Sample records for clinkers

  1. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker storage...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...

  2. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker storage...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...

  3. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...

  4. 40 CFR 63.1343 - What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...

  5. 40 CFR 63.1345 - Standards for clinker coolers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for clinker coolers. 63.1345... and Operating Limits § 63.1345 Standards for clinker coolers. (a) No owner or operator of a new or existing clinker cooler at a facility which is a major source subject to the provisions of this subpart...

  6. 76 FR 78240 - Gray Portland Cement and Clinker From Japan: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Clinker From Japan: Continuation of Antidumping Duty Order AGENCY: Import Administration, International... clinker from Japan, pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act). See... of the antidumping duty order on gray portland cement and clinker from Japan would likely lead to...

  7. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  8. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States International... clinker from Japan would be likely to lead to continuation or recurrence of material injury within a...

  9. Analysis of the cement clinker produced with incorporation of petroleum sludge

    NASA Astrophysics Data System (ADS)

    Benlamoudi, A.; Kadir, A. Abdul; Khodja, M.; Nuruddin, M. F.

    2018-04-01

    Very limited researches have been conducted on the incorporation of petroleum sludge waste into cement clinker production even though this waste may contain similar components to those of clinker raw materials. In this research, petroleum sludge was integrated into cement plant as raw material to produce the cement clinker. As results, incorporation of 5% of this waste was able to produce an acceptable quality of cement. Despite the use of petroleum sludge has decreased the properties of the produced clinker, but it still fit the requirements.

  10. A study on the grindability of portland cement clinker containing transition metal oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsivilis, S.; Kakali, G.

    1997-05-01

    The subject of this paper is to investigate the effect of transition metal oxides on the grindability of clinker. As it is concluded clinker containing ZnO has the lower grindability while clinker containing MnO or Cr{sub 2}O{sub 3} has the higher grindability. The classification of the added oxides, concerning the clinker grindability (descending sort), is: MnO, Cr{sub 2}O{sub 3}, Ni{sub 2}O{sub 3}, ZrO{sub 2}, CuO, Co{sub 2}O{sub 3}, V{sub 2}O{sub 5}, MoO{sub 3}, TiO{sub 2}, ZnO. The study of the clinker by means of X-Ray diffraction and optical microscopy confirms the results.

  11. 40 CFR 63.1345 - Emissions limits for affected sources other than kilns; in-line kiln/raw mills; clinker coolers...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills, and open clinker piles. 63.1345 Section 63.1345 Protection of Environment... for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed...

  12. 40 CFR 63.1348 - Standards for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. The owner or operator of each new or existing raw material, clinker, or finished product...

  13. Calculation of the C3A Percentage in High Sulfur Clinker

    PubMed Central

    Horkoss, Sayed; Lteif, Roger; Rizk, Toufic

    2010-01-01

    The aim of this paper is to clarify the influence of the clinker SO3 on the amount of C3A. The calculation of the cement phases percentages is based on the research work, Calculation of the Compounds in Portland Cement, published by Bogue in 1929 .The usage of high sulphur fuels, industrial wastes, and tires changes completely the working condition of Bogue because the assumed phase compositions may change. The results prove that increasing the amount of SO3 in the low alkali clinker decreases the percentages of C3A due to the high incorporation of alumina in the clinker phases mainly C2S and C3S. The correlation is linear till the clinker SO3 reaches the 2%. Over that the influence of the clinker SO3 became undetectable. A new calculation method for the determination of the C3A in the high sulphur and low alkali clinker was proposed. PMID:20689732

  14. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    PubMed

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. 2010 Elsevier Ltd. All rights reserved.

  15. Geologic history of natural coal-bed fires, Powder River basin, USA

    USGS Publications Warehouse

    Heffern, E.L.; Coates, D.A.

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the exposed edge of the coal bed in an ongoing process through geologic time. The resistant clinker is left capping buttes and ridges after the softer unbaked strata erode away. Clinker outcrops cover more than 4100 km2 in the Powder River basin (PRB), which lies in Wyoming (WY) and Montana (MT). The clinker in place records tens of billions of tons of coal that have burned, releasing gases into the atmosphere. The amount of clinker that has eroded away was at least an order of magnitude greater than the clinker that remains in place. Fission-track and uranium-thorium/ helium ages of detrital zircon crystals in clinker, and paleomagnetic ages of clinker, show that coal beds have burned naturally during at least the past 4 million years (Ma). The oldest in-place clinker that has been dated, collected from a high, isolated, clinker-capped ridge, has a fission track age of 2.8??0.6 Ma. Evidence of erosion and downcutting is also preserved by clinker clasts in gravel terraces. One clinker boulder in a terrace 360 m above the Yellowstone River has a fission track age of 4.0??0.7 Ma. Coal-bed fires are caused by lightning, wildfires, spontaneous combustion, or human activity on coal outcrops and in mines. Miners, government agencies, and ranchers have extinguished thousands of coal bed fires, but natural ignition continues where fresh coal has access to air. At any given time, hundreds of fires, mostly small, are burning. In the Powder River basin, the total amount of coal burned by natural fires in the last 2 Ma is one to two orders of magnitude greater than the total amount of coal removed by mining in the past century. However, current annual rates of coal mining are three to four orders of magnitude greater than estimated prehistoric annual rates of coal consumption by natural fires. ?? 2004 Published by Elsevier B.V.

  16. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located onmore » a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.« less

  17. The influence of mineralogical, chemical and physical properties on grindability of commercial clinkers with high MgO level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Vladia Cristina G. de; Koppe, Jair Carlos; Costa, Joao F.C.L.

    2008-08-15

    This research investigates various methods able to identify possible mineralogical, physical and chemical influences on the grindability of commercial clinkers with high MgO level. The aim of the study is to evaluate the hardness and elastic modulus of the clinker mineral phases and their fracture strength during the comminution processes, comparing samples from clinkers with low MgO level (0.5%) and clinkers with elevated MgO levels (> 5.0%). The study of the influence of mineralogical, chemical and physical properties was carried out using several analytical techniques, such as: optical microscopy, X-ray diffraction with Rietveld refinement (XRD) and X-ray fluorescence (XRF). Thesemore » techniques were useful in qualifying the different clinker samples. The drop weight test (DWT) and the Bond ball mill grindability test were performed to characterize the mechanical properties of clinkers. Nanoindentation tests were also carried out. Results from the Bond ball mill grindability test were found to be related to the hardness of the mineral phase and to mineralogical characteristics, such as type and amount of inclusions in silicates, belite and alite crystals shape, or microcracked alites. In contrast, the results obtained by the DWT were associated to the macro characteristics of clinkers, such as porosity, as well as to the hardness and mineralogical characteristics of belite crystals in clusters. Hardness instrumented tests helped to determine the Vickers hardness and elastic modulus from the mineral phases in commercial clinkers and produced different values for the pure phases compared to previous publications.« less

  18. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  19. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...

  20. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...

  1. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...

  2. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...

  3. Quality design of belite–melilite clinker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Daisuke, E-mail: daisuke_kurokawa@taiheiyo-cement.co.jp; Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555; Honma, Kenichi

    2013-12-15

    We have developed a new cement clinker, consisting mainly of belite and melilite, which is capable of increasing the amount of recycled waste as a part of its raw materials. We analyzed clinkers with a wide range of compositions, and clarified the quantitative relationship between the chemical and mineral compositions. Clinkers consisting mostly of belite and melilite were successfully obtained at the CaO/SiO{sub 2} mass ratio of 1.7 to 1.9. Test cements were prepared using these clinkers and mixed with OPC for the evaluation of fluidity and strength. The belite–melilite cement was found to have good fluidity, and the belite–melilitemore » cement mixed with OPC at up to 30% exhibited a satisfactory long term strength equivalent to the OPC, demonstrating the potential as an alternative to OPC. Electron probe microanalysis revealed the relatively high concentration of diphosphorus pentaoxide in belite, suggesting this component might contribute to the strength enhancement of the cement. -- Highlights: •A new cement clinker consisting mainly of belite and melilite was designed. •The clinker enables the use of various recycled wastes as part of its raw materials. •The relationship between the chemical and mineral compositions was clarified. •This cement mixed with OPC at up to 30% exhibited a good quality equivalent to OPC.« less

  4. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    NASA Astrophysics Data System (ADS)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  5. Biocompatibility and setting time of CPM-MTA and white Portland cement clinker with or without calcium sulfate.

    PubMed

    Bramante, Clovis Monteiro; Kato, Marcia Magro; Assis, Gerson Francisco de; Duarte, Marco Antonio Hungaro; Bernardineli, Norberti; Moraes, Ivaldo Gomes de; Garcia, Roberto Brandão; Ordinola-Zapata, Ronald; Bramante, Alexandre Silva

    2013-01-01

    To evaluate the biocompatibility and the setting time of Portland cement clinker with or without 2% or 5% calcium sulfate and MTA-CPM. Twenty-four mice (Rattus norvegicus) received subcutaneously polyethylene tubes filled with Portland cement clinker with or without 2% or 5% calcium sulfate and MTA. After 15, 30 and 60 days of implantation, the animals were killed and specimens were prepared for microscopic analysis. For evaluation of the setting time, each material was analyzed using Gilmore needles weighing 113.5 g and 456.5 g, according to the ASTM specification Number C266-08 guideline. Data were analyzed by ANOVA and Tukey's test for setting time and Kruskal-Wallis and Dunn test for biocompatibility at 5% significance level. Histologic observation showed no statistically significant difference of biocompatibility (p>0.05) among the materials in the subcutaneous tissues. For the setting time, clinker without calcium sulfate showed the shortest initial and final setting times (6.18 s/21.48 s), followed by clinker with 2% calcium sulfate (9.22 s/25.33 s), clinker with 5% calcium sulfate (10.06 s/42.46 s) and MTA (15.01 s/42.46 s). All the tested materials showed biocompatibility and the calcium sulfate absence shortened the initial and final setting times of the white Portland cement clinker.

  6. Utilization of flotation wastes of copper slag as raw material in cement production.

    PubMed

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  7. Experimental study on the relationship between the mineral production capability and the physiochemical properties in the coproduction of Q phase-3CaO·3Al2O3·CaSO4 cement clinker.

    PubMed

    He, Chao; Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou

    2018-01-01

    A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required.

  8. Experimental study on the relationship between the mineral production capability and the physiochemical properties in the coproduction of Q phase-3CaO·3Al2O3·CaSO4 cement clinker

    PubMed Central

    Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou

    2018-01-01

    A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required. PMID:29634732

  9. Evaluation of P{sub 2}O{sub 5} distribution inside the main clinker minerals by the application of EPMA method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ifka, Tomáš, E-mail: tomas.ifka@savba.sk; Palou, Martin; Baraček, Jan

    2014-05-01

    The formation of Portland clinker phases has taken place in thermodynamically non-equilibrium state between macro-oxides CaO, SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and MgO from raw meal and P{sub 2}O{sub 5} from bone meal. The paper deals with the study of clinker minerals as solid solutions with P{sub 2}O{sub 5} during the clinkerization of raw mixture containing bone meal (BM). The ash of BM has contributed as a raw material to the formation of different clinker phases. Electron probe microanalysis (EPMA) method was used to determine the preferential distribution of P{sub 2}O{sub 5} inside calcium silicate phases andmore » its influence upon C{sub 2}S/C{sub 3}S ratio. Basing on these results, composition of solid solution of C{sub 2}S and C{sub 3}S was established.« less

  10. Study of Zn-Pb ore tailings and their potential in cement technology

    NASA Astrophysics Data System (ADS)

    Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.

    2018-03-01

    This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.

  11. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gineys, N., E-mail: nathalie.gineys@mines-douai.fr; EMDouai, LGCgE-MPE-GCE, F-59508 Douai; Aouad, G.

    2011-11-15

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C{sub 3}S, C{sub 2}S, C{sub 3}A and C{sub 4}AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C{sub 3}S, 18% C{sub 2}S, 8% C{sub 3}A and 8% C{sub 4}AF). The threshold limits formore » Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO{sub 2}) and Sn reacted with lime to form a calcium stannate (Ca{sub 2}SnO{sub 4}). Cu changed the crystallisation process and affected therefore the formation of C{sub 3}S. Indeed a high content of Cu in clinker led to the decomposition of C{sub 3}S into C{sub 2}S and of free lime. Zn, in turn, affected the formation of C{sub 3}A. Ca{sub 6}Zn{sub 3}Al{sub 4}O{sub 15} was formed whilst a tremendous reduction of C{sub 3}A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.« less

  12. Use of Ceramic Material (cement Clinker) for the Production of Biodiesel

    NASA Astrophysics Data System (ADS)

    Soni, Sunny; Agarwal, Madhu

    Biodiesel is a renewable liquid fuel made from natural, renewable biological sources such as edible and non edible oils. Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. Reasons for growing interest in biodiesel include its potential for reducing noxious emissions, potential contributions to rural economic development, as an additional demand center for agricultural commodities, and as a way to reduce reliance on foreign oil. Biodiesel was prepared from soybean oil by transesterification with methanol in the presence of cement clinker. Cement clinker was examined as a catalyst for a conversion of soybean oil to fatty acid methyl esters (FAMEs). It can be a promising heterogeneous catalyst for the production of biodiesel fuels from soybean oil because of high activity in the conversion and no leaching in the transesterification reaction. The reaction conditions were optimized. A study for optimizing the reaction parameters such as the reaction temperature, and reaction time, was carried out. The catalyst cement clinker composition was characterized by XRF. The results demonstrate that the cement clinker shows high catalytic performance & it was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 65°C, with a 6:1 molar ratio of methanol to oil, 21 wt% KOH/cement clinker as catalyst.

  13. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  14. Functional interactions between A' helices in the C-linker of open CNG channels.

    PubMed

    Hua, Li; Gordon, Sharona E

    2005-03-01

    Cyclic nucleotide-gated (CNG) channels are nonselective cation channels that are activated by the direct binding of the cyclic nucleotides cAMP and cGMP. The region linking the last membrane-spanning region (S6) to the cyclic nucleotide binding domain in the COOH terminus, termed the C-linker, has been shown to play an important role in coupling cyclic nucleotide binding to opening of the pore. In this study, we explored the intersubunit proximity between the A' helices of the C-linker regions of CNGA1 in functional channels using site-specific cysteine substitution. We found that intersubunit disulfide bonds can be formed between the A' helices in open channels, and that inducing disulfide bonds in most of the studied constructs resulted in potentiation of channel activation. This suggests that the A' helices of the C-linker regions are in close proximity when the channel is in the open state. Our finding is not compatible with a homology model of the CNGA1 C-linker made from the recently published X-ray crystallographic structure of the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel COOH terminus, and leads us to suggest that the C-linker region depicted in the crystal structure may represent the structure of the closed state. The opening conformational change would then involve a movement of the A' helices from a position parallel to the axis of the membrane to one perpendicular to the axis of the membrane.

  15. Utilization of Palm Oil Clinker as Cement Replacement Material

    PubMed Central

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-01-01

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748

  16. Utilization of Palm Oil Clinker as Cement Replacement Material.

    PubMed

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  17. 40 CFR 60.64 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... than kilns (including associated alkali bypass and clinker cooler) that are subject to the 10 percent... Qi are on the same basis (either wet or dry), scf/hr. P = 30 days of clinker production during the...

  18. 40 CFR 60.64 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than kilns (including associated alkali bypass and clinker cooler) that are subject to the 10 percent... Qi are on the same basis (either wet or dry), scf/hr. P = 30 days of clinker production during the...

  19. Crystallization of belite–melilite clinker minerals in the presence of liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Daisuke, E-mail: daisuke_kurokawa@taiheiyo-cement.co.jp; Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555; Yoshida, Hideto

    2014-06-01

    Crystallization of belite–melilite clinker minerals was studied from the view point of a high temperature equilibrium. Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} and Ca{sub 2}SiO{sub 4}–Ca{sub 2}AlFeSiO{sub 7} clinkers were synthesized at 1330 °C–1650 °C. The constituent phases were determined by X-ray powder diffractometry and optical microscopy. Chemical compositions of the individual clinker minerals were determined using an electron probe microanalyzer. We established the two types of P{sub 2}O{sub 5}-bearing pseudobinary phase diagrams in the systems Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} at 1505 °C–1650 °C and Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} at 1330 °C–1550 °C. In the lattermore » system, the liquid phase appeared at 1390 °C, which is approximately 150 °C lower than the temperature of liquid formation in the former system. The melilite phenocrysts larger than 50 μm were observed not only in the slowly cooled Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} clinker but also in commercial belite–melilite clinkers. These crystals would be nucleated and grown from a liquid phase which was formed at relatively low temperatures.« less

  20. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    NASA Astrophysics Data System (ADS)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  1. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Shih, Pai-Haung; Chiang, Li-Choung; Chang, Yi-Kuo; Lu, Hsing-Cheng; Chang, Juu-En

    2009-10-15

    The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C(2)S). Belite-rich clinkers prepared with 0.5-2% of NiO, ZnO, CuO, and Cr(2)O(3) were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of gamma-C(2)S and beta-C(2)S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on beta-C(2)S stabilization (Cr(3+)>Ni(2+)>Zn(2+)), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C(2)S. It was observed that gamma-C(2)S decreased while beta-C(2)S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing beta-C(2)S in the belite-rich clinkers produced from the electroplating sludge.

  2. Red mud addition in the raw meal for the production of Portland cement clinker.

    PubMed

    Tsakiridis, P E; Agatzini-Leonardou, S; Oustadakis, P

    2004-12-10

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste, which is obtained from bauxite during the Bayer process for alumina production, in the raw meal for the production of Portland cement clinker. For that reason, two samples of raw meals were prepared: one with ordinary raw materials, as a reference sample ((PC)Ref), and another with 3.5% red mud ((PC)R/M). The effect on the reactivity of the raw mix was evaluated on the basis of the unreacted lime content in samples sintered at 1350, 1400 and 1450 degrees C. Subsequently, the clinkers were produced by sintering the two raw meals at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the red mud did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the red mud did not negatively affect the quality of the produced cement.

  3. Dynamic Analysis of the Temperature and the Concentration Profiles of an Industrial Rotary Kiln Used in Clinker Production.

    PubMed

    Rodrigues, Diulia C Q; Soares, Atílio P; Costa, Esly F; Costa, Andréa O S

    2017-01-01

    Cement is one of the most used building materials in the world. The process of cement production involves numerous and complex reactions that occur under different temperatures. Thus, there is great interest in the optimization of cement manufacturing. Clinker production is one of the main steps of cement production and it occurs inside the kiln. In this paper, the dry process of clinker production is analysed in a rotary kiln that operates in counter flow. The main phenomena involved in clinker production is as follows: free residual water evaporation of raw material, decomposition of magnesium carbonate, decarbonation, formation of C3A and C4AF, formation of dicalcium silicate, and formation of tricalcium silicate. The main objective of this study was to propose a mathematical model that realistically describes the temperature profile and the concentration of clinker components in a real rotary kiln. In addition, the influence of different speeds of inlet gas and solids in the system was analysed. The mathematical model is composed of partial differential equations. The model was implemented in Mathcad (available at CCA/UFES) and solved using industrial input data. The proposal model is satisfactory to describe the temperature and concentration profiles of a real rotary kiln.

  4. Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker.

    PubMed

    Barros, A M; Tenório, J A S; Espinosa, D C R

    2004-08-09

    Zinc, lead, and cadmium are minor elements that might be brought by wastes to the cement kilns. This work studies the incorporation ratio of ZnO, PbO, and CdO when they are added to the clinker raw material. The cement raw material used in this work was prepared by mixing pure compounds, this choice was made to avoid the effect of other elements and provide a better understanding of the behavior of these metals during the clinkering process. The samples contained additions of 0.05, 0.10, 0.30, 0.50, 0.80 and 1.00 wt.% of a specific oxide (ZnO, PbO, or CdO) to the clinker raw-meal. The chlorine influence in the ZnO incorporation ratio was also evaluated. A device to simulate the thermal cycle imposed on the charge during the clinker production was used to evaluate the incorporation ratio of these oxides as well as thermogravimetric tests. The products of the tests in the simulator device were submitted to X-ray fluorescence chemical analysis or energy disperse scanning (EDS) microprobe analysis. The results led to the conclusions that the evaporation of Zn in cements kilns is due to the chlorine content and the Pb and Cd incorporation ratio stands around 50 wt.%.

  5. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua; Snellings, Ruben; Li, Xuerun

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phasemore » composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.« less

  6. Stability of ternesite and the production at scale of ternesite-based clinkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanein, Theodore; Galan, Isabel; Glasser, Fredrik P.

    A method to synthesize high-purity ternesite is presented and the importance of reaction volume is highlighted; a brief description of the product morphology is also presented. Thermodynamic data for ternesite are derived and the limits of ternesite stability are then explored. An upper temperature stability limit of ≈ 1290 °C at 1 atm is determined; however, this temperature is dependent on the fugacity of the volatile components in the atmosphere. Thermodynamic predictions confirm that belite and ternesite rich calcium sulfoaluminate clinkers can be readily produced in a single stage process at temperatures above 1200 °C provided the atmosphere and temperaturemore » are controlled. To demonstrate this control at larger scales, a conventional 7.4-meter rotary kiln has been used to produce ≈ 20 kg of ternesite-containing clinkers. This demonstrates the usefulness of thermodynamic modelling as it has enabled ternesite-based clinkers to be readily produced at scale in a single-stage process using existing equipment without major modifications.« less

  7. Utilization of steel slag for Portland cement clinker production.

    PubMed

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  8. Non-autoclaved aerated concrete with mineral additives

    NASA Astrophysics Data System (ADS)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  9. 40 CFR 63.1357 - Temporary, conditioned exemption from particulate matter and opacity standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Portland Cement Manufacturing Industry Other § 63.1357 Temporary, conditioned exemption from... applicable to cement kilns and clinker coolers. (2) Any permit or other emissions or operating parameter or other limitation on workplace practices that are applicable to cement kilns and clinker coolers to...

  10. 40 CFR 63.1357 - Temporary, conditioned exemption from particulate matter and opacity standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Portland Cement Manufacturing Industry Other § 63.1357 Temporary, conditioned exemption from... applicable to cement kilns and clinker coolers. (2) Any permit or other emissions or operating parameter or other limitation on workplace practices that are applicable to cement kilns and clinker coolers to...

  11. Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Miller, C.H.

    1979-01-01

    Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and unloading the head. The low-velocity layer is usually less than about 5 m thick and may be excavated by dozing, whereas the bedrock must be blasted. Thus, it would seem economically feasible to underpin a structure to nonweathered bedrock or, perhaps, to remove the low-velocity layer prior to construction. (2) Many coal beds in the Powder River Basin have burned along their outcrops, and the resulting intense heat has baked and fused the overlying clastic (sedimentary) rocks into clinkers. The clinkers are very magnetic and a buried edge of a single layer of burn can easily be located by magnetic prospecting methods. Location of the edge is very important in estimating unburned coal deposits, locating clinker quarries, and planning drilling of seismic reflection lines. The clinkers are very porous and highly fractured,-and seismic and geotechnical tests show that they have relatively low strength and competency. Many of the laboratory tests, however, are inherently biased because the clinkers are so highly fractured that only competent samples are selected. The laboratory tests, for example, show that clinkers must be loosened by heavy ripping tractors or blasting, whereas the field data and practical experience indicate that clinkers may be mined with light equipment. Heavy structures such as coal silos and bridge abutments may have to be sited on clinkers. However, differential settlement may occur, with failure in the shear mode, because chimneys of relatively greater strength occur among the weaker clinkers. Preliminary data indicate that the chimneys may be located by magnetic or possibly seismic surveys. Special foundation-preparation techniques could be used or, perhaps, the chimneys could be avoided altogether at a construction site.

