconversion by Rhizopus oligosporus on the Treatment of Atopic Dermatitis: Preliminary Study

    PubMed Central

    Hur, Sang-sun; Choi, Suk-won; Lee, Dong-ryul; Park, Jong-hwan

    2018-01-01

    This study was conducted to determine if topical application of Moringa oleifera extracts and its bioconversion product fermented by Rhizopus oligosporus has therapeutic properties enhancement for treatment of atopic dermatitis. Rhizopus oligosporus (KCCM 11232P) was used to ferment Moringa leaves' extracts in this study. Comparison of organic acids and flavonols in Moringa simple extracts and their fermented product by HPLC analysis revealed that concentration of organic acids and flavonols of bioconversion product was lower than that of hot water extracts. The fermentation process is used as a nutrient for isolation of each component by microorganisms and growth of microorganisms. The results demonstrated that MF extracts effectively reduced clinical features based on macrography, scratching count, and severity scores, as well as model's serum IgE level, including histopathological analyses. PMID:29576799

  10. The first 1000 cultured species of the human gastrointestinal microbiota

    PubMed Central

    Rajilić-Stojanović, Mirjana; de Vos, Willem M

    2014-01-01

    The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact. PMID:24861948

  11. Comparison of three different sterilization and disinfection methods on orthodontic markers

    PubMed Central

    Omidkhoda, Maryam; Rashed, Roozbeh; Bagheri, Zahra; Ghazvini, Kiarash; Shafaee, Hooman

    2016-01-01

    Background: Marking pencils which are frequently used in orthodontics may cause microbial contamination. The purpose of this study was to evaluate and compare the effectiveness of three disinfection and sterilization methods (autoclave, glutaraldehyde solution, and Deconex spray) on orthodontic markers. Materials and Methods: One hundred and twenty orthodontic markers were divided into four groups each 30 pencils: One control group and three groups for three different disinfection/sterilization methods. To evaluate the effectiveness of these methods, pencils were initially contaminated by common pathogen by immersing the pencils in a suspension containing 1.5 × 108 CFU/ml organisms. Then, the pencils were subjected to corresponding disinfection/sterilization methods, and the number of remaining microorganisms was calculated and compared with control group. Results: In the control group, the mean number of Escherichia coli was significantly higher than the other two microorganisms (P = 0.01, P = 0.031). However, the mean numbers of Staphylococcus aureus and Candida albicans were not significantly different (P = 0.1). After sterilization with autoclave and glutaraldehyde, no microbial growth was observed, whereas after disinfection with Deconx spray some colonies of microorganisms still could be observed. Conclusion: Autoclaving and glutaraldehyde solution are the best methods for disinfecting orthodontic markers. PMID:26998472

  12. The antimicrobial efficacy of commercial dentifrices.

    PubMed

    Haraszthy, Violet I; Zambon, Joseph J; Sreenivasan, Prem K

    2010-01-01

    This investigation compared the effects of a fluoride dentifrice and toothpastes formulated with antimicrobial ingredients (stannous fluoride and triclosan/copolymer) on oral micro-organisms, including those found in samples taken from the human oral cavity. Microbiological techniques determined the minimum inhibitory concentrations (MICs) of each dentifrice necessary to inhibit the growth of bacterial strains from the healthy oral cavity, as well as those found in dental caries, periodontal disease, and halitosis. Ex vivo studies utilized oral rinse samples and supragingival plaque from adults to determine antimicrobial effects on the entire microbial diversity of these samples, including biofilm-derived micro-organisms. The triclosan/copolymer dentifrice demonstrated the lowest MICs and significantly inhibited Gram-positive and Gram-negative bacteria (including the periodontal pathogens Aggregatibacter actinomycetemcomitans, Eikenella corrodens, and Fusobacterium nucleatum). In the ex vivo tests, the triclosan/copolymer dentifrice demonstrated substantial inhibition in the oral rinse samples over each treatment period (p > 0.0005) as compared to either the fluoride or stannous fluoride dentifrices. Similarly, the triclosan/copolymer dentifrice demonstrated the highest inhibition of micro-organisms in the supragingival plaque biofilm (p < 0.0005). No significant differences were observed between the fluoride and stannous fluoride dentifrices (p > 0.5).

  13. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice.

    PubMed

    Zaller, Johann G; Cantelmo, Clemens; Santos, Gabriel Dos; Muther, Sandrina; Gruber, Edith; Pallua, Paul; Mandl, Karin; Friedrich, Barbara; Hofstetter, Ingrid; Schmuckenschlager, Bernhard; Faber, Florian

    2018-06-03

    Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.

  14. Effects of Hangeshashinto on Growth of Oral Microorganisms

    PubMed Central

    Fukamachi, Haruka; Matsumoto, Chinami; Omiya, Yuji; Arimoto, Takafumi; Kataoka, Hideo; Kadena, Miki; Funatsu, Takahiro; Fukutake, Masato; Kase, Yoshio; Kuwata, Hirotaka

    2015-01-01

    Oral mucositis (OM) in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST), a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment. PMID:26170876

  15. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    PubMed

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  16. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    PubMed Central

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  17. Antibacterial and Antifungal Activities of Spices

    PubMed Central

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-01-01

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716

  18. Whole Microorganisms Studied by Pyrolysis-Gas Chromatography-Mass Spectrometry: Significance for Extraterrestrial Life Detection Experiments 1

    PubMed Central

    Simmonds, Peter G.

    1970-01-01

    Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life. PMID:16349890

  19. How could haloalkaliphilic microorganisms contribute to biotechnology?

    PubMed

    Zhao, Baisuo; Yan, Yanchun; Chen, Shulin

    2014-11-01

    Haloalkaliphiles are microorganisms requiring Na(+) concentrations of at least 0.5 mol·L(-1) and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.

  20. Bioremediation of weathered-building stone surfaces.

    PubMed

    Webster, Alison; May, Eric

    2006-06-01

    Atmospheric pollution and weathering of stone surfaces in urban historic buildings frequently results in disfigurement or damage by salt crust formation (often gypsum), presenting opportunities for bioremediation using microorganisms. Conventional techniques for the removal of these salt crusts from stone have several disadvantages: they can cause colour changes; adversely affect the movement of salts within the stone structure; or remove excessive amounts of the original surface. Although microorganisms are commonly associated with detrimental effects to the integrity of stone structures, there is growing evidence that they can be used to treat this type of stone deterioration in objects of historical and cultural significance. In particular, the ability and potential of different microorganisms to either remove sulfate crusts or form sacrificial layers of calcite that consolidate mineral surfaces have been demonstrated. Current research suggests that bioremediation has the potential to offer an additional technology to conservators working to restore stone surfaces in heritage buildings.

  1. Antibacterial and Antifungal Activities of Spices.

    PubMed

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-06-16

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices-such as clove, oregano, thyme, cinnamon, and cumin-possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens , pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives.

  2. Interaction of gut microflora with tannins in feeds.

    PubMed

    Goel, Gunjan; Puniya, A K; Aguilar, C N; Singh, Kishan

    2005-11-01

    Tannins (hydrolyzable and condensed) are water-soluble polyphenolic compounds that exert antinutritional effects on ruminants by forming complexes with dietary proteins. They limit nitrogen supply to animals, besides inhibiting the growth and activity of ruminal microflora. However, some gastrointestinal microbes are able to break tannin-protein complexes while preferentially degrading hydrolyzable tannins (HTs). Streptococcus gallolyticus, Lonepinella koalarum and Selenomonas ruminantium are the dominant bacterial species that have the ability to degrade HTs. These tanninolytic microorganisms possess tannin-degrading ability and have developed certain mechanisms to tolerate tannins in feeds. Hence, selection of efficient tanninolytic microbes and transinoculation among animals for long-term benefits become areas of intensive interest. Here, we review the effects of tannins on ruminants, the existence and significance of tannin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin-degrading microorganisms have developed to counter the toxic effects of tannin.

  3. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida.

    PubMed

    Gong, Xiaoqiang; Wei, Le; Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.

  4. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida

    PubMed Central

    Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid. PMID:28122059

  5. Interaction of gut microflora with tannins in feeds

    NASA Astrophysics Data System (ADS)

    Goel, Gunjan; Puniya, A. K.; Aguilar, C. N.; Singh, Kishan

    2005-11-01

    Tannins (hydrolyzable and condensed) are water-soluble polyphenolic compounds that exert antinutritional effects on ruminants by forming complexes with dietary proteins. They limit nitrogen supply to animals, besides inhibiting the growth and activity of ruminal microflora. However, some gastrointestinal microbes are able to break tannin-protein complexes while preferentially degrading hydrolyzable tannins (HTs). Streptococcus gallolyticus, Lonepinella koalarum and Selenomonas ruminantium are the dominant bacterial species that have the ability to degrade HTs. These tanninolytic microorganisms possess tannin-degrading ability and have developed certain mechanisms to tolerate tannins in feeds. Hence, selection of efficient tanninolytic microbes and transinoculation among animals for long-term benefits become areas of intensive interest. Here, we review the effects of tannins on ruminants, the existence and significance of tannin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin-degrading microorganisms have developed to counter the toxic effects of tannin.

  6. Melanins and Resistance of Fungi to Lysis

    PubMed Central

    Bloomfield, B. J.; Alexander, M.

    1967-01-01

    Hyphal walls of Aspergillus phoenicis and Sclerotium rolfsii are composed of large amounts of glucose- and N-acetylhexosamine-containing polysaccharides, and the walls are extensively digested by streptomycete culture filtrates or by a mixture of purified chitinase and β-(1 → 3) glucanase preparations with the release of the monomeric units. A. phoenicis conidial walls also contain polymers of glucose and N-acetylhexosamine, but these walls are resistant to digestion by microorganisms or the enzyme combination active on the hyphae. When the melanin-containing spicules were removed from the spore surface, however, the chitinase and glucanase partially digested the underlying structural components. Microorganisms decomposing hyphal walls of S. rolfsii did not attack the melanin-covered sclerotia produced by this fungus. No microorganism capable of lysing two fungi, Rhizoctonia solani and Cladosporium sp., producing hyphae containing abundant melanin was found. The ecological significance of these findings and possible mechanisms for the protective influence associated with melanins are discussed. PMID:6032507

  7. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.