  12. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    NASA Astrophysics Data System (ADS)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  13. 76 FR 54206 - Gray Portland Cement and Clinker From Japan: Final Results of the Expedited Third Sunset Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... manufacturing cement, has no use other than grinding into finished cement. Microfine cement was specifically... DEPARTMENT OF COMMERCE International Trade Administration [A-588-815] Gray Portland Cement and... portland cement and clinker from Japan. As a result of this third sunset review, the Department finds that...

  14. Effect of mineral additives (natural pozzolana and sand of dunes) by substitution of cement on the performance and durability of mortars

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Safi, B.

    2016-04-01

    The objective of our work consists of the study of the substitution effects of clinker by mineral additions such as: natural pozzolana (PZ) and the sand of dunes (SD) finely crushed on the mechanical properties and the durability of the mortars worked out according to various combinations containing these additions. The results from this research confirm that the substitution of 20% to 30% of cement APC (Artificial Portland Cement) by additions in binary cement (APC + PZ) or ternary (APC + PZ + SD) contributes positively to the mechanical strength of mortars and resistance to the chemical attacks in various corrosive conditions such as: hydrochloric acid, sulfuric acid and nitric acid. The mechanical strength of the different variants is comparable to those of the APC. The test results of the weight loss and phenolphthalein shows that the chemical resistance of variants (PZ20) and (PZ20 with SD5) are larger compared to the reference mortar APC and other variants. This study shows that adding value by substituting a part of clinker. This substitution can save 20% to 30% of clinker used for the manufacture of cement; this will have a beneficial effect for cement and economically (less energy spent for the clinker burning). This study contributes to the protection of the environment as to produce one ton of clinker generates about one ton of CO2 is harmful to the atmosphere. Based on our results we will reduce from 20% to 30% CO2 gas responsible for the greenhouse effect.

  15. Experimental research on mathematical modelling and unconventional control of clinker kiln in cement plants

    NASA Astrophysics Data System (ADS)

    Rusu-Anghel, S.

    2017-01-01

    Analytical modeling of the flow of manufacturing process of the cement is difficult because of their complexity and has not resulted in sufficiently precise mathematical models. In this paper, based on a statistical model of the process and using the knowledge of human experts, was designed a fuzzy system for automatic control of clinkering process.

  16. Preparation of clinker from paper pulp industry wastes.

    PubMed

    Buruberri, Leire H; Seabra, M P; Labrincha, J A

    2015-04-09

    The production of paper pulp by the Kraft method generates considerable amounts of wastes. Namely, lime mud generated in the recovery circuit of chemical reagents, biological sludge from the wastewater treatment of wood digestion process and fly ash collected in the fluidized bed combustor used to generate electricity from biomass burning. The final destination of such wastes is an important concern, since environmental regulations are becoming stricter regarding their landfill. Driven by this fact, industries are looking for more sustainable solutions, such as the recycling in distinct products. This work tested these wastes as secondary raw materials to produce clinker/cement that was then experienced in mortar formulations. The first step involved the residues detailed characterization and a generated amounts survey. Then, specific but simple steps were suggested, aiming to facilitate transport and manipulation. Distinct blends were prepared and fired in order to get belitic and Portland clinkers. The Portland clinkers were processed at lower temperatures than the normally used in the industry due to the presence of mineralizing impurities in some wastes. Belite-based cements were used to produce mortars that developed satisfactory mechanical strength and did not reveal signs of deterioration or durability weaknesses. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Peculiarities of physical and chemical processes of clinker formation in raw mixes with increased content of magnesium oxide in presence of barite waste

    NASA Astrophysics Data System (ADS)

    Novoselova, I. N.; Novosyolov, A. G.

    2018-03-01

    The article considers the influence of barite waste on clinker formation processes in raw mixes with the increased content of magnesium oxide. A by-product of the barite concentrate manufacture of Tolcheinskoye deposit has been used as a barite waste, its predominant content of barium sulphate BaSO4 amounts to 76,11%. The impact of BaO and SO3 has been revealed, particularly the impact of barium oxide on clinker formation processes in raw mixes with the increased content of magnesium oxide. It has been clarified that the addition of barite waste into a raw mix causes the formation of dicalcium silicate in two modifications, reduces the amount of alite and influences on the composition of tricalcium aluminate. Barium mono-alluminate is formed in the composition of the intermediate material. Solid solutions with barium oxide are formed in clinker phases. The authors have determined the saturation speed of calcium oxide in magnesium-bearing raw mixes with saturation coefficient (SC) 0,91 and 0,80 in the presence of 2 and 3% barite waste in the temperature range 1300-1450°C.

  18. Matrix model of the grinding process of cement clinker in the ball mill

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  19. 40 CFR 98.86 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Monthly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in clinker for each kiln (as wt-fractions). (7) Method used to determine non-calcined CaO and non-calcined MgO in clinker. (8) Quarterly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in CKD not recycled to the...

  20. Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies

    NASA Astrophysics Data System (ADS)

    Letina, D.; Letshwenyo, W. M.

    2018-06-01

    Wastewater from the mining industry is a concern because most of the time it contains heavy metals with concentrations above permissible levels, posing a threat to terrestrial and aquatic life. The study was conducted to evaluate the effectiveness of locally available waste materials (waste rock, tailings, coal ash clinker, and slag) generated by BCL (Ltd) mine, a copper and nickel mining and smelting company in Botswana, for removal of nickel and copper from the real mining wastewater. Batch adsorption studies were conducted to establish the adsorptive efficiency and kinetics of each media with respect to nickel and copper ions. The best media was further evaluated through fixed bed column studies at 24 and 48 h empty bed contact time. The results indicate that the percentage removal for coal ash clinker, waste rock, smelter slag and tailings was 98%, 15%, 3% and -3% with respect to copper ions, and 46%, 9%, 7% and 2% with respect to nickel ions for each media respectively. Coal ash clinker followed pseudo first order kinetic model and Langmuir isotherm model with respect to nickel ions indicating the dominance of physisorption and mono layer coverage respectively. The Langmuir separation factor (RL) was 0.37 suggesting favourable adsorption onto the media. Fixed bed column studies revealed that copper was completely retained in the bed at both 24 and 48 h contact times. In the case of nickel, removal efficiency ranged between 83% and 99% when contact time was 48 h and between 68% and 99% when the contact time was reduced to 24 h. Breakthrough was not reached after 19 bed volumes. It can be concluded that coal ash clinker is a better candidate for the removal of copper and nickel ions from mining wastewater.

  1. Using the low-temperature plasma in cement production

    NASA Astrophysics Data System (ADS)

    Sazonova, N. A.; Skripnikova, N. K.

    2015-11-01

    The calculation of the raw-material mixtures and mineralogical composition of the cement clinkers which are synthezed on their base taking into account the disbalanced crystallization of the melting and glassing under conditions of the low-temperature plasma was performed. The difference of the actual values from the calculated ones is 0.69-3.73%. The composition which is characterized as the saturation coefficient 0,88; the silicate module - 3.34, the alumina module - 2.52 in melting of which the alite in amount 78.7%; 3CaO·SiO2 - 4%; 3CaO·Al2O3 - 9.8%; 12CaO·7Al2O3 -2.9%; CaOfree - 1% formed using the lime-stone from the quarry «Pereval» in the town of Slyudyanka and the clay from the deposit «Maximovski» in Irkutsk Region is considered as the optimal one. The structure of the melted clinker is represented as the metastable minerals of alite in the lamellar form with the dimensions up to (3-20)×(80-400) μm and the ratio of length to width 26.6-133. The elongated crystal form may stipulate the high cement activity based on the melted clinkers, which is 82.7-84.2 MPa. Valid- ing the revealed high activity of the viscous substance was confirmed by the results of the scanning electronic microscopy, X-ray phase analysis, with using of which the quantitative and qualitative analyses of the clinker minerals having the deformed crystalic lattice; were performed the morphology of the minerals in the clinker and cement stone, received on its ground, was studied.

  2. Phase evolution, characterisation, and performance of cement prepared in an oxy-fuel atmosphere.

    PubMed

    Zheng, Liya; Hills, Thomas P; Fennell, Paul

    2016-10-20

    Cement manufacture is one of the major contributors (7-10%) to global anthropogenic CO 2 emissions. Carbon capture and storage (CCS) has been identified as a vital technology for decarbonising the sector. Oxy-fuel combustion, involving burning fuel in a mixture of recycled CO 2 and pure O 2 instead of air, makes CO 2 capture much easier. Since it combines a theoretically lower energy penalty with an increase in production, it is attractive as a CCS technology in cement plants. However, it is necessary to demonstrate that changes in the clinkering atmosphere do not reduce the quality of the clinker produced. Clinkers were successfully produced in an oxy-fuel atmosphere using only pure oxides as raw materials as well as a mixture of oxides and clay. Then, CEM I cements were prepared by the addition of 5 wt% gypsum to the clinkers. Quantitative XRD and XRF were used to obtain the phase and elemental compositions of the clinkers. The particle size distribution and compressive strength of the cements at 3, 7, 14, and 28 days' ages were tested, and the effect of the particle size distribution on the compressive strength was investigated. Additionally, the compressive strength of the cements produced in oxy-fuel atmospheres was compared with those of the cement produced in air and commercially available CEMEX CEM I. The results show that good-quality cement can be successfully produced in an oxy-fuel atmosphere and it has similar phase and chemical compositions to CEM I. Additionally, it has a comparable compressive strength to the cement produced in air and to commercially available CEMEX CEM I.

  3. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker.

    PubMed

    Katsioti, M; Tsakiridis, P E; Leonardou-Agatzini, S; Oustadakis, P

    2006-04-17

    The aim of the present research work was to investigate the possibility of adding a jarosite-alunite chemical precipitate, a waste product of a new hydrometallurgical process developed to treat economically low-grade nickel oxides ores, in the raw meal for the production of sulfoaluminate cement clinker. For that reason, two samples of raw meals were prepared, one contained 20% gypsum, as a reference sample ((SAC)Ref) and another with 11.31% jarosite-alunite precipitate ((SAC)J/A). Both raw meals were sintered at 1300 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the jarosite-alunite precipitate did not affect the mineralogical characteristics of the so produced sulfoaluminate cement clinker and there was confirmed the formation of the sulfoaluminate phase (C4A3S), the most typical phase of this cement type. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of jarosite-alunite precipitate did not negatively affect the quality of the produced cement.

  4. Utilization of municipal sewage sludge as additives for the production of eco-cement.

    PubMed

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-04-30

    The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50-15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C(2)S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco-cement clinkers met the standard of Chinese current regulatory thresholds. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeschner, Goeril; Lothenbach, Barbara; Figi, Renato

    Citric acid can be used to retard the hydration of cement. Experiments were carried out to investigate the influence of citric acid on the composition of solid and liquid phases during cement hydration. Analyses of the solid phases showed that dissolution of alite and aluminate slowed down while analyses of the pore solution showed that citric acid was removed almost completely from the pore solution within the first hours of hydration. The complexation of the ions by citrate was weak, which could also be confirmed by thermodynamic calculations. Only 2% of the dissolved Ca and 0.001% of the dissolved Kmore » formed complexes with citrate during the first hours. Thus, citric acid retards cement hydration not by complex formation, but by slowing down the dissolution of the clinker grains. Thermodynamic calculations did not indicate precipitation of a crystalline citrate species. Thus, it is suggested that citrate sorbed onto the clinker surface and formed a protective layer around the clinker grains retarding their dissolution.« less

  6. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greatermore » than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.« less

  7. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters.

    PubMed

    Guerrero, A; Goñi, S; Campillo, I; Moragues, A

    2004-06-01

    The optimization of parameters of synthesis of belite cement clinker from coal fly ash of high Ca content is presented in this paper. The synthesis process is based on the hydrothermal-calcination-route of the fly ash without extra additions. The hydrothermal treatment was carried out in demineralized water and a 1 M NaOH solution for 4 h at the temperatures of 100 degrees C, 150 degrees C, and 200 degrees C. The precursors obtained during the hydrothermal treatmentwere heated at temperatures of 700 degrees C, 800 degrees C, 900 degrees C, and 1000 degrees C. The changes of fly ash composition after the different treatments were characterized by X-ray diffraction (XRD), FT infrared (FTIR) spectroscopy, surface area (BET-N2), and thermal analyses. From the results obtained we concluded that the optimum temperature of the hydrothermal treatment was 200 degrees C, and the optimum temperature for obtaining the belite cement clinker was 800 degrees C.

  8. Developing Low-Clinker Ternary Blends for Indian Cement Industry

    NASA Astrophysics Data System (ADS)

    Pal, Aritra

    2018-05-01

    In today's scenario cement-concrete has become the backbone of infrastructure development. The use of concrete is increasing day by day and so does cement. One of the major concerns is that the cement manufacturing contributes 7% of total man-made CO2 emission in the environment. At the same time India being a developing country secured the second position in cement production. On the other hand solid waste management is one of the growing problems in India. As we are one of the major contributors in this situation so, the time has come to think about the sustainable alternatives. From various researches it has been observed that the low clinker cement can be suitable option. In the present paper we have tried to develop a low clinker ternary blend for Indian cement industry using the concept of synergetic behavior of fly ash-limestone reaction and formation of more stable monocarboaluminate hydrate and hemicarboaluminate hydrate. 30% fly ash and 15% limestone and 5% gypsum have been used as supplementary cementing material for replacing 50% clinker. The mechanical properties like, compressive strength, have been studied for the fly ash limestone ternary blends cements and the results have been compared with the other controlled blends and ternary blends. The effect of intergrinding of constituent materials has shown a comparable properties which can be used for various structural application. The effect of dolomitic limestone has also been studied in fly ash limestone ternary blends and the result shows the relation between compressive strength and dolomite content is inversely proportional.

  9. Leaching of heavy metals from cementitious composites made of new ternary cements

    NASA Astrophysics Data System (ADS)

    Kuterasińska-Warwas, Justyna; Król, Anna

    2017-10-01

    The paper presents a comparison of research methods concerning the leaching of harmful substances (selected heavy metal cations ie. Pb, Cu, Zn and Cr) and their degree of immobilization in cement matrices. The new types of ternary cements were used in the study, where a large proportion of cement clinker was replaced by other non-clinker components - industrial wastes, ie. siliceous fly ash from power industry and granulated blast furnace slag from the iron and steel industry. In studied cementitious binders also ground limestone was used, which is a widely available raw material. The aim of research is determining the suitability of new cements for neutralizing harmful substances in the obtained matrices. The application of two research methods in accordance with EN 12457-4 and NEN 7275 intends to reflection of changing environmental conditions whom composite materials may actually undergo during their exploitation or storing on landfills. The results show that cements with high addition of non-clinker components are suitable for stabilization of toxic substances and the obtained cement matrices retain a high degree of immobilization of heavy metals at the level of 99%.

  10. Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker.

    PubMed

    Viani, Alberto; Gualtieri, Alessandro F

    2013-09-15

    According to recent resolutions of the European Parliament (2012/2065(INI)), the need for environmentally friendly alternative solutions to landfill disposal of hazardous wastes, such as asbestos-containing materials, prompts their recycling as secondary raw materials (end of waste concept). In this respect, for the first time, we report the recycling of the high temperature product of cement-asbestos, in the formulation of calcium sulfoaluminate cement clinkers (novel cementitious binders designed to reduce CO₂ emissions), as a continuation of a previous work on their systematic characterization. Up to 29 wt% of the secondary raw material was successfully introduced into the raw mix. Different clinker samples were obtained at 1250 °C and 1300 °C, reproducing the phase composition of industrial analogues. As an alternative source of Ca and Si, this secondary raw material allows for a reduction of the CO₂ emissions in cement production, mitigating the ecological impact of cement manufacturing, and reducing the need for natural resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    PubMed

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  12. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    PubMed

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  13. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    NASA Astrophysics Data System (ADS)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  14. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  15. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur; ...

    2018-01-01

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  16. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  17. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals.

    PubMed

    Li, Yuan-Cheng; Min, Xiao-Bo; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liyang, Wen-Jun

    2016-10-01

    Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  19. Cement clinker structure during plasma-chemical synthesis and its influence on cement properties

    NASA Astrophysics Data System (ADS)

    Sazonova, N.; Skripnikova, N.; Lucenko, A.; Novikova, L.

    2015-01-01

    The aim of this study was to determine the degree of influence of cement clinker cooling modes, synthesized in a low-temperature plasma, its structure and physico-mechanical properties. The raw mixture consisting of marble, sand, ash from thermal power plants and py- rite cinders were used, which are characterized by saturation factor (1,045); silicate (2,35) and alumina (1,22) modules. It was found that the use of different cooling rates of fused cement clinker entails changes associated with the mineralogical composition (increase of alite of 8.719,2 %), morphology (variation of the mineral alite aspect ratio of 6,7-17,5), density of the structure (change in distance between the minerals from 1 to 7,5 microns), grindability, specific surface area (2600-3650 cm2/g) and, in consequence, the activity of cement (56,973,2 MPa). Disorientation of alite mineral blocks against each other, a significant amount of microcracks, affect the increase in cement specific surface area of 14,3-21,6 %, which leads to activity growth of the system. Along with this, with the rapid cooling of the samples, alite 54CaO- 16SiO2-Al2O3 MgO is formed, with single units of the structure, more deformed relatively to C3S, which has a positive effect on the hydraulic cement activity.

  20. Reducing CO2-Emission by using Eco-Cements

    NASA Astrophysics Data System (ADS)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the input of slag sands, puzzolanes and fly ash (according to standard EN 197-1). In this context four new CEM V kinds have been created, two Austrian types based on slag and fly ash, and two Slovak types, one based on slag and fly ash, the other on slag and natural pozzolana. The pozzolana consist of zeolite of clinoptilolite type that is gained from a Slovak deposit.

  1. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product prior to further processing at a portland cement plant. Clinker cooler means equipment into which... a system in a portland cement production process where a dry kiln system is integrated with the raw...

  2. 78 FR 59677 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ..., Designation of the Atchafalaya River Bar Channel Ocean Dredged Material Disposal Site, Review Period Ends: 10.../2013, Contact: Paul Bradford 406-293-6211. EIS No. 20130282, Final EIS, USFS, WY, Clinker Mining...

  3. Testing paleointensity determinations on recent lava flows and scorias from Miyakejima, Japan

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2013-12-01

    Still no consensus has been reached on paleointensity method. Even the classical Thellier method has not been fully tested on recent lava flows with known geomagnetic field intensity based on a systematic sampling scheme. In this study, Thellier method was applied for 1983, 1962 and 1940 basaltic lava flows and scorias from Miyakejima, Japan. Several vertical lava sections and quenched scorias, which are quite variable in magnetic mineralogy and grain size, provide an unparalleled opportunity to test paleointensity methods. Thellier experiments were conducted on a completely automated three-component spinner magnetometer with thermal demagnetizer 'tspin'. Specimens were heated in air, applied laboratory field was 45 microT, and pTRM checks were performed at every two heating steps. Curie points and hysteresis properties were obtained on small fragments removed from cylindrical specimens. For lava flows sigmoidal curves were commonly observed on the Arai diagrams. Especially the interior part of lava flows always revealed sigmoidal patterns and sometimes resulted in erroneously blurred behaviors. The directions after zero-field heating were not necessarily stable in the course of the Thellier experiments. It was very difficult, for the interior part, to ascertain linear segments on Arai diagrams corresponding to the geomagnetic field intensity at the eruption. Upper and lower clinker samples also generally revealed sigmoidal or upward concave curves on Arai diagrams. Neither lower nor higher temperature portions of the sigmoids or concaves gave the expected geomagnetic field intensities. However, there were two exceptional cases of lava flows giving correct field intensities: upper clinkers with relatively low unblocking temperatures (< 400 deg.C) and lower clinkers with broad unblocking temperature ranges from room temperature to 600 deg.C. A most promising target for paleointensity experiments within the volcanic rocks is scoria. Scoria samples always carry single Curie temperatures higher than 500 deg.C, and the ratios of saturation remanence to saturation magnetization (Mr/Ms) of about 0.5 are indicative of truly single-domain low-titanium titanomagnetite. Unambiguous straight lines were always observed on Arai diagrams covering broad temperature ranges like the lower clinker samples, and the gradients gave the expected field values within a few percent errors. Thellier experiments applied for the recent lava flows did not successfully recover the expected field intensity from most samples. No linear segment was recognized or incorrect paleointensity values were obtained from short segments with limited temperature ranges. In Thellier or other types of paleointensity experiments laboratory alteration is checked in details, but if a sample once passed the alteration check, the TRM/NRM ratios of any limited temperature or field ranges were accepted as reflecting paleointensity. Previously published paleointensity data from lava flows should include much of such dubious data. Generally lava flows are not suitable for paleointensity determinations in light of its large grain-size and mixed magnetic mineralogy, except for scoria and clinker.

  4. Emissions of PCDD/Fs, PBDD/Fs, dioxin like-PCBs and PAHs from a cement plant using a long-term monitoring system.

    PubMed

    Conesa, Juan A; Ortuño, Nuria; Abad, Esteban; Rivera-Austrui, Joan

    2016-11-15

    The aim of the present work was to assess the emission of different persistent organic pollutants from a cement plant over a period of one year, under normal operational conditions. Thus, a long-term sampling device was installed in the clinker kiln stack of the cement plant. The factory uses petroleum coke as primary fuel, but also alternative fuels such as solid recovered fuel (SRF), automotive shredder residue (ASR), sewage sludge, waste tires, and meat and bone meal (MBM) wastes, with an energy substitution level of about 40%. Both PCDD/Fs (together with dl-PCBs) and PBDD/Fs were continuously sampled, with a total of ten samples collected in 2-4week periods. Also, PAHs were sampled during one-week periods, in order to evaluate their emissions in three different samples. The emission levels throughout the year were much lower than the set legal limits in all substances, being <10pgI-TEQ/Nm(3) in the case of PCDD/Fs. The data obtained allowed calculation of updated emission factors for the cement sector, which were 8.5ng I-TEQ/ton clinker for PCDD/Fs and 3.2ng WHO-TEQ/ton clinker for PCBs. With respect to the congener distribution, 2,3,7,8-TCDF accounts for 60 to 68% of the total toxicity for PCDD/Fs, and in PBDD/F emissions, a clear predominance of octa-substituted species (both dioxin and furan) was found. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  6. 40 CFR 52.1670 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GHG Tailoring Rule at 75 FR 31514, 31606 (June 3, 2010). Part 232, Dry Cleaning 8/11/83 6/17/85, 50 FR.... Lehigh Northeast Cement, Lehigh Cement Kiln and Clinker cooler Permit Id 5-5205-00013, effective 7/5/12 8...

  7. 40 CFR 60.64 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effluent gas, dscm/hr (dscf/hr). P=total kiln feed (dry basis) rate, metric ton/hr (ton/hr). K=conversion... minutes and 1.15 dscm (40.6 dscf) for the clinker cooler. (3) Suitable methods shall be used to determine...

  8. 40 CFR 52.1670 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (June 3, 2010). Part 232, Dry Cleaning 8/11/83 6/17/85, 50 FR 25079 EPA has not determined that § 232.3.... Lehigh Northeast Cement, Lehigh Cement Kiln and Clinker cooler Permit Id 5-5205-00013, effective 7/5/12 8...

  9. Bottom ash test section evaluation Erwinville, LA.

    DOT National Transportation Integrated Search

    2009-02-01

    Bottom ash is a by-product of the energy industry and the residual of burning coal in a kiln : firing process. Bottom ash is black and the consistency of coarse sand with gravel clinker : traces. The product is used in other states as embankment mate...

  10. Assessing a Reclaimed Concrete Up-Cycling Scheme through Life-Cycle Analysis

    NASA Astrophysics Data System (ADS)

    Guignot, Sylvain; Bru, Kathy; Touzé, Solène; Ménard, Yannick

    The present study evaluates the environmental impacts of a recycling scheme for gravels from building concretes wastes, in which the liberated aggregates are reused in structural concretes while the residual mortar fines are sent to the raw mill of a clinker kiln.

  11. Integrated Utilization of Sewage Sludge and Coal Gangue for Cement Clinker Products: Promoting Tricalcium Silicate Formation and Trace Elements Immobilization

    PubMed Central

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400

  12. Determination of rational parameters for process of grinding materials pre-crushed by pressure in ball mill

    NASA Astrophysics Data System (ADS)

    Romanovich, A. A.; Romanovich, L. G.; Chekhovskoy, E. I.

    2018-03-01

    The article presents the results of experimental studies on the grinding process of a clinker preliminarily ground in press roller mills in a ball mill equipped with energy exchange devices. The authors studied the influence of the coefficients of loading for grinding bodies of the first and second mill chambers, their lengths, angles of inclination, and the mutual location of energy exchange devices (the ellipse segment and the double-acting blade) on the output parameters of the grinding process (productivity, drive power consumption and specific energy consumption). It is clarified that the best results of the disaggregation and grinding process, judging by the minimum specific energy consumption in the grinding of clinker with an anisotropic texture after force deformation between the rolls of a press roller shredder, are achieved at a certain angle of ellipse segment inclination; the length of the first chamber and the coefficients of loading the chambers with grinding bodies.

  13. Energy efficiency technologies in cement and steel industry

    NASA Astrophysics Data System (ADS)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  14. 40 CFR 98.6 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...

  15. 40 CFR 98.6 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...

  16. 40 CFR 98.6 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...

  17. 40 CFR 98.6 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... perfluoropolyether, and any hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of... generator. Emergency equipment means any auxiliary fossil fuel-powered equipment, such as a fire pump, that... the kiln to produce heat to form the clinker product. Feedstock means raw material inputs to a process...

  18. 40 CFR 98.6 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel... maintenance shall not be considered an emergency generator. Emergency equipment means any auxiliary fossil... fed to the kiln. Feed does not include the fuels used in the kiln to produce heat to form the clinker...

  19. 40 CFR 60.61 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...

  20. 40 CFR 60.61 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...

  1. 40 CFR 60.61 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...

  2. 40 CFR 60.61 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...

  3. 40 CFR 60.61 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...

  4. 40 CFR 98.85 - Procedures for estimating missing data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to determine combined process and combustion CO2 emissions, the missing data procedures in § 98.35 apply. (b) For CO2 process emissions from cement manufacturing facilities calculated according to § 98... best available estimate of the monthly clinker production based on information used for accounting...

  5. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From the Portland Cement... this subpart apply to each new and existing portland cement plant which is a major source or an area... to and regulated under subpart EEE of this part; (2) Each clinker cooler at any portland cement plant...

  6. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From the Portland Cement... this subpart apply to each new and existing portland cement plant which is a major source or an area... to and regulated under subpart EEE of this part; (2) Each clinker cooler at any portland cement plant...

  7. 40 CFR 63.1349 - Performance testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-line kiln/raw mill is not operating. The owner or operator of a clinker cooler subject to limitations..., kg/dscm. Qsd = volumetric flow rate of effluent gas, dscm/hr. P = total kiln feed (dry basis), Mg/hr... kiln feed (dry basis), Mg/hr. (v) Except as provided in paragraph (b)(1)(vi) of this section the...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, Ralph; Schindler, Anton; Duke, Steve

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels weremore » examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.« less

  9. Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln.

    PubMed

    Bai, Y; Bao, Y B; Cai, X L; Chen, C H; Ye, X C

    2014-08-15

    The waste neutralization liquor generated during the glyphosate production using glycine-dimethylphosphit process is a severe pollution problem due to its high salinity and organic components. The cement rotary kiln was proposed as a zero discharge strategy of disposal. In this work, the waste liquor was calcinated and the mineralogical phases of residue were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The mineralogical phases and the strength of cement clinker were characterized to evaluate the influence to the products. The burnability of cement raw meal added with waste liquor and the calorific value of waste liquor were tested to evaluate the influence to the thermal state of the kiln system. The results showed that after the addition of this liquor, the differences of the main phases and the strength of cement clinker were negligible, the burnability of raw meal was improved; and the calorific value of this liquor was 6140 J/g, which made it could be considered as an alternative fuel during the actual production. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Empirical evidence of climate's role in Rocky Mountain landscape evolution

    NASA Astrophysics Data System (ADS)

    Riihimaki, Catherine A.; Reiners, Peter W.

    2012-06-01

    Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on million year timescales.

  11. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... subpart apply to each new and existing portland cement plant which is a major source or an area source as... this part; (2) Each clinker cooler at any portland cement plant; (3) Each raw mill at any portland...

  12. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... subpart apply to each new and existing portland cement plant which is a major source or an area source as... this part; (2) Each clinker cooler at any portland cement plant; (3) Each raw mill at any portland...

  13. 40 CFR 60.62 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... matter (PM) in excess of: (i) 0.30 pound per ton of feed (dry basis) to the kiln if construction... conducted by § 60.8 is completed, you may not discharge into the atmosphere from any clinker cooler any gases which: (1) Contain PM in excess of: (i) 0.10 pound per ton of feed (dry basis) to the kiln if...

  14. 40 CFR 60.62 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... matter (PM) in excess of: (i) 0.30 pound per ton of feed (dry basis) to the kiln if construction... conducted by § 60.8 is completed, you may not discharge into the atmosphere from any clinker cooler any gases which: (1) Contain PM in excess of: (i) 0.10 pound per ton of feed (dry basis) to the kiln if...

  15. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ..., in the supply and demand conditions or business cycle for the Domestic Like Product that have... of business proprietary information (BPI) under an administrative protective order (APO) and APO... producer or exporter of the Subject Merchandise, a U.S. or foreign trade or business association, or...

  16. Maritime Standards for Compliance Safety and Health Officers (Instructor Manual). Volume 3

    DTIC Science & Technology

    1981-03-01

    and striking tools "o Hamers "o Sledge hsmers "o Riveting hamners. 7. Hazards and health effects associated with the use of hand tools o Loss of eyes...lettered starting at the keel, A-B-C, etc. Strakes are classified inner skin, outer or cover, clinker or in and out, forefoot , shoe, boss, sheer, and

  17. 40 CFR 60.62 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton). (2... subpart shall cause to be discharged into the atmosphere from any clinker cooler any gases which: (1) Contain particulate matter in excess of 0.050 kg per metric ton of feed (dry basis) to the kiln (0.10 lb...

  18. Evaluating the thermal stability of mercury and other metals in coal combustion residues used in the production of cement clinker, asphalt, and wallboard

    EPA Science Inventory

    Research is underway by the U.S. Environmental Protection Agency (EPA) to document any changes that may occur to coal combustion residues (CCRs) as a result of implementation of mercury and multiipollutant control technology at coal-fired power plants. This work was cited as a pr...

  19. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  20. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  1. Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry.

    PubMed

    Rodríguez, N Husillos; Granados, R J; Blanco-Varela, M T; Cortina, J L; Martínez-Ramírez, S; Marsal, M; Guillem, M; Puig, J; Fos, C; Larrotcha, E; Flores, J

    2012-03-01

    This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution. Published by Elsevier Ltd.

  2. 13. Coal ejectors mounted on aft bulkhead of coal bunker. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Coal ejectors mounted on aft bulkhead of coal bunker. Ejectors were used to flush overboard live coals and clinkers from firebed (pipe for carrying coals overboard has been removed from ejector in foreground). Coal doors from bunker appear beside ejector in foreground). Coal doors from bunker appear beside ejectors at deck; note firing shovels in background against hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  3. Petroleum sludge treatment and reuse for cement production as setting retarder

    NASA Astrophysics Data System (ADS)

    Aeslina, A. K.; Ali, B.

    2017-05-01

    Petroleum sludge is a dangerous waste that needs to be treated to avoid any contamination of soil and groundwater due to its disposal. As an attempt to treat this waste, it has been incorporated into cement production as substitution for gypsum. As results, 5% of petroleum sludge has shown effective results and could play the same role of gypsum in delaying the flash setting of cement clinker.

  4. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

    PubMed Central

    Garcia-Lodeiro, Inés; Donatello, Shane; Fernández-Jiménez, Ana; Palomo, Ángel

    2016-01-01

    In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC) hydration and the alkali activation of fly ash (AAFA). Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt %) and low clinker (20 wt % to 30 wt %) content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C)–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C)–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium. PMID:28773728

  5. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    NASA Astrophysics Data System (ADS)

    Artíñano, B.; Gómez-Moreno, F. J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martín, F.; Guerra, A.; Luaces, J. A.; Basora, J.

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size (<2.5 μm). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 μm). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  6. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel

    PubMed Central

    James, Zachary M.; Borst, Andrew J.; Haitin, Yoni; Frenz, Brandon; DiMaio, Frank; Zagotta, William N.; Veesler, David

    2017-01-01

    Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae—which shares sequence similarity to eukaryotic CNG and HCN channels—in the presence of a saturating concentration of cAMP. A short S4–S5 linker connects nearby voltage-sensing and pore domains to produce a non–domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies. PMID:28396445

  7. Assessment of environmental impact on air quality by cement industry and mitigating measures: a case study.

    PubMed

    Kabir, G; Madugu, A I

    2010-01-01

    In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249-3,745 mg/m3 and 2,440-2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NOx, SOx and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062-0.093 mg/m3 NOx, 0.026 mg/m3 SOx and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker-roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.

  8. Methods to improve efficiency of production technology of the innovative composite cementing materials

    NASA Astrophysics Data System (ADS)

    Babaevsky, A. N.; Romanovich, A. A.; Glagolev, E. S.

    2018-03-01

    The article describes the energy-saving technology and equipment for production of composite binding material with up to a 50% reduction in energy consumption of the process due to a synergistic effect in mechanical activation of the raw mix where a clinker component is substituted with an active mineral supplement. The impact of the gap between the rollers on the final performance of the press roller mill was studied.

  9. Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming

    USGS Publications Warehouse

    Collins, Donley S.

    1983-01-01

    A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal

  10. PCDD/PCDF reduction by the co-combustion process.

    PubMed

    Lee, Vinci K C; Cheung, Wai-Hung; McKay, Gordon

    2008-01-01

    A novel process, termed the co-combustion process, has been developed and designed to utilise the thermal treatment of municipal solid waste (MSW) in cement clinker production and reduce PCDD/PCDF emissions. To test the conceptual design; detailed engineering design of the process and equipment was performed and a pilot plant was constructed to treat up to 40 tonnes MSW per day. The novel process features included several units external to the main traditional cement rotary kiln: an external calcinations unit in which the hot gas calcined the limestone thus making significant energy savings for this chemical reaction; the lime generated was used in a second chamber to act as a giant acid gas scrubber to remove SOx and particularly HCl (a source of chloride); an external rotary kiln and secondary combustion unit capable of producing a hot gas at 1200 degrees C; a gas cooler to simulate a boiler turbogenerator set for electricity generation; the incorporation of some of the bottom ash, calcined lime and dust collector solids into the cement clinker. A PCDD/PCDF inventory has been completed for the entire process and measured PCDD/PCDF emissions were 0.001 ng I-TEQ/Nm(3) on average which is 1% of the best practical means [Hong Kong Environmental Protection Department, 2001. A guidance note on the best practicable means for incinerators (municipal waste incineration), BPM12/1] MSW incineration emission limit values.

  11. Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales

    NASA Astrophysics Data System (ADS)

    Rajendran, Arunachalam

    2015-06-01

    The mechanical and constitutive response of materials like cement, and bio materials like fish scale and abalone shell is very complex due to heterogeneities that are inherently present in the nano and microstructures. The intrinsic constitutive behaviors are driven by the chemical composition and the molecular, micro, and meso structures. Therefore, it becomes important to identify the material genome as the building block for the material. For instance, in cementitious materials, the genome of C-S-H phase (the glue or the paste) that holds the various clinkers, such as the dicalcium silicate, tricalcium silicate, calcium ferroaluminates, and others is extremely complex. Often mechanical behaviors of C-S-H type materials are influenced by the chemistry and the structures at all nano to micro length scales. By explicitly modeling the molecular structures using appropriate potentials, it is then possible to compute the elastic tensor from molecular dynamics simulations using all atom method. The elastic tensors for the C-S-H gel and other clinkers are determined using the software suite ``Accelrys Materials Studio.'' A strain rate dependent, fracture mechanics based tensile damage model has been incorporated into ABAQUS finite element code to model spall evolution in the heterogeneous cementitious material with all constituents explicitly modeled through one micron element resolution. This paper presents results from nano/micro/meso scale analyses of shock wave propagation in a heterogeneous cementitious material using both molecular dynamic and finite element codes.

  12. Continuous Removal of Coal-Gasification Residue

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

    1986-01-01

    Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

  13. Site Investigations with the Site Characterization and Analysis Penetrator System at Fort Dix, New Jersey

    DTIC Science & Technology

    1993-07-01

    rod system or through a tremie tube ; both procedures were used interchangeably at Fort Dix to demon- strate the efficiency and effectiveness of each...allows delivery through either a l/4-in.-diam grout tube or a 3/8-in.-diam rout tube . The grout used at Fort Dix consisted of a mixture of water and... microfine , blended Portland cement (Lehigh Geocem’, Leeds, Alabama). The grout is a suspension of a uniformly produced cement clinker interground with

  14. Channel overflows of the Pōhue Bay flow, Mauna Loa, Hawai'i: examples of the contrast between surface and interior lava

    NASA Astrophysics Data System (ADS)

    Jurado-Chichay, Zinzuni; Rowland, Scott K.

    1995-04-01

    A number of overflows from a large lava channel and tube system on the southwest rift zone of Mauna Loa were studied. Initial overflows were very low viscosity gas-rich pāhoehoe evidenced by flow-unit aspect ratios and vesicle sizes and contents. Calculated volumetric flow-rates in the channel range between 80 and 890 m3/s, and those of the overflows between 35 and 110 m3/s. After traveling tens to hundreds of meters the tops of these sheet-like overflows were disrupted into a surface composed of clinker and pāhoehoe fragments. After these 'a'ā overflows came to rest, lava from the interiors was able to break out on to the surface as pāhoehoe. The surface structure of a lava flow records the interaction between the differential shear rate (usually correlated with the volumetric flow-rate) and viscosity-induced resistance to flow. However, the interior of a flow, being better insulated, may react differently or record a later set of emplacement conditions. Clefts of toothpaste lava occurring within fields of clinker on proximal-type 'a'ā flows also record different shear rates during different times of flow emplacement. The interplay between viscosity and shear rate determines the final morphological lava type, and although no specific portion of lava ever makes a transition from 'a'ā back to pāhoehoe, parts of a flow can appear to do so.

  15. Role of the S4-S5 linker in CNG channel activation.

    PubMed

    Kusch, Jana; Zimmer, Thomas; Holschuh, Jascha; Biskup, Christoph; Schulz, Eckhard; Nache, Vasilica; Benndorf, Klaus

    2010-10-20

    Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    PubMed

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  17. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    NASA Astrophysics Data System (ADS)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S¯ and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement.

  18. Phase I: energy conservation potential of Portland Cement particle size distribution control. Progress report, November 1978-January 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmuth, R.A.

    1979-03-01

    Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.

  19. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnefeld, Frank, E-mail: Frank.Winnefeld@empa.c; Lothenbach, Barbara

    Calcium sulfoaluminate cements (CSA) are a promising low-CO{sub 2} alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH){sub 3} until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additionalmore » hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.« less

  20. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  1. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    NASA Astrophysics Data System (ADS)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.

  2. The effectiveness of the stabilization/solidification process on the leachability and toxicity of the tannery sludge chromium.

    PubMed

    Montañés, M T; Sánchez-Tovar, R; Roux, M S

    2014-10-01

    A stabilization/solidification (S/S) process by using cement was applied to tannery sludge in order to find a safer way of landfilling this waste. The effects of three parameters on the process effectiveness were analysed in terms of leachate toxicity and chromium retention (%). The parameters studied were the relative amount of added water (30-50 wt.%), cement (10-60 wt.% in the solid components), and the use of three different types of cement (clinker with additions of limestone, with additions of limestone and fly ashes, and with additions of pozzolans). Statistical analysis performed by variance analysis and categorical multifactorial tests reveals that all the studied parameters significantly influence the effectiveness of the process. Results showed that chromium retention decreases as the relative amount of cement and water increases, probably due to additional chromium provided by cement and increased in the porosity of the mixtures. Leachate toxicity showed the same minimum value for mixtures with 30% or 40% cement, depending on the type of cement, showing that clinker is the main material responsible for the process effectiveness, and additives (pozzolans or fly ashes) do not improve it. The volume increase is lower as less sludge is replaced by cement and the relative amount of water decreases, and for the cement without additions of fly ashes or pozzolans. Therefore, the latter seems to be the most appropriate cement in spite of being more expensive. This is due to the fact that the minimum toxicity value is achieved with a lower amount of cement; and moreover, the volume increase in the mixtures is lower, minimizing the disposal cost to a landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  4. Performance of solvent-borne intumescent fire protective coating with Palm oil clinker as novel bio-filler on steel

    NASA Astrophysics Data System (ADS)

    Mustapa, S. A. S.; Ramli Sulong, N. H.

    2017-06-01

    This research deals with contribution of hybrid fillers with palm oil clinker (POC) as a novel bio-filler in solvent-borne intumescent fire protective coating for steel. The hybrid fillers with POC were mixed in appropriate amount of additives and acrylic binder to produce the intumescent coatings. The intumescent coatings were characterized by using Bunsen burner test, surface spread of flame, thermogravimetric analysis, field emission scanning electron microscopy, static immersion and Instron micro tester equipment. Specimen with POC as a single filler has significantly enhanced the fire protection performances of the intumescent coating due to the high thermal stability of POC, where less than 10% of temperature different when compared to specimens with hybrid fillers. From the flame spread classification, class 1 is the best classification while Class 4 is the worst and considered high risk. All specimens was classified as class 1 since the final spread of flame was less than 165 mm. For hybrid fillers composition, specimen consist of POC/Al(OH)3/TiO2 has significantly improved the water resistance of the coating due to the low solubility of Al(OH)3 in water, while specimen contain of Mg(OH)2 had higher mechanical strength due to the strong bonding between the metal surface and acrylic binder/Mg(OH)2 filler. It was found that coating with the incorporation of all hybrid fillers gives excellent fire protection performance with good thermal stability, water resistance and mechanical properties. It can be concluded that, the selection of appropriate composition of fillers and binder in intumescent coating was highly influence the intumescent coating performance.

  5. Disposal of historically contaminated soil in the cement industry and the evaluation of environmental performance.

    PubMed

    Li, Yeqing; Zhang, Jiang; Miao, Wenjuan; Wang, Huanzhong; Wei, Mao

    2015-09-01

    Approximately 400000t of DDTs/HCHs-contaminated soil (CS) needed to be co-processed in a cement kiln with a time limitation of 2y. A new pre-processing facility with a "drying, grinding and DDTs/HCHs vaporizing" ability was equipped to meet the technical requirements for processing cement raw meal and the environmental standards for stack emissions. And the bottom of the precalciner with high temperatures >1000°C was chosen as the CS feeding point for co-processing, which has rarely been reported. To assess the environmental performance of CS pre- and co-processing technologies, according to the local regulation, a test burn was performed by independent and accredited institutes systematically for determination of the clinker quality, kiln stack gas emissions and destruction efficiency of the pollutant. The results demonstrated that the clinker was of high quality and not adversely affected by CS co-processing. Stack emissions were all below the limits set by Chinese standards. Particularly, PCDD/PCDF emissions ranged from 0.0023 to 0.0085ngI-TEQNm(-3). The less toxic OCDD was the peak congener for CS co-processing procedure, while the most toxic congeners (i.e. 2,3,7,8-TeCDD, 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDD) remained in a minor proportion. Destruction and removal efficiency (DRE) and destruction efficiency (DE) of the kiln system were better than 99.9999% and 99.99%, respectively, at the highest CS feeding rate during normal production. To guarantee the environmental performance of the system the quarterly stack gas emission was also monitored during the whole period. And all of the results can meet the national standards requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microwave processing of cement and concrete materials – towards an industrial reality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  7. Design and development of advanced castable refractory materials

    NASA Astrophysics Data System (ADS)

    Davis, Robert Bruce

    New formulations of castable refractory composite materials were studied. This technology is used to produce low cost composite concrete structures designed for high temperature stability, superior wear resistance and improved strength. An in situ fired, castable cement installation is a heterogeneous structure divided into three zones according to the temperature history and microstructure. The properties of each zone depend on the predominant bonding mode between constituents. Each zone has a characteristic microstructure that influences the integrity of the monolith. The hot side may have a highly dense and developed network of ceramic bonds between constituent particles while the cold side may never reach temperatures sufficient to drive off free water. The thermal, structural and tribological properties depend on the microstructure and the type of bonding that holds the monolith together. The phase distributions are defined by sets of metastable phase conditions driven by the local hydrated chemistry, nearest neighbor oxide compounds, impurities and sintering temperature. Equilibrium phase diagrams were used to select optimum compositions based on higher melting point phases. The phase diagrams were also used to target high temperature phase fields that are stable over wide temperature and stoichiometric ranges. Materials selection of candidate hydraulic clinkers, high temperature oxides, and reinforcement phases were based on requirements for high temperature stability. The calcium aluminate (CaO-Al2O3) and calcium dialuminate (CaO-(Al2O3)2) are common refractory clinkers used in castable refractory cements. The thermodynamics and kinetics of cement hydrate formation are well studied and suited to become the building block of a design for a superior refractory castable cement. The inert oxides mixed with the calcium aluminate clinkers are magnesia (MgO), alumina (Al 2O3), spinel (MgAl2O4) and chromic (Cr2O3). The bulk of the experiments concentrated in the Al2O3--MgO--CaO ternary system. Materials selection criteria for reinforcement materials was based on improved high temperature stability, increased strength, reduced thermal expansion mismatch, low thermal conductivity and increasing wear resistance. The reinforcement phases selected for this investigation are zircon (ZrSiO4), zirconia (ZrO2), spinel (MgAl2O4) and dead burnt magnesia (MgO). Batches of the formulations were tested for thermal conductivity, wear resistance and mechanical strength. Relative rankings of the formulations against commercial products indicate improved or similar performance with increased maximum temperature limits and improved thermal insulating power. The new cement formulations proved to exhibit superior high temperature stability with an increasing volume fraction of high temperature oxides. The addition of reinforcement aggregates and powder sizing to offset the loss of strength. The room temperature compression strength and wear resistance of the optimized formulations exceeded the properties of conventional refractory, brick and castable cement tested concurrently.

  8. Mechanical and physical properties of cement blended with sewage sludge ash.

    PubMed

    Garcés, P; Pérez Carrión, M; García-Alcocel, E; Payá, J; Monzó, J; Borrachero, M V

    2008-12-01

    The aim of this paper is to evaluate the compatibility of sewage sludge ash (SSA) with various types of commercially available cements (CEM I and CEM II types, cements with several proportions of clinker). The behaviour of mortars fabricated with various percentages (10-30% by weight) of the cement replaced by SSA has been analyzed in terms of workability, mechanical strength, porosity and shrinkage/expansion. SSA exhibits moderate pozzolanic activity; the highest compressive strengths were obtained with 10% of the cement replaced by SSA. The CEM II/B-M (V-LL) 42.5R cement is considered ideal for preparing mortars containing SSA. Shrinkage data demonstrate that sulphates present in SSA are not reactive towards cement.