    PubMed

    Halder, Partha; Nasabi, Mahyar; Lopez, Francisco Javier Tovar; Jayasuriya, Niranjali; Bhattacharya, Satinath; Deighton, Margaret; Mitchell, Arnan; Bhuiyan, Muhammed Ali

    2013-01-01

    Biofouling, the unwanted growth of sessile microorganisms on submerged surfaces, presents a serious problem for underwater structures. While biofouling can be controlled to various degrees with different microstructure-based patterned surfaces, understanding of the underlying mechanism is still imprecise. Researchers have long speculated that microtopographies might influence near-surface microfluidic conditions, thus microhydrodynamically preventing the settlement of microorganisms. It is therefore very important to identify the microfluidic environment developed on patterned surfaces and its relation with the antifouling behaviour of those surfaces. This study considered the wall shear stress distribution pattern as a significant aspect of this microfluidic environment. In this study, patterned surfaces with microwell arrays were assessed experimentally with a real-time biofilm development monitoring system using a novel microchannel-based flow cell reactor. Finally, computational fluid dynamics simulations were carried out to show how the microfluidic conditions were affecting the initial settlement of microorganisms.

  8. Astrophysical and biological constraints on radiopanspermia.

    PubMed

    Secker, J; Wesson, P S; Lepock, J R

    1996-08-01

    We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.

  9. Management of Chronic Periodontitis Using Subgingival Irrigation of Ozonized Water: A Clinical and Microbiological Study.

    PubMed

    Issac, Annie V; Mathew, Jayan Jacob; Ambooken, Majo; Kachappilly, Arun Jose; Pk, Ajithkumar; Johny, Thomas; Vk, Linith; Samuel, Anju

    2015-08-01

    Adjunctive use of professional subgingival irrigation with scaling and root planing (SRP) has been found to be beneficial in eradicating the residual microorganisms in the pocket. To evaluate the effect of ozonized water subgingival irrigation on microbiologic parameters and clinical parameters namely Gingival index, probing pocket depth, and clinical attachment level. Thirty chronic periodontitis patients with probing pocket depth ≥6mm on at least one tooth on contra lateral sides of opposite arches were included in the study. The test sites were subjected to ozonized water subgingival irrigation with subgingival irrigation device fitted with a modified subgingival tip. Control sites were subjected to scaling and root planing only. The following clinical parameters were recorded initially and after 4 weeks at the test sites and control sites. Plaque Index, Gingival Index, probing pocket depth, clinical attachment level. Microbiologic sampling was done for the test at the baseline, after scaling, immediately after ozonized water subgingival irrigation and after 4 weeks. In control sites microbiologic sampling was done at the baseline, after scaling and after 4 weeks. The following observations were made after 4 weeks. The results were statistically analysed using independent t-test and paired t-test. Test sites showed a greater reduction in pocket depth and gain in clinical attachment compared to control sites. The total anaerobic counts were significantly reduced by ozonized water subgingival irrigation along with SRP compared to SRP alone. Ozonized water subgingival irrigation can improve the clinical and microbiological parameters in patients with chronic periodontitis when used as an adjunct to scaling and root planing.

  10. In vitro study of bactericidal effect of low-level laser therapy in the presence of photosensitizer on cariogenic bacteria

    NASA Astrophysics Data System (ADS)

    Zanin, Iriana C. J.; Brugnera, Aldo, Jr.; Goncalves, Reginaldo B.

    2002-06-01

    The aim of this in vitro study was to determine whether low-level laser light in the presence of a photosensitizer could kill Streptococcus mutans and Streptococcus sobrinus. Suspensions of these microorganisms were exposed to a gallium-aluminium-arsenide laser light (660 nm) in the presence of photosensitizer toluidine blue O. Viable microorganisms were counted on brain heart agar plates after incubation at 37 degree(s)C in partial atmosphere of 10% CO2 for 48 hours. Their exposure to the laser light in the absence of the dye or the dye in the absence of the laser light presented no significant effect on the viability of the microorganisms. However, a decrease in the number of viable microorganisms was only verified when they were exposed to both the laser light and the dye at the same time. Their total growth inhibition was achieved with a dye concentration of 100 mg/mL and a light energy density of 28.8 J/cm2, after being exposed to laser light for 900 seconds. In conclusion, these results imply that these bacteria can be killed by low-power laser light in the presence of the photosensitizer.

  11. Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms

    PubMed Central

    Marmann, Andreas; Aly, Amal H.; Lin, Wenhan; Wang, Bingui; Proksch, Peter

    2014-01-01

    Marine-derived bacteria and fungi are promising sources of novel bioactive compounds that are important for drug discovery programs. However, as encountered in terrestrial microorganisms there is a high rate of redundancy that results in the frequent re-discovery of known compounds. Apparently only a part of the biosynthetic genes that are harbored by fungi and bacteria are transcribed under routine laboratory conditions which involve cultivation of axenic microbial strains. Many biosynthetic genes remain silent and are not expressed in vitro thereby seriously limiting the chemical diversity of microbial compounds that can be obtained through fermentation. In contrast to this, co-cultivation (also called mixed fermentation) of two or more different microorganisms tries to mimic the ecological situation where microorganisms always co-exist within complex microbial communities. The competition or antagonism experienced during co-cultivation is shown to lead to a significantly enhanced production of constitutively present compounds and/or to an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain. This review highlights the power of co-cultivation for increasing the chemical diversity of bacteria and fungi drawing on published studies from the marine and from the terrestrial habitat alike. PMID:24549204

  12. Determining the biofilm penetrating ability of various biocides utilizing an artificial biofilm matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlwaine, D.B.; Diemer, J.; Grab, L.

    1997-12-01

    The efficacy of many commonly used biocides is often determined by laboratory evaluations against a variety of planktonic microorganisms. While these tests provide some information as to the performance of a biocide against a particular microorganism, they may not predict how well the biocide will perform under actual field conditions against the more problematic sissile form of the organisms. In order to address the issue of how well a biocide penetrates and kills the problematic microorganisms contained within a biofilm, an artificial biofilm system utilizing microorganisms embedded in alginate beads has been used to compare the efficacy of biocide treatmentsmore » against both the planktonic and sessile form of the same organism. Pure cultures of Enterobacter aerogenes, as well as mixed field isolates, were used in the experiments. In addition, the alginate beads were prepared with actual system waters taken from a variety of industrial applications. In that way, all of the scale and corrosion inhibitors and other contaminants which are present in the actual system are also present in the model biofilm system. In all cases, the organisms contained within the artificial biofilm were significantly more difficult to kill than the corresponding planktonic microbes.« less

  13. Biodegradation of oil tank bottom sludge using microbial consortia.

    PubMed

    Gallego, José Luis R; García-Martínez, María Jesús; Llamas, Juan F; Belloch, Carmen; Peláez, Ana I; Sánchez, Jesús

    2007-06-01

    We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur-aromatic compounds (31-55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.

  14. Fecal Microbiota Transplantation Inhibits Multidrug-Resistant Gut Pathogens: Preliminary Report Performed in an Immunocompromised Host.

    PubMed

    Biliński, Jarosław; Grzesiowski, Paweł; Muszyński, Jacek; Wróblewska, Marta; Mądry, Krzysztof; Robak, Katarzyna; Dzieciątkowski, Tomasz; Wiktor-Jedrzejczak, Wiesław; Basak, Grzegorz W

    2016-06-01

    Colonization of the gastrointestinal tract with multidrug-resistant (MDR) bacteria is a consequence of gut dysbiosis. We describe the successful utilization of fecal microbiota transplantation to inhibit Klebsiella pneumoniae MBL(+) and Escherichia coli ESBL(+) gut colonization in the immunocompromised host as a novel tool in the battle against MDR microorganisms. ClinicalTrials.gov identifier NCT02461199.

  15. Molecular and cellular insights into Zika virus-related neuropathies.

    PubMed

    Zhou, Kai; Wang, Long; Yu, Di; Huang, Hesuyuan; Ji, Hong; Mo, Xuming

    2017-06-01

    Zika virus (ZIKV), a relatively elusive Aedes mosquito-transmitted flavivirus, had been brought into spotlight until recent widespread outbreaks accompanied by unexpectedly severe clinical neuropathies, including fetal microcephaly and Guillain-Barré syndrome (GBS) in the adult. In this review, we focus on the underlying cellular and molecular mechanisms by which vertically transmitted microorganisms reach the fetus and trigger neuropathies.

  16. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. Ultrastructural study of ehrlichial organisms in the large colons of ponies infected with Potomac horse fever.

    PubMed

    Rikihisa, Y; Perry, B D; Cordes, D O

    1985-09-01

    Potomac horse fever is characterized by fever, anorexia, leukopenia, profuse watery diarrhea, dehydration, and high mortality. An ultrastructural investigation was made to search for any unusual microorganisms in the digestive system, lymphatic organs, and blood cells of ponies that had developed clinical signs after transfusion with whole blood from horses naturally infected with Potomac horse fever. A consistent finding was the presence of rickettsial organisms in the wall of the intestinal tract of these ponies. The organisms were found mostly in the wall of the large colon, but fewer organisms were found in the small colon, jejunum, and cecum. The organisms were also detected in cultured blood monocytes. In the intestinal wall, many microorganisms were intracytoplasmic in deep glandular epithelial cells and mast cells. Microorganisms were also found in macrophages migrating between glandular epithelial cells in the lamina propria and submucosa. The microorganisms were round, very pleomorphic, and surrounded by a host membrane. They contained fine strands of DNA and ribosomes and were surrounded by double bileaflet membranes. Their ultrastructure was very similar to that of the genus Ehrlichia, a member of the family Rickettsiaceae. The high frequency of detection of the organism in the wall of the intestinal tract, especially in the large colon, indicates the presence of organotrophism in this organism. Infected blood monocytes may be the vehicle for transmission between organs and between animals. The characteristic severe diarrhea may be induced by the organism directly by impairing epithelial cell functions or indirectly by perturbing infected macrophages and mast cells in the intestinal wall or by both.

  18. Comparison of DNA extraction methods used to detect bacterial and yeast DNA from spiked whole blood by real-time PCR.