  9. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases.

    PubMed

    Qiao, X C; Poon, C S; Cheeseman, C R

    2007-01-10

    This research studied the influence of individual heavy metal on the hydration reactions of major cement clinker phases in order to investigate the performance of cement based stabilization/solidification (S/S) system. Tricalcium silicate (C3S) and tricalcium aluminate (C3A) had been mixed with individual heavy metal hydroxide including Zn(OH)2, Pb(OH)2 and Cu(OH)2, respectively. The influences of these heavy metal hydroxides on the hydration of C3S and C3A have been characterized by X-ray diffraction (XRD) and differential scanning calorimetry-thermogravimetry (DSC-TG). A mixture of Zn(OH)2, Pb(OH)2 and Cu(OH)2 was blended with Portland cement (PC) and evaluated through compressive strength and dynamic leach test. XRD and DSC-TG data show that all the heavy metal hydroxides (Zn(OH)2, Pb(OH)2 and Cu(OH)2) have detrimental effects on the hydration of C3A, but only Zn(OH)2 does to the C3S at early curing ages which can completely inhibit the hydration of C3S due to the formation of CaO(Zn(OH)2).2H2O. Cu6Al2O8CO(3).12H2O, Pb2Al4O4(CO3)(4).7H2O and Zn6Al2O8CO(3).12H2O are formed in all the samples containing C3A in the presence of metal hydroxides. After adding CaSO4 into C3A, the detrimental effect of heavy metals increases due to the coating effect of both calcium aluminate sulphates and heavy metal aluminate carbonates. The influence of heavy metal hydroxide on the hydration of C3S and C3A can be used to predict the S/S performance of Portland cement.

  10. Coal and cremation in ancient Peru

    USGS Publications Warehouse

    Brooks, William E.

    2004-01-01

    After my visit to the adobe-walled archaeological site of Chan Chan, near Trujillo in northern Peru in the summer of 2000 (Geotimes, August 2003), my guide asked if I would like to see the metallurgical furnaces used by the Chimú, ancient residents and master metalsmiths of the region. Chan Chan was the capital of the Chimú Empire (A.D. 1100-1400) and the largest pre-Columbian city in the Americas. These furnaces, my guide explained, were where Andean gold, silver and copper ores were smelted and fabricated into jewelry, masks and plates sought by the Spaniards. We left the main part of the complex, followed a dusty trail, and arrived at a site marked by fresh-looking, redbrown, clinker-like debris.

  11. Development of an electromechanical principle for wet and dry milling

    NASA Astrophysics Data System (ADS)

    Halbedel, Bernd; Kazak, Oleg

    2018-05-01

    The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.

  12. Geology of coal fires: case studies from around the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn B. Stracher

    2008-01-15

    Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures andmore » geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.« less

  13. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    NASA Astrophysics Data System (ADS)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  14. Effects of Different Calcium Compounds on the Corrosion Resistance of Andalusite-Based Low-Cement Castables in Contact with Molten Al-Alloy

    NASA Astrophysics Data System (ADS)

    Adabifiroozjaei, Esmaeil; Saidi, Ali; Monshi, Ahmad; Koshy, Pramod

    2011-04-01

    Andalusite containing low-cement castables (LCCs) have been used in aluminum casthouses for several decades. CaF2 is commonly added to the refractory to improve its corrosion resistance mainly because of its role in the formation of anorthite (CaAl2Si2O8); the latter has been reported to decrease the penetration of molten aluminum alloys into refractories. This article investigates the effect of the addition of different calcium containing compounds (CaO, CaCO3, CaSO4, CaF2, Clinker white cement, calcia feldspar, wollastonite, and Ca3(PO4)2) on reactions with the refractory constituents to form anorthite as well as the effect of the additives on both the subsequent physical properties and the corrosion resistance of andalusite LCC refractories. Corrosion tests using the Alcoa cup test at temperatures (1123 K [850 °C] for 150 hours and 1433 K [1160 °C] for 72 hours) were conducted to determine the extent of penetration, whereas immersion tests in boiling water were conducted to determine the extent of open porosity in the material. Scanning electron microscopy coupled with energy dispersive spectrometer, optical microscopy, and X-ray diffraction techniques were employed to characterize the phase formations in the materials after the tests. The study demonstrated that both calcia feldspar and clinker white cement had the potential to be used as new additives for decreasing the penetration of molten Al-alloy into the refractory materials. Anorthite formation (in the refractory matrix), along with the absence of glassy phases, were responsible for the improvement in the corrosion resistance of the castables containing calcia feldspar. However, in the sample containing cement, the presence of calcium silicate phases were observed to resist reactions with molten aluminum. The observed results were validated using thermodynamic calculations, which indicated that tricalcium silicates (3CaO.SiO2) and dicalcium silicate (2CaO.SiO2) phases were more resistant than wollastonite (CaSiO3) for applications involving contact with molten aluminum.

  15. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called "A", based on the washing, phosphation and calcination of the ash, and a modified process, called "B", intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non-hazardous waste. The modifications of the process led to a significant reduction in the stabilization of chromium, selenium and antimony.

  16. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition. The mechanical data were equivalent to OPC strengths for some compositions with 25% ferrite. This preliminary work constitutes the first research phase of this novel cement and requires additional research for its improvement. Topics for additional research are identified in this dissertation. KEYWORDS: alite, calcium sulfoaluminate, ferrite, low-energy cement, triisopropanolamine.

  17. Hydration kinetics of cementitious materials composed of red mud and coal gangue

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Li, Hong-xu; Liu, Xiao-ming

    2016-10-01

    To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue (RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulović-Dabić model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth (NG), interaction at phase boundaries (I), and diffusion (D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.

  18. Co-existing calcic amphiboles in calc-alkaline andesites: Possible evidence of a zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Green, Nathan L.

    1982-03-01

    Hornblende-biotite andesites erupted from Mount Price and Clinker Peak volcanoes, southwestern British Columbia, contain two texturally and compositionally distinct calcic amphiboles: pargasitic hornblende xenocrysts and magnesio-hornblende microphenocrysts. Disequilibrium relationships exhibited by these amphiboles and associated minerals suggest that the magnesio-hornblendes precipitated under chemical and thermal conditions that were intermediate between those under which pargasitic hornblende and biotite, respectively, crystallized. Experimental studies of crystallization in double-diffusive systems (Chen and Turner, 1980; Turner, 1980; McBirney, 1980) suggest that these varied magmatic environments can be explained as a consequence of progressive crystallization within a zoned magma chamber. Although gravitational settling may have played a role, the observed mineral assemblages probably developed by convective mixing of crystals precipitated at the cooling margins with those crystallized in the interior of the compositionally stratified magma column.

  19. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josa, Alejandro; Aguado, Antonio; Cardim, Arnaldo

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classifiedmore » and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content.« less

  20. Structural basis of gating of CNG channels.

    PubMed

    Giorgetti, Alejandro; Nair, Anil V; Codega, Paolo; Torre, Vincent; Carloni, Paolo

    2005-03-28

    Cyclic nucleotide-gated (CNG) ion channels, underlying sensory transduction in vertebrate photoreceptors and olfactory sensory neurons, require cyclic nucleotides to open. Here, we present structural models of the tetrameric CNG channel pore from bovine rod in both open and closed states, as obtained by combining homology modeling-based techniques, experimentally derived spatial constraints and structural patterns present in the PDB database. Gating is initiated by an anticlockwise rotation of the N-terminal region of the C-linker, which is then, transmitted through the S6 transmembrane helices to the P-helix, and in turn from this to the pore lumen, which opens up from 2 to 5A thus allowing for ion permeation. The approach, here presented, is expected to provide a general methodology for model ion channels and their gating when structural templates are available and an extensive electrophysiological analysis has been performed.

  1. Evaluation of Preduster in Cement Industry Based on Computational Fluid Dynamic

    NASA Astrophysics Data System (ADS)

    Septiani, E. L.; Widiyastuti, W.; Djafaar, A.; Ghozali, I.; Pribadi, H. M.

    2017-10-01

    Ash-laden hot air from clinker in cement industry is being used to reduce water contain in coal, however it may contain large amount of ash even though it was treated by a preduster. This study investigated preduster performance as a cyclone separator in the cement industry by Computational Fluid Dynamic method. In general, the best performance of cyclone is it have relatively high efficiency with the low pressure drop. The most accurate and simple turbulence model, Reynold Average Navier Stokes (RANS), standard k-ε, and combination with Lagrangian model as particles tracking model were used to solve the problem. The measurement in simulation result are flow pattern in the cyclone, pressure outlet and collection efficiency of preduster. The applied model well predicted by comparing with the most accurate empirical model and pressure outlet in experimental measurement.

  2. Energy-effective Grinding of Inorganic Solids Using Organic Additives.

    PubMed

    Mishra, Ratan K; Weibel, Martin; Müller, Thomas; Heinz, Hendrik; Flatt, Robert J

    2017-08-09

    We present our research findings related to new formulations of the organic additives (grinding aids) needed for the efficient grinding of inorganic solids. Even though the size reduction phenomena of the inorganic solid particles in a ball mill is purely a physical process, the addition of grinding aids in milling media introduces a complex physicochemical process. In addition to further gain in productivity, the organic additive helps to reduce the energy needed for grinding, which in the case of cement clinker has major environmental implications worldwide. This is primarily due to the tremendous amounts of cement produced and almost 30% of the associated electrical energy is consumed for grinding. In this paper, we examine the question of how to optimize these grinding aids linking molecular insight into their working mechanisms, and also how to design chemical additives of improved performance for industrial comminution.

  3. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  4. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    NASA Astrophysics Data System (ADS)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  5. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boncukcuoglu, Recep; Icelli, Orhan; Erzeneoglu, Salih

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays ofmore » the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.« less

  6. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  7. The opportunity of silicate product manufacturing with simultaneous pig iron reduction from slag technogenic formations

    NASA Astrophysics Data System (ADS)

    Sheshukov, O. Yu.; Lobanov, D. A.; Mikheenkov, M. A.; Nekrasov, I. V.; Egiazaryan, D. K.

    2017-09-01

    There are two main kinds of slag in modern steelmaking industry: the electric arc furnace slag (EAF slag) and ladle furnace slag (LF slag). The all known slag processing schemes provide the iron-containing component reduction while silicate component stays unprocessed. On the contrary, the silicate processing schemes doesn't provide the utilization of the iron-containing component. The present-day situation doesn't solve the problem of total slag utilization. The aim of this work is to investigate the opportunity of silicate product obtaining with simultaneous pig iron reduction from EAF and LF slags. The tests are conducted by the method of simplex-lattice design. The test samples are heated and melted under reductive conditions, slowly cooled and then analyzed by XRD methods. The experiment results prove the opportunity: the Portland clinker and pig iron can be simultaneously produced on the basis of these slags with a limestone addition.

  8. Using Converter Dust to Produce Low Cost Cementitious Composites by in situ Carbon Nanotube and Nanofiber Synthesis

    PubMed Central

    Ludvig, Péter; Calixto, José M.; Ladeira, Luiz O.; Gaspar, Ivan C.P.

    2011-01-01

    Carbon nanotubes (CNTs) and nanofibers (CNFs) were synthesized on clinker and silica fume particles in order to create a low cost cementitious nanostructured material. The synthesis was carried out by an in situ chemical vapor deposition (CVD) process using converter dust, an industrial byproduct, as iron precursor. The use of these materials reduces the cost, with the objective of application in large-scale nanostructured cement production. The resulting products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) and were found to be polydisperse in size and to have defective microstructure. Some enhancement in the mechanical behavior of cement mortars was observed due to the addition of these nano-size materials. The contribution of these CNTs/CNFs to the mechanical strength of mortar specimens is similar to that of high quality CNTs incorporated in mortars by physical mixture. PMID:28880007

  9. Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix

    NASA Astrophysics Data System (ADS)

    Zacharda, V.; Němeček, J.; Štemberk, P.

    2017-09-01

    The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.

  10. Aggregate resource availability in the conterminous United States, including suggestions for addressing shortages, quality, and environmental concerns

    USGS Publications Warehouse

    Langer, William H.

    2011-01-01

    Although potential sources of aggregate are widespread throughout the United States, many sources may not meet certain physical property requirements, such as soundness, hardness, strength, porosity, and specific gravity, or they may contain contaminants or deleterious materials that render them unusable. Encroachment by conflicting land uses, permitting considerations, environmental issues, and societal pressures can prevent or limit development of otherwise suitable aggregate. The use of sustainable aggregate resource management can help ensure an economically viable supply of aggregate. Sustainable aggregate resource management techniques that have successfully been used include (1) protecting potential resources from encroachment; (2) using marginal-quality local aggregate for applications that do not demand a high-quality resource; (3) using substitute materials such as clinker, scoria, and recycled asphalt and concrete; and (4) using rail and water to transport aggregates from remote sources.

  11. Preliminary investigation on the effects of primary airflow to coal particle distribution in coal-fired boilers

    NASA Astrophysics Data System (ADS)

    Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.

    2017-04-01

    This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.

  12. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  13. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization.

    PubMed

    Zhou, Lei; Olivier, Nelson B; Yao, Huan; Young, Edgar C; Siegelbaum, Steven A

    2004-12-02

    Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.

  14. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  15. Verifying success of artificial spawning reefs in the St. Clair-Detroit River System for lake sturgeon (Acipenser fulvescens Rafinesque, 1817)

    USGS Publications Warehouse

    Bouckaert, Emliy K.; Auer, Nancy A.; Roseman, Edward F.; James Boase,

    2014-01-01

    Lake sturgeon (Acipenser fulvescens) were historically abundant in the St. Clair – Detroit River System (SCDRS), a 160 km river/channel network. In the SCDRS, lake sturgeon populations have been negatively affected by the loss/degradation of natural spawning habitat. To address habitat loss for lake sturgeon and other species, efforts are underway to restore spawning substrate by constructing artificial reefs. The main objective of this study was to conduct post-construction monitoring of lake sturgeon egg deposition and larval emergence near two of these artificial reefs: Fighting Island Reef (FIR) in the Detroit River, and Middle Channel Reef in the St. Clair River. An additional site in the St. Clair River where lake sturgeon spawn on a coal clinker bed was also investigated. From 2010 to 2012, viable eggs and larvae were collected from all of these reefs, indicating that conditions are suitable for egg deposition, incubation, and larval emergence. In the St. Clair River, the results indicate the likelihood of other spawning sites upstream of these artificial reef sites.

  16. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry.

    PubMed

    Kanadasan, Jegathish; Fauzi, Auni Filzah Ahmad; Razak, Hashim Abdul; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-09-22

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  17. Use of waste brick as a partial replacement of cement in mortar.

    PubMed

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  18. Prefabricated RM Façade Panels - Search for the Safe Solution

    NASA Astrophysics Data System (ADS)

    Hulimka, Jacek; Kubica, Jan; Kałuża, Marta; Galman, Iwona

    2017-10-01

    The problem, which appeared during the design works on the untypical masonry openwork of the front elevation of the academic building in Poland was presented and discussed in this paper. The original solution of masonry external façade was too risky and practically impossible for realization from the workmanship point of view. For this reason authors were proposed to make this elevation wall as prefabricated construction consisted of medium scale prefabricated elevation panels made of openwork clinker units and masonry joints with reinforcement. Two solutions of prefabricated panels were elaborated: first by the design office and second one, significantly modified, proposed by the authors. Taking into consideration fact that proposed prefabricated panels are not the typical reinforced masonry possible to design based on Eurocode 6, the methodology of “supporting design by test” was accepted to verify the correctness of proposed solutions. The carried out tests of both types of prefabricated panels with results and their discussion are also presented here. The results have shown the lack of safety for the first type of prefabricates and good behaviour, safety and durability of the final, modified solution.

  19. The influence of sugarcane bagasse ash as fly ash on cement quality

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Damayanti, M. C.; Pratama, S. W. I.

    2017-01-01

    Fly ash often is used as the third material for cement. The fly ash from sugarcane bagasse is usually considered as industrial waste material that can be added to the base material of cement (clinker, trash, gypsum and lime stone) for economic and environment reason. The amount of fly ash usually up to 30 % of cement material, but in this research the percentage of sugarcane bagasse ash (SBA) is added to cement material is up to 15% total weight. Then the x-rays fluorescence (XRF) was used to determine its chemical composition of raw material and cement samples. The physical properties of cement such as fineness, setting time, expansion, and compressive strength were measured using Automatic Blaine, Vicat, Autoclave, respectively. The result show that the percentage of sugarcane bagasse ash influences the quality of cement and concrete, and this is confirmed with Indonesia National Standard (SNI). It is showed that the sugarcane bagasse ash could be use as material to improve the quality of cement and will solve the environment waste material

  20. Compressive strength of marine material mixed concrete

    NASA Astrophysics Data System (ADS)

    Adnan; Parung, H.; Tjaronge, M. W.; Djamaluddin, R.

    2017-11-01

    Many cement factories have been incorporated fly ash with clinker cement to produce blended cement. PCC is a type of blended cement incorporated fly ash that produced in Indonesia cement factories. To promote the sustainable development in the remote islands this present paper attempted to study the suitability of sea water, marine sand that available abundantly surround the remote island with Portland Composite Cement (PCC) and crushed river stone to produce concrete. Slump test was conducted to evaluate the workability of fresh concrete and also compressive strength with stress-strain relationship was carried out to evaluate the hardened concrete that cured with two curing condition (e.g. sea water curing, and tap water-wet burlap curing). Test result indicated that fresh concrete had proper workability and all hardened specimens appeared a good compaction result. Compressive strength of specimens cured which sea water was higher than the specimens which cured by tap water-wet burlap where stress-strain behavior of specimens made with sea water, marine sand, and PCC had similar behavior with specimens which made with PCC and tap water.

  1. Dealing with the increased radon concentration in thermally retrofitted buildings.

    PubMed

    Jiránek, M; Kačmaříková, V

    2014-07-01

    The influence of energy-saving measures on indoor radon concentration has been studied on the basis of a family house made of clinker concrete wall panels containing from 1000 up to 4000 Bq kg(-1) of 226Ra. Thermal retrofitting based on installing external thermal insulation composite system on the building envelope and replacing existing windows by new ones decreased the annual energy need for heating 2.8 times, but also reduced the ventilation rate to values<0.1 h(-1). As a consequence, the 1-y average indoor radon concentration values increased 3.4 times from 337 to 1117 Bq m(-3). The additional risk of lung cancer in the thermally retrofitted house increased to a value that is 125 % higher than before conversion. Methods for dealing with this enhanced risk by increasing the ventilation rate are discussed. Recovery of investments and the energy consequences of increased ventilation are studied in a long-term perspective. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Organic and inorganic pollutants from cement kiln stack feeding alternative fuels.

    PubMed

    Conesa, Juan A; Gálvez, Araceli; Mateos, Fernán; Martín-Gullón, Ignacio; Font, Rafael

    2008-10-30

    In this work, an analysis of the emission of different pollutants when replacing partially the fuel type used in a cement kiln is done. The wastes used to feed the kiln were tyres and two types of sewage sludge. The increasing mass flow of sludge is between 700 kg h(-1) and 5,500 kg h(-1)1, for a total production of clinker of 150th(-1), whereas the fed tyres were in the flow range of 500-1,500 kg h(-1). Dioxins and furans, polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons, heavy metals, HCl and HF, CO, CO(2), NO(x) and other parameters of the stack were analyzed, according to the standard methods of sampling and determination, through more than 1 year in six series: one blank (no sewage sludge) and five more with increasing amount of sludge and/or tyres. The emission of PAHs and dioxins seems to increase with the amount of tyres fed to the kiln, probably due to the fed point used for this waste.

  3. Issues related to dust aerosols in the magnesite industry. I. Chamber exposure.

    PubMed

    Reichrtová, E; Takác, L

    1992-01-01

    The present paper is an overview of the experimental research into the effects of flue magnesite dust in the magnesite industry in which the raw material (magnesite) is processed into refractory magnesite clinker. The issues related to dust are divided into two problem areas: a) dust aerosol arising in the process of ore mining and consisting largely of magnesite (MgCO3) and b) dust aerosol originating during ore baking in rotatory furnaces and made up mostly of MgO. Thus, larger groups of people become exposed to these aerosols as a result of solid particles escaping into the atmosphere than in the case of occupational exposure. Experimental research carried out on laboratory animals after chamber exposure provided findings on the deposition, retention and elimination of magnesite dust, on impaired balance between magnesium and calcium leading to damage of biological membranes, on how the immune profile or reproduction and embryogenesis is impacted as well as on the possible interaction with sodium salicylate as a result of an impaired acid base balance. These findings are followed up by evidence produced in the course of biological monitoring (Part II).

  4. Calcium leaching behavior of cementitious materials in hydrochloric acid solution.

    PubMed

    Yang, Huashan; Che, Yujun; Leng, Faguang

    2018-06-11

    The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.

  5. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-06-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that themore » deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kara, Mustafa, E-mail: mustafa.kara@mam.gov.t; Guenay, Esin; Tabak, Yasemin

    Municipal solid waste (MSW) is one of the most important environmental problems arising from rapid urbanization and industrialization. The use of alternative fuels in rotary kilns of cement plants is very important for reducing cost, saving fossil fuels and also eliminating waste materials, accumulated during production or after using these materials. Cement industries has an important potential for supplying preferable solutions to the waste management. Energy recovery from waste is also important for the reduction of CO{sub 2} emissions. This paper presents an investigation of the development of refuse derived fuel (RDF) materials from non-recycling wastes and the determination ofmore » its potential use as an alternative fuel in cement production in Istanbul, Turkey. RDF produced from MSW was analyzed and its effects on cement production process were examined. For this purpose, the produced RDF was mixed with the main fuel (LPG) in ratios of 0%, 5%, 10%, 15% and 20%. Then chemical and mineralogical analyses of the produced clinker were carried out. It is believed that successful results of this study will be a good example for municipalities and cement industries in order to achieve both economic and environmental benefits.« less

  7. Process for the production of fuel gas from coal

    DOEpatents

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  8. Use of waste brick as a partial replacement of cement in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-15

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by themore » X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.« less

  9. The mode of emplacement of Neogene flood basalts in eastern Iceland: Facies architecture and structure of simple aphyric basalt groups

    NASA Astrophysics Data System (ADS)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2014-12-01

    Simple flows (tabular) in the Neogene flood basalt sections of Iceland are described and their mode of emplacement assessed. The flows belong to three aphyric basalt groups: the Kumlafell group, the Hólmatindur group and the Hjálmadalur group. The groups can be traced over 50 km and originate in the Breiðdalur-Thingmuli volcanic zone. The groups have flow fields that display mixed volcanic facies architecture and can be classified after dominating type morphology. The Kumlafell and the Hólmatindur groups have predominantly simple flows of pāhoehoe and rubbly pāhoehoe morphologies with minor compound or lobate pāhoehoe flows. The Hjálmadalur group has simple flows of rubbly pāhoehoe, but also includes minor compound or lobate flows of rubble and 'a'ā. Simple flows are most common in the distal and medial areas from the vents, while more lobate flows in proximal areas. The simple flows are formed by extensive sheet lobes that are several kilometers long with plane-parallel contacts, some reaching thicknesses of ~ 40 m (aspect ratios < 0.01). They have overlapping contacts and are free of tubes and inflation structures. Their internal structure consists generally of a simple upper vesicular crust, a dense core and a thin basal vesicular zone. The brecciated flow-top is formed by clinker and crustal rubble, the clinker often welded or agglutinated. The simple flows erupted from seemingly short-lived fissures and have the characteristics of cooling-limited flows. We estimate the effusion rates to be ~ 105 m3/s for the simple flows of the Kumlafell and Hólmatindur groups and ~ 104 m3/s for the Hjálmadalur group. The longest flows advanced 15-20 km from the fissures, with lava streams of fast propagating flows inducing tearing and brecciation of the chilled crust. Compound or lobate areas appear to reflect areas of low effusion rates or the interaction of the lava with topographic barriers or wetlands, resulting in chaotic flowage. Slowing lobes with brecciated flow-tops developed into 'a'ā flows. The groups interdigitated with lava groups from the Reyðarfjörður volcanic zone to the east, and the exhumed Breiðdalur-Thingmuli volcanic zone which appear to have formed as a flank lineament parallel the main rift zone. Flood basalt volcanism in flank areas may support a mantle anomaly more pronounced and/or perhaps more widespread in the Neogene of Iceland than today. Eruptions of simple flows have not been observed in modern times and are significant for models of crustal accretion in Iceland and other Large Igneous Provinces.

  10. A thermodynamic and experimental study of the conditions of thaumasite formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Thomas; Lothenbach, Barbara; Romer, Michael

    2008-03-15

    The formation of thaumasite was investigated with the progressive equilibrium approach (PEA). This approach experimentally simulates the conditions of various levels of sulfate addition in hardened cement pastes. The influence of limestone, time, C{sub 3}A content, temperature and leaching on thaumasite formation was investigated. The results show that thaumasite formation is favoured at lower temperatures (8 deg. C) independently of the type of cement clinker (high or low C{sub 3}A content) used. Thaumasite was found to form only in systems where limestone was present and where sufficient sulfate had been added. Thaumasite precipitated only in systems where the Al presentmore » has already been consumed to form ettringite and the molar SO{sub 3}/Al{sub 2}O{sub 3} ratio exceeded 3. In leached samples (reduction of portlandite and alkalis) slightly less thaumasite was formed whereas gypsum and ettringite are favoured under these conditions. The PEA, used to investigate the chemical aspects of sulfate attack was found to be a good tool for simulating external sulfate attack. Generally, thaumasite was detected were it was modelled to be stable in significant amounts. However, in this study equilibrium conditions were not reached after 9 months.« less

  11. Life cycle assessment of the use of alternative fuels in cement kilns: A case study.

    PubMed

    Georgiopoulou, Martha; Lyberatos, Gerasimos

    2018-06-15

    The benefits of using alternative fuels (AFs) in the cement industry include reduction of the use of non-renewable fossil fuels and lower emissions of greenhouse gases, since fossil fuels are replaced with materials that would otherwise be degraded or incinerated with corresponding emissions and final residues. Furthermore, the use of alternative fuels maximizes the recovery of energy. Seven different scenaria were developed for the production of 1 ton of clinker in a rotary cement kiln. Each of these scenaria includes the use of alternative fuels such as RDF (Refuse derived fuel), TDF (Tire derived fuel) and BS (Biological sludge) or a mixture of them, in partial replacement of conventional fuels such as coal and pet coke. The purpose of this study is to evaluate the environmental impacts of the use of alternative fuels in relation to conventional fuels in the kiln operation. The Life Cycle Assessment (LCA) methodology is used to quantify the potential environmental impacts in each scenario. The interpretation of the results provides the conclusion that the most environmentally friendly prospect is the scenario based on RDF while the less preferable scenario is the scenario based on BS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment.

    PubMed

    Ortega, José Marcos; Sánchez, Isidro; Cabeza, Marta; Climent, Miguel Ángel

    2017-08-08

    At present, one of the most suitable ways to get a more sustainable cement industry is to reduce the CO₂ emissions generated during cement production. In order to reach that goal, the use of ground granulated blast-furnace slag as clinker replacement is becoming increasingly popular. Although the effects of this addition in the properties of cementitious materials are influenced by their hardening conditions, there are not too many experimental studies in which slag concretes have been exposed to real in situ environments. Then, the main objective of this research is to study the short-term effects of exposure to real Mediterranean climate environment of an urban site, where the action of airborne chlorides from sea water and the presence of CO₂ are combined, in the microstructure and service properties of a commercial slag cement concrete, compared to ordinary Portland cement (OPC). The microstructure was studied with mercury intrusion porosimetry. The effective porosity, capillary suction coefficient, chloride migration coefficient, carbonation front depth, and compressive strength were also analyzed. Considering the results obtained, slag concretes exposed to a real in situ Mediterranean climate environment show good service properties in the short-term (180 days), in comparison with OPC.

  13. Low Carbon Footprint mortar from Pozzolanic Waste Material

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra

    2017-04-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  14. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    PubMed Central

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC. PMID:28793579

  15. Shape Comparison Between 0.4–2.0 and 20–60 lm Cement Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzer, L.; Flatt, R; Erdogan, S

    Portland cement powder, ground from much larger clinker particles, has a particle size distribution from about 0.1 to 100 {micro}m. An important question is then: does particle shape depend on particle size? For the same cement, X-ray computed tomography has been used to examine the 3-D shape of particles in the 20-60 {micro}m sieve range, and focused ion beam nanotomography has been used to examine the 3-D shape of cement particles found in the 0.4-2.0 {micro}m sieve range. By comparing various kinds of computed particle shape data for each size class, the conclusion is made that, within experimental uncertainty, bothmore » size classes are prolate, but the smaller size class particles, 0.4-2.0 {micro}m, tend to be somewhat more prolate than the 20-60 {micro}m size class. The practical effect of this shape difference on the set-point was assessed using the Virtual Cement and Concrete Testing Laboratory to simulate the hydration of five cement powders. Results indicate that nonspherical aspect ratio is more important in determining the set-point than are the actual shape details.« less

  16. Biodiesel production methods of rubber seed oil: a review

    NASA Astrophysics Data System (ADS)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  17. Pore-structure and microstructural investigation of organomodified/Inorganic nano-montmorillonite cementitious nanocomposites

    NASA Astrophysics Data System (ADS)

    Papatzani, Styliani; Grammatikos, Sotirios; Adl-Zarrabi, Bijan; Paine, Kevin

    2018-04-01

    In the present paper, the effect of three different types of nano-montmorillonite dispersions (nMt) on the (i) microstructure as witnessed by Scanning Electron Microscopy, (ii) long term density measurements and (iii) pore structure as determined via Mercury Intrusion Porosimetry of Portland - limestone cement formulations have been compared, in an effort to determine the upper and lower bound of nMt addition in cementitious nanocomposites. The reference formulation, contained 60% PC and 40% LS by mass of binder aiming at the minimization of clinker and maximization of other constituents. Two aqueous organomodified NMt dispersions (one dispersed with non-ionic fatty alcohol and the other with anionic alkyl aryl sulphonate) and one aqueous inorganic NMt dispersion (dispersed with sodium tripolyphosphate) were added at 0.5, 1, 2, 4 and 5.5% by mass of solids as replacement of Portland cement. The water to solids ratio was kept constant at 0.3. The inorganic nMt showed the greatest potentials for microstructural enhancement. The way in which the level of the nMt platelet separation affected the pastes was discussed. The research reported was part of a much broader project supported by the EU.

  18. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels.

    PubMed

    Linder, Tobias; Wang, Shizhen; Zangerl-Plessl, Eva-Maria; Nichols, Colin G; Stary-Weinzinger, Anna

    2015-04-27

    Prokaryotic inwardly rectifying (KirBac) potassium channels are homologous to mammalian Kir channels. Their activity is controlled by dynamical conformational changes that regulate ion flow through a central pore. Understanding the dynamical rearrangements of Kir channels during gating requires high-resolution structure information from channels crystallized in different conformations and insight into the transition steps, which are difficult to access experimentally. In this study, we use MD simulations on wild type KirBac1.1 and an activatory mutant to investigate activation gating of KirBac channels. Full atomistic MD simulations revealed that introducing glutamate in position 143 causes significant widening at the helix bundle crossing gate, enabling water flux into the cavity. Further, global rearrangements including a twisting motion as well as local rearrangements at the subunit interface in the cytoplasmic domain were observed. These structural rearrangements are similar to recently reported KirBac3.1 crystal structures in closed and open conformation, suggesting that our simulations capture major conformational changes during KirBac1.1 opening. In addition, an important role of protein-lipid interactions during gating was observed. Slide-helix and C-linker interactions with lipids were strengthened during activation gating.

  19. Investigation of C3S hydration by environmental scanning electron microscope.

    PubMed

    Sakalli, Y; Trettin, R

    2015-07-01

    Tricalciumsilicate (C(3)S, Alite) is the major component of the Portland cement clinker, The hydration of the Alite is decisive for the properties of the resulting material due to the high content in cement. The mechanism of the hydration of C(3)S is very complicated and not yet fully understood. There are some models that describe the hydration of C(3)S in various ways. The Environmental Scanning Electron Microscopy (ESEM) working in gaseous atmosphere enables high-resolution dynamic observations of structure of materials, from micrometre to nanometre scale. This provides a new perspective in material research. ESEM significantly allows imaging of specimen in their natural state without the need for special preparation (coating, drying, etc.) that can alter the physical properties. This paper presents the results of our experimental studies of hydration of C(3)S using ESEM. The ESEM turned out to be an important extension of the conventional scanning microscopy. The purpose of these investigations is to gain insight of hydration mechanism to determine which hydration products are formed and to analyze if there are any differences in the composition of the hydration products. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    PubMed

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. © 2013 Wiley Periodicals, Inc.

  1. A review of the technological solutions for the treatment of oily sludges from petroleum refineries.

    PubMed

    da Silva, Leonardo Jordão; Alves, Flávia Chaves; de França, Francisca Pessôa

    2012-10-01

    The activities of the oil industry have several impacts on the environment due to the large amounts of oily wastes that are generated. The oily sludges are a semi-solid material composed by a mixture of clay, silica and iron oxides contaminated with oil, produced water and the chemicals used in the production of oil. Nowadays both the treatment and management of these waste materials is essential to promote sustainable management of exploration and exploitation of natural resources. Biological, physical and chemical processes can be used to reduce environmental contamination by petroleum hydrocarbons to acceptable levels. The choice of treatment method depends on the physical and chemical properties of the waste as well as the availability of facilities to process these wastes. Literature provides some operations for treatment of oily sludges, such as landfilling, incineration, co-processing in clinkerization furnaces, microwave liquefaction, centrifugation, destructive distillation, thermal plasma, low-temperature conversion, incorporation in ceramic materials, development of impermeable materials, encapsulation and biodegradation in land farming, biopiles and bioreactors. The management of the technology to be applied for the treatment of oily wastes is essential to promote proper environmental management, and provide alternative methods to reduce, reuse and recycle the wastes.

  2. Determination of the boundary conditions of the grinding load in ball mills

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  3. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    NASA Astrophysics Data System (ADS)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested where the limestone was blended (i.e., not interground) as needed, enabling variation of the size of the limestone particles. In addition, one of the commercially produced OPCs and PLCs were used with fly ash. A series of standardized tests were run to assess the physical effects of intergrinding limestone in portland cement, the effect of limestone presence and method of inclusion on the hydration reaction, and the associated mechanical and transport properties of concretes made with these limestone cements. The second phase of the study used a commercially produced OPC, a PLC, and a PLC-slag all made from the same parent clinker to quantify the early age shrinkage and cracking potential. The study presents a series of tests that quantify the fundamental origins of shrinkage in cementitious materials to elucidate the differences between PLC and OPC. The bulk shrinkage of these systems is then quantified under free and restrained conditions to provide an assessment of the susceptibility for cracking in portland limestone cements. The results of the first phase of this thesis showed that in general the PLC and OPC systems have similar hydration, set, and mechanical performance. Transport properties in this study show behavior that is +/- 30% of the conventional OPC system depending on the system. Literature has shown similar freeze-thaw resistance when these materials are used in properly air entrained mixtures, and the results for PLC systems with fly ash show added performance. Based on these results it appears that PLC that meets ASTM C595/AASHTO M234 should be able to be used interchangeably with OPC, while it should also be noted that the investigation of the influence of salts and sulfates on PLCs is still ongoing and should be monitored. The results of the second phase of this thesis showed that while the PLCs are finer, this comes primarily by reducing the very large particles (clinker particles greater than 30 microns) using advanced separator technology and increasing the number of very fine limestone particles. This results in the cements tested having similar autogenous shrinkage development in the PLC systems compared to the OPC, with slightly less shrinkage in the PLC-slag system. The stress that develops when this shrinkage is restrained is very similar in comparing the OPC, PLC and PLC-slag systems and the PLC mixture tends to crack at a similar or slightly earlier times.

  4. The architecture of tholeiitic lava flows in the Neogene flood basalt piles of eastern Iceland: constraints on the mode of emplacemement

    NASA Astrophysics Data System (ADS)

    Oskarsson, B. V.; Riishuus, M. S.

    2012-12-01

    Tholeiites comprise 50-70% of the Neogene lava piles of eastern Iceland and have been described largely as flood basalts erupted from fissures (Walker, 1958). This study incorporates lava piles found in the Greater Reydarfjördur area and emprises the large-scale architecture of selected flows and flow groups, their internal structure and textures with the intention of assessing their mode of emplacement. A range of lava morphologies have been described and include: simple (tabular) flows with a'a and rubbly flow tops, simple flows with pahoehoe crust and compound pahoehoe flows, with simple flows being most common. Special attention is given here to the still poorly understood simple flows, which are characterized by extensive sheet lobes with individual sheet lengths frequently exceeding 2 km and reaching thicknesses of ~40 m (common aspect ratios <0.01). The sheets in individual flow fields are emplaced side by side with an overlapping contact and are free of tubes. Their internal structure generally constitutes an upper vesicular crust with no or minor occurrences of horizontal vesicle zones, a poorly vesicular core and a thin basal vesicular zone. The normalized core/crust thickness ratios resemble modern compound pahoehoe flows in many instances (0.4-0.7), but with the thicker flows reaching ratios of 0.9. Flow crusts are either pahoehoe, rubbly or scoriaceous with torn and partially welded scoria and clinker. Frequently, any given flow morphology is repeated in sequences of three to four flows with direct contacts. Preliminary assessments suggest that simple flows are the product of high and sustained effusion rates from seemingly short-lived fissures. Simple flows with a'a flow tops may comprise the annealed emplacement mode of sheet flows and channeled a'a, in which the flow propagated as a single unit, whereas the brecciated flow top formed by continuous tearing and brecciation as occurs in channeled lava flowing at high velocity. The absence of a clinkery basal zone supports a fast moving flow front that inhibited the accumulation of clinker at the base as well as formation of a rigid crust. Pahoehoe crust and contrasting morphologies within simple flows may represent variation of flowage within the sheets controlled by conditions at the vent or topography. With one eruption soon followed by the next, the lack of tubes in the existing lava field and high effusion rates may have favored stacking of sheets instead of reactivation of the previous lava flow field. This has implications in evaluating the size and environmental impact of these eruptions. Eruptions of this kind have not yet been observed in modern times, and thus are significant for models of crustal accretion in Iceland and other flood basalt provinces. Reference: Walker, G. P. L., 1958, Geology of the Reydarfjördur area, Eastern Iceland, Quarterly Journal of the Geological Society, 114, 367-391.

  5. Structural basis for modulation and agonist specificity of HCN pacemaker channels.

    PubMed

    Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric

    2003-09-11

    The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.

  6. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Esteban, María Dolores; Rodríguez, Raúl Rubén; Ibanco, Francisco José; Sánchez, Isidro

    2017-01-01

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement. PMID:28767078

  7. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Sánchez, Isidro; Climent, Miguel Ángel

    2017-10-31

    Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO₂ emissions, the clinker replacement by ground granulated blast-furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement.

  8. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-08-02

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.

  9. Multiple Interactions between Cytoplasmic Domains Regulate Slow Deactivation of Kv11.1 Channels*

    PubMed Central

    Ng, Chai Ann; Phan, Kevin; Hill, Adam P.; Vandenberg, Jamie I.; Perry, Matthew D.

    2014-01-01

    The intracellular domains of many ion channels are important for fine-tuning their gating kinetics. In Kv11.1 channels, the slow kinetics of channel deactivation, which are critical for their function in the heart, are largely regulated by the N-terminal N-Cap and Per-Arnt-Sim (PAS) domains, as well as the C-terminal cyclic nucleotide-binding homology (cNBH) domain. Here, we use mutant cycle analysis to probe for functional interactions between the N-Cap/PAS domains and the cNBH domain. We identified a specific and stable charge-charge interaction between Arg56 of the PAS domain and Asp803 of the cNBH domain, as well an additional interaction between the cNBH domain and the N-Cap, both of which are critical for maintaining slow deactivation kinetics. Furthermore, we found that positively charged arginine residues within the disordered region of the N-Cap interact with negatively charged residues of the C-linker domain. Although this interaction is likely more transient than the PAS-cNBD interaction, it is strong enough to stabilize the open conformation of the channel and thus slow deactivation. These findings provide novel insights into the slow deactivation mechanism of Kv11.1 channels. PMID:25074935

  10. Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment

    PubMed Central

    Sánchez, Isidro

    2017-01-01

    At present, one of the most suitable ways to get a more sustainable cement industry is to reduce the CO2 emissions generated during cement production. In order to reach that goal, the use of ground granulated blast-furnace slag as clinker replacement is becoming increasingly popular. Although the effects of this addition in the properties of cementitious materials are influenced by their hardening conditions, there are not too many experimental studies in which slag concretes have been exposed to real in situ environments. Then, the main objective of this research is to study the short-term effects of exposure to real Mediterranean climate environment of an urban site, where the action of airborne chlorides from sea water and the presence of CO2 are combined, in the microstructure and service properties of a commercial slag cement concrete, compared to ordinary Portland cement (OPC). The microstructure was studied with mercury intrusion porosimetry. The effective porosity, capillary suction coefficient, chloride migration coefficient, carbonation front depth, and compressive strength were also analyzed. Considering the results obtained, slag concretes exposed to a real in situ Mediterranean climate environment show good service properties in the short-term (180 days), in comparison with OPC. PMID:28786936

  11. Utilization of lime-dried sludge for eco-cement clinker production: effects of different feeding points.

    PubMed

    Cao, Haihua; Liu, Wei; Xu, Jingcheng; Liu, Jia; Huang, Juwen; Huang, Xiangfeng; Li, Guangming

    2018-02-01

    Co-processing lime-dried sludge (LDS) in cement kilns is an appropriate technique to solve the problem of LDS disposal and promote the sustainable development for cement industry. However, there were limited studies that investigated the effects of feeding points on product quality and cement kiln emissions. In this study, simulated experiments were conducted by dividing the feeding points into high-temperature zones (HTZs) and raw mill (RM). Cement quality and major cement kiln emission characteristics were comprehensively investigated. The results showed that in terms of burnability, compressive strength and microstructure, the optimum co-processing amount of LDS were 9 wt% when feeding at RM, while 6% when feeding at HTZs. Meanwhile, the organic emissions of RM samples were mainly low environmental risk compounds of amides and nitrogenous heterocyclic compounds. Inorganic gaseous pollutions of NO X and SO 2 , respectively, were 8.11 mg/g DS and 12.89 mg/g DS, compared with 7.61 mg/g DS and 4.44 mg/g DS for HTZs. However, all the cement kiln emissions concentration were still much lower than standard requirements. Overall, RM had a bigger LDS co-processing capacity and higher, but acceptable, cement kiln emissions. Feeding LDS via RM could dispose larger amounts of sludge and provide more alternative materials for cement manufacturing.

  12. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    NASA Astrophysics Data System (ADS)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  13. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics.

    PubMed

    Zhang, Na; Liu, Xiaoming; Sun, Henghu; Li, Longtu

    2011-01-15

    Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, (27)Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Investigation on the potential of waste cooking oil as a grinding aid in Portland cement.

    PubMed

    Li, Haoxin; Zhao, Jianfeng; Huang, Yuyan; Jiang, Zhengwu; Yang, Xiaojie; Yang, Zhenghong; Chen, Qing

    2016-12-15

    Although there are several methods for managing waste cooking oil (WCO), a significant result has not been achieved in China. A new method is required for safe WCO management that minimizes the environmental threat. In this context, this work was developed in which cement clinker and gypsum were interground with various WCOs, and their properties, such as grindability, water-cement ratio required to achieve a normal consistency, setting times, compressive strength, contents of calcium hydroxide and ettringite in the hardened paste, microstructure and economic and environmental considerations, were addressed in detail. The results show that, overall, WCO favorably improves cement grinding. WCO prolonged the cement setting times and resulted in longer setting times. Additionally, more remarkable effects were found in cements in which WCO contained more unsaturated fatty acid. WCOs increased the cement strength. However, this enhancement was rated with respect to the WCO contents and components. WCOs decreased the CH and AFt contents in the cement hardened paste. Even the AFt content at later ages was reduced when WCO was used. WCO also densify microstructure of the hardened cement paste. It is economically and environmentally feasible to use WCOs as grinding aids in the cement grinding process. These results contribute to the application of WCOs as grinding aids and to the safe management of WCO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    PubMed Central

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  16. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days

    PubMed Central

    Esteban, María Dolores

    2017-01-01

    Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO2 emissions, the clinker replacement by ground granulated blast–furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement. PMID:29088107

  17. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  18. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.

    PubMed

    Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin

    2016-02-18

    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.

  19. Perspectives and limits for cement kilns as a destination for RDF.

    PubMed

    Genon, G; Brizio, E

    2008-11-01

    RDF, the high calorific value fraction of MSW obtained by conventional separation systems, can be employed in technological plants (mainly cement kilns) in order to obtain a useful energy recovery. It is interesting and important to evaluate this possibility within the general framework of waste-to-energy solutions. The solution must be assessed on the basis of different aspects, namely: technological features and clinker characteristics; local atmospheric pollution; the effects of RDF used in cement kilns on the generation of greenhouse gases; the economics of conventional solid fuels substitution and planning perspectives, from the point of view of the destination of RDF and optimal cement kiln policy. The different experiences of this issue throughout Europe are reviewed, and some applications within Italy are also been considered. The main findings of the study are that the use of RDF in cement kilns instead of coal or coke offers environmental benefits in terms of greenhouse gases, while the formation of conventional gaseous pollutants is not a critical aspect. Indeed, the generation of nitrogen oxides can probably be lower because of lower flame temperatures or lower air excess. The presence of chlorinated micro-pollutants is not influenced by the presence of RDF in fuel, whereas depending on the quality of the RDF, some problems could arise compared to the substituted fuel as far as heavy metals are concerned, chiefly the more volatile ones.

  20. On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Trofimov, B. Ya; Kramar, L. Ya; Schuldyakov, K. V.

    2017-11-01

    At present, concrete and reinforced concrete are gaining ground in all sectors of construction including construction in the extreme north, on shelves, etc. Under harsh service conditions, the durability of reinforced concrete structures is related to concrete frost resistance. Frost resistance tests are accompanied by the accumulation of residual dilation deformations affected by temperature-humidity stresses, ice formation and other factors. Porosity is an integral part of the concrete structure which is formed as a result of cement hydration. The prevailing hypothesis of a deterioration mechanism of concrete exposed to cyclic freezing, i.e. the hypothesis of hydraulic pressure of unfrozen water in microcapillaries, does not take into account a number of phenomena that affect concrete resistance to frost aggression. The main structural element of concrete, i.e. hardened cement paste, contains various hydration products, such as crystalline, semicrystalline and gel-like products, pores and non-hydrated residues of clinker nodules. These structural elements in service can gain thermodynamic stability which leads to the concrete structure coarsening, decrease in the relaxation capacity of concrete when exposed to cycling. Additional destructive factors are leaching of portlandite, the difference in thermal dilation coefficients of hydration products, non-hydrated relicts, aggregates and ice. The main way to increase concrete frost resistance is to reduce the macrocapillary porosity of hardened cement paste and to form stable gel-like hydration products.