    PubMed

    Dalla-Costa, Libera M; Morello, Luis G; Conte, Danieli; Pereira, Luciane A; Palmeiro, Jussara K; Ambrosio, Altair; Cardozo, Dayane; Krieger, Marco A; Raboni, Sonia M

    2017-09-01

    Sepsis is the leading cause of death in intensive care units (ICUs) worldwide and its diagnosis remains a challenge. Blood culturing is the gold standard technique for blood stream infection (BSI) identification. Molecular tests to detect pathogens in whole blood enable early use of antimicrobials and affect clinical outcomes. Here, using real-time PCR, we evaluated DNA extraction using seven manual and three automated commercially available systems with whole blood samples artificially contaminated with Escherichia coli, Staphylococcus aureus, and Candida albicans, microorganisms commonly associated with BSI. Overall, the commercial kits evaluated presented several technical limitations including long turnaround time and low DNA yield and purity. The performance of the kits was comparable for detection of high microorganism loads (10 6 CFU/mL). However, the detection of lower concentrations was variable, despite the addition of pre-processing treatment to kits without such steps. Of the evaluated kits, the UMD-Universal CE IVD kit generated a higher quantity of DNA with greater nucleic acid purity and afforded the detection of the lowest microbial load in the samples. The inclusion of pre-processing steps with the kit seems to be critical for the detection of microorganism DNA directly from whole blood. In conclusion, future application of molecular techniques will require overcoming major challenges such as the detection of low levels of microorganism nucleic acids amidst the large quantity of human DNA present in samples or differences in the cellular structures of etiological agents that can also prevent high-quality DNA yields. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Protease expression by microorganisms and its relevance to crucial physiological/pathological events.

    PubMed

    Dos Santos, André Luis Souza

    2011-03-26

    The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells, which are similar in several biochemical and genetic aspects to host cells. Aggravating this scenario, very few antifungal and anti-trypanosomatidal agents are in clinical use and, therefore, therapy is limited by drug safety considerations and their narrow spectrum of activity, efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition, growth, proliferation, signaling, differentiation and death. In this context, proteolytic enzymes produced by these eukaryotic microorganisms are appointed and, in some cases, proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds, in order to cure or prevent invasive fungal/trypanosomatid diseases. With this task in mind, our research group and others have focused on aspartic-type proteases, since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures. In the present paper, a concise revision of the beneficial effects of aspartic protease inhibitors, with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy, will be presented and discussed using our experience with the following microbial models: the yeast Candida albicans, the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.

  20. Co-inoculating ruminal content neither provides active hydrolytic microbes nor improves methanization of ¹³C-cellulose in batch digesters.

    PubMed

    Chapleur, Olivier; Bize, Ariane; Serain, Thibaut; Mazéas, Laurent; Bouchez, Théodore

    2014-03-01

    Cellulose hydrolysis often limits the kinetics and efficiency of anaerobic degradation in industrial digesters. In animal digestive systems, specialized microorganisms enable cellulose biodegradation at significantly higher rates. This study aims to assess the potential of ruminal microbial communities to settle and to express their cellulolytic properties in anaerobic digesters. Cellulose-degrading batch incubations were co-inoculated with municipal solid waste digester sludge and ruminal content. ¹³C-labeled cellulose degradation was described over time with Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry. Results were linked to the identification of the microorganisms assimilating ¹³C and to the monitoring of their relative dynamics. Cellulose degradation in co-inoculated incubations was efficient but not significantly improved. Transient disturbances in degradation pathways occurred, as revealed by propionate accumulation. Automated Ribosomal Intergenic Spacer Analysis dynamics and pyrosequencing revealed that expected classes of Bacteria and Archaea were active and degraded cellulose. However, despite the favorable co-inoculation conditions, molecular tools also revealed that no ruminal species settled in the bioreactors. Other specific parameters were probably needed for this to happen. This study shows that exploiting the rumen's cellulolytic properties in anaerobic digesters is not straightforward. Co-inoculation can only be successful if ruminal microorganisms manage to thrive in the anaerobic digester and outcompete native microorganisms, which requires specific nutritional and environmental parameters, and a meticulous reproduction of the selection pressure encountered in the rumen. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals.

    PubMed

    Helmond, Mariette; Nierop Groot, Masja N; van Bokhorst-van de Veen, Hermien

    2017-07-03

    Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7°C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow in the starch-rich environment of pasteurized and chilled meals. Growth of the Paenibacillus isolates appeared to be delayed by decreased (<7°C) temperature or chilled temperature (7°C) combined with decreased pH (<5), increased sodium chloride (>5.5%, corresponding with an a w <0.934), or decreased a w (<0.931; using sucrose). To gain insight in the effect of the pasteurization processing of the meal on spore inactivation, heat-inactivation kinetics were determined and D-values were calculated. According to these kinetics, pasteurization up to 90°C, necessary for inactivation of vegetative spoilage microorganisms and pathogens, does not significantly contribute to the inactivation of Paenibacillus spores in the meals. Furthermore, outgrowth of pasteurized spores was determined in the mixed rice-vegetable meal at several temperatures; P. terrae FBR-61 and P. pabuli FBR-75 isolates did not substantially increase in numbers during storage at 2°C, but had a significant increase within a month of storage at 4°C or within several days at 22°C. Overall, this work shows the importance of Paenibacillus species as spoilage microorganisms of pasteurized, chilled RTE meals and that the meals' matrix, processing conditions, and storage temperature are important hurdles to control microbial meal spoilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  3. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

    PubMed Central

    Sirsat, Sujata A.; Neal, Jack A.