  1. Perspectives and limits for cement kilns as a destination for RDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genon, G.; Brizio, E.

    2008-11-15

    RDF, the high calorific value fraction of MSW obtained by conventional separation systems, can be employed in technological plants (mainly cement kilns) in order to obtain a useful energy recovery. It is interesting and important to evaluate this possibility within the general framework of waste-to-energy solutions. The solution must be assessed on the basis of different aspects, namely: technological features and clinker characteristics; local atmospheric pollution; the effects of RDF used in cement kilns on the generation of greenhouse gases; the economics of conventional solid fuels substitution and planning perspectives, from the point of view of the destination of RDFmore » and optimal cement kiln policy. The different experiences of this issue throughout Europe are reviewed, and some applications within Italy are also been considered. The main findings of the study are that the use of RDF in cement kilns instead of coal or coke offers environmental benefits in terms of greenhouse gases, while the formation of conventional gaseous pollutants is not a critical aspect. Indeed, the generation of nitrogen oxides can probably be lower because of lower flame temperatures or lower air excess. The presence of chlorinated micro-pollutants is not influenced by the presence of RDF in fuel, whereas depending on the quality of the RDF, some problems could arise compared to the substituted fuel as far as heavy metals are concerned, chiefly the more volatile ones.« less

  2. Environmental Assessment of Different Cement Manufacturing ...

    EPA Pesticide Factsheets

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  3. Cost-benefit analysis of using sewage sludge as alternative fuel in a cement plant: a case study.

    PubMed

    Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2009-05-01

    To enforce the implementation of the Kyoto Protocol targets, a number of governmental/international institutions have launched emission trade schemes as an approach to specify CO(2) caps and to regulate the emission trade in recent years. These schemes have been basically applied for large industrial sectors, including energy producers and energy-intensive users. Among them, cement plants are included among the big greenhouse gas (GHG) emitters. The use of waste as secondary fuel in clinker kilns is currently an intensive practice worldwide. However, people living in the vicinity of cement plants, where alternative fuels are being used, are frequently concerned about the potential increase in health risks. In the present study, a cost-benefit analysis was applied after substituting classical fuel for sewage sludge as an alternative fuel in a clinker kiln in Catalonia, Spain. The economical benefits resulting in the reduction of CO(2) emissions were compared with the changes in human health risks due to exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and carcinogenic metals (As, Cd, Co, and Cr) before and after using sewage sludge to generate 20% of the thermal energy needed for pyro-processing. The exposure to PCDD/Fs and metals through air inhalation, soil ingestion and dermal absorption was calculated according to the environmental levels in soil. The carcinogenic risks were assessed, and the associated cost for the population was estimated by considering the DG Environment's recommended value for preventing a statistical fatality (VPF). In turn, the amount of CO(2) emitted was calculated, and the economical saving, according to the market prices, was evaluated. The use of sewage sludge as a substitute of conventional energy meant a probability cancer decrease of 4.60 for metals and a cancer risk increase of 0.04 for PCDD/Fs. Overall, a net reduction of 4.56 cancers for one million people can be estimated. The associated economical evaluation due to the decreasing cancer for 60,000 people, the current population living near the cement plant, would be of 0.56 million euros (US$ 0.83 million). In turn, a reduction of 144,000 tons of CO(2) emitted between 2003 and 2006 was estimated. Considering a cost of 20 euros per ton of CO(2), the global saving would be 2.88 million euros (US$ 4.26 million). After the partial substitution of the fuel, the current environmental exposure to metals and PCDD/Fs would even mean a potential decrease of health risks for the individuals living in the vicinity of the cement plant. The total benefit of using sewage sludge as an alternative fuel was calculated in 3.44 million euros (US$ 5.09 million). Environmental economics is becoming an interesting research field to convert environmental benefits (i.e., reduction of health risks, emission of pollutants, etc.) into economical value. The results show, that while the use of sewage sludge as secondary fuel is beneficial for the reduction in GHG emissions, no additional health risks for the population derived from PCDD/F and metal emissions are estimated. Cost-benefit analysis seems to be a suitable tool to estimate the environmental damage and benefit associated to industrial processes. Therefore, this should become a generalized practice, mainly for those more impacting sectors such as power industries. On the other hand, the extension of the study could vastly be enlarged by taking into account other potentially emitted GHGs, such as CH(4) and N(2)O, as well as other carcinogenic and non-carcinogenic micropollutants.

  4. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  5. An assessment of gas-side fouling in cement plants

    NASA Technical Reports Server (NTRS)

    Marner, W. J.

    1982-01-01

    The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.

  6. Coal availability in the Hilight Quadrangle, Powder River Basin, Wyoming; a prototype study in a western coal field

    USGS Publications Warehouse

    Molnia, Carol L.; Biewick, Laura; Blake, Dorsey; Tewalt, Susan J.; Carter, M. Devereaux; Gaskill, Charlie

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), Geological Survey of Wyoming, and U.S. Bureau of Mines (USBM), has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyo., where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is the quantity of the total coal resource that is accessible for mine development under current regulatory, land-use, and technologic constraints. This first western coal availability study, of the Hilight 7 1/2-minute quadrangle, indicates that approximately 60 percent (2.7 billion short tons) of the total 4.4 billion tons of coal in-place in the quadrangle is available for development. (There has been no commercial mining in the Hilight quadrangle.) Approximately 67 percent (1.9 billion tons) of the Main Wyodak coal bed is considered available. All tonnage measurements in this report are given in short tons. Coal-development considerations in the quadrangle include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, and the Hilight oil and gas field and gas plant. Some of these considerations could be mitigated so that surface mining of the coal may proceed; others could not be mitigated and would preclude mining in their vicinity. Other technological constraints that influence the availability of the coal include overburden thickness, coal beds too thin, and areas of clinker.

  7. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash.

    PubMed

    Yan, Dahai; Peng, Zheng; Yu, Lifeng; Sun, Yangzhao; Yong, Ren; Helge Karstensen, Kåre

    2018-03-21

    A disposal method for fly ash from a municipal solid waste incinerator (MSWI-FA) that involved a water washing pretreatment and co-processing in a cement kiln was tested. The mass flows of toxic heavy metals (HMs), including volatile HM (Hg), semi-volatile HMs (Pb, Cd, Tl, and As), and low-volatility HMs, and polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran (PCDD/Fs) in the input, intermediate, and output materials were characterized. The flue gas Hg concentrations from tests 0, 1, and 2, fed with 0, 3.1, and 1.7 t/h of dried-washed FA (DWFA), were 28.60, 61.95, and 35.40 μg N m -3 , respectively. Co-processing of DWFA did not significantly affect the metal concentration in clinker as most of the major input metals, with the exception of Cd, Pb, and Sb (which came from DWFA), were from raw materials and coal. Co-processing of DWFA did not influence on the release of PCDD/Fs; baseline and co-processing values ranged from 0.022 to 0.039 ng-TEQ/N m 3 , and from 0.01 to 0.031 ng-TEQ/N m 3 , respectively. The total destruction efficiency for PCDD/Fs in MSWI fly was 82.6%. This technology seems to be an environmentally sound option for the disposal of MSWI-FA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  10. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    PubMed

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe. © The Author(s) 2014.

  11. New technology and energy-saving equipment for production of composite materials

    NASA Astrophysics Data System (ADS)

    Romanovich, A. A.; Glagolev, S. N.; Babaevsky, A. N.

    2018-03-01

    The article considers industrial technology and energy-saving equipment for cement and composite binder production with a reduction in energy intensity of the process up to 50% due to the synergetic effect during mechanic activation of the raw mix with the replacement of part of the clinker component with the mineral hydro-active additive. The technological process is based on the sequential introduction of components in dispersed phases into the feed mixture in the grinding path and at the stage of product separation with certain dispersed characteristics. The increase in the energy efficiency of the line is achieved by the joint operation of the press roller aggregate, which is the development of BSTU named after V.G. Shoukhov, and rotor-vortex mills of a very fine grinding of a new design. The experienced design of the aggregate with the device for deagglomeration of the pressed tape allows combining the processes of grinding and disaggregation of the pressed material, thereby reducing the operating costs and increasing the efficiency of using the grinding unit. Comparative tests of cement samples obtained in energy-saving aggregates (PRA + RVM) are given which allowed establishing that their beam strength for compression and bending is higher by 15-20% than the traditional method obtained in a ball mill. An analytical expression is also given that allows one to determine the power consumed for the deagglomeration of crushed and pressed material between the main rolls, taking into account the geometric dimensions of the rolls and the physico-mechanical characteristics of the material.

  12. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it; Giacobbe, Carlotta; Sardisco, Lorenza

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a longmore » termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.« less

  13. Can tephra be recognized in Hawaiian drill core, and if so, what can be learned about the explosivity of Hawaiian volcanoes?

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Haskins, E.; Thomas, D. M.

    2013-12-01

    Nearly 6000 feet of drill core was recently recovered from the Pohakula Training Area (PTA) near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island. Drilling was funded by the US Army with an objective to find a potable water source; the rock core was logged and archived thanks to funding from the National Science Foundation. Within the first few hundred meters, alluvial outwash from the slopes of Mauna Kea is underlain by post-shield Mauna Kea lavas. Below this depth the core is predominantly pahoehoe and to a lesser extent a'a lavas expected to be from Mauna Kea's shield stage volcanism. During the logging effort, and throughout the core, a number of suspect-pyroclastic deposits were identified (largely based on particle texture). These deposits will be examined in more detail, with results presented here. An effort will be made to determine whether explosive deposits can, in fact, be unequivocally identified in drill core. Two anticipated challenges are differentiating between: scoria and 'clinker' (the latter associated with a'a lava flows), and primary volcanic ash, loess, and glacial sediments. Recognition of explosive deposits in the PTA drill core would lend insight into Mauna Kea's explosive history, and potentially that of other Big Island volcanoes as well. If the characteristics of tephra in Hawaiian drill core can be identified, core from the Hawaiian Scientific Drilling Project (HSDP) and Scientific Observation Holes (SOH-1,2,4) may also be examined.

  14. Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix

    NASA Astrophysics Data System (ADS)

    Petrunin, S.; Vaganov, V.; Reshetniak, V.; Zakrevskaya, L.

    2015-11-01

    The potential of application of CNTs as a reinforcing agent in cement composites is governed by their unique mechanical and electronic properties. The analysis of concrete strength changes under CNTs introduction shows non-uniformity and sometimes inconsistency of results. Due to the fact that CNTs influence the hydration kinetics, structure and phase composition of concrete, an idea concerning the importance of interaction between the surface of CNTs and hydrate ions formed by the dissolution of the clinker phases has been suggested. In this paper, the theoretical and experimental study of interaction between hydrate ions and CNTs surface is discussed. Reference nanotubes and nanotubes functionalized by carboxylic groups are used in this research. Phase composition was determined by X-Ray analysis according to the Rietveld method. It was found that the presence of oxygen-containing functional groups on CNTs surface leads to intensification of the hydration process and increase in concentration of C-S-H gel from 65.9% to 74.4%. Special attention is usually paid to interactions between Ca2+ ions and CNTs, because the hardening rate and structure of cement stone are determined by principle of Ca2+ localization in the solution. In this paper the possible binding mechanisms are discussed. Based on the experimental results, the hypothesis regarding the formation of cement composite structure for different CNTs surface functionalizations is considered. According to this hypothesis, the CNTs act as the centers of crystallization for hydration products contributing to the acceleration of hydration, increase of the concentration of C-S-H gel and strength improvement of CNTs based composites.

  15. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    PubMed

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  16. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Persistent Axial Dipole Decay for Past 400 Years Deduced from Lava Flows in Japan

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2017-12-01

    Temporal variation of the axial dipole moment g10 was deduced from paleointensity data that were obtained from volcanic islands Izu-Oshima and Miyakejima in Japan for the last 400 years, combined with historical field model gufm1. The basaltic lava flows are precisely dated based on ancient documents on the eruptions. Essentially no age error is necessary to be counted. Thellier paleointensity measurements were performed using a fully automated magnetometer-furnace system "tspin" using about 450 specimens, which were mainly collected from clinkers and scorias. Appropriate Thellier temperature steps for each specimen were chosen, based on the thermomagnetic curve that was quite variable depending on the vertical position within a lava flow. The newly obtained paleointensities are much more consistent between sites and provide more reliable paleointensity variation than previous data from lava interiors. I applied the method as Gubbins et al. [2006] to this single spot paleointensity variation from Japan, and obtained persisitent decay of the axial dipole moment over the last 400 years. Contrary to gufm1's assumption that g10 linearly decayed from 1590 to 1840 as extrapolating the post-1840 instrumental records, Gubbins et al. [2006] argued no definite temporal trend on g10 recognizable from the existing archeointensity database. The g10 variation calculated from the previous paleointensity data are seriously discredited by both age and intensity errors resulted from various materials, locations and experimental methods involved. Our single spot and well-dated paleointensity data are free from the problems and support persistent axial dipole decay for past 400 years as assumed in gufm1.

  18. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    PubMed

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Geophysical Log Data from Basalt Aquifers Near Waipahu on the Island of Oahu and Pahoa on the Island of Hawaii, Hawaii

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, Alfred E.

    1995-01-01

    Two relatively new geophysical logging techniques, the digitally enhanced borehole acoustic televiewer and the heat-pulse flowmeter, were tested from 1987 to 1991 at two sites in Hawaii: Waipahu on the island of Oahu, and Pahoa on the island of Hawaii. Although these data were obtained in an effort to test and improve these two logging techniques, the measurements are of interest to hydrologists studying the aquifers in Hawaii. This report presents a review of the measurements conducted during this effort and summarizes the data obtained in a form designed to make that data available to hydrologists studying the movement of ground water in Hawaiian aquifers. Caliper logs obtained at the Waipahu site indicate the distribution of openings in interbed clinker zones between relatively dense and impermeable basalt flows. The flowmeter data indicate the pattern of flow induced along seven observation boreholes that provide conduits between interbed zones in the vicinity of the Mahoe Pumping Station at the Waipahu site. The televiewer image logs obtained in some of the Waipahu Mahoe boreholes do not show any significant vertical or steeply dipping fractures that might allow communication across the dense interior of basalt flows. Acoustic televiewer logs obtained at the Pahoa site show that a number of steeply dipping fractures and dikes cut across basalt flows. Although flow under ambient hydraulic-head conditions in the Waipahu Mahoe Observation boreholes is attributed to hydraulic gradients associated with pumping from a nearby pumping station, flow in the Waipio Deep Observation borehole on Oahu and flow in the Scientific Observation borehole on Hawaii are attributed to the effects of natural recharge and downward decreasing hydraulic heads associated with that recharge.

  20. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idrissi, M., E-mail: mari_idrissi@yahoo.f; Diouri, A.; Damidot, D.

    The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Moessbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C{sub 4}A{sub 3}S) phase from different mixtures in the CaO-Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-SO{sub 3} system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amountsmore » of reagent grade CaCO{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CaSO{sub 4.2}H{sub 2}O for the synthesis of Ca{sub 4}Al{sub (6-2x)}Fe{sub 2x}SO{sub 16}, where x, comprised between 0 and 3, is the mole number of Al{sub 2}O{sub 3} substituted by Fe{sub 2}O{sub 3}. With x increasing from 0 to 1.5, both the iron content of C{sub 4}A{sub 3}S phase and the amounts of side components such as C{sub 2}F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 {sup o}C, melting phenomena were observed and, instead of the C{sub 4}A{sub 3}S solid solution, ferritic phases and anhydrite were formed.« less

  1. Burrowing mayflies as indicators of ecosystem health: Status of populations in two western Lake Superior embayments

    USGS Publications Warehouse

    Edsall, Thomas A.; Gorman, Owen T.; Evrard, Lori M.

    2004-01-01

    The U.S. Environmental Protection Agency and Environment Canada are supporting the development of indicators of ecosystem health that can be used to report on progress in restoring and maintaining the Great Lakes ecosystem, as called for in the Great Lakes Water Quality Agreement between the United States and Canada. One indicator under development for Great Lakes mesotrophic environments is based on burrowing mayflies (Hexagenia: Ephemeroptera: Ephemeridae). In this paper, we report the results of a benthic survey in spring 2002 to determine the status of nymphal populations of Hexagenia in two western Lake Superior embayments, the St. Louis River estuary, an area with significant water-use impairments, and Chequamegon Bay, an area with no known water-use impairments. Ponar grab samples collected throughout these embayments showed nymphs were generally abundant in finely particulate, cohesive substrate (clay or mixtures of clay and sand) in both embayments. However, in the St. Louis River estuary nymphs were absent in those preferred substrates at 11 stations in the eastern portion of St. Louis Bay and the adjoining northwestern portion of the Duluth-Superior Harbor, where the sediments were variously contaminated with visible amounts of taconite pellets, paint chips, oil, or combusted coal waste (clinkers). Our results suggest that human activities have rendered those portions of the St. Louis River estuary unsuitable for habitation by Hexagenia nymphs and we recommend that trend monitoring of the nymphal population there be conducted to permit reporting on progress in restoring and maintaining the health and integrity of this Great Lakes ecosystem embayment, consistent with the intent of the Great Lakes Water Quality Agreement.

  2. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  3. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  4. Low-CO2 Acid-Base Binders Made with Fly Ash

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2016-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works in urban areas. It is, however, responsible for 5-10 % of all anthropogenic CO2 emissions, nearly half of which arise from the decomposition of calcareous raw materials, and the other half from kiln fuel combustion and cement clinker grinding operations. As such, PC production contributes to global warming and climate change. Lately, efforts to develop alternative binders with lower greenhouse gas emissions have gained interest. An important class of such binders is geopolymers, typically formed by activating natural or waste materials with suitable alkaline solutions. These binders can have very low CO2 emissions from grinding of the starting materials, and some from the production of the activating chemical but the total CO2 emissions can be as low as 1/5th - 1/10th of those of PC concrete mixtures with comparable properties. Less commonly researched, acidic activating chemicals can also be used with powder materials to produce pastes that can set and harden into durable solids. One such powder is fly ash from coal-burning power plants. This ash is mostly stockpiled and can be an environmental hazard such as exacerbating air pollution in cities. This study investigates the chemical activation of fly ashes from Turkey using solutions of acids such as orthophosphoric acid. Amorphous and crystalline reaction products are observed to form, yielding a strong binder that sets much more rapidly than PC-based mixtures or alkali-activated geopolymers. As the change in the rheological properties and mechanical properties of these pastes can be balanced by combining different ashes, as well as by adjusting solution properties, they can offer environmental, energetic, and economical advantages over conventional PC-based mixtures.

  5. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  6. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE PAGES

    Liu, Z.; Guan, D.; Wei, W.; ...

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO 2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  7. Application of ESP for gas cleaning in cement industry--with reference to India.

    PubMed

    Bapat, J D

    2001-02-16

    Electrostatic precipitators (ESP) are used for gas cleaning in almost every section of cement manufacture. Application of ESP is studied, keeping in view Indian conditions. The characterisation of dust emissions has been done for different units, such as rotary kiln and raw mill, alkali by-pass, clinker cooler, cement and coal mill, in terms of exit gas quantity, temperature, dew point, dust content and particle size. It is seen that all these characteristics have a wide range of variance. The ESP system must effectively deal with these variations. The fundamental analytical expression governing the performance of ESP, i.e. the Deutsch equation, and that for particle migration velocity, were analysed to predict the effect of major operating parameters, namely particle size, temperature and applied voltage. Whereas the migration velocity (and the efficiency) varies directly with the particle size, it is proportional to the square and square root of applied voltage and absolute temperature of the gas, respectively. The increase in efficiency due to temperature is not seen in dc based ESP, perhaps due to more pronounced negative effect on the applied voltage due to the increase in dust resistivity at higher temperatures. The effect of gas and dust characteristics on the collection efficiency of ESP, as seen in the industrial practice, is summarised. Some main process and design improvements effectively dealing with the problem of gas and dust characteristics have been discussed. These are gas conditioning, pulse energization, ESP-fabric filter (FF) combination, improved horizontal flow as well as open top ESP.Generally, gas conditioning entails higher operating and maintenance costs. Pulse energization allows the use of hot gas, besides reducing the dust emission and power consumption. The improved horizontal flow ESP has been successfully used in coal dust cleaning. The open top or vertical flow ESP has a limitation on collection efficiency as it provides for only one electric field.

  8. Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste

    PubMed Central

    Grangeon, Sylvain; De Nolf, Wout; Harker, Nicholas; Boulahya, Faiza; Bourbon, Xavier

    2018-01-01

    To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement’s properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and in situ. However, traditional methods of cement mineralogy analysis (e.g. chemical mapping) involve sample preparation (e.g. slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts (e.g. dehydration). In addition, the kinetics of mineralogical development during hydration, and associated porosity development, cannot be examined. To circumvent these issues, X-ray diffraction computed tomography (XRD-CT) has been used. This allowed the mineralogy of ternary blended cement composed of clinker, fly ash and blast furnace slag to be deciphered. Consistent with previous results obtained for both powdered samples and dilute systems, it was possible, using a consolidated cement paste (with a water-to-solid ratio akin to that used in civil engineering), to determine that the mineralogy consists of alite (only detected in the in situ hydration experiment), calcite, calcium silicate hydrates (C-S-H), ettringite, mullite, portlandite, and an amorphous fraction of unreacted slag and fly ash. Mineralogical evolution during the first hydration steps indicated fast ferrite reactivity. Insights were also gained into how the cement porosity evolves over time and into associated spatially and time-resolved carbonation mechanisms. It was observed that macroporosity developed in less than 30 h of hydration, with pore sizes reaching about 100–150 µm in width. Carbonation was not observed for this time scale, but was found to affect the first 100 µm of cement located around macropores in a sample cured for six months. Regarding this carbonation, the only mineral detected was calcite. PMID:29765604

  9. Investigation of C3 S hydration mechanism by transmission electron microscope (TEM) with integrated Super-XTM EDS system.

    PubMed

    Sakalli, Y; Trettin, R

    2017-07-01

    Tricalciumsilicate (C 3 S, Alite) is the major component of the Portland cement clinker. Hydration of Alite is decisive in influencing the properties of the resulting material. This is due to its high content in cement. The mechanism of the hydration of C 3 S is very complicated and not yet fully understood. There are different models describing the hydration of C 3 S in various ways. In this work for a better understanding of hydration mechanism, the hydrated C 3 S was investigated by using the transmission electron microscope (TEM) and for the first time, the samples for the investigations were prepared by using of focused ion beam from sintered pellets of C 3 S. Also, an FEI Talos F200x with an integrated Super-X EDS system was used for the investigations. FEI Talos F200X combines outstanding high-resolution S/TEM and TEM imaging with energy dispersive X-ray spectroscopy signal detection, and 3D chemical characterization with compositional mapping. TEM is a very powerful tool for material science. A high energy beam of electrons passes through a very thin sample, and the interactions between the electrons and the atoms can be used to observe the structure of the material and other features in the structure. TEM can be used to study the growth of layers and their composition. TEM produces high-resolution, two-dimensional images and will be used for a wide range of educational, science and industry applications. Chemical analysis can also be performed. The purpose of these investigations was to get the information about the composition of the C-S-H phases and some details of the nanostructure of the C-S-H phases. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuerun, E-mail: xuerunli@163.com; Zhang, Yu; Shen, Xiaodong, E-mail: xdshen@njut.edu.cn

    The formation kinetics of tricalcium aluminate (C{sub 3}A) and calcium sulfate yielding calcium sulfoaluminate (C{sub 4}A{sub 3}more » $$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C{sub 3}A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca{sub 3}Al{sub 2}O{sub 6} + CaSO{sub 4} → Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 10CaO → 6Ca{sub 3}Al{sub 2}O{sub 6} + 2SO{sub 2} ↑ + O{sub 2} ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C{sub 4}A{sub 3}$$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C{sub 4}A{sub 3}$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca{sup 2+} and SO{sub 4}{sup 2−} were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C{sub 3}A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion.« less

  11. Preliminary report on methodology for calculating coal resources of the Wyodak-Anderson coal zone, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Stricker, Gary D.; Ochs, Allan M.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment of the Wyodak-Anderson coal zone includes reports on the geology, stratigraphy, quality, and quantity of coal. The calculation of resources is only one aspect of the assessment. Without thorough documentation of the coal resource study and the methods used, the results of our study could be misinterpreted. The task of calculating coal resources included many steps, the use of several commercial software programs, and the incorporation of custom programs. The methods used for calculating coal resources for the Wyodak-Anderson coal zone vary slightly from the methods used in other study areas, and by other workers in the National Coal Resource Assessment. The Wyodak-Anderson coal zone includes up to 10 coal beds in any given location. The net coal thickness of the zone at each data point location was calculated by summing the thickness of all of the coal beds that were greater than 2.5 ft thick. The amount of interburden is not addressed or reported in this coal resource assessment. The amount of overburden reported is the amount of rock above the stratigraphically highest coal bed in the zone. The resource numbers reported do not include coal within mine or lease areas, in areas containing mapped Wyodak-Anderson clinker, or in areas where the coal is extrapolated to be less than 2.5 ft thick. The resources of the Wyodak-Anderson coal zone are reported in Ellis and others (1998). A general description of how the resources were calculated is included in that report. The purpose of this report is to document in more detail some of the parameters and methods used, define our spatial data, compare resources calculated using different grid options and calculation methods, and explain the application of confidence limits to the resource calculation.

  12. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Guan, D.; Wei, W.

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO 2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  13. Environmentally-Friendly Geopolymeric Binders Made with Silica

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2013-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon footprints.

  14. Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair-Kuznetsk Basin transition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, I.S.; Sokol, E.V.; Travin, A.V.

    Cenozoic combustion metamorphic (CM) complexes produced by fossil natural coal fires are widespread at range-basin junctions worldwide. Large-scale fires accompany the initial orogenic phases as fresh coal-bearing strata become drawn into the aeration zone as a result of crustal deformation. In combustion metamorphism, the protolith melts to different degrees either into ferrous basic paralava or in glassy clinker. The melt rocks have a phase composition favorable for Ar-40/Ar-39 dating of ignition coeval with the onset of each episode in Late Cenozoic orogenic events. We suggest an algorithm providing correct Ar-40/Ar-39 age determination of CM rocks followed by well-grounded geological interpretationmore » and test the new approach on melt rocks from the Kuznetsk Coal Basin. Paralava samples were dated by Ar-40/Ar-39 incremental heating and the isotope ratios were corrected for Ca-, Cl-, and K-derived Ar isotopic interferences. The interpretation of age-spectrum results was checked against internal and external criteria. The former were plateau and isochrone ages and the latter included the so-called 'couple criterion' and conventional relative ages inferred from geological and stratigraphic evidence. As a result, we distinguished two groups of dates for combustion metamorphic events bracketed between 1.2 {+-} 0.4 and 0.2 {+-} 0.3 Ma. The older ages represent rocks in the western edge of the Prokopievsk-Kiselevsk block of the Salair zone and the younger dates correspond to those in its eastern edge. The reported dates record the time when the fault boundaries of the blocks were rejuvenated during recent activity and the block accreted to the Salair orogenic area as a submontane step. The suggested approach to the choice of objects, classification of rocks, and interpretation of Ar-40/Ar-39 spectra is universal and can be practiced in any area of combustion metamorphism.« less

  15. Utilization of CO2 in High Performance Building and Infrastructure Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCristofaro, Nicholas

    The overall objective of DE-FE0004222 was to demonstrate that calcium silicate phases, in the form of either naturally-occuring minerals or synthetic compounds, could replace Portland cement in concrete manufacturing. The calcium silicate phases would be reacted with gaseous CO2 to create a carbonated concrete end-product. If successful, the project would offer a pathway to a significant reduction in the carbon footprint associated with the manufacture of cement and its use in concrete (approximately 816 kg of CO2 is emitted in the production of one tonne of Portland cement). In the initial phases of the Technical Evaluation, Rutgers University teamed withmore » Solidia Technologies to demonstrate that natural wollastonite (CaSiO3), milled to a particle size distribution consistent with that of Portland cement, could indeed fit this bill. The use of mineral wollastonite as a cementitious material would potentially eliminate the CO2 emitted during cement production altogether, and store an additional 250 kg of CO2 during concrete curing. However, it was recognized that mineral wollastonite was not available in volumes that could meaningfully impact the carbon footprint associated with the cement and concrete industries. At this crucial juncture, DE-FE0004222 was redirected to use a synthetic version of wollastonite, hereafter referred to as Solidia Cement™, which could be manufactured in conventional cement making facilities. This approach enables the new cementitious material to be made using existing cement industry raw material supply chains, capital equipment, and distribution channels. It would also offer faster and more complete access to the concrete marketplace. The latter phases of the Technical Evaluation, conducted with Solidia Cement made in research rotary kilns, would demonstrate that industrially viable CO2-curing practices were possible. Prototypes of full-scale precast concrete products such as pavers, concrete masonry units, railroad ties, hollow-core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects reduced the CO2 footprint associated with the production and use of cement in concrete products by over 50% (a reduction of 430 kg of CO2 per tonne of cement). Applied at the first commercial Solidia Concrete manufacturing site, the two effects will combine to reduce the CO2 footprint associated with the production and use of cement by over 10,000 tonnes per year. When applied across the precast concrete industry in the U.S., it is estimated that the CO2 footprint will be reduced by 8.6 million tonnes per year (20 million tonnes of cement used in precast concrete x 430 kg of CO2 per tonne of cement). Applied across the entire concrete industry in the U.S., it is expected that 43 million tonnes of CO2 will be avoided per year (100 million tonnes of cement used in all concrete x 430 kg of CO2 per tonne of cement).« less

  16. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  17. New cementitious system: The case of glass frit

    NASA Astrophysics Data System (ADS)

    Fares, Galal

    Canada ranks as the world's third largest aluminium producer, and more than 80% of its aluminum industry is concentrated in Quebec. However, the spent pot-liner waste produced by the aluminium smelters accumulates with time into a considerable amount threatening the Canadian environment, especially that of Quebec. A new-engineered material, known as glass fit (GF) has been developed through the chemical treatment of such waste. GF shows potential hydraulic and pozzolanic properties. GF has been studied as a binder itself and as a supplementary cementitious material (SCM). The activation of industrial by-products into clinkerless binders is a novel trend that has attracted the attention of many researchers. The activation of GF into binder to produce paste, mortar and concrete was the first aim of this study. Potential activation of GF using different types and combinations of inorganic activators and temperatures of activation was successfully achieved and high strength concretes were obtained. Moreover, mortars with high compressive strength were obtained with well-formulated activators at ambient temperature. On the other hand, the utilization of industrial by-products as a partial replacement for cement in concrete is a widespread practice. As GF contains a high concentration of sodium in its structure, there is a concern as to the effect of sodium content on the development of alkali-silica reaction (ASR) expansion of concrete. Therefore, this study also aimed to investigate the effect of GF sodium content in the enhancement of ASR expansion and to find new synergistic mixtures that can effectively mitigate ASR expansion in the long term. We observed that ASR expansion decreases with the replacement level of GF. Different synergistic diagrams containing known SCM (silica fume, fly ash, and slag) were achieved from which different effective mixtures can effectively alleviate ASR expansion. In conclusion, the use of GF in the manufacture of concrete has great benefits. Economically, it could save millions of Canadian dollars needed for the treatment and landfilling of spent pot-liner waste. Ecologically, it could reduce GHG emissions associated with the production of cement clinkers. In this study, most of the well-known by-products are used according to the sustainability theory.

  18. Micromorphology and stable-isotope geochemistry of historical pedogenic siderite formed in PAH-contaminated alluvial clay soils, Tennessee, U.S.A

    USGS Publications Warehouse

    Driese, S.G.; Ludvigson, Greg A.; Roberts, J.A.; Fowle, D.A.; Gonzalez, Luis A.; Smith, J.J.; Vulava, V.M.; McKay, L.D.

    2010-01-01

    Alluvial clay soil samples from six boreholes advanced to depths of 400-450 cm (top of limestone bedrock) from the Chattanooga Coke Plant (CCP) site were examined micromorphologically and geochemically in order to determine if pedogenic siderite (FeCO3) was present and whether siderite occurrence was related to organic contaminant distribution. Samples from shallow depths were generally more heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) than those at greater depth. The upper 1 m in most boreholes consisted of mixtures of anthropogenically remolded clay soil fill containing coal clinker, cinder grains, and limestone gravel; most layers of coarse fill were impregnated with creosote and coal tar. Most undisturbed soil (below 1 m depth) consisted of highly structured clays exhibiting fine subangular blocky ped structures, as well as redox-related features. Pedogenic siderite was abundant in the upper 2 m of most cores and in demonstrably historical (< 100 years old) soil matrices. Two morphologies were identified: (1) sphaerosiderite crystal spherulites ranging from 10 to 200 um in diameter, and (2) coccoid siderite comprising grape-like "clusters" of crystals 5-20 ??n in diameter. The siderite, formed in both macropores and within fine-grained clay matrices, indicates development of localized anaerobic, low-Eh conditions, possibly due to microbial degradation of organic contaminants. Stable-isotope compositions of the siderite have ??13C values spanning over 25%o (+7 to - 18%o VPDB) indicating fractionation of DIC by multiple microbial metabolic pathways, but with relatively constant ??18O values from (-4.8 ?? 0.66%o VPDB) defining a meteoric sphaerosiderite line (MSL). Calculated isotope equilibrium water ??18O values from pedogenic siderites at the CCP site are from 1 to 5 per mil lighter than the groundwater ??18O values that we estimate for the site. If confirmed by field studies in progress, this observation might call for a reevaluation of low-temperature siderite-water 18O fractionations. Investigations at the CCP site thus provide valuable information on the geochemical conditions under which siderite can form in modern soils, and thus insight on controls on siderite formation in ancient soils. Copyright ?? 2010, SEPM (Society for Sedimentary Geology).

  19. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash.

    PubMed

    Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei

    2016-12-01

    Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑ 3-10 PCB) concentration in the stack gas samples was 10.15ngm -3 . The ∑ 3-10 PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg -1 for cement kiln 1and0.13-1.69ngg -1 for cement kiln 2. The ∑ 3-10 PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gravel deposits of the Caddo Gap and De Queen quadrangles, Arkansas: Chapter B in Contributions to economic geology, 1918, Part I, Metals and nonmetals except fuels

    USGS Publications Warehouse

    Miser, Hugh D.; Purdue, Albert Homer

    1919-01-01

    Several thick deposits of gravel are widely distributed along the north edge of the Gulf Coastal Plain, of which a narrow belt is embraced in the southern parts of the Caddo Gap and De Queen quadrangles, Ark. This belt is shown on Plate I, and its location is shown on figure 5, a key map of this region. It comprises parts of Pike, Howard, and Sevier counties and a narrow strip of Hemp- stead County, in southwestern Arkansas, and a strip along the east edge of McCurtain County, in southeastern Oklahoma. The gravels are of Lower Cretaceous, Upper Cretaceous, and Quaternary age, and are composed mainly of pebbles of novaculite (a variety of chert) derived from the Arkansas novaculite exposed in the Ouachita Mountain region, which is north of the Gulf Coastal Plain. They are used in making concrete, in ballasting railroads, and in the construction of wagon roads. Very small quantities of pebbles are also used in the washing plant of the Kimberlite Diamond Mining & Washing Co., at Murfreesboro, to assist in the disintegration of the altered peridotite which carries the diamonds.Interest in possible American sources of flint pebbles or substitutes therefor to be used in tube mills, in which minerals, ores, cement materials, and clinker are extensively ground in this country, has been aroused since the beginning of the present world war. This interest is due to the partial interruption of imports of flint pebbles from Denmark and France, which have supplied most of the pebbles used in this country. The main reasons for the preparation of this report are to present a description of the gravels under discussion and to indicate the possibility of their use in tube mills.The information for this report is the result of detailed field studies in the Caddo Gap and De Queen quadrangles by the authors in 1908 and 1911 and by the senior author in 1912 and 1916. Mr. E, D. Mesler rendered valuable assistance in 1912. Much of the information is abstracted from the De Queen-Caddo Gap folio, which is nearing completion.

  1. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it; Puccini, Monica, E-mail: m.puccini@diccism.unipi.it; Raggio, Giovanni, E-mail: g.raggio@tiscali.it

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effectmore » of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.« less

  2. A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.

    USGS Publications Warehouse

    Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.

    1983-01-01

    Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the Powder River Basin. Further, the large variation of R across the Bell Creek area suggests that vitrinite reflectance data from surface samples should be interpreted with caution.

  3. Structure refinements of members in the brownmillerite solid solution series Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeber, Stefan, E-mail: stefan.stoeber@geo.uni-halle.de; Redhammer, Guenther; Schorr, Susan

    2013-01-15

    Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences aremore » discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.« less

  4. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    NASA Astrophysics Data System (ADS)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  5. Flood lavas on Earth, Io and Mars

    USGS Publications Warehouse

    Keszthelyi, L.; Self, S.; Thordarson, T.

    2006-01-01

    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have (intermittently) reached effusion rates of the order of 106 m3 s-1.

  6. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields

    NASA Astrophysics Data System (ADS)

    Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.

    2014-04-01

    A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (<10 Ma) and propose a framework for describing systematic changes in morphotypes down-flow. The morphotypes give insight into intrinsic and extrinsic parameters of emplacement, rheology and dominant flow behavior, as well as the occurrence and character of other lava structures. The Harrat Rahat lava flow fields studied extend up to 23 km from the source, and vary between 1-2 m and 12 m in thickness. Areas of the lava flow fields are between ˜32 and ˜61 km2, with individual flow field volumes estimated between ˜0.085 and ˜0.29 km3. They exhibit Shelly-, Slabby-, and Rubbly-pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow field surfaces in northern Harrat Rahat, which suggests that core-dominated flows were predominant during flow movement. Lava structures are well-developed and well-preserved and some may be related to some morphotypes. Down-flow changes exhibit key illustrative and easy recognizable features in the lava flow fields and might provide insights into real-time monitoring of future flows in this region.

  7. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron and/or steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.

  8. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.

    2015-11-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron/steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.

  9. Oxalate Acid-Base Cements as a Means of Carbon Storage

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is demonstrated that an oxalate AB (OAB) cement concrete can partially replace PC concrete, for various applications. The strength gain of the OAB system is significantly faster, its heat of reaction higher, its chemical durability higher but its thermal durability lower than PC systems. OAB cements can put to good use oxalates produced from captured CO2.

  10. Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals

    NASA Astrophysics Data System (ADS)

    Anderson, J. R.; Hua, X.

    2008-12-01

    While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred micrograms per cubic meter of air) and traces of these aerosols have been found in the ACE-Asia and PACDEX experiments above the Sea of Japan, the Yellow Sea and across the width of the North Pacific.

  11. Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites

    NASA Astrophysics Data System (ADS)

    Appel, E.; Rösler, W.; Ojha, G.

    2012-04-01

    Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence which aims at bringing new innovative techniques closer to the market. Our project combines in situ and laboratory MS measurements and HM analyses in order to demonstrate the efficiency of a stepwise approach for site assessment of HM pollution around point sources of fly-ash emission and deposition into soil. The following scenario is played through: We assume that the "true" spatial distribution of HM pollution (given by the pollution load index PLI comprising Fe, Zn, Pb, and Cu) is represented by our entire set of 85 measured samples (XRF analyses) from forest sites around the "Schwarze Pumpe". Surface MS data (collected with a Bartington MS2D) and in situ vertical MS sections (logged by an SM400 instrument) are used to determine a qualitative overview of potentially higher and lower polluted areas. A suite of spatial HM distribution maps obtained by random selections of 30 out of the 85 analysed sites is compared to the HM map obtained from a targeted 30-sites-selection based on pre-information from the MS results. The PLI distribution map obtained from the targeted 30-sites-selection shows all essential details of the "true" pollution map, while the different random 30-sites-selections miss important features. This comparison shows that, for the same cost investment, a stepwise combined magnetic-geochemical site assessment leads to a clearly more significant characterization of soil pollution than by a common approach with exclusively random sampling for geochemical analysis, or alternatively to an equal quality result for lower costs.

  12. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Shiyun, E-mail: tjzhongshiyun@163.com; Ni Kun; Li Jinmei

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratiomore » (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is 9200 mg{center_dot}m{sup -2}, which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.« less

  13. General geology and ground-water resources of the island of Maui, Hawaii

    USGS Publications Warehouse

    Stearns, Harold T.; Macdonald, Gordon Andrew

    1942-01-01

    Maui, the second largest island in the Hawaiian group, is 48 miles long, 26 miles wide, and covers 728 square miles. The principal town is Wailuku. Sugar cane and pineapples are the principal crops. Water is used chiefly for irrigating cane. The purpose of the investigation was to study the geology and the ground-water resources of the island.Maui was built by two volcanoes. East Maui or Haleakala Volcano is 10,025 feet high and famous for its so-called crater, which is a section of Hawaii National Park. Evidence is given to show that it is the head of two amphitheater-headed valleys in which numerous secondary eruptions have occurred and that it is not a crater, caldera, or eroded caldera. West Maui is a deeply dissected volcano 5,788 feet high. The flat Isthmus connecting the two volcanoes was made by lavas from East Maui banking against the West Maui Mountains. Plate 1 shows the geology, wells, springs, and water-development tunnels. Plate 2 is a map and description of points of geologic interest along the main highways. Volcanic terms used in the report are briefly defined. A synopsis of the climate is included and a record of the annual rainfall at all stations is given also. Puu Kukui, on West Maui, has an average annual rainfall of 389 inches and it lies just six miles from Olowalu where only 2 inches of rain fell in 1928, the lowest ever recorded in the Hawaiian Islands. The second rainiest place in the Territory is Kuhiwa Gulch on East Maui where 523 inches fell during 1937. Rainfall averages 2,360 million gallons daily on East Maui and 580 on West Maui. Ground water at the point of use in months of low rainfall is worth about $120 per million gallons, which makes most undeveloped supplies valuable.The oldest rocks on East Maui are the very permeable primitive Honomanu basalts, which were extruded probably in Pliocene and early Pleistocene time from three rift zones. These rocks form a dome about 8,000 feet high and extend an unknown distance below sea level. Covering this dome are the Kula volcanics, extruded probably in early and middle Pleistocene time, and characterized by andesites, andesitic basalts, and picritic basalts. They are 2.000 feet thick on the summit and 50 to 200 feet thick at the periphery. They contain a sufficient number of interbedded soils, thin vitric tuff beds, and lava-filled valleys in their upper part to give rise to valuable perched springs in wet areas. The Kula lavas accumulated during a waning volcanic phase which was followed by a quiescence long enough for the erosion of deep amphitheater-headed valleys in the east or wet half of the mountain. Volcanic activity was renewed in middle (?) to late Pleistocene time and continued until Recent time, during which the Hana volcanic series was laid down. The last lava flow was erupted about 1750. The Hana lavas comprise andesitic, picritic, and olivine basalts. They veneered large areas of the east and south slopes, partly filled the deep amphitheater-headed valleys, and deeply buried the smaller valleys in the eastern half of the mountain. The Hana rocks are exceedingly permeable and much rain sinks into them.The oldest rocks on West Maui are the very permeable primitive Wailuku basalts, which were extruded probably in Pliocene and early Pleistocene time from two rifts and from many radial fissures. The basalts form a dome about 5,600 feet high and extend an unknown distance below sea level. Iao Valley is the eroded caldera of this dome. Forming an incomplete veneer over the dome are the Honolua soda trachytes and oligoclase andesites. They were extruded in late Pliocene (?) or early Pleistocene time, chiefly from bulbous domes. The clinker beds carry some water but the rocks are generally too dense to be good aquifers. During early (?) Pleistocene the West Maui volcano was cut by deep amphitheater-headed valleys and then all of Maui was deeply submerged. Four scattered eruptions occurred on West Maui in middle (?) and late Pleistocene time. The cones and lavas cover only small areas and are called the Lahaina volcanic series. The sedimentary rocks of both East and West Maui are chiefly late Quaternary and comprise fans, landslide debris, delta deposits, and valley fills, mostly of poorly permeable and poorly assorted bouldery alluvium. They are overlain on the Isthmus by extensive calcareous dunes of three ages. A mud flow more than 300 feet thick is exposed in Kaupo Valley. During the fluctuations of the ocean in the Pleistocene, the island was emerged and submerged several times. Calcareous fossiliferous marine conglomerates deposited during this period are found up to an altitude of 250 feet on West Maui. The Homomanu, Wailuku, and Kula lavas are the chief aquifers. They supply 28 irrigation wells which yield an average of 170 million gallons a day of basal water. These wells are mine-like shafts with infiltration tunnels and are called Maui-type wells. Well 16 yields 40,000,000 gallons daily with a 22-foot drawdown, which is the largest amount yielded by any well in the Hawaiian Islands. The largest spring (no. 26) on the island is artesian. It yields 10,400,000 gallons daily and issues from Kula lavas near Nahiku. West Maui has numerous perennial streams supplied by springs from a dike complex. Twenty-three tunnels in West Maui recover 20.5 million gallons a day of high-level water, mostly from this dike complex. East Maui has few perennial streams in proportion to its size, and they are chiefly small due to the water sheds being underlain with permeable lavas. Forty tunnels recover 6 million gallons a day of high-level water in East Maui and all from structures other than dikes. It is estimated that about 100 million gallons a day of basal water wastes into the sea from West Maui and about 700 million gallons a day from East Maui. A number of sites are described where wells could be sunk to recover this water. Sites are also described where tunnels could be driven to recover high-level supplies. The hydrology of East and West Maui is conspicuously different in many respects, mainly because of the difference in the stage of dissection, the extensive veneer of very permeable Hann lavas on East Maui, and the comparatively small area of the Lahaina lavas of similar age on West Maui. The only thermal water known in the Hawaiian Islands, except on the active volcano of Kilauea, is in a well in West Maui.The Nahiku area has been mapped and studied in detail. The upper part of the Honomanu volcanic series, exposed in the sea cliffs, in petrographic character is transitional into the overlying Kula lavas, Kula and Hana time were characterized by a long succession of valley-cutting episodes, each valley being filled by lava erupted from the east rift zone. The lavas include olivine basalts, picritic basalts, and basaltic andesites,In the Nahiku area basal ground water occurs largely in the Honomanu basalts. Perched water occurs in many of the later lavas, generally following the axes of buried valleys. The members which perch the water are mostly ashy soil beds, although an unusually extensive, thick layer of much decomposed clinker also appears to be a supporting member. Most of the water travels through the basal clinker members of aa lavas. Artesian water is encountered in the upper, transitional part of the Honomanu volcanic series. The aquifer is permeable porphyritic pahoehoe; the confining members are relatively impermeable nonporphyritic aa.The lavas of East Maui are described according to stratigraphic groups. The oldest or Honomanu lavas are olivine basalts like the primitive lavas in other Hawaiian volcanoes. The later or Kula and Hana lavas include basalts, basaltic andesites, andesites, and picritic basalts. The normative nepheline of analyzed East Maui lavas has not been identified in the mode. The degree of differentiation is inversely proportional to the frequency of eruptions.The lavas of West Maui volcano are divided into the Wailuku volcanic series, consisting largely of olivine basalts with less abundant olivine-poor basalts, hypersthene basalts, and picritic basalts; the Honolua volcanic series, consisting of oligoclase andesites and soda trachytes; and the Lahaina volcanic series, consisting of nepheline basanite and picritic basalts. Coarse-grained gabbros intrude the Wailuku lavas. Differentiation was undoubtedly partly by crystal settling, but the alkali curves of the variation diagram suggest that volatile transfer was of some importance.