    2013-01-01

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce). Following this, an intervention study was performed to combat foodborne pathogen surrogates (Salmonella and E. coli), spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid) significantly reduced Salmonella, E. coli, coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless), it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens. PMID:28239132

  4. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce.

    PubMed

    Sirsat, Sujata A; Neal, Jack A

    2013-11-11

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce). Following this, an intervention study was performed to combat foodborne pathogen surrogates ( Salmonella and E. coli ), spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid) significantly reduced Salmonella , E. coli , coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless), it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  5. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs

    PubMed Central

    Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-01-01

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626

  6. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes.

    PubMed

    Djurhuus, Anni; Mikalsen, Svein-Ole; Giebel, Helge-Ansgar; Rogers, Alex D

    2017-04-01

    There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter , Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.

  7. Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil

    PubMed Central

    de Melo, Adriane Alexandre Machado; Geraldine, Robson Maia; Silveira, Miriam Fontes Araujo; Torres, Maria Célia Lopes; e Rezende, Cíntia Silva Minafra; Fernandes, Thiago Henrique; de Oliveira, Antonio Nonato

    2012-01-01

    Antimicrobial active packaging delays or inhibits microorganism growth in packed products, and it can be used in a variety of food systems. The objective of the present research was to develop packaging incorporated with natural antimicrobial agents (active film). The effects of the active film on the spoilage, pathogenic microorganism counts, pH and color of the refrigerated chicken breast cuts were analyzed. Cellulose acetate-based active films incorporating two concentrations (20% and 50%, v/w) of rosemary (Rosmarinus officinalis L.) essential oil were manufactured and placed in contact with the chicken breast cuts for six days. An analysis of variance and mean comparison tests (Tukey’s test, p<0.05) were performed on the results. The films that contained 20% essential oil and were intercalated with chicken breast samples did not demonstrate significant effects on the control of psychrotrophic or total coliform microorganisms during the storage period; however, the films incorporated with 50% essential oil demonstrated efficacy toward the control of coliforms during the storage of the samples (6 days, 2 ± 2ºC). The pH was related to the psychrotrophic microorganism count and was not influenced by the treatment. The color was not influenced by the time of storage or the treatment. The results demonstrate that active films incorporating 50% rosemary essential oil are effective at controlling certain microorganisms in chicken breast cuts. PMID:24031972

  8. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms.

    PubMed

    Reeve, Peter J; Fallowfield, Howard J

    2018-01-01

    The objective of this review is to highlight the need for further investigation of microbial toxicity caused by desorption of surfactant from Surfactant Modified Zeolite (SMZ). SMZ is a low cost, versatile permeable reactive media which has the potential to treat multiple classes of contaminants. With this combination of characteristics, SMZ has significant potential to enhance water and wastewater treatment processes. Surfactant desorption has been identified as a potential issue for the ongoing usability of SMZ. Few studies have investigated the toxicity of surfactants used in zeolite modification towards microorganisms and fewer have drawn linkages between surfactant desorption and surfactant toxicity. This review provides an overview of natural zeolite chemistry, characteristics and practical applications. The chemistry of commonly used surfactants is outlined, along with the kinetics that drive their adsorption to the zeolite surface. Methodologies to characterise this surfactant loading are also described. Applications of SMZ in water remediation are highlighted, giving focus to applications which deal with biological pollutants and where microorganisms play a role in the remediation process. Studies that have identified surfactant desorption from SMZ are outlined. Finally, the toxicity of a commonly used cationic surfactant towards microorganisms is discussed. This review highlights the potential for surfactant to desorb from the zeolite surface and the need for further research into the toxicity of this desorbed surfactant towards microorganisms, including pathogens and environmental microbes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.

    PubMed

    Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-08-28

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.

  10. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    PubMed Central

    Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O.

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide. PMID:28626450

  11. Are there clinical signs and symptoms of infection to indicate the presence of multidrug-resistant bacteria in venous ulcers?

    PubMed

    Dos Santos, Silvana de Lima Vieira; Martins, Marlene Andrade; do Prado, Marinésia Aparecida; Soriano, José Verdú; Bachion, Maria Márcia

    2017-12-01

    The selection of topical and systemic therapies for the treatment of venous ulcers with signs of infection is challenging and should be accompanied by specific precautionary measures to protect against cross-contamination in the presence of multidrug-resistant microorganisms. However, there are still no clinical indicators for this situation, and confirmation of resistant strains occurs through culture and sensitivity, which can take up to 14 days. During this period, protective measures may no longer be taken, contributing to the spread of these pathogens. This study aimed to analyze the relationship between clinical signs and symptoms of infection in venous ulcers and the presence of antimicrobial-resistant Staphylococcus aureus and/or Pseudomonas spp. A cross-sectional study was developed including 69 patients with 98 venous ulcers. Clinical observation protocol was applied to detect infection indicators established by the European Wound Management Association and microbiological analysis of samples of the lesions. Fisher's exact test and χ 2 were used for analyses (P < 0.05). Two indicators of infection predominated (f >70%): discoloration of the opaque type and/or dark brick red and increased exudate volume; 31 (31.6%) ulcer samples showed positive culture for the bacteria studied. There was no relationship between signs and symptoms of infection and the presence of multidrug-resistant microorganisms. Taking into account the percentage of lesions with resistant strains, for safe care, contact precautionary measures should be implemented in the treatment rooms, in addition to standard precautions. Copyright © 2017 Society for Vascular Nursing, Inc. Published by Elsevier Inc. All rights reserved.

  12. Molecular epidemiology of an outbreak of clinical mastitis in sheep caused by Mannheimia haemolytica.

    PubMed

    Omaleki, Lida; Browning, Glenn F; Allen, Joanne L; Markham, Philip F; Barber, Stuart R

    2016-08-15

    The aetiology and epidemiology of outbreaks of clinical mastitis in sheep under extensive pastoral conditions are incompletely understood. The objective of this study was to conduct a detailed investigation of a clinical mastitis outbreak that affected more than 10% of 230 at-risk ewes on a sheep and grain producing property in south east Australia during drought conditions in 2009. Milk samples were collected aseptically from all affected ewes and plated on sheep blood agar for bacterial identification. M. haemolytica was isolated from 80% of the samples that yielded cultivable microorganisms and thus was the main microorganism responsible for the outbreak. Analysis of the restriction endonuclease cleavage patterns of the isolates using pulsed field gel electrophoresis revealed some evidence of clonality, suggesting the possibility of horizontal transmission, but there was also considerable diversity between the clusters of closely related isolates. Multilocus sequence typing of the M. haemolytica isolates revealed most of the isolates belonged to ST1 with no association between the PFGE and MLST fingerprints of the isolates. Resistance to neomycin, streptomycin and sulphafurazole was detected in some of the isolates, but they were all susceptible to penicillin, ampicillin, ceftiofur, amoxycillin/clavulanic acid, ciprofloxacin, tetracycline, erythromycin and trimethoprim. This is the first published record of a comparison of the strains of M. haemolytica involved in a clinical mastitis outbreak in sheep and demonstrates the importance of this pathogen in sheep production systems, particularly during adverse climatic conditions and increased stocking rate. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Frequency of yeasts in vaginal fluid of women with and without clinical suspicion of vulvovaginal candidiasis].

    PubMed

    Andrioli, João Luciano; Oliveira, Gílvia Simone Andrade; Barreto, Cilene Souza; Sousa, Zulane Lima; Oliveira, Maria Cristina Haun de; Cazorla, Irene Mauricio; Fontana, Renato

    2009-06-01

    to study vulvovaginal candidiasis from the vaginal fluid of women with and without clinical suspicion, identifying the frequency of Candida spp., and associating it with intrinsic and extrinsic risk factors. a total of 286 samples from patients attended in private practices and public health units from August 2005 to August 2007 were collected, being 121 women under clinical suspicion and 165, without. The samples were collected with sterile swabs, taken to the laboratory in 0.85% physiological solution, and then seeded in CHROMagar Candida and in 4% agar Sabourad with chloramphenicol. Classical identification procedures were carried out: macro and micromorphology, zymogram and auxanogram. Data obtained were analyzed by frequency tests and contingency tables (chi2). a total of 47.9% of the women under clinical suspicion got confirmation of candidiasis by the laboratorial tests. Among the patients without clinical suspicion (Control Group), 78.2% were vulvovaginal candidiasis negative according to the laboratorial tests. Candida albicans was the prevalent strain in 74.5% of the cases. There were significant differences among the positive cases, according to the patients from the two cities evaluated (p<0.05). Clothing was one differential aspect found among the two populations studied. the presence of predisposing factors does not necessarily define vulvovaginal candidiasis. Geographical localization has shown to be a relevant factor in the distribution of events. The type of clothing may be one of the reasons for it. Culture of samples from the vaginal contents, followed by microorganisms' identification, can be important.

  14. Prospective evaluation of the VITEK MS for the routine identification of bacteria and yeast in the clinical microbiology laboratory: assessment of accuracy of identification and turnaround time.

    PubMed

    Charnot-Katsikas, Angella; Tesic, Vera; Boonlayangoor, Sue; Bethel, Cindy; Frank, Karen M

    2014-02-01

    This study assessed the accuracy of bacterial and yeast identification using the VITEK MS, and the time to reporting of isolates before and after its implementation in routine clinical practice. Three hundred and sixty-two isolates of bacteria and yeast, consisting of a variety of clinical isolates and American Type Culture Collection strains, were tested. Results were compared with reference identifications from the VITEK 2 system and with 16S rRNA sequence analysis. The VITEK MS provided an acceptable identification to species level for 283 (78 %) isolates. Considering organisms for which genus-level identification is acceptable for routine clinical care, 315 isolates (87 %) had an acceptable identification. Six isolates (2 %) were identified incorrectly, five of which were Shigella species. Finally, the time for reporting the identifications was decreased significantly after implementation of the VITEK MS for a total mean reduction in time of 10.52 h (P<0.0001). Overall, accuracy of the VITEK MS was comparable or superior to that from the VITEK 2. The findings were also comparable to other studies examining the accuracy of the VITEK MS, although differences exist, depending on the diversity of species represented as well as on the versions of the databases used. The VITEK MS can be incorporated effectively into routine use in a clinical microbiology laboratory and future expansion of the database should provide improved accuracy for the identification of micro-organisms.