  14. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22%, which is suggested by some studies, the limit values for cements as defined by the BMLFUW (2016) will be exceeded. Furthermore, the concrete produced from this cement will not be recyclable anymore due to its high total heavy metal contents. This and the comparatively high contribution of MSWI fly ashes to total heavy metal contents in cements indicate their relatively low resource potential if compared to other secondary raw materials in the cement industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    NASA Astrophysics Data System (ADS)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement paste and mortar with basalt powder. The modification consists in that the powder waste was added as partial replacement of cement. Four types of common cement were examined, i.e. CEM I, CEM II/A-S, CEM II/A-V and CEM II/B-V. The percentages of basalt powder in this research are 0%, 1%, 2%, 3%, 4%, 6%, 8% and 10% by mass. Results showed that the addition of basalt powder improved the strength of cement mortar. The use of mineral powder as the partial substitution of cement allows the effective management of industrial waste and improves some properties of cement mortar.

  16. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as burial, thermal and maturation history, lateral and vertical continuity, and coalification of the coal beds, also played a significant role in controlling methanogenic pathways and provided new perspectives on gas evolution and emplacement. The early-stage gas produced by CO2 reduction has mixed with transitional thermogenic gas in the deeper, central parts of the Powder River Basin to form 'old' gas, whereas along the basin margins the overprint of gas from methyl-type fermentation represents 'new' gas. Thus, a clear understanding of these geologic factors is necessary to relate the microbiological, biogeochemical, and hydrological processes involved in the generation of coal-bed gas.

  17. Alternative Fuel for Portland Cement Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facility's production process.« less

  18. Small Hydropower Plants in Pomerania: The Example of Evolution of Modern Industrial Brick Architecture

    NASA Astrophysics Data System (ADS)

    Macikowski, Bartosz

    2017-10-01

    Modernism is usually recognized and associated with the aesthetics of the International Style, represented by white-plastered, horizontally articulated architecture with skimpy decoration, where function was the main imperative of the architects’ ambitions. In Northern Europe though, Modernism also revealed its brick face, representing different manners, styles, and appearances. The brick face of Modernism reflected, in fact, the complexity of the modern change, breaking ties with the historic styles of the 19th century and being still present in the beginning of the 20th century. Regardless of the cosmopolitan character of the International Style and its unified aesthetics, architects tried to find and keep shades of individuality. This was especially visible in the references to either regional or even local traditions. This diversity of modernistic architecture is intensified by its different functions. The language of industrial architecture derives its forms directly from its nature of pure functional idiom, devoted to economic and functional optimization. The industrial form usually seems subordinate to the technical nature of objects. But regardless of that, in the 19th century and the first half of the 20th century we can observe an interesting evolution of styles and tendencies in industrial architecture, even in such a narrow and specific field like the architecture of small hydropower plants. The purpose of the research was to recognize the evolution of the architectural form of hydropower plants as a developing branch of industry in the first half of the 20th century. In Pomerania, during this period, a dynamic growth of investments took place, which concerned the use of the Pomeranian rivers’ potential to produce electric energy. At the end of the 19th century, electricity had a strong meaning as a symbol of a radical civilizational change, which influenced also the aesthetic aspects of architecture. This could suggest that the architecture of hydropower plants should be one of the carriers of the new progressive architecture. In fact, in the case of the Pomeranian hydropower plants, their technical solutions were among the most advanced and progressive solutions of those times, sometimes even experimental, adjusted to the diversity of local geographical conditions. Regardless of that, the architecture of the Pomeranian power plants was rather reflecting the diversity and dynamism of the aesthetic discourse of the time (sometimes even representing and adopting traditional or historical forms). The cascade of the power plants Podgaje (1928), Jastrowie (1930), and Ptusza (1930), all part of the same investment on the river Gwda, can be the example of the absorption and development of new aesthetic trends within the same stream of clinker architecture. The paper describes selected examples of Pomeranian power plants as a comparative study which could illustrate the evolution of the brick architecture of the beginning of the 20th century.

  19. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also, these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.

  20. Drainage development and incision rates in an Upper Pleistocene Basalt-Limestone Boundary Channel: The Sa'ar Stream, Golan Heights, Israel

    NASA Astrophysics Data System (ADS)

    Shtober-Zisu, N.; Inbar, M.; Mor, D.; Jicha, B. R.; Singer, B. S.

    2018-02-01

    Long-term fluvial incision processes and corresponding geomorphic evolution are difficult to quantify, especially in complex systems affected by lithological and tectonic factors. Volcanic landscapes offer the most appropriate environment for the study of landscape evolution, as there is a clear starting time of formation and the lithology is homogenous. In the present study we aim to: (1) analyse the interplay of construction and incision processes throughout eruptive activity; (2) study fluvial erosion processes; (3) analyse sedimentary and volcanic lithological responses to channel erosion; and (4) calculate the incision rates in young basaltic bedrock. We have integrated existing and new 40Ar/39Ar ages of lava flows with estimates of channel geometry and tectonic activity, and considered process geomorphology concepts, to fully understand evolution of a bedrock channel incised at the boundary between basalts and sedimentary rocks with coeval active volcanic processes forcing drainage evolution. Our findings indicate that the Sa'ar basin evolution is controlled by: (1) rock strength of the mixed lithology; (2) alternating cycles of volcanic activity followed by erosion and incision; and (3) the Plio-Pleistocene uplift of Mt. Hermon. The carbonate slopes composing the southern flank of Mt. Hermon are moderate (18-26%) while the basalt slopes deriving from the Golan Heights are much steeper (26-51%). The highly erodible sedimentary rocks at Mt. Hermon's piedmont accelerated river incision, shaping a 650 m wide by 100 m deep canyon. Inside the canyon, the steep channel slope (8.6%) enables downstream movement of large boulders, including autochthonous mega-blocks (D90 size > 2.5 m); 24 knickpoints were identified using DS plots, developed within a knick zone over a distance of 6 km. The brittle and porous structure of the rubbly and blocky interflow layers (clinkers), interbedded between two massive basalt flows, enhances erosion and accelerates scouring of the plunge-pool bottom and walls. Three volcanic phases shaped the Sa'ar basin: (1) The 3.25 Ma Cover Basalt flowed over large areas of the Levant and reached up to the northern Golan; (2) Dalwe Basalt was emplaced between 1.2 Ma and 750 ka, from vents including Mt. Qatzaa and Mt. Odem, and extended to Mt. Hermon covering sedimentary cuestas; (3) Ein Zivan Basalt (including the Sa'ar Lava Flow - the youngest basalt flow known in Israel) erupted before 110-120 ka and quickly accumulated at least three distinct flows into the deeply incised Paleo-Sa'ar canyon, refilling the canyon to a height of 50 m. Rates of incision are consistent with other rivers draining the Golan Heights. The total incision rate of the Sa'ar channel during the last 760 ka is at least 19.7 cm/ka. Over the past 100 ka, the incision rate was 22-30 cm/ka and the back-erosion of the Sa'ar highest knickpoint occurred at 68 cm/ka. Our findings reflect the latest evolution history of a special, mixed lithology channel, developed at the border of a large basaltic province, in an active tectonic environment. The results suggest that fluvial adjustment of basalt-limestone rivers is determined first by the interplay of construction and incision processes throughout alternating cycles of volcanic activity and quiescence. The lithology is an extremely important factor determining the type and rate of erosion. While the tectonic factor might determine the basin relief and slope, the lithological factor accelerates erosion and river incision.

  1. Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian

    2003-01-01

    New 1:24,000-scale geologic map of the Horse Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, summarizes available geologic information for the quadrangle. It provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Paleocene and early Eocene Wasatch Formation down through Ordovician and Cambrian units into Precambrian hornblende tonalite. The Wasatch Formation includes the Shire, Molina and Atwell Gulch Members which are mapped separately. The underlying Upper Cretaceous Mesaverde Group is subdivided into the Willams Fork and Iles Formations. The Cameo-Fairfield clinker zone within the Williams Fork Formation is mapped separately. The Iles Formation includes the Rollins Sandstone Member at the top, mapped separately, and the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale consists of four members, an upper member, the Niobrara Member, the Juana Lopez Member, and a lower member, undivided. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and Jurassic Entrada Sandstone are mapped separately. The Lower Jurassic and Upper Triassic Glen Canyon Sandstone is mapped with the Entrada in the Horse Mountain Quadrangle. The upper Triassic Chinle Formation and the Lower Permian and Triassic(?) State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is undivided. All the exposures of the Middle Pennsylvanian Eagle Valley Evaporite are diapiric, intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Lower and Middle Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group consists of the Dyer Dolomite and the underlying Parting Quartzite, undivided. Locally, the Lower Ordovician Manitou Formation is mapped separately beneath the Chaffee. Elsewhere, Ordovician through Cambrian units, the Manitou and Dotsero Formations, underlain by the Sawatch Quartzite, are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two are a complex of normal faults, the largest of which dips southward placing Chafee dolostone and Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side. Removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks and mass movement deposits consisting of a chaos of admixed Morrison and Dakota lithologies. The major geologic hazard in the area consists of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Abandoned coal mines are present along the north face of the Grand Hogback in the lower part of the Mesaverde Group

  2. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free atmosphere are related to the combustion area. The magnetic mapping with point distances of 2 m and profile-distances of 3 to 4 m covered an area of 350 × 300m with 7913 points. The detected anomalies lie in a range between -130 and 176 nT. The maxima are most likely caused by heating of the top sandstones by burning coal, the origin for the high magnetization being the conversion of pyrite and markasit into maghemite, hematite and magnetite. Susceptibility measurements of clinkers in firezone 18 demonstrate this effect. Therefore the identified patches with high magnetic anomalies should have a direct connection to ranges with burning coal within firezone 18. Al the discussed geophysical measurements together allow an integrated interpretation. Each result can be related to the combustion process with a particular likelihood for the vertical projection to the combustion centre. Probability calculations with chosen weight factors for each observation method are discussed. References: Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coalfires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007).

  3. Water retention curves and thermal insulating properties of Thermosand

    NASA Astrophysics Data System (ADS)

    Leibniz, Otto; Winkler, Gerfried; Birk, Steffen

    2010-05-01

    The heat loss and the efficiency of isolating material surrounding heat supply pipes are essential issues for the energy budget of heat supply pipe lines. Until now heat loss from the pipe is minimized by enlarging the polyurethane (PU) - insulation thickness around the pipe. As a new approach to minimize the heat loss a thermally insulating bedding material was developed and investigated. Conventional bedding sands cover all necessary soil mechanical properties, but have a high thermal conductivity from λ =1,5 to 1,7 W/(m K). A newly developed embedding material 'Thermosand' shows thermal properties from λ=0,18 W/(m K) (dry) up to 0,88 W/(m K) (wet). The raw material originates from the waste rock stockpiles of a coal mine near Fohnsdorf, Austria. With high temperatures up to nearly 1000 ° C and a special mineral mixture, a natural burned reddish material resembling clinker arises. The soilmechanical properties of Thermosand has been thoroughly investigated with laboratory testing and in situ investigations to determine compaction-, permeability- and shear-behaviour, stiffness and corresponding physical parameters. Test trenches along operational heat pipes with temperature-measurement along several cross-sections were constructed to compare conventional embedding materials with 'Thermosand'. To investigate the influence of varying moisture content on thermal conductivity a 1:1 large scale model test in the laboratory to simulate real insitu-conditions was established. Based on this model it is planned to develop numerical simulations concerning varying moisture contents and unsaturated soil mechanics with heat propagation, including the drying out of the soil during heat input. These simulations require the knowledge about the water retention properties of the material. Thus, water retention curves were measured using both steady-state tension and pressure techniques and the simplified evaporation method. The steady-state method employs a tension table (sand box) at tensions below 100 hPa and a pressure extractor at tensions between 300 hPa and 15,000 hPa; the water content is measured by weighing after the sample has equilibrated at the tension value set on the table or plate. In the transient evaporation method two tensiometers with a measurement range between 0 and 850 hPa are installed at a depth of 1.25 cm and 3.75 cm in a sample of 5 cm in height; the mean values of the two tensiometers and the water contents measured by weighting are used to obtain the water retention curve. First results of both methods show that the Thermosand samples release water over the entire tension range measured above 10 hPa. Because of the limited measurement range of the tensiometers used for the evaporation method, the measured curve must be extrapolated between 850 hPa and 15,000 hPa, to allow comparison with the steady-state method. To this end, it was attempted to match the Van-Genuchten and a bimodal Van-Genuchten retention function to the data from the evaporation experiments. This involves a simultaneous fit of both the water-retention and the hydraulic-conductivity function. As one first result only the Van-Genuchten model was found to be able to produce satisfactorily fits to the data. The extrapolated water retention curves (above 850 hPa) however do not match the data from the steady-state method. This suggests that alternative soil hydraulic functions are needed to provide an adequate representation of the water retention characteristics of the Thermosand. It has to be considered that especially for the heat flow simulation water retention and hydraulic conductivity functions above 15,000 hPa have to be determined.

  4. Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement

    NASA Astrophysics Data System (ADS)

    Khanna, Om Shervan

    The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different mineralogical phases within CKDs. It was found that CKDs can contain significant amounts of amorphous material (>30%) and clinker compounds (>20%) and small amounts of slag and/or flyash (<5%) and calcium langbeinite (<5%). The dissolution of ionic species and composition of the liquid phase play an important role in PC hydration. The dissolved ion contributions from CKDs were compared to PC using dilute stirred suspensions at 10 minutes and it was found that the ion contributions from CKDs are qualitatively the same as the ion contributions from PC, with the exception of chloride ions. The second objective was to utilize the material characterization analysis to determine the relationships among the composition properties of CKD-PC blends and their effects on fresh and hardened properties. The study found that CKDs from preheater/precalciner kilns have different effects on workability and heat evolution than CKDs from wet and long-dry kilns due to the presence of very reactive and high free lime contents (>20%). The blends with the two CKDs from preheater/precalciner plants had higher paste water demand, lower mortar flows, and higher heat generation during initial hydrolysis in comparison to all other CKD-PC blends and control cements. The hardened properties of CKD as a partial substitute of PC appear to be governed by the sulfate content of the CKD-PC blend (the form of the CKD sulfate is not significant). According to analysis of the ASTM expansion in limewater test results, the CKD-PC blend sulfate content should be less than ˜0.40% above the optimum sulfate content of the PC. It was also found that the sulfate contribution of CKD behaves similar to gypsum. Therefore, CKD-PC blends could be optimized for sulfate content by using CKD as a partial substitute of gypsum during the grinding process to control the early hydration of C3A. The wet and long-dry kiln CKDs contain significant amounts of calcium carbonate (>20%) which could also be used as partial replacement of limestone filler in PC.

  5. The significance of late-stage processes in lava flow emplacement: squeeze-ups in the 2001 Etna flow field

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Pinkerton, H.; James, M. R.

    2009-04-01

    The general processes associated with the formation and activity of ephemeral boccas in lava flow fields are well documented (e.g. Pinkerton & Sparks 1976; Polacci & Papale 1997). The importance of studying such behaviour is illustrated by observations of the emplacement of a basaltic andesite flow at Parícutin during the 1940s. Following a pause in advance of one month, this 8 km long flow was reactivated by the resumption of supply from the vent, which forced the rapid drainage of stagnant material in the flow front region. The material extruded during drainage was in a highly plastic state (Krauskopf 1948), and its displacement allowed hot fluid lava from the vent to be transported in a tube to the original flow front, from where it covered an area of 350,000 m2 in one night (Luhr & Simkin 1993). Determining when a flow has stopped advancing, and cannot be drained in such a manner, is therefore highly important in hazard assessment and flow modelling, and our ability to do this may be improved through the examination of relatively small-scale secondary extrusions and boccas. The 2001 flank eruption of Mt. Etna, Sicily, resulted in the emplacement of a 7 km long compound `a`ā flow field over a period of 23 days. During emplacement, many ephemeral boccas were observed in the flow field, which were active for between two and at least nine days. The longer-lived examples initially fed well-established flows that channelled fresh material from the main vent. With time, as activity waned, the nature of the extruded material changed. The latest stages of development of all boccas involved the very slow extrusion of material that was either draining from higher parts of the flow or being forced out of the flow interior as changing local flow conditions pressurised parts of the flow that had been stagnant for some time. Here we describe this late-stage activity of the ephemeral boccas, which resulted in the formation of ‘squeeze-ups' of lava with a markedly different texture to that of the surrounding `a`ā flow surface. The appearance of the squeeze-up material in this flow is similar to that of the plastic lava forcibly drained from the front of the Parícutin flow. The squeeze-up features demonstrate marked morphological variation, which was found to reflect the rheology of the material being extruded, the volume of material being extruded, the extrusion rate and the geometry of the source bocca. We describe the final morphology of squeeze-ups from the 2001 flow field, which ranges from relatively fluid flows to extrusions of high-strength material that accumulated above the source bocca, forming features more akin to tumuli. Although tumulus-like in overall shape and dimensions, the morphology and inferred growth mechanisms for these structures leads to them being dubbed ‘exogenous tumuli', to distinguish them from the more familiar tumuli resulting from inflation processes, which are described elsewhere (e.g. Macdonald 1972; Walker 1991; Duncan et al. 2004). The morphological data are then used together with observations of lava surface textures and squeeze-up locations to build up a picture of flow structure and flow dynamics at the time of squeeze-up formation. The structure of the crust underlying the clinker cover can be elucidated by examining the locations in which squeeze-ups occur, as extrusions exploit zones of crustal weakness. It is found that the flow crust plays an increasingly important role in determining the locus of squeeze-ups as the flow evolves. Squeeze-ups that clearly had a high strength upon extrusion formed as a result of high overpressures in the flow interior. The extrusion of such material may represent the latter stages of activity of a long-lived bocca, or the new development of a bocca in a part of the flow that had been stagnant for some time. Examination of squeeze-up textures may help determine whether the material was transported to the extrusion site in an open or closed system, or if it was stored for a significant length of time before extrusion. Information may also be gleaned concerning the maximum crystallinity at which lava can flow, which is an important parameter in flow modelling. Evidence for a mechanism by which sufficient overpressure can be generated to extrude such material is presented.

  6. Fuel Flexibility in Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.

    2001-11-06

    In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, andmore » varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visibly apparent. To prevent bridges and ratholes from developing in the lowest coal feed hopper, it is normally fluidized. When feeding the coal sawdust mixtures the fluidizing gas was turned off to prevent segregation. The feed system worked as well with no fluidizing gas when using the mixtures as it did with fluidizing gas and only coal. In addition, it was inadvertently discovered that greatly increased pressure above the feeder resulted in greatly increased flow with the mixtures. Increased pressure above the feeder with coal only results in quickly plugging the feed system. Also, it was learned that addition of sawdust reduces the system loss during conveying compared to coal only. This is in spite of overall smaller particle sizes with the coal sawdust mixtures.« less

  7. The results of the electrochemical clearning of drainage waters

    NASA Astrophysics Data System (ADS)

    Kabannik, Vasilina; Saeva, Olga

    2010-05-01

    There is a problem of industrial drains clearing in various branches, but especially sharply in a metal manufacture that is caused by great volumes of the wastewater containing high residual concentration of heavy metals. It is necessary to pay attention to solids in wastes. In a long-term interaction with oxygen of air and natural deposits the acid drainage is often formed and takes out a number of elements with different classes of toxicity to superficial and underground waters. Therefore search of an extraction possibilities for toxic components for a eliminate of their further migration is the big deal. Belov Zink Plant located in the Kemerovo region. During sixty years the factory stably made up to 10 000 tons of zinc annually and in passing up to 30 000 tons H2SO4 processing a blende concentrate. Now the factory has stopped the activity, however, in territory have remained uncontrolledly stored about one million tons of the wastes, presented by slags and ashes. Visually clinker represent coarse-grained sands of the typical slag containing 0.7-15% Zn, 0.3-8.5% Cu, 0.03-0.7% Pb and 2-400 g/t Cd. Besides in tailings the sub-standard sulfuric acid [Bortnikova, etc., 2006] are merged. Acid (рН=3.5) and highsaline waters of a drainage stream with significant concentration sulfate-ion (up to 20 g/l), copper (up to 6 g/l) and zinc (up to 4 g/l), that allows to consider as macrocomponents. A wide number of microcells in drains exceeds maximum concentration limit (MPC) of chemical substances in objects of drinking and community use. The basic chemical forms of present metals (Al, Mn, Zn, Fe, Co, Ni, Pb, Cu) are aquo-ions and sulphatic complexes. Earlier in our laboratory searching of a way of a toxic components concentration downturn in drains of Belov plant - sorptive clearing by natural clays [Gaskova, Kabannik, 2009] and sedimentation of toxic elements on carbonate barrier [Yurkevich, etc., 2008] were done, however the desirable result by virtue of that this object represents very difficult chemical system not received. In this work the experimental researches on clearing acid drainage waters of the Belov Zink Plant from a lot of toxic elements during electrochemical with the active Al anode are resulted. For achievement of an object in view following experiment has been conducted. To a drainage solution in volume of 100 ml have added an aluminium foil (0,3 g weight). In an electrochemical line of activity Al stands more to the left of considered metals: K, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Pb, H, Cu, Ag, Pt, Au, i.e. possesses more negative potential. At interaction of metal aluminium with a solution, containing salt metals with less negative potential than aluminium, there will be a transition electones from aluminium to Ме +. Thus, there will be restoration Ме + and oxidation of aluminium: Меn+ + n ē → Me0, Al0 - 3ē→ Al3+. In seven day of experiment it is revealed, that the is bright-blue drainage solution has become colourless (рН=3.9), the plate was dissolved approximately half, at the bottom of a glass powder copper (0.5 g) has dropped out in a deposit. Owing to that Al-hydroxide start to drop out at рН a solution> 4, we could separate free filtering powder copper from a solution. At a following stage of experiment have besieged Al-hydroxide by means of neutralization of a solution by ammonia up to рН 7.5. Dropped out white flakes have separated from a solution by filtering. By results of experiment (a method of analysis ISP-IES), that after interaction with an aluminium foil in a solution there were 10 mg/l Cu and Pb <0.05 mg/l, concentration of other metals have remained at the same level. It is possible to explain it to that copper and lead possess the greatest difference of potentials with aluminium. After neutralization at the second stage of experiment concentration of Al became at level MPC. Owing to co-precipitation on Al-hydroxide the amount of toxic elements Be, Se became comparable with MPC; for Fe, Cu - it is less MPC. In a solution there were 6% Zn, Сo - 20%, Ni - 60%, Mn - 77%, from initial concentration. Besides on we receive powder copper and Al-hydroxide which are used for manufacture coagulants and fire-retardants in the industry. The received results allow to speak that the offered way of clearing of a drainage solution with the addition of metal aluminium with the further neutralization enables substantially to lower acid drainage and flow of some toxic elements of different classes of danger and to leveling рН up to natural.

Top