  15. Clinical and microbiological effectiveness of photodynamic therapy on primary endodontic infections: a 6-month randomized clinical trial.

    PubMed

    de Miranda, Rachel Garcia; Colombo, Ana Paula Vieira

    2018-05-01

    This short-term randomized controlled trial evaluated the effectiveness of photodynamic therapy (PDT) on clinical success (periapical healing) and on the microbiota of primary endodontic infections. Thirty-two patients presenting mandibular molars with apical periodontitis (one tooth/patient) were selected and randomly allocated into two therapeutic groups: control (chemo-mechanical debridement [CMD]; n = 16) and PDT (CMD + PDT; n = 16). All teeth in both groups had intracanal medication with calcium hydroxide for 7 days before final obturation. Follow-up radiographs were made at 3 and 6 months. Periapical healing was evaluated by the periapical index (PAI). Samples were obtained at baseline, after CMD with or without PDT, and just before root filling to determine the frequency and levels of 37 taxa by checkerboard. Significant decreases in PAI scores were observed in both groups over time, although at 6 months, the PDT group presented a significantly better healing score than the control (p < 0.05). At baseline, the most prevalent species in all samples were Candida albicans (46.9%), Dialister pneumosintes (31.2%), Prevotella nigrescens (28.2%), Prevotella tannerae (28.1%), and Peptostreptococcus anaerobius (25%). Most species reduced over time in both groups, and no significant differences in frequency and levels of the tested species were observed between groups in any time point evaluated. C. albicans and D. pneumosintes were still detected in high frequency in both groups at 3 months post-therapy. Conventional endodontic therapy with or without PDT is effective in reducing microbial load, resulting in periapical healing. Nevertheless, adjunctive PDT provides better periapical healing at 6-month follow-up. Teeth with apical periodontitis treated with PDT adjunct to conventional treatment would demonstrate superior healing and reduction of microorganisms.

  16. Sarcoid-like lesions in Paracoccidioidomycosis: immunological factors*

    PubMed Central

    de Medeiros, Vanessa Lucília Silveira; Arruda, Lúcia

    2013-01-01

    The clinical presentation of paracoccidioidomycosis is spectral. Spontaneous cure, state of latency or active disease with different levels of severity can occur after the hematogenous dissemination. The morphology and number of skin lesions will depend on the interaction of host immunity, which is specific and individual, and fungus virulence. Some individuals have natural good immunity, which added to the low virulence of the fungus maintain the presence of well-marked granulomas with no microorganism and negative serology for a long time, making the diagnosis a challenge. Factors inherent to the fungus, however, may modulate the immune response and modify the clinical picture over the time. We present a sarcoidosis-like clinical presentation and discuss the immunological factors involved. PMID:23539015

  17. [Thoracic nocardiosis - a clinical report].

    PubMed

    Vale, Artur; Guerra, Miguel; Martins, Daniel; Lameiras, Angelina; Miranda, José; Vouga, Luís

    2014-01-01

    Nocardia genus microorganisms are ubiquitous, Gram positive aerobic bacterias, responsible for disease mainly in immunocompromised hosts, with cellular immune response commitment. Inhalation is the main form of transmition and pulmonary disease is the most frequent presentation. Dissemination may occur by contiguity and also via hematogenous. The clinical and imaging presentation is not specific, and diagnosis is obtained after identification of Nocardia bacteria in biological samples. Since there are no reliable studies that indicate the best therapeutic option, treatment should be individualized and based on antimicrobial susceptibility testing. Surgical drainage should also be considered in all patients. The authors present a clinical case of a patient with thoracic nocardiosis, and make a short literature review on the theme.

  18. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  19. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  20. Imaging of bacteria: is there any hope for the future based on past experience?

    PubMed

    Ebenhan, Thomas; Lazzeri, Elena; Gheysens, Olivier

    2017-11-21

    Infectious diseases remain a major health problem and cause of death worldwide. It is expected that the socio-economic impact will further intensify due to escalating resistance to antibiotics, an ageing population and an increase in the number of patients under immunosuppressive therapy and implanted medical devices. Even though radiolabeled probes and leukocytes are routinely used in clinical practice, it might still be difficult to distinguish sterile inflammation from inflammation caused by bacteria. Moreover, the majority of these probes are based on the attraction of leukocytes which may be hampered in neutropenic patients. Novel approaches that can be implemented in clinical practice and allow for swift diagnosis of infection by targeting the microorganism directly, are posing an attractive strategy. Here we review the current strategies to directly image bacteria using radionuclides and we provide an overview of the preclinical efforts to develop and validate new approaches. Indeed, significant progress has been made in the past years, but very few radiopharmaceuticals (that were promising in preclinical studies) have made it into clinical practice. We will discuss the challenges that remain to select good candidates for imaging agents targeting bacteria. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

Top